
MINIMALLY SUPERVISED LOW-FREQUENCY METHODS FOR
MONITORING MAJOR ENERGY CONSUMERS IN BUILDINGS

by

Saman Mostafavi

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. Robert W. Cox

Dr. Yogendra P. Kakad

Dr. Thomas P. Weldon

Dr. Erik Saule



ii

c©2019
Saman Mostafavi

ALL RIGHTS RESERVED



iii

ABSTRACT

SAMAN MOSTAFAVI. Minimally Supervised Low-Frequency Methods for
Monitoring Major Energy Consumers in Buildings. (Under the direction of DR.

ROBERT W. COX)

Buildings consume approximately 40% of global primary energy. Almost a fifth of this

consumption arises from faulty or poorly operated systems. Monitoring the state of

such systems can provide beneficial diagnostic insight in favor of more energy-efficient

buildings. Non intrusive load monitoring (NILM) is the process of breaking down the

aggregate power consumption of a building into its individual constituents. NILM

can be performed using smart meter data to provide more granular information on

building appliances. It is crucial that the algorithms involved in this task be unsu-

pervised since scaling such a process to millions of houses with human involvement is

near impossible. It is also vital that the algorithms are compatible with the current,

i.e., smart meters, infrastructure if they are to be implemented at a large scale and

market-friendly.

This thesis proposes a novel robust NILM algorithm capable of disaggregating the

major loads for a portfolio of commercial and residential buildings from minutely

recorded smart meter data. The key contribution of this thesis can be summarized

in highlighting the major characteristics of power consumption in commercial and

residential buildings, inspiring certain relaxing assumptions on smaller loads in favor

of accurate state tracking for bigger ones. These assumptions address the seasonal

and operational load variability in buildings and provide a framework for inference

methods capable of producing good approximations for a computationally intractable

problem.

Finally, an empirical evaluation of the proposed NILM against several other studies

in the field is performed. To this end, a unique dataset with labeled appliance-level

data is created using data collected from several commercial buildings. The evaluation
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is presented for this dataset along with several other publicly available residential

datasets. The results indicate an improvement in several evaluation metrics defined

in this thesis.
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CHAPTER 1: INTRODUCTION

Figure 1.1 shows the typical view of the energy system. Energy stored for millennia

in carbon bonds is released to provide thermal energy or mechanical work, driving

transportation, industry, and buildings. It has been posited, however, that this tech-

nocratic view limits societyâs ability to control consumption. This alternative view

suggests that the energy system exists because of the human need for the services

derived from energy, including warmth, comfort, entertainment, mobility, hygiene,

and safety1. Thus, the system should be viewed from the perspective of the services

derived on the right side of Figure 1.1. One result of this technocratic view is that sig-

nificant low-cost energy reductions in the residential and commercial sectors are not

achieved. It is estimated that about 20% of consumption in the US commercial and

industrial sector, or 8% of all U.S. energy use and emissions, could be avoided with

efficiency improvements to these building ([3, 4, 5]. Further, this estimate is derived

from changes that can be achieved with little or even negative cost, making savings

here particularly attractive [3]. One potential driver for achieving such reductions

is to provide detailed, appliance-level usage information to consumers. Obtaining

such information in an effective manner can be challenging and costly. One poten-

tially achievable idea that has failed to find widespread adoption is the idea of energy

disaggregation, which refers to a set of statistical approaches for extracting end-use

and/or âappliance levelâ data from an aggregate, or whole-building, energy signal

[2]. The potential similarity of this approach to that of speech recognition is clear â

the laws of physics cause clear patterns in electricity demand that âcommunicateâ a

loadâs current state or activity. Unlike speech recognition, however, the electricity
1http://www.ieadsm.org/wp/files/Rotmann-BEHAVE-2016.pdf
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signal is not intended to be a communications medium â it just happens to be one.

When using a voice-activated personal assistant, for instance, common sense leads one

to minimize all background noise when providing the system with an input. When

disaggregating consumptive patterns from an electricity signal, however, one must

simply accept the realities of overlapping patterns with distinctly different sizes. This

thesis provides an approach that has been demonstrated to overcome these issues in

a number of cases, providing appliance-level information for the largest consumers in

several buildings.

Figure 1.1: Breakdown of estimated U.S. energy consumption in 2018.

By unlocking the energy stored in fossil fuels, mankind unleashed human advance-

ment at a rate unimaginable prior to the industrial revolution. Figure 1.2 shows the

nearly exponential growth in primary energy consumption that has occurred since

1800. Figure 1.3 shows the growth in GDP per capita over the same period. The

correlation is clear and not unexpected since mankind required energy to provide mo-

bility and generate electricity. These innovations were essential drivers for economic

growth and the human ability to harness creativity into invention. However, bene-
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ficial the growth has been, there are some unintended consequences. The reactions

that unleash energy from fossil fuels also produce byproducts that contribute to the

greenhouse effect. Figure 1.4 shows how carbon emission rates caused by the burning

of fossil fuels have grown since 1900. Over that same time period, global tempera-

tures have risen in nearly the same manner. The impact of this change is significant.

The worldâs oceans have absorbed 93% of the excess heat created since the mid-20th

century and about 25% of the carbon dioxide. The higher acidity and surface tem-

peratures are changing overall climate patterns and have caused 7 to 8 inches of sea

level rise since 1900. The potential impacts are significant. With continued growth

in emissions at historic rates, annual losses in some economic sectors are projected to

reach hundreds of billions of dollars by the end of the centuryâmore than the current

gross domestic product (GDP) of many U.S. states.

Addressing the megatrends noted above requires a myriad of solutions, including

Figure 1.2: Global primary energy consumption.
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Figure 1.3: GDP per capita.

Figure 1.4: Effect of global carbon emissions on global average temperature.

technologies, policies, and behaviors. This thesis focuses on one potential solution

that can help to reduce the electricity needed to provide human services. The specific

innovation focuses on an ability to disaggregate appliance-level energy consumption

data from an aggregate electricity signal. Figure 1.5 illustrates the basic idea. As

loads operate, they impact the electricity flowing into a building. For instance, heating
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water on a stove occurs by heating a resistive element. To do so safely, the power

flowing into a stove burner is typically pulse-width modulated. A refrigerator, on the

other hand, cycles periodically as a result of thermostatic control occurring inside the

storage compartment. These patterns are clearly observed in Figure 1.5, and thus

there is a desire to teach a computer to detect them automatically.

Figure 1.5: An example of the aggregate electricity signal explained by it’s individual
constituents [1].

Armel et al. [2] provide a clear discussion on the potential benefits of disaggrega-

tion. One particularly poignant example is that of monitoring the energy required to

heat and cool buildings. Figure 1.6 shows the growth in global energy consumption

for space cooling2. Final energy use for space cooling in residential and commercial

buildings5 worldwide more than tripled between 1990 and 2016 to 2020 terawatt hours

(TWh). The electricity used for space cooling required around 400 million tonnes of

oil equivalent of primary energy in 2016 â or 3% of world total primary energy use

â taking account of the large amounts of energy lost in transforming primary energy

sources into electricity. This is equivalent to all the energy used for international
2https://webstore.iea.org/download/direct/1036?fileName=The_Future_of_Cooling.pdf
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Figure 1.6: Expansion of energy use for space cooling, almost entirely shaped by
electricity.

aviation and shipping worldwide.

Active air conditioning, as opposed to building designs that keep indoor tempera-

tures down, is a relatively recent phenomenon. Although mechanical techniques for

cooling indoor air were developed as early as the 19th century and the first modern

electrical air-conditioning unit was invented at the beginning of the 20th century, the

widespread use of ACs only started to take off, initially in the United States, in the

1950s with improvements in the performance of commercial devices, lower prices, and

growing prosperity. The IEA recently labeled the growth in global demand for space

cooling as one of the most overlooked energy issues of our time. If left unchecked,

energy demand from air conditioners will more than triple by 2050, equal to Chinaâs

electricity demand today. One of the major drivers is that of the 2.8 billion people

living in the hottest parts of the world, only 8% currently possess ACs, compared

to 90% ownership in the United States and Japan. Figure 1.7 shows the expected

growth to 2050 in the residential sector.

Space cooling is not just a major driver of consumption, but also of demand, which

is the rate of consumption. Figure 1.8 shows that air conditioning resulted in nearly

1/3 of peak load in the United States. Because air-conditioners drive peak loads, they

present significant challenges in an electricity sector that relies heavily on distributed
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Figure 1.7: Expected growth of baseline scenario for Residential AC cooling by coun-
try.

renewable sources. Solar PV, for instance, is an excellent source of energy when

it is hot and air-conditioning demand is high. During the winter, however, when

space-cooling needs are lower, solar PV generation can be excessive and problematic.

Figure 1.8, for instance, shows net load on the Duke Energy Progress network on

January 24, 2018. As a result of the solar energy provided to the network during

the day, the total load in the afternoon was significantly lower than the network was

designed to provide. The area shown in yellow is load that is effectively removed from

centralized generators as a result of distributed solar. An increase in solar generation,

which is projected, would cause the net load to dip even lower, and force utilities to

pay others to take electricity from base assets or invest in significant amounts of

energy storage. Effective management of electricity consumption from space cooling

is thus essential in a changing electricity sector.

Figure 1.10 shows the most common types of air-conditioning systems found in the

world today. The majority of units found in homes and most small-to-medium-sized

offices are the central ducted split system and the packaged rooftop unit (RTU). The

former is commonplace in most single-family US homes, while the latter is common in

commercial offices, restaurants, and other facilities. These units are based on vapor-

compression refrigeration technology, which exploits a basic law of physics: when a

liquid converts to a gas (in a process called phase conversion), it absorbs heat; and
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Figure 1.8: Share of space cooling in peak load and electricity demand by country.

Figure 1.9: Example of net load on the Duke Energy Progress network.

when it condenses again (to a liquid), it releases heat. ACs exploit this feature of

phase conversion by forcing either natural or special chemical compounds, known as

refrigerants, to evaporate and condense repeatedly in a closed loop of coils. Figure ??

shows the basic process and equipment. A fan moves warm interior air over the

cold, low-pressure evaporator coils. The refrigerant inside the coils absorbs heat as

it changes from a liquid to a gaseous state, and thus cools the air. To keep cooling,

the AC converts the refrigerant gas back to a liquid again. To do that, a compressor

puts the gas under high pressure â a process that releases heat. The heat created by

compressing the gas is then evacuated to the outdoors with the help of a second set
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of coils called condenser coils, and a second fan. This cools down the gas in the coils

and turns it back into a liquid, and the process starts all over again in a constant

cycle: liquid refrigerant, phase conversion to a gas and heat absorption, compression,

and phase transition back to a liquid again.

Energy disaggregation can provide significant benefits in detecting defective per-

formance in vapor-compression systems. Such air-conditioners typically operate ther-

mostatically to remove heat from occupied spaces. Figure 1.12 represents a scenario

that can frequently occur. Both graphs show the hourly energy consumption by a

single air-conditioning unit operating in a small bank branch in Charlotte, North

Carolina, as a function of average hourly temperature. The graph on the right shows

a behavior similar to what one might expect; in general, consumption rises as out-

door temperature rises. The graph on the left, however, shows minimal correlation

with outside air temperature. The data shown on the left were recorded prior to the

detection of a faulty compressor and thermostat; the data on the right were recorded

after these issues were fixed. Insights such as those provided by Figure 1.12 are easily

obtained when appliance-level data can be monitored. Figure 1.12 also highlights an-

other potential issue. Without such data, faults in many systems can go undetected

for months or even years. In the absence of data, the primary sensor for faults in

air conditioners are occupant complaints. If occupants are comfortable â or at least

not complaining about being uncomfortable â a unit can potentially operate in a

significantly inefficient manner, such as the one shown in Figure 1.12.
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Figure 1.10: Common types of air-conditioning system.



11

Figure 1.11: AC unit with a standard vapour compression refrigeration cycle.

The powerful insights that can be obtained using appliance-level data was high-

lighted previously. Other researchers have noted other opportunities [6]. One chal-

lenge is the ability to gather such information. Figure 1.13 compares cost, installa-

tion effort, and adoption level of various technologies capable of providing appliance-

specific information. The first row focuses on hardware solutions, which include

appliances capable of providing consumption data automatically, and add-on mea-

surement devices. Note that both such solutions have clear drawbacks, including cost

and slow adoption rates. Software-based solutions focus on algorithmic approaches

to disaggregating loads from a whole-building energy signal such as the one shown

in Figure 1.5. The first of these are consumer-purchased devices and the latter are

smart meters provided by utilities. As of 2017, nearly 79 million such meters had

been deployed by US utilities [7].

