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ABSTRACT 
 
 

FARID JAVIDPOUR.  Quantification of Profile Measurement Data.  (Under the 
direction of DR. EDWARD MORSE) 

 
    
Parts with complicated freeform shapes have been attracting more attention in industrial 

applications in recent decades. In most systems, the functional performance of these parts is directly 

related to the conformity of their profile with the designed position, form, shape and size of the part 

surface. Traditional profile measurement methods were primarily developed for parts with simple 

prismatic shapes; the increased use of freeform profiles has highlighted the need for new rapid 

measurement methods to validate these profiles with an acceptable level of uncertainty. 

Metrological uncertainty is a task-specific parameter that quantifies the variability of a 

measurement, and is influenced by numerous factors. To analyze the effect of these factors, it is 

necessary to have both a well-quantified metric to describe the profile measurement error, as well 

as a quantification of errors in the measurement data. 

This research has two main components. In the first stage, the common Least Squares (LS) 

fitting method is extended to two different fitting algorithms identified as Weighted Least Squares 

(WLS) and Highly Weighted Least Squares (HWLS). These algorithms can accommodate variable 

density in the point distribution, are developed to analyze the effect of non-uniform point cloud 

density on the fitting process, which is more likely with newer, optical measuring systems. In these 

algorithms, the weight of individual point deviations is defined based on distances from 

surrounding points. These algorithms are implemented in Matlab software, and are applied to 

simulated theoretical data sets as well as experimental data sets obtained by tactile and optical 

measurement methods.  
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In the second stage of this work, a convolution averaging filter is proposed as a method for 

quantification of profile measurement data. By applying this filter to the point deviation data, the 

Mean Local Deviation (MLD) of every profile segment is calculated. This quantified local error 

can be used as a criterion for comparing different profile scans performed with one or multiple 

measurement methods. The point clouds—fitted by WLS and HWLS algorithms—are filtered and 

then their MLDs are compared with MLDs of data fitted by LS method. Primary results of this 

stage show that the proposed filtering method can effectively be used to compare measurement data 

with very different density, and can also remove the negative effect of noise in data. With effective 

filtering, the MLD values of a part are almost constant (they are independent of the measurement 

method). 
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CHAPTER 1: INTRODUCTION 

1.1. Importance of part profile measurement 
Manufacturing of mechanical parts with various shapes is a complicated procedure that is 

usually composed of different processes, such as casting, molding, forming, machining, grinding, 

polishing, and heat treatment. There are numerous parameters in each process that affect the final 

workpiece shape, and it is not possible to control them all during manufacture, so the manufactured 

workpiece is never identical to the desired designed shape. Generally speaking, common universal 

machines are used for manufacturing of parts with simple prismatic shapes such as plane or 

cylinder. In this condition, the control of part shape and size is easier than when a complicated 

freeform shape is desired, and traditional methods may not be applicable to checking new profile 

shapes.  The usage of parts with complicated shapes has grown noticeably in industrial applications, 

and it highlights the need for new methods of shape and size evaluation. To ensure a satisfactory 

product functionality, usually a range of shape and size variation is defined in the form of part 

profile tolerance, which describes a zone around the considered profile segments. Therefore, the 

first application of part profile measurement is to check the part compatibility with its desired shape 

and size.  

The second application of profile measurement is in reverse engineering when no CAD 

data are available, and engineers would like to create a digital model from the physical product. 

This approach is also quite common in maintenance when a part of an outdated system should be 

replaced with a new one. In addition, reverse engineering is used when conceptual design models 

need to be directly digitized for rapid prototyping, design evaluation and optimization [1],[2]. In 

all of these cases, the initial model is created physically, and newer design versions are generated 

by editing the digital CAD model associated with the primary design. 
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1.2.Profile measurement for quality control 
As stated before, the geometry and dimensions of the manufactured workpiece is never 

completely identical to the nominal desired size and geometry. This unavoidable variability must 

be acknowledged at the design level. To do this, design engineers use geometric tolerances to define 

a range of shape variation that is permitted in the product specifications. The goal of tolerancing is 

to permit only variation that does not impair the function of the part, while not over-constraining 

the geometry so that manufacture is prohibitively expensive. One of the tasks of the quality control 

(QC) department is to check the product variation against the design specification to ensure 

manufactured workpieces have the desired functionality. 

The profile tolerance is used in both ISO and ASME standards to specify a tolerance zone, 

within which the actual part surface must fit. Depending on the design geometry, this controls a 

combination of size, orientation and location of features relative to the design (nominal) profile [5], 

[6]. This zone can be in the form of a volume along the part’s outer surface for three-dimensional 

profiles or an area around two-dimensional part profiles (Figure 1). 

 
Figure 1. Uniform profile tolerance zone for 2D (left) and 3D (right) profiles [15]  

Depending on the designer’s intention, the profile tolerance zone can be uniform with 

constant width (Figure 1) or non-uniform with variable width (Figure 2). It may also be specified 

at all around the profile or only at a segment of surface or profile perimeter. 
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In the quality assessment process, to provide a comparison between the manufactured 

profile and the nominal profile, these steps are executed: 

1) Collecting points from the surface 

2) Preparation and filtering of part profile data (2D or 3D) 

3) Part profile fitting (finding the optimum location and orientation of measured points) 

4) Calculation of point deviations and comparison with the profile tolerance width 

Degrees of freedom have a basic role in the third step, because datums and their associated 

constraints should be considered before fitting, and they have a significant influence on the result 

of this process. If any measured surface point does not lie within the tolerance zone, then the part 

is non-conforming with its specifications, and it should be corrected or recycled. Either of these 

scenarios would cause a major loss to the manufacturing department because significant effort and 

energy has been used to manufacture the part. Usually in this situation, manufacturing engineers 

try to find the main sources of form deviations and correct the existing manufacturing processes. 

Therefore, it is essential to not only identify the location of non-conforming areas on the workpiece, 

but also to know the sign and amount of deviation at all profile segments. Utilization of more 

precise manufacturing methods can be another solution for this problem, but this incurs additional 

cost.  
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Figure 2. Non-uniform tolerance zone at a segment of profile [5] 

1.3. Part model generation for reverse engineering 
Figure 3 shows the cycle of product design and development. It usually starts from an initial 

concept that is the base of design procedure. In the next levels, the concept is brought to reality by 

prototyping.  If the result of evaluations is satisfactory, it may pass other procedures and become a 

commercial product. The main purpose of reverse engineering is to reverse this chart and reach the 

design data from the final product. One of the fundamental types of design information is the 

geometric CAD data, and profile measurement has an important role in providing this type of 

information. Measurement instruments are able to measure the point coordinates on the workpiece 

surface, and their output is typically in the form of a cloud of points1. There are several different 

techniques for mixing point clouds that originate from multiple sensors or are taken from the same 

sensor in multiple orientations. Additional operations, such as filtering and polygonization, may be 

applied to the combined point cloud to construct the CAD model of the physical object. The details 

of these procedures will be described in the next chapter. Two examples of point clouds and 

associated reconstructed surfaces are shown in Figure 4. It is realized from these two examples that 

points may have an organized structure with a constant density or may have a non-uniform 

distribution over the point cloud.  

                                                      
1 A set of points in 2D or 3D space 
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Figure 3. Cycle of product design and development [14] 

 

a) 

  

b) 

  

Figure 4. Examples of point cloud and reconstructed surface; a) human’s face; b) 
inside of a shoe [3], [4] 
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1.4.Available profile measurement methods 
There are abundant different methods for measuring points on the workpiece’s surface. In 

each of these methods, the measurement sensor may either apply some energy to the workpiece or 

may touch it physically. From the first condition, the measurement method can be active or passive 

[7], while the second condition categorizes the methods into tactile and non-contact groups [8]. In 

other words, in the passive methods, the collecting tool retrieves information about the environment 

or other surrounding objects without exerting any energy to them like atomic microscopy or 

photogrammetry. In contrast, active sensors apply energy to the workpiece to collect its surface 

data. Laser scanners, ultrasonic sensors and tactile probes are examples of this group of sensors. 

Figure 5 shows a detailed categorization of measurement sensors by Christoph and 

Neumann in [8]. Each of these methods has its own advantages and flaws; that is why there is no 

universal sensor and many parameters such as environment, measurement range, geometry, surface 

characteristics, workpiece material properties and more can affect the accuracy and precision of 

measurement. It should be considered here that measurement is not an ideal procedure and there is 

a certain level of uncertainty in any kind of measurement. Figure 6 shows the relationships between 

parameters influencing the results of measurements on a coordinate measuring system; this research 

focuses on the specific task of profile measurement and evaluation. 
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Figure 5. Different types of part profile measurement sensors [8] 

 
Figure 6. Error components leading to profile measurement uncertainty [8] 

1.5. Importance of knowledge about measurement uncertainty 
For any part profile measurement there will be a range within which the measured point 

coordinates will vary due to the measurement method and the conditions under which the 

measurement is performed. For example, a part profile might be determined to be non-conforming 

when it is measured with the optical linear triangulation sensor, but the same part might be accepted 
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when measured with the tactile probe. In this case, it is possible that a conforming part may be 

rejected due to high task-specific uncertainty of profile measurement with the optical method. The 

term task-specific here is used to clarify that the optical method may have low uncertainty for some 

applications, but the particular measuring task of interest is the determination of conformance (or 

non-conformance) to the part’s profile specification. As always, the measurement uncertainty plays 

a basic role in the part evaluation process and it must be considered when evaluating that process. 

Recent research articles that focus on performance characterization or task-specific 

uncertainty assessment of different measurement methods [9] - [13] describe a fundamental trade-

off between tactile and optical methods. Optical scanning methods provide a vast amount of surface 

data in a very short period of time. However, they are extremely vulnerable to environment 

conditions and part surface characteristics such as slope, roughness and shininess. That is why 

tactile probing is widely used for precise applications, although it has much slower scanning speeds. 

Recent advancements in optical scanning has made metrologists hopeful about the future of this 

group of contactless methods. Seemingly, if the environment is controlled well enough and the 

measured data are analyzed in a correct way, the majority of outliers and noisy data can be removed 

and the measurement uncertainty could be improved noticeably. 

1.5.1. Necessity of profile error quantification for uncertainty assessment 
The first step toward the profile measurement uncertainty assessment is the estimation of 

profile measurement error, and for that purpose, the profile measurement data need to be quantified. 

In other words, quantification of profile measurement data is a prerequisite for the realization of 

profile measurement uncertainty. The quantification of profile measured data is not only useful for 

instrument users in improving the profile measurement precision, but also can help the instrument 

producers design and make more reliable instruments with better performance for part profile 

measurement. Another application of profile measurement data quantification could be in 

comparing the performance of two or more measuring instruments. So far, there has not been any 
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suitable criterion for profile measurement evaluation which can be applicable to scan data of parts 

with complicated shapes such as sculpted or freeform surfaces. Although– with the increasing use 

of freeform surfaces in design– the importance of a clear quantification of profile measurement 

data is becoming better understood in industry. There is still no consensus regarding how a 

measured profile data set can be quantified and what the main restrictions are of available 

quantification methods. 

1.6. Research objectives 
The main objective of this research is to develop a new method for the quantification of 

part profile measured data, and to use this method to generate a criterion for comparison between 

various scans with one instrument or a group of instruments equipped with tactile and non-contact 

optical sensors. A well-designed criterion will make it possible to understand the main differences 

between tactile and optical data, and to have a view about the variation in fitting parameters as well 

as deviations at separate profile segments when various fitting methods are applied to profile 

measured data. 

1.7. Scope of work 
To reach the objectives mentioned in the previous section, it is planned to simulate points 

with uniform and non-uniform distribution around different nominal profiles in the 2D and 3D 

space. The deviation of these points can be constant or randomly selected from a specific range. 

These simulated points will be fitted to considered profiles by means of various fitting algorithms, 

and optimized fitting variables derived from utilized algorithms will be compared together as well 

as the deviation of fitted points. In the next stage, various 2D and 3D part profiles will be measured 

with various instruments, and the same type of analysis will be performed on experimentally 

measured data. In this way, it is possible to compare the behavior of various fitting algorithms, but 

point deviations will not be comparable. To compare the result of various profile measurements, a 

convolution filter will be applied to profile data, and the Mean Local Deviation (MLD) of profile 
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segments will be used as a criterion for the comparison between separate measured data sets. 

Additionally, the selection of samples with an organized structure and the application of various 

fitting algorithms to them, will highlight the influence of the point density variation on the result 

of the fitting process. 

1.8. Dissertation outline 
After a short introduction about profile measurement methods and the necessity of the data 

quantification in this chapter, the second chapter will include the background and the literature 

review as well as the state of the art of this research. Various profile data fitting methods will be 

introduced, and drawbacks and strong points of each method will be discussed. Furthermore, 

previous research works will be classified, and the role of the profile data quantification will be 

described. Chapter 3 will cover the explanation of three fitting algorithms (LS, WLS, and HWLS) 

that will be used for data fitting in the 2D and 3D space. In addition, measured profiles and 

measuring instruments will be described in that chapter. In the following, it will be described that 

how simulated data sets are generated and how measured tactile and optical data are analyzed. The 

quantification process of profile data, which is the main part of this research, will be explained in 

the fourth chapter. Generally speaking, it will be presented in that chapter that how the measured 

profile can be divided into segments. For 2D profiles, segments will have equal lengths, and with 

a 3D profile, segments will have similar areas on the xy plane. 

Results of theoretical simulations will be presented in chapter 5, as well as results of 

experimental profile measurements. Two groups of results will be compared together, and probable 

reasons for differences in shown data will be discussed. Some applications of the quantification 

idea will be presented, and it will be discussed that how the quantification process influences 

measurement data. Following that, a statistical analysis of individual point deviations will be 

performed on fitted points measured with different instruments. Conclusions and suggestions for 

future research works will be presented in the sixth chapter.  



11 
 

CHAPTER 2: LITERATURE REVIEW AND STATE OF THE ART 

Profile measurement of manufactured parts has been a tedious challenge for humankind 

for centuries. This action could be executed for a wide range of purposes such as checking the 

workpiece shape quality, realization of the variation in products, as well as manufacturing processes 

or copying the shape of an accessible physical item. Primary profile measurement methods were 

mostly manual and suitable for simple shapes such as flat planes or cylindrical holes. Using Go/No-

go gauges is a good example of size evaluation for simple shapes that is still favorable in many 

industrial applications. However, traditional measurement methods are not applicable for complex 

profiles. Simple prismatic or axisymmetric shapes are described by simple mathematical equations, 

and their CAD model is made by sweeping a 2D profile along a line or curve, or revolving around 

an axis. In contrast, freeform surfaces are defined by a set of control points that are fitted to some 

equations, so a set of mathematical equations are used for the description of a freeform shape. 

By advancement of more modern mechanical systems and manufacturing methods, parts 

with complicated shapes could attract more attention and were used more in mechanical assemblies. 

Nowadays it can be seen that sculptured and free-form surfaces are used more often than before in 

countless systems. Optical lenses, turbine blades, pump propellers, air ducts, biomedical 

instruments, and artificial organs are proper examples for various implementation of surfaces with 

complicated shapes. In the majority of these cases, the crucial workpiece feature has an interface 

with a fluid or light, and the system efficiency has a high dependence to the accuracy of part profile. 

Therefore, shape complexity and need for more accuracy were the main motivations to move 

toward newer profile measurement methods such as measurement with Cartesian CMMs with 

various structures. The traditional CMMs had a tactile stylus that would act as an electronic switch 

for recording the coordinates of probe center point. However, the tactile measurement was too slow 

and it was not suitable for large workpieces. New profile measurement methods such as 

triangulation laser scanning, structured light projection and X-ray Computed Tomography (CT) are 
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implemented to improve the drawbacks of tactile measurement, but data of these methods are not 

as reliable as tactile data. Numerous efforts have been done to decrease the uncertainty of these 

measurement methods, but tactile measurement has still the lowest possible uncertainty for most 

applications. 

2.1. Profile measurement for form error evaluation 
As stated before, in this occasion the design information including the nominal profile is 

available, and the main purpose of profile measurement is to check the conformity of the real part 

with the nominal profile. In the standards such as ASME Y14.5, the tolerance zone is defined as 

the area between two limiting curves or the volume between two threshold surfaces. The form 

deviation of a measured profile is defined in the direction that is perpendicular to the nominal 

profile, and the distance between limiting parameters which are typically parallel must be 

minimum. The big issue is that there is no clear description in standards for fitting the measured 

data to the nominal profile and finding the minimum distance between border features. However, 

if the orthogonal deviations are defined mathematically, minimization of maximum distance can 

be found through the concept of coordinate transformation and parallel bodies [16]. Therefore, the 

choice of fitting method has an extensive influence on the resulted form deviation of measured 

points. 

2.1.1. Different fitting methods 
Among several fitting methods that have been developed so far, the Least Squares (LS) 

and Minimum Zone (MZ) or Chebyshev fitting methods are more common than others. The main 

reasons for this vast usage of these methods are easy mathematical definition and existence of 

numerous methods for their optimization. It should be mentioned here that the Chebyshev method 

is used because it can replicate the requirement of a zone around the profile. The majority of other 

methods are different extensions of these two methods. They have been developed due to their 

better performances at special conditions. For example, one-sided fitting is derived from 
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Chebyshev fitting. This method has found significant application for circular shapes in the form of 

Maximum Inscribed Circle (MIC) or Minimum Circumscribed Circle (MCC). Another famous 

application of this method is in fitting planar surfaces for datum definition. The results of this fitting 

method has satisfactory compatibility with experimental tests. 

Research has mostly been conducted in three main categories of computational tasks of 

coordinate metrology: i. Point Measurement Planning (PMP) ii. Substitute Geometry Estimation 

(SGE) iii. Deviation Zone Evaluation (DZE) [17]. 

In PMP, the focus is on the number of measured points and their locations. The number of 

points is limited and the workpiece geometry must be estimated via these discrete points. Therefore, 

the objective of PMP is to achieve a more precise representation of measured geometries by using 

fewer points [17]. Edgeworth and Wilhelm [18] developed a sampling process for interpolating 

curves between sample points. This sampling strategy is relevant to min-max fitting algorithms and 

uses surface normal data. It is realized that as the sample size increases, the error surface generated 

by using cubic splines converges to match the error of the actual surface. Since their algorithm 

generates sample points concentrated at areas of large error, the total number of required points 

will be less than a dense uniform pattern. Another interesting research in PMP belongs to 

Summerhayes et al. [19]. They presented a new pattern for optimum, reasonably sized probing for 

measurement of internal cylindrical surfaces (holes) under time and economic constraints. In the 

applied extended zone method, a dense pattern of several holes is measured and then different 

subsets with various point numbers are selected and fitted to the nominal feature by using a linear 

combination of Fourier series, Chebyshev polynomials and Principal Component Analysis (PCA). 

