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ABSTRACT 

Yinan He. Multi-sensor Remote Sensing for Understanding the Interacting 

Environmental Disturbances of Forest Fire and Plant Disease. (Under the direction of 

DR. GANG CHEN) 

 

 

Forests are increasingly affected by a variety of environmental disturbances, 

including emerging infectious diseases (EIDs) and wildfire, which have caused extensive 

tree mortality in forest biomass worldwide. Those two types of disturbances may interact 

and lead to unexpected patterns of tree mortality, posing great challenges to sustainable 

forest management. Compared to high-cost, labor intensive and time consuming field 

mensuration, remote sensing offers a low-cost, efficient, and timely solution for 

monitoring the disturbances over large and complex landscapes. However, the potential 

of remote sensing in understanding interacting disturbances has yet to be well 

investigated. To bridge the research gap, this study developed several models integrating 

multi-sensor remote sensing techniques to investigate the response of forest ecosystem to 

EID-wildfire interactions. There are three research objectives: (i) developing a remote 

sensing model to detect the long-term spatial patterns of EID-caused tree mortality in the 

forest that was simultaneously affected by non-EID disturbances; (ii) developing a 

remote-sensing model to estimate post-fire burn severity in the presence of forest EID; 

and (iii) assessing the role of wildfire in determining the spread pattern of EID and 

exploring the consequence of EID-wildfire interaction on forest recovery at the 

landscape scale. The study was conducted in the Big Sur ecosystem, where sudden oak 

death and wildfire coexist and cause a large number of tree deaths. For sudden oak death-

caused tree mortality estimation, remote sensing and ecological species distribution 

modeling were integrated to capture the isolated, patchy distribution patterns of sudden 
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oak death for over a decade. The results revealed an annual disease infection rate of 7% 

from 2005 to 2016, which was consistent with field observations. For fire severity 

mapping, the proposed Disturbance Weighting Analysis Model (DWAM) decomposed 

the burn contribution from diseased and non-diseased trees using remote sensing 

technology and substantially improved the map accuracy. The outcome from DWAM 

indicated a 42% improvement of RMSE (root mean square error) as compared with a 

recently developed, high-performance model. Meanwhile, DWAM’s superior 

performance was consistent across all three disease infection stages. Based on the 

derived disease and burn severity estimation, my research further found that wildfire 

played a significant role in shaping the spread patterns of sudden oak death and the forest 

landscapes were significantly altered even after eight years of fire occurrence when 

compared to the pre-fire status. This study demonstrates the feasibility of multi-sensor 

remote sensing in monitoring forest disturbance interactions at the landscape scale. 
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INTRODUCTION 

Research Background 

Forest disturbances are defined as the events that cause changes in the structure 

and composition of a forest ecosystem, beyond the growth and death of individual 

organisms (Asner, 2013). They affect the biodiversity, stand structure, and functioning of 

the forest ecosystem in varying ways (Anderegg et al., 2013). Due to rapid 

environmental change and intensive human interventions, forest ecosystems are 

increasingly affected by multiple disturbances, including emerging infectious diseases 

(EIDs) and wildfire, which are presenting a considerable challenge to forest resource 

management. Recent studies discovered that wildfire dynamics can be affected by the 

invasion of exotic forest diseases or insects; meanwhile, the spatiotemporal patterns of 

disease/insect progression are also affected by wildfire events (Chen et al., 2015ab; Riley 

et al., 2019; Simler et al., 2018). Those two types of disturbances may interact and lead 

to unexpected patterns of tree mortality, making forest management a challenging task 

(Chen et al., 2017). Understanding the disturbance processes and the response of forest 

ecosystems to interacting disturbances can advance our understanding of ecosystem 

resilience and recovery, which supports sustainable forest resources management (Daniel 

et al., 2017).  

Insects attack different strata of the tree, e.g., defoliators feed on leaves or 

needles, and bark/wood borers bore into the bark/wood; while forest diseases are 

generally caused by infectious and transmissible pathogens, such as bacteria, fungi, 

viruses, and helminths (Chen and Meentemeyer, 2016). Over the past few decades, the 

frequency and intensity of disease- and insect-caused disturbances have substantially 

increased, resulting in extensive tree mortality in key forest biomes worldwide (Cobb et 



2 

 
 

al. 2017; Dlamini et al. 2019; Oboite and Comeau, 2019; Seidl et al. 2014; Potterf et al. 

2019). Forests are subject to recurring fires as another significant disturbance, which 

undermine the biodiversity and resilience of forest ecosystem (Chuvieco et al. 2019; 

Daniel et al. 2017; Pettinari and Chuvieco, 2017; Veraverbeke et al., 2018). Fires directly 

transform living and dead organic matter to charred or blackened residues (Kokaly et al., 

2007; Lewis et al., 2007), affecting the structure, function, and spatial patterns of 

ecological succession (Turner et al., 1998; Metz et al., 2013). Wildfires and 

diseases/insects often co-occur in forest ecosystems, resulting in interacting disturbances 

(Turner 2010). Diseases/insects alter both physical and biological factors, affect wildfire 

dynamics and influence its severity by increasing surface fuels (Chen et al., 2017; Riley 

et al., 2019). Meanwhile, disease-/insect-caused tree mortality also increases landscape 

heterogeneity which may enhance the fire-resistance of a forest landscape (Lee et al., 

2009). Wildfire damages the disease-/insect-infected hosts and alters the environment in 

which animals live, in turn, changes patterns of tree mortality and forest regeneration 

trajectories (Beh et al., 2012; Davis et al., 2012; Loehman et al., 2017; Powell et al., 

2012; Sánchez-Pinillos et al., 2019). 

While traditional field measurements are still the most accurate way to quantify 

such interacting disturbances, it becomes time-consuming and costly when applied to a 

wider range of areas at the regional or continental scale. Remote sensing provides a 

viable solution for effectively monitoring the effects of forest disturbances and is 

particularly useful for monitoring large and topographically complex landscapes where 

traditional field surveys are not logically feasible (Keeley, 2009; Hatala et al., 2010). 

Although individual forest disturbances have been well studied with remote sensing, e.g., 
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disease- or insect-caused tree mortality (Janousek et al., 2019; Pasquarella et al., 2017; 

Skowronek et al., 2017; Václavík and Meentemeyer, 2012; Vaughn et al., 2018), and 

wildfire (Chuvieco, et al., 2006; De Santis et al. 2009; Fernandez-Manso et al., 2016; 

Meng et al., 2017; Quintano et al., 2017), the potential of remote sensing to study 

wildfire-disease interaction has yet to be well investigated. Several critical issues still 

remain in the literature. 

First, remote detection of disease-caused tree mortality relies on the indicators of 

tree damage or distinct symptoms (i.e., altered spectral and spatial characteristics), which 

are different from their healthy counterparts (He et al., 2019b; Lentile et al., 2006; 

Wulder et al., 2006; Keeley, 2009). However, due to the co-occurrence of multiple 

disturbances (e.g., wildfire and drought), the damaged trees may present similar spectral 

and spatial symptoms, introducing a major challenge in remote sensing-based modeling 

using single sensors. A critical question remains to be answered: Can remote sensing be 

applied to retrieve disease-caused tree mortality in the regions that other disturbances 

(e.g., wildfire and drought) also affect the forest?   

Second, remote sensing-based forest burn severity estimation relies on the altered 

spectral responses between pre- and post-fire burned trees (He et al., 2019a). The widely 

used modeling methods consists of empirical and physical models (Hultquist et al., 

2014). Empirical models depend on classical regression or machine learning to link field 

observed burn severity with remotely sensed spectral bands and spectral indices, such as 

Normalized Burn Ratio (NBR; López-García and Caselles, 1991), differenced 

Normalized Burn Ratio (dNBR; Key and Benson, 2006), and relative differenced 

Normalized Burn Ratio (RdBR; Miller and Thode, 2007). Physical models attempt to 
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simulate the physical interactions between radiation and burned trees (Chuvieco, et al., 

2006De Santis et al., 2009). However, none of the existing models have considered the 

phenomenon that both fire and non-fire disturbances may co-exist and alter the 

biophysical and biochemical properties of trees in similar ways (Chen et al., 2015a). The 

ignorance of such phenomenon is likely to cause significant overestimation in burn 

severity mapping (Chen et al., 2017). This raises an important question: How to 

incorporate per-fire forest disturbances in remote sensing modeling to improve the 

performance of burn severity estimation?  

Lastly, current researches on the disease-wildfire interactions are mainly based on 

field observations for exploring their relationships (Beh et al., 2012; Jenkins et al., 2014; 

Loehman et al., 2017; Powell et al., 2012; Simler et al., 2018). However, limited field 

samples are typically not sufficient for an accurate analysis of disturbance-related spatial 

patterns and their change trajectories. Such information is critical for locating susceptible 

trees and promoting effective forest management (Kane et al., 2017). While remote 

sensing approaches and derived products have demonstrated abilities in capturing forest 

spatiotemporal patterns, their capacity to analyze interacting disturbances was rarely 

evaluated (Chen and Meentemeyer, 2016).  

Dissertation Objectives 

An opportunity to study such EID-wildfire interacting disturbances occurred in 

the Big Sur forest ecoregion of California’s central coastal, where a non-native invasive 

pathogen Phytophthora ramorum, also named the sudden oak death, had been involving 

a multi-year progress since first observed in the mid-1990s (Rizzo et al., 2005). In 2008, 

a wildfire - Basin Complex Fire - was ignited by a dry lightning storm in late June and 
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burned 35% (28,383 ha) of our study area. The purpose of this dissertation research is to 

utilize multi-sensor remote sensing to assess the impact of environmental interacting 

disturbances of wildfire and disease sudden oak death on forest ecosystem dynamics. 

More specifically, the three objectives of this study are:  

1) to develop a remote sensing model that can capture long-term, spatiotemporal 

patterns of disease-caused tree mortality in forest landscapes where non-disease 

disturbances (e.g., fire and drought) coexist; 

2) to develop a remote sensing model to map burn severity in forest landscapes, 

aiming to reduce the effects of tree damage caused by disease-caused 

disturbance; and 

3) to investigate the role of wildfire in changing the spread pattern of forest disease 

and the effects of disease-wildfire interaction on forest recovery pattern. 

Dissertation Structure 

This dissertation is organized in a way that each chapter addresses an objective 

and represents a stand-alone publication-style (or already published) article. This 

dissertation consists of five parts, including Introduction, Chapter 1, Chapter 2, Chapter 

3, and Conclusions. The Introduction chapter provides the research background, 

objectives, and dissertation structure. Chapter 1 addresses Objective 1, where a new 

model integrating multi-sensor remote sensing and species distribution modeling is 

proposed to capture the spatiotemporal patterns of disease-caused tree mortality over one 

decade. This Chapter has been published in the journal Remote Sensing of Environment 

(He, Y., Chen, G., Potter, C., Meentemeyer, R.K., 2019b. Integrating multi-sensor 

remote sensing and species distribution modeling to map the spread of emerging forest 
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disease and tree mortality. Remote Sens. Environ. 231, 111238.). Chapter 2 deals with 

Objective 2, where a Disturbance Weighting Analysis Model (DWAM) was developed 

to consider the contributions from both fire and disease disturbances in post-fire burn 

severity modeling. This Chapter has also been published in the journal Remote Sensing 

of Environment (He, Y., Chen, G., De Santis, A., Roberts, D.A., Zhou, Y., 

Meentemeyer, R.K., 2019a. A disturbance weighting analysis model (DWAM) for 

mapping wildfire burn severity in the presence of forest disease. Remote Sens. 

