
BRIDGING THE GAP BETWEEN HETEROGENEOUS COMPUTING AND
NEXT GENERATION MEMORY ARCHITECTURE USING HIGH LEVEL

SYNTHESIS

by

Abhilash D. Rajagopala

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. Ronald R. Sass

Dr. James M. Conrad

Dr. Thomas P. Weldon

Dr. Andrew G. Schmidt

Dr. Erik J. Saule

ii

c©2019
Abhilash D. Rajagopala

ALL RIGHTS RESERVED

iii

ABSTRACT

ABHILASH D. RAJAGOPALA. Bridging the gap between heterogeneous
computing and next generation memory architecture using high level synthesis.

(Under the direction of DR. RONALD R. SASS)

The impact of transistor scaling on FPGAs is changing the role of FPGA from ac-

celerators to a major role as processors. With this rapid development and the ability

to implement complex systems on FPGAs, the conventional hardware language de-

sign flow is making way for software-like language using High-Level Synthesis (HLS).

While academic and commercial HLS tools have made huge strides, nearly all these

tools focus exclusively on the computation and the data path. Rarely do they directly

address the memory subsystem and its impact on the overall performance. At best,

the programmers can assist the tools with optimization which indirectly impact the

memory subsystem performance. This has (unintentionally) exacerbated the already

existing memory issues. The performance of DDR memory which has been the main

stream off-chip memory has been lagging behind the processor performance. This

has resulted in a performance gap and emerging memories such as Hybrid Memory

Cube (HMC), High Bandwidth Memory (HBM), and others are promising prospects

in reducing this gap. However, integrating these new memory technologies with HLS

design flow has not been trivial. To fully utilize the performance benefits, the pro-

grammer must understand the low-level details of the hardware.

In this work, we conduct a systematic analysis of different HLS generated circuits on

different off-chip memories. Our analysis identifies the root cause of the problem which

is how the low-level hardware interacts with the memory subsystem. To mitigate these

issues we introduce a hardware middle layer which establishes compatibility and a

software transformation to improve the performance. This design is compared with

the baseline system to evaluate the performance improvement from the methodology

on heterogeneous systems.

iv

ACKNOWLEDGEMENTS

I would like to express my deepest appreciation and heartfelt thank you for everyone

who helped me with this dissertation. Your advice, encouragement, and support has

been very valuable to which I am always indebted. This work was supported by

Electrical & Computer Engineering Department (my department) and Information

Science Institute (ISI) to which I am always grateful.

Many thanks to my committee who dedicated many hours and been highly sup-

portive throught this dissertation. Your advice and encouragement means a lot to

me and has helped me to keep on track.

I would like thank ISI (where this idea was born) for giving me an oppurtunity to

work in your lab and help me formulate the initial concept.

A special thanks to Andy at ISI, who has been inspirational, and has helped me

throughout this process. He has shown me, by his example, what a good scientist

(and person) should be. It has been a real pleasure working with you.

This work would not be completed without my advisor. Ron, your relentless sup-

port, valuable advices, insightful suggestions ... (running out of adjectives here) even

with everything that was going on, you have been the best. It was a honour to be

your student and I could not have asked for more.

A supportive family is a blessing. Thanks to my parents Shyla and Rajagopala for

supporting me this entire time. I couldn’t have done this without you.

v

TABLE OF CONTENTS

LIST OF TABLES vii

LIST OF FIGURES viii

CHAPTER 1: Introduction 1

1.1. Accelerator Technology 2

1.2. Memory Technology 3

1.3. Thesis Statement 5

CHAPTER 2: Background 6

2.1. Nomenclature 6

2.2. Memory 7

2.2.1. Non-Volatile Memory 7

2.2.2. Volatile Memory 9

2.2.3. Next-generation Memory 16

2.3. Interconnect 19

2.4. High Level Synthesis (HLS) 20

2.4.1. HLS tools 20

2.4.2. HLS Optimization 22

2.5. Related Work 27

CHAPTER 3: Motivation and Preliminary Results 31

3.1. Programmers Productivity 31

3.2. HLS memory pattern 36

3.3. HMC Bandwidth 38

vi

CHAPTER 4: Design 43

4.1. SoC platforms 43

4.1.1. Infrastructure 43

4.1.2. Design Flow 45

4.2. FPGA platforms 48

4.2.1. Kintex FPGA 49

4.2.2. AC510 HMC 51

4.3. HLS Design 56

4.3.1. HLS Applications 56

4.3.2. HLS Optimizations 59

4.4. Volcan Methodology 61

CHAPTER 5: Evaluation and Results 64

5.1. Experiment Setup 64

5.2. Baseline Analysis 65

5.2.1. SoC platform 66

5.2.2. FPGA platforms 70

5.3. Volcan Evaluation 72

5.3.1. DDR Memory 73

5.3.2. HMC Memory 76

5.4. Final Evaluation 78

CHAPTER 6: Conclusion 80

REFERENCES 83

vii

LIST OF TABLES

TABLE 2.1: Summary of Emerging NVM technologies [44, 45, 46] 9

TABLE 2.2: Performance of different DRAM technology 15

TABLE 4.1: SoC platform specification 44

TABLE 4.2: Different Data Movers in SDSoC 46

TABLE 4.3: FPGA platform specification 48

TABLE 4.4: Directive Combination (DC) and description 60

TABLE 5.1: Execution time (in kilo clock cycle) for Ideal and Actual
Memory on SoC platforms (lower the better)

67

TABLE 5.2: Execution time (in kilo clock cycle) for Ideal and Actual
Memory on SoC platforms (lower the better)

71

TABLE 5.3: Computation and memory overhead (lower the better) and
relative gain (higher the better) by Volcan on KC705 (DDR)

74

TABLE 5.4: Computation and memory overhead in terms of percentage
of overall time (lower the better) and relative gain (higher the better)
by Volcan on AC510 (HMC)

77

TABLE 5.5: Comparison of execution time (lower the better) between
HLS core and software

79

viii

LIST OF FIGURES

FIGURE 1.1: Performance Gap between Computing and Memory 4

FIGURE 2.1: Structure of SRAM Cell Array 12

FIGURE 2.2: Structure of DRAM Memory 14

FIGURE 2.3: Structure of Hybrid Memory Cube 18

FIGURE 2.4: HMC address for 128B Block size and 4GB Memory 19

FIGURE 2.5: Comparison between no pragma and pipeline pragma 24

FIGURE 2.6: Loop unroll pragma in HLS 25

FIGURE 3.1: Address analysis setup 37

FIGURE 3.2: Address captured for NoPragma, Pipeline, and Loop split 38

FIGURE 3.3: Address captured for Unroll and Array partitioning 39

FIGURE 3.4: HMC Bandwidth for varying channels and burst sizes 40

FIGURE 3.5: HMC bandwidth analysis for varying burst length on a
single and dual channel AXI interface

41

FIGURE 4.1: Zynq Architecture for SDSoC 45

FIGURE 4.2: SDSoC Design Flow 47

FIGURE 4.3: Volcan design on Kintex 51

FIGURE 4.4: Volcan Design on AC510 52

FIGURE 4.5: Handshake protocol between Host and FPGA 55

FIGURE 4.6: Code Transformation using Volcan 62

FIGURE 5.1: Performance comparison between HMC and DDR3 memory 72

FIGURE 5.2: Relative gain by applying Volcan methodology on DDR 76

FIGURE 5.3: Relative gain by applying Volcan methodology on HMC 78

CHAPTER 1: Introduction

Processor performance has steadily, and significantly improved since the introduc-

tion of integrated circuit in 1960s. The improvement is the result of advancement in

the transistor scaling (as famously predicted Moore’s law [1]), improvement in pro-

cessor architecture, and compiler technology. While the relative contribution of each

of these improvements can be argued[2], the exponential growth in single-core pro-

cessor performance has been undeniable. However, Dennard scaling [3] which closely

tracked Moore’s law by reducing the threshold voltage as the transistors get smaller,

ended in 2004 when power and thermal efficiency limitations with smaller technology

nodes. This led to the emergence of multi-core and many-core architecture based on

the accelerator technologies.

Multi-core architectures (also known as homogeneous parallel architectures) are

simpler to implement since all computing cores are identical. However, many-core

architectures (also known as heterogeneous parallel architectures) which is a mix of

processors [4] and/or a mix of accelerators such as GPUs, FPGAs, etc. are better

in terms of energy efficiency and performance [5]. Not surprisingly, as of 2019 more

than one-fourth of the world’s fastest machines are heterogeneous architectures [6].

Moreover, most of these machines are also in the top 100 of the GREEN500 list [7]

which sorts the top 500 fastest machine by energy efficiency.

Unlike the scaling of processor performance which has dominated computer archi-

tecture, the impact of memory - specifically main memory technology is insignificant.

Dynamic Random Access Memory (DRAM) [8] was invented in the 1960s has greatly

benefited from transistor scaling in terms of capacity. However, in terms of latencies

the technology is flat. While the bandwidth has seen the most gain it is the result

2

of improved interfaces. Specifically, the introduction of SDRAM (1992) and then the

DDR interface (1998) [9] has historically had the most impact on bandwidth . The

DDR family of DRAM (DDR1 through DDR5) has been the dominant interface and

memory technology for the last two decades. However, researchers and industry are

looking to "next-generation" memories for the future. This includes examples such

as the Hybrid Memory Cube (HMC) and High Bandwidth Memory (HBM). Both use

DRAM at the most basic storage level but dramatically change the interface. These

changes results in increase bandwidth and capacity but with modest improvements

to memory latency.

The confluence of this sixty year history is that we have to deal with heterogeneous

architectures, a haphazard set of standard interfaces, and nascent programming tools

to use many-core architectures, and a lack of computation performance models (“rule-

of-thumb guidelines for practitioners). This thesis identifies the current state of FPGA

based accelerators, identifies the root problems, offers incremental improvements, and

suggests a future line of inquiry to realize the potential of the next generation systems.

1.1 Accelerator Technology

While heterogeneous architectures provide performance and energy efficiency, they

pose serious challenges for programmers. Specifically, programmers should posses

knowledge of new interconnection models, design tools, scheduling parallel tasks and

new user/API interfaces [10]. Most of the programming models such as CUDA [11],

Open-MP [12], and others addresses these design challenges by providing platform

specific solutions. Unfortunately, these solutions are not generic and computational

scientist has to make numerous technological decisions before even writing the first

line of code.

Among different heterogeneous elements, FPGA devices has a great potential in

generating computational performance and design flexibility for multi-core architec-

tures. Though, early FPGA devices were small with limited logic blocks, the current

3

state-of-the-art devices are large and have a rich set of computing elements. Indeed,

entire System-On-a-Chip (SoC) design that incorporates processors and FPGA accel-

erators are a reality. But, the FPGA devices are typically designed using Hardware

Description Language(s) (HDL). These languages are reactive and concurrent as op-

posed their imperative software counterpart. Due to this HDLs are perceived as more

difficult and to ease the burden, numerous High Level Synthesis (HLS) systems have

been proposed [13, 14, 15, 16] HLS offers the flexibility of implementing FPGA de-

sign using software-like, high-level languages (HLLs). More recently, many academic

and commercial tools can even generate an entire SoC design using HLLs such as C

or C++. These technologies can significantly reduce the programmers burden and

improve their productivity.

In theory, HLS is a transformation of imperative programs with conditional state-

ments converted into multiplexers (MUX) or Look-Up-Table (LUT), loops into state

machines, and computation into custom computing circuits or DSP slices. Unfortu-

nately, many of these transformation tools have failed due to lack of well defined or

universally accepted models for high level capture, poor quality of synthesis results,

and lack of verification tools [17]. Modern HLS tools tries to address these issues but

(as we will show) they still have specific design flows, vendor-specific programming

models, and manual optimization techniques.

1.2 Memory Technology

While processor performance has steadily increased, the performance of memory

and I/O has not caught up to the performance of the processors. The I/O performance

has improved in fits and spurts and the main memory has steadily improved but at

a very lower rate than processors. This slow progress has created a performance

gap between the memory and single core processor performance. The well known

Figure 1.1 which is cited by many articles and text books [18] illustrates the growing

performance gap (Note the log scale on y-axis) of 50% per year between the memory

4

50%/year

Pe
rf

o
rm

a
n
ce

 c
o
m

p
a
re

d
 w

it
h
 b

a
se

lin
e

1

 1-The memory baseline is 64K DRAM from 1980 and

 the processor baseline is VAX-11 from 1980

End of Dennard Scaling

Figure 1.1: Performance Gap between Computing and Memory

and single core processors (After year 2010 new multi-core metrics has emerged and

direct comparisons are not valid). This phenomenon of memory being the bottleneck

to the overall performance is known as Memory Wall problem [19].

Conventional DRAM technology, has been ubiquitous since its introduction in 1960.

The popular off-chip memory has improved in bandwidth, the latency has remained

stagnant for decades. At the current rate of improvement the Memory wall problem

cannot be resolved. In fact, future DDR improvements are unlikely to cater the

needs and industry has been exploring novel memory technology to replace DDR.

These new technologies, however, have very different performance characteristics and

the programmer has to be aware of low-level details to fully utilize these devices.

A memory agnostic approach to programming would solve this issue, but no such

framework has been developed or explored. We propose to investigate these two

issues — high level heterogeneous programming and novel memory— jointly in a

single framework.

5

1.3 Thesis Statement

As heterogeneous architectures with different types of memories are prevailing, the

design complexity has increased. HLS is a solution that has worked well with embed-

ded applications. But, can the success of HLS be translated to HPC applications with

larger data sizes? Additionally, the HLS generated accelerators are highly dependent

on user-defined optimization. Most of these optimizations directly manipulate the

internal memory. So, is there a directive or a set of directives that provide the per-

formance for HPC applications on off-chip memory? Finally, with changing memory

subsystem the high level programming requires low-level details of memory and this

hinders the productivity. Can we describe a memory agnostic framework to restore

the design productivity with high level programming?

Thus, the ultimate question we are trying to answer is Can Computational sci-

entists’ benefit from High Level Synthesis to develop High Performance Computing

applications? In this work, we propose to answer all of these questions by designing

a framework called Volcan. This framework provides a memory agnostic approach

and conducts a systematic platform analysis for applications developed in HLS with

different memory architecture. The analysis includes use of software profiling for dif-

ferent optimization, run-time measurements with different architecture and a software

methodology to improve the performance with emerging memory architecture while

preserving the designer productivity.

The remainder of this dissertation is as follows. The necessary background infor-

mation the reader should be familiar with to understand the work is presented in

Chapter 2. The expanded motivation for this research is in Chapter 3. The details

and specifics of the design infrastructure, Volcan architecture and methodology is dis-

cussed in Chapter 4. The evaluation is presented in Chapter 5. Lastly, in Chapter 6,

the summary of this work is discussed.

CHAPTER 2: Background

2.1 Nomenclature

Before we begin, it is valuable to highlight the acronyms and keywords used in

this document. Some of these words get used and reused, but the specific meaning of

each acronym is important to the rest of the discussion. First, a High-Level Language

(HLL) is a software in the traditional sense (i.e., C, C++, Java, and others). Here,

“higher” refers to more abstract to the low-level details of machine instructions but

still uses the imperative (fetch-execute cycle) style of directing machine execution.

A Hardware Description Language (HDL) is also a human-readable code in VHDL

or Verilog that specifies the behavior of the hardware circuits. A subset of HDL is

synthesized into a form that ultimately is implemented in some technology (such as

FPGA). While modern HDLs are also very high-level languages, they are different

from HLLs because they describe (hardware) circuits that are inherently parallel and

foreign to many software programmers. The “holy grail” is to create a system that

translates HLL source into an HDL code that is synthesized and implemented. The

literature has adopted the name High-Level Synthesis (HLS) for this translation

process (which is unfortunate because the goal of the translation is implementation,

not synthesis). The HLS source code in this document is referred as ’HLS application’.

The hardware circuits that HLS generates is referred as RTL (Register Transfer

Level). A RTL is a design abstraction that models digital circuits in terms of the

operations and data. These RTL circuits are referred as HLS core. The HLS can

build an optimized RTL with user defined optimizations. These optimizations are

referred as directives in certain tools (when passed as command line argument) or

as pragmas (when added to the code directly).

7

2.2 Memory

The oldest known artifact of recorded information is a Lembo bone [20] with 29

distinct notches on a baboon’s fibula which dates back to 35,000 B.C. However, the

roots of the computer memory dates back to the Punch cards [21] demonstrated

in 1801 with a loom. These punched cards were the storage device for the early

computers since Charles Babbage concept of Analytical Engine [22] in 1837 until

they were replaced by magnetic storage units in 1980s. The magnetic recording is

based on the principles of electromagnetic fields. The laws of electromagnetic fields

was discovered by Michael Faraday [23] in 1831. The aspect of electromagnetism

was expressed as a differential equation by James Clerk Maxwell which are known

as Faraday’s Law. This law underlies the principles of electromagnetic induction and

rotation which are key for magnetic recording. These principles were the fundamentals

of magnetic storage device which dates back to the Drum Memory of 1932 to the

modern day Hard disk drive (HDD). These memories could retain the information

without any energy source and hence known as Non-Volatile Memory. Converse

to this are Volatile Memory which requires constant power to store and hold the

information.

2.2.1 Non-Volatile Memory

Non-volatile memory has been used as primary storage in early computer, to store

firmware and BIOS as well as secondary storage device in current generation comput-

ers. The Drum Memory [24] introduced in 1932 by Gustav Tauschek is regraded the

earliest conception of non-volatile memory. A drum memory contains a large metal-

lic cylinder of ferro-magnets in the form of drum. Structurally these are similar to

current generation hard disk drives (HDD) which are made of flat disks of magnetic

materials instead of drums. These Drum memories were replaced by Magnetic Core

memory [25] (or just ‘core memory’). The core memory was introduced in 1951 and

8

used a grid of magnetic core materials wounded by toroid magnetic materials to store

multiple bits of data. The early implementation of core memory used in Whirlwind

I [26] computer could store about 32 words. But, these were improved in later im-

plementations to a density of 32 kilo-bits per cubic foot. This memory was upgraded

with Plated wire memory [27] by using a grid of iron-nickle coated wires to thread

multiple cores of memory. There were other innovative core memories such as Core

rope memory used in Apollo Guidance computer [28], Thin film memory [29] used

in UNIVAC 1107, Disk pack in IBM 1311 computers [30], Twistor memory [31], and

Bubble memory [32]. Some concepts of the core memory are still relevant in mod-

ern day memories but the core memory by itself is obsolete since the introduction of

transistor based memories such as SRAMs and DRAMs.

The most dominant non-volatile memory (NVM) is the the hard disk drive (HDD).

The HDD is an electro-mechanical data storage device that uses magnetic materials

for log term storage of data. The IBM3340 [33] introduced in 1973 was the first

HDD technology which is known as ‘Winchester head’. Over the years, these systems

improved in their speed and capacities and are found in most computers today. The

second most used NVM technology is the flash based storage devices. The flash drives

provides a reliable, low power, high performance storage by eliminating the moving

parts of the HDD. These devices were introduced in 1980s, but due to their lower

capacity they were not the main stream NVM until 2000. Improvement in the MOS

technology has led to higher density flash drives and are now the most popular NVMs

referred as ‘Solid State Drives (SSD)’.

There are many emerging NVM technologies to replace the existing flash based

technology. Technologies such as Magnetoresistive RAMs (MRAM, STT-RAM) [34],

Ferro-electric RAMs (FeRAM, FeFET RAM) [35, 36, 37], Resistive RAM (ReRAM) [38]

also known as ‘Memristor’, and Phase Change Memory (PCM) [39] are implemented

in smaller densities. Other technologies such as Racetrack memory [40], Millipede

9

Table 2.1: Summary of Emerging NVM technologies [44, 45, 46]

NVM Cell Factor
(F 2)

Read
(ns)

Write
(ns)

Power
(pJ)

Endurance
(/10yr)

Flash 4-5 25,000 200,000 10,000 104

MRAM 16-40 3-20 3-20 50 1015

STT-RAM 37 <10 12.5 0.02 1015

FeRAM 4 60 75 2 1015

ReRAM >5 <10 10 2 1015

PCM 6-12 20-60 50-120 1000 1012

CBRAM 6 50 50 2 106/Month
NRAM 5 10 10 10 1016

memory [41], CBRAM [42], NRAM (based on carbon nano tubes) and FJG RAM [43]

memories are being evaluated. Details of these technologies are scarce as they are

on-going efforts and is out of scope of this document since here we are concentrating

on volatile memories. However, the Table 2.1, summarizes these emerging memories

and compares with the existing NAND Flash based on their density (in terms of

standard feature size (F 2), access time (in nano seconds), power (in pico Joules), and

endurance.

2.2.2 Volatile Memory

Until 1947, every computer memory was a non-volatile memory. The introduc-

tion of Williams Tube [47], based on Cathode ray tubes [48] in 1946-47 is the first

known volatile memory. The Williams tube worked on the principle of secondary

emission. These tubes could typically store about 1024 to 2560 bits of data. Based

on similar principles there were other vacuum tubes based memories such as Mellon

optical memory [49] and Selectron Tubes. These systems were rendered obsolete by

introduction of more reliable memory technologies.