Smart meters provide an interesting opportunity to perform appliance-level dis-

aggregation. The block diagram on the left side of Figure 1.14 shows the typical

arrangement for a utility-installed smart meter. These devices have a modem that

communicates over a utility-owned wide-area network (WAN), typically at 15-minute

or hourly intervals. These devices can also communicate of a home-area network

(HAN) to send information to homeowners. Previous research has shown [2] that

most large loads, including air conditioners can be detected using minutely data.
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Figure 1.12: Example fault -detection process for a heat pump in a retail bank in
Charlotte, North Carolina. Left shows a lack of correlation between outdoor air
temperature and HVAC energy for HVAC unit with faulty compressor.

The image on the right in Figure 1.14 indicates that most smart meters − which

are reaching massive deployment levels − can provide the minutely data needed for

disaggregation if firmware upgrades are provided.

If utility smart meters can provide the data needed for appliance-level disaggre-

gation and such meters are deployed at scale, a natural question arises as to why

disaggregation is not common. The answer lies in the fact that disaggregation is a

computationally challenging problem and the relative value is not immediately clear

at the level of any one individual homeowner.
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Figure 1.13: Example fault-detection process for a heat pump in a retail bank in
Charlotte, North Carolina. Left shows a lack of correlation between outdoor air
temperature and HVAC energy for HVAC unit with faulty compressor.

Figure 1.14: Typical arrangement for a utility-installed smart meter along with the
respective constraints for different frequencies of metering [2].

This thesis is concerned with the research problem of inferring individual appliance

consumption of a building for a given observation of the power at the meter. This
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practice is called energy disaggregation and it was first proposed more than 30 years

ago by Hart [1] in his seminal work. Since then, the primary focus of disaggregation

has been the residential sector. Initially most efforts involved very limited single house

scenarios at university research level. More recently, the creation of public datasets

collected from several residential buildings [8, 9, 10] have provided a more unified

test bed for comparing different approaches but these efforts remain limited to the

residential sector.

Researchers have long acknowledged the importance of having a common dataset

to define characteristics of appliances along with their operating conditions properly.

The common dataset should ideally be drawn from a broader geographic portfolio

for further robustness. In addition, it should account for different sizes of buildings,

starting from small residential to larger commercial buildings. To this date, however,

there has been very limited research done on commercial buildings, and there remain

large untapped saving potentials in the commercial sector [2]. Figure 1.15 illustrates

the contrasting patterns of one residential house in the REDD[8] dataset compared

to that of a medium-size commercial building. In these figures, there are five ma-

jor notable differences: 1. The demand is far greater in the commercial building in

comparison to that of the residential apartment. 2. The day time and night time

consumption patterns are very distinguishable in a commercial building in a way that

is not so evident in the residential apartment. 3. There is much more concurrent ac-

tivity in the commercial building, which makes disaggregation a very harder problem

compared to that of the residential dataset 4. There is a varying baseline during oc-

cupied hours in the commercial building that has to be carefully considered as it can

potentially greatly affect the result of disaggregation. We discuss this in more detail

in the upcoming chapters. 5. HVAC and exterior light constitutes a major portion

of the power consumption in the commercial building. All of these further stresses

the need for tailoring an algorithm that is capable of handling the unique challenges
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of disaggregation in the commercial sector but such a goal can not be achieved with-

out first collecting a comprehensive dataset along with corresponding appliance level

metadata as ground truth for validation purposes.
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Figure 1.15: A comparison between the major individual constituents for a daily
aggregate power consumption of (a) residential building and (b) commercial building.

It is in this context that we define the following research objective: To develop a

novel algorithm capable of disaggregating the major loads in a portfolio of commercial

buildings, namely HVAC and exterior lighting, from minutely recorded smart meter

data. The goal of this algorithm would be to provide feedback, i.e., a breakdown

of power consumption that can be used for diagnostics purposes and/or informed

decision making. We aim for a minimum level of supervision in the algorithm, limited
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to few hyperparameter tuning and load labeling.

The contributions of this thesis are summarized as:

• A detailed review of NILM: Providing an in-depth look at the state of

the art NILM algorithms, specifically those using hidden Markov models. We

point out the shortcomings of each algorithm and potential ways to improve the

performance, especially in the areas of minimal supervision and robustness.

• Data acquisition for commercial buildings: Creating a dataset from sev-

eral commercial buildings through monitoring 80 plus individual channels in

each building. The dataset contains several months of data in each building,

and to the best of our knowledge, it is one of a kind in NILM research.

• A novel robust NILM: We have created a novel NILM algorithm, capable

of performing disaggregation on multiple residential and commercial buildings.

The proposed algorithm can handle a varying baseline as well as being robust

to un-observed loads. Our algorithm does not need metadata for training and

is also computationally efficient and therefore suited for edge computing.

• Detailed comparison against state of the art algorithms: We show an

improvement in the result of disaggregation against the state of the art NILM re-

search. We empirically demonstrate the superiority of our approach by running

the algorithm on public datasets, namely AMPds[9] and REDD[8], achieving

better precision and recall rates.

• Disaggregating major loads in commercial buildings: Finally; we ac-

curately disaggregate the HVAC and exterior light in a couple of commercial

buildings for several months.

In the remaining chapters of this thesis, we address the proposed work as follows:
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Chapter 2 presents a historical overview of the different types of monitoring in

buildings. We begin by discussing the consumption patterns in buildings, both in the

residential and in the commercial sector and the merits of tracking in general. We

then discuss different methods to carry this task. Among these, we emphasize non-

intrusive low-frequency methods, which is the scope of the problem defined in this

thesis. We give a brief description of the available public datasets and also discuss

the challenges of NILM and why it is still a relevant problem.

Chapter 3 outlines the limitations of different HMM based approaches for NILM in

detail. We discuss inference for NILM as an NP complete problem and talk about the

approximation methods used for inference in HMMs. We also discuss the problem of

supervision, addressing the need to move away from training NILM using metadata.

Most important of all, we discuss how the current methodologies are incapable of pro-

ducing accurate results when challenged by an unobserved variation in the electricity

signal.

In Chapter 4, we propose a novel algorithm capable of doing robust NILM, by which

we refer to a methodology that is capable of monitoring the power demand of major

consumers of energy for a large portfolio of buildings. To this end, we break down

the proposed approach into three major steps that include background filtering, edge

analysisand load modeling, and state inference and power estimation.

Chapter 5 is an in-depth look at the results of deploying the proposed algorithms

into the problem of energy disaggregation. To this end, a comparison is made for the

performance of the proposed NILM against that of the state of the art methodologies

discussed in Chapter 2 and 3. We first define the grounds of comparison in detail.

Using the defined metrics, a performance comparison of different algorithms on the

REDD [8] and AMPds[9] datasets is presented. Finally, and most notably, we make a

performance comparison between the proposed NILM and SparseNILM [11] for data

collected from a couple of mid-size Commercial buildings. A thorough description of
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data accusation and the general characteristics of the dataset is provided alongside

these results.

Finally, Chapter 6 gives a summary of the findings presented in this dissertation.

We summarize the research findings and elaborate on the limitations of the current

work. In the concluding remarks of the thesis, we discuss the potential ways to extend

this research to be able to make NILM a practical solution for the market.



CHAPTER 2: BACKGROUND AND LITERATURE REVIEW

This chapter presents a historical overview of the different types of monitoring ap-

proaches in buildings. We begin by discussing the consumption patterns in buildings,

both in the residential and in the commercial sector, and argue the merits of tracking

certain appliances. We then discuss different methods to carry this task. Among

these, we emphasize nonintrusive low-frequency methods that closely relate to the

goals set in this thesis. Finally, we give a brief description of multiple available public

datasets and their individual load characteristics.

2.1 Building Energy Monitoring

According to the latest reports by the U.S. Energy Information Administration[7],

residential and commercial buildings account for approximately 40% (or about 40

quadrillion British thermal units) of the primary energy consumed in the United

States each year.1 Data suggests that faulty or poorly operating systems are re-

sponsible for approximately 20% of this consumption [6]. It has long been suggested

that intelligent data collection methods can detect such inefficiencies and thus drive

savings [1, 2].

Specifically, in the commercial sector, which is the main focus of this thesis, several

companies have recently attempted to capitalize on this potential, and tools for large

and medium-sized commercial buildings are growing in acceptance [12]. This new

development arises from the fact that larger buildings typically feature hundreds or

thousands of small components that work in concert to provide thermal and visual

comfort. A centralized automation system manages these many subsystems and ac-
1Energy consumption by the commercial sector also includes energy consumption for street and

other outdoor lighting, and for water and sewage treatment. However, these energy uses are relatively
small contributors to the commercial sector’s total energy consumption.[7]
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quires a vast trove of information in the process. The use case is not as clear in small

commercial buildings; however, because of their relative simplicity. For instance, most

small offices and retail locations only require a handful of air-conditioning units, and

only the most advanced among them include lighting control systems. The aggregate

impact of these small and simple facilities, however, is enormous. Buildings occupying

less than 50, 000ft2 comprise 94% of the commercial sector and consume about 47%

of the energy used by buildings overall [13]. Given the comparatively small footprint

and a vast number of such buildings, most property-management firms have relatively

few maintenance technicians forced to operate in response to occupant complaints.

As a result, maintenance issues are rampant. One major study focused on 4, 168

operational commercial air-conditioners found that about 44% had improper airflow,

and some 72% had improper refrigerant charge [14]. Consensus suggests that as many

as 70% of all small commercial air conditioners have some form of fault [15]. These

findings highlight the challenging reality: the opportunity to achieve savings at low

cost is real, but doing so requires countless small actions in numerous buildings by a

limited number of trained professionals.

Networked data tools represent the most elegant technical solution to the prob-

lem noted above, providing the opportunity to monitor many locations from one

central command center. The problem, of course, is that decision-making requires

detailed information about individual loads and their performance as a function of

time, weather, and occupancy. The most common commercial solutions usually take

one of two forms. The first of these is benchmarking tools that compare the annual,

monthly, or daily consumption between different buildings [16]. The latter utilizes

more granular information provided by some combination of sub-meters and unit con-

trol signals (i.e., for lighting and space-conditioning systems). The latter can provide

robust and useful analytics, but the cost can be extremely hard to justify, given the

relatively low probability of finding a major problem in any one facility. Therefore,
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a low-cost alternative solution to gather granular information on buildings is highly

valuable to achieve the goals mentioned above.

Different methods of intelligent data collection or monitoring as we would refer to

it in this thesis can be divided into two main subcategories:

• Intrusive Monitoring: referring to those monitoring methods that require a

point of measurement from each appliance inside a building whose tracking is

of interest.

• Non Intrusive Monitoring: referring to monitoring methods inferring the

status of several appliances in a building from a single (or at most a few) point

of measurement.

2.2 Intrusive Monitoring

The main advantage of using intrusive methods is their high accuracy and limited

need for post-processing. However, this comes at a high cost of installment and

maintenance. There are more than a few ways to do intrusive monitoring, and recently

there has been an interest shown in intrusive methods with a reduction in the cost

of sensing technologies and the emergence of IoT. Historically speaking, intrusive

methods suggested the installation of an electrical meter for each appliance in the

building. This can be either a clamp meter, i.e., a current transducer (CT), calculating

the current by measuring the electromagnetic field around the wire or a plugin meter

that you plug into a power socket. The plugin meter has a delicate installation

procedure because it requires a restart of the appliances to locate their presence by the

meter. This is not always practical, especially in commercial buildings and for more

sensitive loads. Additionally, both of these methods are highly costly in installation

and maintenance, as they often require the presence of electrical technicians.

An alternative to direct electrical metering is smart appliances, which are expanding

their presence in the households by the day. The smart appliance is capable of
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reporting its energy use and status if connected to a WiFi network. Figure 2.1 depicts

the current numbers and future estimates of smart homes in the United State [17].

As shown by this chart, the smart appliances are nowhere near the number required

to reach the goals of monitoring, even in a very tech-friendly country such as the

United States. This fact only leaves the door open to retrofitting old appliances in

favor of making them smart. However, retrofitting can often be even more costly and

impractical than direct electrical monitoring.

Figure 2.1: Percentage of penetration for smart appliances in U.S. residential house-
holds.

It is worth noting that in the commercial sectors, and specifically in more prominent

buildings, state of the art Building Management Systems (BMS) have provided more

granular information on buildings in the past decade or so. This provides very useful

side information that can be lever edged in monitoring scenarios, but there remain

many problems that need to be properly addressed before making use of such data.

These issues include data quality, sensor tagging, sensor calibration, and maintenance,

etc. Furthermore, the industry is yet to adopt a unified code for the process, and

there are ongoing efforts to standardize BMS data [18, 19] Last, but not least, even

if the majority of households where to be equipped with such a technology, there are

still numerous security and privacy issues that have to be addressed. This fact alone

can create a whole new domain of problems for energy monitoring.
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Over the past thirty years, there have been a few other suggestions for intru-

sive monitoring mostly conducted in limited scope at the university research level.

McWilliam [20] suggests a tagging process with RFID signals using the electrical ca-

ble for communication. Some have suggested using other sensor measurements such

as temperature, acoustics, lights density, etc., [21, 22]. All of these methods would

likely involve some form of retrofitting when it comes to broad-scale implementation.