Environ. 221, 108–121.). Chapter 3 responds to Objective 3, where the role of wildfire 

in determining disease transmission and the disease-fire effect on post-fire forest 

recovery is quantified. This Chapter has been submitted to the journal Forest Ecology 

and Management (He, Y., Chen, G., Zhao, K., Meentemeyer, R.K., Effects of Wildfire 

on the Spread of Forest Disease Sudden Oak Death and Post-fire Forest Recovery.). 

Chapter 4 includes the conclusions of the dissertation and potential future research. 
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Chapter 1: Integrating Multi-Sensor Remote Sensing and Species Distribution 

Modeling to Map the Spread of Emerging Forest Disease and Tree Mortality  

 

Abstract 

Forest ecosystems have been increasingly affected by a variety of disturbances, 

including emerging infectious diseases (EIDs), causing extensive tree mortality in the 

Western United States. Especially over the past decade, EID outbreaks occurred more 

frequently and severely in forest landscapes, which have killed large numbers of trees. 

While tree mortality is observable from remote sensing, its symptom may be associated 

with both disease and non-disease disturbances (e.g., wildfire and drought). Species 

distribution modeling is widely used to understand species spatial preferences for certain 

habitat conditions, which may constrain uncertain remote sensing approaches due to 

limited spatial and spectral resolution. In this study, we integrated multi-sensor remote 

sensing and species distribution modeling to map disease-caused tree mortality in a 

forested area of 80,000 ha from 2005 to 2016. We selected sudden oak death (caused by 

pathogen P. ramorum) as a case study of a rapidly spreading emerging infectious 

disease, which has killed millions of oak (Quercus spp.) and tanoak (Lithocarpus 

densiflorus) in California over the past decades. To balance the needs for fine-scale 

monitoring of disease distribution patterns and satisfactory coverage at broad scales, our 

method applied spectral unmixing to extract sub-pixel disease presence using yearly 

Landsat time series. The results were improved by employing the probability of disease 

infection generated from a species distribution model. We calibrated and validated the 

method with image samples from high-spatial-resolution NAIP (National Agriculture 

Imagery Program), and hyperspectral AVIRIS (Airborne Visible/Infrared Imaging 
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Spectrometer) sensors, Google Earth® imagery, and field observations. The findings 

reveal an annual sudden oak death infection rate of 7% from 2005 to 2016, with overall 

mapping accuracies ranging from 76% to 83%. The integration of multi-sensor remote 

sensing and species distribution modeling considerably reduced the overestimation of 

disease effects as compared to the use of remote sensing alone, leading to an average of 

26% decrease in detecting disease-affected trees. Such integration strategy proved the 

effectiveness of mapping long-term, disease-caused tree mortality in forest landscapes 

that have experienced multiple disturbances. 

1.1. Introduction  

Forests play a pivotal role in regulating the energy and mass exchange between 

terrestrial ecosystems and the atmosphere (Likens et al., 1981). However, environmental 

disturbances, including those caused by emerging infectious diseases (EIDs) of plants, 

are beginning to impact the biodiversity, structure, and functioning of forest ecosystems 

in new ways (Anderegg et al., 2013). Especially over the past decade, EID outbreaks 

occurred more frequently and severely in forest landscapes, which have contributed to 

unprecedented tree mortality (Asner, 2013; Boyd et al., 2013; Wingfield et al., 2015; 

Chen and Meentemeyer, 2016). 

Remote detection of EID-caused tree mortality can be an efficient and accurate 

method to scale up field measurements to the landscape scale (Chen et al., 2016; 

Hultquist et al., 2014; Kelly et al., 2004; Liu et al., 2007). Mapping pathogen-related 

disturbances allow stakeholders to prioritize management actions at particular locations 

of concern, often over large areas (e.g., Meentemeyer et al., 2015). Successful detection 

relies on the fact that infected trees show distinct spectral, spatial and/or temporal 
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symptoms, which may be related to declines in chlorophyll/water content in foliage, leaf 

discoloration, defoliation, or treefall gaps [see a review by Chen and Meentemeyer 

(2016)]. For example, blister rust (caused by pathogen Cronartium ribicola) can turn the 

needles of eastern white pines into yellow then rusty red (Hatala et al., 2010). Oak trees 

appear to be ‘freeze-dried’ because of sudden oak death, which is caused by pathogen 

Phytophthora ramorum (Kelly and Meentemeyer, 2002). Today, sudden oak death has 

reached epidemic levels in many forests of the Pacific U. S. Coast, killing large numbers 

of oak and tanoak trees. Similar to EID-caused tree mortality mapping, there is a plethora 

of literature on remote detection of tree mortality, caused by environmental disturbances 

of drought (Brodrick and Asner, 2017; Byer and Jin, 2017; Paz‐Kagan et al., 2017), 

outbreaks of insects (Bright et al., 2012; Fassnacht et al., 2014; Meddens et al., 2013; 

Pasquarella et al., 2017; Rullan-Silva et al., 2013), invasive species (Ghulam et al., 2014; 

Rocchini et al., 2015; Skowronek et al., 2017), and wind (McDowell et al., 2018; 

Negrón-Juárez et al., 2014). However, studies have rarely investigated how to identify 

tree mortality relevant to specific causes if multiple disturbances jointly occur in the 

same region. This is particularly true for areas affected by EIDs. The outbreak of EIDs is 

typically related to chronic stress spanning years to decades, which possibly overlaps 

with discrete events, such as severe drought and wildfire, co-occurring in the same 

region. Damaged trees that are caused by different disturbance types may exhibit similar 

(i.e., subtle discrepancies in) spectral or spatial symptoms, challenging the use of popular 

remotely sensed datasets, such as Landsat and MODIS data. While recent high-spatial 

and high-spectral resolution imagery has demonstrated the potential to uncover the subtle 

discrepancies to improve disease mapping (e.g., Hatala et al., 2010; Meddens et al., 
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2011; Vaughn et al., 2018), these data types remain costly and are scarce in spatial 

coverage hindering long-term monitoring of EID-caused tree mortality in any particular 

region of interest.   

Species distribution modeling (SDM; a.k.a., environmental niche modeling) has 

been widely used in ecology and conservation biology to predict the statistical 

probability of species dispersal patterns over space and time (Elith and Leathwick, 

2009). The performance of those modeling approaches depends on the abiotic conditions 

and the distribution of sampled observations, which are critical for effective model 

training and validation (Václavík and Meentemeyer, 2009). Despite its popularity, SDM 

may lead to high uncertainties and spurious results without reliable knowledge of the 

actual species (e.g., invasive pathogen) range, acquired typically through field surveys 

(Carneiro et al., 2016). This becomes a critical issue for estimation of EID outbreaks in 

forests, where the traditional inventory approaches are not logistically feasible to acquire 

a sufficient number of pathogen distribution samples.  

To effectively map EID-caused tree mortality, bridging remote sensing and 

ecological SDM offers a potential solution. While such an integration strategy has 

demonstrated to be effective in recent studies of species modeling (e.g., Saatchi et al., 

2008; He et al., 2015), remote sensing is typically used to generate land cover and other 

ecological variables (e.g., NDVI) serving as input of SDM. For EID-caused tree 

mortality mapping, would it possible to apply SDM to refine remote sensing generated 

maps? While remote sensing approaches are likely to overestimate disease effects due to 

high spectral/spatial similarities across the damaged trees by EID and non-EID 

disturbances, SDM can provide essential knowledge informing the likelihood that certain 
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disease disturbance may or may not occur at specific locations. This will ultimately 

reduce uncertainties in remote sensing-based estimation by providing an effective 

constraint to exclude the regions, where the studied EID has a low likelihood to occur. 

Integrating remote sensing and species distribution modeling particularly benefits long-

term monitoring, where EIDs demonstrate a strong spatial progression pattern.  

The main goal of our study was to develop a mapping method that can capture 

long-term, spatiotemporal patterns of EID-caused tree mortality in forest landscapes. The 

method integrated multi-senor remote sensing and SDM, and was developed to study 

sudden oak death, a rapidly spreading EID that has killed millions of trees in California 

and Oregon since being discovered during the mid-1990s (Rizzo et al., 2002).   

1.2. Study area 

Our study site (centered at: 36°16' N, 121°44' W) is located in the Big Sur, 

California ecoregion on the west coast of the United States. It covers an area of about 

80,000 ha on the steepest coastal mountains with elevations reaching 1,600 m within 

4.5 km of the coast (Fig. 1.1). This region has a Mediterranean-type climate with 

moderate temperatures, mean monthly temperatures at sea level range from 10–13 °C in 

the winter months to 16–18 °C in the summer (Davis et al., 2010). Major forest types 

include mixed oak woodlands consisting of coast live oak (Quercus agrifolia), Shreve’s 

oak (Quercus parvula var. shrevei), California bay laurel (Umbellularia californica), and 

Pacific madrone (Arbutus menziesii), as well as mixed coniferous forests, which are 

composed primarily of ponderosa pine (Pinus ponderosa), sugar pine (Pinus 

lambertiana), Jeffrey pine (Pinus jeffreyi), coulter pine (Pinus coulteri), and Santa Lucia 

Fir (Abies bracteata). They give way to riverside corridors of redwood/tanoak (Sequoia 
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sempervirens / Notholithocarpus densiflorus) dominated forests at lower elevations 

(Davis et al., 2010). Current anthropogenic land use is still limited and consists primarily 

of isolated houses, roads, and trails, which were used primarily for recreation within the 

study domain.  

Sudden oak death (caused by pathogen P. ramorum) was first associated with 

mortality of tanoak (Lithocarpus densiflorus) and oak (Quercus spp.) in the San 

Francisco Bay region during the mid-1990s (Rizzo et al., 2002). It was quickly 

introduced to California and Oregon forests mainly by infested nursery stock (Davidson, 

2005; Ivors et al., 2006; Prospero et al., 2007). Following the introduction, sudden oak 

death reached epidemic levels in many coastal forests and has affected large, but 

unknown numbers of oak and tanoak trees (Rizzo et al., 2005). Due to the aggressive 

transmission of the pathogen, 14 states in the U.S. imposed strict regulations for plant 

materials imported from the west coast, including California and Oregon (Alexander, 

2012). Globally, P. ramorum was either listed as a regulated species or specified in 

national forest legislations in 68 countries (Sansford et al., 2008; Hunter et al., 2018). 