Contrary to CRT based memory, in 1947 Presper Eckert invented the delay line

memory [50] based on the principles of analog delay lines. These memories were

refresh-able as the modern day DRAMs but were accessed sequentially. The delay

line memories were constructed by modifying an analog delay line with an amplifier

10

and a pulse re-shaper. These two device re-circulated the signal (refresh) from the

output back to the input. The early delay line memory used mercury(Hg) as storage

medium, quartz crystals as signal generators and sound waves for propagation. The

choice of mercury was due to the similar acoustic impedance with piezo electric quartz

crystals. These memory served as the main memory for early computers such as

EDSAC (Electronic Delay Storage Automatic Calculator) built in 1949 and UNIVAC1

(Universal Automatic Computer) built in 1951.

The EDSAC [51], the first full-size stored program computer was developed at

University of Cambridge. This machine used 32 mercury based delay lines of 576 bits

each to store 512 of 35-bit words. The UNIVAC I, the first general purpose computer

produced in United States, also had a 1.5 KB of delay line memory to store 1000

words of 12 characters. This was implemented using 126 mercury channels to a 18

mercury filled tubes. The later versions of delay lines used metallic wires for storage

with nickel transducers. This setup created a mechanical magnetostrictive delay lines

to generate torsional waves. These delay lines were more convenient and reliable for

low capacity memory storage. By the early 1970s the semiconductor IC technology

gained momentum and delay line memories were replaced by SRAM (Static Random

Access Memory) and DRAM (Dynamic Random Access Memory).

2.2.2.1 Static Random Access Memory

With the invention of transistors, many inventors in 1960s had an idea to make

clusters of transistors on a single silicon wafer or later known as ‘Integrated Circuits

(IC)’. This idea was was independently invented by Jack Kilby (1958) of Texas In-

struments and Robert Noyce (1959) of Fairchild semiconductor [52]. Based on this

integration, the first integrated bipolar Static Random-Access Memory (SRAM) was

invented by Robert H. Norman at Fairchild semiconductor in 1963. The first com-

mercial use of SRAM dates back to the IBM System 360 Model 95 computer that was

introduced in 1965. Initially these memories were offered as a separate chip. But,

11

with improved fabrication process these memories became a part of the micropro-

cessor core. The early SRAMs were constructed using full-CMOS with poly-silicon

load. But, these were unimplementable due to the high leakage current. With better

scaling technique these were replaced by thin-film-transistor (TFT) PMOS [53]. The

PMOS configurations was similar to CMOS with six transistor structures but they

differ in their silicon technology. As an alternative to PMOS configuration, a load-

less four transistor (LL4T) cells [54] was created in 2001. Although this resulted in

smaller area it increased the complexity of the cell design. With scaling fabrication

technology, this configuration produced unreliable memories resulting in 6T SRAM

cell as the default SRAM configuration for implementing registers and caches in the

modern microprocessors.

The SRAM memory consists of array of SRAM cells with with additional control

logic. The Figure 2.1 shows a 4× 4 array of SRAM cells with each cell consisting of

6 transistors, a decoder logic to select the address lines, four input and output data

lines, and a read/write line. The 6 transistor (6T) structure logically forms SR-latch

to store the data with a control logic. While powered on, the SRAM remains in one

of three states: Standby state, read state or write state. The standby state holds the

state of the SR latch when no word line is asserted. For a read state, the address for

the row is decoded and the output line (Dout) contains the output data from the cell.

For a write state, the R/W logic is asserted, the input line (Din) contains the input

data word and the address decoder activates the row in which the data is stored.

2.2.2.2 DRAM

Dynamic Random Access Memory (DRAM) is a non-volatile random access mem-

ory that stores each bit of data in a capacitor within an integrated circuit. Since

capacitors leak their charge, it needs to be refreshed periodically. Due to this refresh

mechanism it called as dynamic memory.

The first use of capacitors as memory device was developed in a crypt-analytic

12

SRAM CELL

A
D

D
R

E
S

S

 2
to

4
 D

E
C

O
D

E
R

READ/WRITE

SELECT

INPUT OUTPUT

R/W

2

SELECT

R/W

O
U

T
P
U

T

IN
P
U

T

Din0 Din1 Din2 Din3

Dout0 Dout1 Dout2 Dout3

Figure 2.1: Structure of SRAM Cell Array

machine code named Aquarius used at Bletchley Park during World War II [55]. In

1964, Arnold Farber and Eugene Schlig working at IBM created a memory cell us-

ing a transistor gate and tunnel diode, which is known as Farber-Schlig cell [56]. In

1966, Dr. Robert H. Dennard of IBM Thomas J. Watson Research Center created

a single transistor DRAM [8]. In 1970, William Regitz of Honeywell and Joel Karp

of Intel designed a 1024 bit MOS memory named Intel 1102 [57]. This was a three

transistor and single capacitor design but was commercially unsuccessful due to a

narrow operating temperature. Based on this technology, Intel invented the first suc-

cessful 1024-bit DRAM termed as Intel 1103. Though this memory was slow and

difficult to manufacture, it established a viable low cost semiconductor memories in

computers. The first DRAM with multiplexed row and column address lines was

introduced in 1973 by Robert Proebsting with Mostek MK4096 4 Kbit DRAM. This

was an important advancement, effectively halving the number of address lines re-

quired, which enabled the memory to fit into packages with fewer pins. In 1974, the

4Kbit DRAM was introduced with a single transistor cell using NMOS process.The

13

transition from 3 transistor (3T) to one transistor (1T) memory cell was the first

major DRAM transition. From this time the DRAM increased in the capacity in

relation with the transistor scaling. Until 1992, the DRAMs used asynchronous inter-

face. The first commercial Synchronous DRAM chip was introduced in 1992 with the

Samsung KM48SL2000, which had a capacity of 16 MB. The next milestone was the

double data rate (DDR) which was also released by Samsung in 1998. From this time

DDR-SDRAM has been the standard and has improved its performance and capacity

from early DDR-1 to the latest DDR-4 memory.

The DRAM memories are typically arranged as a rectangle array of memory cell

as shown in the Figure 2.2. Each memory cell consists of a transistor (T) and a

capacitor (C) to hold a single bit of data. The array of memory cells are organized in

columns and rows with a memory cell at each intersection. This structure allows an

independent access to every bits with same latency also known as ‘random access’.

Apart from the memory cell, the DRAM memory consists of address decoders, sense

amplifiers and data buffers. The address decoders are split into row and column

decoders which selects the cell or a group of cells for read/write operation. Once the

cell(s) are selected the sense amplifier drives the data from the data buffers into the

selected cell(s) or read data from the cell to the data buffers.

Apart from the above the mentioned components there are four more components

that makes the DRAM: the memory controller, memory banks, channels, and memory

ranks. The memory controller manages the flow of data going to and from the DRAM.

They have the necessary read and write logic and refresh rate control depending on

the type of DRAM. Earlier, the memory controllers were a separate chip but in

modern DRAM they are on the memory chip. The memory banks are concurrent

portions of the memory which can perform independent memory operations (internal

concurrency). In addition to banks, devices are grouped together into memory ranks.

With these ranks the devices with relatively narrow interfaces can be used for wide

14

Memory Cell

Memory Array

Sense Amplifiers

Column Decoders

..
..
 R

o
w

s
..
..

.... Columns

Bit line
Word line

T
C

R
O
W

D
E
C
O
D
E
R

Figure 2.2: Structure of DRAM Memory

channels. For example, a rank of ×8 (8 bit wide) DRAMs would consist of eight

physical chips and a rank of ×4 would consists of 16 physical chips all co-existing on

a single or multiple DIMM (Dual In-line Memory Module) slot.

The read and write operations of a DRAM is done in multiple phases. In the

first phase of data access, a row activation strobe (RAS) causes all the memory in

a particular bank to activate a word for an entire row. The sense amplifier detects

the value and stores it in the read buffer. After the data is stored, the column access

strobe (CAS) drives data in or out depending on read or write operation. Before a

different row is activated, a pre-charge command (PRE) is issued to ready the sense

amplifiers. The memory protocol allows a row to be implicitly pre-charged in order

to reduce the contention for the bus.

Apart from regular DRAM technology there are few specialized DRAM that cur-

rently exists. The DRAMs such as low power DRAMs (LPDDR), reduced latency

DRAM (RLDRAM), and Synchronous graphics RAM (SGRAM) are introduced for

specific purposes. The growth of mobile systems demands more RAM memory but

with power constraints. To satisfy this low power DRAMs (LPDDR) are introduced.

15

Table 2.2: Performance of different DRAM technology

Memory Bandwidth Latency(ns)
(GB/s) tRCD tRAS tRP tCL

DDR-400 5.6 20 40 20 15
DDR2-800 8 12.5 40 12.5 12.5
DDR3-1600 14.9 11.25 33.75 11.25 11.25

DDR4 25.6 14 33 14 14
GDDR5 48 14 28 12 16
HBM 256 14 34 14 14
HMC 320 14 27 14 14

tRCD - Read Access Strobe to Column Access Strobe delay
tRAS - Read Access Strobe active time
tRP - Read Access Strobe pre-charge
tCL - Column Access Strobe latency

The LPDDR supports 16 bit or 32 bit wide bus (as apposed to 64 bit on regular

DDR) and can operated at 1.8V of supply voltage (instead of 2.5V). To improve the

power efficiency they support temperature compensated refresh and ability to turn off

device [58]. The LPDDR has improved over the years (LPDDR-1 to LPDDR-4) with

increase in bandwidth and power efficiency. Another alternative to low power DRAM

are reduced latency DRAM (RLDRAM). These device require more power and have

less density but can offer 5× the speed of regular DDR [59]. They were designed for

applications in networking, high-end commercial graphics, and level 3 caches which

required low latency and capacities greater than SRAM. The Synchronous graphics

RAM (SGRAM) are used for rendering the graphics such as texture memory [60] and

frame buffers in video cards [61]. The earliest known SGRAM memory was intro-

duced in 1994 by Hitachi [62]. This HM5283206FP chip was a 8Mb operating at 125

MHz. The modern data SGRAM known as Graphics Double Data Rate (GDDR)

was introduced in 2000. The GDDR has improved from GDDR-1 to GDDR-6 which

are constructed using the same base technology as DDR but optimized for power

efficiency and throughput.

16

2.2.3 Next-generation Memory

The 3 dimensional ICs has been studied since 1980s [63]. But, feasible implemen-

tation were restricted due to the technical and economical challenges. These ICs offer

a multiple advantage over the conventional 2D-IC. These 3D integration alleviates

communication bottlenecks, integrates heterogeneous materials and enables novel ar-

chitectures [64, 65]. There are multiple approaches to realize these 3D ICs. The

most used methods are chip stacking [66, 67, 68], wafer stacking [69, 70, 71], and full

monolithic integration [72, 73]. These technologies mainly differ in the size of their

inter-layer via. The size can range from tens of micron meter in case of chip stack-

ing to tens of nano meter in full monolithic integration. The key enabling elements

for all these 3D technology is through-silicon-via (TSV). A good deal of research is

performed to define the fabrication and process of the TSV [74, 75]. The chip stack-

ing techniques with TSVs can significantly increase the density of the memory which

can be seen in memories such as Hybrid Memory Cube(HMC) and High Bandwidth

Memory (HBM).

2.2.3.1 High Bandwidth Memory (HBM)

High Bandwidth Memory (HBM) is a 3D stacked DRAM memory connected via

Through-Silicon-Via (TSV) [76]. This memory technology adopted by JEDEC as an

industry standard, can achieve higher bandwidth while using less power. Typically

there are eight DRAM dies that are stacked up together to form a 3D circuit on

top of a base die which has the memory controllers. The latest HBM standard [77]

can support multiple DRAM stack of 2, 4, 8 or 12-Hi. A four DRAM dies (4-Hi)

has two 128 bit channels per die and a total width of 1024 bits. The current HBM

specification can support up to 24 GB per device at speeds up to 307 GB/s.

17

2.2.3.2 Hybrid Memory Cube

The Hybrid Memory Cube (HMC) [78] is structurally similar to HBM but they are

different in memory characteristics. Like HBM, this memory is a stack of multiple

DRAM memory and a logic die connected via Through-Silicon-Via. While both HMC

and HBM are 3D memories, the HMC memory exists as a standalone system which

can be connected via high speed serial links where as HBM co-exists with a processor

(FPGA, GPU, or CPU) connected via 2.5D interposers [79]. Due standalone and non-

JEDEC compliance of HMC, understanding the structure and the memory addressing

is important for system integration.

The HMC memory structure as shown in Figure 2.3, is a stack of multiple DRAM

memory dies and a logic die connected via Through-Silicon-Via (TSV). The stack

of byte addressable DRAM memory blocks are known as memory bank. A group

of eight memory banks is known as a vault. The HMC vaults are further grouped

into quadrants. There are 16 vaults in a 4GB HMC and four of these vaults form

one quadrant. Each quadrant is directly connected to a high speed serial link and

connected to each other by a full crossbar switch. Access from a serial link to a

local quadrant may have a lower latency than an access to a remote quadrant. Since,

the remote quadrant is accessed through a crossbar switch and this requires multiple

levels of arbitration.

Each vault has a separate memory controller in the logic area known as vault

controller. This controller independently controls the timing and refresh rate require-

ments of the vault. Thus, the vaults are asynchronous to each other but the memory

banks within a vault are synchronous. The vault controller buffers the memory re-

quest using a queue. The execution of the request is based on transactional efficiency

which sets aside requests with bank conflict. This type of execution makes the HMC

read access out-of-order. However, the request from a link to the same vault/bank

address is executed in order.

18

DRAM BANKS

LOGIC DIE

VAULT
CONTROLLERS

SWITCH
HIGH-SPEED
SERIAL LINKS

VAULT

TSV

DRAM DIE

Figure 2.3: Structure of Hybrid Memory Cube

The HMC memory as shown in Figure 2.4 has a 34-bit addresses of which currently

31-bits are used. These addresses specify the quadrants, vaults, banks, and DRAM

address bit. A ‘vault interleaved’ mapping algorithm is followed where the vault

address are in Lower significant bit followed by the bank addresses. This mapping

forces the sequential addressing to spread across multiple vaults. he address mapping

in HMC is dependent on the memory size and the maximum block size. In this

design, the maximum block size is set to 128B. The 34 bit HMC address field shown

in Figure 2.4 can address up to 16 GB of memory. However, the current memory

is 4 GB and hence the first three bits of MSB are ignored. The address mapping

follows a low-order-interleaving policy for vaults and banks. Since, the minimum

data granularity is 128 bit or FLIT the 4 LSB are ignored. The next three bits

represents the total block size of 128 B. The next four bits from bit 7 to 11 are used

to identify the 16 vaults followed by 4 bits to represent 16 banks of memory. The

rest of the bits represents the DRAM address breaks into row and column address to

access 1M bits blocks (Bits 4 to 7 and 15 to 31, total of 20 bits 220 = 1M of 16 bytes

19

BANKDRAM BLOCKVAULT

0

33

31

30

15 11 7 4

61014 3

Figure 2.4: HMC address for 128B Block size and 4GB Memory

(Bits 0 to 3).

2.3 Interconnect

Interconnects are physical or logical links between devices. There are various in-

terconnect and accompanying protocol standards. In this document, we use AXI

interconnect to connect different logic blocks, Dual In-line Memory Module (DIMM)

to connect DDR, PCIe to connect HMC backplane to system, and High Speed Serial

Interface (HSSI) to connect FPGA and HMC. The specific DIMM, PCIe, and HSSI

interface used in the design are discussed in Chapter 4.

Advance eXtensible Interface (AXI) [80], is an open standard specification and a

part of Advanced Microcontroller Bus Architecture (AMBA) [81] from ARM. The AXI

protocol is a parallel high performance specification, supporting multiple slave and

masters with a synchronous interface. The AXI-4 specification which is the upgrade

to the AXI-3 specification targets high-bandwidth and high clock frequency system

designs. The AXI4 Interface is implemented as two major interface AXI stream and

AXI bus. The AXI4-Stream protocol is used as a standard interface to connect a

single master, that generates data, to a single slave, that receives data. The protocol

can multiple data streams as well as multiple masters and slaves. The connection uses

the same set of wires, allowing a generic interconnect to perform upsizing, downsizing

and routing operations. The bus interface which is referred as ‘AXI4’, is capable of

memory mapping up to 32 masters and slaves with a burst transactions up to 256

data transfer cycles per address phase. The AXI write and read transactions consists

of 5 channels: Write address, data, and response channel and Read address and data

20

channel.

The AXI protocol supports burst data transfer to transfer multiple data transfer

as a single request. There are three types of burst transfer that can be selected for

read and write:

• Fixed: the address remains the same for every transfer

• Incr: the address increments for each transfer

• Wrap: the address increments up to the wrap boundary. The wrap boundary

is determined by the bytes transferred and the burst length

2.4 High Level Synthesis (HLS)

High level languages (HLLs) has been tried for hardware circuit design since the

1970s [82]. Though these early research were unsuccessful, we finally have produc-

tive High-Level Synthesis (HLS) tools since the last decade. The HLS tools can

be classified as commercial and open-source tools depending on the developer or as

domain specific or generic language tools depending on the source language. The

main distinction on each of these tools are the tool specification, design flow, and the

optimization.

2.4.1 HLS tools

There are many commercial and open-source HLS tools that are available today.

Commercial tools such as Catapult-C [83] introduced in 2004 initially oriented towards

application-specific integrated circuit (ASIC) but can now convert C, C++, System

C codes into VHDL/Verilog design for FPGAs. Bluespec [84] is another commercial

tool that uses a high-level functional hardware language based on Verilog and inspired

by Haskell for hardware design. There are many open source tools that are developed

and Chisel [85] is one example of a hardware construction language based on Scala

programming language. Although these domain specific tools differ from the generic

21

language HLS tool used in this research, they all have a common goal of improving

designer productivity for hardware design using HLLs.

High Level Synthesis tools that support generic languages can be broadly classified

into procedural languages and object oriented languages tools. There are few tools

that supports object oriented languages such as Cynthesizer [86], JHDL (SeaCucum-

ber) [87] and Max Compiler [88] which have limited success. On the other hand,

procedural language tools such as Bambu [89], LegUp [90], Intel HLS [91], and Xilinx

Vivado HLS [92] have all gained their fair share in HLS domain. Bambu, is an aca-

demic GNU compiler based HLS tool from Politecnico di Milano. This tool supports

compiler based optimization and can produce target designs for both Xilinx and Intel

FPGAs. LegUp, is another open source LLVM-based HLS tools from University of

Toronto, that can synthesize C code into Verilog without building an infrastructure

from scratch. The academic version of this tools targets Intel FPGAs but commercial

version supports both Intel and Xilinx FPGAs.

Vivado HLS is a commercial tool by Xilinx which is based on an earlier HLS tool

called AutoESL [93] (acquired by Xilinx in 2011). This tool uses LLVM compiler

backend to generate hardware RTL for Xilinx devices using C, C++, and SystemC

languages. This tool includes a complete design environment and ability to fine-tune

the hardware RTL by using many design hints (pragmas). For System-On-a-Chip

(SoC) devices, the tool allows a complete software solution for designing accelerators.

Additionally, the tools adds appropriate data movers for off-chip memory access based

on the accelerator’s data pattern. For FPGA devices (non SoCs), the tool supports

accelerators design in HLL and converts it into a RTL. This RTL can be integrated

to a FPGA design and implemented using traditional FPGA design flow.

The accelerators are designed in C/C++ using Vivado High-level Synthesis (HLS)

flow. The Vivado HLS compiler converts the High level language (HLL) design into a

Register Transfer Level (RTL) that can be synthesized and implemented on FPGA.

22

The HLS transformation from C to RTL consists of three main process:

• Scheduling: determines the operations to be executed on each clock cycle. This

is dependent on frequency of FPGA device, execution time for the operation to

complete and optimization directives.

• Binding: determines the hardware resources to be implemented for the sched-

uled operations. This is dependent on the resource available in the FPGA

devices.

• Control logic extraction: creates a finite state machine (FSM) in hardware

language (Verilog in our design) to implement the sequence of operations in the

RTL design.

The C/C++ code for HLS design has a top-level function with function arguments

followed by number of sub-functions. The body of the function and sub-function

contains variables, arrays, and loops. The HLS transforms the top level function

and sub-functions into blocks in RTL. The function arguments are converted into

inputs and outputs of this RTL block. The variables in the function are mapped into

registers and the array variables declared inside the C function is mapped as block

RAM (BRAM) or UltraRAM in the final FPGA design. A single iteration of the loop

is transformed into a logic block by HLS and the RTL executes this logic block for

the entire loop sequence. By default, the loops are rolled but this behavior can be

modified by optimization directives.