The GD&T1 parameters derived from the sparse sets are compared to the values determined by the 

dense sample. Regarding the possible form errors, an optimized sampling pattern was generated. 

The composite error of this type of sample merges rapidly to the composite error of dense data set 
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even at low number of points. Their results show significant improvements in the uncertainty of 

derived dimension with small or no increase in measurement time [19]. 

Generally speaking, the desired sampling pattern is uniform, and if fitting multiple surface 

patches is desired, higher point densities are needed at surface areas with more shape complexity. 

In tactile measurement, it is possible to select the location of target points, but this option is not 

available in optical scanning methods. However, the point density can be set via exposure time or 

light intensity, so the point density varies over a point cloud. Another approach is to select specific 

points from the measured point cloud to obtain a uniform point density, but a portion of data would 

be neglected in this technique.  

The main objective of the SGE task is to find the best substitute geometry based on the 

fitting criteria from the inspection process. The fitting criteria is typically based on the least squares 

or maximum of Euclidian distances of measured points from the substitute geometry. A numerical 

optimization method is required to optimize one of these parameters [17]. Some of the optimization 

methods find the global optimum condition, but the majority of them are useful for finding the local 

minimum point. In the employment of local optimization algorithms, it should be considered that 

the measured points must be close enough to the substitute geometry before running the 

optimization algorithm, otherwise the output of optimization process may differ from the desired 

fitting condition. 

In 1993, Drieschner [16] used the concept of parallel body to present a new algorithm for 

efficient approximation of finite point sets by geometric elements. Although this algorithm was 

closely related to Chebyshev approximation but its results were slightly different from the results 

of Chebyshev fitting. In 1998, Shakarji [20] implemented a set of least squares fitting algorithms 

associated to various geometries and combined them together as reference software for NIST2 
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algorithm testing system. Most of those fitting routines used Levenberg-Marquardt (LM) 

optimization method, because it is an unconstrained method and the initial guess does not influence 

the calculated global minimum [20]. In a similar work by Shakarji [22], reference fitting algorithms 

are described at NIST. These algorithms can be used for Chebyshev fitting of lines, circles, spheres, 

cylinders and cones. At first, a coarse fitting condition is found through least squares method and 

then it is refined to reach the desired Chebyshev, maximum inscribed or minimum circumscribed 

fit. In this approach, the simulated annealing method is used to find the local minimum of the 

defined function. Although the proposed algorithms are not very fast, their results are reliable. The 

repeatability of the proposed algorithms was tested, and their results were compared with known 

solutions and industrial results as well. In some cases, it was found out that the result of fittings 

performed by industrial software is significantly different from results of this reference set of 

algorithms [22]. 

In 2002, Dall’Osso [21] applied a variant version of least squares fitting method to two-

dimensional data. In this method the functions and known points are not directly related and a 

residual function is added to the sample data to improve the predictive power of the numerical 

model. In 2006, Jiang et al. [23] presented a new algorithm based on profile confidence level for 

evaluating roundness from discrete coordinate data. A good review for roundness evaluation is 

available in this paper. Testing on data with uniform point distribution showed results are 

significantly consistent and they are close to the minimum-zone solution of high sample size data 

[23]. In 2013, Zhang et al. implemented an improved version of Chebyshev fitting method on 

complex surfaces. By applying the Exponential Penalty Function (EPF) to the original optimization 

problem, it is converted into an unconstrained differentiable minimization problem. A complete 

review for different optimization methods is provided in this reference. Comparison of Peak to 

Valley (PV) values obtained by the new algorithm with PVs from the least squares fitting shows a 
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notable improvement in them [24]. However, it seems this criterion is not sufficient for the 

performance evaluation of fitting algorithms. 

In a research in 2013 [25], Smítka and Štroner could develop a new noise reduction method 

based on surface continuity. A Weighted Least Squares (WLS) method is used to fit Chebyshev 

polynomials to the measured data and to reduce the amount of noise as well. The weight of point 

deviations was calculated based on the received light intensity or surface slope. Application of this 

method on sample parts with various shapes (flat, sphere, statue and sharp corner) verified that the 

weight and the degree of polynomial have slight effect on the noise reduction process. 

In Vemulapalli’s thesis in 2014 [25], the standard definitions for each tolerance are 

interpreted to understand the most suitable feature fitting method. It is also found that some of 

manual inspection practices are not compatible with standard definitions. Following that, normative 

procedures are proposed for metrological parameters of line, plane, circle, cylinder and width. 

Based on interpreted data, a library of different feature fitting algorithms is developed and applied 

to a software in C++ [25]. A valuable review of various fitting methods with statement of strong 

and weak points of every method is available at this reference. 

In a novel research in 2015, Mohan et al. [27] presented a reference library of fitting 

algorithms for linear, circular and planar features. To reduce the number of analyzed points, two 

and three dimensional convex hulls are considered that can improve the convergence speed of 

applied geometric search algorithms. The presented algorithms were tested for accuracy and 

robustness by virtual method. In this method, a virtual geometry is simulated and imperfect random 

points are considered around it. One of the interesting results of this work is that different fitting 

methods need to be used in a certain order to verify the desired tolerance classes and datum 

simulation [27]. In reference [28] Zhang et al. introduced the Moving Least Squares (MLS) 

approximation method. This method combines the concept of moving window and compact support 

weighting function. Due to its local approximation, MLS not only acquire higher precision with 



17 
 

low order functions but also has a good stability. A thorough review for different Least Squares 

(LS) fitting methods is available at this reference. Application of the new method to the measured 

electric field intensity and the magnetic flux density data approved the fitting stability of MLS for 

complex surfaces [28]. In 2016, a general method (modified 2D LS) for automatic surface fitting 

was presented by Al-Shebeeb et al. [29]. Three main approaches (linear, quadratic and cubic) are 

applied to this method and their results are compared statistically. It is realized that the number of 

input samples does not improve the accuracy of models. However, it is effective on the speed of 

fitting algorithms [29].  In 2016, Moroni et al. [30] used the Chaos Optimization (CO) method to 

improve the initial solution which is required to be fed to the iterative Levenberg-Marquardt (LM) 

algorithm. The main application of this method is in fitting of non-linear geometries such as circle, 

sphere and cylinder, because the optimization of linear geometries can be solved by analytical 

methods. Different one-dimensional map functions were implemented to find the initial solution. 

Results show that in general, the logistic map is the most effective one in terms of radius with some 

drawbacks in higher computational time in certain cases [30]. 

Recently, in 2018 [31], Hutzschenreuter et al. used Sequential Quadratic Program (SQP) 

for finding the solution of minimax fitting of cylindrical holes. Sample part was a flange with 

multiple holes, and the maximum deviation from the reference solution (TraCIM Chebyshev 

element test data) was about 1 × 10−14 𝑚𝑚 [31]. In reference [32] a modified version of Chebyshev 

fitting method named as Hybrid Trust Region (HTR) is compared with Exponential Penalty 

Function (EPF) method. Application on reference data showed HTR returns Peak to Valley (PV) 

values ten times more accurate than EPF. Also, tests on experimental data from optical aspherical 

lens showed that PV calculated by HTR is 9 nm less than PV of EPF [32]. 

The third category of computational metrology tasks (Deviation Zone Evaluation) is about 

modeling the deviation zone of the entire manufactured surface by using the available limited data 
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associated to sample points [17]. Research in this category is mainly about various methods of 

mesh generation and surface reconstruction. This topic will be described thoroughly in section 2.2. 

2.1.2. Effect of fitting method on point deviations 
From the above literature review it can be understood that the fitting method has a 

noticeable effect on point deviations. Chebyshev fitting has better compliance with standard tests, 

and it always returns smaller amounts of maximum deviations. The main disadvantages of this 

method are time consuming optimization and vulnerability to noise in data. Recent advancements 

in optimization methods could help with the process time of algorithms and also the accuracy of 

the optimum situation. However, due to susceptibility to noise, this fitting method is not suitable 

for the noisy data resulted from optical scan methods. On the other hand, the optimization of Least 

Squares (LS) fitting method has less complexity, and it is executed faster. This characteristic of LS 

method makes it useful for profiles with freeform shape. It is important to consider that the 

maximum deviation is usually over-estimated by LS, but the shape of deviation contour is almost 

similar to the deviation contour generated by Chebyshev fitting. 

As mentioned in some research works in the literature review ([18], [23], [25]), a uniform 

sampling is often the best case for fitting, but the point distribution is not uniform when an optical 

scan method is used. One of the weak points of LS fitting method is its susceptibility to non-uniform 

point distributions because the profile fitted by LS is more heavily influenced by the high density 

areas. No research has been found that is evaluating the effect of non-uniform point density on the 

fitting quality of LS method, so this topic was selected as one of the motivations of this research. 

This parameter can affect the result of profile measurement significantly; therefore, it must be one 

of the important items of the uncertainty budget. 

2.2. Profile measurement for part model generation 
In constrast to the previous sections, in the case of profile measurement for part model 

generation there is no information about the actual part profile, and the main effort is to realize the 



19 
 

actual workpiece surface by using the discrete data of measured points. Optical measurement 

methods have become popular for this purpose because they are capable of providing more data, 

but denoising methods are necessary to remove the points with errors from the real profile. In a 

higher level of surface reconstruction that is mostly related to reverse engineering, sometimes 

additional simplification procedures are needed to achieve the design data out of the measured 

profile. 

The entire procedure of CAD model generation out of measured data consists of five steps: 

data collection, data pre-processing, point cloud segmentation, initial meshing and mesh 

optimization [7]. 

The first step, data collection, includes all of the actions required for part profile scanning. 

The output of this phase is one or multiple point clouds that cover the outer surface of workpiece. 

In the data pre-processing phase, the point clouds are combined together (registration process), and 

coordinates of measured points are transformed to a common global coordinate system. An initial 

removal of outliers and noisy data may take place in this phase of CAD model generation process 

(Figure 7). In the point cloud segmentation phase, more advanced filtering procedures are 

performed to isolate the target object from the surrounding environment. Additionally, if there are 

multiple separate bodies in the point cloud, they are distinguished in this phase, so they will not be 

connected incorrectly in the meshing step. The initial meshing procedure deals with determining 

how the measured points should be linked together to present the workpiece’s surface [7]. 

The output of initial meshing usually consists of coarse polygonised surfaces that need 

special treatments such as filling empty areas (bridging and hole-filling) and smoothing to become 

closer to the real workpiece’s surface. Figure 8 presents the output of three last steps of the surface 

reconstruction process performed on a point cloud resulted from optical scan of a rabbit model. For 

parts that have complicated shapes such as freeform or sculpture shape, separated surface zones are 

specified at the mesh optimization phase, and polynomial surface patches are fitted to the mesh 
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data (Figure 10). This phase of work has a significant effect on the quality of the reconstructed 

surface. Finally, the surface model is wrapped and converted to a solid CAD model.  

Numerous researchers have worked on data filtering, mesh generation and surface 

reconstruction methods, but this literature review is focused only on recent notable  works and 

those that have overlap with this dissertation. 

 
Figure 7. Detection and removal of outliers from the point cloud of a horse model;

 a) The original point cloud with outliers b) The detected outliers are 
shown in red color c) The result of outlier removal procedure [33] 

 
(a) (b) (c) 

Figure 8. a) segmented point cloud b) initial meshes c) optimized meshes of a 
scanned rabbit model [33] 
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Figure 9. Mesh smoothing on the noisy meshed surface of a 8-shaped part [7] 

In an introductory review paper, Varady et al. [35] present different surface reconstruction 

strategies and describe the advantages and weak points of every data acquisition method. 

Additionally, specific issues related to characterization of geometric models, surface 

representation, segmentation, and surface fitting for simple and freeform shapes are addressed. 

Problems of combining multiple point clouds and creating accurate B-rep models are reviewed, 

and the limitations of some solutions are discussed [35]. 

   
(a) (b) (c) 

Figure 10. Approximation of a polygonised surface with B-spline surface patches
 a) segregated surface zones b) fitted B-spline surfaces to the specified 

zones c) fitted surface patches [34] 

In data collection, Shen et al [36] integrated a vision system with a motorized probe and 

could develop a highly automated and precise three-dimensional coordinate acquisition system. In 

their research, feature recognition algorithms are applied to the data obtained by the vision system 
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to provide the general information of the unknown object such as location, orientation and 

topology. The provided information is subsequently used to plan the probing process for high 

precision and rapid sampling of critical surface areas [36]. In more recent works, the effort was to 

use the low density high quality data of tactile measurement to correct the high density low quality 

data associated to the optical measurement. In reference [37], a statistical model of Gaussian 

Process is developed to correct optical data sets and combine them with tactile data. 

The corrections are applied locally and the uncertainty of the reconstructed geometry can be 

calculated at any location. Application of this method to sample parts with free-form surfaces 

approved that it can improve the precision of point clouds [37]. In reference [38], the concept of 

virtual markers is used to combine two sets of data. Characteristic points from tactile measurement 

are used as reference to correct their corresponding points from the optical scan.  

This method was evaluated by simulation and measurement of three sample parts: flat plane, turbine 

blade and engine cover. Results showed that the improvement in the distance of optical points from 

the reference points was from 45% to 99% [38]. 

A significant portion of research work in data preparation deal with the registration of 

multiple point clouds obtained from various orientations. In reference [39], a new approach is 

presented that registers successive views with enough overlapping area to calculate an accurate 

transformation between views. In reference [40], the Iterative Closest Point (ICP) is used for 

registration of 3D point clouds to a model shape including free-form surfaces. The model shape 

can be a set of points, polylines, parametric curves, implicit curves, triangles or parametric surfaces. 

Turk et al. [41] presented a new method for combination of multiple meshed surfaces into a single 

polygonal mesh that is conforming to the object surface and has a satisfying performance on large 

data sets. In reference [43] the Orthogonal Cross Sections (OCS) model is used to register multiple 

polygonised surfaces together. Then, by fitting B-Spline wrap-around surfaces, an approach for 

smoothing the seams of registered surface patches is developed. Similar to [40], references [42], 



23 
 

[43], [45], [46]utilized the ICP method for alignment of point clouds, but their approaches for 

calculation of overlap areas differ from each other. In reference [47], a new strategy for data 

segmentation is presented and new methods are developed based on non-linear LS fitting for 

sphere, cylinder, cone and tori shapes. 

For initial mesh generation, Mavriplis et al. [48] combined point placement and boundary 

integrity techniques with Delaunay triangulation to develop a new advancing-front-type mesh 

generation strategy. In reference [49] Ball-Pivoting algorithm is introduced as an advancing-front 

algorithm for an interpolating triangulation of a given point cloud. Recently, a new generalized 

algorithm is developed to convert point clouds with variable resolution, accuracy and occlusion 

level to uniform meshes that are suitable for part solid modeling [7]. 

A substantial number of research works in the field of mesh optimization, are about 

development of new surface fitting methods or polynomial approximation of discrete data points. 

An ideal fitting method is robust against noisy data and generates a smooth continuous surface. 

Also, it keeps the sharp features and has reasonable accuracy on freeform shapes.  

Hiroshi [51] used the cubic B-spline fitting and defined a new smoothing function to 

minimize the 𝐿𝐿2 norm composed of the data residuals and the first and second derivatives. In 

reference [52], a new algorithm based on Singular Value Decomposition (SVD) of a 3 by 3 matrix 

is developed for finding the LS solution of fitting two point sets with equal number of points. Levin 

[53] expressed that the moving least-squares method works very well for polynomial interpolation, 

smoothing and derivative approximation. Amenta and Bern [54] developed an algorithm that 

approximates a smooth surface to a finite set of sample points. This algorithm uses Voronoi vertices 

to remove triangles from the Delaunay triangulation. It is shown that on high density areas the 

output of this algorithm is topologically valid and converges to the original surface [54]. Ohtake et 

al. [55] proposed a new automatic mesh smoothing method that can preserve sharp features. 

Wagner et al. [34] presented a new method for generating a smooth surface that approximates a 
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given manifold triangulation with arbitrary topology. In this work, a set of necessary conditions are 

derived that guarantee the continuity of the result. Then by using these conditions, a new algorithm 

is developed for a piecewise polynomial surface reconstruction that generates a small number of 

patches. In reference [56], multiple mesh smoothing methods were compared together, and a new 

method based on linear diffusion of mesh normals is developed. This method demonstrates the best 

performance in denoising meshes with sharp features and high resistance to oversmoothing [56]. 

Fleishman et al. [57] introduced a new robust moving least-squares technique for reconstruction of 

a piecewise smooth surface from a noisy point cloud. The result is a unified framework that not 

only reduces the noise in data, but also enables modeling of surfaces with sharp edges [57]. In 

reference [58], Vieira developed a new method for creating a piecewise-smooth surface from the 

surface patches extracted by region growing method. In this method the measured points are 

projected iteratively onto polynomial surfaces for a progressive approximation of larger 

neighborhoods. The constructed surface has a satisfying visual quality that is comparable to a B-

rep surface [58]. Zhao et al. [4] applied the IGA (Immune Genetic Algorithm) and presented a new 

algorithm for fitting B-spline surface patches to a noisy 3D point cloud. B-spline surfaces are 

reconstructed by using LS approximation and then the surfaces are optimized by applying IGA-

based algorithm to adjust the knots. Finally, the surface patches are stitched together with the 

Particle Swarm Optimization (PSO) method to keep the surface continuity [4]. 

In an interesting work, Huang accomplished all of the five required steps for CAD model 

reconstruction from the scan data. In this dissertation, a new procedure is developed to extract the 

topological and geometrical information of the workpiece from the measured point cloud and 

generate a CAD model associated to the measured profile. This procedure starts with reconstruction 

of workpiece shape by interpolating manifold meshes with an efficient growing process and then 

applying a mesh optimization algorithm to refine them and to decrease the difference between the 

original surface and the polygonised surface. In the second step mesh segmentation is executed. 
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This algorithm performs the border detection and region growing. Afterwards, B-Spline surface 

patches are fitted to the segmented mesh sets by using a non-iterative method. Finally, the CAD 

model is generated from the established mesh topology and feature surface representation [59]. 

2.2.1. Effect of data processing method on reconstructed surfaces 
In the previous section, it was understood that the measured data sets cannot be used 

directly for creation of an object model, and several processes are needed to convert them to a 

suitable digitized model. Each of these processes apply some changes to the original data, so all of 

them have a direct influence on the quality of reconstructed surfaces. If these affecting factors are 

executed appropriately the measurement uncertainty can be reduced; if the uncertainty is too great, 

the generated model may have major differences with the real workpiece. By considering the 

literature review of this field, it can be understood that the uncertainty of measured profiles has 

been evaluated rarely. Only references [17],[18],[19],[23] and [37] discussed the task specific 

uncertainty of measured profiles in their research, and in all of them except [37], the part profile 

has a simple shape such as flat plane or cylinder. Therefore, it can be understood that there is no 

general standard method for quantification of profile measurement uncertainty. This method is 

necessary for measurement evaluation, but quantification of profile measurement data is a 

prerequisite for that goal. In summary, there is an extensive need for a quantification method that 

arranges profile measurement data to a specific standard structure and works well for any profile 

shape even freeform surfaces. 