Although sudden oak death is the main disturbance in Big Sur, two other agents – 

drought and fire, have also affected the forests as major disturbances. For example, the 

2012-2015 severe drought in California has led to significant water losses in forest 

canopies resulting in high tree mortality (Asner et al., 2016). The 2008 Basin Complex 

Fire, which was ignited by a dry lightning storm burned 28,383 ha within our study area 

(Potter, 2016). 
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Fig. 1.1 Study area located in the Big Sur ecoregion on the western flank of the Santa 

Lucia Mountains in California. The Landsat TM (Thematic Mapper) image is from a 

false color composite using bands 4 (NIR), 3 (Red) and 2 (Green). The AVIRIS 

(Airborne Visible InfraRed Imaging Spectrometer) image is from a false color composite 

using bands 51 (NIR), 33 (Red), and 22 (Green).   
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1.3. Data and preprocessing 

1.3.1. Reference data 

This study has two groups of reference data: field data and remote sensing data 

from high-resolution Google Earth (Google, Mountain View, California) image samples 

and local aerial photos (NAIP, National Agriculture Imagery Program). Specifically, we 

have established 85 permanent field plots (50×50 m, 0.25 ha) since the summer of 2006 

(Meentemeyer et al., 2008b). These plots were designed to follow a stratified random 

sampling scheme within the mixed oak woodland and redwood-tanoak (acting as the 

main host species of P. ramorum), and have been revisited yearly to monitor sudden oak 

death infection and its impact on forest structural change (e.g., tree density, tree height, 

and forest species types). A Panasonic SXBlue real-time differential GPS (Geneq, 

Montreal) was applied for collecting plot positions, with an average accuracy of 1.0 m or 

less.  

To supplement the limited number of field-derived sudden oak death samples, we 

extracted diseased and healthy tree plots from Google Earth and aerial photos (i.e., 

NAIP) via image interpretation. We based our interpretation on the spatial, spectral and 

temporal symptoms of sudden oak death-caused tree mortality in the study area that are 

relatively unique as compared to the drought/fire-caused tree mortality. Early in 2002, 

Kelly and Meentemeyer (2002) discovered the ‘freeze-dried’ characteristic of oak trees 

as a result of sudden oak death infection, and then used such spectral trait to map the 

spatial distribution of the disease. Fig. 1.2 shows examples of isolated diseased trees that 

are surrounded by healthy trees in multi-temporal, high-resolution true color images. Fig. 

1.2 demonstrates the symptom changes during the three stages of sudden oak death 
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progression (Meentemeyer et al., 2008a; Chen et al., 2015a): (i) early-stage (host trees 

retaining their dried foliage and fine twigs for one year or more), (ii) middle-stage (some 

older mortality with host trees losing fine crown fuels and surface fuels beginning to 

accumulate for 1-3 years), and (iii) late-stage (host trees being dead for over 4 years and 

causing gaps due to trees falling over). Hence, the diseased tree plots change their spatial 

representation over time, making it distinctive from the other disturbances in high-

resolution imagery (Fig 1.2). 

 

Fig. 1.2 Examples of isolated diseased trees being surrounded by healthy trees and 

symptom change over time in Google Earth and NAIP high-resolution images. 
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To quantify the disease’s spectral, spatial and temporal patterns as observed in 

Google Earth and NAIP imagery, we employed two indices. First, tree foliage 

dramatically changes color from healthy green to brown over one or two years following 

sudden oak death infection (Liu et al., 2006), and then to gray indicating foliage 

desiccating and pigments breakdown, leading to ‘freeze-dried’ appearance (Kelly and 

Meentemeyer, 2002). We used Red-Green Index (RGI) to capture the variation in canopy 

color. RGI is a simple ratio between the red and the green band. It was originally 

developed for detecting mountain pine beetle infestation, which causes color change in 

pine tree canopies (Coops et al., 2006). Using field data as reference, we calculated RGI 

for sunlit green, sunlit brown and sunlit gray crowns respectively. As illustrated in Fig. 

1.3, unhealthy trees (i.e., sunlit brown and sunlit gray) are distinguishable from the 

healthy trees (i.e., sunlit green) with RGI locating in different value ranges. 

 

Fig. 1.3 Boxplots showing Red-Green Index (RGI) values (minimum, first quartile, 

median, mean, third quartile, and maximum) for sampled sunlit green, sunlit brown, and 

sunlit gray crowns. 
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Second, sudden oak death-caused tree mortality demonstrates isolated, patchy 

distribution patterns, which gradually increase the density and reduce distances to each 

other. (Meentemeyer et al., 2008a). To analyze such patterns, we employed mean 

proximity index (PRO_MN) to assess the degree of isolation and fragmentation of the 

corresponding patch type at landscape level over years (McGarigal, 2014; McGarigal and 

Marks, 1995). In our study, PROX_MN was used as an indicator of fragmentation for 

sudden oak death-caused tree mortality, with high values indicating low levels of 

fragmentation and low values indicating high levels of fragmentation (Turner et al. 

2001). 

 PROX_MN =

∑
𝑎𝑖𝑗𝑠

ℎ𝑖𝑗𝑠
2

𝑛
𝑠=1

𝑛
                                                                    (1) 

where PROX_MN represents the mean proximity index for focal patch 𝑖𝑗, 𝑎𝑖𝑗𝑠 is the area 

of patch 𝑖𝑗𝑠 within a specified neighborhood of patch 𝑖𝑗, ℎ𝑖𝑗𝑠 is the distance between 

patch 𝑖𝑗𝑠 and patch 𝑖𝑗, based on patch edge-to-edge distance and computed from cell 

center to cell center, and 𝑛 is the total number of patches within the neighborhood. Here, 

PROX_MN was calculated within a neighborhood using 200 m as search radius. Our 

assumption is that if field data have suggested sudden oak death occurrence at that 

location, the neighboring trees with similar RGI values (same value range) were also 

affected by the disease. The neighborhood size was chosen based on our field experience 

in sudden oak death identification. Fig. 1.4 shows the trajectory of PROX_MN values 

over years. We did not find in the literature or in our study area that drought/fire-caused 

tree mortality demonstrates any specific spatial-temporal patterns over years. For 
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example, Fig. 1.5 shows the trajectory of PROX_MN values for gray/brown sample 

areas not affected by the disease, which even indicates a decreasing trend over time.  

We used 70% of the field data to estimate the range of RGI values (0.96-1.54), 

and the range of PROX_MN values (10.20-2509.03) and the slopes of their trend lines 

(63.05-196.74). The remainder of the field data were used for accuracy assessment. We 

have achieved an overall accuracy of 92% and a Kappa statistic of 0.84 in sudden oak 

death extraction from NAIP and Google Earth imagery. 

 

Fig. 1.4 Temporal trajectory of the mean proximity index (PROX_MN) for the dead trees 

affected by sudden oak death. 
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Fig. 1.5 Temporal trajectory of the mean proximity index (PROX_MN) for the dead trees 

not related to sudden oak death. 

Because field plots have unbalanced number of healthy versus diseased tree plots 

due to sudden oak death progression, it may cause a bias in model training. We extracted 

various numbers of plots each year to balance the number of the two tree classes. We 

randomly allocated the photo interpretation-derived plots, but also created a buffer to 

avoid the neighborhood of field plots (100 m in size). The final reference dataset 

includes 40 diseased and 40 healthy tree plots every year during the 2005-2016 study 

window. We were aware of the positional errors in NAIP and Google Earth imagery 

(Potere, 2008; USDA, 2012). Because of the higher accuracy in NAIP data (6 m of true 

ground at a 95% confidence level, USDA, 2012), we relied more on NAIP to collect 

annual imagery (2005, 2009, 2010, 2013, 2014, and 2016), which were supplemented by 

Google Earth (2006, 2011, and 2015). We further compared our field plots (with GPS-

measured accurate positions) with the targets identified on NAIP and Google Earth 

imagery. The errors were noticeably smaller than 30 m, which did not have a major 

effect on the modeling accuracy since our model was built at the 30 m resolution using 

Landsat data as the major input.     
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1.3.2. AVIRIS data 

We collected AVIRIS (Airborne Visible/Infrared Imaging Spectrometer) data on 

September 24, 2008. AVIRIS is an airborne hyperspectral sensor developed and operated 

by NASA’s Jet Propulsion Laboratory (JPL) flown on ER-2 and Twin Otter aircrafts 

mainly over the United States. The AVIRIS sensor consists of 224 contiguous spectral 

bands in the range of ~360 nm to ~2500 nm with an average bandwidth of 10 nm (Clark 

et al., 2002). The cloud-free AVIRIS spectral radiance image mosaic covered the 

northern part of our study area (27,925 ha), with a spatial resolution of 3 m. To mitigate 

the topographic effects in the mountainous regions, the topographic correction method 

recently developed by He et al. (2015) was applied on the basis of slope and aspect 

provided along with the AVIRIS flight data, which was processed using a 30 m 

resolution digital elevation model (DEM) derived from the data collected by Advanced 

Spaceborne Thermal Emission and Reflection Radiometer (ASTER) as part of the Global 

Digital Elevation Model Version 2 (GDEM V2) project (ASTER GDEM Validation 

Team, 2011). Finally, the AVIRIS image mosaic was converted to surface reflectance 

bands using the 5th version of MODerate resolution atmospheric TRANsmission 

(MODTRAN5) as described by Berk et al. (2006). 

1.3.3. Landsat imagery 

To retrieve the spatial and temporal patterns of sudden oak death progression 

annually from 2005 to 2016, we downloaded a total of eight Landsat-5 TM (Thematic 

Mapper) and five Landsat-8 OLI (Operational Land Imager) image scenes covering our 

study area (path: 43, row: 35) via the U.S. Geological Survey (USGS) Earth Resources 

Observation and Science (EROS) Center’s  Science Processing Architecture (ESPA) 
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interface (https://espa.cr.usgs.gov). We did not use Landsat data from 2012, due to 

Landsat 5’s mechanical failures and Landsat 7’s Scan Line Corrector (SLC) failure. 

Although there are wavelength differences between sensors, we used the six bands that 

have been consistently acquired by all the sensors, including blue, green, red, NIR, 

SWIR-1, and SWIR-2 (NASA, 2018). All the images were acquired in the growing 

season (April-June, Table 1.1). Because some of the areas were covered by clouds in 

2006 and 2013, we generated a cloud-free mosaic for each of the two years through 

compositing two image scenes acquired in the same month. During the process, cloud 

pixels were simply replaced by the cloud-free pixels of the same locations. Because the 

images used for merging were from the same months over the same region, we visually 

interpreted the images and found low spectral variation over the same ground objects 

between different dates. The high quality radiometric correction completed by USGS 

also ensured the minimized impact of our merging process. In our study, we directly 

used the Landsat Surface Reflectance level-2 science products, which have been 

geometrically, radiometrically, and topographically corrected by USGS before being 

made available online. Please refer to Landsat 4-7 Surface Reflectance Product Guide 

(USGS, 2018a) and Landsat 8 surface reflectance product guide (USGS, 2018b) for 

details about Landsat surface reflectance products.  

Table 1.1 Acquired dates for time-series Landsat imagery. 

 2005 2006 2007 2008 2009 2010 2011 2013 2014 2015 2016 

April       4th 16th +25th 28th 15th 17th 

May  8th+15th  13th 16th 3rd      

June 6th  12th         

 

https://espa.cr.usgs.gov/
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1.3.4. NAIP imagery 

NAIP (Airborne Visible/Infrared Imaging Spectrometer) imagery was acquired in 

2005 at a 1.0 m resolution (a.k.a., ground sample distance - GSD) with a horizontal 

accuracy that matches within six meters of photo-identifiable ground control points. It 

was a three-band (Red, Green and Blue, or RGB) image mosaic with high quality data 

covering a portion of our study area. The data were downloaded from the U.S. 