2.4.2 HLS Optimization

HLS tools provides user with various optimization techniques to improve the per-

formance of the application. As summarized in this survey paper by Nane et. al, the

optimizations can be performed at various levels of the HLS process. The optimiza-

tion can be achieved by chaining the operation resulting for lower latency, custom bit

23

width on the interface, memory space allocation, loop optimizations, etc. [94] Some of

these optimizations are managed by the compiler and while for others user is required

to add different pragmas or knobs to optimize the code. In this document, we classify

the pragmas into two categories, the code pragma and interface pragmas. The code

pragmas are the optimizations introduced to the body of the code (usually the loop)

and the interface pragmas are added to the interface.

1. Code pragma The loop in a code performs a repetitive operation multiple

times sequentially. By using the right pragma these loops can be transformed

in HLS for better performance in hardware. There are many optimization tech-

niques in this category which are provided by the tool. Since, there are various

pragmas in this category we are concentrating on four most popular pragmas

which are used in our design. The code examples shows are for Xilinx HLS tools

but most other HLS tools have a similar or variation of the described pragma.

• Pipeline: The PIPELINE pragma, transforms a sequentially executing loops

into a pipelined loop. As shown in the Figure 2.5, the code on the left

contains a for loop which does read, compute, and write operations. If

we consider each operation to take one clock cycle, then an iteration of

the loop is completed in 3 clock cycles (represented by the timing diagram

on the left). When a PIPELINE pragma is added to this loop, the loop

is pipelined such that each individual operation can be executed on every

clock cycle. For example, in the below code without PIPELINE pragma

the read operation is executed every 3 clock cycles but with PIPELINE

this operation is executed on every clock cycle. Overall for two iterations of

the loop, the execution time is reduced from 6 clock cycles to 4 clock cycles

with pipelining. The example given represents an ideal case of one clock per

operation but in reality this may vary (example: multiplication operation

taking more than 3 clock cycle). The slowest executed operation affects the

24

No pragma

for(i=0;i<N;i++){
tmp=read_if[i];
comp=tmp+2;
write_if[i]=comp;

}

Pipelined

for(i=0;i<N;i++){
#pragma HLS PIPELINE II=2

tmp=read_if[i];
comp=tmp+2;
write_if[i]=comp;

}

6 clock cycles

ReadCompWrite Read CompWrite

2 iterations

4 clock cycles
2 iterations

ReadCompWrite

Read CompWrite

Figure 2.5: Comparison between no pragma and pipeline pragma

overall performance of the pipeline. Therefore, knowing this execution time

becomes a critical parameter to determine the delay required to execute

the rest of the operations. This time interval which is the time taken

to execute the consecutive iterations of the pipelined loop is known as

Initiation Interval (II). In Xilinx HLS, this value by default is equal 1

and this value changes based on the user code. The current HLS compiler

cannot predict the II value and it is the designers responsibility to provide

one for pipelining.

• Unroll: The loop unrolling exploits parallelism by creating multiple copies

of the loop body. The Figure 2.6 shows the HLS code with loop unrolling.

The number of copies of the loop are determined by the numerical value

known as factor. By default, the HLS compiler tries to unroll the entire

loop, known as full loop unroll. If the factor used is less than the total

loop iterations then it is known as partial unroll. Unrolling requires a large

amount of resources, depending on the availability of the resource and the

total iteration of the loop the user can decide either to fully or partially

25

for(i=0;i<N;i++){
#pragma HLS UNROLL factor=2

tmp=read_if[i];
}

Unrolled
for(i=0;i<N/2;i++){

tmp=read_if[i];
tmp=read_if[i+1];

}

Figure 2.6: Loop unroll pragma in HLS

unroll the loop. In the example shown, the loop is partially unrolled with

a factor of 2 on a loop of size N . This unrolls the loop twice and adjusts

the iteration to N/2. Loop unrolling though advantageous is limited by

the number of resources and the loop carried dependency (which is true

for PIPELINE as well). For example, unrolling a loop with a single port

memory may not result in performance gains since the memory access

will be sequential. On the other hand, if a dependence exists within the

operations of different iterations (know as loop-carried dependence) then

this may stall the operation. Additionally, with nested loops the unrolled

loop may result in inconsistent results.

• Array partition: Every memory optimization pragmas in HLS concentrate

on the local memory which is implemented in the BRAM. The array par-

titioning is one such pragma which partitions a local memory into various

memory segment. If each of the segments are connected to a parallel

BRAM then this results in performance gain. The Listing 2.1, shows a

declaration a local memory of M rows and N columns. This memory or

array is partitioned using the ARRAY_PARTITION pragma which divides the

first dimension of the array mem_arr into blocks of 8. If the block parameter

is not mentioned then by default the array is divided completely into indi-

vidual elements. The block creates smaller arrays from consecutive blocks

of the original array, The other alternative is to use cyclic partition which

creates smaller arrays by interleaving elements from the original array.

26

1 int mem_arr[M][N];

2 #pragma HLS ARRAY_PARTITION variable=mem_arr \

3 block factor=8 dim=1

Listing 2.1: Array partition pragma

• Loop trip count: The loop trip count pragma is used when the user need

to manually supply the trip count information for the compiler. This trip

count information is essential to calculate the latency of the module. In

most cases, the compiler can calculate the trip count information. But,

for the cases in which the variables used to determine the tripcount are

either a input arguments or variables calculated by dynamic operation the

HLS compiler cannot calculate this information and results in an unknown

latency. At this point the user can provide the minimum and the maximum

iterations of the loop using LOOP_TRIPCOUNT pragma.

2. Interface pragma The HLS framework supports different AXI interfaces such

as AXI-Stream, AXI-lite, and AXI-full. To connect a HLS code to an external

devices, user should choose one of the AXI port. These ports can be optimized

with different optimization pragma. This allows to group different ports, specific

the depth (in case of full AXI), and specify the outstanding and/or burst read

and write factors.

The HLS code Listing 2.2 has a C function with a name, argument, and a return

type. In this example, the user defined function name is ex_rt which will be the

top-level for the generated hardware. Every HLS generated hardware require a

control interface. This interface is used for initialization, start-stop control, and

for the status. By default the compiler adds a native interface called ap_ctrl.

This can be modified by user to axi_lite as shown in line 2 of the Listing 2.2.

27

HLS allows use of C data types such as int, float, etc for the function arguments.

Additional custom data width data type are available from textttap_int library.

In the example shown, an integer pointed of 512 bit width is created. This

argument is interfaced to an external memory. This can also be declared as an

array if implemented as BRAM.

The interface details to the function can be defined using INTERFACE pragma.

Line 3 defines the argument to be AXI master interface with the keywordm_axi.

The depth parameter in line 4 is required parameter for m_axi. This parameter

specifies the maximum number of test bench samples required for RTL co-

simulation. The offset parameter controls the address offset of the interface.

By default, the offset is 0 (none) and this can be modified to direct, in which

case offset is entered into the HLS tool or as slave, where the offset is set at

runtime using the control interface defined in line 2 (axi_lite).

1 void ex_rtl (ap_int<512> *inter1){

2 #pragma HLS INTERFACE s_axilite port=return

3 #pragma HLS INTERFACE m_axi depth=1024 port=inter1 offset=slave

Listing 2.2: Sample HLS code

2.5 Related Work

This dissertation covers two different domains: High-Level Synthesis (HLS) and

Hybrid Memory Cube (HMC). Here we present some of the prior research that are

conducted on these two domains individually. We also present some of the system

level research and their distinction to this dissertation.

Most of the HLS research is focused on Design Space Exploration (DSE) [95, 96, 97].

These research have analyzed the HLS tools at compiler level and have provided var-

ious solutions to improve the performance of the HLS converted hardware. The

28

COMBA framework [98] explores a comprehensive set of HLS pragmas related to the

functions, loops, and arrays. Further it finds the best configuration using analytical

models and metric-guided DSE algorithm. These research are focused on compu-

tational performance and the local memory (with exception of data-center clusters)

which is implemented using the BRAM. In our research, we conduct a similar DSE

study focusing on the loop structure of the algorithm. But our analysis and obser-

vations are related to the performance and integration to the external main memory.

Additionally, our research focus on HMC as main memory which is different from the

DDR as well as the hybrid counterpart HBM.

Many HMC research efforts have focused on evaluating the characteristics of the

hybrid memory [99, 100, 101]. The evaluations in these research explores the band-

width, latency, thermal efficiency, and other unique memory characteristics of HMC

(FLIT, addressing modes etc). Most of these works evaluates the memory with test

applications that are interfaced using the HMC native interface. These evaluation

has merits, since a sweeping study on memory parameters can be efficiently analyzed

using native interfaces. We follow some of these evaluation in order to understand

the baseline memory performance of HMC. We conduct our baseline experiments on

HMC using the AXI interface by varying different memory parameters.

The Smart Memory Cube [102] design introduces a modular extension to the stan-

dard HMC using an AXI-4 interconnect. The design implements an interconnection

among the Processing-In-Memory (PIM) [103] module, the link controller and the

memory. This interconnect design sits between the link control of the standard HMC

and the vault controller. This implementation includes an address re-mapper and

scrambler to support near memory computation. Our design has an address manip-

ulator to connect the HLS hardware and memory. But, this does not modify the

existing memory interface or target any specific memory characteristics through ad-

dressing. Instead, it introduces a hardware middle layer for compatibility. Additional

29

performance improvement is achieved by modifying the HLS application.

Due to the presence of logic layer and the demand to reduce the memory latency

many studies have focused on PIM with HMC [104, 105, 106, 107]. Some of these

studies are simulation and some have actual implementation in the hardware. Our

study does not involve any memory simulation. Instead, we design our HLS applica-

tion as memory agnostic. Although our focus is on the time spent by the application

on external memory all the computations are done inside the application. Thus, in

terms of operation we focus on the basic read and write to the memory and do not

exploit any Read-Modify-Write atomic instructions as done in PIM.

The HMC memory offers multiple parallel channels and performs better for large

memory access. This can be exploited by mapping multi-core architectures which

can generate large request. he GoblinCore-64 architecture [108] and RISC-V based

architectures [109, 110] are some of the research in with multiple cores are mapped

into HMC to generate large data request (some use memory coalescing) to exploit

the performance. The research by Zhang et. al. [111, 112] optimizes the HMC for a

particular application. In their experiment, they demonstrate it on graph applications

such as Breadth First Search and graph traversal by minimizing the memory request

to the external memory. Our research focuses on monolithic generic applications that

are implemented as hardware. The software methodology tries to generate the large

memory access for HMC by optimizing the HLS application to use a larger data width

interface.

One of the motivating factor for our work is the fact that the existing HLS compiler

do not support next generation memory addressing. However, there is a compiler level

study that is done with CAIRO [113] compiler. This study targets the instruction-

level offloading for Processing In-Memory using compiler assisted techniques. This

research is related to identifying and supporting the in-memory execution and is not

a generic compiler to use in HLS. Additionally, our work does not build any compiler

30

techniques to support HMC instruction. We design the applications such that the

existing HLS compiler can support HMC.

There are few system level research that optimizes applications (not in HLS) for

HMC. The research by Zhang et. al. [111, 112] optimizes the graph applications such

as Breadth First Search and graph traversal by minimizing the memory request to the

external memory. This is one of the approach in which individual algorithms (rather

than generic) is acutely optimized for better performance in HMC. Since, HMC as

well as HBM provides multiple channels some research have leveraged parallelism in

an application (or architecture) to map the data to HMC. The GoblinCore-64 ar-

chitecture [108] and RISC-V based architectures [109, 110] are some of the research

in with multiple cores are mapped into HMC to generate large data request (some

use memory coalescing) to exploit the performance. While application parallelism can

benefit from HMC, HBM, as well Multi-Channel DDR (MCDDR), not all applications

can be parallel and designing parallel applications affects designer productivity. Ad-

ditionally running application on a soft-core processor has a lower performance than

implementing them as a hardware. All the applications presented here are mono-

lithic, non-parallel and are implemented as hardware circuits. However, some loop

optimizations on HLS can produce parallelism in hardware but this does not change

the application design.

CHAPTER 3: Motivation and Preliminary Results

In this chapter we discuss three preliminary research results that motivated the

Vol can design. These preliminary results involves programmers productivity, HLS

memory pattern, and bandwidth performance of HMC memory.

3.1 Programmers Productivity

More and more industries are adapting to the heterogeneous architecture for their

performance and energy benefits. There are lot of potential examples and industry

changes: Intel’s HARP [114], Amazon EC2 F1 [115], Microsoft FPGA Bing search,

Xilinx Deep Learning... But even with the adaptability there is a major challenge

that has been overlooked: programmer’s challenge. With all of these systems, bulk

of the complexity has been shifted towards the programmer.

The programs that were simpler to design in the 70’s has grown in complexity,

even though it performs the same function. For example, consider the matrix mul-

tiplication application in a FORTRAN77, CUDA [116], and SDSoC with basic opti-

mization as shown in the Listing 3.1 3.2 3.3. The CONVEX compiler [117] used for

FORTRAN can convert a sequential code into a vectorized parallel optimized code

by using a specific optimization flag during compile time. On the other hand, the

CUDA programmer has to create and manage the blocks, threads, and memory. Fi-

nally, with SDSoC the programmer has to understand different interfaces and use the

appropriate pragmas to implement it on FPGAs. This increase in complexity hinders

the programmer productivity. This is one of the motivation for designing the Volcan

framework that can abstract the low-level details to the programmer.

32

FORTRAN Code for Matrix Multiplication

Main

1 DO I = 1, N

2 DO J = 1, N

3 c (I, J) = 0. 0

4 DO K = 1, N

5 C(I,J) = C(I,J) + A(I,K) * B(K,J)

6 END DO

7 END DO

8 END DO

Command Line

1 %fc -03 -c mmult.f

Parallel Vectorized Code by Compiler

1 M = MVSL(N)

2 PARALLEL DO J = 1, N

3 DO IOUTER = 1, N, M

4 C(IOUTER:MIN(N, IOUTER+ M - 1), J)= 0.0

5 END DO

6 END DO

7 PARALLEL DO J = 1, N

8 DO IOUTER = 1, N, M

9 VO= C(IOUTER:MIN(N, IOUTER+ M - 1), J)

10 DO K = 1, N

11 V1 = A(IOUTER:MIN(N, IOUTER+ M - 1), K)

12 VO =VO + VI * B(K, J)

13 END DO

14 C(IOUTER:MIN(N, IOUTER+ M - 1), J) =VO

15 END DO

16 END DO

Listing 3.1: Matrix Multiplication in FORTRAN77/Convex (ca.1990)

33

CUDA Code for Matrix Multiplication

matrixMul.cu

1 /*

2 * Copyright 1993-2009 NVIDIA Corporation. All rights reserved.

3 * NVIDIA Corporation and its licensors retain all intellectual property and

4 * proprietary rights in and to this software and related documentation and

5 * any modifications thereto. Any use, reproduction, disclosure, or distribution

6 * of this software and related documentation without an express license

7 * agreement from NVIDIA Corporation is strictly prohibited.

8 */

9 #ifndef _MATRIXMUL_KERNEL_H_

10 #define _MATRIXMUL_KERNEL_H_

11 #include <stdio.h>

12 #include "matrixMul.h"

13 #define CHECK_BANK_CONFLICTS 0

14 #define AS(i, j) As[i][j]

15 #define BS(i, j) Bs[i][j]

16 #endif

17 __global__ void

18 matrixMul(float* C, float* A, float* B, int wA, int wB){

19 int bx = blockIdx.x;

20 int by = blockIdx.y;

21 int tx = threadIdx.x;

22 int ty = threadIdx.y;

23 int aBegin = wA * BLOCK_SIZE * by;

24 int aEnd = aBegin + wA - 1;

25 int aStep = BLOCK_SIZE;

26 int bBegin = BLOCK_SIZE * bx;

27 int bStep = BLOCK_SIZE * wB;

28 float Csub = 0;

29 for (int a = aBegin, b = bBegin;a <= aEnd;a += aStep, b += bStep){

30 __shared__ float As[BLOCK_SIZE][BLOCK_SIZE];

34

31 __shared__ float Bs[BLOCK_SIZE][BLOCK_SIZE];

32 AS(ty, tx) = A[a + wA * ty + tx];

33 BS(ty, tx) = B[b + wB * ty + tx];

34 __syncthreads();

35 for (int k = 0; k < BLOCK_SIZE; ++k)

36 Csub += AS(ty, k) * BS(k, tx);

37 __syncthreads();}

38 int c = wB * BLOCK_SIZE * by + BLOCK_SIZE * bx;

39 C[c + wB * ty + tx] = Csub;}

40 #endif // #ifndef _MATRIXMUL_KERNEL_H_

Command Line

1 nvcc matrixMul.cu -o matrixMul -gencode arch=compute_35,code=sm_35

Listing 3.2: Matrix Multiplication in CUDA

CUDA requires header file which is not shown here

SDSoC Code for Matrix Multiplication

mmult.cpp

1 #define SZ 32

2 //Pragma below instructs the HLS compiler to generate a PL

3 //design which has Direct Memory Interface with DDR and PL.

4 #pragma SDS data zero_copy(in1[0: SZ * SZ], in2[0: SZ * SZ],out[0: SZ * SZ])

5 void mmult_accel(int *seqOne, int *seqTwo, int *out){

6 //Local memory is implemented as BRAM memory blocks

7 int A[SZ][SZ],B[SZ][SZ],C[SZ][SZ];

8 int i,j,k,itr;

9 //Burst read data from DDR memory to BRAM

10 for (itr = 0, i = 0, j = 0; itr < SZ * SZ; itr++, j++){

11 #pragma HLS PIPELINE

12 if (j == SZ){ j = 0; i++;}

13 A[i][j] = in1[itr];

14 B[i][j] = in2[itr];}

35

15 //Performs matrix multiplication out = in1 x in2

16 for (i = 0; i < SZ; i++){

17 for (j = 0; j < SZ; j++){

18 int result = 0;

19 for (k = 0; k < SZ; k++){

20 #pragma HLS PIPELINE

21 result += A[i][k] * B[k][j];}

22 C[i][j] = result;}}

23 //Burst write the results from output matrix C to DDR memory

24 for (itr = 0, i = 0, j = 0; itr < SZ * SZ; itr++, j++){

25 #pragma HLS PIPELINE

26 if (j == SZ) { j = 0; i++;}

27 out[itr] = C[i][j];}}

main.cpp

1 #include <iostream>

2 #include <stdlib.h>

3 int main(int argc, char **argv) {

4 const int dim = SZ;

5 //Allocate memory:

6 int *in1 = (int *) sds_alloc(SZof(int) * dim * dim);

7 int *in2= (int *) sds_alloc(SZof(int) * dim * dim);

8 int *hw_results_1 = (int *) sds_alloc(SZof(int) * dim * dim);

9 //Create test data

10 for (int i = 0; i < dim * dim; i++) {

11 in1[i] = rand() % dim;

12 in2[i] = rand() % dim;

13 hw_results_1[i] = 0;

14 }

15 #pragma SDS resource (1)

16 mmult_accel (in1, in2, hw_results_1);

17 #pragma SDS resource (2)

18 mmult_accel (in1, in2, hw_results_2);

36

19 //Release Memory

20 sds_free(in1);

21 sds_free(in2);

22 sds_free(hw_results_1);

23 sds_free(hw_results_2);

24 }

Listing 3.3: Matrix Multiplication in SDSoC/HLSb b The accelerator code must be

selected as hardware in the design flow

3.2 HLS memory pattern

The memory access pattern in an algorithm can be sequential or random. If

memories are accessed with incremental address then these address can be used as a

burst access. For a large data transfer these burst access improve the memory

performance by generating single read or write request for a large data. One way to

identify these pattern from the code is by analyzing the loop structure. For

example, if a for loop in C code These burst pattern can be identified based on the

algorithm. As shown in the Listing 3.4, a for loop with an incremental access will

generate a burst access. But with High-level synthesis (HLS) these code are

transformed based on the optimization of the loop. This can impact the

performance of algorithm based on the loop optimization.

1 void addr_analy(int* inp){

2 int i=0;

3 for(i=0;i<size;i++)

4 //Write data

5 for(i=0;i<size;i++)

6 //Read data

Listing 3.4: for loop to create burst pattern

37

HLS Code

void sum (int* input){
 //Code Body
}

32-bit data type

HLS
RTL

Inter-
connect

32 bit 512 bit

HLS
Compiler

ILA ILA

To
Memory

Figure 3.1: Address analysis setup

To understand the HLS behavior, we created the a hardware setup as shown in the

Figure 3.1. This setup consists of HLS RTL of the code Listing 3.4 connected to an

interconnect and memory. The integer pointer used in the top-level HLS code is

transformed into a 32 bit data interface which is connected to the AXI Interconnect.

The interconnect optimizes the burst transfer by packing multiple data into the 512

bit interface and generating a single address for the burst length. To capture the

behavior of the HLS with different optimization and the interconnect, Integrated

Logic Analyzers (ILA) [118] are connected to the interface.