2.3. Mean Local Deviation (MLD) as a method for profile quantification 
Previous sections of this chapter discussed different purposes of profile measurement, and 

described various methods for reaching to the planned goal briefly. Finally, the importance of 

quantification of profile measurement data was discussed, but no general quantification method has 

been proposed in any research so far. The desired quantification method must be applicable to any 

profile shape. Furthermore, it should provide a criterion for comparison of multiple measured data 
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sets. It is important to consider that data sets may have different number of points, density, spatial 

organization, associated noise, and various coverage on the measured surface. So single points 

belonging to different point clouds may not fall into the same location on the workpiece surface 

[44]. This fact that is referred to as “lack of co-localization” [44] is the main issue in the profile 

data quantification process. To solve this issue, using the Mean Local Deviation (MLD) of profile 

segments is proposed in this research. For this purpose, the whole part profile is divided into 

segments with equal length (2D profiles) or area (3D profiles). After that the optimum fitting 

condition is found, the deviation of every individual point is calculated. In the next step, point 

deviations of every segment are averaged. The Mean Local Deviation (MLD) not only decreases 

the effect of noise in data, but also provides a quantified criterion that can be used for comparison 

of different measured data sets. More characteristics of the proposed quantification method will be 

discussed in the next chapters. 
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CHAPTER 3: POINT DENSITY AND PROFILE FITTING PROCESS 

In the previous chapter, it was understood that a uniform point sampling pattern is the most 

ideal case for fitting methods. It not only does cover the profile consistently but also has a neutral 

effect on the fitting result; that is why it is normally selected for profile tactile measurement, and 

only the distance between measured points is set before the execution of measurement program. 

The measurement time of tactile methods is longer than the time of optical scanning methods, and 

it is the main reason for popularity of optical methods. In addition to that, optical methods provide 

extensive amounts of data of the part profile, but their data also encompass higher amount of noise 

in comparison with associated tactile data. Another flaw of optical measurement methods relates 

to their non-uniform point distribution. In profile scanning methods, the position of points on the 

workpiece’s surface is measured from reflected light rays. Since the reflected light scatters out in 

various directions its intensity varies at different spots on the CCD camera, so it causes a variation 

in the density of measured points. The non-uniform pattern becomes troublesome when fitting 

methods such as Least Squares (LS) are used because they are vulnerable to the density of point 

clouds, and the final fitted result is shifted toward profile segments with high point density. Due to 

this vulnerability, some commercial software packages use down-sampling strategies and neglect 

a portion of measured data. Depending on the size of the kept data, this strategy can improve the 

speed of the fitting process significantly, but certainly its accuracy is lower than the accuracy of 

using the whole measured data set. The main goal in this chapter is to analyze the effect of non-

uniform point distribution on the LS fitting method and to develop algorithms with more sensitivity 

to point positions on the profile rather than the reoccurrence number of point deviations. 

3.1. Weighted Least Squares (WLS) and Highly Weighted Least Squares (HWLS) 
fitting algorithms 

In order to understand the influence of non-uniform point density on the result of the fitting 

process, two different fitting algorithms are defined based on the LS fitting method. In both of these 
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algorithms, a weight is defined for every point deviation based on distances between projected 

points on the profile (2D data) or the xy plane (3D data). So it is necessary that the point cloud is 

fitted roughly to the nominal profile, otherwise it is not possible to find the coordinates of the 

projected points. In this condition, points farther from other ones would have higher weights, and 

points in high density areas would have lower weights. The only difference between WLS and 

HWLS algorithms is in the power of assigned weights in the weighted sum of squares of point 

deviations. Equations 1 to 3 present the target function of LS, WLS and HWLS fitting algorithms. 

To equalize the dimension of output parameters it is needed to calculate the square root of the Sum 

of Squares (SS), Weighted Sum of Squares (WSS), and Highly Weighted Sum of Squares (HWSS) 

of individual points. 

√𝑆𝑆𝑆𝑆 = (𝐷𝐷12 + 𝐷𝐷22 + ⋯+ 𝐷𝐷𝑛𝑛2)
1
2 = ��𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

   

√𝑊𝑊𝑆𝑆𝑆𝑆 = (𝑊𝑊1𝐷𝐷12 + 𝑊𝑊2𝐷𝐷22 + ⋯+ 𝑊𝑊𝑛𝑛𝐷𝐷𝑛𝑛2)
1
2 = ��𝑊𝑊𝑖𝑖𝐷𝐷𝑖𝑖2

𝑛𝑛

𝑖𝑖=1

   

√𝐻𝐻𝑊𝑊𝑆𝑆𝑆𝑆 = ((𝑊𝑊1𝐷𝐷1)2 + (𝑊𝑊2𝐷𝐷2)2 + ⋯+ (𝑊𝑊𝑛𝑛𝐷𝐷𝑛𝑛)2)
1
2 = ��𝑊𝑊𝑖𝑖

2𝐷𝐷𝑖𝑖2
𝑛𝑛

𝑖𝑖=1

   

 

D is the deviation of each point (normal distance to the nominal profile), and n represents 

the total number of measured points. With regard to profile constraints the transformation matrix 

is defined, and input variables (rotational and translational parameters) are linked to the output of 

the target function. Assuming α, β and θ as rotation angles around coordinate axes and dx, dy and 

dz as translational elements, the input matrix of functions is in this form: 

𝑅𝑅𝑅𝑅𝑖𝑖𝑛𝑛 = � 𝛼𝛼 𝛽𝛽 𝜃𝜃
𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑 𝑑𝑑𝑑𝑑�   
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Since point clouds are fitted roughly, the rotation angles will be small, so rotation matrices 

around x, y and z axes are defined as equations 5 to 7.  

𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 = �
1 0 0
0 cos (𝛼𝛼) −sin (𝛼𝛼)
0 sin (𝛼𝛼) cos (𝛼𝛼)

�   

𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦 = �
cos (𝛽𝛽) 0 sin (𝛽𝛽)

0 1 0
−sin (𝛽𝛽) 0 cos (𝛽𝛽)

�   

𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 = �
cos (𝜃𝜃) −sin (𝜗𝜗) 0
sin (𝜃𝜃) cos (𝜃𝜃) 0

0 0 1
�   

 

With small angle approximations these equations are converted to equations 8 to 10. It 

should be considered that rotation angles are in radian in the latter set of equations. 

𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 = �
1 0 0
0 1 −𝛼𝛼
0 𝛼𝛼 1

�   

𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦 = �
1 0 𝛽𝛽
0 1 0
−𝛽𝛽 0 1

�   

𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 = �
1 −𝜗𝜗 0
𝜃𝜃 1 0
0 0 1

�     

 

The general matrix of rotation around three coordinate axes is calculated by the product of 

the above matrices. If rotation angles are large their sequence matters, but with small angles 

transformations can be in any sequence. Therefore, the transformed coordinates of every point are 

calculated as below: 

�
𝑑𝑑′
𝑑𝑑′
𝑑𝑑′
� = 𝑅𝑅𝑅𝑅𝑅𝑅𝑥𝑥 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑦𝑦 × 𝑅𝑅𝑅𝑅𝑅𝑅𝑧𝑧 × �

𝑑𝑑
𝑑𝑑
𝑑𝑑
� + �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
� ≈ �

1 −𝜃𝜃 𝛽𝛽
𝜃𝜃 1 −𝛼𝛼
−𝛽𝛽 𝛼𝛼 1

� × �
𝑑𝑑
𝑑𝑑
𝑑𝑑
� + �

𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
𝑑𝑑𝑑𝑑
�   

 

In the next step, an optimization method is required for finding the optimum condition of 

the defined target functions. For this problem, in this research, fminsearch ─a Matlab built-in 

function─ is used. It is a nonlinear programming solver that is utilized for finding the local 
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minimum of functions by means of an iterative derivative-free method. It means that the mentioned 

function uses only discrete values of the target function, and there is no need to know derivative 

values. 

3.1.1. Weight definition for two-dimensional profiles 
In new weighted fitting methods, all measured points are projected onto the nominal 

profile, and then the middle points between the projected points are found by calculation. Every 

midpoint has equal distance to its neighbor projected points. The length between the midpoints 

prior and after each measured point is considered as the weight of its deviation. Where a particular 

feature ends can also be used as a limit for the length influenced by a measurement point. Figure 

11 presents a schema of how the deviation weights are calculated for the considered simple profile 

shape. 

 
Figure 11. Measured points (P1, P2, …), midpoints (MP1, MP2, …) and weights (W1, 

W2, …) of deviations (D1, D2, …) for a simple profile 

 

3.1.2. Weight definition for three-dimensional profiles 
The weight definition for the three-dimensional space is slightly different from weighting 

2D profiles. First of all, by using the delaunayTriangulation function in Matlab, a 2D Delaunay 

triangulation is applied to the considered point set. In the next step, coordinates of nodes are used 

to calculate the area of each triangle. Every triangle area is shared between three nodes, so every 

node receives one third of that area. The weight of each node is defined as its total share from 
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surrounding triangles. In this method, a less compact area means larger triangles that are equal to 

higher weights and vice versa. The sum of all weights should equal the projection of whole 

measured area over the projection 2D plane (its default in Matlab is xy plane). It can be tested after 

that deviation weights are assigned. Figure 12 shows the steps of Delaunay triangulation of a 3D 

point cloud. As it is seen in Figure 13, the density of points may vary over generated triangle 

meshes. 

 
Figure 12. Steps of Delaunay triangulation of scattered points [64] 

 
Figure 13. Delaunay triangulation with varying point density [65] 
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3.2. Theoretical simulations 
To understand the behavior of the three introduced algorithms some theoretical simulations 

are performed. In these simulations, a profile with a simple shape is considered, and then a set of 

imperfect points with random deviations is generated around it. The deviation of points is randomly 

selected from a specific range that is close to the typical range of deviation in experimental data. 

The introduced algorithms are used to fit the virtual data to the assumed profile. This procedure is 

repeated several times with uniform and non-uniform point distributions, and the fitting parameters 

as well as maximum point deviations are analyzed. 

3.2.1. Square profile 
Initially, to understand the effect of point positions and symmetry, a square with dimension 

of 4 millimeters and seven points on each side (28 points in total) is assumed. Projected points have 

0.5 millimeters distance from their neighbor points (feature point or projected point). Point 

deviations are constant, and in each case some points are removed to generate a different point 

layout. In this work, positive deviation is used for when the fitted point is outside of the profile and 

vice versa. Twelve generated layouts are shown in Figure 14. A different color coding is used for 

each side for easier identification of points belonging to every feature. 
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1 2 3 

   
4 5 6 

   
7 8 9 

   
10 11 12 

   

Figure 14. Twelve different point layouts used for the analysis of square profile  
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3.2.2. Quarter circle profile 
To analyze the statistical behavior of LS, WLS, and HWLS fitting algorithms, virtual point 

clouds with added random deviations from a quarter circle profile with radius of 5 millimeters are 

created. For uniform point distribution, projection points with a constant distance from each other 

are used, and random deviations are imposed to their positions. In contrast, for non-uniform point 

distribution, the location of projected points is not fixed, but the number of points belonging to 

every feature is kept constant.  

  
(a) (b) 

 

Figure 15. Two types of point distribution over quarter circle profile; a) Uniform 
point distribution; b) Non-uniform point distribution 

For additional evaluation, both of normal and uniform distribution of random deviations 

are applied. The range of deviations for the uniform distribution model is from -0.2 to 0.2 

millimeters, while the normally distributed model has a wider range of about -0.345 to 0.345 

millimeters. In this condition, the standard deviation of both models equals 0.115 millimeters. 

Random point sets are created and fitted to the quarter circle profile by using the three fitting 

algorithms, and this action is repeated 100 times for each type of point distribution. To acquire a 

general picture about the statistical behavior of each algorithm, obtained fitting parameters are 
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saved as well as maximum deviations. Histograms of variables and relation graphs will be discussed 

in Chapter 5. 

3.2.3. Saddle profile 
For comparing the performance of three introduced fitting algorithms in 3D space, a saddle 

surface is assumed, and virtual point clouds with random deviations are generated and fitted to this 

freeform surface. Equation 9 represents the saddle surface mathematically.  

𝑑𝑑 = 𝑥𝑥2−𝑦𝑦2

250
                 −50 < 𝑑𝑑 < 50   ,      −50 < 𝑑𝑑 < 50   

 

Similar to the quarter circle profile, two types of point sampling strategy (uniform and non-

uniform) are simulated. Also, point deviations are selected randomly from one uniform and one 

normal distribution with the constant standard deviation of 0.115 millimeters. Points of uniform 

sampling have an organized grid structure on xy plane with 5 millimeters distance intervals and 

covers a 90 by 90 millimeters square area (Figure 16.a). As seen in Figure 16.b, the x and y 

coordinates of non-uniform points are randomly selected from the range of [-45, 45]. The total 

number of simulated points in both cases is 361 (19 × 19). It can be understood from above that 

there is no sample point on the edge areas because, in reality, data of these zones are typically full 

of noise, so point deviations are higher on zones close to sharp edges. For each type of point cloud, 

100 samples are generated and fitted by means of LS, WLS, and HWLS algorithms. It is important 

to mention that NO datum is considered in these fittings, so there are 6 optimized variables 

associated to the degrees of freedom that need to be found for each virtual point set. Obtained fitting 

parameters and maximum deviations will be reported and discussed in Chapter 5. 
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(a) 

 

(b) 

 

Figure 16. (a) uniform and (b) non-uniform point distribution over saddle profile 

 

3.3. Experimental measurements 
This section describes the scanning and analysis of both 2D and 3D profiles. After 

workpieces are cleaned they are positioned on a worktable (either the CMM base or a free-standing 

table) and clamped properly. The reference and profile surfaces are scanned using either tactile or 

optical sensors. Before any scan, the desired datums should be defined, and a part coordinate system 

is created based on those datums. This establishes a part coordinate system for the initial reporting 

of data. 

3.3.1. Measurement and analysis of 2D profiles 
Two sample parts with non-regular profile shapes made of rolled steel plate were selected 

(Figure 17). The profile of these parts was manufactured by CNC machining and all the edges were 
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deburred. The measurand on part 1 (outer profile) is the position (x and y coordinates) of points on 

the outer surface around the part. The initial Cartesian system is defined by the top surface and two 

perpendicular edges (datums B and C). For part 2 the measurand (slot profile) is the coordinates of 

the projected points of the inner surface of slot onto the xy plane. The x and y axes are defined by 

two perpendicular edges on part profile. The total set of profile points will be rotated and translated 

to fit to the nominal profile, so the initial coordinates will change in the next step.  

  
(a) (b) 

Figure 17. Sample parts with (a) outer profile and (b) slot profile for two-dimensional 
profiles and their general dimensions [62] 

The above parts were scanned using five different techniques: a Cartesian CMM (touch-

trigger probe), a Laser Tracker (contact of SMR pin nest), a Blue Light Scanner (fringe projection 

technique) and a measuring arm (using both a tactile probe and an optical triangulation sensor).  

Some of these instruments are shown in Figure 18 to Figure 20. In tactile measurement the 

instrument reports the position of probe center, and it is therefore necessary to calculate the position 

of contact point, since profile tolerances (like other tolerances) control the surface of the part. This 

can be performed if the probe radius is assumed constant along different directions (ideal probe) 

that is not true in reality, but it is important to know that errors in probe radius are negligible in 

comparison with other types of error. One of the main steps of data preparation in tactile 

measurement is to offset the measured points in the profile plane (xy) toward the profile line, but 

this offset direction has to be known. Some advanced tactile probes are able to measure the direction 
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of contact force that is exerted normal to profile surface. Even though it seems that the output data 

of measurement with this type of probes do not need any offset, but in fact they are not accurate 

enough to perform good compensation. Therefore, it is required that prior to offsetting the measured 

data, a scaled profile is fitted to the measured points and then an offset equal to the probe radius is 

applied to the points (Figure 21) normal to the fitted profile [62]. 

 
Figure 18. Profile measurement with a Cartesian CMM 

  
(a) (b) 

Figure 19. (a) Optical scan of the outer profile and (b) tactile measurement of slot 
profile with Romer arm 
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Figure 20. Measurement of the outer profile with a FARO ION laser tracker 

  
(a) (b) 

Figure 21. Offset in tactile data; (a) general profile shape (b) detail of dashed zone; 
measured points are shown with dot and calculated contact ponts are represented 

with cross [62] 

Similar to the tactile measurement, the output of optical measurement is coordinates of 

points on the part surface, but they form a disorganized 3D point cloud, and profile points 

appropriate for analysis need to be extracted from that cloud. One common way to extract points 

for the evaluation of a 2D profile is to section the cloud with a horizontal plane that is parallel to 

xy plane (Figure 22). Due to mostly multiple reflections on the part surface, there are typically some 

outlier points that should be removed (Figure 23) before evaluating the profile for conformance. 
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One method to remove outliers is by defining a threshold for the point deviations from the nominal 

geometry and deleting the points whose deviations are larger than the considered threshold. 

Another method is to remove points that are significantly different in location from their neighbor 

points. 

(a) 

 

(b) 

 
 

Figure 22. (a) point cloud obtained by optical scan (b) 2D profile created by 
sectioning and editing the point cloud 

 
Figure 23. Outlier points over the profile data 

 

Profile 

Outlier points 



41 
 

After that measured data of 2D profiles are prepared, they are fitted to their associated 

nominal profile with LS, WLS, and HWLS fitting algorithms, and point deviations are calculated 

through the code developed in Matlab software. It should be considered here that since measured 

points are free within xy plane, they do not have more than three degrees of freedom (translation 

along x and y, and rotation around z). Results of applying different fitting algorithms to measured 

2D data will be presented in Chapter 5. 

3.3.2. Measurement and analysis of 3D profiles 
Two sample parts with dissimilar freeform shapes are selected and scanned to provide real 

3D data for evaluating the performance of three presented fitting algorithms (LS, WLS, and 

HWLS). Both of these parts are made of aluminum, and they are machined to a freeform shape on 

their top section. The first part has a wavy shape, and the nominal equation of its top surface is 

presented in cylindrical coordinate system as the below equation. 

𝑑𝑑 = 1
75000

𝑟𝑟3(cos(𝜃𝜃) + sin(5𝜃𝜃))                 0 < r < 50   ,      0 < θ < 2π   

 

The second workpiece has a saddle shape and the formula of its top surface is identical to 

the equation of the saddle surface in section 3.2.3 (Equation 12). Figure 24 presents pictures of 

these sample parts. 