Department of Agriculture (USDA) Farm Service Agency with free access 

(https://datagateway.nrcs.usda.gov/). The data were geometrically and radiometrically 

corrected by USDA.  

1.3.5. Environmental variables 

We used two groups of environmental variables known to affect the transmission 

of P. ramorum (Meentemeyer et al., 2008a): climate (i.e., precipitation, temperature, and 

relative humility) and topographical variables [i.e., elevation, slope, solar insolation 

index (SII), and topographic wetness index (TWI)] (Table 1.2). For climate, we 

calculated each variable using the monthly mean data during the disease’s general 

reproductive season from December to May prior to each state transition over a period of 

10 years (2007 to 2016). We selected this time period mainly due to the proven 

correlation between pathogen progressions with local climatic conditions (Meentemeyer 

et al., 2008a). This time period was selected in order to model the response of disease to 

annual patterns of climate, not individual weather events (Sturrock et al., 2011). The 

employed climate data were part of a broader-scale database Daymet 

(https://daymet.ornl.gov), at a 1×1 km resolution over the conterminous United States 

(Thornton et al., 2018). For topographical conditions, we calculated four variables from a 

file:///C:/Users/yhe8/Desktop/New%20Microsoft%20Word%20Document.docx
https://daymet.ornl.gov/
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30 m resolution DEM, derived from the ASTER’s GDEM V2 product, including 

elevation, slope, SII, and TWI. We calculated SII for each 30 m cell as the potential 

mean solar radiation in the rainy season using the cosine of illumination angle on slope 

equation (Dubayah, 1994). We further calculated TWI as the natural log of the ratio 

between the upslope contributing drainage area and the slope gradient of a grid cell to 

quantify topographic control on hydrological processes (Moore et al., 1991).  

Table 1.2 Description of the evaluated environmental factors. 

Factor type Factor name Description 

Climate Precipitation 
Monthly (December-May) mean precipitation 

of 10 years (2007 to 2016) 

 Temperature 
Monthly (December-May) mean maximum  

temperature of 10 years (2007 to 2016) 

 RH 
Monthly (December-May) mean relative 

humidity of 10 years (2007 to 2016) 

Topography Elevation Elevation  

 Slop Slope  

 TWI Topographic wetness index 

 SII Solar insolation index  

 

1.4. Methods  

Our research framework has two major steps: (i) model development, and (ii) 

model application to multi-temporal disease distribution mapping. Generally, Step (i) 

was conducted for 2005, the beginning year of the studied time window 2005-2016 (see 

flowchart of step 1 in Fig. 1.6). To balance the needs for fine-scale monitoring of disease 

distribution and satisfactory coverage at broad scales, we applied spectral unmixing to 

extract sub-pixel disease presence in Landsat imagery, and derived an NPV (non-

photosynthetic vegetation) fraction map to simulate tree mortality. The AVIRIS image 

mosaic was used to extract endmembers to facilitate spectral unmixing. We further 
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developed a species distribution model and subsequently a probability map for assessing 

the probability of sudden oak death infection. We employed the 2005 reference data and 

the NAIP image of the same year to generate a high-resolution disease map for 

calibrating and validating the species distribution model. The probability map was 

compared with the reference disease presence/absence for determining a probability 

threshold, by which disease distribution was mapped for 2005. In Step (ii), an NPV 

fraction and a probability map were generated for each of the succeeding years (2006-

2016). The annual disease-caused tree mortality maps were derived by applying the 

probability threshold (Step i) to all the probability and the corresponding year of NPV 

fraction maps. Fig. 1.6 shows the main components in model development and 

application. Please refer to the following subsections for detail and explanation. The 

annual disease-caused tree mortality maps were derived by applying the probability 

threshold (Step i) to all the probability and the corresponding year of NPV fraction maps. 

The accuracy of the tree mortality maps was individually evaluated using the annual 

reference data (see Section 1.3.1). 
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Fig. 1.6 Detailed working flow for model development (Step1) and annual disease-

caused tree mortality mapping (Step 2). 

1.4.1. Spectral library extraction 

We constructed a spectral library to include the spectra of four endmembers in 

our study area: green vegetation (GV), non-photosynthetic vegetation (NPV), soil, and 
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shade. We intended to use GV to represent healthy trees. Here, we tried to build an NPV 

spectral library biased to sudden oak death, although we expected an overestimation of 

NPV-derived diseased trees because other disturbances (e.g., drought) may have resulted 

in similar spectra. Due to no pre-existing library including the spectral signatures from 

sudden oak death-impacted forests, we extracted image endmembers from the 

hyperspectral AVIRIS data acquired over the same region. Compared to field radiometry 

surveys, such method was cost-effective, allowing us to efficiently collect a large 

number of reflectance values associated with disease infection. Using the AVIRIS data, 

we applied the Pixel Purity Index (PPI) algorithm to identify a large number of potential 

endmember pixels with unique spectral signatures. The classic PPI is an iterative 

process, in which every pixel is repeatedly projected onto a random vector selected 

through the n-dimensional scatter plot (n=224 in our study); and pixels are considered 

pure if they constantly fall into the tails of the calculated histograms. The threshold for 

defining histogram tails affected the number of the endmember pixels identified by PPI. 

After an initial assessment, we used the threshold value 5 to extract 200 endmember 

candidate pixels.  

To select the most appropriate endmembers for our study, we first applied sub-

meter Google Earth WorldView-1 images (observation dates in the similar time window 

as that of AVIRIS data acquisition) as a reference to reduce the number of endmember 

pixels to 47: 17 (GV), 13 (NPV), 14 (soil), and 3 (shade). To further refine the result, we 

used the following three metrics.  

1) Endmember Average RMSE (root mean squared error) (EAR): EAR was used 

to select the most representative endmember for each land cover class. It was calculated 
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for each endmember by averaging the RMSE of the set of models that used the 

endmember to unmix the spectra belonging to the same land cover class (Roberts et al., 

2003). 

EAR𝑖 =
∑ RMSE𝑖,𝑗

𝑁
𝑗=1

𝑛 − 1
                                                                  (2) 

where i is an endmember, j is the modeled spectrum, N is the number of endmembers, 

and n is the number of modeled spectrum. The term n-1 corrected for a zero RMSE 

resulting from an endmember itself. EAR was used to evaluate the ability of each 

endmember to model the spectra within its own class. Endmembers possessing a lower 

EAR model spectrum within their land cover class were better than endmembers with a 

higher EAR. The minimum EAR endmember should be the most representative of its 

modeled class.  

2) Minimum Average Spectral Angle (MASA): MASA within a class was 

calculated as the average spectral angle between the reference spectrum (candidate 

model) and all other spectra within the same class. The best MASA candidate was 

selected as the one that produced the lowest average spectral angle (Dennison et al., 

2004). 

MASA𝑖 =
∑ 𝜃𝑖,𝑗

𝑁
𝑗=1

𝑛 − 1
                                                                           (3) 

𝜃 = cos−1
∑ 𝜌𝜆𝜌𝜆

′𝑀
𝜆=1

𝐿𝜌𝐿𝜌′
                                                                         (4) 

𝐿𝜌′ = √∑ 𝜌𝜆
2

𝑀

𝜆=1

                                                                                    (5) 
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where 𝜌𝜆 is the reflectance of an endmember, 𝜌𝜆
′  is the reflectance of a modeled 

spectrum, 𝐿𝜌 is the length of the endmember vector, and 𝐿𝜌′ is the length of the modeled 

spectrum vector. MASA was similar to EAR in that it was designed to select spectra with 

the best average fit within a class, while differing from EAR in that the measure of fit 

used was the spectra angle instead of RMSE. 

3) Count-based Endmember Selection (CoB): CoB was used to select optimal 

endmembers as those members of a library that modeled the greatest number of spectra 

within their class, while assessing whether these candidate models met fraction, RMSE 

and residual constraints when unmixing any other spectrum in the library (Roberts et al., 

2003). CoB used the MESMA concept to select endmembers based on the number of 

library spectra, determining the number of spectra modeled by an endmember within the 

endmember’s class (InCoB) and outside of endmember’s class (OutCoB). The optimum 

model had the highest InCoB and lowest OutCoB.  

The processing used the tool – Visualization and Image Processing for 

Environmental Research (VIPER; Roberts et al., 2007), which generated the final 

spectral library (including 6 spectra for GV, 5 spectra for NPV, 6 spectra for soil, and 1 

spectrum for shade) and the corresponding fractions. 

1.4.2. MESMA procedure 

Using the constructed spectral library, we applied spectral unmixing to 

decompose each of the Landsat pixels acquired in 2005 into three components: GV, 

NPV, and soil. Spectral unmixing was implemented by the classic Multiple Endmember 

Spectral Mixture Analysis (MESMA) algorithm, which considers spectral variability 

allowing the number and type of endmembers to vary on a per-pixel basis (Roberts et al., 
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1998). The criteria used to determine the best-fit models included endmember fractions, 

maximum shade fraction, and RMSE. We chose the following thresholds: −0.05 and 1.05 

for minimum and maximum allowable fraction values, respectively; 0.8 for maximum 

allowable shade fraction value; and 0.025 for maximum allowable RMSE. Those 

thresholds were initially determined from the literature (Roberts et al., 1998), and 

adjusted through our tests, in which we evaluated all the reasonable endmember 

combinations and selected the best-fit model. When multiple models met these criteria, 

the model with the lowest RMSE was chosen. Finally, shade normalization was 

performed to remove shade fraction, redistributing this fraction proportionally among all 

other non-shade endmembers (Roberts et al., 2007). We employed the VIPER package to 

complete the MESMA procedures (Roberts et al., 2007). Given the fact that our study 

focused on forests, we excluded the soil, and shrub/grass components from all NPV 

images (2005-2016) using the 2005 NAIP-derived classification result (see Section 

1.4.3). 

1.4.3. High-resolution disease mapping  

We generated a high-resolution disease distribution map for 2005, the beginning 

year of the study time window. The map was for SDM calibration and validation 

(Section 1.4.4), mainly because the accuracy of SDM depends on the number and quality 

of species reference samples (Carneiro et al., 2016). In our study, field-measured data 

were limited, which may not provide a reliable knowledge of sudden oak death 

distribution. Here, we integrated the 1.0 m resolution NAIP image mosaic and the 

reference data acquired in 2005 to generate a high-resolution tree mortality map. This 
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map was later used to extract a large number of samples of sudden oak death distribution 

for reliable SDM calibration and validation (Section 1.4.4).  

To generate the map, we applied a geographic object-based Image Analysis 

(GEOBIA) framework following Chen et al. (2012). Compared to the classic pixel-based 

approach, GEOBIA uses image-objects (i.e., pixel clusters) as the basic study units to 

reduce errors caused by spectral variation within each geographic object (e.g., individual 

trees containing sunlit and shaded crowns; Chen et al., 2015a). Our framework has two 

components: image segmentation and object-based classification, both of which were 

completed in the eCognition Developer 9.0 environment (Trimble, Sunnyvale, USA).    