The address capture for directives such as no optimization, pipeline, and loop split

exhibit the same behavior. As shown in the Figure 3.2, the write signals at the 32

bit HLS interface generates a burst of 32 bit data. Each burst contains 16 data of 32

bit with total burst size of 512 bit. These burst are sent as a single address memory

transaction to the memory by the interconnect. For subsequent address, the

memory is incremented by 40h. In case of read both the HLS and interconnect, the

38

80000080

8000004080000000 80000080

00000000 00000000

00000000

00000040 00000080

00000001 00000002

000 ... 000 ... 000 ...

00000040 00000080

AWADDR [31:0]

AWVALID

WDATA [31:0]

WVALID

AWADDR[29:0]

AWVALID

WDATA[511:0]

WVALID

ARADDR[31:0]

ARVALID

RDATA[31:0]

RVALID

ARADDR[29:0]

ARVALID

RDATA[511:0]

RVALID

Burst address with 512 bit (40h) address increment

HLS write
32 bit

Interconnect
write

512 bit

HLS read
32 bit

Interconnect
read

512 bit

80000040

Figure 3.2: Address captured for NoPragma, Pipeline, and Loop split

interfaces generates a single read address by dropping two MSBs (used for memory

map) to fetch the entire 512 bit of data from the memory. This 512 bit data is

received by the interconnect and is sent to HLS as 32 bit data at a time.

The Figure 3.3, shows the address behavior for unroll and array partitioning

optimizations. We can notice that the HLS RTL exhibit has no burst access. In this

case, a 32 bit data is transferred one at a time with an address increment of 32 bit

(shown by the signals AWADDR[31:0] and ARADDR[31:0] with 80030000h to

80030004h increment). The same address behavior is reflected at the 512 bit

interconnect interface and for read access.

The above analysis shows that the burst behavior in HLS is not just dependent on

algorithm but on the optimization in HLS. The Volcan framework has to consider

this behavior and be adaptable based on the optimization used in HLS.

3.3 HMC Bandwidth

One of the key aspects of the next-generation memory is they are structurally

different from the DDR memory. The performance of this 3D structured memory is

controlled by the memory access pattern. As suggested by the previous studies in

39

AWADDR [31:0]

AWVALID

WDATA [31:0]

WVALID

AWADDR[29:0]

AWVALID

WDATA[511:0]

WVALID

ARADDR[31:0]

ARVALID

RDATA[31:0]

RVALID

ARADDR[29:0]

ARVALID

RDATA[511:0]

RVALID

32-bit address increment when unrolled

HLS write
32 bit

Interconnect
write

512 bit

HLS read
32 bit

Interconnect
read

512 bit

80030000 80030004

00000000 00000001

000 ... 00030004

000 ... 0000000 ... 0000000 ... 0000000 ...

80030000 80030004 80030008 8003000C

0003000C000300080003000400030000

00000002

000000000000000100000002000000030000000400000005

Figure 3.3: Address captured for Unroll and Array partitioning

Section 2.5, a large access size is key to tap the performance in HMC. To affirm this

we conducted a preliminary study on Micron AC510 Hybrid Memory Cube

(HMC) [119]. The bandwidth measurement experiments on HMC is conducted by

using GUPS and AXI HMC test applications that are provided by Micron. These

application differ in their memory access pattern. and are implemented as a Verilog

module which is connected to the HMC memory controller. The applications

perform read and write operations to the HMC with varying data sizes (FLIT),

channels and burst sizes. The bandwidth is calculated as a product of operations

per second and the transfer sizes.

The HMC memory controller provides two different interfaces. One is a parallel

interface of 9 channels with each channel of 128 bit data width (referred as ‘native’)

and the other is a AXI-4 interface of two channels of 512 bit data width.

Irrespective of the interfaces these are physically connected to the memory using a 8

high speed serial links. Each native channel has a data width of 128 bit which is

referred to as ‘FLIT’. A single memory transaction can vary from a single channel

and a single FLIT (referred as ‘Default HLS access’) to using all 9 channels in

40

Figure 3.4: HMC Bandwidth for varying channels and burst sizes

parallel with maximum burst size of 128 bytes (burst length of 8 with each data of

128 bits). The Figure 3.4 shows that the bandwidth for these access can vary from

1.8-38.7 GB/s. As suggested earlier, a large data size of 128 bytes with multiple

channel can achieve the peak bandwidth. But to reach this bandwidth the

applications should be designed in parallel. While the degree of parallelism is

limited to the algorithm and the HLS infrastructure has limited support for

designing parallel HLS kernels. This results in the best case achievable bandwidth

with current HLS infrastructure to 4.8 GB/s and the worst case to 1.8 GB/s.

The 512 bit AXI-4 channel is similar to the current DDR interfaces as well as the

HBM. In this experiment we measure the bandwidth capabilities of HMC for

different burst length (access size). The access sizes are varied by modifying the

burst length from 0 to 255. For a single channel, the firmware is interfaced to one

512 bit AXI-4 interface of the HMC memory controller. For the dual channel, the

same firmware module is instantiated to two 512 bit AXI-4 interface. Each instance

of this firmware module independently executes a write transaction and places the

write address and the data in a FIFO. After receiving the write response the write

address is used from the FIFO for read transaction. After receiving the read data it

41

Figure 3.5: HMC bandwidth analysis for varying burst length on a single and dual
channel AXI interface

is verified against the write data in the FIFO.

Figure 3.5 shows the bandwidth measured in GB/s for both single and dual AXI

ports. Each AXI port has 512 bit data width and can be regarded as using 4 parallel

native channels. This interface detail is hidden from the user and the conversion of

AXI to native channel occurs inside the vendors memory controller. This AXI

interface supports a burst length up to 255. But, due to firmware errors (at vendors

memory controller) the bandwidth could only be measured for burst length up to 96.

A burst length of 0 is a non-burst case which is similar to sending a single FLIT on

a channel The bandwidth measured for a non-burst case (burst length=0) for single

port AXI is 11.1 GB/s and for the dual port is 22.3 GB/s respectively. The peak

bandwidth for a single port is 19 GB/s and is attained at burst length of 8.

Similarly, the peak bandwidth for a dual port is 36.2 GB/s and is attained at burst

length of 4. In both these peak bandwidth cases, the total burst size is

8× 512 = 4× 2× 512 = 4 Kbit. These numbers are interesting because even though

HMC can perform better for large access size, according to this experiment a burst

42

access to a memory location greater than 4 Kbit (maximum block boundary for a

DRAM column) can yield lower performance. It is also important to note that the

AXI based memory controller re-orders the read response which may add additional

delays. These bandwidth numbers provide us the optimum access size to attain the

system level performance in HMC. The peak bandwidth of 19 GB/s at a burst

length of 8 is dependent on utilizing the 512 bit data width. But this requires an

overhaul in application design which hinders the programmer productivity. This

motivates us to design a framework/methodology to improve the performance of

HLS cores on off-chip memories that can use wider memory interfaces in

next-generation memories.

CHAPTER 4: Design

The design consists of three major sections, the infrastructure details all the

hardware platforms and the hardware-software design of each platform, the

High-Level Synthesis (HLS) design which details the applications and the HLS

optimization, and finally the Volcan methodology.

4.1 SoC platforms

The Volcan design is implemented on four different hardware platforms. Each

platform differ in the FPGA, the memory, and the high level design flow. Of the

four hardware platforms, two of the platforms are System-On-a-Chip (SoC) and two

are FPGA platform. The SoC platforms contains a hard core ARM processor(s)

with a FPGA. In case of FPGA platform we implement a soft core processor that

run on FPGA. The off-chip memories in these platforms are DDR3, DDR4, and

HMC. Two platforms have DDR3 memory but they differ in their configuration. In

terms of design flow, the SoC platforms uses SDSoC design flow and the FPGA

platforms are designed with the combination of HLS and traditional FPGA design

flow. As described in the Chapter 2, the SDSoC is a complete software design flow

to program the SoC system where as the FPGA systems requires both software and

hardware design flow. The flow of this section illustrate the increasing complexity in

the design flow and the required infrastructure that is necessary to build the system.

4.1.1 Infrastructure

The two SoC platforms in our design are the Xilinx Zynq ZC706 SoC [120] and

Xilinx UltraZynq ZCU102 MPSoC [121]. These platforms differ in the hard core

processor, the FPGA, and the memory as shown in the Table 4.1. The ZC706 has a

44

Table 4.1: SoC platform specification

Resource Component Zynq 706 ZCU102

Hardware
Part number XC7Z045 FFG900-2 XCZU9EG-2FFVB1156
Processor Cortex A9 Cortex A53
Proc. Speed 800 MHz 1200MHz

FPGA

Logic Cells(K) 350 600
Block RAM(Mb) 19.1 32.1
DSP Slices 900 2,520
I/O Pins 362 328
Transceiver 16 16
Frequency(MHz) 142.85 150

Memory

Memory Type DDR3 DDR4
Frequency (MHz) 533 1066
Capacity(GB) 1 4
Interconnect SODIMM SODIMM
Bandwidth(GB/s) 5.3 17
DMA width(bit) 32 64
AXI BW(GB/s) 2 5.3

single core ARM A9 processor and the ZCU102 has a dual core ARM A53

processor. Additionally, the ZCU102 has a real time ARM processor R5 which is

not used in our design. In terms of FPGA resources, the ZCU102 has a larger

FPGA with more logic cell, BRAM memory, and high speed transceivers. Although,

the ZCU102 uses a better silicon technology to implement these resources, both the

Zynq platform have a comparable operating frequencies (1412.85 and 150 MHz).

The off-chip memories are the most distinguishing factors in these platforms. The

ZC706 uses the previous generation DDR3 at a frequency of 533 MHz and the

ZCU102 uses DDR4 operating at 1066 MHz. The DDR4 has 4× the capacity of the

DDR3 while both are interfaced using a SODIMM interface. In terms of logical

interface speed, the ZCU102 uses a 64 bit DMA for data transfer and the single AXI

bandwidth is 2× better than the ZC706. Clearly, in terms of memory and

interconnect the ZCU102 is 2− 3× better than the ZC706 platform.

45

ARM FPGA

DDR3

SODIMM DATAMOVER

AXI

Figure 4.1: Zynq Architecture for SDSoC

4.1.2 Design Flow

The SoC architecture as shown in the Figure 4.1 consists of Processing System (PS),

Programmable Logic (PL), and DDR memory. The PS system is physically

connected to the DDR memory through SODIMM slot and is logically connected to

PL through a AXI bus interface. Software Defined SoC (SDSoC) flow provides a

variety of components to move the data between the PS and PL system. Depending

on the data pattern the SDSoC tool assists these components which are known as

data movers. The Table 4.2 lists all these components and their properties. As seen

here, the data movers implements a SDSoC side and a Vivado side component. The

SDSoC side components are called using software APIs and the equivalent Vivado

side component is implemented in HDL (verilog or VHDL) by SDSoC tool. Since,

our design targets large data-set, we use zero_copy data mover in our design. The

syntax of this data mover is given in Listing 4.1 below. In this example, the HLS

core access inp1 and res data of size 512× 512 directly from the memory.

1 #define SZ (512*512)

2 #pragma SDS data zero_copy(inp1[0:SZ],res[0:SZ])

Listing 4.1: zero_copy data mover

46

Table 4.2: Different Data Movers in SDSoC

SDSoC Vivado Accelerated IP Property
axi_lite processing_system7 register, axilite Non-Contiguous

axi_dma_simple axi_dma bram, fifo, axis Transfer size <32MB
axi_dma_sg axi_dma bram, fifo, axis

axi_fifo axi_fifo_mm_s bram, fifo, axis Transfer size < 300 B
zero_copy accelerator IP aximm master Contiguous

The design for ZC706 is developed in Xilinx SDSoC 2017.2 tool [122] and for

ZCU102 using Xilinx SDSoC 2018.3. The SDSoC design flow as shown in Figure 4.2

uses high level language such as C to build a system on a chip design. The SDSoC

provides a pre-built hardware base platforms for both the SoC platforms. In this

design flow, we define the HLS core design in C, the main application running on

ARM, and the data movers to connect the HLS core with ARM. The design steps to

define these are as follows:

1. Defining the main program: A software program in C is designed which has

the main function. This function is the the primary entry for execution when

SoC boots up. In the main function the HLS core is executed using a function

call.

2. Defining HLS core: The accelerator application which is implemented on

FPGA is designed using C.

3. Defining the data mover: Based on the data requirement of the accelerator

function, appropriate data mover is selected in a C header file. This header file

also includes the prototype of the HLS core function.

4. Functionality Test: This verifies if the hardware and software are working in

synchronous i.e. main function can call the HLS core function.

5. Baseline for HLS: The HLS tools are used to analyze the function and identify

the cycle budget and the performance of the HLS core. This time provides an

47

Main Appplication
running on ARM

Define HLS Core

Select for HW
Acceleration

Build System

Optimize Data
Transfer

Optimize
HLS Core

SD Card
Image

Run Performance
Estimate

Figure 4.2: SDSoC Design Flow

estimate of HLS core execution time with an ideal memory (zero latency and

infinite bandwidth).

6. HLS core optimization: Using the data gathered from the baseline, appropriate

optimization pragma is introduced and the performance is measure.

7. Resource Utilization: With the optimized HLS core the resource utilization is

measured. This provides an estimate of the HLS core’s FPGA resource

utilization.

8. Optimize Interface: Based on the memory pattern of the HLS core, the

interface that connect the FPGA and memory is optimized. The Data Motion

network is use to analyze the performance of the interface.

9. Add Monitors: The performance monitors are added to the design.

The above steps leads to the creation of SD card image which includes the Linux

kernel and the necessary device drivers. This SD card image is used to boot the

device and the appropriate application is executed from the shell.

48

Table 4.3: FPGA platform specification

Resource Component Kintex 705 AC510
Hardware Part number XC7K325T-2FFG900C XCKU060-FFVA1156

FPGA

Logic Cells(K) 326 726
Block RAM(Mb) 16.0 38.0
DSP Slices 840 2,760
I/O Pins 500 520
Transceiver 16 32
Frequency(MHz) 150 187.5

Memory

Memory Type DDR3 HMC
Frequency (MHz) 800 187.5
Capacity(GB) 1 4
Interconnect SODIMM HSSI
Bandwidth(GB/s) 12.8 60
AXI BW(GB/s) 12 12

4.2 FPGA platforms

The two FPGA platforms that are considered are Xilinx Kintex 705 development

board [123] and Microns AC510 HMC Module [119]. For infrastructure perspective,

these FPGA platforms do not have a hard core processors unlike the Zynq boards

that are discussed earlier. The Table 4.3 summarizes the specification of the FPGA

platforms. As it is noticeable, the FPGA resources are similar to the Zynq

platforms with similar AXI interconnects. However, the AC510 uses a HMC

memory which is connected by High Speed Serial Links (HSSI) to the FPGA. The

other difference with the AC510 module is that it is not a standalone board. The

AC510 module which consists of a Xilinx Kintex Ultrascale FPGA [124] and HMC

memory is hosted on a EX700 [125] backplane. This backplane is connected to a

Pico SC-6 mini [126] Linux system with a 8 GB/s PCIe ×16 Gen3 bus. Due to this

infrastructure differences the AC510 module requires additional support in the

hardware design. The FPGA platforms are not supported by SDSoC design flow

and we require both hardware and HLS core design. The HLS core is designed using

Vivado HLS 2018.3 design suite [92] and the hardware is designed using the

49

traditional FPGA design flow. We initially build the hardware design for the KC705

board. As we discussed earlier, the AC510 board requires additional hardware

which we build upon the the KC705 design.

4.2.1 Kintex FPGA

The hardware design for Kintex FPGA is as shown in the Figure 4.3 which

integrates the HLS core with the memory. The design includes three components for

the integration, a) HPro module which orchestrates the entire process b) Smart

Interconnect IP from Xilinx c) Memory controller which are connected through a

AXI Interconnect.

The primary role of HPro module is to initiate the HLS core module, check the

correctness of the HLS core, and gather the result. In case of KC705 FPGA, this

module takes the input from JTAG debugger to start the process. Internally, the

HPro module consists of Microblaze processor and application profilers. The

Microblaze processor runs the software version of the HLS core and compares the

results to verify the HLS core correctness. The application profilers consists of

hardware timers that measures the runtime of the HLS core. More details of HPro

module is provided when we discuss this design for AC510 module.

The Smart Interconnect is a replacement of AXI Interconnect IP from Xilinx. This

IP can connect multiple memory mapped AXI master devices with multiple memory

mapped AXI slave device. The main advantage of using this IP is that it can pack

multi-beat burst from a smaller data-width interface to fill a larger data-width

interface. For example, if the incoming interface is 32 bit data-width and the

outgoing interface is 512 bit data width, then a multi-burst on 32 bit interface

would be filled into a single transaction in a 512 bit interface. This reduces the

number of memory transaction and minimizes the latency.

The memory controller for DDR IP is configured using Memory Interface Generator

(MIG) from Xilinx. This involves a series of steps that are listed below:

50

1. Create design by selecting the number of controller as 1

2. Pin options: Select the part number as XC7K325I-FFG900

3. Memory selection: Select DDR3-SDRAM as the memory

4. Controller options

(a) Clock period: 800 MHz

(b) Memory type: SODIMM

(c) Memory part: MT8JTF12864HZ-1G6

(d) Number of bank: 4

(e) Data ordering: Normal

5. AXI parameter options

(a) Data width: 512

(b) Arbitration scheme: Read Priority

(c) Narrow bus support: Disable

(d) Address width: 30 bits

6. Memory options

(a) Input clock: 150 MHz

(b) Read burst type: Sequential

(c) Output impedance control: RZQ/7

(d) Memory address map: Bank-Row-Column

7. Pin selection: Fixed pin out

8. Generate the memory controller

51

SODIMM

HLS
CORE

HTIF

SMART
CONNECT

DDR
CTRL

FPGA

512
AXI

HPro

AXI INTERCONNECT

*

*

The number next to the arrow represents the bus width
*- These ports change between 32-512 bit by Volcan

D
D
R
3

A
X
I

A
X
I

32
A
X
I

32
C
T
R
L

Figure 4.3: Volcan design on Kintex

4.2.2 AC510 HMC

The Volcan design for AC510 consists of a hardware-software system design. The

hardware design as shown in the Figure 4.4 consists of three major modules:

Hardware Translation Interface (HTIF), HPro core, and the HMC memory

controller. These modules are interconnected using AXI4 bus interconnect. This

hardware design interfaces to the memory using Micron HMC memory controller.

The hardware design (including the accelerators) runs at a frequency of 187.5 MHz.

This frequency is based on the HMC controller clock rate which is calculated as

Lanes× Link Speed/Data per clock cycle1. = 8 ∗ 15Gbps/640 = 187.5MHz

The HMC memory controller offers two interface variants a) 10 channels of 128 bit

native interconnect (these are different from the 8 physical links) b) 2 channels of

512 bit AXI interconnect (and additional 2 channels of native interface). Since, we

are interested in monolithic applications that are generated using HLS

(non-parallel) and their performance improvement, the Volcan design is connected

to one of two channels of 512 bit AXI interconnect. The FPGA and the external
1640 bits of data is sent by HMC controller to a lane on every clock cycle

52

HMC
CHIP

HSSI

HLS
CORE

HTIF

SMART
CONNECT

HMC
CTRL

FPGA

512
AXI

ADDRESS
MAPPER

DATA
ALIGNER

PCIe

CONTROL

AXI
CONV HPro

AXI INTERCONNECT

*

*

HOST

32
A
X
I

32

A
X
I

A
X
I

3
2

5
1
2

3
4

5
1
2

C
T
R
L

AXI
32

Figure 4.4: Volcan Design on AC510

HMC memory is physically connected using 8 lanes of half-width 15G (187.5 MHz)

High Speed Serial Interface (HSSI) links. The entire hardware of FPGA and HMC

memory (AC510 board) [119] is connected to the x86 Linux system (referred as

‘host’) via PCIe. A vendor framework, Picoframework provides the software driver

which runs on host machine and a hardware interface (PicoBus and Picostream)

which is implemented on FPGA. The Volcan design connects to the host machine

using this Picoframework hardware interface (both PicoBus and Picostream). Apart

from the hardware design, the Volcan also includes a software methodology. This

methodology is applied on the HLS core for better performance.