2.3 Non Intrusive Monitoring

History of Non Intrusive Appliance Load Monitoring (NIALM)2 goes back to more

than 30 years ago. Initially proposed by Hart [1], it only concerned about the problem

of tracking appliance consumption inside a residential building. Hart did not pursue

the problem much further as he shifted his focus in research, but much of the research

in this field has been built on the framework that he proposed in his seminal paper.

This involved an edge clustering algorithm as the basis of building a Finite State

Machines (FSM) to model the loads. A Viterbi algorithm [23] is then used to infer

the state of each load from a single power meter measurements. In the years that

followed, NILM received limited attention. More recently, a roll-out of smart meters,

along with the creation of public datasets, advances in publicly available software, and

the dawn of the machine learning era, has generated much buzz around this problem.

According to a recent study [24], the number of publications alone in this field has

grown exponentially over the past 15 years.

Figure 2.2 presents a block diagram of a modern NILM system (This example

shows a three-phase installation as might be found in a small commercial building).

Voltage and current transducers are installed at the utility service entrance, where a

preprocessor algorithm computes useful data streams such as real or reactive power.

Subsequent steps focus on event detection, classification, and diagnostics [25].
2In this thesis, the terms NILM and NIALM are used interchangeably. Energy disaggregation is

another commonly used phrase as a substitute for these terms.
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Figure 2.2: The fundamental signal flow path in a standalone NILM.

The classification of events can be done using many different characteristics. These

can be put into two major subcategories, namely high frequency, and low frequency,

that involves information contained over various time scales [26]. This information is

best understood by considering several examples. Figure 2.3 a, c, and e show normal

daily load profiles for typical circuits found in the retail environment. Figure 2.3 a,

for instance, shows the load profile for a normally operating air conditioning unit;

Figure 2.3 c shows the profile for an exterior lighting circuit; and Figure 2.3 e shows

the profile for an interior lighting circuit. Note that the air conditioner shows inter-

mittent cycling that decreases its frequency at night when it is cooler outside, and

the interior set point is higher. Similarly, the exterior lighting circuit energizes after

sundown and de-energizes after sunrise. The interior lights, on the other hand, show

numerous on-off patterns during daytime hours and again for several hours after 8

PM when the janitorial contractors enter the building. These patterns, as well as the

specific average power levels for each load, are well correlated with expected physical

behaviors. One can collect data from various locations and understand how actual
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operating conditions affect these patterns. Similar physical intuition can be applied

at much shorter time scales. Figure 2.3 b, for instance, shows the typical behav-

ior of a packaged rooftop air-conditioning unit. Note that the air handling fan first

energizes and draws a relatively large in-rush current as the motor accelerates the

fan blades from rest. Several minutes later, the compressor energizes, and a similar

in-rush ensues. For a short time after the second in-rush transient, the steady-state

power fluctuates as the refrigerant experiences transient changes in temperature and

pressure. If one were to examine other air-conditioning units, similar yet different

behaviors would be observed. In-rush times, for instance, vary based on the com-

pressor type (i.e., either reciprocating or scroll) because of the physical differences

between them [27], and the specific power levels vary based on the refrigerant state,

outdoor weather conditions, and system size [28]. By comparison, Figure 2.3 d shows

the transient performance of an exterior metal halide lamp. Note that there is an

initial in-rush as the argon arc forms. Subsequently, there is a long transient as the

temperature and pressure in the inner arc chamber change, and the lamp begins to

reach its full light capacity. Again, behaviors for specific lamps would be different,

but the general behavior is similar because of the internal physics. Finally, Figure 2.3

f shows the transient behavior of an interior lighting circuit with switched fluorescent

lamps. In this case, one observes a very short inrush as the internal gases ionize,

followed by an almost immediate steady behavior.

The examples shown in Figure 2.3 illustrate the various time-scale issues at play

when examining load profiles. Not only are there notable and useful patterns at daily

scales, but there are also useful transient patterns for the same load that happen at

the sub-second, second, and minute scales. Most importantly, all of these behaviors

are physically justified, and thus the general patterns can be used for training. Note

that all of these patterns, however, may be different from one specific load to the

next, and possibly from one start to the next because of effects such as heating and
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gas pressures.

Having discussed these examples, we now review some of the research that has been

done to leverage the many characteristics of power waveform for NILM.
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Figure 2.3: Typical daily load profiles for various circuits in the retail environment.
(a) Air conditioner, (c) exterior lighting, and (e) interior lighting and Typical transient
profiles for various circuits in the retail environment (b) Air conditioner, (d) exterior
lighting, and (f) interior lighting.

2.3.1 High Frequency Methods

There are various useful information that can be considered in a high-frequency

NILM scenario. The real and reactive power features can distinguish loads with simi-

lar steady-state power[1]. Loads that have a continuously variable power consumption
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and produce higher-order harmonics can be classified by analyzing their Fourier series

coefficients [29].

Transient shape information also assists in load recognition. Most loads observed in

the field have repeatable transient profiles or at least sections that are repeatable [25,

30, 31]. The classifier attempts to match previously defined transient shapes known as

exemplars to any transients observed in the incoming aggregate power stream. These

exemplars are historically determined during a one-time training process. When

events occur, the resulting transient is fit to each exemplar using different methods

such as a least-squares process [30, 31], SVM classifier [32] etc. The duration of a

transient can also be effective in the "turn-on" event classification [33].

Typical modern smart meters are designed to store measurement at once per minute

frequency. This is far from the resolution needed to do disaggregation based on har-

monics and transient features. While the importance of analyzing these harmonics

in differentiating loads with similar steady-state can not be denied, it is simply im-

possible to leverage such information without further retrofitting of buildings. These

methods are considered to be out of the scope of the goals of this research and are

therefore not pursued any further in this work, and we instead shift the focus on

NILM using the state of the art smart meters.

2.3.2 NILM with smart meter data

Event detection and classification, which is sometimes called "disaggregation," has

long been the focus of academic literature. In this problem, one seeks to detect

events in the aggregate power signal and then associate these events with particular

loads. Several different techniques have been proposed over the years, all of which are

predicated on the notion that the power drawn by an individual load is related to the

physical task it performs [25]. Most approaches proceed in two steps, with the first

focused on locating changes in the power signal. This step has been implemented using

changes in steady-state power levels [1, 34]. In the second step, features extracted from
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the power signal are fed to a classifier that associates them with a particular load.

Artificial neural networks [35], support vector machines [36], clustering algorithms

[37, 38], traditional, bayesian and additive factorial hidden Markov and semi Markov

models [39, 40, 41], deep learning [42] have all been applied.

In the previous chapter, we made a case for minimal supervision in NILM. Su-

pervised algorithms, such as various supervised machine learning algorithms named

above, violate this assumption. For better accuracy, these algorithms often require a

significant amount of labeled metadata. They are also limited by what they learn in

training examples, and their performance can be highly sensitive to unseen data [43].

It is, therefore, our intention to further exploit HMMs in this work as they have

provided a backbone for unsupervised NILM methods over the years, and have also

had major success when deployed in similar types of problems in other domains such

as speech recognition. The fundamental theory of HMMs is explained in detail in the

next chapter.

2.3.3 Public Datasets

Despite approximately 30 years of work by NILM researchers, the technique has

achieved relatively limited commercial success. A big factor in this has been the

lack of sufficiently large enough datasets to allow researchers to understand all of the

nuanced signal-processing challenges that can arise when many loads are operated

simultaneously in the same building. Significant advances have recently addressed

these issues in residential settings, and several large open-source data sets have be-

come available. These include:

• Reference Energy Disaggregation Data Set (REDD): REDD is collected

by Kolter and Johnson [8] from 6 households in Massachusetts, U.S. The mea-

surements are done on individual circuits in each household and also on the

main meter. The mains are recorded at 15 KHz, and lower frequency data

(3-second intervals) is available for the rest of the circuits in each house. The
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list of appliances in each house is different. A few examples include lighting,

refrigerator, dishwasher, furnace, washer dryer, kitchen outlets, and microwave.

REDD dataset has been widely used for evaluation purposes in NILM. This

includes most of the HMM approaches discussed in this thesis. Therefore, we

chose to use this algorithm as a benchmark for performance analysis of our

proposed work against the state of the art NILM algorithms. It should be

noted that REDD is a limited dataset both from a geographical perspective

and the duration of data collected.

Figure 2.4 depicts a daily example of aggregate power and individual circuits in

one house of REDD.
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Figure 2.4: Daily example of aggregate power and its individual constituents for one
house in REDD.

• Building-Level Fully Labeled Electricity Disaggregation Data Set (BLUED):

Anderson and his group at Carnegie Mellon University [10] have collected this

dataset containing both voltage and current measurements for a house in Pitts-

burgh, U.S. This data is sampled at 12 kHz. The period of collection is minimal

at one week but contains event information and can be potentially useful for

signature extraction or creating a repository of load characteristics. We have

not used this dataset in our analysis since we find it out of the scope of the aims

of our research.
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• Tracebase Repository: Is a very unique dataset from Darmstadt University

in Germany[44]. It contains a growing dataset of individual appliances that are

collected for characterizing appliances for identification purposes. The team

claims to have collected data from more than 100 different devices from 43

different appliances types ranging from a refrigerator, computer, dishwasher

all the way to play station, and Ethernet switches. It does not contain any

whole-house meter information, and the houses from which the appliances are

collected are unspecified. Due to these reasons, this dataset is not suitable for

validation purposes of this thesis, but it provides a very good platform to create

a load model repository.

• The Almanac of Minutely Power Data Set (AMPds): Makonin[9] and

his team at Simon Fraser University have released a whole year of minute data

containing the power measurements from a single house in Vancouver, Canada.

They have collected data that includes measurements for 19 individual appli-

ances, e.g., plugs lights, washer/dryer, fridge, HVAC, furnace, heat pump, oven,

etc. and one whole-house meter. This dataset is unique in that it also provides

gas and water measurement, something that is not present in other available

datasets. Since we compare the results of our algorithm to SparseNILM [11],

also proposed by the same team, we find it beneficial to use this dataset for

validation purposes. However, it should be noted that we find this dataset to

be very limited in that it is only collected from a single house, and even con-

sidering residential datasets, it has very little load action compared to other

available datasets.

Figure 2.5 depicts a daily example of aggregate power and individual compo-

nents power in AMPds.
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Figure 2.5: Daily example of aggregate power and its individual constituents for
AMPds.

• Pecan Street project: This project started at a limited scope back in 2013

but has expanded massively over the years. As of 2018, Pecan Street Inc.

dataset [45] contains one year of 1Hz data collected through its volunteer resi-

dential research network. The dataset includes measurements from 40 homes for

whole-home electricity use, solar generation, electric vehicle charging, HVAC,

major appliances, and other in-home circuits. We find this dataset to be hugely

beneficial for residential NILM research going forward, but since most of the

available HMM approaches have validated their results on REDD, we chose not

to include this dataset in the performance analysis of our work but would like

to acknowledge the ongoing efforts in bench-marking this dataset [46].

Figure 2.6 depicts a daily example of aggregate power and individual compo-

nents power in Pecan Street data.
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Figure 2.6: Daily example of aggregate power and its individual constituents for
Pecan Street data.

The commercial sector has received far less attention from the NILM community

than residential buildings, and the primary reason has been the lack of sufficient

data [47]. The authors have recently sought to address this issue for small retail

facilities. To do so, we have worked with some of the largest banks in the United

States and have started to monitor a number of small branches. In Chapters 4 and 5,

we describe critical characteristics of power usage in such environments by providing a

comprehensive dataset collected from several commercial buildings. We also describe

a methodology for tracking the usage of major loads.

2.4 Summary

In this chapter, we discussed the merits of energy monitoring in buildings and

introduced a history of different monitoring approaches. We elaborated on the char-

acteristics of building energy data in multi-time resolution for commercial buildings

and discussed various types of information that can be leveraged in these scales. As

nonintrusive load monitoring is the subject of this thesis, we provided a review of

the several approaches to NILM at different levels of data granularity. Finally, we

presented a list of publicly available datasets for NILM and made a case for using a

couple, for evaluation purposes, that are more suited to the scope of this thesis.



CHAPTER 3: MOTIVATION

Despite approximately 30 years of work by NILM researchers, the technique has

achieved relatively limited commercial success. One main reason has to do with the

fact that researchers have not had access to datasets sufficiently large enough to allow

them to understand all of the nuanced signal-processing challenges that can arise when

many loads are operated simultaneously in the same building. In this chapter, we try

to identify such challenges with a focus on commercial building power consumption

data, an area in NILM that has been largely overlooked.