 Image segmentation was conducted on the NAIP image mosaic using the 

eCognition’s classic multiresolution segmentation algorithm. A crucial issue involved in 

segmentation is defining an appropriate Mean Object Size (MOS), or spatial scale of 

analysis. A large MOS may cause under-segmentation where an image-object contains 

more than one land-cover class. However, a very small MOS may introduce biases where 

an image-object may only contain sunlit or shaded canopies resulting from the complex 

sun-tree-sensor geometry. We followed the recommendations by Chen et al. (2017), and 

the value 30 for MOS was chosen to accurately capture relatively small, homogenous 

land-cover patches, where the majority of trees within image-objects were either dead or 

healthy. In addition to MOS, the default value of 0.1 was used for the shape parameter, 

while the compactness parameter was set at 0.8 to obtain relatively smooth forest object 

boundaries. 

 Object-based classification used the segmentation-derived image-objects, instead 

of pixels, as the basic mapping units. To extract spectral features for classification, we 
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followed Chen et al. (2017), who successfully used three groups of features – spectral 

(mean), texture (standard deviation), and geometry (compactness, length/width ratio, 

roundness, and shape index) – to map sudden oak death-caused tree mortality. Compared 

to many other causes of mortality, sudden oak death has resulted in uniquely spatial and 

spectral appearances in tree crowns (Section 1.3.1). We expected to use these features to 

capture the unique traits of diseased trees. Here, we categorized the image into three 

classes: (i) healthy forest, (ii) diseased forest, and (iii) others. This step was 

accomplished by applying the eCognition’s nearest neighbor algorithm, a supervised 

classification approach. Half of the 2005 reference samples for each land-cover class 

were used for training, while the remaining samples in the same year were applied for 

validation.  

1.4.4. Species distribution modeling (SDM) 

We developed a generalized linear model (GLM) to analyze the degree to which 

ecological conditions influenced the probability of sudden oak death infection. GLM is 

an extension of ordinary multiple regression that allows for modeling non-normal 

response variables, which has been used for modeling disease risks (e.g. Meentemeyer et 

al., 2008a). Here, we modeled the infection probability of sudden oak death as a function 

of seven environmental variables (i.e., precipitation, relative humidity, temperature, 

elevation, slope, SII, and TWI) by following the recommendations of Meentemeyer et al. 

(2008a; 2008b), who studied sudden oak death in the same region. We used the logit link 

function in GLM, which is synonymous with logistic regression employing a maximum 

likelihood parameter optimization technique to model the log odds of a binary response 

variable (Franklin, 1995). The logit transformation of the probability (pi) that a 
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susceptible plot i (equivalent of the area of a Landsat pixel) becomes invaded is 

described as:   

Yinfection = logit(𝑝𝑖) = log
𝑝𝑖

1 − 𝑝𝑖
= 𝛽0 + ∑ 𝛽𝑗𝑥𝑗                                         (6)

8

𝑗=1

 

where 𝛽0 and 𝛽𝑖 are the regression coefficients, and 𝑥𝑗  is one of the eight environmental 

variables. Meentemeyer et al. (2008a) discovered a rapid decline of P. ramorum invasion 

probability as the distance to the previous year of infection (i.e., sources of inoculum) 

increases. Particularly when the distance is longer than 1 km, the probability that a 

susceptible plot may be invaded is very low. In this study, we applied a fixed dispersal 

kernel (1 km in Euclidean distance) to constrain the maximum infection distance for each 

year.  

To reduce multicollinearity among the independent variables, the Pearson’s linear 

correlation coefficients were calculated for all the variables. Then, we applied the 

variable reduction method as described in Chen et al. (2015b). That is, each independent 

variable was evaluated and retained under two rules: (1) its correlation with any other 

independent variable should be lower than 0.7; or (2) if its correlation with another one 

or several independent variables is higher than 0.7, the variable should have the highest 

correlation value with the dependent variable. After discarding redundant independent 

environmental variables/factors, we applied regression analysis and assessed model’s 

adjusted R2, RMSE (root mean square error) and AIC (Akaike information criterion) 

values in the statistical environment R package (R Core Team, 2017, Vienna, Austria). 

For model calibration, we extracted 300 sample points (150 diseased and 150 healthy 

samples to ensure a balanced representation of trees affected and not affected by sudden 
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oak death) from the previously generated high-resolution tree mortality map (Section 

1.4.3). We used a stratified random sampling strategy to collect samples from diseased 

and healthy tree classes, respectively. To ensure the quality of the samples, we manually 

checked all the samples following the same image interpretation approach as described in 

the reference data section (Section 1.3.1). If the sample did not appear to be affected by 

the disease, we selected a new sample in its neighborhood.  

We further compared the probability derived from the SDM (Eq. 6) with the NPV 

fraction (Section 1.4.2) at the sample locations. We used the reference disease 

presence/absence data to determine the best probability threshold, with results reaching 

the maximum kappa statistic value (Freeman and Moisen, 2008), i.e., a Landsat pixel 

area was deemed to be affected by sudden oak death if its probability value was higher 

than the threshold. We also applied the reference data to conduct an accuracy assessment 

using confusion matrix to calculate True Skill Statistic (TSS), a measure reflecting true 

ecological phenomena in presence-absence models (Allouche et al., 2006). Specifically, 

for the binary classification, the confusion matrix records the number of True Positive 

(TP), False Positive (FP), False Negative (FN) and True Negative (TN) cases predicted 

by the model (Table 1.3). Sensitivity is the probability that the model correctly classifies 

a presence (Eq. 7). Specificity is the probability that the model correctly classifies an 

absence (Eq. 8). TSS equals the difference between the sum of sensitivity and specificity 

and constant one (Eq. 9). 
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Table 1.3 A confusion matrix to evaluate the result of a presence-absence (binary) 

model. 

User Class 

Reference Class 

Presence Absence 

Presence True Positive (TP) False Positive (FP) 

Absence False Negative (FN) True Negative (TN) 

 

Sensitivity =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
                                                             (7) 

Specificity =  
𝑇𝑁

𝐹𝑃 + 𝑇𝑁
                                                             (8) 

𝑇𝑆𝑆 =  
𝑇𝑃

𝑇𝑃 + 𝐹𝑁
+

𝑇𝑁

𝐹𝑃 + 𝑇𝑁
− 1                                                   (9) 

1.4.5. Annual disease-caused tree mortality mapping 

We applied the spectral unmixing MESMA model to each of the Landsat images 

from 2006 to 2016, which produced annual NPV fraction maps. Meanwhile, the SDM 

was employed to produce yearly probability maps of sudden oak death infection (see 

Step 2 in Fig. 1.6). We overlapped the two types of maps of the corresponding year. The 

probability threshold (Section 1.4.4) was used to determine whether an NPV-identified 

pixel was affected by sudden oak death or not. We considered that a 30-m pixel area is 

affected by the disease if a disease reference sample is found in the area. This is based on 

the nature of SDM, which only considers infection and non-infection for each pixel area. 

Consequently, a total of 10 maps were produced to show annual sudden oak death 

progression from 2006 to 2016. The final mapped results were assessed using the 
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reference data that were collected annually (see Section 1.3.1), with confusion matrices, 

coverall accuracies, and kappa statistics calculated for accuracy assessment. 

1.5. Results  

1.5.1. Endmembers and fraction images  

The spectral reflectance for the extracted 6 GV, 5 NPV, and 6 soil endmembers 

are presented in Fig. 1.7. Overall, the GV endmembers revealed higher intra-class 

variation than the NPV and soil endmembers. This was mainly because trees in the study 

area were comprised of a variety of species types, including mixed oak woodlands and 

coniferous forests. Compared to healthy trees, dead trees and soil were relatively 

homogeneous in terms of spectral signatures. Especially for the dead trees, their spectral 

reflectance values were extremely low in the near-infrared portion of the spectrum (760–

900 nm) and high in the shortwave infrared portion (1550–1750 nm), making NPV 

distinguishable from GV and soil. Uncertainties occurred mainly between some GV and 

soil endmembers. There were barren lands in the study area, although forest floor was 

often made up of soil, decaying logs/leaves, and grass/shrubs.  
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Fig. 1.7 The extracted spectra for green vegetation (GV), non-photosynthetic vegetation 

(NPV), and soil in our study area. 

The fraction maps corresponding to the three components of GV, NPV and soil 

for year 2005 are shown in Fig. 1.8. Live trees covered much of the study in 2005, as 

evidenced by the high GV fraction values. High NPV values mainly occurred on the west 

coast, which is consistent with findings by Meentemeyer et al. (2008b), who used 0.33 m 
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resolution aerial photos to manually digitize sudden oak death-caused tree mortality over 

the same area. 

 

Fig. 1.8 Fraction maps of green vegetation (GV), non-photosynthetic vegetation (NPV), 

and soil for year 2005, where grey tones represent values from low (black) to high 

(light). 

1.5.2. Fine-resolution tree mortality map 

The overall accuracy of the classification result using the 2005 NAIP imagery 

and the object-based framework was 88.33%, with a Kappa statistic of 0.82. As 

presented in Table 1.4, others achieved better performance. Compared to the non-forest 

landscapes, forest horizontal and vertical structure was of higher complexity and 

heterogeneity, resulting in a higher spectral variation. Compared to the healthy forests, 

diseased forests were more difficult to map showing relatively lower user’s and 
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producer’s accuracies (Table 1.4). Uncertainties mainly occurred in the land-cover 

transitional zones, where dead trees were interspersed with their healthy counterparts or 

soil. Because sudden oak death had a non-random, highly-localized distribution pattern 

(Meentemeyer et al., 2011), some small patches of diseased trees were closely 

surrounded by healthy forests [see (a) in Fig. 1.9]. In addition, trees affected by the 

disease changed colors progressively over years, which made it difficult to accurately 

extract all the diseased trees. For example, some may be at the non-visible early stage of 

infection. In the transitional zones, we also observed a mixture of soil, and sparsely 

distributed vegetation within single image-objects [see (b) in Fig. 1.9]. The averaged 

reflectance from those objects was similar to that of a diseased forest object (Chen et al., 

2017). Although the mapping was challenged by a small portion of transitional zones, the 

extracted 300 samples (Section 1.4.3) were all manually checked to ensure the quality for 

reliable SDM calibration and validation.  
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Table 1.4 Confusion matrix for the disease mapping result. 

User Class 

Reference Class 

Healthy Forest 
Diseased 

Forest 
Others Total 

Producer's 

Accuracy 

(%) 

Healthy Forest 35 4 1 40 87.50 

Diseased 

Forest 
3 34 2 39 87.17 

Others 2 2 37 41 90.25 

Total 40 40 40 120  

User's 

Accuracy (%) 
87.50 85.00 92.50   

Overall accuracy = 88.33%; Kappa statistic = 0.82. 

 

Fig. 1.9  (a) True color sample NAIP image in the Big Sur, CA study region, and (b) 

corresponding classification with image-object boundaries. 
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1.5.3. Species distribution modeling (SDM) 

Three environmental variables were selected in the SDM, including precipitation, 

temperature, and elevation (Eq. 6). These variables together explained 36 percent of the 

variation (adjusted R2: 0.36) of the probability of sudden oak death infection. The TSS 

value 0.78 for our SDM was considered satisfactory following the suggestion by Shirk et 

al., (2018), in which multiple SDM types (including ours) were comprehensively 

compared for modeling the spread of white pine blister rust in the Western U.S. Their 

acceptable TSS values were located in the range between 0.71 and 0.84. We found 

increased probability with the increase of maximum temperature, and precipitation; 

however, probability was negatively correlated with elevation. Our findings of 

significant variables are similar to those in an earlier study, where 2003-2005 field 

measurements were used in species distribution modeling for predicting the probability 

of sudden oak death invasion (Meentemeyer et al., 2008a; Meentemeyer et al., 2008b). 