4.2.2.1 Hardware Translation Interface (HTIF)

The structure of HMC described in Chapter 2 is addressed using a 34 bit memory

address. We described earlier that HMC mandates the minimum data granularity to

FLIT (16B). This is implicated in the address by ignoring the lower 4 bits of the 34

bit address. But, from a HLS compiler perspective the data is accessed in a byte

addressable manner with a 32 bit address. This mismatch between the HMC

requirement and compiler assumption leads to compatibility issue. With HTIF

53

design we introduce address mapper to convert the incompatible memory address

from the HLS core to a compatible HMC memory address. The address mapper

generates a 34 bit address with zeros in the last 4 LSB (complying to FLIT) and 3

MSB bits (which are also ignored by HMC). Then, ignoring the 2 MSB bits of 32 bit

HLS core address (these are used for memory mapped I/O for FPGA design) it

concatenates the 27 LSB bits into the 34 bit HMC address. This entire operation is

done using combinational logic to avoid any additional delays and signal

synchronization errors. The overall operation is given below:

HMCAddress = concat{3′h0, addr[26 : 0], 4′h0}

In Chapter 3, we conducted a study on HMC interfaces to understand a) what

percentage of bandwidth in HMC is utilized with different access pattern b) how

does the burst length impact the bandwidth. In these studies, we found that if

HMC is accessed with a single FLIT and single channel then only 5% (10× less than

max. DDR BW) of maximum bandwidth is attainable. On the other hand, the

maximum bandwidth (18GB/s for a single 512 AXI channel) is achieved for a burst

length of 8. So, in order to improve the burst transaction we added SmartConnect

Core and designed a data aligner module in HTIF. This core can detected the burst

access and pack 16 of 32 bit data into a single 512 bit data. This 512 bit is greater

than a single FLIT and complies with HMC address. But, for a non-burst access

this module cannot correctly handle the data. The reason is for a non-burst

transfer, the WSTRB signal (for a write) is asserted to specify the location of the data

in a 512 bit. But, this signal is not supported by HMC memory controller interface.

To solve this the data aligner is introduced. This module re-aligns the data into a

512 bit channel (without need for WSTRB) and synchronizes with the address

generator. This re-alignment is not required for non-burst read since the data

written is already aligned.

54

4.2.2.2 HPro Core

The HMC memory requires initialization sequence before accessing it. This is done

via C/C++ application that runs on the host machine. Similar way, the HLS core

also requires initiation and this is done using a different C application that runs on

the Microblaze soft core processor on FPGA. In an integrated system the

initialization of HMC should occur prior to HLS initiation (else the system does not

run). After the HLS core is initiated, we need to measure the performance and

collect the statistics. In an isolated system, the HLS initialization and collection of

statistics is done using the JTAG-UART port. But, in a HLS-FPGA-HMC

integrated system it requires complex Microblaze Debug Module (MDM)

configuration. This is due to the HMC memory controller which uses MDM in a

separate design and results in Boundary SCAN placement conflict (Refer MDM

Spec [127] Chapter 4). So, the only way to avoid conflicts is to initialize HMC,

initiate HLS, and collect results using PicoFramework (PCIe). Further added to the

complexity in this integrated system are the three different clock domains. There is

the HMC memory clock running at 187.5 MHz used for the HMC memory, Volcan

design, and the HLS core, Picostream clock running at 250 MHz and PicoBus clock

which is a derived clock of Picostream divided by 62 which is 4 MHz (the frequency

is set to minimum by vendor to avoid timing closure issues). Thus, in Volcan we

design HPro Core which initializes HMC memory using Picoframework, initiates the

HLS core using a custom handshake protocol, measures the performance of HLS

core using hardware timers and synchronizes different clock domain using FIFO.

The HMC initialization application is designed in C/C++ using Picoframework

driver (PicoDrv). This application runs on the Linux host machine and uses

RunBitFile command to initialize and flash the FPGA firmware. The details of the

initialization is out of scope here and for further information refer to HMC

specification (Fig. 8) [78] . Once the initialization is successful the application

55

HOST APP CTRL MB APP

START
MB START

WR RESULT

MB DONE

APP DONE

RQ RESULT

SEND RESULT

Init Memory
Start test

Wait for test
to complete

Request
Result

Read
Result

Wait for
Start from

Host

Test all
HLS Apps

Write Runtime
Result for all

HLS Apps

Figure 4.5: Handshake protocol between Host and FPGA

initiates the custom Volcan protocol. As shown in Figure 4.5, the host application

sends a START signal to the Volcan controller via PicoBus. The Volcan controller

has two modules: AXI Converter which synchronizes the PicoBus with the AXI

interconnect using a cross-clock domain FIFO and Handshake protocol (HPro)

module that orchestrates the system. The HPro module consists of a custom verilog

module and a Microblaze core. The verilog module sends MB_START signal to the

Microblaze. A C-application running on Microblaze initiates the HLS core(s) as well

as the hardware timers to measure the performance. After completion of HLS core

execution, the Microblaze informs the verilog module with a MB_DONE signal. The

HPro verilog module collects all the statistics and conveys the DONE signal to the

host application. The host application reads the runtime statistics through

Picostream interface.

The last piece of the Volcan design is to ensure correctness. The HLS is a reliable

methodology in producing accurate results. However, when an application with

56

variable loop is optimized with loop unrolling techniques it produces a sub optimal

Quality of Result (QoR). Thus, it is critical to add a component to check the

program correctness in runtime. For this purpose, a software function is developed

which executes the same algorithm as the HLS core on Microblaze. This function

further ensures the correctness by comparing the results of HLS core and the

software application. The statistics of this test and the results are sent back to the

host machine along with runtime statistics.

4.3 HLS Design

The application design follows a memory agnostic philosophy in which the minutiae

of details of underlying memory architecture is hidden from the programmer. The

application code written in C/C++ remains exactly the same for different memory

architectures. The applications are designed using the Xilinx Vivado suite. The

Vivado HLS tool converts these applications into a hardware block referred here as

HLS hardware (HLS-HW). This HLS-HW is imported to a Vivado hardware project

for further synthesis and implementation. These applications are monolithic since

the HLS tools currently does not support any parallel cores.

The applications that are consider differ in their loop structures which implies

memory pattern. The applications have single perfect loop, nested perfect loop, and

nested imperfect loop. Since we are interested in the impact on external memory,

the applications are designed to use the external memory as their primary memory

storage.

4.3.1 HLS Applications

To evaluate the off-chip memory performance we design seven HLS cores in C/C++

and generate RTL using HLS compiler. These seven HLS cores differ in their loop

structures, data dependencies, and data-type. These cores are designed such that

there is a clear demarcation of read-compute and writes in the code structure. This

57

way, it is easier to introduce directives for optimization for read and write loops.

These read and write loops directly access the data from the off-chip memories. In

certain loops, where RAW (read after write) dependencies exists, BRAM buffers are

used as temporary storage. The data is stored in BRAM till the dependencies are

resolved (typically end of the inner loop) and is transferred to the off-chip memory

before the next iteration.

The description of all the implemented HLS cores, their data sizes, loop structures,

and read-compute-write sequences is given below.

1. Summation generates 512× 512 = 262144 write request as input and

computes the sum by reading 512× 512 = 262144 integers. Both the write and

read loops are single perfect loops.

1 for i -> 0 to N

2 //Write input

3

4 for i -> 0 to N

5 //Read input

6 //Compute

2. Matrix Multiply performs multiplication of 2-dimensional matrices of integers

X and Y of dimension 512× 512. The Read-Compute is done on the inner

loop and the Write is done on the outer loop. This algorithm has a perfect

triply nested loops.

1 for i -> 0 to r

2 for j -> 0 to c

3 for k -> 0 to c

4 //Read Input1

5 //Read Input2

6 //Compute

7 //Write Result

58

3. Longest Common Subsequence computes the longest subsequence among two

unsigned integer sequences of length 512. This algorithm is implemented using

dynamic programming with separate loops for Read-Compute and Write.

1 for i -> 0 to N

2 //Read Input1

3 for j -> O to N

4 //Read Input2

5 //Compute

6 for j -> 0 to N

7 //Write Result

4. Knapsack problem for a given set of N = 512 items with weight and value

(unsigned integers), determines the number of each items to include in a

collection such that the total weight is less than or equal to the total weight

M = 512.

1 for i -> 0 to N+1

2 //Read Input1

3 //Read Input2

4 for j-> 0 to M+1

5 //Compute

6 for j-> 0 to M+1

7 //Write Result

5. Dijkstra’s algorithm (ASSP) finds the shortest path (unsigned integer)

between sources/nodes of the graph. This algorithm is modified with an outer

loop to find all source (N = 512) shortest path (ASSP).

1 for i -> 0 to N

2 for j -> 0 to N-1

3 for k -> 0 to N

4 //Read Input

5 //Compute

59

6 for j -> 0 to N

7 //Write Result

6. LU Decomposition: decomposes a floating-point matrix of size 512× 512 into

lower and upper triangular matrix. This algorithm has an imperfect nested

loops where the iteration index of inner loops depend on the variable i, the

iteration of the outer loop.

1 for i -> 0 to N

2 for j -> i to M

3 for k -> i to M

4 //Read Input1

5 //Compute

6 //Write Result1

7 //Write Result2

7. Cholesky Decomposition is a decomposition of a Hermitian, positive-definite

matrix of size N = 512× 512 into the product of a lower triangular matrix

and its conjugate transpose. This algorithm also has an imperfect inner loop

and a square root computation for floating-point numbers.

1 for i -> 0 to N

2 for j -> 0 to i+1

3 for k -> 0 to j

4 //Read Input

5 //Compute

6 //Write Result

4.3.2 HLS Optimizations

The High-Level-Synthesis tool allows optimization using directives. As described in

Section 2.5, there are tools that can predict the right directives but they all are

related to ideal (zero latency) or BRAM memory (known latency). But, there is no

60

Table 4.4: Directive Combination (DC) and description

DC Description
NwNr No optimization
PwPr Pipeline write and read
UwUr Loop unroll write and read
PwUr Pipeline write and unroll read
SwPr Pipeline loop split write and pipeline read
SwUR Pipeline loop split write and unroll read
BwUr Pipeline, loop split, block partition write and unroll read

guarantee that every directive can lead to a better performance with off-chip

memories. Hence, understanding the effect of these optimization is important.

Many different optimizations on different applications can lead to a large set for

Design Space Exploration (DSE). To simplify this we have created a custom list of

directive combination. We use these combinations of directives (DC) to compare the

performance between the ideal memory (no latency) and actual off-chip memory.

The Table 4.4 shows the list of DC and their description. These directives follows

the convention writeloopoptimizationwreadloopoptimizationr. The exploration

starts with no optimization which is denoted byNwNr. This acts as a base case with

which different directives (DC) are compared. Results that are worse than the base

case indicates the negative impact of optimization. The different directives that

follow NwNr are the combination of four optimization techniques: Pipeline (P),

Unroll (U), Loop split with Pipeline (S), and Block array partitioning with

Pipeline(B). The set of directive listed in Table 4.4 can be further expanded for

unrolling cases on write loops and pipeline cases for read loops. These cases are

excluded because the unrolling the write is counter-productive to burst access and

pipelining the read does not improve the performance for wider data interface.

The design and optimizations follows certain assumptions and guidelines which are

listed below:

1. For every DC the latency of the HLS core module should always meet the

61

timing. This timing guarantees that the every operation in the HLS core can

be executed in the mentioned clock cycle. from the hardware implementation

timing closure which depends

2. For loop pipeline, the Initiation Interval (II) value cannot be predicted by the

HLS tool. We determine the optimal II value by successive approximation.

The code is compiled with initial value is calculated based on the operations

in the loop and the process is repeated until we find the optimal value.

3. Loop unrolling requires a lot of resource and a complete unroll for a large loop

can lead to compilation error. So to avoid this, we do a partial unroll with

factor of 16.

4. To maintain uniformity, the factors for loop split and array partition are set to

16.

5. For imperfect loops, the compiler cannot determine the iteration. As a coding

guideline we add LOOP_TRIP_COUNT pragma for every loop in our design.

4.4 Volcan Methodology

The HTIF module of Volcan solves the address compatibility issue and improves the

burst access. But these does not reflect in performance improvement. To improve

the performance we introduce Volcan Software methodology. This software

methodology transforms the source code of HLS core by memory blocking

technique. The transformation follows a generic step which is independent of the

source code and optimizations. However, we eliminate loop splitting and array

partitioning optimization techniques with this methodology. The reason is the these

techniques does not help in blocking the data and creates undesirable layers of

memory hierarchy with the HLS core. The steps involved is listed below and the

transformation is shown in the Figure 4.6.

62

for i -> init1 to max1
 for j -> init2 to max2
 //Read Inp1[i][j]
 for k -> init3 to max3
 //Read Inp2[k][i]
 //Read Inp3[j][k]
 for j -> init4 to max4
//Write Out1[i][j]
 //Write Out2 [j][i]

for i -> init1 to max1
 for j -> init2 to max2
 if(((j%blk_sz)==0)||(j==init2))
 //Read Inp1[p][q]
 for k -> init3 to max3
 //Read Inp2[r][s]
 if(((k%blk_sz)==0)||(k==init3)
 //Read Inp3[m][n]

 //initial index non-multiple of blk_sz
if(init4%blk_sz !=0)
 //Read Out1[x][y]
 //Modify Out1
 //Write Out1[x][y]
for j -> z to max4

 if(((j+1)%blk_sz) == 0 || (j==max4))
 //Write Out1[x][y]
 for j -> init4 to max4
 //Read Out2[x][y]
 //Modify Out2
 //Write Out2[x][y]

HLS Kernel Code

Volcan Transformed Code

- init* represents initial value
- max* represents max value
- m,n,p,q,r,s,x,y represents re-calculated indices
- z = (((int)(init4/blk_sz))+1)*blk_sz)

init4 not a

multiple of blk_sz

Row-wise access

Every blk_szth iteration

Column-wise access

Every iteration

Column-wise access

Every iteration

Figure 4.6: Code Transformation using Volcan

1. Interface Transformation: The inputs and outputs of the HLS core is declared

as a pointer argument to the top level function. This pointer is a address of a

32 bit data. This is transformed into a 512 bit data using a custom Volcan

data structure. The custom data structure consists of an array of HLS core

interface data-type (int, float, double ...) of block size (blk_sz determined by:

512/sizeof(data_type) (512 is the maximum data width of a single AXI

interface in HMC controller).

2. Read Transformation: The methodology identifies the input read and

optimizes it for a block access. If the input read is accessed row-wise then the

access is modified to read 512 bit of data on every blk_szth iteration. The

loop indices are re-calculated for the block access as: floor((start and

stop)_index/blk_sz). For a column-wise read access (which cannot be

blocked), the 512 bit is read on every iteration.

3. Compute: The methodology preserves the computation part of the original

HLS core. Since, the read data is 512 bit, the transformation extracts the

expected 32/64 bit data required for the computation.

63

4. Write Transformation: The transformation creates two different types of block

write access based on the HLS core write access and the iteration index. If the

start of iteration is a multiple of blk_sz and write access is row-wise then the

memory is blocked for every blk_szth iteration and written as a 512 bit data.

For a column-wise access or non-multiple of blk_sz, the entire 512 bit of

memory is read, modified in the interested location, and written back to the

memory. In case of non-multiple of blk_sz, this read-modify-write is done

until the iteration reaches the multiple of blk_sz but for column-wise this

operation continues till the end of the loop.

CHAPTER 5: Evaluation and Results

We evaluate the design on both SDSoC and FPGA platforms, with and without

Volcan methodology. Each platform is tested with seven different HLS core and

different set of directives. Each HLS core and directive is evaluated for ideal

memory performance (zero latency and infinite bandwidth) which is estimated by

the tool and the actual memory performance which is measured by running these

HLS cores on FPGAs.

The evaluation starts with the experimental setup which discuss provides the

testing parameters. Then we evaluate the HMC memory to understand the baseline

bandwidth capabilities. Once we know the raw bandwidth of memories, we evaluate

all the HLS core on all four platforms. This evaluation provides us the baseline

off-chip performance of the existing FPGA and SoC platforms as well as the

behavior of different directives. Using these performance data we evaluate the

Volcan methodology in terms of computation and memory impact on both the

FPGA platforms. We analyze these improvements of Volcan methodology and

compare with the non Volcan performance. Finally, we conclude with a table of best

optimization and the best suited platform for each HLS core and the relative

performance with respect to running them as software applications.

5.1 Experiment Setup

The experiments are conducted on four different hardware platforms as described in

Chapter 4. The SoC platforms are Xilinx ZC706 SoC [120] with an ARM Cortex A9

processor running at 800 MHz and Xilinx Ultrascale+ MPSoC ZCU102 [121] with

an ARM A53 processor running at 1200 MHz. These platforms are connected to

65

Linux host system through a JTAG/UART connection. To conduct the test, the

boot images are loaded into a SD card and the SoC platforms are configured for SD

card boot. Once the system boots it is interacted through a terminal application on

host system.

The FPGA platforms for the experiments are Xilinx Kintex KC705 FPGA [123] and

Micron AC510 HMC [119]. Since, the FPGAs do not have a hard core processors

like SoCs, the KC705 is designed with a Microblaze soft-processor which runs at 150

MHz. Similar to SoC platforms, the KC705 board is connected to a Linux host

system using JTAG/UART. But, instead of SD card boot, it is configured for JTAG

boot. The firmware, which includes the hardware design for the FPGA and the

Microblaze application is downloaded using JTAG. The Microblaze Debugger

Module (MDM) [127] is used as the debugger to interact with the board.

The AC510 platform differs from the rest of the hardware platforms used in this

experiment. This module is connected to EX700 [125] and which in turn connect to

Pico SC-6 mini [126] Linux system through a PCIe interconnect. As discussed in

Chapter 4 Section 4.2.2.2, this FPGA platform cannot accommodate a MDM

debugger module. For debugging this platform, we have created HPro Core module

in Verilog which can be accessed using the PCIe interconnect. To interact with HPro

Core we create a software application written in C and is compiled with a gcc 5.4

compiler. This application runs on SC-6 mini Linux system and uses PicoAPI [128]

functions to interact with AC510. With this application we initialize the HMC,

initiate the firmware running on FPGA and gather the results from the FPGA.

5.2 Baseline Analysis

In baseline analysis, we test every HLS core discussed in Chapter 4 with the

combination of directives defined in Table 4.4. These results act as a baseline with

which can compare the Volcan methodology. The baseline result are presented as

runtime measurement for ideal memory and the actual memory. The ideal memory

66

refers to a memory model where the memory has zero access latency and infinite

memory bandwidth.This measurement is captured using SDSoC/HLS tools at

synthesis stage of the design. This measurement is an estimation from the tool to

measure the performance of generated HLS core with an ideal memory. The actual

memory time is the runtime measurement of HLS core when implemented on

FPGA. This runtime is measured using hardware timers that are inserted in the

FPGA/SoC design. In case of SoC platforms (ZC706 and ZCU102) the hardware

timers run at the processor speed (800 MHz and 1200 MHz respectively) and is

scaled down to match the speed of the FPGA. For FPGA platforms an AXI based

hardware timer is included which runs at FPGA design frequency of 150 MHz.

5.2.1 SoC platform

This experiment evaluates the behavior of HLS cores on off-chip memory with

varying memory access pattern and optimization. As previously mentioned, the

memory access pattern is not just dependent on the algorithm but also on

optimization. The Table 5.1, represents the ideal memory and actual memory

runtime for different HLS cores with varying optimizations. For every HLS core, the

best runtime for actual and ideal memory is highlighted.

From the Table 5.1 we can notice that there are many different directive than

provides the best runtime for an ideal memory. But these directives do not provide

the best result for actual memory. The only directive that is consistent for all HLS

core is the the pipeline directives (PWPR). This result is intuitive, since the pipeline

optimizes the instructions executed on FPGA and also preserves the burst behavior

in an algorithm.

When we analyze each HLS core, for summation it is clear that pipeline (PWPR) is

the only directive which shows performance gain for both the ideal and actual

memory. The rest of the directives show positive gain only for the ideal memory

case and not for actual memory. This decrease in performance is caused by two

67

Table 5.1: Execution time (in kilo clock cycle) for Ideal and Actual Memory on SoC
platforms (lower the better)

HLS Core ZC706 ZCU102 DCIdeal Actual Ideal Actual

Sum

786 1,333 786 838 NwNr

524 1,242 524 576 PwPr

786 1,293 786 838 UwUr

704 2,365 671 2,692 PwUr

524 2,859 524 2,094 SwPr

704 3,312 671 2,692 SwUr

704 3,638 671 2,693 BwUr

M Mul.

1,746,928 9,004,899 1,344,275 6,776,866 NwNr

134,217 2,773,357 134,217 1,884742 PwPr

572,589 2,543,358 471,925 1,968,112 UwUr

? ? ? ? PwUr

134,217 2,227,642 134,217 1,932,412 SwPr

134,217 2,038,159 134,217 1,936,590 SwUr

134,217 1,911,922 134,217 1,935,510 BwUr

LCS

1,314 33,693 1,314 27,168 NwNr

800 19,241 800 13,934 PwPr

719 25,133 657 27,985 UwUr

562 27,021 545 26,373 PwUr

1,047 23,021 800 15,231 SwPr

608 23,283 546 27,701 SwUr

608 25,982 546 27,408 BwUr

Knapsack

1,319 20,133 1,319 20,230 NwNr

799 4,597 799 3,709 PwPr

1,008 23,422 778 21,878 UwUr

565 19,376 564 19,646 PwUr

1,061 7,942 922 5,540 SwPr

827 22,766 688 21,474 SwUr

1,086 30,628 1,059 29,352 BwUr

Dijkstra

691,356 729,724 673,454 684,562 NwNr

607,662 658,382 673,445 684,058 PwPr

1,509,294 2,125,159 1,424,572 2,136,876 UwUr

1,508,181 2,856,512 1,424,459 2,835,095 PwUr

608,648 684,141 673,447 685,386 SwPr

1,509,167 2,846,480 1,424,461 2,836,365 SwUr

1,517,670 3,169,902 1,424,592 2,836,534 BwUr

LU Decom.