  
(a) (b) 

Figure 24. Aluminum sample parts with freeform top surfaces; (a) wavy profile; (b) 
saddle profile 
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The top surface of the wavy part is measured with a Cartesian CMM (tactile probe), Romer 

arm (optical), and Blue Light Scanner (optical). The saddle profile is scanned with both of the 

mentioned optical methods (no tactile measurement). Since both parts have shiny metal surfaces, 

their optical scan is tedious and time-consuming. In industrial applications, this type of surfaces are 

typically sprayed to decrease their shininess and improve the scatter of light from considered 

surfaces. To understand the effect of spraying on the measurement result, both sample parts are 

scanned once without any spray (shiny metal surface) and one more time with a coating of powder 

on their top surface (Miconazole nitrate powder on the wavy surface and PTFE powder on the 

saddle surface). Figure 25 and Figure 26 show the position of optical instruments and their distances 

to the profile surface during the scan process. 

 
Figure 25. Optical scan of wavy profile with Romer arm (linear triangulation sensor) 

As mentioned before, an offset needs to be applied to tactile pure data to find contact points 

on the wavy surface. For every individual measured point all distances to other points are calculated 

and the two closest points are selected. By using coordinates of the neighbor points and building 

two vectors starting from the measured point the normal direction can be calculated by vector 

Optical sensor 

Tactile probe 
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product of the two vectors. Then moving the point along the normal direction by assumed constant 

dimension of probe radius would specify the coordinates of contact point. 

(a) 

 

(b) 

 
 

Figure 26. Optical scan of freeform surfaces (a) wavy profile, and (b) saddle profile 
with Blue Light Scanner (fringe projection technique) 

Optical data do not have the offset issue, but since part surfaces are shiny the amount of 

noise would be high especially on edge areas. To avoid this issue, the pcdenoise function is used 

to reduce the noisy data. This function calculates all distances between measured points, and 

removes outlier points. A point is considered as an outlier if the average distance to its neighbors 

is above a threshold. The default value of this threshold is one standard deviation from the mean of 
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average distances of all points. It is required to be stated here that by applying the pcdenoise 

function to some data sets measured by Romer arm, a noticeable portion of data at less dense areas 

is removed, so this function is not used for denoising of those data sets. Additionally, after fitting, 

edge data points are filtered out, and from wavy surface data only points with radial distances less 

than 49.7 mm from the origin of PCS (Part Coordinate System) are kept. However, a wider edge 

zone is assumed on the saddle profile, and from fitted data sets, measured points that are in a square 

area (-45<x<45 and -45<y<45) are saved for further analysis. Therefore, points that are located on 

a 5 mm wide band from the edges are removed from measured point clouds. 

It is important to know that data matching is performed in three steps. In the first step, only 

deviations in z direction are considered to reach an initial match. The second step consists of fine 

matching by using the surface equation and calculation of perpendicular vectors and point distances 

(regular LS fitting). The third step is to rematch measured points considering their normal 

deviations and weights (WLS and HWLS fitting). Figure 27 presents how the matched data set 

(fitted by LS algorithm) is generated from pure tactile data. The initial PCS is defined on the corner 

of the top flat surface on the workpiece. After that contact points (red points in the figure) on the 

wavy surface are found, the coordinate system is translated to the center of the wavy surface. That 

is the reason that points matched to the wavy surface, comparing with contact points, are about 11 

millimeters shifted in the negative z direction. 
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Figure 27. Progress from measured data (blue) to contact points (red) and points 

matched to the wavy profile surface (orange) 

Figure 28 shows the top view of two data sets associated to the wavy surface. From 

comparison of these two pictures the difference in point distribution between tactile and optical 

measurement can be understood. 
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(a) 

 

(b) 

 

Figure 28. Top view of measured (a) tactile and (b) optical data of wavy profile 

 

To provide a uniform point distribution over the saddle surface, a grid of points with 5 mm 

distance intervals is created on xy plane, and then this grid is projected in z direction onto the surface 

made by polygonization of scanned data (Figure 29). These projected points are saved separately 
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as data with a uniform structure. In the next step, the whole data and the sampled one are matched 

to the nominal saddle surface by using LS, WLS, and HWLS algorithms. Results related to the 

quantification of measured profile data and comparison of different fitting algorithms will be 

presented in Chapter 5. 
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(a) 

 

(b) 

 

Figure 29. Projection of a grid of points onto a polygonised surface to create a 
uniform sample (a) 3D view, (b) top view 
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CHAPTER 4: QUANTIFICATION OF PROFILE DATA 

In the previous chapter, it was discussed that the number and position of measured points 

may vary when multiple instruments or sensors are used. Due to this lack of co-localization, 

measured profile data sets associated to one sample part cannot be compared directly. Therefore, a 

criterion is needed to fill this gap, and to make the profile data comparable. The main idea of this 

research is to investigate methods— such as a convolution averaging filter— that will convert the 

individual point deviations to Mean Local Deviations (MLDs), and then use the MLD on each 

profile segment as a criterion for comparison of multiple profile scans. This criterion can be used 

for quantification of measured profile data and the profile measurement error as well. 

4.1. Quantification of 2D profile data 
By matching point clouds to the nominal profile, the position of projected points and the 

deviation of measured points are available. The point deviation is defined as the distance of a point 

to the profile element along the direction perpendicular to the profile. For closed profiles, the 

direction inside the profile is described as a negative deviation, and the direction outside of the 

profile is positive. Following the application of this fitting technique, and plotting the deviations 

versus the distance around the profile, it is possible to show the deviation of each segment of the 

profile regarding its position on the profile. The result of this procedure is similar to unbending the 

profile and showing measured points along a straight line that represents the distance to the origin 

point. In Figure 30, point deviations of the measured slot profile are shown. Color coding is used 

to distinguish between the different features. One of the main advantages of this technique is the 

ability to isolate zones that contain large deviations, which can be corrected in the manufacturing 

process. 
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(a) (b) 

Figure 30. (a) measured points matched to the slot profile; (b) graph of point 
deviations versus profile length [62] 

To calculate the MLD of each profile segment, a window with a fixed length is assumed. 

This window is moving at fixed steps along the horizontal axis in the point deviation graph, and 

averages of deviations inside the window are calculated and considered as the deviation of each 

segment. As an example, Figure 31 shows a point deviations graph and the associated local 

deviations graph belonging to the measurement of the slot profile with the Blue Light Scanner 

(BLS). In this example, the window length and step length are assumed respectively as 30 mm and 

10 mm. The proper selection of window and step lengths makes it possible to calculate the 

described mean local deviation of each segment and use it as a criterion for the profile measurement 

error quantification. It can be understood that sudden jumps and drops of point deviation are filtered 

by this quantification method. Because of this effect, the MLD plot has a smoother shape [62]. 

More discussions about how filter parameters influence the MLDs of profile segments are available 

in reference [62]. Another benefit of using MLD criterion is in the verification of instrument 

repeatability, when a single part profile is measured with the same instrument several times. In this 

condition, it can be better understood how much variation occurs in profile measurement data due 

to the instrument, without requiring that the exact same points be measured each time. 
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(a) (b) 

Figure 31. (a) graph of point deviations of the slot profile; (b) graph of local 
deviations after applying the convolution filter [62] 

4.2. Quantification of 3D profile data 
The main idea in this type of quantification is nearly similar to the quantification of 2D 

profile data. In this approach, after the measured points are matched to the nominal profile, the 

projection of the profile surface on the xy plane is divided into segments with equal area, and then 

the average of all point deviations within every profile segment is calculated. Since the projected 

surface of wavy and saddle profiles have circular and square shapes, it is recommended to segment 

them in different methods. 

4.2.1. Segmentation of circular surface (wavy profile) 
For the wavy profile, circular sectors with constant width of 10 mm are considered, so the 

inner and outer radius of sectors are selected from below series: 

𝑅𝑅𝑖𝑖 = 0, 5, 10, … , 45 = 5𝑖𝑖 − 5             (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 10) (11)  
𝑅𝑅𝑜𝑜 = 10, 15, 20, … , 55 = 5𝑖𝑖 + 5       (𝑖𝑖 = 1 𝑡𝑡𝑡𝑡 10) (12)  

 

One quarter of the central circular area (25𝜋𝜋 𝑚𝑚𝑚𝑚2) is considered as the constant reference, 

and angles of next sectors were defined to keep their area equal to this reference amount. Since the 

width of segments are constant, their angle becomes smaller by radial movement from the center 

to the outside (Figure 32). The angular step is defined as two-third of the segment angle while the 
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radial step is 5 mm. By this method, the projected circular surface is divided into 328 segments 

with equal areas. 

 
Figure 32. Decrease of the circular sectors angle from the center to the outside of the 

projected area  

If the average of point deviations located on every segment is shown at the center of the 

segment, a constant uniform structure will be achieved that can be used for presentation of all 

measured data sets related to the wavy profile. Figure 33 shows an example of normal point 

deviations from the nominal wavy profile. This data set is measured with the optical sensor of the 

Romer arm and is matched by the LS method. By applying the described quantification method to 

this data set, the MLD data of profile segments are obtained and are presented in Figure 34. The 

constant structure of quantified data is visible in Figure 34(b). 
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(a) (b) 

Figure 33. Deviation of individual measured points from the wavy profile; (a) 3D 
view; (b) top view 

 

  
(a) (b) 

Figure 34. MLD plot of a point cloud measured by the Romer arm; (a) 3D view; (b) 
top view 

4.2.2. Segmentation of square surface (saddle profile) 
Segmentation of the saddle profile is executed in a different way from partitioning of the 

wavy profile. Since the projected surface has a square shape, it will be easier to consider segments 

with a square shape.  For the saddle part, looking from the top, a square segment with the dimension 

of 12 mm is assumed. In the first step, this square covers the area with the minimum x and y (bottom 

left corner), and the average of point deviations belonging to points locating inside the square is 
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calculated. For this case, horizontal and vertical steps are set as one-third of the segment dimension. 

Therefore, this square sector moves along the x axis (direction 1 in Figure 35) by step lengths of 4 

mm, and the MLD of each segment is computed until the first row is covered. For the second row, 

all squares of the first row are shifted along the y axis (direction 2 in Figure 35) by 4 mm, and 

related MLDs are calculated separately. The same procedure is repeated for the next rows until the 

whole projected surface is covered by square segments. The described segmentation method is 

presented schematically in Figure 35. In this figure, four corner profile segments are identified with 

their segment numbers. 

 
Figure 35. Segmentation of the projected square surface 

 

In the next chapter, the described method will be used for the quantification of data sets 

(theoretical and experimental) relating to the saddle profile. For example, if this method is applied 

to point deviation data shown in Figure 36, quantified data presented in Figure 37 will be obtained. 

It can be understood by comparing the range of data (original and quantified) and the 

continuity of deviation graphs that the unfavorable effect of noise in original data is vastly removed 

or decreased in quantified data. However, the performance of filtering severely depends on the 

number of points at noisy segments. 
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(a) (b) 

Figure 36. Point deviations of a fitted data sample from the saddle profile; (a) 3D 
view; (b) top view 

 

  
(a) (b) 

Figure 37. MLD plot of a data set resulted from measurement of the saddle profile 
with the Blue Light Scanner; (a) 3D view; (b) top view 
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CHAPTER 5: RESULTS AND DISCUSSION 

In this chapter, at first results of theoretical simulations will be presented and discussed. 

Then, the second part of this chapter will be about results of experimental measurements, performed 

on 2D and 3D profiles. 

5.1. Results of simulations 
5.1.1. Square profile 

As mentioned in Chapter 3, twelve different point layouts are considered around the 

nominal square profile, and these point sets are matched by LS, WLS, and HWLS methods. The 

profile dimension is assumed as 4 mm, and before fitting, all points have 0.1 mm (positive and 

negative) deviation from the profile. To have a more general analysis, the coordinate system origin 

is located initially on the corner and then at the center of the square. In both cases, to test the 

uniqueness of found optimum conditions, different values for the initial guess as well as the stop 

limit are fed into fitting algorithms. Some of the found fitting parameters are summarized in the 

Appendix A. It can be understood that if the target stop limit is not small enough, the found 

optimum condition may vary by initial guess. Therefore, a tiny stop limit and a high iteration limit 

are needed to ensure that found parameters are unique. It is comprehensive from the data shown at 

the table that 10-12 is a reasonable threshold for the stop limit of final variables. 

Optimum fitting parameters associated to 12 point distribution layouts are available on 

graphs shown in Figure 38 and Figure 39. The first general result that is perceivable from the range 

of data in 3 pairs of graphs is that rotations in the second case (origin at the center) are generally 

higher than rotations of the first case (origin at the corner), while the ratio of translations are 

opposite. Furthermore, it is visible that fitting parameters resulting from the WLS method are 

between fitting parameters of LS and HWLS methods. 
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Regarding the robustness of three fitting algorithms, the variation of data in graphs prove 

that in the first case (origin at the corner), except for translation in x axis, there is not a significant 

difference between various fitting methods. However, HWLS has more robustness in the second 

parameter (dx). In contrast, the robustness of LS method is remarkably higher in the second case 

(origin at the center), but this result is only about the robustness of fitting parameters. 

For a complete analysis of robustness, it is necessary to evaluate the data of point deviations 

as well as fitting parameters, because smaller deviations with the same data set are interpreted as 

higher quality of fitting. Graphs Figure 40 and Figure 41 present the maximum, minimum, and 

range (maximum minus minimum) of point deviations related to various layouts fitted by LS, WLS, 

and HWLS algorithms. As expected, graphs shown in both figures are identical, which means the 

result of fitting processes is independent from the position of the origin. In other words, the obtained 

fitting parameters are equivalent to two different ways for the description of optimum conditions 

of target functions. Additionally, from the first graph (min-max deviations), it can be understood 

that HWLS algorithm has a bias toward negative direction, while deviations resulted from LS 

algorithm are biased to more positive values, and deviations related to WLS algorithm are between 

those two (LS and HWLS). Most importantly, the consideration to the range of deviations declares 

that in the majority of layouts (10 out of 12), the WLS algorithm conveys a deviation range lower 

than or close to the deviation range carried by the LS algorithm. Nonetheless, these results show 

that the HWLS algorithm has an extensive level of sensitivity to how points are distributed, and it 

ensues to deviation ranges mostly higher than ranges of data derived by LS and WLS algorithms. 
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(a) 

 

(b) 

 

(c) 

 

Figure 38. Graphs of optimum fitting parameters when the origin is on the corner of 
the square (a) rotation angle, (b) translation in x axis, (c) translation in y axis 
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(a) 

 

(b) 

 

(c) 

 

Figure 39. Graphs of optimum fitting parameters when the origin is at the center of 
the square (a) rotation angle, (b) translation in x axis, (c) translation in y axis 
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(a) 

 

(b) 

 

Figure 40. (a) Minimum and maximum point deviations, (b) range of deviations 
related to different point layouts (origin at the corner) 
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(a) 

 

(b) 

 

Figure 41. (a) Minimum and maximum point deviations, (b) range of deviations 
related to different point layouts (origin at the center) 
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5.1.2. Quarter circle profile 
Before starting the discussion about the statistical analysis of fitting random points to this 

profile, two simple cases are compared together. In the first case, 16 points with equal distances 

between their projections (including feature start and end points) and 0.2  mm deviation are 

considered around the quarter circle profile (Figure 42.a). For the second case, some points are 

removed from the initial point set (Figure 42.b). These two point sets are fitted by means of the 

three introduced algorithms, and then acquired fitting parameters and point deviations are 

compared. 

  
(a) (b) 

Figure 42. Two test samples with constant point deviations; (a) uniform point 
distribution; (b)non-uniform point distribution 

It is expected that all optimum parameters in the first case are close to zero, and they have 

various values in the second sample. However, it is more reasonable to have equal optimum point 

deviations in the second sample as well as the first one. The computed optimum value of fitting 

parameters are presented in Table 1 and bar graphs of point deviations are shown in Figure 43.  

Various colors are used for points belonging to separate features to distinguish point deviations of 

each feature derived from fitting algorithms. These results declare that the minimum sensitivity to 

the uniformity of the point distribution belongs to the WLS algorithm, and the output of this 

algorithm has the minimum range of deviations. Surprisingly, the LS algorithm shows the highest 
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variation in fitting variables as well as the range of point deviations. It is comprehensive from point 

deviation graphs that the LS fitting method is biased to the feature with the highest number of 

points, and the result of the HWLS algorithm is nearly opposite of that. It seems that the weighting 

in the HWLS algorithm overwhelms the point deviation. Meanwhile, the weighting in the WLS 

algorithm is moderate, and this algorithm shows the most reasonable result for this case study. 

Table 1. Optimum fitting parameters associated to uniform and non-uniform point 
distribution 

Sample no. Fitting algorithm Theta (degree) dx (mm) dy (mm) 
Sample 1 (uniform point 
distribution) 

LS -0.0230082e-08  -0.022352 -0.022353 
WLS 1.237376e-09 -0.000978 -0.000977 
HWLS 1.325025e-08 0.020513 0.020513 

Sample 2 (non-uniform 
point distribution) 

LS -1.969307 -0.108625 0.088000 
WLS -0.010660 -0.016893 0.010275 
HWLS 1.138457 0.060697 -0.062728 

 

(a) 

   

(b) 

   
 

Figure 43. Graphs of point deviations vs. profile length associated to different fitting 
algorithms; (a) uniform and (b) non-uniform point distribution 

To provide a general analysis, as mentioned in chapter 3, 18 random points with the 

standard deviation of 0.115 mm are simulated around the nominal quarter circle profile, and then 

these data sets are matched to the profile by using three introduced fitting algorithms. This 

procedure is repeated 100 times for the uniform and non-uniform point distributions, and the three 
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optimum fitting variables (θ, dx, and dy) obtained by each fitting algorithm are analyzed as well as 

the range of point deviations. Figure 44 and Figure 45 encompass the relative graph of fitting 

parameters. In these graphs, the horizontal axis is related to parameters obtained by the LS fitting, 

while the vertical axis shows values of optimum variables calculated by WLS and HWLS 

algorithms. It is obvious that in graphs of Figure 44 points are close to the line with the unit slope. 

It can be interpreted as when points have a uniform distribution, outputs of WLS and HWLS 

algorithms are close to outputs of the LS algorithm. It happens because weights of point deviations 

have lower variation in an organized structure of points. Oppositely, graphs of Figure 45 show a 

dispersion of points from the line with the slope of one, which means variables obtained by WLS 

and HWLS fitting algorithms are more different than parameters derived from the LS algorithm. In 

addition to that result, considering the range in which data vary clarifies that variations of WLS 

data are immensely close to variations of LS data sets, but variation ranges of parameters originated 

in the HWLS algorithm are abundantly wider than variation ranges of LS data sets. 