Using calibration data further allowed us to determine the best probability threshold 

0.62. Hence, a Landsat pixel was deemed sudden oak death-impacted if its probability 

value was equal to or higher than 0.62. 

YInfection = -8.4606 + 0.0434×Precipitation + 0.3290×Temperature – 0.0046×Elevation 

(10) 

where YInfection represents the logit transformation of the probability (pi) that a susceptible 

plot becomes invaded (see equation 6) 

1.5.4. Annual maps of disease-caused tree mortality  

Following the application of the proposed mapping method, the long-term sudden 

oak death-caused tree mortality maps achieved overall accuracies between 0.7 and 0.9, 

with Kappa statistics ranging from ~0.5 to ~0.7 [see (a) in Fig. 1.10]. The mapping 
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accuracies for years 2005, 2013, 2014, and 2016 were higher than 80%, while relatively 

inferior performance (75%-80%) was obtained in years 2006, 2009, 2010, 2011 and 2015 

[see (a) in Fig. 1.10].  

 

Fig. 1.10 Mapping accuracies (producer accuracy, user accuracy, overall accuracy, and 

Kappa statistic) in years 2005, 2006, 2009, 2010, 2011, 2013, 2014, 2015 and 2016. See 

methods of accuracy assessment in Section 1.4.5.  

We applied the developed SDM to the entire study area and generated a 

probability map of sudden oak death infection (Fig. 1.11). When it was overlaid with 

field plots, we found that potential habitat suitability with high probability was 

significantly greater (p<0.05) in the invaded plots. All the 11 tree mortality maps (2015-
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2016) are included in Fig. 1.12, which shows annual sudden oak death infection in the 

study area. Those maps illustrate a spatial progression pattern of disease mainly from the 

west coast to the northeast. The spatial coverage of sudden oak death-caused tree 

mortality rose rapidly from 1,584 ha in 2005 to 3,178 ha in 2016, a 2-time increase over 

a decade, at an annual infection rate of 7%. Such an aggressive progression pattern is 

consistent with the field findings discussed in the literature (e.g., Rizzo et al., 2005; 

Cunniffe et al., 2016).

Fig. 1.11 Species distribution model derived probability map of sudden oak death 

infection from 2005 to 2016. 
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Fig. 1.12 Spatial distribution of the estimated density of sudden oak death-caused tree 

mortality per 900 m2 from 2005 to 2016. 
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1.6. Discussion 

1.6.1. Assessment of disease mapping using spectral unmixing  

While plant disease-caused tree mortality has reached epidemic levels in forest 

landscapes, such as California’s coastal forests (Chen and Meentemeyer, 2016), many 

diseases (including sudden oak death) demonstrate isolated, patchy progression patterns. 

In our study, spectral unmixing proved to be effective for extracting tree mortality at the 

Landsat sub-pixel level. Such an approach differs from the previous efforts of sudden 

oak death modeling, which solely relied on high-spatial-resolution imagery for small-

area mapping (e.g., Kelly et al., 2007; Liu et al., 2006; Meentemeyer et al., 2008a). 

Through comparing MESMA-derived NPV fractions (Fig. 1.8) with the high-resolution 

sudden oak death map, we found a similar pattern of disease occurrence mainly on the 

west coast of the study area in 2005. 

Although promising, spectral unmixing was found to overestimate disease-caused 

tree mortality. For example, Fig. 1.8 shows high-value NPV pixels in some of the 

southern and eastern parts of the region, which have yet to be heavily impacted by 

sudden oak death in 2005 according to field observations and high-spatial-resolution 

images. Similar overestimation patterns were found in the NPV results over the 

succeeding years. This was mainly due to the use of Landsat imagery that has a limited 

number of spectral bands, unable to accurately identify the spectral differences in some 

dead trees affected by sudden oak death versus other disturbances (e.g., extreme drought 

and wildfires). We also found relatively higher accuracies in the maps using the data 

collected more recently (e.g., years 2013, 2014, 2015 and 2016). Those data were from 

the Landsat-8 OLI sensor (as compared to the other data from Landsat 5 TM). The data 
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quality (signal to noise ratio) and radiometric quantization (12 bits) of Landsat 8 OLI is 

higher than those of previous Landsat instruments (e.g., 8 bits for TM), providing a 

significant improvement in the ability to detect land cover on the Earth’s surface (Roy et 

al., 2014). The improved data quality of Landsat 8 OLI may have positively contributed 

to such phenomenon. When comparing the mapping accuracies between healthy and 

diseased trees, the results showed differences [see (b) in Fig. 1.10]. From 2005 to 2016, 

the producer’s accuracies of healthy trees were consistently higher than that of diseased 

trees, and their user’s accuracies were lower [see (b) in Fig. 1.10]. 

1.6.2. Effects of SDM on disease mapping  

The developed SDM indicated that higher probabilities were correlated with the 

forests experiencing relatively warm and wet climatic conditions, and that were located 

at low elevations in the mountainous study area (Eq.10). Similar significant factors (e.g., 

precipitation, temperature, and elevation) were found in a previous study by 

Meentemeyer et al. (2008a), who applied an SDM to predict the invasion of sudden oak 

death pathogen P. ramorum using field plots only.  

Compared to the MESMA-derived NPV results, the SDM consistently improved 

the estimation of sudden oak death-caused tree mortality over years (see Fig. 1.13 for a 

comparison), leading to an average of 26% decrease in detecting diseased forests. This 

was equivalent to an average of 818.4 ha each year, ranging from the minimum of 424.8 

ha and the maximum of 1,187.1 ha. The difference between the NPV and the SDM-

constrained results was partially explained by two major drought events that severely 

affected California’s coastal ecosystems. For example, the overall rainfall levels in the 

central coast were about 50% of average over 2007-2009 (California Dept. Water 
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Resources, 2010). Starting from 2012, the region experienced severe drought again for 

five consecutive years (U.S. Geological Survey, 2017). Our field visits and aerial photo 

interpretation both discovered large areas of stressed and dead tree canopies in the areas 

unsuitable to be infected by sudden oak death. 

 

Fig. 1.13 Annual sudden oak death-impacted forest area from NPV versus NPV+SDM 

(species distribution model) for the entire study area. 
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Fig. 1.14 Annual sudden oak death-impacted forest area from NPV versus NPV+ SDM 

(species distribution model) in part of the study area that was burned in 2008 (see Fig. 

1.12 for the location and size of the burned area). 

In summer 2008, the Basin Complex Fire that was ignited by a dry lightning 

storm burned the northern part of our study area (Fig. 1.12). Because some diseased trees 

revealed similar spectral reflectance as the burned trees owing to reduced foliage water 

content and damaged tree structure (Chen et al., 2017; He et al., 2019), the high spectral 

similarity and the relatively low Landsat spectral resolution did not provide sufficient 

information for MESMA to accurately extract diseased trees. Instead, MESMA treated 

some burned trees as being affected by sudden oak death, causing a major increase in the 

NPV result in 2009 (Fig. 1.13). In contrast, the SDM was able to mitigate the 

overestimation effect, making it valuable for generating reasonable sudden oak death 

progression maps in the regions affected by compound disturbances. However, the high-

spectral similarities between burned (within five years following the fire occurrence) and 

diseased canopies definitely affect the effectiveness of SDM. Spectral similarities also 
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apply to the drought- and disease-killed trees, although studies have found less severe 

tree mortality caused by drought in coastal forests (including our study area) than their 

inland counterparts (Baguskas et al., 2014; Fischer et al., 2009). Nevertheless, it is 

possible that the presence of sudden oak death remains overestimated by our model. 

Acquiring detailed field measurements of tree mortality caused by both the disease and 

fire/drought offers a solution to better train our model and assess its performance in 

distinguishing between the two disturbance types. Another viable solution, as suggested 

by He et al. (2019), is using hyperspectral data with enhanced spectral signatures from 

the shortwave infrared portion of the spectrum. Because different types of disturbances 

may reveal varying progression patterns over time, high-resolution time series images 

have the potential to capture those patterns. However, data acquisition and processing 

costs are considerably higher than using time series data at the medium resolution.    

1.7. Conclusion  

We developed a new mapping method to capture the spatiotemporal patterns of 

diseased-caused tree mortality in a forested area for over a decade. The rationale of 

integrating remote sensing and SDM was based on the fact that remotely observed tree 

mortality may be associated with both disease and non-disease disturbances; such 

uncertainties can be reduced by understanding pathogen spatial preferences for certain 

habitat conditions (i.e., using SDM). The proposed method bridges remote sensing and 

ecological SDM in a way that has not been well studied. Here, we used sudden oak death 

(caused by pathogen P. ramorum) as a case study of a rapidly spreading EID. The results 

show that SDM considerably reduced the overestimation of sudden oak death-caused tree 

mortality observable from Landsat imagery. However, due to the lack of detailed field 
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observations (e.g., drought-caused tree mortality), we were unable to assess what 

percentage of the overestimation was from what specific causes, other than sudden oak 

death. Our interpretation that the overestimated tree mortality was mainly linked to 

drought/fire was based on the reported severe weather events in the region (Asner et al., 

2016). Nevertheless, our study represents the best way linking multi-scale remote 

sensing observations to highlight areas that are probably not affected by sudden oak 

death so we can focus the disease management efforts in areas that need them. The final 

annual tree mortality maps show accuracies ranging from 75.5% to 82.5%. To balance 

data costs and the ability to map the pathogen’s isolated, patchy distribution patterns, in 

this study we applied spectral unmixing to Landsat TM/OLI time series. Our model was 

calibrated and validated by disease reference data from high-resolution image samples 

(aerial NAIP and AVIRIS photos and Google Earth imagery) and field surveys. Coupling 

multi-sensor, multi-scale remote sensing (full-cover Landsat imagery and sampled high-

resolution images) and SDM offer a timely and cost-effective means to map long-term 

forest disease progression at the regional scale. 
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Chapter 2: A Disturbance Weighting Analysis Model (DWAM) for Mapping 

Wildfire Burn Severity in the Presence of Forest Disease 

 

Abstract 

Forest ecosystems are subject to recurring fires as one of their most significant 

disturbances. Accurate mapping of burn severity is crucial for post-fire land management 

and vegetation regeneration monitoring. Remote-sensing-based monitoring of burn 

severity faces new challenges when forests experience both fire and non-fire 

disturbances, which may change the biophysical and biochemical properties of trees in 

similar ways. In this study, we develop a Disturbance Weighting Analysis Model 

(DWAM) for accurately mapping burn severity in a forest landscape that is jointly 

affected by wildfire and an emerging infectious disease – sudden oak death. Our 

approach treats burn severity in each basic mapping unit (e.g., 30 m grid from a post-fire 

Landsat image) as a linear combination of burn severity of trees affected (diseased) and 

not affected by the disease (healthy), weighted by their areal fractions in the unit. 