7,250,641 6,506,760 7,116,424 6,260,265 NwNr

1,758,462 1,500,838 1,088,422 1,975,787 PwPr

7,250,614 6,478,928 7,074,219 6,217,021 UwUr

2,428,240 3,095,369 1,660,158 2,828,506 PwUr

Cholesky

2,987,450 1,467,215 2,696,152 1,397,094 NwNr

1,104,732 1,144,619 820,773 756,924 PwPr

3,180,527 1,463,981 2,775,057 1,403,355 UwUr

2,987,450 1,463,628 2,634,023 1,394,266 PwUr

68

factors. The first factor is the directives such as loop unroll expect parallel access to

the memory for unrolled loops. This is can be achieved in an on-chip memories like

BRAM with multiple ports. But, the off-chip memories such as DDR have single

port. This forces the serialization of memory access resulting in increase of memory

access time. This flexibility in on-chip memory is one of the reason for HLS core to

perform better with on-chip memory and also map poorly to off-chip memory. The

second factor that affects the performance is the result of poor transformation of

split loops (SWPR) by HLS tool. The split loops even after pipelining requires a

longer latency to process the data within the loop. In terms of control steps, the

split loops requires 83 steps to process 16 integer data. Where as a single loop with

pipeline (PWPR) requires only 48 steps.

Matrix multiplication restricts the optimization to the inner loop for a large data

size (512× 512). Any optimization to the external loop requires more FPGA

resources than available. Thus, the optimization such as PWUR cannot be applied to

this algorithm. This restriction also results in write access being not efficiently

optimize. The inner loop performs the read compute and the write is performed on

the exit of the inner loop. This is reflected in similar runtime performance for most

of the optimization. Every directive combination can perform better than no

optimization (NWNR). Although the behavior on both platform are similar, the

amount of speed-up shown for ideal memory is not even close to the actual memory

performance. Additionally, we observed HLS tools picking different datamover for

ZC706 compared to ZCU102 for the same directives. For one of the unrolling case

(BWUR) in ZC706, the read of input data used a cache coherent ACP port where as

for all the other cases High performance (HP) port was selected. This choice of

data-mover was picked by the SDSoC tool since all the cases uses the zero_copy

data mover in the application source header. This change contributed to some

performance gain for loop unroll cases when compared with other platforms.

69

In case of Longest Common Subsequence (LCS) the best performing directive for

ideal memory is PWUR but this is one of the worst performing for an actual

memory. These cases defeats the purpose of estimation of HLS core performance

before implementation. Every loop unroll case shows the memory bottleneck issue

due to single port access. Like with the other HLS core the pipeline directive works

better with the off-chip memory. Another observation for this algorithm is that the

ZCU102 performs at least 40% better than the ZC706 platform. The cache

coherence ACP port in ZC706 is a bad choice for this memory pattern and the High

performance (HP) port is a better interface choice. This provides us with the

information on the instance when ACP port can perform better than HP port and

vice versa.

The Knapsack problem has a similar loop structure to that of LCS. This is mirrored

in the performance behavior. As with other HLS cores the unrolling cases are poorly

mapped to off-chip memory and have relatively lower performance. In this case both

ZC706 and ZCU102 use the HP port which is reflected in similar performance

behavior across both the platforms.

The Dijkstra’s ASSP performance shows that most of the directives perform lower

than the no optimization. This is true for both the ideal memory as well as the

actual memory. This is because this design has input dependencies (6 of them)

which needs to be resolved using local memory and then transferring it to off-chip

memory in batch. The pipeline directive reduces the this latency to some extent and

hence shows some performance gain. This performance shows how the HLS cannot

work for some algorithms (with many input dependence) even with optimization.

The LU and the Cholesky decomposition HLS cores have imperfect loops. This

restricts from applying the loop splitting technique to these HLS cores. These

imperfect loops also results in an estimation error for the ideal memory by the HLS

tools. This can be observed from the estimated ideal time being greater than the

70

actual memory. The ideal memory estimation is performed using the loop iteration

data. But, this is calculated using the minimum and maximum iteration index

ignoring the variable loop bounds. So, this estimate results in a time as if it was a

perfect loop. Additionally, loop unrolling on these variable loop bounds generates a

sub-optimal (incorrect) computation results. This is due to static loop unrolling by

HLS for a variable bound loops. In terms of actual memory performance which is

measured using the hardware timer, the pipeline directives shows performance gains

for both ideal and actual memory. This trend is similar to matrix multiplication,

LCS, and Knapsack. Similarly, Cholesky decomposition works well only for pipeline

(PWPR) optimization.

In summary, for most applications pipeline directive results in the best optimized

HLS core. Algorithms such as matrix multiplication restricts the optimization due

to exhaustion of FPGA resources. The Dijkstra ASSP is an anomaly and no

optimization works (except pipeline to some extend) due to input dependencies.

Finally, variable loop bounds can result in error in ideal memory estimation and

also sub-optimal results for unrolled loops. Even though the platform have different

memories and one faster than the other, the performances are closely matched.

5.2.2 FPGA platforms

The Table 5.2, shows the performance of FPGA platforms with ideal and actual

memory. The ideal memory time for both KC705 and AC510 are similar even

though they use different version of HLS tools. As seen with the SoC platform, the

pipeline directive (PWPR) is the best performing directive. The performance

measurement of KC705 is similar to the SoC platforms that we saw earlier. Analysis

on each HLS core done earlier holds good for the KC705 FPGA platform. However,

the AC510 is slower than the SoC and the KC705 platform.

The relative performance gain/loss of HMC over DDR is shown in the Figure 5.1.

The positive gains are shown in green and the negative performance is shown in red.

71

Table 5.2: Execution time (in kilo clock cycle) for Ideal and Actual Memory on SoC
platforms (lower the better)

HLS core KC705 AC510 DCIdeal Actual Ideal Actual

Sum

786 803 786 803 NwNr

524 540 524 563 PwPr

786 1,032 802 9,154 UwUr

671 3,007 688 7,375 PwUr

524 2,311 524 5,518 SwPr

671 3,007 688 7,352 SwUr

671 3,007 688 7,359 BwUr

M Mul.

1,476,920 8,050,408 1,745,358 19,738,235 NwNr

134,217 2,487,371 134,217 5,359,613 PwPr

352,846 2,845,237 352,846 9,560,861 UwUr

? ? ? ? PwUr

134,217 2,481,048 134,217 5,359,842 SwPr

134,217 2,480,904 134,217 5,359,842 SwUr

134,217 2,480,960 134,217 5,359,840 BwUr

LCS

1,318 30,435 1,314 75,345 NwNr

1,066 15,618 1,066 15,173 PwPr

661 32,312 650 76,370 UwUr

549 29,718 549 74,586 PwUr

1,067 16,618 1,067 16,551 SwPr

550 29,718 550 75,965 SwUr

550 29,718 550 75,964 BwUr

Knapsack

1,319 28,706 1,319 57,412 NwNr

799 5,160 799 10,320 PwPr

778 29,472 778 58,944 UwUr

565 28,314 565 56,629 PwUr

923 6,086 923 12,172 SwPr

688 29,240 688 58,481 SwUr

1,059 33,136 1,059 66,272 BwUr

Dijkstra

673,447 709,108 673,447 709,108 NwNr

539,492 576,044 539,492 576,044 PwPr

1,432,945 2,055,577 1,432,945 19,303,361 UwUr

1,432,834 2,053,779 1,432,834 19,301,694 PwUr

673,447 710,158 673,447 710,169 SwPr

1,432,834 2,055,187 1,432,834 19,302,995 SwUr

1,432,965 2,055,309 1,432,965 19,303,144 BwUr

LU Decom.

7,384,859 6,633,027 7,222,090 14,771,532 NwNr

1,088,947 1,991,349 1,084,204 4,235,552 PwPr

8,185,709 6,523,045 7,198,020 14,678,756 UwUr

1,590,397 2,650,576 1,791,656 5,178,869 PwUr

Cholesky

3,233,547 2,427,950 3,099,067 3,621,890 NwNr

1,490,813 2,235,974 1,490,813 3,354,731 PwPr

3,187,672 2,375,200 3,194,225 3,622,561 UwUr

2,987,894 2,357,121 2,918,974 3,356,182 PwUr

72

Figure 5.1: Performance comparison between HMC and DDR3 memory

As seen, for most HLS core and directives the performance with HMC is lower by

50% compared to DDR. In the Chapter 3, we saw that the HMC bandwidth is

4− 10× lower than the peak bandwidth for an non burst access. We also saw that

the HLS directives such as loop unrolling modifies the burst memory pattern into

non-burst pattern. The combine affect of this causes the HMC to perform 2− 3×

slower than the DDR. This indicates that the design under-utilizes the HMC

memory bandwidth. This behavior was prognosticated in the design, since HTIF

can completely utilize the 512 bit interface for burst access only. For rest of the

memory access it uses (32/512) = 1/16th of the maximum memory bandwidth.

5.3 Volcan Evaluation

In this evaluation, the HLS cores are transformed using the Volcan methodology and

is tested on FPGA platforms KC705 and AC510. The performance measurements

are compared with the baseline performance (referred as ‘HLS Generated’) that is

presented in Table 5.1 5.2. The Volcan measurement includes the total runtime

which is presented as the computation time and the memory overhead. The

73

computation time is measured exactly same as the ideal memory measurement that

was conducted earlier. This represents the amount of time required by the HLS core

for computation assuming an ideal memory. The memory overhead time is measured

using the hardware timers and is difference between the actual memory time and

the ideal memory time that was presented in previous section. These measurement

can clearly indicate the impact of Volcan methodology on computing and memory.

5.3.1 DDR Memory

The Table 5.3, represents the computation and memory time for HLS generated and

Volcan HLS cores. The HLS generated runtime is same as ideal memory runtime

presented in Table 5.2. The difference is that in baseline analysis the focus is on the

total runtime performance and compared with different directives. Where as here

we are measuring it as computation and memory overhead time with and without

Volcan methodology.

The Table 5.3 clearly indicates that the Volcan methodology improves the

performance on 24 out of 27 tested cases. However, these improvements are

dependent on the algorithm and their memory pattern. The methodology employs

memory blocking techniques to improve the memory performance. In most cases,

the time spent on memory is significantly reduced by 2− 14× which results in

overall improvement. The baseline experiments concluded with pipeline as the best

optimization and loop unrolling fails due to memory bottleneck. One of the goal of

Volcan is to be adaptable for different directive requirements. So, in case of loop

unrolling it provides a parallel access to the unrolled loops (up to factor 16) and

then map it to the wide data-width of the memory interface. This can be regraded

as a multi-port access from HLS core perspective to a single port wide off-chip

memory interface.This technique has eliminated the bottleneck and improve the

memory performance as it can be seen from the Table 5.3. For example, in case of

Knapsack HLS core the loop unrolling performance is improved by 11× and the

74

Table 5.3: Computation and memory overhead (lower the better) and relative gain
(higher the better) by Volcan on KC705 (DDR)

HLS Core HLS Generated Volcan Gain DCComp. Mem. Comp. Mem.

Sum

786 17 1,338 38 −1.7× NwNr

524 16 32 5 14.6× PwPr

786 246 67 200 3.8× UwUr

671 2,336 45 303 8.6× PwUr

M Mul.

1,476,920 6,573,488 2,148,533 1,440,721 2.2× NwNr

134,217 2,353,154 273,154 1,384,906 1.5× PwPr

352,846 2,492,391 269,480 1,063,780 2.1× UwUr

? ? ? ? ? PwUr

LCS

1,318 29,117 3,596 10,810 2.1× NwNr

1,066 14,552 768 3,118 1.5× PwPr

661 31,651 3,955 10,700 2.2× UwUr

549 29,169 3,171 10,537 2.2× PwUr

Knapsack

1,319 27,387 2,108 2,507 6.2× NwNr

799 4,361 803 1,067 2.8× PwPr

778 28,694 729 1,906 11.2× UwUr

565 27,750 705 1,909 10.8× PwUr

Dijkstra

673,447 35,661 1,207,700 387,333 −2.2× NwNr

539,492 36,552 674,233 320,468 −1.7× PwPr

1,432,945 622,632 746,212 320,366 1.9× UwUr

1,432,834 620,945 746,312 320,356 1.9× PwUr

LU Decom.

↑ ↑ ↑ ↑ 6.3× NwNr

↑ ↑ ↑ ↑ 2.9× PwPr

↑ ↑ ↑ ↑ 6.8× UwUr

↑ ↑ ↑ ↑ 3.2× PwUr

Cholesky

↑ ↑ ↑ ↑ 4.5× NwNr

↑ ↑ ↑ ↑ 4.1× PwPr

↑ ↑ ↑ ↑ 4.6× UwUr

↑ ↑ ↑ ↑ 4.5× PwUr

? - PwUr requires more FPGA resources than available
↑ - HLS measurement for imperfect loops are incorrect

75

memory overhead is one-eleventh of the HLS generated circuit.

The improvement by Volcan does not come without any cost. As seen from the

Table 5.3, the methodology introduces additional overhead for computation. This

overhead is due to a) extraction of 32 bit data from the 512 bit memory data for

computation b) introduction of if statements. The data extraction overhead can be

mitigated using optimization which can be seen from the table. Where as the if

statement overhead is due to the poor mapping of decision statements by HLS tools.

The only anomaly in Volcan performance is the Dijkstra’s algorithm. As seen in our

earlier baseline experiment, this HLS core has input dependencies which serializes

the read operation. This serialization does not help memory blocking. For Volcan

methodology, which relies on blocking of memory, this dependency transforms into a

512 bit data read on every iteration of the loop. Further, it adds some latency to

extract the 32 bit required for the computation due to the if-else block introduced

by Volcan. When measured, this latency is increased to 15 clock cycles with Volcan

compared to 4 clock cycles for the native case. Although, these latency impact the

NWNR and PWPR cases, the Volcan methodology improves the performance by 2×

for the loop unrolling cases.

The relative gain measured between the Volcan and HLS generated is represented in

Figure 5.2. The Volcan methodology improves the performance in 24 out of 27

cases. This is the result of memory blocking technique, that reduces the total

memory access latency with fewer transaction and exploits the bandwidth. However,

it introduces a computational overhead which can be minimized by optimization.

As it can be noted from the Figure 5.2, two of three cases which does not improve

are no optimization cases. In this case, the overhead introduced in computation

exceeds the improvement in the memory. Overall, the Volcan methodology proves

that the performance can be improved and is adaptable to the DDR memory.

76

Figure 5.2: Relative gain by applying Volcan methodology on DDR

5.3.2 HMC Memory

The Volcan methodology evaluation similar to DDR is repeated on HMC . As

mentioned in Chapter 4, the loop split and array partitioning directives are not

applied to this methodology. The Table 5.4, represents the computation and

memory overhead of Volcan and non-Volcan methodology over AC510 HMC

platform. The performance gain of Volcan compared with non Volcan is given in

Figure 5.3.

The performance improvement with HMC is similar to the DDR where 24 out of 27

cases shows improvement of 1.3×−16× over same HLS core without the

methodology. As seen earlier in the baseline analysis (Figure 5.1), HMC does not

perform as expected and the performance is lower than DDR. This is due to the

under-utilization of the memory bandwidth and poor performance for non-burst

access. The loop unrolling directive which is one of the cause for non-burst access

(other being the nature of algorithm) is resolved in Volcan with directive

adaptability. The Volcan can recognize these patterns and map the unrolled loops

77

Table 5.4: Computation and memory overhead in terms of percentage of overall time
(lower the better) and relative gain (higher the better) by Volcan on AC510 (HMC)

HLS Core HLS Generated Volcan Gain DCComp. Mem. Comp. Mem.

Sum

786 17 851 1 −1.1× NwNr

524 39 32 3 16× PwPr

802 8352 65 613 13.5× UwUr

688 6687 43 418 16× PwUr

M Mul.

1,745,358 17,992,877 1,879,835 2,489,596 4.5× NwNr

134,217 5,225,396 272,629 1,223,092 3.6× PwPr

352,846 9,208,015 252,445 3,380,350 2.6× UwUr

? ? ? ? ? PwUr

LCS

1,314 74,031 3,334 38,292 1.8× NwNr

1,066 14,107 769 11,228 1.3× PwPr

650 75,720 3,431 38,804 1.8× UwUr

549 74,037 2,909 38,292 1.8× PwUr

Knapsack

1,319 56,093 1,844 4,995 8.4× NwNr

799 9,521 801 3,500 2.4× PwPr

778 58,166 727 4,387 11.5× UwUr

565 56,064 703 4,379 11.1× PwUr

Dijkstra

673,447 35,661 805,571 1,185,068 −2.8× NwNr

539,492 36,552 673,447 1,116,324 −3.1× PwPr

1,432,945 17,870,416 562,023 1,117,848 11.5× UwUr

1,432,834 17,868,860 562,122 1,117,846 11.5× PwUr

LU Decom.

↑ ↑ ↑ ↑ 13.6× NwNr

↑ ↑ ↑ ↑ 4.7× PwPr

↑ ↑ ↑ ↑ 14.7× UwUr

↑ ↑ ↑ ↑ 5.1× PwUr

Cholesky

↑ ↑ ↑ ↑ 3.6× NwNr

↑ ↑ ↑ ↑ 3.3× PwPr

↑ ↑ ↑ ↑ 3.8× UwUr

↑ ↑ ↑ ↑ 3.5× PwUr

? - PwUr requires more FPGA resources than available
↑ - HLS measurement for imperfect loops are incorrect

to access memory in parallel. These parallel access and mapped to the memory

interface effectively converting the non-burst transactions. The rest of the

performance are similar to the DDR memory as seen earlier.

78

Figure 5.3: Relative gain by applying Volcan methodology on HMC

5.4 Final Evaluation

The goal of this dissertation is to evaluate the HLS technology for HPC

applications. This can be addressed by answering the key question Can

Computational scientists’ benefit from High Level Synthesis to develop High

Performance Computing applications? The Chapter 4 describes the Volcan design

and its memory agnostic approach. The Volcan design integrates HLS core with

different platform without changing the HLS core design for every platform. This

improves the productivity for using high level languages by abstracting the low level

details of architecture and memory. The result from the previous sections identifies

the the right combination of directives, platform, and memory for every HLS core.

In summary, the pipeline directive and Volcan methodology are the best case

scenarios for the existing scenarios. Comparing HMC with DDR, HLS cores such as

summation and matrix multiplication perform better with HMC and the rest of the

HLS core are better with DDR. These results identifies the right optimization and

platform for HPC applications designed using HLS.

79

Table 5.5: Comparison of execution time (lower the better) between HLS core and
software

Application Execution time (µ s) GainHLS Core Software
Summation 0.23 1.22 5.2×

M. Multiplication 9,971 2,812 −3.5×
LCS 25.90 2.85 −9.0×

Knapsack 12.46 2.16 −5.7×
Dijkstra 6,631 1,925 −3.4×

LU Decom. 4,634 453 −10.2×
Cholesky 3,611 107 −33.7×

To identify the impact of Volcan design, we compare the performance against an

ARM A53 processor running at 1200 MHz. The execution time of best performing

HLS core and software counterpart (which uses the same source code) is given in

Table 5.5. The source code for the application remains exactly the same. In case of

HLS, the source code is passed into the HLS compiler and implemented on FPGA.

The best case memory is considered for each HLS core. As discussed above, for

summation and matrix multiplication the best case memory is HMC and for the

rest of the HLS cores the memory is DDR3. For software execution, the source is

compiled with ARM compiler and executed on ARM processor. The off-chip

memory for software execution is DDR4. As can be seen from the Table 5.5, except

for summation the hardware execution time is higher than the software. The data

pattern in case of summation is similar to streaming which has a high temporal

locality. The rest of the application have random access pattern. Depending on the

pattern the hardware is slower by 3.5− 33× than that of software.

CHAPTER 6: Conclusion

High performance computing (HPC) is moving from homogeneous architectures to

heterogeneous architectures. The current generation heterogeneous architectures

have a mix of computing elements such as CPUs, GPUs, FPGAs etc. and a mix of

memory elements such as SRAM (cache), BRAM, DDR, HBM, HMC etc.

Though these architectures are efficient for performance and energy, they are more

challenging to design for the computational scientist. Among different computing

elements FPGAs play a key role in heterogeneous architectures as accelerators

and main stream computers. Traditionally, FPGAs are programmed

using hardware languages that are concurrent and reactive. High level synthesis

(HLS) design allows FPGA implementation in High-level languages (HLL) such as

C/C++. HLS supports optimizations which can further improve the performance

of the generated hardware. This HLS technology is highly beneficial for embedded

applications with small data size. The HPC applications process a large amount of

data and hence it has to access data from the off-chip memory. This requires

efficient mapping of HLS core for off-chip memory access by abstracting the

underlying hardware. This dissertation introduced Volcan, a novel memory

agnostic framework that integrates HLS generated HPC applications to different

heterogeneous architectures.