For further perception, variables related to the LS algorithm are considered as reference 

and the difference of other obtained variables is calculated. Differences between WLS parameters 

and associated LS parameters (difference 1) are computed as well as differences between HWLS 

variables and reference LS variables (difference 2). Histograms of these differences are available 

in Figure 46 and Figure 47. Similarly, histograms prove that WLS parameters are closer to LS 

parameters in comparison to HWLS variables, and both differences are higher in the non-uniform 

point distribution condition. 

For analyzing the range of point deviations (maximum deviation minus minimum 

deviation) the maximum and minimum deviations of every matching are saved, but histograms of 

ranges related to LS and WLS algorithms are close to each other, so it is decided to generate the 

CDF (Cumulative Distribution Function) of deviation ranges, and put CDFs of various algorithms 



65 
 

in one plot. The difference in the performance of these three algorithms will be more distinct in 

CDF plots. These CDF graphs are available in Figure 48. 

From CDF graphs shown in Figure 48, it can be understood that the performance of three 

fitting algorithms is almost similar on uniform point samples; nonetheless, as it is expected, these 

algorithms ensue different results if point samples have a non-uniform structure. Surprisingly, the 

highest cumulative probability of the range of point deviations belongs to the LS algorithm, and it 

may be interpreted as the most desirable fitting, but it is in contrast with what was presented in the 

first part of this section. Therefore, more examinations are required for making a conclusion. 

Furthermore, it is important to state here that both of uniformly and normally random distribution 

of deviations are tested in simulations, but results of statistical analyses did not verify a clear 

difference between these two distribution models. 
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(a) 

 

(b) 

 

(c) 

 

Figure 44. Relative graph of fitting parameters (a) rotation angle (b) translation along 
x (c) translation along y belonging to data with uniform structure 
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(a) 

 

(b) 

 

(c) 

 

Figure 45. Relative graph of fitting parameters (a) rotation angle (b) translation along 
x (c) translation along y belonging to data with non-uniform structure 
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Figure 46. Histograms of differences in fitting parameters related to the uniform point 

distribution (vertical axes show the percentage of probability) 

 
Figure 47. Histograms of differences in fitting parameters related to the non-uniform 

point distribution (vertical axes show the percentage of probability) 
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(a) 

 

(b) 

 

Figure 48. CDF plots of point deviation ranges obtained from various fitting 
algorithms (a) uniform point distribution; (b) non-uniform point distribution 

5.1.3. Saddle profile 
In the same procedure, multiple 3D point samples with random deviations from the 

nominal saddle surface are generated, and then they are matched to the profile surface by means of 

LS, WLS, and HWLS fitting algorithms. Since no datum constraints this matching process, so there 
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graphs shown in Figure 49 and Figure 50 presents variables optimized by the LS algorithm, while 

values of optimum variables provided by WLS and HWLS algorithms are shown in the vertical 

axis. Similar to results of the quarter circle profile, in uniform point distribution, both types of data 

are close to the line with unit slope, but data points related to the HWLS algorithm are farther than 

WLS points. The same relation exists between three fitting algorithms on non-uniform point 

samples. However, there is a wider dispersion of data points in graphs related to the non-organized 

point distributions. Additionally, the relation between the range of variables seems interesting. In 

point samples with uniform structure, the variation range of fitting variables originated in WLS and 

HWLS algorithms is close to the range of LS data sets, while these variation ranges are larger on 

point clouds with unorganized arrangement. 

To provide a more clear mathematical description, LS data sets are assumed as reference 

and the difference of WLS and HWLS data with LS data is calculated. The prior difference has 

number 1 (difference 1) in graphs and the latter one is shown with number 2 (difference 2). 

Histograms of differences in optimized data are presented in Figure 51 and Figure 52. Again, it is 

verified that results of HWLS algorithm have higher difference than parameters obtained by the 

WLS algorithm. Furthermore, it is comprehensive that both defined differences are smaller when 

the point cloud has a uniform structure. 

Similar to the quarter circle profile, maximum and minimum point deviations were used to 

generate the CDF plot of deviation ranges. Resulted graphs are similar to graphs shown in Figure 

48, so for further investigation another set of simulations is performed with a more narrow range 

of point deviations (point deviations within ±0.05 mm). The CDF plot associated to the new 

analysis (Figure 53) does not declare any noticeable different result. 
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Figure 49. Relative graphs of optimum fitting parameters obtained by applying 
various algorithms to uniform point samples 
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Figure 50. Relative graphs of optimum fitting parameters obtained by applying 
various algorithms to non-uniform point samples 
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(a) 

 

(b) 

 

Figure 51. Histograms of differences in fitting parameters related to the uniform point 
distribution over the saddle profile; (a) difference between WLS and LS; (b) 

difference between HWLS and LS (vertical axes show the percentage of 
probability) 
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(a) 

 

(b) 

 

Figure 52. Histograms of differences in fitting parameters related to the non-uniform 
point distribution over the saddle profile (a) difference between WLS and LS; (b) 

difference between HWLS and LS (vertical axes show the percentage of 
probability) 
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(a) 

 

(b) 

 

Figure 53. CDF plots of point deviation ranges obtained from various fitting 
algorithms (a) uniform point distribution; (b) non-uniform point distribution 

 

0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125

Deviation range (mm)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

 LS

 WLS

 HWLS

0.09 0.095 0.1 0.105 0.11 0.115 0.12 0.125

Deviation range (mm)

0

0.2

0.4

0.6

0.8

1

C
um

ul
at

iv
e 

pr
ob

ab
ilit

y

 LS

 WLS

 HWLS



76 
 

5.2. Results of experimental measurements 
5.2.1. Measurement and analysis of 2D profiles 

Part profiles described in chapter 3 are scanned with various tactile and optical methods, 

and then the measured data sets are matched to their associated nominal 2D profiles by means of 

LS, WLS, and HWLS fitting algorithms. To compare these matched data sets with each other, they 

are quantified by the method described in chapter 4, and then MLDs originated in WLS and HWLS 

fitting algorithms are compared with MLDs obtained by the LS algorithm. As an example, the 

difference between two quantified data sets, related to the measurement of the slot profile (profile 

2) with the optical method, that are shown in Figure 54 is presented in Figure 55. 

  
(a) (b) 

Figure 54. MLD graphs of the optically measured slot profile (profile 2) fitted by
 (a) LS algorithm; (b) WLS algorithm 
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It is clear that if points are distributed equally around the profile length then three 

algorithms would result in the same local deviation graph and their differences would be zero 

(because all points would have the same weight). In the experimental evaluation of repeatability, 

measurements are repeated eight to ten times for every sample part and with every instrument to 

realize how much the difference range (the maximum difference minus the minimum one) is in 

MLDs. Results declare that the most common range of differences that has the most occurrence on 

data from different instruments is about ±200 micrometers. Furthermore, the range of difference 2 

(difference between MLDs obtained by LS and HWLS) is generally higher than the range of 

difference 1 (difference between MLDs obtained by LS and WLS). It should be stated that the 

initial analysis with a default value for the target stop limit (TolX= 10-4) shows the minimum 

possible range of difference in tactile data can be as low as ±2 micrometers, while the minimum 

obtained range of difference for optical data is about ±40 micrometers. However, decrease of the 

target stop limit to 10-12 makes the range related to tactile data close to the range obtained from 

optical data, while because of the extensive computation load the accessible computer cannot 

process optical data with this tiny target stop limit. Minimum ranges obtained from tactile and 

optical data during the initial analysis are shown in Figure 56. 

  
(a) (b) 

Figure 56. The lowest range of the difference in MLDs obtained from (a) tactile and 
(b) optical sensor on the Romer arm instrument 
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5.2.2. Measurement and analysis of 3D profiles 
The wavy profile is measured with various instruments mentioned in chapter 3. Due to the 

high number of measured points in optical scans (100,000 to 350,000 points) the accessible 

computer cannot process all points, so a subset of measured data is selected randomly, and the 

selected subset is matched to the nominal profile by means of LS, WLS, and HWLS algorithms. 

For example, a set of optically measured data related to the scan of the wavy profile with the Romer 

arm has 130,068 points, and about 1000 randomly selected points are fitted by the three algorithms. 

Figure 57 presents normal deviations of selected points at the end of fitting procedures. It can be 

understood that point deviations are nearly constant at profile segments, and their coordinates in 

deviation graphs differ within a small range (less than 10 micrometers) between the fitting 

algorithms. This constant local deviation that is noticed even between various measurement 

methods is the main motivation for using MLDs instead of individual point deviations. 

The quantification process is performed on individual point deviations obtained from 

different fitting algorithms. MLD graphs associated to data shown in Figure 57 are presented in 

Figure 58. It is obvious that the quantification procedure can decrease the size of spikes and drops 

in measured data; the range of MLD data is lower than the range of point deviations. There are 

three values for every profile segment. Comparing MLD data obtained from WLS and HWLS 

algorithms with MLD data originated in the LS algorithm may be helpful for understanding the 

influence of the non-uniformity of point clouds. For this purpose, the quantified data set related to 

the LS algorithm is considered as reference, and differences of other two data sets with this data 

set are calculated and shown in Figure 59. The front view of presented graphs declare that there is 

more dispersion in data of difference2, which is equal to higher difference values between MLDs 

derived from LS and HWLS algorithms. This result has congruence with results obtained from 

theoretical simulations.  
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Figure 57. Individual point normal deviations from the wavy profile originated in 
measurement with the optical sensor on the Romer arm; (left column: top view; 

right column: isometric view) 
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Figure 58. MLDs on segments of the wavy profile originated in measurement with 
the optical sensor on the Romer arm; (left column: top view; right column: 

isometric view) 
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Figure 59. Differences of MLD data originated in measurement with the optical 
sensor on the Romer arm (left column: front view; right column: isometric view) 
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For further investigation, the same analysis is executed on data measured with the tactile 

method. The number of measured points is 7,697, while there are 328 segments on the profile. 

Therefore, averagely there are about 23 points in every profile segment. Since data sets obtained 

from three introduced fitting algorithms are extensively close to each other, and there is a tiny 

difference between them, here only one of those graphs is shown. Point deviations and MLDs of 

profile segments derived from the WLS algorithm are presented in Figure 60. Comparing these two 

types of data to the same type of data from the optical measurement shows the range of tactile data 

is lower than optical data, although the general shape of deviation plots is similar. Once more, MLD 

data obtained from LS fitting is defined as the reference, and the difference of MLDs derived from 

WLS and HWLS fitting algorithms is calculated. The related graphs of difference 1 and difference 

2 are shown in Figure 61. The analogy of these graphs with graphs shown in Figure 59 declare that 

the differences obtained from tactile data are lower, and it is because of the uniform structure of 

tactile data. The range of differences obtained from the optical scan is nearly 5 times larger than 

the range of differences related to the tactile measurement. Furthermore, as it is expected, the 

difference between MLDs originated in LS and WLS algorithms is lower than associated data 

derived from LS and HWLS algorithms. However, due to the tiny variation of deviation weights 

that is a result of uniform point distribution, MLD data of tactile measurement resulted from three 

algorithms are significantly close. 

To understand the effect of spraying, the wavy part is scanned with the blue light scanner 

once without any coating and the other time its top surface is treated with the Miconazole nitrate 

spray before the scan. The number of measured points in the first condition is 166,441, while the 

second scan generates 226,272 points. After the denoising procedure is applied to these two data 

sets (by using pcdenoise function) their point numbers became respectively 141,534 and 192,618. 

About 10% of each data set is randomly selected and matched to the nominal wavy profile. Besides, 

due to the high number of points the target stop limit in the optimization procedure has the default 
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value of 10-4. Point deviations obtained from the LS fitting algorithm are shown in Figure 62. The 

introduced quantification method provides this opportunity to compare these two measured data 

sets and to evaluate the coating layer’s effect. The difference between two measured data sets is 

presented in Figure 63. It is comprehensive that the sprayed coating can cause a maximum variation 

of ±6 micrometers in the MLD of profile segments. 

 

(a) 

 
 

(b) 

 
 

Figure 60. (a) individual point deviations and (b) MLDs obtained from tactile 
measurement of the wavy profile (left column: front view; right column: isometric 

view) 
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Figure 61. Differences of MLD data originated in measurement with the tactile CMM 
(left column: front view; right column: isometric view) 
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Figure 62. Individual point deviations resulted from scan of coated and uncoated 
surface (left column: side view; right column: isometric view) 

  
(a) (b) 

Figure 63. Difference between MLDs obtained from measurement of the sprayed 
wavy surface and the surface with no coating (a) side view; (b) isometric view  
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The saddle profile is scanned with the Romer arm and the Atos blue light scanner 

separately. Initial results of fitted data derived from the Atos instrument (Figure 64) show that 

reference stickers cause outsize deviations, so those stickers are removed, and that group of scans 

is repeated with reference stickers on the optical table around the part.  

(a) 

  

(b) 

  

Figure 64. High deviation from the profile at the location of reference stickers 
 (a) point deviations after fitting by LS algorithm; (b) photo of the scanned 

part (left column: top view; right column: 3D view) 
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is fitted to the nominal profile by using introduced LS, WLS, and HWLS algorithms. The saddle 

part is scanned 5 times with the Atos camera, and 5 subsets are selected from every measured data 

set. Therefore, 25 various values for each fitting parameter related to every algorithm will be 

obtained. Besides, by the projection of a grid of points onto the polygonised surface that was 

described in chapter 3, 5 samples with uniform structure can be created. Fitting these uniform 

samples using every algorithm will produce 5 values for each fitting parameter. Relative graphs of 

fitting variables are shown in Figure 65 and Figure 66. In these graphs, the parameter obtained from 

LS algorithm is shown on the horizontal axis, and fitting parameters resulted from WLS and HWLS 

algorithms are presented on the vertical axis. Similar to the simulated data, measured data show 

that fitting parameters derived from the WLS algorithm, in both uniform and non-unifrom point 

distribution, are closer to the parameters originated in the LS algorithm. For better understanding, 

the defined differences in the fitting parameters are calculated, and the histogram of each variable 

is generated (Figure 67). Since the number of structured samples is not high enough, it is not 

reasonable to create the histogram of fitting variables for this type of point distribution. From the 

analogy between optimum fitting parameters obtained from simulations and experimental 

measurements, it is comprehensive that the range of Rz and dz is noticeably lower with 

experimental data. The main reason of this difference in the range of obtained fitting parameters 

should be in the dissimilarity between the assumed standard deviation and the standard deviation 

of real measured data. The distribution of point deviations and the effect of fitting algorithms will 

be discussed in detail in the next section of this chapter. 
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Figure 65. Relative graphs of optimum fitting parameters obtained by applying 
various algorithms to randomly selected samples with non-uniform structure 
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Figure 66. Relative graphs of optimum fitting parameters obtained by applying 
various algorithms to samples with uniform structure 
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(b) 

 

Figure 67. Histograms of differences in fitting parameters related to randomly 
selected samples with non-uniform point distribution (a) difference between WLS 

and LS; (b) difference between HWLS and LS 

5.2.2.1. Statistical analysis of point deviations 
It was described that about 3,000 points are randomly selected from scanned data, and these 

selected points are matched to the nominal saddle profile using LS, WLS, and HWLS fitting 

algorithms. After completion of fitting processes, the normal deviation of every point is available, 

so it is possible to generate the histogram of point deviations. Figure 68 presents two deviation 

graphs originated in measurement with GOM Atos camera and Romer arm. The normalized 

histogram of these two sets of point deviations are presented in Figure 69. 
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(a) 

 
 

(b) 

 
 

Figure 68. Individual point deviations from the saddle profile obtained from the WLS 
fitting algorithm; (a) measured with the GOM camera; (b) measured with the 

Romer arm 

  
(a) (b) 

Figure 69. Histogram of deviations shown in previous figure; (a) measured with the 
GOM camera (b) measured with the Romer arm 

-50 0 50

X(mm)

-50

0

50

Y(
m

m
)

-0.15

-0.1

-0.05

0

0.05

0.1

50-0.15

-0.1

50

-0.05

X(mm)

0

0

N
or

m
al

 d
ev

ia
tio

n(
m

m
) 0.05

Y(mm)

0.1

0

0.15

-50-50
-0.15

-0.1

-0.05

0

0.05

0.1

-50 0 50

X(mm)

-50

0

50

Y(
m

m
)

-0.05

0

0.05

0.1

50-0.15

-0.1

50

-0.05

0
N

or
m

al
 d

ev
ia

tio
n(

m
m

)

X(mm)

0

0.05

Y(mm)

0

0.1

0.15

-50-50

-0.05

0

0.05

0.1

-0.2 -0.1 0 0.1 0.2

Deviation (mm)

0

0.05

0.1

0.15

Pr
ob

ab
ilit

y

data

fitted curve

-0.2 -0.1 0 0.1 0.2
Deviation (mm)

0

0.05

0.1

0.15

Pr
ob

ab
ilit

y

data

fitted curve



92 
 

Graphs of Figure 68 show a parabolic shape for point deviations, although the data 

originated in scanning with the GOM camera seem more scattered than the second deviation data 

set. This higher amount of the data dispersion is more visible in histograms. It is comprehensive 

that although points measured with the GOM Atos camera have wider range of deviations, but the 

probability of deviations close to zero is higher with this measuring instrument. Additionally, the 

standard deviation of two data sets can be estimated from the histograms. Therefore, the standard 

deviation of data obtained from the Romer arm and the GOM camera are respectively about 15 and 

25 micrometers. These standard deviations are significantly smaller than the assumed value in 

simulations, that is why fitting parameters obtained from real samples are dispersed within ranges 

that are narrower than the range of simulated parameters. If the saddle part is measured with the 

tactile CMM to obtain data with a lower uncertainty, it will be possible to estimate the quality of 

performed optical scans. 

For further analysis, the histogram and the CDF plot of point deviations derived from 

various fitting algorithms are generated and compared together, but they seem extremely identical, 

and no specific result is obtained from this comparison. Additionally, even histograms and CDF 

plots belonging to multiple scans with the same instrument, have similar appearance. Two CDF 

plots originated in separate scans of the saddle part with the Romer arm are shown in Figure 70. To 

provide a better comparison, the curve of normal distribution is shown with the red dashed line. 

Two curves do not coincide at the 0.5 cumulative probability because the normal curve is centered 

at zero, while the median of point deviations is a small positive number. Selected samples with 

uniform structure are processed as well as randomly selected samples. The histogram and the CDF 

plot of point deviations associated to a uniform sample are presented in Figure 71. It is visible that 

the range of deviations is lower with uniform sampling that is mainly due to the small size of 

samples (361 points). Nonetheless, the Gaussian curve fitted to the histogram data is nearly similar 
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to the curve derived from non-uniform sampling. Besides, it is important to notice that the latter 

histogram is not symmetric, and the dispersion of deviations is higher on the positive side. 