The research problem addressed in this thesis is related to how the aggregate power

consumed in a single building and read by an individual meter can be explained by the

individual constituent units inside the building. This problem was mathematically

formulated by Hart [1] in 1992 as:

P (t) =
n∑
i=1

Si(t)Ai + e(t) (3.1)

where P (t) is power observed at the main meter at time t, and e(t) represents for

measurement noise. If all possible n appliances are known (and this in itself is already

a stretched assumption), minimizing |e(t)| for n-dimensional Boolean state vector Si

results in a good estimate of each appliance state (ON/OFF). This can be formulated

as the following combinatorial optimization problem:

Ŝt = arg min
S
|P (t)−

n∑
i=1

SiAi| (3.2)

As pointed out by Hart in his original paper, this is an NP-Complete weighted

set problem and computationally intractable, and therefore optimal solution can be
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only achieved for scenarios where the aggregate is explained by a very small set of

constituents.

Nevertheless, computational complexity is not the only issue of disaggregation.

The nature of appliances in residential and commercial buildings are such that the

complete set of power consumers, Pi, for every building is never known, or even if they

are measured and known at the beginning of the process, appliances are replaced on

a regular basis, and some tend to have a seasonal usage. This means that if one were

to learn and model the appliances in some arbitrary training phase, the underlying

condition can change significantly to the point that these models are no longer a

valid representation of Pi. Furthermore, even in a hypothetical case that the perfect

knowledge of all the possible appliances and their apparent power are known, there

remains the very real possibility that one appliance can be described as the sum of

some other. To quote Hart:

A more subtle problem is that the nature of the solution that 3.2 provides

can be very inappropriate to the problem as a small change in the mea-

sured P (t) would often be analyzed as a big change in the switch process,

a(t), with a number of appliances turning on or off simultaneously in such

a way that the net change in approximates the observed change as well as

possible.

Considering the current levels of data granularity provided by the smart meters,

it is virtually impossible to find an optimal solution to 3.2 such that it satisfies an

exact match to the ground truth. Nevertheless, there are ways to introduce certain

regularization terms with good physical intuitions that would make solving a subset

of the problem a realistic challenge. Furthermore, whenever exact inference is not

intractable, approximation methods with lower bounds can be introduced for a faster

inference that is accurate enough. The rest of this chapter discusses the standard

NILM, explains inference in hidden Markov models, which has been the most popular
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choice for unsupervised NILM, and finally explores the shortcomings in supervised

training and inference with HMMs.

3.1 Setting the Standards for NILM

With the above considerations, we have identified the following rules that need to

be followed by any successful NILM algorithm (partially inspired by [24]):

• Non-intrusive: The algorithm can use only a single point of measurement, and

there is no additional information provided from other sensors or any retrofitting

efforts required.

• Unsupervised: Training using meta-data is prohibited. This fact is dictated

by the first assumption as the collection of meta-data involves using side infor-

mation.

• Compatibility with smart meter data: The algorithm must be compati-

ble with lower frequency datasets (Sampled at 1 minute and above). While a

modern smart meter initially reads data at a higher frequency, the commercial

models all report and store data at 1 minute and above. It is, therefore, crucial

that the algorithm is tailored to such data granularity for commercial success.

• Computational tractability: Convergence should happen in a reasonable

time. The definition of reasonable can, of course, changed based on application.

If, for example, real-time processing via a local microcontroller is desired for

NILM, the algorithm should account for the limited computational capabilities

of such controllers. On the other hand, offline scenarios would have more room

for complex algorithms trained on larger portions of data collected from one or

several buildings.

• Robustness to unobserved/varying loads: The algorithm must be able to

handle unseen or un-modeled loads that are initially not present in the training
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phase. If, for example, an appliance is added at a later stage in the process or

a variation occurs in power demand due to seasonality, the NILM should either

be calibrated to account for these changes or decouple such effects from the

disaggregation process.

• Accurate appliance power estimation: The algorithm must be capable of

tracking the power consumption of individual appliances with the same level of

granularity as the main meter. This task is considered to be the ultimate goal

of a NILM process.

Now that we have defined a set of rules and standards for NILM, we explore whether

or not the current algorithms, specifically those based on HMM, abide by them. To

this end, we first explain learning and inference in HMMs.

3.2 Hidden Markov Models

In the paper [48] published following the original NILM paper, Hart introduced

the foundations of modeling NILM as a hidden Markov model. Ever since then,

researchers have often used HMMs in modeling appliance power usage, assuming

steady state power levels reminiscent of the finite state machine model proposed in

the seminal paper of Hart. In modeling loads using HMMs, researchers often apply

learning and inference advances in speech recognition to NILM. This is a reasonable

approach since both problems can be defined under the bigger umbrella of structural

learning problems. It is also with this view that some of the available literature

has treated NILM as a handy example in demonstrating the applications of certain

theoretical achievements in state inference of HMMs (e.g., [41, 40]).

A hidden Markov model is a Markov model, in that each variable only depends

on the previous preceding variable (in time.) The term hidden refers to the variables

that are not directly observed and inferring their state is of desire. Figure 3.1 depicts

the structure of an HMM.
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Figure 3.1: Graphical representation of a hidden Markov model.

A Hidden can be characterized using the following variables and parameters:

• Hidden (latent) variables: the finite set L = {l1, l2...., lm}.

• Observed variables: the finite set O = {o1, o2...., on}.

• Transition matrix: A = {aij, 1 ≤ i, j ≥ N} representing the probability of

moving between states from one time slice to another, aij = P (Lt = j | Lt−1 =

i).

• Emission matrix: B = {bj(k)} are assumed to be Gaussian and are the proba-

bility of emission for observation when the system is at a certain state, bj(k) =

p(ot = k | Lt = j).

• Initial state probability distribution: the probability of states at time t = 1,

πi = P (L1 = i).

The model parameters can be represented as Θ = (π,A,B). Our main goal is to

find the most probable sequence of states given the model parameters |Theta and

observation sequence O. This should itself be broken down to two problems: 1.

learning model parameters and 2. Inference using the learnt parameters.

Learning the model parameters that best describes the model can be defined by

maximizing the likelihood P (O | Θ):
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P (O | Θ) =
∑
S

P (O,L | Θ) (3.3)

where

P (O,L | Θ) = P (O | L,Θ)P (O | Θ) (3.4)

Given the states, observations are independent from one another and joint proba-

bility can be written as:

P (O | Θ) = πl1P (o1 | l1)
∑ T∏

t=2

aijP (ot | lt) (3.5)

This problem can be solved using the Baum-Welch algorithm [49], which is an

Expectation-Maximization (EM) algorithm. We discuss the state of the art of this

process and how it relates to the problem of supervision in the next section. The

problem of learning can be broken down further into two problems. One is two find

P (O | Θ) with the model parameters. Given this likelihood, find the most probable

sequence for states L that explains the observations O. This reacquires the calculation

of P (O | L,Θ) over all the possible states. If one is to do the math, there are 2Tmn

possibilities to be considered for this likelihood. However, there is a faster solution

to the problem of exact inference using Dynamic programming. Viterbi [23] is one

such algorithm. By considering the most likely path to a state and discarding the

less likely path in a transition from time t to t + 1, the calculation is reduced to

T ∗m2. Again this would be ineffective as the number of the states grows. This fact

has resulted in a number of approximation methods used for inference in HMMs.

Gibbs sampling [50] has been shown to be an effective approach in approximating
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complex densities. It works with an acceptance-rejection mechanism. Starting with

an initial guess of distribution parameters, a random walk of samples in parameter

space is generated with the following criteria: if the sample increases the likelihood,

it is always accepted, and if not, it is accepted with some degree of randomness. It

has been shown that these chains of random walks can eventually converge to the

underlying distribution with enough number of iterations [51], but the chains can

potentially grow to be in the range of tens of thousands of iterations and, therefore,

while the Monte Carlo methods are fairly simple to implement, they bring some

computational cost along with them.

A faster alternative is Variational Bayes methods [52]. They work by finding a

lower bound of the marginal likelihood by minimizing a probability distance measure

(usually KL divergence) for a tractable auxiliary distribution. This process involves

an assumption of some level factorization in the structure of HMM.

3.2.1 Factorial hidden Markov Model

Figure 3.2 depicts the structure of a factorial hidden Markov model (FHMM) as

proposed by [53]. This particular HMM maps the observations to a hidden state

such that a single multinomial random variable is represented by a collection of state

variables from other HMMs. For each observation in Equation 3.2, the most probable

corresponding hidden states can be calculated as [53]:
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P (Pt|St) = det(C)−1/2(2π)−D/2

exp
{
− 1

2
(Pt − µt)

′
C−1(Pt − µt)

}
(3.6)

where

µt =
M∑
1

W (m)S
(m)
t (3.7)

and

ât = arg max
a

P (Pt|St) (3.8)

Here, W is a matrix with binary elements explaining the contributions of states to

µt. D is the length of observation Pt which itself is a Gaussian random vector. K

is the number of possible modes for each state variable. Since there are K modes

and M different state variables, there are KM possibilities to be considered for each

observation and since the mean of each observation sequence (µt) will depend on all

the possible states, calculating the posterior probabilities in 3.5 becomes intractable

for FHMM. Approximation methods for such models with good lower bounds have

been introduced in several works, including [40, 53]. For a detailed review of these

approximation methods, including variational Bayes methods, the readers are directed

to Jordan [52].
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Figure 3.2: Graphical representation of a factorial hidden Markov model.

3.2.2 Challenges of NILM with hidden Markov models

Unsupervised NILM research has, by and large, been dominated by deployment of

temporal graphical models in a probabilistic framework ([39], [40]). This has been

partially driven by the fact that HMMs are very useful models for unsupervised

practices and can also account for modeling of more complex types of behavior through

their numerous extensions.

Table 3.1 shows the time complexity for the inference of some of the state of the

art NILM algorithms using HMMs. It is clear that the computational cost quickly

becomes intractable for large values of M. The use of approximate methods provide

more tractable inference methods, an example of such methods is Markov Chain

Monte Carlo algorithms or structural mean-field methods [53]. These methods are
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highly susceptible to local optima in the likelihood function, which can significantly

degrade the performance of the approximate method. Two good examples of such

cases are inferring the power of a small load in the presence of some noise from

significantly bigger loads or a case in which the presence of multiple loads is not

distinguishable from a load that equals the sum of them.

It is, therefore, necessary to introduce some regulatory constraints to reduce the

computational cost and avoid the many local optima. For example, as pointed in the

original work of Hart, it is a fair assumption to say that in small enough intervals,

appliances very rarely change their states once and very rarely more than once. This

can be interpreted as another way to say that the signal is piece-wise constant. To

this end, Kolter and Jaakkola [40] impose a condition upon the posterior distribution

such that at most, one HMM changes state at any given time. They also introduce

a difference HMM (DHMM) to ensure that step changes are credited to the corre-

sponding appliance power changes. To address the robustness of the algorithm to

previously unseen data, Kolter introduces a generic mixture component to take on

piece-wise constant values, which captures the nature of un-modeled loads. The prior

for this signal zt ∈ IRn is defined as:

P (z1:T ) =
1

Z(λ, T )
exp

{
− λ

T−1∑
t=1

‖zt+1 − zt−1‖
}

(3.9)

Table 3.1: Time complexity for a single observation sequence of length T for M hidden
Markov models, each consisting of K states.

Model Time Complexity

Exact Inference FHMM O(TMKM+1)

Exact Inference for Super-State HMM[11] O(TK2M)

Completely factorized variational inference [53] O(TMK2)

Approximate Inference Gibbs Sampling [54, 55, 41] O(TMK)
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It is important to note that while this can be considered a good smoothing con-

straint on datasets with 1 Hz and above frequencies, it would, however, not have

the same desired effect on once per minute sampled data. Here, λ should be large

enough so that the model does not assign all the output to the state variables but

small enough so that z1:T is not a constant-valued). Figure 3.3 demonstrates an ex-

ample of using such a constraint on once per minute data. It is clear that one way or

another, the regularization is going to result in under or over smoothing without any

significant gain in the goal of modeling the unobserved loads.
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Figure 3.3: An example of TV Regularization with (a) λ = 1000 (over smoothing)
and (b) λ = 0.1 (under smoothing).

For a better illustraition, let us consider all the sum of un-observed loads in any

given window of length T as a non-stationary signal of the same length:
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x1:T = {x1, x2, .., xt}

where

xt = xt−1 + εt for t ∈ 1, 2, ..., T (3.10)

Where ε is an uncorrelated white-noise process (for all times t). From here on in

this document, we refer to this signal as the baseline. Figure 3.4 is a depiction of such

a baseline for a typical summer day in a commercial building. We believe that, for the

most part, studies in NILM have neglected the presence of such a baseline. This is

partially due to the syntactic nature of available datasets for NILM. For example, the

proposed algorithm in Kolter [40] reports near-perfect performance of the proposed

NILM algorithm on synthetic data while the same can not be said of the tests carried

out on the REDD dataset.

Parson [24], on the other hand, suggests a detrending via a min extraction process.