To understand the behavior of HLS on off-chip memory, we tested seven HPC

applications with seven optimizations on four different FPGA and SoC platforms,

which had three different types of memory (DDR3, DDR4, HMC) using two

different HLS flow. The test results suggests that by default, HLS poorly maps

applications for off-chip memory access. This can be seen from the difference in

81

performance between ideal and actual memory as shown in Table 5.1 and 5.2. In

terms of optimizations, pipeline directives works the best. But, the impact of loop

unroll optimization is detrimental and is slower than no optimization. The reason is

HLS maps the unrolled loop as a non-burst access to off-chip memory. Unlike

BRAM the off-chip memories have a single channel interface. But, HLS assumption

of multi-channel interface results in memory bottleneck which impacts the

performance.

The Volcan design tries to improve the existing HLS infrastructure with hardware

and software design. By analyzing low level hardware details of each architecture

the necessary infrastructure is created. This establishes a a hardware abstraction

and memory agnostic interface. Specifically, the compatibility issues such as

incompatible address scheme in HMC is resolved by designing a Hardware

Translation Interface (HTIF) module. Similarly the control issues are resolved by

designing HPro module which implements a handshake protocol to establish

connectivity. By building these infrastructure, the HLS design can be integrated to

different FPGAs and different memory architectures. However, these low-level

infrastructure does not improve the performance. To improve the performance of

HLS cores with off-chip memories, a software transformation is introduced.

The Volcan software transformation known as ‘Volcan Methodology’ improves the

performance by memory blocking technique. This involves analyzing the data

dependencies of the HLS core and the optimization directives. The address analysis

experiments showed that the HLS optimization can change the access pattern in an

algorithm. From the experiment we noticed that directives such as pipeline and loop

split exhibits the burst behavior. But with unroll and array partition directives the

burst behavior is changed to non-burst access. These non-burst access can heavily

impact the performance of HLS core on off-chip memories. As we saw from the

burst analysis study, the non-burst bandwidth is 4− 10× lower than the peak

82

bandwidth. The software methodology address the performance issues by

transforming the HLS core to access wider memory interface. This wider interface

not only utilizes the memory bandwidth efficiently but transforms a single channel

memory into a multiple parallel ports to benefit loop unrolling. The result shows

that Volcan improves the performance in both DDR and HMC for 24 out of 27 test

cases. The gain is dependent on the algorithm memory pattern and can range from

1.3− 16× compared to the default HLS infrastructure.

While Volcan improves the performance for the existing infrastructure, it does not

outperform the software application as shown in the Table 5.5. The HLS tools can

provide performance benefits for embedded like and streaming applications (as seen

in summation application). But they poorly map HPC applications which have

random access pattern to the off-chip memory. The problem lies in the underlying

implementation of the tools which initially compiles the HLS source code as a

software application (these are based on GCC and LLVM). This compilation

technique does not reflect the hardware behavior which leads to poor

implementation. The other important issue is that the hardware devices such as

FPGAs are massively parallel. But, the current HLS tools does not support parallel

application. This compromises the user to generate monolithic applications and use

wider interfaces for performance. But, the utilization of wider interface is limited by

the memory pattern of the application. Depending on the application the

performance can deteriorate from 3×−33× as shown in Table 5.5. In conclusion,

the current HLS cannot be used for HPC applications. Changing the fundamentals

of compilation technique would be key for future architectures and applications.

REFERENCES

[1] G. W. Burr, B. N. Kurdi, J. C. Scott, C. H. Lam, K. Gopalakrishnan, and
R. S. Shenoy, “Overview of candidate device technologies for storage-class
memory,” IBM Journal of Research and Development, vol. 52, no. 4.5, pp.
449–464, July 2008.

[2] X. Dong, N. Muralimanohar, N. Jouppi, R. Kaufmann, and Y. Xie,
“Leveraging 3d pcram technologies to reduce checkpoint overhead for future
exascale systems,” in Proceedings of the Conference on High Performance
Computing Networking, Storage and Analysis, Nov 2009, pp. 1–12.

[3] M. H. Kryder and C. S. Kim, “After hard drives—what comes next?” IEEE
Transactions on Magnetics, vol. 45, no. 10, pp. 3406–3413, Oct 2009.

[4] G. E. Moore, “Cramming more components onto integrated circuits, reprinted
from electronics, volume 38, number 8, april 19, 1965, pp.114 ff.” IEEE
Solid-State Circuits Society Newsletter, vol. 11, no. 3, pp. 33–35, Sep. 2006.

[5] J. M. Shalf and R. Leland, “Computing beyond moore’s law,” Computer,
vol. 48, no. 12, pp. 14–23, Dec 2015.

[6] R. H. Dennard, F. H. Gaensslen, V. L. Rideout, E. Bassous, and A. R.
LeBlanc, “Design of ion-implanted mosfet’s with very small physical
dimensions,” IEEE Journal of Solid-State Circuits, vol. 9, no. 5, pp. 256–268,
Oct 1974.

[7] J. Kahle, “The cell processor architecture,” in Proceedings of the 38th Annual
IEEE/ACM International Symposium on Microarchitecture, ser. MICRO 38.
Washington, DC, USA: IEEE Computer Society, 2005, pp. 3–. [Online].
Available: https://doi.org/10.1109/MICRO.2005.33

[8] S. Mittal and J. S. Vetter, “A survey of cpu-gpu heterogeneous computing
techniques,” ACM Comput. Surv., vol. 47, no. 4, pp. 69:1–69:35, Jul. 2015.
[Online]. Available: http://doi.acm.org/10.1145/2788396

[9] T. .-T. list, “June 2019,” 2019. [Online]. Available:
https://www.top500.org/lists/2019/06/

[10] T. G. 500, “June 2019,” 2019. [Online]. Available:
https://www.top500.org/green500/lists/2019/06/

https://doi.org/10.1109/MICRO.2005.33
http://doi.acm.org/10.1145/2788396
https://www.top500.org/lists/2019/06/
https://www.top500.org/green500/lists/2019/06/

84

[11] R. H. Dennard, “Evolution of the mosfet dynamic ram-a personal view,” IEEE
Transactions on Electron Devices, vol. 31, no. 11, pp. 1549–1555, Nov 1984.

[12] H. . Park, S. . Yang, M. . Jung, T. . Kang, S. . Kim, K. . Sohn, D. . Bae, S. .
Kim, K. . Kim, B. . Sohn, H. . Kim, H. . Byun, Y. . Shin, and H. . Lim, “A
833 mb/s 2.5 v 4 mb double data rate sram,” in 1998 IEEE International
Solid-State Circuits Conference. Digest of Technical Papers, ISSCC. First
Edition (Cat. No.98CH36156), Feb 1998, pp. 356–357.

[13] A. A. Khokhar, V. K. Prasanna, M. E. Shaaban, and C. . Wang,
“Heterogeneous computing: challenges and opportunities,” Computer, vol. 26,
no. 6, pp. 18–27, June 1993.

[14] M. Garland, S. L. Grand, J. Nickolls, J. Anderson, J. Hardwick, S. Morton,
E. Phillips, Y. Zhang, and V. Volkov, “Parallel computing experiences with
cuda,” IEEE Micro, vol. 28, no. 4, pp. 13–27, July 2008.

[15] L. Dagum and R. Menon, “Openmp: an industry standard api for
shared-memory programming,” Computational Science & Engineering, IEEE,
vol. 5, no. 1, pp. 46–55, 1998.

[16] D. D. Gajski and L. Ramachandran, “Introduction to high-level synthesis,”
IEEE Design Test of Computers, vol. 11, no. 4, pp. 44–54, Winter 1994.

[17] J. L. Tripp, M. B. Gokhale, and K. D. Peterson, “Trident: From high-level
language to hardware circuitry,” Computer, vol. 40, no. 3, pp. 28–37, March
2007.

[18] P. A. Jackson, B. L. Hutchings, and J. L. Tripp, “Simulation and synthesis of
csp-based interprocess communication,” in 11th Annual IEEE Symposium on
Field-Programmable Custom Computing Machines, 2003. FCCM 2003., April
2003, pp. 218–227.

[19] A. Putnam, D. Bennett, E. Dellinger, J. Mason, P. Sundararajan, and
S. Eggers, “Chimps: A c-level compilation flow for hybrid cpu-fpga
architectures,” in 2008 International Conference on Field Programmable Logic
and Applications, Sept 2008, pp. 173–178.

[20] P. Coussy and A. Morawiec, High-Level Synthesis: From Algorithm to Digital
Circuit, 1st ed. Springer Publishing Company, Incorporated, 2008.

[21] D. A. Patterson and J. L. Hennessy, Computer Architecture: A Quantitative
Approach. San Francisco, CA, USA: Morgan Kaufmann Publishers Inc., 1990.

[22] W. A. Wulf and S. A. McKee, “Hitting the memory wall: Implications of the
obvious,” SIGARCH Comput. Archit. News, vol. 23, no. 1, pp. 20–24, Mar.
1995. [Online]. Available: http://doi.acm.org/10.1145/216585.216588

http://doi.acm.org/10.1145/216585.216588

85

[23] E. P. Jr., “Lebombo bone,” 2019. [Online]. Available:
http://mathworld.wolfram.com/LebomboBone.html

[24] D. Anderson and J. Delve, “Biographies [f.c. williams; j. vaucanson; j.m.
jacquard],” IEEE Annals of the History of Computing, vol. 29, no. 4, pp.
90–102, Oct 2007.

[25] A. G. Bromley, “The evolution of babbage’s calculating engines,” IEEE Ann.
Hist. Comput., vol. 9, no. 2, pp. 113–136, Jun. 1987. [Online]. Available:
http://dx.doi.org/10.1109/MAHC.1987.10013

[26] F. Michael, Experimental researches in electricity... reprinted from the
Philosophical Transactions of 1831-1852 (with other electrical papers). R. &
J.E. Taylor, 1839.

[27] E. D. Daniel, C. D. Mee, and M. H. Clark, About the Editors. IEEE, 1999.
[Online]. Available: https://ieeexplore.ieee.org/document/5265664

[28] J. W. Forrester, “Digital information storage in three dimensions using
magnetic cores,” Journal of Applied Physics, vol. 22, no. 1, pp. 44–48, 1951.
[Online]. Available: https://doi.org/10.1063/1.1699817

[29] R. R. Everett, “The whirlwind i computer,” Electrical Engineering, vol. 71,
no. 8, pp. 681–686, Aug 1952.

[30] J. A. Rajchman, “Ferrite apertured plate for random access memory,”
Proceedings of the IRE, vol. 45, no. 3, pp. 325–334, March 1957.

[31] C. D. Brady, “Apollo guidance and navigation electronics,” IEEE Transactions
on Aerospace, vol. AS-3, no. 2, pp. 354–362, June 1965.

[32] W. Proebster, “The design of a high-speed thin-magnetic-film memory,” in
1962 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers, vol. V, Feb 1962, pp. 38–39.

[33] I. H. Yetter, “High-speed fault simulation for univac 1107 computer system,”
in Proceedings of the 1968 23rd ACM National Conference, ser. ACM ’68.
New York, NY, USA: ACM, 1968, pp. 265–277. [Online]. Available:
http://doi.acm.org/10.1145/800186.810587

[34] W. A. Baker, “The piggyback twistor - an electrically alterable
nondestructive-readout twistor memory,” IEEE Transactions on
Communication and Electronics, vol. 83, no. 75, pp. 829–833, Nov 1964.

[35] A. Bobeck, I. Danylchuk, F. Rossol, and W. Strauss, “Evolution of bubble
circuits processed by a single mask level,” IEEE Transactions on Magnetics,
vol. 9, no. 3, pp. 474–480, Sep. 1973.

http://mathworld.wolfram.com/LebomboBone.html
http://dx.doi.org/10.1109/MAHC.1987.10013
https://ieeexplore.ieee.org/document/5265664
https://doi.org/10.1063/1.1699817
http://doi.acm.org/10.1145/800186.810587

86

[36] R. B. Mulvany, “Engineering design of a disk storage facility with data
modules,” IBM Journal of Research and Development, vol. 18, no. 6, pp.
489–505, Nov 1974.

[37] G. Hu, J. H. Lee, J. J. Nowak, J. Z. Sun, J. Harms, A. Annunziata, S. Brown,
W. Chen, Y. H. Kim, G. Lauer, L. Liu, N. Marchack, S. Murthy, E. J.
O’Sullivan, J. H. Park, M. Reuter, R. P. Robertazzi, P. L. Trouilloud, Y. Zhu,
and D. C. Worledge, “Stt-mram with double magnetic tunnel junctions,” in
2015 IEEE International Electron Devices Meeting (IEDM), Dec 2015, pp.
26.3.1–26.3.4.

[38] J. T. Evans and R. I. Suizu, “Static fram: an emerging nonvolatile memory
technology,” in Seventh Biennial IEEE International Nonvolatile Memory
Technology Conference. Proceedings (Cat. No.98EX141), June 1998, pp. 26–.

[39] D. Takashima, “Overview of ferams: Trends and perspectives,” in 2011 11th
Annual Non-Volatile Memory Technology Symposium Proceeding, Nov 2011,
pp. 1–6.

[40] X. Yin, X. Chen, M. Niemier, and X. S. Hu, “Ferroelectric fets-based
nonvolatile logic-in-memory circuits,” IEEE Transactions on Very Large Scale
Integration (VLSI) Systems, vol. 27, no. 1, pp. 159–172, Jan 2019.

[41] H. Akinaga and H. Shima, “Resistive random access memory (reram) based on
metal oxides,” Proceedings of the IEEE, vol. 98, no. 12, pp. 2237–2251, Dec
2010.

[42] H. . P. Wong, S. Raoux, S. Kim, J. Liang, J. P. Reifenberg, B. Rajendran,
M. Asheghi, and K. E. Goodson, “Phase change memory,” Proceedings of the
IEEE, vol. 98, no. 12, pp. 2201–2227, Dec 2010.

[43] A. J. Annunziata, M. C. Gaidis, L. Thomas, C. W. Chien, C. C. Hung,
P. Chevalier, E. J. O’Sullivan, J. P. Hummel, E. A. Joseph, Y. Zhu,
T. Topuria, E. Delenia, P. M. Rice, S. S. P. Parkin, and W. J. Gallagher,
“Racetrack memory cell array with integrated magnetic tunnel junction
readout,” in 2011 International Electron Devices Meeting, Dec 2011, pp.
24.3.1–24.3.4.

[44] E. Eleftheriou, T. Antonakopoulos, G. K. Binnig, G. Cherubini, M. Despont,
A. Dholakia, U. Durig, M. A. Lantz, H. Pozidis, H. E. Rothuizen, and
P. Vettiger, “Millipede - a mems-based scanning-probe data-storage system,”
IEEE Transactions on Magnetics, vol. 39, no. 2, pp. 938–945, March 2003.

[45] J. R. Jameson, P. Blanchard, C. Cheng, J. Dinh, A. Gallo, V. Gopalakrishnan,
C. Gopalan, B. Guichet, S. Hsu, D. Kamalanathan, D. Kim, F. Koushan,
M. Kwan, K. Law, D. Lewis, Y. Ma, V. McCaffrey, S. Park,
S. Puthenthermadam, E. Runnion, J. Sanchez, J. Shields, K. Tsai, A. Tysdal,
D. Wang, R. Williams, M. N. Kozicki, J. Wang, V. Gopinath, S. Hollmer, and

87

M. Van Buskirk, “Conductive-bridge memory (cbram) with excellent
high-temperature retention,” in 2013 IEEE International Electron Devices
Meeting, Dec 2013, pp. 30.1.1–30.1.4.

[46] M. Joodaki, Selected Advances in Nanoelectronic Devices: Logic, Memory and
RF, ser. Lecture Notes in Electrical Engineering. Springer Berlin Heidelberg,
2012. [Online]. Available: https://books.google.com/books?id=rF3yIlMzcxUC

[47] F. C. Williams, T. Kilburn, and G. C. Tootill, “Universal high-speed digital
computers: a small-scale experimental machine,” Journal of the Institution of
Electrical Engineers, vol. 1951, no. 3, pp. 99–, March 1951.

[48] J. M. Stinchfield, “Cathode ray tubes and their application,” Transactions of
the American Institute of Electrical Engineers, vol. 53, no. 12, pp. 1608–1615,
Dec 1934.

[49] J. P. Eckert, Jr., “A survey of digital computer memory systems,” IEEE Ann.
Hist. Comput., vol. 20, no. 4, pp. 15–28, Oct. 1998. [Online]. Available:
https://doi.org/10.1109/85.728227

[50] J. P. Eckert, “A survey of digital computer memory systems,” Proceedings of
the IRE, vol. 41, no. 10, pp. 1393–1406, Oct 1953.

[51] M. V. Wilkes, “The edsac computer,” in 1951 International Workshop on
Managing Requirements Knowledge, Dec 1951, pp. 79–79.

[52] E. Braun and S. MacDonald, Revolution in Miniature: The History and
Impact of Semiconductor Electronics. Cambridge University Press, 1982.
[Online]. Available: https://books.google.com/books?id=03c4wldf-k4C

[53] O. Minato, T. Sasaki, S. Honjo, K. Ishibashi, Y. Sasaki, N. Moriwaki,
K. Nishimura, Y. Sakai, S. Meguro, M. Tsunematsu, and T. Masuhara, “A
42ns 1mb cmos sram,” in 1987 IEEE International Solid-State Circuits
Conference. Digest of Technical Papers, vol. XXX, Feb 1987, pp. 260–261.

[54] K. Noda, K. Matsui, K. Takeda, and N. Nakamura, “A loadless cmos
four-transistor sram cell in a 0.18-/spl mu/m logic technology,” IEEE
Transactions on Electron Devices, vol. 48, no. 12, pp. 2851–2855, Dec 2001.

[55] B. Copeland, Colossus: The secrets of Bletchley Park’s code-breaking
computers. OUP Oxford, 2006. [Online]. Available:
https://books.google.com/books?id=e6ocfloTkJ4C

[56] W. Y. Stevens, “The structure of system/360: Part ii - system
implementations,” IBM Syst. J., vol. 3, no. 2, pp. 136–143, Jun. 1964.
[Online]. Available: http://dx.doi.org/10.1147/sj.32.0136

https://books.google.com/books?id=rF3yIlMzcxUC
https://doi.org/10.1109/85.728227
https://books.google.com/books?id=03c4wldf-k4C
https://books.google.com/books?id=e6ocfloTkJ4C
http://dx.doi.org/10.1147/sj.32.0136

88

[57] W. Regitz and J. Karp, “A three transistor-cell, 1024-bit, 500 ns mos ram,” in
1970 IEEE International Solid-State Circuits Conference. Digest of Technical
Papers, vol. XIII, Feb 1970, pp. 42–43.

[58] K. K. Chang, D. Lee, Z. Chishti, A. R. Alameldeen, C. Wilkerson, Y. Kim,
and O. Mutlu, “Improving dram performance by parallelizing refreshes with
accesses,” in 2014 IEEE 20th International Symposium on High Performance
Computer Architecture (HPCA), Feb 2014, pp. 356–367.

[59] C. Toal, D. Burns, K. McLaughlin, S. Sezer, and S. O’Kane, “An rldram ii
implementation of a 10gbps shared packet buffer for network processing,” in
Second NASA/ESA Conference on Adaptive Hardware and Systems (AHS
2007), Aug 2007, pp. 613–618.

[60] M. Cox, N. Bhandari, and M. Shantz, “Multi-level texture caching for 3d
graphics hardware,” in Proceedings. 25th Annual International Symposium on
Computer Architecture (Cat. No.98CB36235), July 1998, pp. 86–97.

[61] H. Lee, W. Yun, S. Kang, H. Moon, S. Kwack, D. Lee, K. Kwean, K. Kim,
Y. Choi, J. Ahn, and J. Kih, “A low power high performance
register-controlled digital dll for 2gbps x32 gddr sdram,” in 2005 IEEE Asian
Solid-State Circuits Conference, Nov 2005, pp. 401–404.

[62] H. Ltd., “Hm5283206fp,” 2019. [Online]. Available:
https://www.hitachi.com/New/cnews/E/1997/970317B.html

[63] M. Yasumoto, H. Hayama, and T. Enomoto, “Promissing new fabrication
process developed for stacked lsi’s,” in 1984 International Electron Devices
Meeting, Dec 1984, pp. 816–819.

[64] S. S. Wong and A. E. Gamal, “The prospect of 3d-ic,” in 2009 IEEE Custom
Integrated Circuits Conference, Sep. 2009, pp. 445–448.

[65] K. Bernstein, P. Andry, J. Cann, P. Emma, D. Greenberg, W. Haensch,
M. Ignatowski, S. Koester, J. Magerlein, R. Puri, and A. Young,
“Interconnects in the third dimension: Design challenges for 3d ics,” in 2007
44th ACM/IEEE Design Automation Conference, June 2007, pp. 562–567.