  
(a) (b) 

Figure 70. The CDF plot of point deviations derived from two separate scans with the 
Romer arm 

 

  
(a) (b) 

Figure 71. Distribution of point deviations obtained from fitting a sample with 
uniform structure; (a) histogram; (b) CDF plot 
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be set to other values. If the output of the test is one, it means the hypothesis of similarity is rejected 

(samples are not similar), and if the output is zero, the hypothesis is not rejected. Sets of deviation 

data obtained from three fitting algorithms are tested by the kstest2 Matlab function. Results of 

analyzing non-uniform samples with 5% significance level declare that fitting algorithms produce 

dissimilar deviations, although deviations obtained from different samples selected from one 

measured data set are similar. The Evaluation of samples with uniform point density is performed 

with the mentioned test as well. As it is expected, point deviations resulted from three fitting 

algorithms are similar with uniform samples. However, it should be noticed that the Kolmogorov-

Smirnov test evaluates the similarity of two deviation sets, and it does not consider the location of 

matched points on the profile.  
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CHAPTER 6: CONCLUSIONS AND FUTURE WORKS 

In the first chapter, different intentions of part profile measurement were described, and 

the basic role of knowledge about the profile measurement uncertainty was discussed. It was 

mentioned that the quantification of profile measurement data is the first step for the assessment of 

the profile measurement uncertainty, and there has been no standard method for this required 

quantification so far. 

In the second chapter, different profile measurement data processing methods were 

described with a focus on various data fitting methods. Recent research works focused on the 

analysis of profile measurement data were reviewed, and drawbacks and strong points of various 

fitting methods were discussed. It was stated that since the Minimax method is susceptible to noisy 

data, it is not used with measurement data obtained with optical methods. The Least Squares (LS) 

fitting method has a better performance on optically measured data, although the location of 

measured points is neglected in this method. Due to this characteristic, the non-uniform point 

density in profile scan data causes inconsistency in the output of the fitting procedure. Based on 

the LS method, two new fitting algorithms, Weighted Least Squares (WLS) and Highly Weighted 

Least Squares (HWLS), were developed to overcome the mentioned issue of the LS fitting method. 

In these algorithms, the weight of every point deviation is defined based on the distance of that 

point from neighbor points. Therefore, higher point density is equal to lower point deviation 

weights and vice versa. 

For testing the performance of proposed fitting algorithms, separate data sets with uniform 

and non-uniform point distribution were simulated over 2D and 3D profiles. Simulated data points 

were matched to considered profiles by means of three fitting algorithms, and optimized fitting 

parameters resulted from various point layouts were analyzed as well as peak to valley (PV) 

distances (the range of individual point deviations). Results show that the optimum condition of 
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the target function is independent from the origin’s position, and final point deviations are constant 

for every fitting algorithm, although obtained fitting parameters depend on the origin’s position. 

As it was expected, three fitting algorithms had the same performance on uniform data, while their 

outputs were totally different with unorganized data sets. In some cases, the LS algorithm yielded 

poor results that are far from desired values, although the statistical analysis of simulated PV data 

is in contrast with it. Therefore, it is comprehensive that another criterion in addition to the PV 

distance is required for the performance evaluation of fitting algorithms. Researching new criteria 

was out of the scope of this work, so it is suggested as a future work. Another suggestion for the 

future research is to analyze the influence of non-random point deviations on the performance of 

fitting algorithms. For instance, periodic orthogonal functions can be used for the generation of the 

noise in data points. 

In the next stage of this work, workpieces with irregular 2D profile shapes and freeform 

3D shapes were selected and measured with various tactile and optical methods. After initial data 

preparation process, measured points were fitted to associated nominal profiles using three 

introduced fitting algorithms. Comparing point deviation graphs derived from various 

measurement methods declared that deviations are locally constant, and it originated the main idea 

of using a convolution averaging filter to produce the Mean Local Deviation (MLD) of profile 

segments for quantification of profile measurement data. In this method, the whole profile is 

divided into segments, and the deviation of points belonging to each segment are averaged. 

Obtained MLDs can be used for the analogy between profile data sets as well as the quantification 

of the profile measurement error. Point deviations obtained by applying three fitting algorithms to 

experimentally measured data were quantified by means of the proposed method, and the difference 

between them was calculated. Results show that the difference between WLS and LS algorithms is 

lower than the difference between HWLS and LS algorithms. Similarly, fitting parameters obtained 

from the WLS algorithm were closer to values derived from the LS algorithm. Furthermore, from 
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initial analysis, it seems that differences between quantified deviation data sets obtained from 

various fitting algorithms are lower with uniform point clouds. However, due to the lack of enough 

computation memory, it was not possible to analyze large data sets with a tiny stop limit for the 

target function (TolX) in the Matlab. This part of work can be executed in a future research work. 

In addition to comparing quantified deviation data sets, the two-sample Kolmogorov-

Smirnov test was used for the analogy of individual point deviation data. Results of analyses with 

the default value (5%) for the significance level show that deviation data sets produced by different 

fitting algorithms are dissimilar if the point distribution is non-uniform. However, three fitting 

algorithms yield similar point deviations with uniform samples, and this similarity exists even 

between multiple measurements. Analysis of the significance level for results obtained from non-

uniform samples, and the influence of the proposed quantification method on data similarity are 

suggested for future works. 
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APPENDIX A: OPTIMIZING FITTING PARAMETERS 
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APPENDIX B: A COLLECTION OF MATLAB CODES 

Data simulation and fitting to the quarter circle profile 
Uniform point distribution 

Main program 
 
%% Clearing workspace and command window 
 clear all; clc; close all 
 
 %% Definition of variables 
global R % Probing direction 
global points % Captured points 
global features % list and characteristics of nominal features 
global NOF % Number of features 
global NOP % Number of points for each feature 
global CP % Points on the surface 
txy0 = [0,0,0]; % Initial translation and rotation of points [Rot(d) 
TrX TrY] 
  
%% Creation of profile matrix by using the text of profile data file 
[features, NOF] = make_nominal('Quarter_circle_nominal.txt'); 
m=1; % number of repetition 
for k= 1:m 
%% Creation of point coordinates (constant distance) 
n2= 10; % number of points on the arc 
dis= 10*pi/(4*(n2-1)); % distance between points 
n1= floor(5/dis); % number of points on the lines 
n3= n1; 
x_pts1= (1:n1)'*dis; 
y_pts1= 0.4*rand(n1,1)-0.2; 
y_pts1= -0.2* ones(n1,1); 
  
theta= (10:10:80); 
x_pts2= ((0.4*rand(n2-2,1)+4.8).*cosd(theta)'); 
y_pts2= ((0.4*rand(n2-2,1)+4.8).*sind(theta)'); 
  
x_pts3= 0.4*rand(n3,1)-0.2; 
y_pts3= (5-dis:-dis:1)'; 
points= [x_pts1, y_pts1; x_pts2, y_pts2; x_pts3, y_pts3]; 
  
%% Distribution of points to the features 
 [CP,NOP]=dist_points(points, features); % output consists of groups of 
points and the number of points in each group 
  
%% fitting the simulated points to the nominal profile 
[SS0,TP,resids0,lenghts0]= Least_Sqr(txy0); % TP= Transferred points 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
TXY_LS(k,1:3) = fminsearch(@Least_Sqr, txy0, options); 
[LS,FP_LS,dev_LS,len_LS]= Least_Sqr(TXY_LS(k,1:3)); % FP= Fitted points 
  
Min_dev(k,1)= min(min(dev_LS)); 
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Max_dev(k,1)= max(max(dev_LS)); 
  
[HWSS0,TP,resids0,lenghts0]= Highly_Weighted_Least_Sqr(txy0); % TP= 
Transferred points 
options = optimset('Display', 'iter','TolX', 1e-12); 
TXY_HWLS(k,1:3) = fminsearch(@Highly_Weighted_Least_Sqr, txy0, 
options); 
 
[HWLS,FP_HWLS,dev_HWLS,len_HWLS]= 
Highly_Weighted_Least_Sqr(TXY_HWLS(k,1:3)); % FP= Fitted points 
  
Min_dev(k,3)= min(min(dev_HWLS)); 
Max_dev(k,3)= max(max(dev_HWLS)); 
  
[WSS0,TP,resids0,lenghts0]= Weighted_Least_Sqr(txy0); % TP= Transferred 
points 
options = optimset('Display', 'iter','TolX', 1e-12); 
TXY_WLS(k,1:3) = fminsearch(@Weighted_Least_Sqr, txy0, options); 
[WLS,FP_WLS,dev_WLS,len_WLS]= Weighted_Least_Sqr(TXY_WLS(k,1:3)); % FP= 
Fitted points 
  
Min_dev(k,2)= min(min(dev_WLS)); 
Max_dev(k,2)= max(max(dev_WLS)); 
  
%% CDFs of individual point deviations 
no_devs = max(NOP)*NOF; 
pd = reshape(dev_LS,no_devs,1); 
pd_LS = nonzeros(pd); 
p1 = cdfplot(pd_LS); 
set(p1,'LineWidth', 1.5, 'Color','b'); 
hold on 
  
pd = reshape(dev_WLS,no_devs,1); 
pd_WLS = nonzeros(pd); 
p2 = cdfplot(pd_WLS); 
set(p2,'LineWidth', 1.5, 'Color','g'); 
  
pd = reshape(dev_HWLS,no_devs,1); 
pd_HWLS = nonzeros(pd); 
p3 = cdfplot(pd_HWLS); 
set(p3,'LineWidth', 1.5, 'Color','r'); 
  
clear pd pd_LS pd_WLS pd_HWLS p1 p2 p3 
end 
  
hold off 
%% plotting the nominal profile and fitted points 
  
plot_profile(features,FP_LS); 
t1= title('Fitted points (LS)'); 
set(t1,'FontSize',22); 
plot_profile(features,FP_HWLS); 
t2= title('Fitted points (HWLS)'); 
set(t2,'FontSize',22); 
plot_profile(features,FP_WLS); 
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t3= title('Fitted points (WLS)'); 
set(t3,'FontSize',22); 
%% generating the bar graph of point deviations 
[Point_lenghts_LS, Point_deviations_LS]= bar_graph(features,len_LS, 
dev_LS); 
t4= title('Least Square'); 
set(t4,'FontSize',22); 
xlim([min(Point_lenghts_LS)-2, max(Point_lenghts_LS)+2]); 
  
[Point_lengths_HWLS, Point_deviations_HWLS]= 
bar_graph(features,len_HWLS, dev_HWLS); 
t5= title('Highly Weighted Least Square'); 
set(t5,'FontSize',22); 
xlim([min(Point_lengths_HWLS)-2, max(Point_lengths_HWLS)+2]); 
  
[Point_lengths_WLS, Point_deviations_WLS]= bar_graph(features,len_WLS, 
dev_WLS); 
t6= title('Weighted Least Square'); 
set(t6,'FontSize',22); 
xlim([min(Point_lengths_WLS)-2, max(Point_lengths_WLS)+2]); 
  
%% generation of histograms related to the range of point deviations 
range_dev= Max_dev - Min_dev; 
  
figure; 
histfit(range_dev(:,1)); 
xlim([0.1 0.8]); 
ylim([0 30]); 
title('Range of point deviations- LS'); 
  
figure; 
histfit(range_dev(:,2)); 
xlim([0.1 0.8]); 
ylim([0 30]); 
title('Range of point deviations- WLS'); 
  
figure; 
histfit(range_dev(:,3)); 
xlim([0.1 0.8]); 
ylim([0 30]); 
title('Range of point deviations- HWLS'); 
  
%% generation of CDF plots of deviation ranges 
figure; 
cdfplot(range_dev(:,1)); 
hold on 
cdfplot(range_dev(:,2)); 
cdfplot(range_dev(:,3)); 
xlim([0.2 0.5]); 
hold off 
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Functions 
function [components, n] = make_nominal(filename) 
  
global debug 
global R 
  
file_id = fopen(filename, 'r'); 
t = fgetl(file_id); 
components = zeros(1,7); 
n = 0; 
while true 
    t = fgetl(file_id); 
    if(debug),fprintf('%s\n',t);end;  
    d = sscanf(t,'%s %f %f %f %f %f %f'); 
    if d(1) == 'E', break, end; 
    if d(1) == '%', n=n-1; end; 
    if d(1) == 'R', R=d(2); n=n-1; end; 
    n = n+1; 
    if d(1) == 'L' 
        components(n,1:5) = d; 
    end 
    if d(1) == 'C' 
        components(n,1:7) = d; 
    end 
end 
fclose(file_id); 
% 
if(debug),disp('done!');end; 
  
return 
 
Quarter_circle_nominal.txt 
% Sample quarter circle 
% 
% L=Line    X1 Y1 X2 Y2 
% C=Circle  Xc Yc R A1 A2 Dir (+1 is CCW, -1 is CW) 
% R=Rotation direction (Direction of probe movement around the profile) 
% (+1 is CCW, -1 is CW) 
% E= end of file 
% 
% 
R  1 
L   0   0   5   0 
C   0   0   5   0   90  1 
L   0   5   0   0 
E 
 
function [SP,t]= dist_points(pts,ftrs) 
% outputs are the distributed points and the number of points for each 
feature 
global NOF 
n=length(pts); % total number of points 
Pgroups=zeros(n,2,NOF); % point groups 
Distances= ones(n,NOF)*20; % distances of points to the features 
for i=1:NOF 
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    switch ftrs(i,1) 
        case 'L' 
            stpt = ftrs(i,2:3); 
            endpt =ftrs(i,4:5); 
            line_vec = endpt-stpt; 
            for j=1:n 
                 delta = pts(j,1:2)-stpt; 
                 proj = dot(delta, line_vec)/norm(line_vec); 
                 dist = (norm(cross([delta 0], [line_vec 
0]))/norm(line_vec)); % vertical distance of point to the line 
                 if proj >= 0 && proj < norm(line_vec) 
                    if dist <= 0.3 
                          Pgroups(j,1:2,i)= pts(j,1:2); 
                          Distances(j,i)= dist; 
                    end 
                 end 
            end 
             
        case 'C' 
            Xc=ftrs(i,2); Yc=ftrs(i,3); R=ftrs(i,4);  
            A1= degtorad(ftrs(i,5)); A2=degtorad(ftrs(i,6)); DIR = 
ftrs(i,7); 
            x1=Xc+R*cos(A1); y1=Yc+R*sin(A1); 
            x2=Xc+R*cos(A2); y2=Yc+R*sin(A2); 
            center= [Xc,Yc]; 
            stpt= [x1,y1]; 
            endpt=[x2,y2]; 
            if (A2 < A1) && (DIR==1) 
                A2=A2+2*pi; 
            end 
            if (A2 > A1) && (DIR==-1) 
                A1=A1+2*pi; 
            end 
            for j= 1:n 
                delta = pts(j,1:2)- center; 
                [theta,d]= cart2pol(delta(1),delta(2)); 
                if A1==2*pi && theta*DIR > 0 
                   theta = theta+2*pi; 
                end 
                if d >= R-0.3 && d <= R+0.3 
                   if (theta-A1)*DIR > 0 && (theta-A2)*DIR < 0 
                       Pgroups(j,1:2,i)= pts(j,1:2); 
                       Distances(j,i)= abs(d-R); 
                   end 
                end 
            end 
    end 
     
end 
SP= zeros(n,2,NOF); % separated points 
for i= 1:NOF 
    s= 0; % number of points for each feature 
    for j=1:n 
        m = min(Distances(j,:)); % minimum distance of point to the 
features 
        if m == Distances(j,i) 
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            s= s+1; 
            SP(s,1:2,i)= Pgroups(j,1:2,i); 
        end 
    end 
    t(i)= s; 
end 

 

function [ss,tran_pts,dev,len]= Least_Sqr(txy) 
  
global R 
global NOF 
global NOP 
global CP 
global features 
  
rot = [cosd(txy(1)), sind(txy(1)); -sind(txy(1)), cosd(txy(1))]; 
ss=0; % sum-square of deviations 
for i=1:NOF 
    n=0; 
    for j= 1:length(CP) 
        if CP(j,1:2,i)~=[0,0] 
            n=n+1; % n= number of points 
            p(n,1:2)=CP(j,1:2,i); 
        end 
    end 
    if n > 1 
        NOP(i)= n; 
        tr = ones(n,1)*[txy(2), txy(3)]; 
        tran_pts(1:n,1:2,i) = p(1:n,1:2) *rot+ tr; 
        switch features(i,1) 
            case 'L' 
                sp= features(i,2:3); % start point 
                ep= features(i,4:5); % end point 
                lv= ep-sp; % line vector 
                [la,l]= cart2pol(lv(1), lv(2)); 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-sp; % point vector 
                    [pa,dis]= cart2pol(pv(1), pv(2)); % point angle and 
distance 
                    if pa <0 && la >0 
                        pa= pa+2*pi; 
                    end 
                    len(j,i)= dot(pv,lv)/norm(lv); 
                    pv_3d= [pv 0]; 
                    lv_3d= [lv 0]; 
                    if pa > la 
                        dev(j,i)= -R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    else 
                        dev(j,i)= R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    end 
                end 
            case 'C' 
                center= features(i,2:3); % arc center 
                r= features(i,4); % arc radius 
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                sa= degtorad(features(i,5)); % start angle 
                dir= features(i,7); 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-center; % point vector 
                    [pa,dis]= cart2pol(pv(1),pv(2)); % point angle and 
distance 
                    angle= dir*(pa-sa); 
                    len(j,i)= angle*r; 
                    dev(j,i)= R*dir*(norm(pv)-r); 
                end 
            otherwise 
                disp('the feature is not recognized!'); 
        end 
        ss=ss+ sumsqr(dev(1:n,i)); 
    else 
        ss= 1000; 
        disp('n is not big enough'); 
    end 
end 