DWAM is calibrated using two types of inputs: i) look-up tables (LUTs) linking burn 

severity and post-fire spectra for diseased and healthy trees, derived from field 

observations, hyperspectral sensors [e.g., Airborne Visible InfraRed Imaging 

Spectrometer (AVIRIS)], and radiative transfer models; and ii) pre-fire fractional maps 

of diseased and healthy trees, derived by decomposing a pre-fire Landsat image using 

Multiple Endmember Spectral Mixture Analysis (MESMA). Considering the presence of 

tree disease in DWAM improved the overall map accuracy by 42%. The superior 

performance is consistent across all three stages of disease progression. Our approach 
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demonstrates the potential for improved mapping of forest burn severity by reducing the 

confounding effects of other biotic disturbances.  

2.1. Introduction 

Forest fires directly transform living and dead organic matter to charred or 

blackened residues in the short term (Kokaly et al., 2007; Lewis et al., 2007) and over 

the long term they affect the structure, function, and spatial patterns of ecological 

succession (Turner et al., 1998; Metz et al., 2013; Chen et al., 2015b). Building accurate 

knowledge of the spatial distribution of fire extent and particularly burn severity is 

crucial in planning and executing post-fire land management activities (Keeley, 2009; 

Quintano et al., 2017). Over the past decade, the term burn severity has gained popularity 

to represent the degree of environmental change (typically the loss of organic matter on 

the soil surface) caused by a fire (Key and Benson, 2006; Keeley, 2009). Both short-term 

(e.g., about within one year following the fire) and long-term (e.g. up to ten years) 

impacts of fire on local environment have been assessed to understand the direct loss of 

vegetation by combustion and longer term recovery, respectively (Key and Benson, 

2005; Lentile et al., 2006; Roy et al., 2006). To date, there have been numerous studies 

about burn severity estimation across forest biomes worldwide (e.g., Díaz-Delgado and 

Pons, 2001; French et al., 2008; Hall et al., 2008; Miller et al., 2009). Due to rapid 

environmental change and intensive human interventions, burn severity mapping is 

increasingly challenged by compound disturbances in forest ecosystems; with increasing 

frequency forest landscapes are being impacted by emerging infectious diseases or other 

forms of disturbance prior to fire occurrence (Bright et al., 2013; Hultquist et al., 2014; 

van Mantgem et al., 2013). Because pre-fire disturbances also cause the loss of organic 
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matter, estimating burn severity may introduce high uncertainties without properly 

considering the compound effects of multiple disturbances (Chen et al., 2017). 

Remote sensing is effective to assess fire effects on forest ecosystems at local, 

regional and continental scales (e.g., Chen et al., 2018; Hudak and Brockett, 2004; 

Lentile et al., 2006; Quintano et al., 2013; Veraverbeke et al., 2012). It is especially 

suitable for monitoring large and topographically complex landscapes that are 

logistically unfeasible with traditional field surveys (Chuvieco et al., 2007; Chen et al., 

2015a). Remote sensing models to estimate burn severity are typically categorized into 

two groups: empirical and physical models. Specifically, classic empirical models rely 

on statistical regression (e.g., linear regression) or machine learning (e.g., random 

forests) to link sample field measurements of burn severity with remotely sensed data, 

e.g., spectral bands and indices (band combinations), such as Normalized Burn Ratio 

(NBR; López-García and Caselles, 1991), differenced Normalized Burn Ratio (dNBR; 

Key and Benson, 2006), and relative differenced Normalized Burn Ratio (RdNBR; 

Miller and Thode, 2007). Such models are relatively easy to implement and interpret. 

However, their performance depends highly on the reliability and sufficiency of field 

samples and is site-specific, which reduce their generality across complex geographic 

conditions (De Santis and Chuvieco, 2007). More recently, researchers took advantage of 

spectral mixing analysis to retrieve forest burn severity at the sub-pixel level from 

medium- or coarse-resolution, and even high-resolution imagery. For instance, the 

classic Multiple Endmember Spectral Mixing Analysis (MESMA; Roberts et al., 1998) 

has been used to derive non-photosynthetic vegetation fraction (NPV) or char fractions, 

which serve as an explanatory factor to estimate burn effects in forests (e.g., Fernandez-
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Manso et al., 2016; Meng et al., 2017, Quintano et al., 2017). While the spectra used in 

MESMA are typically from image sampling, they can also come from a radiative transfer 

model, as was true in Painter et al. (1998, 2003) and Sonnentag et al. (2007). Physical 

models attempt to address such limitation by simulating the physical interactions 

between radiation and burned canopies. A typical example is the use of radiative transfer 

models. Chuvieco et al. (2006) were the first to apply radiative transfer models, i.e., 

PROSPECT (Jacquemoud and Baret, 1990) and Kuusk (Kuusk, 2001) reflectance 

models, for burn severity estimation. De Santis et al. (2009) successfully simulated the 

spectra of burned canopies at 30 m resolution by integrating the leaf-level PROSPECT 

with the canopy-level GeoSail (Verhoef and Bach, 2003) models.    

Despite the popularity of remote-sensing-based burn severity estimation, none of 

the present models explicitly account for the effects of pre-fire disturbances on map 

performance. Because both fire and non-fire disturbances (i.e., compound disturbances) 

may change the biophysical or biochemical properties of trees in similar ways (e.g., 

damaging tree structure or reducing foliage water content; Hultquist et al., 2014), pre- 

and post-fire spectral differences for the trees affected by non-fire disturbances are 

possibly different from their healthy counterparts. Uncertainties are further introduced if 

such non-fire disturbances affect forests at multiple stages showing various symptoms, 

leading to a weak relationship between spectral reflectance and burn severity. The 

negative impact of forest disease on burn severity estimation was recently confirmed by 

Chen et al. (2017), who employed PROSPECT and GeoSail to map burn severity in a 

forest that had been affected by an emerging infectious disease – sudden oak death – 
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prior to fire occurrence. Their results revealed a significant overestimation of burn 

effects by ignoring tree damage caused by the disease. 

The main goal of this study is to develop a remote-sensing-based model to map 

burn severity in forest landscapes, aiming to reduce the effects of tree damage caused by 

pre-fire disturbances. Here, we used sudden oak death as an example of a pre-fire 

disturbance that has caused widespread tree mortality in the Big Sur, California 

ecoregion before the studied Basin Complex Fire occurred in 2008 (Chen et al., 2015a). 

In model development, it is assumed that the final burn effect for a basic mapping unit 

(e.g., 30 m grid) is a linear combination of burn severity of two tree classes (i.e., trees 

affected and not affected by the disease), weighted by their areal fractions. To achieve 

the research goal, we also asked two specific questions in model development and 

assessment: (i) whether (and if yes, how much) the estimation of forest burn severity can 

be improved by incorporating pre-fire, disease-caused tree mortality? And (ii) how 

differently does the new model perform at the early, middle, and late stage of disease 

progression? 

2.2. Study area  

Our study site (centered at 36°16' N, 121°44' W) is located in the Big Sur 

ecoregion on the western flank of Santa Lucia Mountain of California with a total area of 

28,383 ha (Fig. 2.1). The area has a Mediterranean-type climate and a rugged landscape 

dissected by steep slopes and drainages with elevations ranging from sea level to 1,571m 

within 5 km of the coast (Meentemeyer et al., 2008). The area is dominated by a range of  

tree species: (i) mixed coniferous forest, composing of ponderosa pine (Pinus 

ponderosa), sugar pine (Pinus lambertiana), Jeffrey pine (Pinus jeffreyii), coulter pine 
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(Pinus coulteri), and Santa Lucia fir (Abies bracteata), which are located on upper 

elevation slopes and rocky ridges; and (ii) mixed oak woodland consisting of coast live 

oak (Quercus agrifolia), Shreve’s oak (Q. parvula), bay laurel (Umbellularia 

californica), and madrone (Arbutus menziesii), which were found on moister slopes, 

giving way to riparian corridors of redwood-tanoak forest at lower elevations. Since the 

mid-1990s, an invasive pathogen Phytophthora ramorum causing the disease – sudden 

oak death – has led to extensive tree mortality in the study area mainly found in two 

plant communities – mixed oak and redwood-tanoak forests (Rizzo et al., 2005). The 

disease involves a multi-year progress especially under a suitable temperature and 

rainfall conditions, girdling a tree over years or making the tree more susceptible to 

attack by other pathogens or insects (Chen et al., 2015b). In 2008, a wildfire – the Basin 

Complex Fire – was ignited by a dry lightning storm in late June and burned over 65,942 

ha of federal, state and private lands. The total cost of containment action was around 

$77.2 million mainly due to the sheer size of the fires, the ruggedness of the terrain and 

the extremely dry conditions (USDA Forest Service, 2008). The Basin Complex Fire 

affected forest landscapes, which had and had not been damaged by sudden oak death. 
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Fig. 2.1 Study area located in the Big Sur ecoregion on the western flank of the Santa 

Lucia Mountains in California. The Airborne Visible InfraRed Imaging Spectrometer 

(AVIRIS) image is from a color composite using bands 195 (red), 52 (green) and 31 

(blue). The Landsat TM image is from a color composite using bands 7 (red), 4 (green) 

and 3 (blue). 

2.3. Data and pre-processing  

2.3.1. Field data 

A solid network of long-term sudden oak death monitoring plots (500 m2 each) in 

Big Sur was established in years 2006 and 2007 to understand the responses of forest 

communities (e.g., host mortality) to the invasion of sudden oak death (Meentemeyer et 

al., 2008). The plots were distributed in a stratified-random manner among two dominant 

tree types-redwood and mixed-evergreen within the study area. A Panasonic SXBlue 

real-time differential GPS (Geneq, Montreal) was applied for collecting plot positions, 

with an average accuracy of 1 m or less. A total of 61 plots were revisited after the 
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wildfire in September and October 2008. Among these plots, 42 had been affected by 

sudden oak death, and 19 had not. The affected plots evenly covered the three stages of 

disease progression from early, middle, to late stages. 

Burn severity at the plot level was recorded using the Composite Burn Index 

(CBI; Key and Benson, 2005) for five forest strata: (1) substrate layer, measured as 

changes to coarse woody debris, soil, duff, and leaf litter; (2) herb layer, changes or 

responses of vegetation less than 1 m; (3) shrub layer, changes in vegetation higher than 

1 m but less than 5 m; (4) intermediate-sized tree layer, any trees higher than 5 m but 

standing under the dominant trees; and (5) dominant tree layer (Metz et al., 2011). In this 

study, all the CBI values were converted to geometrically structured CBI (GeoCBI) 

values (maximum: 2.83, minimum: 0.56, average: 2.00, and standard deviation: 0.42). 

Proposed by De Santis and Chuvieco (2009), GeoCBI (ranging from 0.0-3.0) simulates 

burn severity with a ‘top-down’ view, to be consistent with remote sensing observations. 

GeoCBI accounts for the contribution of each forest stratum using its Fraction Cover 

(FCOV) as the weighting factor (see Eq. 1).  

GeoCBI =
∑ (𝐶𝐵𝐼𝑚 ∗ 𝐹𝐶𝑂𝑉𝑚)

𝑚𝑛
𝑚1

∑ 𝐹𝐶𝑂𝑉𝑚
𝑚𝑛
𝑚1

                                                         (1) 

where FCOV is calculated and characterized as the percentage of vegetation coverage 

with respect to the total size of the plot area, m is the identification of each stratum, and 

n is the number of strata. 