[66] S. Lu, J. Juang, H. Cheng, Y. Tsai, T. Chen, and W. Chen, “Effects of bonding
parameters on the reliability of fine-pitch cu/ni/snag micro-bump chip-to-chip
interconnection for three-dimensional chip stacking,” IEEE Transactions on
Device and Materials Reliability, vol. 12, no. 2, pp. 296–305, June 2012.

[67] B. Dang, M. Shapiro, P. Andry, C. Tsang, E. Sprogis, S. Wright,
M. Interrante, J. Griffith, V. Truong, L. Guerin, R. Liptak, D. Berger, and
J. Knickerbocker, “Three-dimensional chip stack with integrated decoupling
capacitors and thru-si via interconnects,” IEEE Electron Device Letters,
vol. 31, no. 12, pp. 1461–1463, Dec 2010.

https://www.hitachi.com/New/cnews/E/1997/970317B.html

89

[68] H. Saito, M. Nakajima, T. Okamoto, Y. Yamada, A. Ohuchi, N. Iguchi,
T. Sakamoto, K. Yamaguchi, and M. Mizuno, “A chip-stacked memory for
on-chip sram-rich socs and processors,” IEEE Journal of Solid-State Circuits,
vol. 45, no. 1, pp. 15–22, Jan 2010.

[69] P. R. Morrow, C. . Park, S. Ramanathan, M. J. Kobrinsky, and M. Harmes,
“Three-dimensional wafer stacking via cu-cu bonding integrated with 65-nm
strained-si/low-k cmos technology,” IEEE Electron Device Letters, vol. 27,
no. 5, pp. 335–337, May 2006.

[70] C. S. Premachandran, J. Lau, Ling Xie, Ahmad Khairyanto, K. Chen, Myo Ei
Pa Pa, M. Chew, and Won Kyoung Choi, “A novel, wafer-level stacking
method for low-chip yield and non-uniform, chip-size wafers for mems and 3d
sip applications,” in 2008 58th Electronic Components and Technology
Conference, May 2008, pp. 314–318.

[71] N. Maeda, H. Kitada, K. Fujimoto, K. Suzuki, T. Nakamura, A. Kawai,
K. Arai, and T. Ohba, “Wafer-on-wafer (wow) stacking with
damascene-contact tsv for 3d integration,” in Proceedings of 2010
International Symposium on VLSI Technology, System and Application, April
2010, pp. 158–159.

[72] I. Radu, B. Nguyen, G. Gaudin, and C. Mazure, “3d monolithic integration:
Stacking technology and applications,” in 2015 International Conference on
IC Design Technology (ICICDT), June 2015, pp. 1–3.

[73] P. Batude, M. Vinet, A. Pouydebasque, C. Le Royer, B. Previtali, C. Tabone,
J. . Hartmann, L. Sanchez, L. Baud, V. Carron, A. Toffoli, F. Allain,
V. Mazzocchi, D. Lafond, S. Deleonibus, and O. Faynot, “3d monolithic
integration,” in 2011 IEEE International Symposium of Circuits and Systems
(ISCAS), May 2011, pp. 2233–2236.

[74] K. Takahashi, Y. Taguchi, M. Tomisaka, H. Yonemura, M. Hoshino, M. Ueno,
Y. Egawa, Y. Nemoto, Y. Yamaji, H. Terao, M. Umemoto, K. Kameyama,
A. Suzuki, Y. Okayama, T. Yonezawa, and K. Kondo, “Process integration of
3d chip stack with vertical interconnection,” in 2004 Proceedings. 54th
Electronic Components and Technology Conference (IEEE Cat.
No.04CH37546), vol. 1, June 2004, pp. 601–609 Vol.1.

[75] C. A. Bower, D. Malta, D. Temple, J. E. Robinson, P. R. Coffinan, M. R.
Skokan, and T. B. Welch, “High density vertical interconnects for 3-d
integration of silicon integrated circuits,” in 56th Electronic Components and
Technology Conference 2006, May 2006, pp. 5 pp.–.

[76] D. U. Lee, K. W. Kim, K. W. Kim, H. Kim, J. Y. Kim, Y. J. Park, J. H. Kim,
D. S. Kim, H. B. Park, J. W. Shin, J. H. Cho, K. H. Kwon, M. J. Kim, J. Lee,
K. W. Park, B. Chung, and S. Hong, “25.2 a 1.2v 8gb 8-channel 128gb/s

90

high-bandwidth memory (hbm) stacked dram with effective microbump i/o
test methods using 29nm process and tsv,” in 2014 IEEE International
Solid-State Circuits Conference Digest of Technical Papers (ISSCC), Feb
2014, pp. 432–433.

[77] JEDEC, “High bandwidth memory (hbm) dram,jesd235b,” 2019. [Online].
Available: https://www.jedec.org/standards-documents/docs/jesd235a

[78] Micron, “Hybrid memory cube — HMC gen2,” 2019. [Online]. Available:
https://www.micron.com/-/media/client/global/documents/products/
data-sheet/hmc/gen2/hmc_gen2.pdf

[79] H. Jun, J. Cho, K. Lee, H. Son, K. Kim, H. Jin, and K. Kim, “Hbm (high
bandwidth memory) dram technology and architecture,” in 2017 IEEE
International Memory Workshop (IMW), May 2017, pp. 1–4.

[80] A. Developer, “Amba 4 overview,” 2019. [Online]. Available:
https://developer.arm.com/architectures/system-architectures/amba/amba-4

[81] ——, “Amba overview,” 2019. [Online]. Available:
https://developer.arm.com/architectures/system-architectures/amba

[82] G. Martin and G. Smith, “High-level synthesis: Past, present, and future,”
IEEE Design Test of Computers, vol. 26, no. 4, pp. 18–25, July 2009.

[83] M. Graphics, “Catapult hls,” 2019. [Online]. Available:
https://www.mentor.com/hls-lp/catapult-high-level-synthesis

[84] Arvind and R. Nikhil, “Hands-on introduction to bluespec system verilog
(bsv),” in 2008 6th ACM/IEEE International Conference on Formal Methods
and Models for Co-Design, June 2008, pp. 205–206.

[85] J. Bachrach, H. Vo, B. Richards, Y. Lee, A. Waterman, R. Avižienis,
J. Wawrzynek, and K. Asanović, “Chisel: Constructing hardware in a scala
embedded language,” in DAC Design Automation Conference 2012, June
2012, pp. 1212–1221.

[86] C. Haubelt, T. Schlichter, J. Keinert, and M. Meredith, “Systemcodesigner:
Automatic design space exploration and rapid prototyping from behavioral
models,” in 2008 45th ACM/IEEE Design Automation Conference, June 2008,
pp. 580–585.

[87] B. Hutchings and B. Nelson, “Developing and debugging fpga applications in
hardware with jhdl,” in Conference Record of the Thirty-Third Asilomar
Conference on Signals, Systems, and Computers (Cat. No.CH37020), vol. 1,
Oct 1999, pp. 554–558 vol.1.

https://www.jedec.org/standards-documents/docs/jesd235a
https://www.micron.com/-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf
https://www.micron.com/-/media/client/global/documents/products/data-sheet/hmc/gen2/hmc_gen2.pdf
https://developer.arm.com/architectures/system-architectures/amba/amba-4
https://developer.arm.com/architectures/system-architectures/amba
https://www.mentor.com/hls-lp/catapult-high-level-synthesis

91

[88] A. Studnitzer and O. Mencer, “Going to the wire: The next generation
financial risk management platform,” in 2013 IEEE Hot Chips 25 Symposium
(HCS), Aug 2013, pp. 1–26.

[89] C. Pilato and F. Ferrandi, “Bambu: A modular framework for the high level
synthesis of memory-intensive applications,” in 2013 23rd International
Conference on Field Programmable Logic and Applications, Sep. 2013, pp. 1–4.

[90] A. Canis, J. Choi, M. Aldham, V. Zhang, A. Kammoona, J. H. Anderson,
S. Brown, and T. Czajkowski, “Legup: High-level synthesis for fpga-based
processor/accelerator systems,” in Proceedings of the 19th ACM/SIGDA
International Symposium on Field Programmable Gate Arrays. New York,
NY, USA: ACM, 2011, pp. 33–36. [Online]. Available:
http://doi.acm.org/10.1145/1950413.1950423

[91] Intel, “High-level synthesis compiler,” 2019. [Online]. Available:
https://www.intel.com/content/www/us/en/software/programmable/
quartus-prime/hls-compiler.html

[92] Xilinx, “Vivado design suite,” 2019. [Online]. Available:
http://www.xilinx.com/products/design-tools/vivado.html

[93] J. Cong, B. Liu, S. Neuendorffer, J. Noguera, K. Vissers, and Z. Zhang,
“High-level synthesis for fpgas: From prototyping to deployment,” IEEE
Transactions on Computer-Aided Design of Integrated Circuits and Systems,
vol. 30, no. 4, pp. 473–491, April 2011.

[94] R. Nane, V. Sima, C. Pilato, J. Choi, B. Fort, A. Canis, Y. T. Chen, H. Hsiao,
S. Brown, F. Ferrandi, J. Anderson, and K. Bertels, “A survey and evaluation
of fpga high-level synthesis tools,” IEEE Transactions on Computer-Aided
Design of Integrated Circuits and Systems, vol. 35, no. 10, pp. 1591–1604, Oct
2016.

[95] N. K. Pham, A. K. Singh, A. Kumar, and M. M. A. Khin, “Exploiting
loop-array dependencies to accelerate the design space exploration with high
level synthesis,” in Proceedings of the 2015 Design, Automation & Test in
Europe Conference & Exhibition, ser. DATE ’15. San Jose, CA, USA: EDA
Consortium, 2015, pp. 157–162. [Online]. Available:
http://dl.acm.org/citation.cfm?id=2755753.2755788

[96] G. Zhong, V. Venkataramani, Y. Liang, T. Mitra, and S. Niar, “Design space
exploration of multiple loops on FPGAs using high level synthesis,” in 2014
IEEE 32nd International Conference on Computer Design (ICCD), Oct. 2014,
pp. 456–463.

[97] J. Cong and Y. Zou, “A comparative study on the architecture templates for
dynamic nested loops,” in 2010 18th IEEE Annual International Symposium
on Field-Programmable Custom Computing Machines, May 2010, pp. 251–254.

http://doi.acm.org/10.1145/1950413.1950423
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
https://www.intel.com/content/www/us/en/software/programmable/quartus-prime/hls-compiler.html
http://www.xilinx.com/products/design-tools/vivado.html
http://dl.acm.org/citation.cfm?id=2755753.2755788

92

[98] J. Zhao, L. Feng, S. Sinha, W. Zhang, Y. Liang, and B. He, “COMBA: A
comprehensive model-based analysis framework for high level synthesis of real
applications,” in 2017 IEEE/ACM International Conference on
Computer-Aided Design (ICCAD), Nov. 2017, pp. 430–437.

[99] M. Gokhale, S. Lloyd, and C. Macaraeg, “Hybrid memory cube performance
characterization on data-centric workloads,” in Proceedings of the 5th
Workshop on Irregular Applications: Architectures and Algorithms, ser. IA3
’15. New York, NY, USA: ACM, 2015, pp. 7:1–7:8. [Online]. Available:
http://doi.acm.org/10.1145/2833179.2833184

[100] R. Hadidi, B. Asgari, B. A. Mudassar, S. Mukhopadhyay, S. Yalamanchili, and
H. Kim, “Demystifying the characteristics of 3d-stacked memories: A case
study for hybrid memory cube,” CoRR, vol. abs/1706.02725, 2017. [Online].
Available: http://arxiv.org/abs/1706.02725

[101] J. Schmidt, H. Fröning, and U. Brüning, “Exploring time and energy for
complex accesses to a hybrid memory cube,” in Proceedings of the Second
International Symposium on Memory Systems, ser. MEMSYS ’16. New York,
NY, USA: ACM, 2016, pp. 142–150. [Online]. Available:
http://doi.acm.org/10.1145/2989081.2989099

[102] E. Azarkhish, D. Rossi, I. Loi, and L. Benini, “Neurostream: Scalable and
energy efficient deep learning with smart memory cubes,” CoRR, vol.
abs/1701.06420, 2017. [Online]. Available: http://arxiv.org/abs/1701.06420

[103] M. Gokhale, B. Holmes, and K. Iobst, “Processing in memory: the terasys
massively parallel pim array,” Computer, vol. 28, no. 4, pp. 23–31, April 1995.

[104] J. D. Leidel and Y. Chen, “Hmc-sim-2.0: A simulation platform for exploring
custom memory cube operations,” in 2016 IEEE International Parallel and
Distributed Processing Symposium Workshops (IPDPSW), May 2016, pp.
621–630.

[105] D. Zhang, N. Jayasena, A. Lyashevsky, J. L. Greathouse, L. Xu, and
M. Ignatowski, “Top-pim: Throughput-oriented programmable processing in
memory,” in Proceedings of the 23rd International Symposium on
High-performance Parallel and Distributed Computing, ser. HPDC ’14. New
York, NY, USA: ACM, 2014, pp. 85–98. [Online]. Available:
http://doi.acm.org/10.1145/2600212.2600213

[106] K. Hsieh, E. Ebrahim, G. Kim, N. Chatterjee, M. O’Connor, N. Vijaykumar,
O. Mutlu, and S. W. Keckler, “Transparent offloading and mapping (tom):
Enabling programmer-transparent near-data processing in gpu systems,” in
2016 ACM/IEEE 43rd Annual International Symposium on Computer
Architecture (ISCA), Jun. 2016, pp. 204–216.

http://doi.acm.org/10.1145/2833179.2833184
http://arxiv.org/abs/1706.02725
http://doi.acm.org/10.1145/2989081.2989099
http://arxiv.org/abs/1701.06420
http://doi.acm.org/10.1145/2600212.2600213

93

[107] L. Nai and H. Kim, “Instruction offloading with hmc 2.0 standard: A case
study for graph traversals,” in Proceedings of the 2015 International
Symposium on Memory Systems, ser. MEMSYS ’15. New York, NY, USA:
ACM, 2015, pp. 258–261. [Online]. Available:
http://doi.acm.org/10.1145/2818950.2818982

[108] X. Wang, J. D. Leidel, and Y. Chen, “Concurrent dynamic memory coalescing
on goblincore-64 architecture,” in Proceedings of the Second International
Symposium on Memory Systems, ser. MEMSYS ’16. New York, NY, USA:
ACM, 2016, pp. 177–187. [Online]. Available:
http://doi.acm.org/10.1145/2989081.2989128

[109] ——, “Memory coalescing for hybrid memory cube,” in Proceedings of the 47th
International Conference on Parallel Processing, ser. ICPP 2018. New York,
NY, USA: ACM, 2018, pp. 62:1–62:10. [Online]. Available:
http://doi.acm.org/10.1145/3225058.3225062

[110] J. Zhang, Y. Liu, G. Jain, Y. Zha, J. Ta, and J. Li, “Meg: A riscv-based
system simulation infrastructure for exploring memory optimization using
fpgas and hybrid memory cube,” in 2019 IEEE 27th Annual International
Symposium on Field-Programmable Custom Computing Machines (FCCM),
April 2019, pp. 145–153.

[111] J. Zhang, S. Khoram, and J. Li, “Boosting the performance of fpga-based
graph processor using hybrid memory cube: A case for breadth first search,”
in Proceedings of the 2017 ACM/SIGDA International Symposium on
Field-Programmable Gate Arrays, ser. FPGA ’17. New York, NY, USA:
ACM, 2017, pp. 207–216. [Online]. Available:
http://doi.acm.org/10.1145/3020078.3021737

[112] J. Zhang and J. Li, “Degree-aware hybrid graph traversal on fpga-hmc
platform,” in Proceedings of the 2018 ACM/SIGDA International Symposium
on Field-Programmable Gate Arrays, ser. FPGA ’18. New York, NY, USA:
ACM, 2018, pp. 229–238. [Online]. Available:
http://doi.acm.org/10.1145/3174243.3174245

[113] R. Hadidi, L. Nai, H. Kim, and H. Kim, “Cairo: A compiler-assisted technique
for enabling instruction-level offloading of processing-in-memory,” ACM Trans.
Archit. Code Optim., vol. 14, no. 4, pp. 48:1–48:25, Dec. 2017. [Online].
Available: http://doi.acm.org/10.1145/3155287

[114] Intel, “Hardware accelerator research program,” 2019. [Online]. Available:
https://software.intel.com/en-us/hardware-accelerator-research-program

[115] Amazon, “Amazon ec2 f1 instances,” 2019. [Online]. Available:
https://aws.amazon.com/ec2/instance-types/f1/

http://doi.acm.org/10.1145/2818950.2818982
http://doi.acm.org/10.1145/2989081.2989128
http://doi.acm.org/10.1145/3225058.3225062
http://doi.acm.org/10.1145/3020078.3021737
http://doi.acm.org/10.1145/3174243.3174245
http://doi.acm.org/10.1145/3155287
https://software.intel.com/en-us/hardware-accelerator-research-program
https://aws.amazon.com/ec2/instance-types/f1/

94

[116] R. Hochberg, “Matrix multiplication with cuda | a basic introduction to the
cuda programming model,” August 2012.

[117] F. Baetke, B. Metzger, and P. Smith, “The convex application compiler - a
major step into the direction of automatic parallelization,” in Supercomputer
’92, H.-W. Meuer, Ed. Berlin, Heidelberg: Springer Berlin Heidelberg, 1992,
pp. 158–172.

[118] Xilinx, “Integrated logic analyzer (ILA),” 2019. [Online]. Available:
https://www.xilinx.com/products/intellectual-property/ila.html

[119] Micron, “AC510 specification,” 2019. [Online]. Available:
https://www.micron.com/products/advanced-solutions/
advanced-computing-solutions/ac-series-hpc-modules/ac-510

[120] Xilinx, “Xilinx Zynq-7000 SoC ZC706 evaluation kit,” 2019. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html

[121] ——, “Xilinx Zynq UltraScale+ MPSoC ZCU102 evaluation kit,” 2019.
[Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html

[122] ——, “SDSoC development environment,” 2019. [Online]. Available: https://
www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1027-sdsoc-user-guide.pdf

[123] ——, “Xilinx kintex-7 FPGA KC705 evaluation kit,” 2019. [Online]. Available:
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html

[124] ——, “Kintex ultrascale,” 2019. [Online]. Available:
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html

[125] Micron, “Ex-700,” 2019. [Online]. Available:
https://www.micron.com/products/advanced-solutions/
advanced-computing-solutions/hpc-backplanes/ex-700

[126] ——, “Sc6-mini,” 2019. [Online]. Available:
https://www.micron.com/products/advanced-solutions/
advanced-computing-solutions/hpc-desktop-systems/sc6-mini

[127] Xilinx, “Microblaze debug module (mdm) v3.2,” 2019. [Online]. Available:
https://www.xilinx.com/support/documentation/ip_documentation/mdm/
v3_2/pg115-mdm.pdf

[128] Micron, “Picoframework,” 2019. [Online]. Available: https://www.micron.com/
products/advanced-solutions/advanced-computing-solutions/picoframework

https://www.xilinx.com/products/intellectual-property/ila.html
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/ac-series-hpc-modules/ac-510
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/ac-series-hpc-modules/ac-510
https://www.xilinx.com/products/boards-and-kits/ek-z7-zc706-g.html
https://www.xilinx.com/products/boards-and-kits/ek-u1-zcu102-g.html
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/cgi-bin/docs/rdoc?v=latest;d=ug1027-sdsoc-user-guide.pdf
https://www.xilinx.com/products/boards-and-kits/ek-k7-kc705-g.html
https://www.xilinx.com/products/silicon-devices/fpga/kintex-ultrascale.html
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/hpc-backplanes/ex-700
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/hpc-backplanes/ex-700
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/hpc-desktop-systems/sc6-mini
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/hpc-desktop-systems/sc6-mini
https://www.xilinx.com/support/documentation/ip_documentation/mdm/v3_2/pg115-mdm.pdf
https://www.xilinx.com/support/documentation/ip_documentation/mdm/v3_2/pg115-mdm.pdf
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/picoframework
https://www.micron.com/products/advanced-solutions/advanced-computing-solutions/picoframework

	LIST OF TABLES
	LIST OF FIGURES
	Introduction
	Accelerator Technology
	Memory Technology
	Thesis Statement

	Background
	Nomenclature
	Memory
	Non-Volatile Memory
	Volatile Memory
	Next-generation Memory

	Interconnect
	High Level Synthesis (HLS)
	HLS tools
	HLS Optimization

	Related Work

	Motivation and Preliminary Results
	Programmers Productivity
	HLS memory pattern
	HMC Bandwidth

	Design
	SoC platforms
	Infrastructure
	Design Flow

	FPGA platforms
	Kintex FPGA
	AC510 HMC

	HLS Design
	HLS Applications
	HLS Optimizations

	Volcan Methodology

	Evaluation and Results
	Experiment Setup
	Baseline Analysis
	SoC platform
	FPGA platforms

	Volcan Evaluation
	DDR Memory
	HMC Memory

	Final Evaluation

	Conclusion
	REFERENCES