 

function [ss,tran_pts,dev,len]= Weighted_Least_Sqr(txy) 
  
global R 
global NOF 
global NOP 
global CP 
global features 
  
rot = [cosd(txy(1)), sind(txy(1)); -sind(txy(1)), cosd(txy(1))]; 
ss=0; % sum-square of deviations 
for i=1:NOF 
    n=0; 
    for j= 1:length(CP) 
        if CP(j,1:2,i)~=[0,0] 
            n=n+1; % n= number of points 
            p(n,1:2)=CP(j,1:2,i); 
        end 
    end 
    if n > 1 
        NOP(i)= n; 
        tr = ones(n,1)*[txy(2), txy(3)]; 
        tran_pts(1:n,1:2,i) = p(1:n,1:2) *rot+ tr; 
        switch features(i,1) 
            case 'L' 
                sp= features(i,2:3); % start point 
                ep= features(i,4:5); % end point 
                lv= ep-sp; % line vector 
                [la,l]= cart2pol(lv(1), lv(2)); 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-sp; % point vector 
                    [pa,dis]= cart2pol(pv(1), pv(2)); % point angle and 
distance 
                    if pa <0 && la >0 
                        pa= pa+2*pi; 
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                    end 
                    len(j,i)= dot(pv,lv)/norm(lv); 
                    pv_3d= [pv 0]; 
                    lv_3d= [lv 0]; 
                    if pa > la 
                        dev(j,i)= -R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    else 
                        dev(j,i)= R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    end 
                end 
            case 'C' 
                center= features(i,2:3); % arc center 
                r= features(i,4); % arc radius 
                A1= degtorad(features(i,5)); % start angle 
                A2= degtorad(features(i,6)); % end angle 
                dir= features(i,7); 
                if (A2 < A1) && (dir==1) 
                A2=A2+2*pi; 
                end 
                if (A2 > A1) && (dir==-1) 
                    A1=A1+2*pi; 
                end 
                arc_ang= (A2-A1)*dir; % arc angle 
                l= arc_ang*r; 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-center; % point vector 
                    [pa,dis]= cart2pol(pv(1),pv(2)); % point angle and 
distance 
                    angle= dir*(pa-A1); 
                    len(j,i)= angle*r; 
                    dev(j,i)= R*dir*(norm(pv)-r); 
                end 
            otherwise 
                disp('the feature is not recognized!'); 
        end 
        mid_point(1,i)= 0; 
        for j=2:n 
            mid_point(j,i)= (len(j,i)+len(j-1,i))/2; 
        end 
        mid_point(n+1,i)= l; 
        for j= 1:n 
            weight(j,i)= mid_point(j+1,i)- mid_point(j,i); 
        end 
        w_dev(1:n,i)= abs(weight(1:n,i).*(dev(1:n,i)).^2); % weighted 
deviation 
        ss=ss+ sum(w_dev(1:n,i)); 
    else 
        ss= 1000; 
        disp('n is not big enough'); 
    end 
end 

 

function [ss,tran_pts,dev,len]= Highly_Weighted_Least_Sqr(txy) 
  
global R 
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global NOF 
global NOP 
global CP 
global features 
  
rot = [cosd(txy(1)), sind(txy(1)); -sind(txy(1)), cosd(txy(1))]; 
ss=0; % sum-square of deviations 
for i=1:NOF 
    n=0; 
    for j= 1:length(CP) 
        if CP(j,1:2,i)~=[0,0] 
            n=n+1; % n= number of points 
            p(n,1:2)=CP(j,1:2,i); 
        end 
    end 
    if n > 1 
        NOP(i)= n; 
        tr = ones(n,1)*[txy(2), txy(3)]; 
        tran_pts(1:n,1:2,i) = p(1:n,1:2) *rot+ tr; 
        switch features(i,1) 
            case 'L' 
                sp= features(i,2:3); % start point 
                ep= features(i,4:5); % end point 
                lv= ep-sp; % line vector 
                [la,l]= cart2pol(lv(1), lv(2)); 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-sp; % point vector 
                    [pa,dis]= cart2pol(pv(1), pv(2)); % point angle and 
distance 
                    if pa <0 && la >0 
                        pa= pa+2*pi; 
                    end 
                    len(j,i)= dot(pv,lv)/norm(lv); 
                    pv_3d= [pv 0]; 
                    lv_3d= [lv 0]; 
                    if pa > la 
                        dev(j,i)= -R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    else 
                        dev(j,i)= R*norm(cross(pv_3d,lv_3d))/norm(lv); 
                    end 
                end 
            case 'C' 
                center= features(i,2:3); % arc center 
                r= features(i,4); % arc radius 
                A1= degtorad(features(i,5)); % start angle 
                A2= degtorad(features(i,6)); % end angle 
                dir= features(i,7); 
                if (A2 < A1) && (dir==1) 
                A2=A2+2*pi; 
                end 
                if (A2 > A1) && (dir==-1) 
                    A1=A1+2*pi; 
                end 
                arc_ang= (A2-A1)*dir; % arc angle 
                l= arc_ang*r; 
                for j= 1:n 
                    pv= tran_pts(j,1:2,i)-center; % point vector 
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                    [pa,dis]= cart2pol(pv(1),pv(2)); % point angle and 
distance 
                    angle= dir*(pa-A1); 
                    len(j,i)= angle*r; 
                    dev(j,i)= R*dir*(norm(pv)-r); 
                end 
            otherwise 
                disp('the feature is not recognized!'); 
        end 
        mid_point(1,i)= 0; 
        for j=2:n 
            mid_point(j,i)= (len(j,i)+len(j-1,i))/2; 
        end 
        mid_point(n+1,i)= l; 
        for j= 1:n 
            weight(j,i)= mid_point(j+1,i)- mid_point(j,i); 
        end 
        w_dev(1:n,i)= weight(1:n,i).* dev(1:n,i); % weighted deviation 
        ss=ss+ sumsqr(w_dev(1:n,i)); 
    else 
        ss= 1000; 
        disp('n is not big enough'); 
    end 
end 

 

function plot_profile(ftrs,pts) 
  
global NOF 
  
n= length(pts); 
figure 
for i=1:NOF 
    switch ftrs(i,1) 
        case 'L' 
            line(ftrs(i,[2,4]),ftrs(i,[3,5])); 
        case 'C' 
            Xc = ftrs(i,2);  Yc = ftrs(i,3); 
            R = ftrs(i,4);   
            A1 = ftrs(i,5); A2 = ftrs(i,6); 
            DIR = ftrs(i,7); % DIR = 1 is CCW, DIR = -1 is CW 
            if (A2 < A1) && (DIR==1) 
                A2=A2+360; 
            end 
            if (A2 > A1) && (DIR==-1) 
                A1=A1+360; 
            end 
            arc_ang= (A2-A1)*DIR; % arc angle 
            seg_num = ceil(arc_ang/5)+1; 
            a_list = linspace(A1,A2,seg_num); 
            x_list = Xc + R*cosd(a_list); 
            y_list = Yc + R*sind(a_list); 
            line(x_list,y_list); 
        otherwise 
            disp('feature is not recognized!'); 
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    end 
    hold on 
    % color codes 
    color= [1 0 0; 0.4 0 0.5; 1 1 0; 1 0.5 0.5;...  % red, purple, 
yellow, pink 
            0 1 0; 0 0 0; 0 0 1; 0.2 0.5 0.3;...    % light green, 
black, dark blue, dark green 
            1 0.5 0; 0.1 0.6 1; 0.8 0.8 0.8; 0.5 0.2 0]; % orange, 
light blue, gray, brown 
    for j= 1:n 
        if pts(j,1,i)~=0 || pts(j,2,i)~=0 
            plt= plot(pts(j,1,i),pts(j,2,i),'*'); 
            set(plt,'Color',color(i,:)); 
        end 
    end 
end 
axis equal 
a= min(min(pts(:,1,:)))-1; b= max(max(pts(:,1,:)))+1; % X axis limits 
c= min(min(pts(:,2,:)))-1; d= max(max(pts(:,2,:)))+1; % Y axis limits 
axis([a,b,c,d]); 
t1= xlabel('X (mm)'); 
t2= ylabel('Y (mm)'); 
%t3= title('Fitted points'); 
set(t1,'FontSize',18); 
set(t2,'FontSize',18); 
%set(t3,'FontSize',22); 
set(gca, 'FontSize', 16); 
hold off 

 

function [pt_lens, pt_devs]= bar_graph(ftrs, lns, devs) 
global NOP 
m= size(lns,1); 
n= size(lns,2); % number of features 
l=0; % initial length 
s=0; 
color= [1 0 0; 0.4 0 0.5; 1 1 0; 1 0.5 0.5;...  % red, purple, yellow, 
pink 
        0 1 0; 0 0 0; 0 0 1; 0.2 0.5 0.3;...    % light green, black, 
dark blue, dark green 
        1 0.5 0; 0.1 0.6 1; 0.8 0.8 0.8; 0.5 0.2 0]; % orange, light 
blue, gray, brown 
figure 
for i=1:n 
    for j= 1:m 
        if lns(j,i)~=[0 0] 
            lns(j,i)= lns(j,i)+l; 
            pt_lens(s+1)= lns(j,i); 
            pt_devs(s+1)= devs(j,i); 
            s= s+1; 
        end 
    end 
    bg= bar(lns(1:NOP(i),i),devs(1:NOP(i),i)); 
    set(bg,'EdgeColor',color(i,:),'FaceColor',color(i,:)); 
    hold on 
    switch ftrs(i,1) 
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        case 'L' 
            sp= ftrs(i,2:3); 
            ep= ftrs(i,4:5); 
            lv= ep- sp; 
            l= l+ norm(lv); 
        case 'C' 
            R = ftrs(i,4); A1 = ftrs(i,5); A2 = ftrs(i,6); 
            DIR = ftrs(i,7); % DIR = 1 is CCW, DIR = -1 is CW 
            if (A2 < A1) && (DIR==1) 
                A2=A2+360; 
            end 
            if (A2 > A1) && (DIR==-1) 
                A1=A1+360; 
            end 
            arc_ang= (A2-A1)*DIR; % arc angle 
            l= l+ degtorad(arc_ang)*R; 
        otherwise 
            disp('no L or C'); 
    end 
  
end 
t1= xlabel('length (mm)'); 
t2= ylabel('deviation (mm)'); 
set(t1,'FontSize',18); 
set(t2,'FontSize',18); 
set(gca, 'FontSize', 16); 
hold off 

 

Data simulation and fitting to the saddle profile 
Non-uniform point distribution 

Main program 
%% Clearing workspace and command window 
clear all; clc; close all 
  
%% Definition of variables 
global N % Number of points 
global MP % Measured points 
RT0 = [0 0 0; 0 0 0]; % Initial translation and rotation of points 
[Rotx(d) Roty(d) Rotz(d); TrX TrY TrZ] 
  
%% generation of saddle surface and measured points 
[X,Y] = meshgrid(-50:5:50,-50:5:50); 
Z = (X.^2 - Y.^2) / 250; 
n1= 19; % number of points in X direction 
n2= 19; % number of points in Y direction 
x_pts = 2*49*rand(n1, n2, 1)-49; 
y_pts = 2*49*rand(n1, n2, 1)-49; 
m= 100; % number of repetition 
for k= 1:m 
dev= 0.1 * rand(n1,n2,1)-0.05; 
z_pts= (x_pts.^2 - y_pts.^2)/250 + dev; 
N= n1*n2; 
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x_vector= reshape(x_pts,[N, 1]); 
y_vector= reshape(y_pts,[N, 1]); 
z_vector= reshape(z_pts,[N, 1]); 
MP = [x_vector, y_vector, z_vector]; 
  
%% Fitting the measured points to the desired surface (minimum delta Z) 
[SS0, TP, DZ]= Min_DZ(RT0); % outputs: sum of squares of DZs, 
Transferred points, DZs and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-9); 
RT_Min_DZ(1:2,1:3,k) = fminsearch(@Min_DZ, RT0, options); 
[SS_MZ, TP_MZ , DZ_MZ]= Min_DZ(RT_Min_DZ(1:2,1:3,k)); 
  
%% Fitting the measured points to the desired surface (Least Squares 
method) 
[SS1, TP1, Dist1]= Min_Dist(RT_Min_DZ(1:2,1:3,k)); % outputs: sum of 
squares of normal distances, Transferred points & distances 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_Min_Dist(1:2,1:3,k) = fminsearch(@Min_Dist, RT_Min_DZ(1:2,1:3,k), 
options); % optimum rotation and translation amounts 
[SS_MD, TP_MD , Dist_MD]= Min_Dist(RT_Min_Dist(1:2,1:3,k)); 
  
range_dev_LS(k)= max(Dist_MD)- min(Dist_MD); 
  
%% Fitting the measured points to the desired surface (Weighted Least 
Squares method) 
[SS2, TP2, W_Dist2,Dist2]= Min_Weighted_Dist(RT_Min_Dist(1:2,1:3,k)); % 
outputs: sum of weighted normal distances, Transferred points, weight 
of distances 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_Min_W_Dist(1:2,1:3,k) = fminsearch(@Min_Weighted_Dist, 
RT_Min_Dist(1:2,1:3,k), options); 
[SS_MWD, TP_MWD , W_Dist_MWD , Dist_MWD]= 
Min_Weighted_Dist(RT_Min_W_Dist(1:2,1:3,k)); 
  
range_dev_WLS(k)= max(Dist_MWD)- min(Dist_MWD); 
  
%% Fitting the measured points to the desired surface (Highly Weighted 
Least Squares method) 
%[SS3, TP3, W_Dist3,Dist3]= 
Min_Highly_Weighted_Dist(RT_Min_W_Dist(1:2,1:3,k)); % outputs: sum of 
squares of weighted normal distances, Transferred points & weight of 
distances 
options = optimset('Display', 'iter', 'TolX', 1e-12, 'TolFun', 1e-2); 
RT_Min_HW_Dist(1:2,1:3,k) = fminsearch(@Min_Highly_Weighted_Dist, 
RT_Min_W_Dist(1:2,1:3,k), options); 
[SS_MHWD, TP_MHWD , W_Dist_MHWD , Dist_MHWD]= 
Min_Highly_Weighted_Dist(RT_Min_HW_Dist(1:2,1:3,k)); 
  
range_dev_HWLS(k)= max(Dist_MHWD)- min(Dist_MHWD); 
  
  
end 
%% 
LS= reshape(RT_Min_Dist,[m, 6]); 
WLS= reshape(RT_Min_W_Dist,[m, 6]); 
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HWLS= reshape(RT_Min_HW_Dist,[m, 6]); 
  
%% Point residuals 
figure; 
scatter3(TP_MD(:,1),TP_MD(:,2),Dist_MD,10,Dist_MD); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('LS'); 
  
figure; 
scatter3(TP_MWD(:,1),TP_MWD(:,2),Dist_MWD,10,Dist_MWD); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('WLS'); 
  
figure; 
scatter3(TP_MHWD(:,1),TP_MHWD(:,2),Dist_MHWD,10,Dist_MHWD); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('HWLS'); 
  
%% Deviation filtering and calculation of mean deviations 
[MLD_LS, fil_XY_LS]= Area_filter_square(Dist_MD, TP_MD); 
[MLD_WLS, fil_XY_WLS]= Area_filter_square(Dist_MWD, TP_MWD); 
[MLD_HWLS, fil_XY_HWLS]= Area_filter_square(Dist_MHWD, TP_MHWD); 
  
figure; 
scatter3(fil_XY_LS(:,1),fil_XY_LS(:,2),MLD_LS,10,MLD_LS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title(' LS fitting'); 
  
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),MLD_WLS,10,MLD_WLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title(' WLS fitting'); 
  
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),MLD_HWLS,10,MLD_HWLS); 
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colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title(' HWLS fitting'); 
  
%% calculation of differences from LS data 
Difference1= MLD_LS - MLD_WLS; 
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),Difference1,10,Difference1); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference1(mm)'); 
title('Difference between LS & WLS'); 
  
Difference2= MLD_LS - MLD_HWLS; 
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),Difference2,10,Difference2); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference2(mm)'); 
title('Difference between LS & HWLS'); 
  
%% generation of CDF (Cumulative Distribution Function)plots of 
deviation ranges 
figure; 
cdfplot(range_dev_LS); 
hold on 
cdfplot(range_dev_WLS); 
cdfplot(range_dev_HWLS); 
 
Functions 
function [SS, tpts, DZs, XYs]= Min_DZ(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
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    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z(i)= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZs(i)= tpts(i,3)-Z(i); 
end 
SS= sumsqr(DZs); 
end 
 
function [SS, tpts, Dist]= Min_Dist(RT) 
global N 
global MP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*MP(i,1:3)'+[dx dy dz]'; 
    X(i)= tpts(i,1); 
    Y(i)= tpts(i,2); 
    Z(i)= (X(i)^2 - Y(i)^2)/250; 
    DZ= [0,0,tpts(i,3)-Z(i)]; 
    norm_vec= [X(i)/125, Y(i)/125,-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    Dist(i)= dot(DZ,n); 
end 
SS= sumsqr(Dist); 
end 
 
function [SS, tpts, W, norm_dist]= Min_Weighted_Dist(RT) 
global N 
global MP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
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for i= 1:N 
    tpts(i,1:3)= Rot*MP(i,1:3)'+[dx dy dz]'; 
    X(i)= tpts(i,1); 
    Y(i)= tpts(i,2); 
    Z(i)= (X(i)^2 - Y(i)^2)/250; 
    DZ= [0,0,tpts(i,3)-Z(i)]; 
    norm_vec= [X(i)/125, Y(i)/125,-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(MP(:,1),MP(:,2)); 
m= size(Tri,1); 
W= zeros(1,N); 
for j=1:m 
    S=0; 
    r1= Tri(j,1); 
    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= MP(r1,:); 
    P2= MP(r2,:); 
    P3= MP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
SS= sum(W.*norm_dist.^2); 
end 
 
function [SS, tpts, W, norm_dist]= Min_Highly_Weighted_Dist(RT) 
global N 
global MP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*MP(i,1:3)'+[dx dy dz]'; 
    X(i)= tpts(i,1); 
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    Y(i)= tpts(i,2); 
    Z(i)= (X(i)^2 - Y(i)^2)/250; 
    DZ= [0,0,tpts(i,3)-Z(i)]; 
    norm_vec= [X(i)/125, Y(i)/125,-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(MP(:,1),MP(:,2)); 
m= size(Tri,1); 
W= zeros(1,N); 
for j=1:m 
    S=0; 
    r1= Tri(j,1); 
    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= MP(r1,:); 
    P2= MP(r2,:); 
    P3= MP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
W_Dist= W.*norm_dist; 
SS= sumsqr(W_Dist); 
end 
 
function [dev, fil_XY]= Area_filter_square(Dist, XY) 
global N 
  
seg_dim= 12; % dimension of segments 
step_len= 4; % step length (along x & y) 
x_min= -50; x_max= 50; % x limits of projected surface 
y_min= -50; y_max= 50; % y limits of projected surface 
  
seg_no= 0; % segment number 
  
for y_up = (y_min + seg_dim): step_len : y_max  % upper y of every 
segment 
    y_low= y_up - seg_dim; % lower y of every segment 
    y_center= (y_low + y_up)/2; % y of center point 
    for x_up = (x_min + seg_dim): step_len : x_max % upper x of every 
segment 
        seg_no= seg_no + 1; 
        x_low= x_up - seg_dim; % lower x of every segment 
        x_center= (x_up + x_low)/2; % x of center point 
        S=0;        % sum of deviations inside the segment 
        m=0;        % number of points inside the segment 
        for i= 1:N 
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            if (XY(i,1) >= x_low) && (XY(i,1)< x_up) && (XY(i,2) >= 
y_low) && (XY(i,2)<y_up) 
                S= S + Dist(i); 
                m= m+1; 
            end 
        end 
        if S==0 
            dev(seg_no,1)=0; 
        else 
            dev(seg_no,1)= S/m; % average of deviations related to 
points in the segment 
        end 
        fil_XY(seg_no,1:2)= [x_center, y_center]; % x & y coordinates 
of center of segment 
    end 
end 
 