While this might be suited to some residential cases, it is visually visible that such

an approach would not generalize to other datasets and domains of buildings.1

In one particular study that acknowledges the need for consideration of such phe-

nomena, Makonin [11] proposes that all the un-metered data be treated as a modeled

HMM. This could introduce further computational cost to the algorithm with no im-

mediate gain in performance in cases where the upper boundary of the number of the

state is not defined correctly. It is also worth pointing out that the un-metered load

statistical characteristics, which the HMMs happens to be based on, can drastically

change over time with the introduction of new loads in a building or simply by the

seasonal nature of certain operations. Figure 3.4 depicts such a scenario on a sample
1We choose a similar idea but generalize it to a robust background filtering algorithm in the next

Chapter.
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data set from a small size commercial building.
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Figure 3.4: A statistical demonstration of non-stationary baseline.

Finally, even if all of the above issues are to be addressed, the assumption simply

implies a need for detailed monitoring of the circuits in some training period. This

fact alone violates the unsupervised nature of the NILM algorithm.

3.2.3 On the issue of supervision

In most of the cases above, along with other research carried out using HMM as the

basis of disaggregation, including the more recent examples [11, 56], prior models for
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each appliance are required to be learned from data. Learning these models would, at

the very least, demands a knowledge of the number and types of appliances present in

each household and in some extreme cases, detailed sub-metered data for each appli-

ance [11]. A comprehensive comparison of some of the more recent NILM approaches

in [57] concludes that to achieve reasonable performance in NILM algorithm, some

level of supervision is required. This process violates the unsupervised requirement

for NILM.

To address this issue, Parson [24] proposes an approach that tunes a prior appliance

model to a period in the aggregate data that only contains a single load. This fact

is achieved by calculating the likelihood that a chunk of observed aggregate data is

best explained by a single load.

In general, as pointed by [57] it is rare to find such periods in which only a single

appliance is running. For example Figure 3.5 depicts one such case for a medium-size

commercial building.

Others have suggested a clustering approach based on a power signature. These

signatures can come from active and reactive power [1, 58]. As for clustering, in one

successful example, Baranski [59] proposes that events be filtered using a thresholding

mechanism, and the extracted events clustered using fuzzy clustering. Events in the

same cluster are then assumed to be generated from an individual appliance power

profile; however, the optimal number of clusters in this scenario is not identified.

It is also not clear how the clusters can be appropriately tagged to represent their

corresponding power consumers.

In the next chapter, we propose an algorithm that is capable of unsupervised mod-

eling of loads through a novel edge clustering mechanism.
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Figure 3.5: An example of aggregate power consumption, along with individual load
constituents, for a typical weekday in a commercial building.

3.3 Summary

In this chapter, we discussed the required standards for NILM. We gave a re-

view of hidden Markov models, including learning and inference using such models,

and discussed the rich history of HMMs and it’s variations applied to the problem

of nonintrusive load monitoring. We further discussed challenges in NILM, namely

computational complexity, supervision, and sensitivity to un-observed/varying data.

What follows in the next chapter is the general proposal in this thesis in addressing

the challenges described in this chapter.



CHAPTER 4: A ROBUST NILM ALGORITHM

In the last chapter, we outlined the limitations of different HMM-based approaches

for nonintrusive load monitoring. In this chapter, we propose a novel algorithm

capable of doing robust NILM, by which we refer to a methodology that is capable of

monitoring the power demand of major consumers of energy for a large portfolio of

buildings. To this end, we break down the proposed approach into three major steps:

• Background filtering: In which we extract the background of the signal using

an edge-preserving algorithm to dampen the effect of unknown/undesired loads

on the inference stage. This step can be broken down into a change of mean

detection and detrending.1

• Edge analysis and load modeling: in which we detect the edges above

a certain threshold from the aggregate data along with their corresponding

time stamps and cluster the pairs of positive and negative edges based on their

absolute size and order of appearance. From these clusters, we model the hidden

states assuming a Gaussian distribution.

• State inference and power estimation: in which we disaggregate the signal

by generating all the valid combinations of Gaussian clusters and infer the

states by training a naïve Gaussian Bayes classifier. We estimate the power of

individual loads from these inferred states and their corresponding means.

The general framework for the proposed NILM is depicted in Figure 4.1:
1It is important to note that the change of mean detection step is mainly applicable to the dataset

that we have been working with, i.e., medium-sized commercial buildings.
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Figure 4.1: The diagram of the proposed algorithm.

Before we get to a detailed explanation of each step, it is important to note that

since we are dealing with 1-minute data, we neglect the importance of making the

signal piecewise constant, which has been discussed in several other NILM publica-

tions, including [40]. We firmly believe that while this is an essential step in datasets

sampled at a higher frequency (1Hz and above), it has virtually no effect on the per-

formance of the proposed NILM, and it only presents a burden on the computational

cost of the algorithm.

4.1 Background filtering

We divide the process of background filtering into two steps: 1. Model based change

of mean detection and 2. Baseline removal. The first stage of this process is more

tailored toward the commercial datasets, specifically those collected from building

with large exterior lights. The major reason behind framing the process in this

manner is the effect of dominant edges produced by the distinct power consumption

pattern of these exterior lights in the performance of the baseline estimation algorithm

(The latter algorithm guarantees edge preservation). A lack of such appliances in a

building does not affect the generality of our approach, as no change of mean would

be detected in the first step, and the signal is passed to the next stage untouched.
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4.1.1 Model based change of mean detection

It can be assumed that by and large, the majority of commercial buildings have

completely different modes of operation during night time and day time. This phe-

nomenon is caused by two major factors: The presence of exterior lights (traditionally

halogen lights) during the night hours and the 8-hour workday and all the activi-

ties that it generates by keeping the building occupied in a certain level that is not

reached otherwise (this period also happen to have a high correlation with daylight).

Figure 4.2 displays the exterior light uncertainty during May 2014 in a mid-sized

commercial building along with an example of aggregate power during a workday in

May for the same building. It is immediately noticeable that the lights are one of the

largest constituents of power consumption in the building. It is also evident from the

figure that they can be assumed as two-state loads. Therefore, tracking the state of

the exterior light can be formulated as conducting a search to find points at which

the mean of signal changes most significantly.2

Let x be a signal, of length n, sampled at equal intervals. We define 1 < i < n to be

a change point in x, if it divides p into two segments with different and independent

probability distributions. These probability distributions are to be interpreted given

some model M . We accept a change point if the new probability is higher than that

of a single model. This can be written as:

log (P (M1|x1:i)) + log (P (M2|xi+1:n))− log (P (M |x1:n)) > 0 (4.1)

Where P (M |p) is the likelihood of the model given the data. From here on we
2It can be rightly argued that there might be several change points in a signal that do not

necessarily correspond to the exterior lights. In such cases, and for robustness to such similar
scenarios, one can always conduct the search for the first and last most significant change points in
case there are more than two of them present in the signal.
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Figure 4.2: An example of the Exterior light uncertainty along with the aggregate
power in a mid-size commercial building.

simply refer to a two-segment model as Mt, one segment model as Mo and data as

D. The above equation can be rewritten as:

P (Mt|D)

P (Mo|D)
=
P (D|Mt)P (Mt)

P (D|Mo)P (Mo)
(4.2)

Where P (D|M), the marginal likelihood for the model. This likelihood is calculated

with an integration over the model parameters θ:
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P (D|M) =

∫
P (D|θ,M)P (θ|M)dθ (4.3)

Assuming a Gaussian process, the data should follow a Gaussian distribution of

the form N(µ, σ) and we can calculate the marginal likelihood as:

p(D|M) = (2πσ2)−n/2 exp(− 1

2σ2

n∑
j=1

(xj − µ)2) (4.4)

where D = {x1, x2, ..., xn}. Since we can claim to have no knowledge of model

structure, the priors of the models P (M) can be assumed to be equal, and with this

assumption, the task of finding the changepoint in the segment becomes:

arg max
i

logodds = ln
P (D|Mt)

P (D|Mo)
if logodds > thr (4.5)

where i is the changepoint. With the assumption that the underlying distributions

are Gaussian, the above equation can be further simplified as:

arg max
i
|x̄(i)− µ| if |x̄(i)− µ| > thr σ√

n
(4.6)

where

x̄(i) =
1

n

i×n∑
k=n(i−1)+1

xi (4.7)
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It is important to note that if the value of the threshold is chosen to be too small,

this can result in too many undesired changepoints, and if it is too large, we can

easily miss the changepoints. In practice and particularly in this example, we use

prior information to assist the speed and accuracy of our algorithm. First, we fix a

maximum number of changepoints (4 in this case). Second, we favor longer distances

between the changepoints, i.e., two changepoint that are closer than a certain distance

to each other are not considered simultaneously. Third, the length of each partition

should be more than a certain threshold. So far, we have talked about how to decide

on accepting or rejecting a changepoint. We propose a divide and conquer algorithm

to cut the partitions to the smallest possible predefined partitions of a certain length

and merge them according to the equation 4.6 until no further merging is possible. If

merging is not possible, we search for a change point in the neighborhood such that

it maximizes equation 4.6. Once the partitioning is done, we prune the partitions

according to our prior conditions. It is important to note that this approach doesn’t

guarantee optimal number of change points, but we can guarantee that it would always

work in the case of finding the first and last one if there exist such changepoints.

Finally, the author would like to openly acknowledge the fact that while more

sophisticated changepoint algorithms exist [60, 61], this fast and straightforward ap-

proach is justified by the fact that it guarantees that the task at hand is carried out

with relative simplicity.
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Figure 4.3: An example of the output of the change of mean detection algorithm,
highlighted by the grey area.

4.1.2 Baseline removal

In the previous chapter, we discussed the importance of removing the baseline for

the sake of the robustness of the approach. To clarify, what we mean by baseline

in any given signal is the gradual variation in the local mean of the signal within a

small neighborhood. Gradual here has a specific meaning in a low-frequency signal:

It refers to variation due to small steps in succeeding points in a signal. From this

definition, it is clear that what we are trying to achieve by this baseline elimination is

merely removing the small unknown/miscellaneous loads that, if present in the signal,

will significantly affect the task of inference in disaggregation. Let P be a signal, of

length t, sampled at equal intervals. B, a signal of the same length, is the baseline

to P if it has the following properties: 1) B is smooth and 2) B is faithful to P. The

smoothness (differentiability) guaranties the edge preservation in the process while

faith fullness ensures that we are following the trend of P . The problem of finding

the baseline can, therefore, be defined as minimizing the following term:

∑
i

wi(Pi − zi)2 + λ
∑
i

∆2zi
2 (4.8)
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where, by introducing the first term, we are guaranteeing that we follow the original

signal, and with the second term, we ensure the edge preservation by adding ∆2zi
2

=

(zi−zi−1)−(zi−1−zi−2) and setting λ as a tuning parameter. w is a vector of weights

for generalization. The choice of w should be such that it ensures the estimated

baseline not only follows the trend of signal but also lies on the base of it. One such

choice can be defined as [62]:

wi = k for pi > zi and wi = 1− k otherwise (4.9)

where 0 < k < 1. Solving for this minimization’s leads to the following system of

equations:

(W + λD′D)z = Wy (4.10)

where W = diag(w) and D a difference matrix: Dz = ∆2z. Eilers et al. [62]

suggest a linear time convex solution based on Cholseky factorization, leveraging the

sparsity of the system of equations for fast implementation. We have implemented

the algorithm using Scipy package in Python.

One final note to make here is that it is important to note that λ and p should

be tuned properly and according to application. In our case, trying the algorithm on

several different datasets, we found out that 102 < λ < 103 and 0.01 < p < 0.1 works

well for NILM datasets, but the readers are encouraged to do further investigation

on this.

Figure 4.4 demonstrates an example of background filtering described in this sec-
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Figure 4.4: An example of (a) baseline estimation along with the (b) detrended signal.

tion.

4.2 Edge analysis and load modeling

As discussed in the previous chapters, we consider the use of smart meter data for

training NILM disaggregator to be in violation of an unsupervised algorithm. While

acknowledging the interesting work of Parson [24] in tuning the prior appliance models

to a period in the aggregate data that only contains a single loads in small residential

houses, we have found the task of finding such periods to be virtually impossible for

more complex buildings (complex here refers to buildings with a lot of concurrent

load activities). Instead, we focus on an approach based on an analysis of the edges
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in signal and paring them into their corresponding source (loads). To do so, we first

extract all the signatures with an absolute value above a threshold along with their

respective time stamps. This threshold should be large enough to avoid unnecessary

edges and small enough not to miss any important information. In practice, this

depends on the frequency of sampling, level of noise and the desired loads to be

disaggregated.3 From this set, using a novel approach, we compute all the possible

pairs of positive/negative edges within a small threshold ε of each other that do not

have a time stamp difference of more than a few hours with one general rule: the

chronological order constitutes that a negative edge should always follow a positive

one. It is important to note that in this step, we do not care about the faithfulness

of the edges to their corresponding loads but we rather care about the faithfulness of

the edge magnitudes to an underlying distribution. The result of this process is a set

of pairs (u, d) ∈ IR× IR where u represents all the extracted on edges and d represent

the potential corresponding off edges.

To optimally cluster this set, we map each point in this 2D set to yi ∈ IR by

averaging the absolute value of the pairs and use CKmeans [63] clustering. CKmeans

is specifically suited to this problem as it provides optimal, fast solution to the problem

of 1D clustering. A brief explanation of the algorithm is as follows:

Let Y = {y1, y2, ..., yn} ∈ IR be the set of extracted edges that we intend to cluster.

The optimal clustering of this set for k clusters is equal to assigning each element

in the set to a cluster such that the sum of squares to the mean of each cluster

is minimized. If yj is the smallest element cluster m in an optimal solution, then

all the other points must also be optimal for m1 clusters or otherwise, there is a

better solution. We evaluate this using function D, within cluster sum of squares.

By taking this as the optimal substructure property, we can establish the following
3For example in a case where the only desired load is HVAC with a corresponding edge of 3400

watts, it is self-evident that extract 100 watt edges would serve no purpose as it can simply be
considered as the noise level of the mentioned load.
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Bellman equation:

D[i,m] = min
m≤j≤i

{
D[j1,m1] + d(yj, , yi)

}
1 ≤ i ≤ n, 1 ≤ m ≤ k (4.11)

where d(yj, , yi) =
∑i

k=j

(
yj − 1

N

∑i
l=j yl

)2
. For further information on this algo-

rithm, the readers are directed to [63].

Finally, it is important to note that, like any other clustering problem, the opti-

mal number of clusters should be addressed properly. We use Bayesian information

criterion (BIC) for this purpose:

BIC(K) =
N∑
p=1

(yp − ck
σε

)2
+ 2K logN (4.12)

where σε is the intracluster variance, N is the members count of a cluster and ck

represents the cluster centroids. We can think of K as a regularization parameter

in minimizing BIC. The top picture in Figure 4.5 is an example of different values

calculated against the number of clusters for edges extracted during weekday. Based

on this figure, we choose four as the optimal number of clusters. The bottom figure

demonstrates the output of optimal clustering along with a fitted Normal curve for

each load.
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Figure 4.5: An example of (a) Choosing the optimum number of clusters based on
BIC and (b) the corresponding CKmeans clustering results.

To model the loads, we assume that each load follows binary states (loads with

more than two states can be modeled as a combination of several two-state loads).

Figure 4.6 shows an empirical distribution of power demand for a few loads in a

building. As seen in the figures, the power demand of appliances roughly follow a

Gaussian distribution N (µ, σ) (This is also supported by the literature [55]). Given

this, we estimate the parameters of the Gaussian distributions given the observations
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in each cluster using a MAP estimation. 4
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Figure 4.6: Emprical ON Distributions of Loads in an example building.

4.3 State inference and power estimation

The state inference problem has to do with figuring out the state of appliances

(hidden variables) such that it explains the aggregate power demand (observations):

yt =
M∑
1

W (m)s
(m)
t (4.13)

where W is a matrix with binary entries explaining the contributions states to yt.

Given the models described in the previous section, the problem can be formulated

as explaining the mean of observations as a combination of Gaussian mixture models

(univariate normal densities). Let us consider Smt = {s1t , s2t ...sMt ]} as all the possible

M different states at time t. The inference task for some observed sequence of data

Y = {y1, y2, ...yn} can be written as:
4closed form soloutions for mean and variance in 1D.
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p(s|y, θ) =
p(y, s|θ)
p(y)

=
p(y|s)p(s)∫∞

−∞ p(y|s)p(s)dθ
(4.14)

where θ is the model parameters. Computing the integral (marginal likelihood) in

this equation is generally very hard. To find the set of states that best explain an

observation, a Viterbi path can be calculated as the optimal model parameters for

which the likelihood equation is maximized. In other words:

θ̂ = arg max
θ

P (si(θ)|y) (4.15)

In the case of a hidden Markov model, finding the Viterbi path requires an esti-

mation of all the model parameters such as emission probabilities, transition prob-

abilities, etc. The exact inference is intractable, and there are several approximate

methods, e.g., Monte Carlo and Variational Bayes (VB), that can give good estimates

of Viterbi path[52, 53, 64]. Alternatively, a dynamic programming approach for exact

inference can be tried in cases where the set of model parameters is small [23]. All

of the above, however, would require an EM training of HMMs on data, a procedure

that violates the prohibiting condition of using metadata for training.

Alternatively, given the assumption of independent Gaussian mixtures with known

parameters (µ, σ), the integral can be analytically derived. First, the goal is defined as

finding the set of weights W such that the following mean square term is minimized:

E[|y −
M∑
j=1

Wjsj|2] (4.16)
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where j represents every single Gaussian mixture. As discussed before, each Gaus-

sian is considered as a uniform distribution representing a single ON state. If there

exists a load with multiple ON states, it can be presented by a combination of the

Gaussians. Considering the Gaussian mixtures, the probability that an observation

belongs to a model can be defined using the Bayes rules as:

P (si|y) =
αiN(y ; µi, σi)

ΣM
k=1αkN(y ; µk, σk)

(4.17)

where the Normal distribution N is defined as:

N(y ; µi, σi) = ((2π)1/2)σ−1/2 exp(−(y − µ)2/2σ2) (4.18)

by substituting Equation 4.18 into Equation 4.17, it can be written as:

P (si|y) =
αiσ

−1/2
i exp(−(y − µi)2/2σ2

i )

ΣM
k=1αkαi(σ

−1/2
k exp(−(y − µk)2/2σ2

k))
(4.19)

The Viterbi path can be calculated as:

θ̂ = arg max
θ

P (si(θ)|y) (4.20)

subject to
∑
m

πm = 1 (4.21)
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where θ = (µ, σ, π) and π is the probability of each cluster given the full data.

This model is effectively a naïve gaussian Bayes classifier[65]. Figure 4.7 depicts a

diagram of how such a model can be trained. Using some known probabilistic models

with categorical tags, we generate a set of samples with the corresponding categories.

Assuming the independence for parameters of θ we take the derivative with respect

to each one to estimate the maximum likelihood in Equation 4.20:

δP (si(θ)|y)

δ(µi)
= 0 ,

δP (si(θ)|y)

δ(πi)
= 0 ,

δP (si(θ)|y)

δ(σi)
= 0 (4.22)

which results in the following set of equations:

π̂i =
ni
ny

µ̂i =
1∑

j δ(Sj = si)

∑
j

yjδ(Sj = si)

σ̂2
i =

1∑
j δ(Sj = si)

∑
j

(yj − µ̂i)2δ(Sj = si) (4.23)

where ni is the number of times class i is observed, ny is the length of all the data.

j is the index of training example and δ(True) = 1 and 0 otherwise.
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Figure 4.7: Training a naïve gaussian Bayes classifier.

In training the classifier, we have to account for all the possible load combina-

tions that are otherwise not explained by a single cluster. Below we give a detailed

explanation for how to calculate a set of all the valid combinations.

4.3.1 Combination of Gaussian

For any given set L = {l1, l2, .., ln}, there are 2n − 1 possible (non-empty) subsets.

We seek to calculate the sum of all the possible subsets. We propose a simple process

for calculating the sum of all subsets using binary numbers. Consider the binary

number B with n digits where each digit corresponds to one element of the set L.

The 2n−1 combinations can then be expressed by a scalar product of all the possible

binary numbers from 00...1 to 11...1 with L:

sumi = 〈Bi, L〉 (4.24)

for a simple example L = {l1, l2, .., l3}, the unique combinations of the set can be

given as:
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i binary sum

1 001 l3

2 010 l2

3 011 l2 + l3

4 100 l1

5 101 l1 + l3

6 110 l1 + l2

7 111 l1 + l2 + l3

Considering all the possible combinations, we create the new set L′
= {l′1, l

′
2, ..., l

′
2n−1},

where each new element is a sum of one or more independent Gaussian distributions

derived as:

N(µ1, σ1) +N(µ1, σ2) = N(µ1 + µ2, σ
2
1 + σ2

2) (4.25)

There is one more caveat to the process. It is unavoidable that the mean of some

of the new derived distributions would land in the proximity of each other, not that

dissimilar to the original NILM problem of two or more steady states of small loads

summing up to a similar size of a bigger load. It is evident that the result of in-

ference can be significantly affected under such a scenario. Therefore, we propose

to prune the new set with the following condition: if µ′
i −mu

′
j < ε, we remove l′i if∑n

k=1 bki >
∑n

k=1 bkj or else keep it and remove l′j where bks are the binary digits of

the corresponding binary numbers. The threshold ε effect on the performance of the

algorithm should be considered carefully when pruning the set. Figure 4.8 depicts
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the process in action where starting from clusters in (a), we arrive at the new pruned

set in (b).

0 1 2 3 4 5

(a)

0 2 4 6 8 10

(b)

Figure 4.8: An example of (a) initial clusters (b) pruned sum of clusters (red are
filtered).

Figure 4.9 depicts a graphical representation of inference using a mixture of Gaus-

sians with known parameters. It is of high importance to note that in the observation

sequence, we only consider the large change points in the time series. This significantly

reduces the computational cost without any apparent effect of the performance of the

algorithm (this fact is also reported by [41]). Once the hidden states are inferred, the

power can be estimated as:
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Figure 4.9: Graphical representation of Gaussian mixtures with known parameters.

ŷt =
M∑
1

W (m)θ
(m)
t (4.26)

where θ(m)
t are the means of the original clusters and W is the state matrix with
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binary entries.

4.4 Summary

In this chapter, we presented a sequential process to infer and disaggregate in-

dividual load activity from a single aggregate point of measurement. This process

starts by first filtering the background. We then model individual loads from their

corresponding edges as Gaussian mixtures. Using the models, we present a fast ap-

proximation cable of handling the inference task using all the viable combinations

of Gaussian mixtures. The major contributions presented in this chapter are put

through empirical evaluation in the next chapter.



CHAPTER 5: PERFORMANCE ANALYSIS ON SEVERAL PUBLIC AND

PRIVATE DATASETS

This chapter is an in-depth look at the results of deploying the proposed algorithms

described in the previous chapter to the problem of energy disaggregation. To this

end, a comparison is made for the performance of the proposed NILM against that

of the state of the art methodologies discussed in Chapters 2 and 3. We define the

grounds of comparison in detail in the first section, and the terms defined here are used

in the evaluation process. A performance comparison of different algorithms on the

REDD [8] dataset is presented in the next section. This is specifically of value since

most of the available publications of NILM have used this dataset for experimental

evaluation. In the next section, we run tests on AMPds [9] dataset, a publicly available

dataset collected minutely from a residential building for a whole year. Finally, and

most notably, we make a performance comparison between the proposed NILM and

SparseNILM [11] for data collected from a couple of mid-size Commercial buildings.

To the best of our knowledge, there is no comparable public dataset collected from

commercial buildings available at the moment. Therefore a thorough description of

data accusation, and the general characteristics of the dataset is provided alongside

the results.

5.1 Evaluation Metrics

There has been a range of accuracy metrics used for evaluation purposes in NILM.

This is partly due to different datasets and application areas with NILM.

Recently there has been an effort to make a unified platform for disaggregation,

one with a standard metadata format and accuracy metrics. This resulted in the
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development of NILMTK [66], a toolkit designed to help researchers evaluate the

accuracy of NILM algorithms. Although not completely accepted as a standard for

the field, it has provided a good guideline for some of the accuracy metrics that can

be used for NILM evaluation. Here we mention a few useful accuracy metrics that

are relevant to the comparisons along with the reasoning behind it.

Like any other learning task, the popular metrics precision, recall, accuracy, etc.,

can be adopted for NILM evaluation, but they need to be defined properly in context,

or else they can result in misleading interpretations. Consider the following example:

often in NILM publication, accuracy has often defined as Acc. = correctly predicted instance
total instance .

Consider a scenario in which a load is only active for an aggregate time of an hour

during a 24 hour period (This is actually a very common phenomenon with most

residential loads like dishwasher, washing machine, dryer, etc.). If one predicts the

load to be off for the whole day, this will result in an accuracy of 95.83%, which is a

very skewed representation of accuracy! We can easily address this issue by reporting

recall and precision.

Kolter [40] reports precision and recall at the circuit level. He defines these terms

in a rather peculiar way: recall measures what portion of a given circuitâs energy is

correctly classified, while precision measures, of the energy assigned to a circuit, how

much truly belonged to that circuit. The reason he suggests reporting circuits rather

than actual load activity is the fact that his dataset (REDD) does not contain the

data for the individually submetered loads. Since we did not have such a problem

with our own collected dataset, and in general, such a scenario is not ideal, we chose

to put the focus on reporting the states of the tracked loads rather than circuits. We

also consider the fact that a load can take more than two states. With that in mind,

we define precision and recall for a multi-class scenario as:
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Figure 5.1: Confusion matrix.