Analysis of data originated in the tactile measurement of the wavy profile 
Main program 
%% Clearing workspace and command window 
clear all; clc; close all 
  
%% Definition of variables 
global D    % Offsett distance (probe diameter) 
global points % Captured points 
global N % Number of points 
global CP % Contact points 
RT0 = [0,0,0; 0,0,-10]; % Initial translation and rotation of points 
[Rotx(d) Roty(d) Rotz(d); TrX TrY TrZ] 
  
%% Importing the coordinates of points from text file 
text = 'Tactile- CMM.txt'; 
[points]=import_data(text); 
N= length(points); 
clearvars text; 
  
%% Finding the coordinates of contact points 
D= 3; 
for i= 1:N 
    for j= 1:N 
        dist(j)= norm(points(i,1:3)-points(j,1:3)); 
    end 
    sort_dist= sort(dist); 
    short_dis= sort_dist(2:4); 
    row_num= []; 
    for j= 1:3 
        row_num= [ row_num, find(dist==short_dis(j))]; 
    end 
    pt1= points(row_num(1),1:3); 
    pt2= points(row_num(2),1:3); 
    pt3= points(row_num(3),1:3); 
    norm_vec(1:3)= cross((pt2-pt1),(pt3-pt1)); 
    if norm_vec(3)> 0 
        norm_vec= -norm_vec; 
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    end 
    CP(i,1:3)= points(i,1:3)+D/(norm(norm_vec))*norm_vec; 
    clear dist 
end 
     
%% Fitting the measured points to the desired surface (minimum delta Z) 
[SS0, TP, DZ, XY]= Min_DZ(RT0); % outputs: sum of squares of DZs, 
Transferred points, DZs and XYs 
options = optimset('Display', 'iter'); 
RT_Min_DZ = fminsearch(@Min_DZ, RT0, options); 
  
[SS_MZ, TP_MZ , DZ_MZ , XY_MZ]= Min_DZ(RT_Min_DZ); 
  
%% Fitting the measured points to the desired surface (LS) 
[SS1, TP1, Dist1, XY1]= Least_Sqr(RT_Min_DZ); % outputs: sum of squares 
of normal distances, Transferred points, distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_LS = fminsearch(@Least_Sqr, RT_Min_DZ, options); 
  
[SS_LS, TP_LS , Dist_LS , XY_LS]= Least_Sqr(RT_LS); 
  
%% Fitting the measured points to the desired surface (WLS) 
[SS2, TP2, WDist2,Dist2, XY2]= Weighted_Least_Sqr(RT_LS); % outputs: 
sum of squares of normal distances, Transferred points, weighted 
distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_WLS = fminsearch(@Weighted_Least_Sqr, RT_LS, options); 
  
[SS_WLS, TP_WLS , W_Dist_WLS , Dist_WLS, XY_WLS]= 
Weighted_Least_Sqr(RT_WLS); 
  
%% Fitting the measured points to the desired surface (HWLS) 
[SS3, TP3, WDist3,Dist3, XY3]= Highly_Weighted_Least_Sqr(RT_LS); % 
outputs: sum of squares of normal distances, Transferred points, 
weighted distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_HWLS = fminsearch(@Highly_Weighted_Least_Sqr, RT_LS, options); 
  
[SS_HWLS, TP_HWLS , W_Dist_HWLS , Dist_HWLS, XY_HWLS]= 
Weighted_Least_Sqr(RT_HWLS); 
  
%% Point residuals 
figure; 
scatter3(TP_MZ(:,1),TP_MZ(:,2),DZ_MZ,10,DZ_MZ); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Delta Z(mm)'); 
title('Minimum deltaZ fitting'); 
figure; 
scatter3(TP_LS(:,1),TP_LS(:,2),Dist_LS,10,Dist_LS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
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ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('LS fitting'); 
figure; 
scatter3(TP_WLS(:,1),TP_WLS(:,2),Dist_WLS,10,Dist_WLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('WLS fitting'); 
figure; 
scatter3(TP_HWLS(:,1),TP_HWLS(:,2),Dist_HWLS,10,Dist_HWLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('HWLS fitting'); 
%% Deviation filtering and calculation of mean deviations 
[dev_LS, fil_XY_LS]= Area_filter(Dist_LS, XY_LS); 
[dev_WLS, fil_XY_WLS]= Area_filter(Dist_WLS, XY_WLS); 
[dev_HWLS, fil_XY_HWLS]= Area_filter(Dist_HWLS, XY_HWLS); 
  
figure; 
scatter3(fil_XY_LS(:,1),fil_XY_LS(:,2),dev_LS,10,dev_LS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title(' LS fitting'); 
  
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),dev_WLS,10,dev_WLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title('WLS fitting'); 
  
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),dev_HWLS,10,dev_HWLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title('HWLS fitting'); 
  
%% calculation of differences from LS data 
Difference1= dev_LS - dev_WLS; 
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),Difference1,10,Difference1); 
colormap(jet); 
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colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference1(mm)'); 
title('Difference between LS & WLS'); 
  
Difference2= dev_LS - dev_HWLS; 
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),Difference2,10,Difference2); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference2(mm)'); 
title('Difference between LS & HWLS'); 
 
Functions 
function [SS, tpts, DZs, XYs]= Min_DZ(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z(i)= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZs(i)= tpts(i,3)-Z(i); 
end 
SS= sumsqr(DZs); 
end 
 
function [SS, tpts, Dist, XYs]= Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
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dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    Dist(i)= dot(DZ,n); 
end 
SS= sumsqr(Dist); 
end 
 
function [SS, tpts, W_Dist, norm_dist, XYs]= Weighted_Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(CP(:,1),CP(:,2)); 
m= size(Tri,1); 
W= zeros(1,N); 
for j=1:m 
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    S=0; 
    r1= Tri(j,1); 
    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= CP(r1,:); 
    P2= CP(r2,:); 
    P3= CP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
W_Dist= W.*(norm_dist.^2); 
SS= sum(W_Dist); 
end 
 
function [SS, tpts, W_Dist, norm_dist, XYs]= Weighted_Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(CP(:,1),CP(:,2)); 
m= size(Tri,1); 
W= zeros(1,N); 
for j=1:m 
    S=0; 
    r1= Tri(j,1); 



130 
 

    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= CP(r1,:); 
    P2= CP(r2,:); 
    P3= CP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
W_Dist= W.*norm_dist; 
SS= sumsqr(W_Dist); 
end 
 
function [dev, fil_XY]= Area_filter(Dist, XY) 
global N 
for k=1:N 
    [t(k),r(k)]= cart2pol(XY(k,1), XY(k,2)); 
    if t(k)<0 
        t(k)= t(k)+2*pi; 
    end 
end 
v=0; % counter of middle points (sections) 
for i=1:10 
    Ri= 5*i-5;  % inner radius 
    Ro= 5*i+5;  % outer radius 
    Rm= 5*i;    % middle radius 
    alpha= 2*pi*25/(Ro^2-Ri^2); % angle of circular sector 
    R= mod(2*pi,2/3*alpha);  % calculation of quotient and remainder 
    if R==0 
        n= (2*pi)/(2/3*alpha);    % # of steps in a whole round 
    else 
        n= fix((2*pi)/(2/3*alpha))+1; 
    end 
    for j= 1:n 
        sa= 2/3*alpha*(j-1);    % start angle 
        ea= 2/3*alpha*(j+0.5);  % end angle 
        ma= 0.5*(sa+ea);    % middle angle 
        v= v+1; 
        [fil_XY(v,1),fil_XY(v,2)]= pol2cart(ma,Rm); 
        S=0;        % sum of deviations inside the section 
        m=0;        % # of points inside the section 
        for k= 1:N 
            if (r(k)>=Ri) && (r(k)<=Ro) 
                if (t(k)>=sa) && (t(k)<=ea) 
                    S= S+ Dist(k); 
                    m= m+1; 
                end 
            end 
        end 
        if S==0 
            dev(v,1)=0 
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        else 
            dev(v,1)= S/m; 
        end 
    end 
end 
 

Analysis of data measured with the Romer arm 
Wavy profile 

Main program 
%% Clearing workspace and command window 
clear all; clc; close all 
  
%% Definition of variables 
global N % Number of points 
global CP % Contact points 
RT0 = [0,0,0; 0,0,-11]; % Initial translation and rotation of points 
[Rotx(d) Roty(d) Rotz(d); TrX TrY TrZ] 
  
%% Importing the coordinates of points from text file 
text = 'Scan1- cross.txt'; 
[points]=import_data(text); 
pc_w_noise= pointCloud(points); 
pc_denoised= pcdenoise(pc_w_noise); % removing noise from the data 
pts_denoised= pc_denoised.Location; % extracting the point coordinates 
from the denoised array 
  
%% removing points that are on the edge area 
nop= length(pts_denoised); 
m = fix(nop/130); % number of randomly selected points 
s=0; % counter of points which are out of desired region 
for i= 1:m 
    nor= 130*(i-1)+round(rand*130);  % row number of the selected point 
    if nor == 0 
        nor= 1; 
    end 
    [t,r]= cart2pol(pts_denoised(nor,1), pts_denoised(nor,2)); 
    random_points(i,1:3)= pts_denoised(nor,1:3); 
    if r > 49.7 
        s= s+1; 
        d(s)= i; 
    end 
end 
CP= removerows(random_points,'ind',d); 
N= length(CP); 
clearvars text points random_points t r i d s; 
  
%% Fitting the measured points to the desired surface (minimum delta Z) 
  
[SS0, TP, DZ, XY]= Min_DZ(RT0); % outputs: sum of squares of DZs, 
Transferred points, DZs and XYs 
options = optimset('Display', 'iter'); 
RT_Min_DZ = fminsearch(@Min_DZ, RT0, options); 
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[SS_MZ, TP_MZ , DZ_MZ , XY_MZ]= Min_DZ(RT_Min_DZ); 
  
%% Fitting the measured points to the desired surface (LS) 
[SS1, TP1, Dist1, XY1]= Least_Sqr(RT_Min_DZ); % outputs: sum of squares 
of normal distances, Transferred points, distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_LS = fminsearch(@Least_Sqr, RT_Min_DZ, options); 
  
[SS_LS, TP_LS , Dist_LS , XY_LS]= Least_Sqr(RT_LS); 
  
%% Fitting the measured points to the desired surface (WLS) 
[SS2, TP2, WDist2,Dist2, XY2]= Weighted_Least_Sqr(RT_LS); % outputs: 
sum of squares of normal distances, Transferred points, weighted 
distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_WLS = fminsearch(@Weighted_Least_Sqr, RT_LS, options); 
  
[SS_WLS, TP_WLS , W_Dist_WLS , Dist_WLS, XY_WLS]= 
Weighted_Least_Sqr(RT_WLS); 
  
%% Fitting the measured points to the desired surface (HWLS) 
[SS3, TP3, WDist3,Dist3, XY3]= Highly_Weighted_Least_Sqr(RT_LS); % 
outputs: sum of squares of normal distances, Transferred points, 
weighted distances and XYs 
options = optimset('Display', 'iter', 'TolX', 1e-12); 
RT_HWLS = fminsearch(@Highly_Weighted_Least_Sqr, RT_LS, options); 
  
[SS_HWLS, TP_HWLS , W_Dist_HWLS , Dist_HWLS, XY_HWLS]= 
Highly_Weighted_Least_Sqr(RT_HWLS); 
  
%% Point residuals 
  
figure; 
scatter3(TP_MZ(:,1),TP_MZ(:,2),DZ_MZ,10,DZ_MZ); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Delta Z(mm)'); 
title('Minimum deltaZ fitting'); 
figure; 
scatter3(TP_LS(:,1),TP_LS(:,2),Dist_LS,10,Dist_LS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('LS fitting'); 
figure; 
scatter3(TP_WLS(:,1),TP_WLS(:,2),Dist_WLS,10,Dist_WLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
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zlabel('Normal deviation(mm)'); 
title('WLS fitting'); 
figure; 
scatter3(TP_HWLS(:,1),TP_HWLS(:,2),Dist_HWLS,10,Dist_HWLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Normal deviation(mm)'); 
title('HWLS fitting'); 
%% Deviation filtering and calculation of mean deviations 
[dev_LS, fil_XY_LS]= Area_filter(Dist_LS, XY_LS); 
[dev_WLS, fil_XY_WLS]= Area_filter(Dist_WLS, XY_WLS); 
[dev_HWLS, fil_XY_HWLS]= Area_filter(Dist_HWLS, XY_HWLS); 
  
figure; 
scatter3(fil_XY_LS(:,1),fil_XY_LS(:,2),dev_LS,10,dev_LS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Mean Local Deviation(mm)'); 
title(' LS fitting'); 
  
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),dev_WLS,10,dev_WLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Local mean normal deviation(mm)'); 
title('WLS fitting'); 
  
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),dev_HWLS,10,dev_HWLS); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Local mean normal deviation(mm)'); 
title('HWLS fitting'); 
  
%% calculation of differences from LS data 
Difference1= dev_LS - dev_WLS; 
figure; 
scatter3(fil_XY_WLS(:,1),fil_XY_WLS(:,2),Difference1,10,Difference1); 
colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference1(mm)'); 
title('Difference between LS & WLS'); 
  
Difference2= dev_LS - dev_HWLS; 
figure; 
scatter3(fil_XY_HWLS(:,1),fil_XY_HWLS(:,2),Difference2,10,Difference2); 
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colormap(jet); 
colorbar; 
xlabel('X(mm)'); 
ylabel('Y(mm)'); 
zlabel('Difference2(mm)'); 
title('Difference between LS & HWLS'); 
 
Functions 
function [pts]= import_data (filename) 
  
file_id = fopen(filename, 'r'); 
nums = fscanf(file_id, '%f %f %f,'); 
n= length(nums)/3; 
for i=1:n 
    pts(i,1:3)=[nums(3*i-2),nums(3*i-1),nums(3*i)]; 
end 
  
fclose(file_id); 
 
function [SS, tpts, DZs, XYs]= Min_DZ(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z(i)= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZs(i)= tpts(i,3)-Z(i); 
end 
SS= sumsqr(DZs); 
end 
 
function [SS, tpts, Dist, XYs]= Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
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Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    Dist(i)= dot(DZ,n); 
end 
SS= sumsqr(Dist); 
end 
 
function [SS, tpts, W_Dist, norm_dist, XYs]= Weighted_Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(CP(:,1),CP(:,2)); 
m= size(Tri,1); 
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W= zeros(1,N); 
for j=1:m 
    S=0; 
    r1= Tri(j,1); 
    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= CP(r1,:); 
    P2= CP(r2,:); 
    P3= CP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
W_Dist= W.*(norm_dist.^2); 
SS= sum(W_Dist); 
end 
 
function [SS, tpts, W_Dist, norm_dist, XYs]= Weighted_Least_Sqr(RT) 
global N 
global CP 
  
alpha= RT(1,1);    % rotation around X in degrees 
beta= RT(1,2);     % rotation around Y in degrees 
theta= RT(1,3);    % rotation around Z in degrees 
Rx= [1 0 0; 0 cosd(alpha) -sind(alpha); 0 sind(alpha) cosd(alpha)]; 
Ry= [cosd(beta) 0 sind(beta); 0 1 0; -sind(beta) 0 cosd(beta)]; 
Rz= [cosd(theta) -sind(theta) 0; sind(theta) cosd(theta) 0; 0 0 1]; 
Rot= Rx*Ry*Rz; 
  
dx= RT(2,1); 
dy= RT(2,2); 
dz= RT(2,3); 
  
for i= 1:N 
    tpts(i,1:3)= Rot*CP(i,1:3)'+[dx dy dz]'; 
    XYs(i,1:2)= tpts(i,1:2); 
    [t,r]= cart2pol(XYs(i,1), XYs(i,2)); 
    Z= 1/75000*r^3*(cos(t)+sin(5*t)); 
    DZ= [0,0,tpts(i,3)-Z]; 
    norm_vec= [3/75000*r^2*(cos(t)+sin(5*t)), 1/75000*r^3*(-
sin(t)+5*cos(5*t)),-1]; 
    n= norm_vec/norm(norm_vec); 
    if n(3)<0 
        n= -n; 
    end 
    norm_dist(i)= dot(DZ,n); 
end 
Tri= delaunayTriangulation(CP(:,1),CP(:,2)); 
m= size(Tri,1); 
W= zeros(1,N); 
for j=1:m 
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    S=0; 
    r1= Tri(j,1); 
    r2= Tri(j,2); 
    r3= Tri(j,3); 
    P1= CP(r1,:); 
    P2= CP(r2,:); 
    P3= CP(r3,:); 
    V1= P2-P1; 
    V2= P3-P1; 
    S= 0.5*norm(cross(V1,V2)); 
    W(r1)= W(r1)+S/3; 
    W(r2)= W(r2)+S/3; 
    W(r3)= W(r3)+S/3; 
    clear r1 r2 r3 P1 P2 P3 V1 V2 
end 
  
W_Dist= W.*norm_dist; 
SS= sumsqr(W_Dist); 
end 
 
function [dev, fil_XY]= Area_filter(Dist, XY) 
global N 
for k=1:N 
    [t(k),r(k)]= cart2pol(XY(k,1), XY(k,2)); 
    if t(k)<0 
        t(k)= t(k)+2*pi; 
    end 
end 
v=0; % counter of middle points (sections) 
for i=1:10 
    Ri= 5*i-5;  % inner radius 
    Ro= 5*i+5;  % outer radius 
    Rm= 5*i;    % middle radius 
    alpha= 2*pi*25/(Ro^2-Ri^2); % angle of circular sector 
    R= mod(2*pi,2/3*alpha);  % calculation of quotient and remainder 
    if R==0 
        n= (2*pi)/(2/3*alpha);    % # of steps in a whole round 
    else 
        n= fix((2*pi)/(2/3*alpha))+1; 
    end 
    for j= 1:n 
        sa= 2/3*alpha*(j-1);    % start angle 
        ea= 2/3*alpha*(j+0.5);  % end angle 
        ma= 0.5*(sa+ea);    % middle angle 
        v= v+1; 
        [fil_XY(v,1),fil_XY(v,2)]= pol2cart(ma,Rm); 
        S=0;        % sum of deviations inside the section 
        m=0;        % # of points inside the section 
        for k= 1:N 
            if (r(k)>=Ri) && (r(k)<=Ro) 
                if (t(k)>=sa) && (t(k)<=ea) 
                    S= S+ Dist(k); 
                    m= m+1; 
                end 
            end 
        end 
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        if S==0 
            dev(v,1)=0; 
        else 
            dev(v,1)= S/m; 
        end 
    end 
end 
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