Precision i =
Cii∑
iCij

(5.1)

Recall i =
Cii∑
j Cij

(5.2)

F1 score = 2× Precision× Recall
Precision + Recall

(5.3)

Where C is the confusion matrix, the table depicting the correct and confused

classified states for a classifier, as shown in Figure 5.1.

As an example, in the hypothetical example described above, we would have a 0%

recall. F1 score represents the harmonic mean of precision and recall and would also

be 0%.

Finally, the ideal NILM should be able to track the power, and not only the state

of each individual load. One popular way for judging the performance of the disag-
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gregator is to calculate the normalized disaggregation error as:

Acc. = 1−
∑T

t=1

∑M
i=1 |ŷt

(i) − yt(i)|
2
∑T

t=1 ȳt
(5.4)

where ȳt is the observed total power consumption, ŷt(i) and yt(i) are the estimated

and ground-truth power of appliance i at time t.1

5.2 Performance of NILM on Residential Datasets

Of the datasets discussed in Chapter 2, we consider two of them that have sufficient

metadata for validation and are also publicly available AMPds [9] and REDD [8].

These two datasets have different sampling frequency and measurement types. In

favor of consistency, we have downsampled to once per minute for apparent power,

which we believe is a reasonable frequency offered by the commercial smart meters

available in the market. It is important to note that while our approach should be

considered as semi-supervised, we have kept the level of supervision limited to tagging

the results of our clustering algorithm. It is, therefore, important to distinguish a

major difference between our approach and other works in that all of them require

training of a model based on sub-metered data.

5.2.1 Disaggregating REDD

The Reference Energy Disaggregation Data set (REDD) [8] is a public dataset

which monitors six residential homes at high frequency in Boston for a few month

periods each.2 The low-frequency version of the dataset has once per second data

for the mains and once per 3 seconds of data for the appliances. We downsampled
1While the averaging with observed total power consumption can be questionable; we adopt this

metric as it has been very popular in other available literature and it provides a good basis for
comparison with other algorithms whose codes are not readily available online.

2This varies significantly for each home.
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Table 5.1: Performance comparison between state of the art algorithms and the pro-
posed NILM, performed on REDD dataset.

House Kolter [8] Johnson [41] Makonin [11] NILM

House 1 46.6% 82.1% 99.3% 97.0%
House 2 50.8% 84.8% 99.0% 93.0%
House 3 33.3% 81.5% 97.5% 96.0%
House 6 55.7% 77.7% 99.7% 92.0%
Average 46.6 81.5 98.9 94.5

the dataset to once per minute data using the Fourier method to avoid aliasing. As

suggested by Johnson [41] we chose the top 5 power-drawing devices (refrigerator,

lighting, dishwasher, microwave, furnace) across houses 1,2,3 and 6. In that paper,

Johnson mentions using 18 24-hour segments for their experimental results. Since

these periods were not specifically identified, we carried the test on all the available

data from the houses mentioned above. We also had to address some syncing prob-

lems, also mentioned by [11]. It is important to note that not all the mentioned

appliances are present in all the datasets. Nevertheless, to make comparable results,

we stick to the proposed structure and choose equation 5.4 as our accuracy metric for

the same sake. Table 5.1 shows the final results. On the first look, it is clear that

we were able to improve on Kolter’s [40] and Johnson’s [41] results significantly and

come close to matching the results of Makonin [11]. The author would like to mention

the fact that having had no success in reproducing the results of [11] based on his

published code, we chose to copy the numbers directly from the tables provided in

the paper.

Figure 5.5 depicts the breakdown of the result of disaggregation for two days versus

that of the ground truth data. While it is not possible to make direct comparisons

(the exact dates are unknown), it looks likely that there is an improvement in results

compared to the figures published in the three other papers.
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Figure 5.2: Estimation accuracy results for 2 different test days compared to their
respective ground truth.

5.2.2 Disaggregating AMPds

Almanac of Minutely Power dataset (AMPds) [9] is collected from a single residen-

tial house in Vancouver, BC, using 21 sub-meters for an entire year. The frequency of

data acquisition is once per minute, and unlike REDD, it is consistent at the mains
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and appliance level. We followed the publisher’s guideline in tracking the following

deferrable3 loads in the dataset: the clothes dryer, the dishwasher, the heat pump,

and the kitchen wall oven.

On top of accuracy, we report recall and precision for each load. Table 5.1 Table

5.2 shows the results of our proposed approach versus that of the SparseNILM. As

evident by the numbers in the table, the proposed NILM outperforms SparseNILM

considerably. On a more detailed level, it looks like the performance of proposed

NILM is less impressive for Oven compared to the other loads. This is fueled by the

fact that oven is a multi-stage load, and there is significant variation in its power

demand.

It is important to note that upon closer look and after many trials with the

SparseNILM algorithm, we were unsuccessful in reproducing the results published

in Makonin full thesis [67]. We suspect that it might be the case that the authors

have chosen to use up to 8 states for the training of their HMMs and have also used a

considerable amount of data (several months) in the training phase. In such a mode,

there is a good chance that running the algorithm would improve the results. Having

said that, our trials on a personal computer were all unsuccessful. It is our belief that

given the computational complexity of exact inference using Viterbi, it is virtually

impossible to solve such a problem in a sensible time, even in the case of solving a

very sparse system.
3Deferrable appliances are have operation schedules that can be moved during a day based on

the feedback provided by NILM.
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Table 5.2: Performance comparison between SparseNILM and the proposed NILM,
performed on AMDPs dataset.

SparseNILM[11] NILM

Load Precision/Recall F1 Precision/Recall F1

Dishwasher 98.2% / 60.6% 74.9% 92.3% / 97.1% 94.6%

Heat Pump 87.9%/94.6% 91.1% 99.7% / 97.4% 98.5%

Dryer 98.3% / 97.8% 98.0% 99.3% / 98.4% 98.8%

Oven 46.3% / 54.5% 50.1% 94.4% / 86.1% 90.1%

Average 84.4% / 75.2% 78.5% 96.4% / 94.8% 95.5%

5.3 Disaggregating Commercial Buildings

The temporal pattern of energy consumption in small retail facilities is quite dif-

ferent from that of residential households. Figure 5.3, for instance, shows the major

usage by category at one 3,000ft2 retail site over several months. As shown, the

aggregate load has the following major categories:

• Heating, Ventilation, and Air Conditioning (HVAC): These are the

primary space-conditioning systems and typically consist of several packaged

rooftop units (RTUs).

• Interior Lighting: This category includes all lights within the building.

• Exterior Lighting: This includes all parking-lot lights and signage.

• Plug load: This includes items such as computers, printers, refrigerators, etc.

• Miscellaneous Process Loads: This includes miscellaneous systems such as

water heaters, water fountains, and bathroom exhaust fans.

Figure 5.3 serves to frame the goals for a NILM deployed in a retail building.

Without an extensive network of sub-meters, the best-case monitoring system would
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be one that tracks daily, weekly or monthly energy consumption for an entire building.

Such information allows energy managers to compare various sites to determine which

ones consume the most energy. This information is not granular enough, however, to

provide any particular reasons why some sites consume more. With a NILM, on the

other hand, one could track the energy consumption by major category. For decision-

makers to begin pursuing energy-efficiency projects or maintenance initiatives, data

such as the chart shown in Figure. 5.3 provides tremendous granularity.

Figure 5.3: Major monthly consumers in a retail bank in South Carolina. Note that
HVAC electricity consumption is low in the winter because the facility relies on gas
heat.

One approach to creating a monthly chart such as Figure. 5.3 would be to first

detect some of the major consumers in the aggregate power signal. For the purpose

of this thesis, we formally define the task of NILM in these types of building as

tracking the consumption of the HVACs and exterior lights.

To understand the motivation, consider Figure 5.4, which shows an example daily

waveform. There are clearly two distinct periods. During non-business hours (i.e.,
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from about 8:30 PM until 8:00 AM the next day), the power level is relatively large

and constant. This high-level results from the combination of the building’s baseload

and its exterior lights. During business hours, on the other hand, the load varies

continuously as the air conditioners cycle and staff work with customers. The first

major goal of a NILM would be to detect the operation of the exterior lights. This

is relatively straightforward since these lights should only be energized from approxi-

mately dusk until dawn. Assuming the lights are operating properly, they will cause

large step changes at relatively predictable times, as shown in Figure 5.4. In addition,

one can also extract the energy consumed by the HVAC equipment. In a retail store,

this typically means that one must detect and track the operation of several RTUs

throughout the day. The remaining load categories include interior lights and plug

and process loads. Interior lights may be possible to track, but plug and process

loads are often very difficult. In the author’s experience, these loads are often left

energized at night, and thus they can be viewed as one continuously variable element.

Such an approximation is not unreasonable. Consider, for instance, that a bank may

contain many computers, and knowing the consumption of any one is not nearly as

important as knowing their combined impact. The approach taken in here is thus

to disaggregate the exterior lighting and HVAC equipment, lumping everything else

into one aggregate category. Such granularity may sound incomplete, but it provides

a tremendously greater level of detail than is currently available. We take it as the

task in hand and compare the results of proposed NILM to SparseNILM.
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Figure 5.4: An example of a daily waveform in a commercial building.

We should mention that to the best of our knowledge, there is no comparable

public dataset available of this kind at the moment. Therefore, we find it necessary

to discuss the process of data acquisition and provide an overview of the dataset

before discussing the results.

5.3.1 Data Acquisition

To support the work in this thesis and other activities, data was collected from a

number of retail banks throughout the Charlotte, North Carolina, region. The pri-

mary dataset used in this thesis was collected from a building served from a 208/120V,

60Hz three-phase electrical service. The facility has two main breaker panels with

a collection of three-phase, two-phase, and single-phase loads. The top image in

Fig. Figure 5.5 shows the two breaker cabinets with the front panels removed. As

shown, individual clamp-on current transformers (CTs) were installed on each of the

circuits in the building. The analog output current from each of these CTs was then

passed to a set of custom-designed data-acquisition systems. The final arrangement

appears as shown in the bottom of Fig. Figure 5.5. Each CT feeds into a sensor box

that interfaces to a custom Linux machine. These sensor boxes are shown on the floor

underneath the breaker cabinets.

Figure 5.6 shows the basic hardware arrangement in the custom data-acquisition
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system. As shown, each CT was terminated in a 100Ω resistor to convert the output

current to a voltage. Thirteen individual CT outputs were directly interfaced to a 14-

channel, 16-bit datalogger made by Labjack. The remaining channel was interfaced

to the output of an LV-20 voltage sensor from LEM. Five individual dataloggers were

then directly interfaced to a PC via a 5-port gigabit ethernet switch. Several such

switches were interfaced to the same computer.

Data was recorded from each individual channel at a rate of 3kHz. A custom

software program allowed data to be continuously streamed from several different

dataloggers simultaneously. Raw data from each channel was directly recorded and

stored into an hourly data file. In addition, lower frequency power signals were also

derived for each channel in real-time. This process occurred in several steps. First,

data from each channel was placed in a small buffer and resampled according to the

process outlined in [68]. This approach allowed the data to be resampled so that

each period contained an exact integer number of points per period. Each current

was then multiplied by the corresponding voltage and averaged over one-period. The

corresponding power value was recalculated every half-period, leading to an output

signal recorded at 120Hz. This power data was also archived into a file for each

channel on an hourly basis. Using the resampling process, it was possible to derive

the other two voltage signals in the three-phase system. This leads to some small

error, but the team was able to verify it to be less than 1 by comparing the total

power to that obtained from a building meter.
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(b)

Figure 5.5: NILM data acquisition.
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Figure 5.6: Basic hardware arrangement in the custom data-acquisition system.

The data-acquisition system was extremely extensive and was designed assumed

that significnat data might be needed for various NILM applications. Ultimately,

each hourly file was downsampled to provide the once-per-minute values used in this

work.

5.3.2 Experimental results on the bank datasets

To better illustrate the performance of the algorithm, we first evaluate the corner

cases, by which we are referring to the period for which there are a lot of concurrent

load activity in the data. One such case happens during the summer, for which there

is a lot of cooling activity. In the two bank buildings here, the 3 RTUs often have

overlapping operation periods. This is depicted in Figure 5.7 for B1 in July 2014. In

this figure, the upper diagonal represents the scatter plots, the lower diagonal is the

bivariate kernel density estimates, and the diagonal itself represents a kernel density

estimate of the power distribution. Here, each RTU has two operating modes: solo fan

which has an operating demand of 7̃00 watts and fan+compressor which has a varying

demand of 3500-4200 watts.4 It can be argued that disaggregating the concurrent

cooling activities in the presence of a varying baseline is one of the main challenges
4This variation is caused by excessive heat periods in summer.
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that ultimately decides the success or failure of any NILM algorithm deployed in

commercial buildings, especially in warmer climates.

The proposed disaggregation process, as described in chapter 4, is as follows: To

estimate the state of exterior lights, we use a change of mean detection algorithm;

this process is done iteratively for each day, and exterior light is extracted from the

aggregate. The loads are modeled based on edge detection and clustering. The only

supervised step of the algorithm is to associate the clusters with the operating power

of the appliances (more specifically, a desired subset of appliances), e.g., multiple

rooftop units. The disaggregation is carried out by inferring the Viterbi path for

observed change points in the time series using a combination of Gaussians.

Figure 5.7: Pairwise distributions of three RTU units in a mid-size bank building
during the first week of July.
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The SparsNILM algorithm builds a super-state HMM trained on individually me-

tered loads and assumes the remaining un-metered portion as a separate load.5 These

are modeled as probability mass function, PMF (a bimodal ON/OFF probability as-

signment for each mode of load) that are then combined and used in a Sparse Viterbi

algorithm to do exact inference. We went through the efforts of submetering every

individual circuit in two mid-size bank buildings, which we refer to as B1 and B2.

We collected sub-metered data from 81 and 104 separate channels for each building,

respectively, at 3kHz frequency and down-sampled to once per minute data. Using

this data, the PMFs for top individual energy consumers of the buildings (i.e., exterior

light, interior light, and RTUs) and the remaining subtracted signal were learned. It

is important to note that the super-state HMMs are formed using at most two states

for each load (which is a reasonable assumption for the exterior lights and RTUs).

Figure 5.8 shows the results of the state tracking of exterior lights and RTUs for

each algorithm for the month of June (high cooling activity), depicted through the

confusion matrix for full transparency. (a) and (c) are for the aggregate operational

state of 3 identical RTUs while (b) and (d) depict the results for the state prediction

of the exterior lights. It is evident that the SparseNILM algorithm is significantly

under predicting the cooling activity in the building. This can be explained by the

presence varying baseline, which is also being modeled as a two state load here. In

most of the misclassification, the algorithm is wrongly confusing the observation of

multiple RTUs for that of a combination of exterior light and the varying baseline.

This also simultaneously results in an overestimation of exterior light power. While

the results clearly display the superiority of the proposed approach, it is important

to note that we believe the performance of SparseNILM algorithm can improve if

we increase the number of allowed states in modeling the PMFs. However, and

like it was the case in the previous test, that would significantly increase the time
5Details on why this can not be considered a reasonable assumption were discussed in Chapter

3.
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complexity of the algorithm to the point that convergence becomes unrealistic. It is

also worth noting that the training phase of SparseNILM can significantly affect the

performance of the algorithm. For example, if the training happens in January, there

is very limited RTU activity in that month (and only in the shape of fan activity) as

the building is being conditioned primarily using gas-fueled appliances. As a result,

tests during a period in June would miss all the HVAC activities as PMFs were not

learned accurately in training using January data. This is even without considering

the effect of a completely different baseline in the building in January and June, which

would further complicate the matter and reduce accuracy.
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Figure 5.8: Comparing the performance of SparseNILM (Top) vs proposed NILM
(Bottom) on one month of data.
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Table 5.3 reports the result of disaggregation on the dataset for 6 months (Jan-June)

and two months (June-July) for building B1 and B2, respectively. The superiority of

our approach is even further highlighted once the extensive training period, consisting

of several months of data (May-June), required for training SparseNILM is taken into

account. The poor results of SparseNILM on B2 are due to high variability in un-

metered load, something that also affects the results of our algorithm slightly. Even

with this in mind, the robustness of the proposed approach is put to the test properly

with this second building, and we believe that the results are very promising and a

huge step in the right direction towards a more robust NILM algorithm.
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5.3.3 An example use case for HVAC monitoring using NILM

Figure 5.9 provides an example of HVAC energy consumption for different hours of

the day for B1 as described in previous section (The building has gas heating). The

plot is partially inspired by [69]. It is apparent from this figure that during unoccupied

hours (0-8 and 20-23), unless the outside temperature is greater than 75, there is very

little cooling by the air conditioner apart from some fan action. Occupied hours,

on the other hand, follow the general rule of heat transfer in that there is almost

a linear relationship between the increasing temperatures and the HVAC demand.

Monitoring this relationship can provide significant diagnostic insight. Furthermore,

comparing such graphs to those of similar regional buildings provides great feedback

on operational schedules and efficiency of units among buildings, and the potential

benefits become even greater as the size of the cluster increases. Also, from a utility

perspective, this information is not only crucial in deriving their policies but is also

essential in developing predictive models for demand control.

In the plots provided in this figure, we have demonstrated the strength of our pro-

posed algorithm in producing accurate sub-hourly performance curves for a RTU unit,

based on the disaggregated activities from the aggregate power signal, as described

in the previous section.
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5.4 Summary

In this chapter, we put the performance of the proposed NILM algorithm to test

across multiple datasets. First, we defined the terms of comparison, some consistent

with the available literature for the benefit of direct comparison, and others pro-

posed by this research for further transparency. We first evaluated our algorithm on

available public residential datasets REDD and AMPDs for which there are available

results in the literature to compare to and showed that we improve upon these results.

We then described the process of data acquisition for creating a dataset with corre-

sponding appliance level submetered data for commercial buildings. This dataset is

unique in that it is very different in nature to the available residential datasets. We

evaluated our algorithm against SparseNILM using the commercial buildings datasets

and showed that our proposed algorithm is capable of handling one of the more dif-

ficult tasks in disaggregation, namely disaggregating concurrent appliance activities

in the presence of a varying baseline.



CHAPTER 6: SUMMARY, LIMITATIONS AND FUTURE DIRECTIONS

In this thesis, we proposed a new NILM methodology suited to disaggregating

HVACs and exterior lighting in commercial buildings. The final chapter of this thesis

summarizes the results, highlights the limitation of the proposed method, and provide

ample suggestion for future work and possible directions.

6.1 Summary

We began this dissertation by highlighting the need to address the challenges facing

the energy sector today. Specifically, we focused on challenges in the building sector,

which is responsible for nearly 40% of the consumed energy in U.S. We focused on

space cooling as a major driver of this consumption and highlighted the role of ap-

pliance level granular data in helping with the monitoring of cooling systems. It was

in this context that we arrived at the conclusion that the urgency, cost, risks, and

challenges of appliance level monitoring constitute the need to use the state of the art

infrastructure, namely the smart meters. Therefore, we defined the goal of the thesis

to be disaggregation of major loads in commercial buildings through non intrusive

load monitoring.

In chapters 2 and 3 of this dissertation, a historical overview of the different types of

monitoring and their various limitations was presented. In Chapter 2, the consump-

tion patterns in residential and commercial buildings and the merits of monitoring

in each sector were discussed. A brief description of the available public datasets

highlighted the lack of publicly available data from commercial buildings and a need

to collect data for these types of buildings. Finally, A detailed review of different

NILM algorithms was provided in chapter 2 with more emphasize on non-intrusive
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low-frequency methods using HMMs.

In Chapter 3, we highlighted the major shortcomings in the current NILM ap-

proaches. First, We discussed the problem of supervision and as most of the current

approaches require monitored appliance level data for training the HMMs, and thus

are incompatible with the current feed of metered data and would require significant

retrofitting and or expert level involvement to launch the training phase. We previ-

ously showed that the financial incentives for such efforts are not clear, and the burden

is most likely to fall on the consumer shoulder. Second, we argued that the computa-

tional complexity of some of the approaches would not be suited to edge computing

and in some cases, makes inference an impossibly costly process. We also showed that

the approximations does not always converge to a reasonable sub-optimal solution.

Third, we showed that a smooth variation in the baseline of daily consumption could

significantly dampen the accuracy of NILM algorithms relying on edge detection. Our

argument once again highlighted a need for a more diverse portfolio of data as this

problem is a direct result of a lack of such patterns in the limited available residential

datasets.

In Chapter 4 of this dissertation, we proposed algorithms that are capable of doing

a robust NILM. We defined the robustness in NILM as the capability to monitor

the power of major consumers of energy in buildings for a large, diverse portfolio

of different types. The problem was broken down into three steps; a smooth back-

ground filtering removes the baseline from the aggregate pattern and thus decreases

the chances of mix-ups in the inference stage. Edge detection and clustering build

generalized Gaussian models for individual appliances, and a combination of Gaus-

sians is then used to for state inference. Finally, The algorithm estimates appliance

power using the appliance states and means of operating power.

Finally, in Chapter 5, we carried out an in-depth performance analysis of the pro-

posed algorithms versus several other studies that use HMMs. We first defined the
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metrics for comparison in detail. Using these metrics, we compared the results of

our algorithm to [41, 40, 11] on the REDD [8] dataset. We showed the superiority of

our approach against two of those and were able to match the results of the third.

We also compared our algorithm and SparseNILM [11] on another dataset collected

from a single residential house for a whole year [9] and was able to show significant

improvements in both Recall and Precision. Finally, we provided the details of cre-

ating a dataset with ample submetered data for commercial buildings and trained

SparseNILM using this data. We then compared the results of SparseNILM vs. the

proposed NILM on our dataset collected from two mid-size Commercial buildings.

Our algorithm demonstrated a significant advantage against SparseNILM for disag-

gregating HVAC and exterior lights in commercial buildings. We then demonstrated

an example use case for HVAC monitoring using the results of our algorithm.

As the final remarks of this summary, we believe that we have presented a novel

algorithm capable of tracking the major loads in commercial buildings. We also

demonstrated the robustness of this algorithm by testing it against various different

datasets collected from different types of buildings.

6.2 Limitations

We openly acknowledge the fact that our proposed methodology is not capable of

disaggregating all appliances in any given building. In fact, in the introduction of

this thesis, we put the emphasis on HVAC and controlled lights and discussed the

importance of tracking the state of such loads. It was with this consideration that

we intentionally reduced the scope of the NILM problem to a subset of all available

appliances in favor of increasing the accuracy of results for the target loads. We would

like to discuss a number of potential cases for which our algorithms will likely not

perform well.

One of the major assumptions that we have made in this thesis is that appliances

can be modeled using binary states, or a combination of these binary states. This
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is not necessarily true at all times. In fact, a good example of such cases is build-

ings equipped with variable refrigerant flow (VRF) systems. VRF systems use many

evaporators at different capacities, with different configurations through control sys-

tems. Therefor their consumption patterns can vary continuously and significantly

from one-time frame to another [64]. Disaggregating such a load would likely require

either a better data granularity or the use of the corresponding control signal for

VRF.

Another limitation has to do with the level of supervision required to train the

algorithm. At the moment, the disaggregation requires manual labeling of disaggre-

gated loads. This might not pose a significant challenge in a case where there is a data

repository of purchased appliances inside commercial buildings, but as the author has

experienced this multiple times, getting access to such data would create a whole lot

of other bureaucratic challenges. We discuss the potential solutions to this problem

in the next section.

The third limitation of the work is the ability of the algorithm to disaggregate

between multiple appliances with similar steady state levels. Again this would require

a finer resolution of data, possibly 1 second and better, as with once per minute data,

there is a very limited potential to differentiate between such scenarios given the noise

levels involved. We also discuss one potential way to address this in the next section.

6.3 Future directions

Any future work has to address the above limitation of the current NILM. Disag-

gregation for continuously variable loads with low-frequency data appears to be an

almost impossible task at the moment. While there are ways to extend HMMs to

account for continuous variations, for example through the introduction of nonlinear

state estimators like extended Kalman filter [70], it is not that clear that data col-

lected in one-minute intervals would be suited to that kind of approach. Also, this

would definitely require the use of appliance level data which makes this approach
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even more impractical. There is another way to be considered. At the moment, com-

mercial buildings are being equipped with building monitoring systems that regularly

report and store the control signals for such units at minute intervals. It is possible to

leverage that information in edge classification and pair the edges relevant to specific

appliances with their respective temporal patterns. This would specifically be handy

in dealing with a VRF system. While this problem can be considered a different one

to the original formulation of NILM, it still pursues the same goals of this study,

which is disaggregating the cooling loads in the commercial building. Furthermore,

it is important to mention that even if BAS was to be rolled out to all buildings to-

morrow, we have seen enough evidence to suggest that NILM can still be very useful

in validating the control signals as the systems can often go offline or report/record

bad data.

As pointed out by Parson [24], gas and water smart meters are also being deployed,

and there are several studies that try to map the problem of NILM to this new domain

[71, 72, 73]. Considering the literature, we think that the current proposed approach

would be able to handle the problems in that domain as well, with minimal alterations.

Finally, and ultimately, any successful research in NILM would have to be general-

izable on a bigger scale. Going forward, we believe that if a large scale deployment of

our proposed algorithms on a portfolio of commercial buildings is pursued, there is a

real chance that this would lead to a realization of the untapped potentials of NILM,

especially in the commercial sector.
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