2.3.2. AVIRIS imagery 

  The AVIRIS image mosaic (from seven transects) at the 3 m resolution 

was acquired on September 24, 2008, immediately following the containment of the 
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Basin Complex Fire for rapid assessment. AVIRIS is an imaging spectrometer that 

measures 224 contiguous spectral bands in the range of ~360 nm to ~2500 nm with an 

average bandwidth of 10 nm (Green et al., 1998). The images were geometrically 

corrected, radiometrically calibrated, and were made available at the JPL’s website 

(http://aviris.jpl.nasa.gov). Atmospheric correction was performed using the Fast Line-

of-sight Atmospheric Analysis of Spectral Hypercubes (FLAASH) module, which is 

available in the ENVI software package (ITT Visual Information Solutions, Colorado, 

USA). FLAASH uses the physics-based radiative transfer model MODTRAN 5 to 

perform atmospheric correction, which needs flight and sensor metadata (i.e., sensor 

type, scene center latitude/longitude, average ground elevation, sensor altitude, and flight 

date and time), as well as assumed or measured atmospheric parameters (i.e., atmosphere 

model, aerosol model, and atmosphere water vapor) to generate apparent surface 

reflectance spectra from radiance data (Berk et al., 2006). In our study, flight and sensor 

metadata are available with the image. To simulate atmospheric conditions, Mid-Latitude 

Summer (MLS) was selected as an atmosphere model (Matthew et al., 2002), as AVIRIS 

data were acquired in September (temperature around 21°C) at the latitude 36°N. Also 

because our study area is not strongly affected by urban or industrial sources, the rural 

aerosol model was selected (Shettle and Fenn, 1979). In order to compute apparent 

surface reflectance using radiative transfer equations in MODTRAN 5, the column water 

vapor amount for each pixel was determined using the 1135 nm water vapor absorption 

feature (Kruse, 2004). To mitigate topographic effects as the study area is a mountainous 

region, a Terrain Agular Bin method (TAB; Wen et al., 2014) was applied to correct for 

topographic effects using a 30 m resolution digital elevation model (DEM) derived from 

http://aviris.jpl.nasa.gov/
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the data collected by Advanced Spaceborne Thermal Emission and Reflection 

Radiometer (ASTER) as part of the Global Digital Elevation Model Version 2 (GDEM 

V2) project (ASTER GDEM Validation Team, 2011). 

2.3.3. Landsat imagery 

Two cloud-free Landsat-5 Thematic Mapper (TM) scenes (path 43, row 35) were 

acquired on May 13, 2008, and September 2, 2008, from the USGS Landsat Surface 

Reflectance High-Level Data Products (Schmidt et al., 2013) to represent pre- and post-

fire forest conditions in the study area. The images have solar zenith angles of 26.6° and 

36.2°, and solar azimuth angles of 124.7° and 135.9°, respectively. The data were 

downloaded via the U.S. Geological Survey Landsat data portal and had been 

geometrically, radiometrically, and topographically corrected before being made 

available online. In this study, we used six TM bands (1-5, and 7). 

2.4. Methods  

Our Disturbance Weighting Analysis Model (DWAM) includes three major steps 

(Fig. 2.2): (i) development of GeoCBI-spectrum look-up tables (LUTs), (ii) pre-fire 

fractional mapping, and (iii) burn severity mapping. To facilitate the succeeding model 

description and discussion, we defined the trees not affected by sudden oak death as 

‘healthy trees’, and those affected as ‘diseased trees’, regardless of the burn effects. The 

overall methodological flow is briefly described in this paragraph. In step (i), we 

developed two LUTs linking burn severity as measured by GeoCBI with spectra for 

healthy and diseased trees, respectively. To do so, we used two spectral libraries: one 

was developed by De Santis and Chuvieco (2009), and the other one was derived from 

the post-fire AVIRIS data. In step (ii), we mapped fractional cover of healthy and 
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diseased trees prior to fire occurrence, which was completed by applying the spectral 

unmixing MESMA model to the pre-fire Landsat TM image. The AVIRIS data acquired 

outside of the fire scar was used to construct a spectral library consisting of healthy trees, 

diseased trees, and soil. In step (iii), we estimated burn severity (in 30 m grids) as a 

linear combination of burn severity of healthy and diseased trees, weighted by their areal 

fractions in each grid.  

 

Fig. 2.2 Methodological workflow used in this study. 

Finally, we evaluated DWAM performance using field-measured GeoCBI data. 

In order to further understand the effects of disease progression on DWAM performance, 
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we mapped disease infection at the early, middle, and late stages, and analyzed the 

relationship between infection stages and model performance. For the purpose of 

comparison, we also assessed burn severity with the traditional spectral-index-based 

approach, e.g., NBR, dNBR and RdNBR, which used both pre- and post-fire imagery.  

2.4.1. Development of GeoCBI-spectrum LUTs 

2.4.1.1. LUT for healthy trees 

A spectral library for healthy trees was derived from a research project by De 

Santis and Chuvieco (2009), who studied forest burn severity in the Mediterranean 

ecosystem, where our study area is also located. Here, we did not use data from our study 

mainly due to the fact that only 11 healthy plots were covered by the AVIRIS image, 

preventing the extraction of meaningful LUT relating spectra and GeoCBI. The spectral 

library was developed using two radiative transfer models PROSPECT (Jacquemoud and 

Baret, 1990) and GeoSail (Verhoef and Bach, 2003) in two steps: (i) at the leaf level, the 

PROSPECT model was used to simulate spectra for brown (damaged by fire) and green 

(undamaged) leaves, where the input values included leaf structural parameter, 

chlorophyll a+b, equivalent water thickness, dry matter content, and brown pigments 

content (De Santis et al., 2009). (ii) The output of the PROSPECT model, together with a 

series of canopy parameters (substratum type, geometry, and illumination) (De Santis et 

al., 2009), was used as inputs for parameterizing the GeoSail model, scaling up the 

spectral library from the leaf to the canopy level. A LUT was built to link 30 reference 

spectra with burn severity GeoCBI values from 0 to 3 (De Santis et al., 2009). To 

facilitate the application of the LUT to Landsat TM bands, each of the spectra in the 

LUT was convolved to the Landsat spectral resolution, using a Gaussian model with a 
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full width at half maximum (FWHM) appropriate for the TM band spacing (Mutanga et 

al., 2015). 

2.4.1.2. LUT for diseased trees 

We built a LUT for diseased trees by taking advantage of the AVIRIS data 

acquired in our study area. We overlaid field-measured plots on the AVIRIS image and 

extracted GeoCBI values from the plots and the corresponding spectra from the image. 

This information was used to create a LUT linking 39 spectra with 39 GeoCBI values in 

diseased forests. Among a total of 42 plots identified to be affected by sudden oak death 

in the field, three plots were removed because they were not covered by the AVIRIS 

image. Subsequently, the spectra in the LUT were convolved to the Landsat TM spectral 

resolution following the same method as described in Section 2.4.1.1.  

2.4.2. Pre-fire fractional mapping  

2.4.2.1. Spectral library  

We constructed a spectral library for pre-fire fractional mapping. Here, we 

applied AVIRIS data to identify endmembers for green vegetation (GV) and non-

photosynthetic vegetation (NPV), representing healthy and diseased trees, respectively. 

Because the AVIRIS sensor was flown after fire occurrence, endmember extraction was 

conducted in the areas outside the fire scar. Specifically, we applied the Pixel Purity 

Index (PPI; Boardman et al., 1995) algorithm to identify a pool of potential endmember 

pixels in the AVIRIS image. PPI is an iterative process, in which every pixel is 

repeatedly projected onto a random vector selected through the n-dimensional scatter 

plot (n=224 in our study), and pixels are considered pure if they consistently fall into the 
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tails of the calculated histograms. After the initial assessment, the number of 

endmembers was further reduced using the three techniques proposed by Roberts et al. 

(2003), Dennison and Roberts (2003), and Dennison et al. (2004): Count based 

Endmember Selection (CoB), Endmember Average RMSE (EAR), and Minimum 

Average Spectral Angle (MASA). To do so, we selected the endmembers that modeled 

the greatest number of endmembers within their classes using CoB. When EAR was 

considered, we chose endmembers that yielded the lowest RMSE within each class. In 

addition, we identified the endmembers with the lowest average spectral angle when 

MASA was taken into account. The final endmembers were selected to satisfy all of the 

three criteria: highest COB, lowest EAR and lowest MASA. Using the Visualization and 

Image Processing for Environmental Research (VIPER) Tools package (Roberts et al., 

2007), we developed a spectral library, including 6 spectra for GV, 5 spectra for NPV, 6 

spectra for soil, and 1 spectrum for shade. Finally, all the AVIRIS spectra were 

convolved to the Landsat TM spectral resolution.  

2.4.2.2. Fractional mapping  

Using the endmember spectral library and the MESMA model, we decomposed 

each pixel in the pre-fire Landsat image into GV (healthy tree), NPV (diseased tree), soil, 

and shade fractions. The parameters for calibrating MESMA included minimum and 

maximum allowable fraction values for each class, maximum shade fraction, and RMSE. 

In this project, we chose −0.05 and 1.05 for minimum and maximum allowable fraction 

values, respectively, 0.8 for maximum allowable shade fraction value, and 0.025 for 

maximum allowable RMSE, following the recommendations by Dennison and Roberts 

(2003). Here, the minimum and maximum possible values were allowed to be slightly 
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less than 0 or slightly greater than 1, because the precision of sub-pixel fraction 

estimation is typically limited by the Modular Transfer Function (MTF) of Landsat 

sensor; and the spectral signal for a given pixel is partially influenced by the land cover 

of surrounding pixels (Forster, 1985; Townshend et al., 2000). While multiple models 

met the above-mentioned criteria, the model with the lowest RMSE was selected. Then, 

the MESMA derived three types of fractional (GV, NPV, and soil) maps. Finally, three 

relative abundance images of non-shade endmembers with values ranging from 0 to 1 

were obtained. We employed VIPER to complete the MESMA procedures (Roberts et 

al., 2007). 

2.4.3. Burn severity mapping 

Burn severity mapping was carried out using the post-fire Landsat TM image 

based on an assumption that burn severity in each pixel (covered by a mixture of healthy 

and diseased trees) is a linear combination of burn severity for two tree classes – healthy 

and diseased trees, weighted by their areal fractions. To determine the burn severity 

value for each class, it is also assumed that the spectral reflectance of each burned pixel 

is the linear combination of reflectance spectra of burned canopies from healthy and 

diseased trees, weighted by their areal fractions (Eq. 2). 

 

where 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚Healthy
𝑖  represents the ith spectrum (range: 1 to 30) from the reference 

spectra in the healthy tree LUT (Section 2.4.1.1), 𝐹Healthy is the pre-fire fraction of 

healthy trees in the pixel area (Section 2.4.2), 𝑠𝑝𝑒𝑐𝑡𝑟𝑢𝑚Diseased
𝑗

 represents the jth 

spectrum (range: 1 to 39) from the reference spectra in the diseased tree LUT (Section 

𝑅𝑒𝑓𝑙𝑒𝑐𝑡𝑎𝑛𝑐𝑒𝑖 ,𝑗 =  𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚Healthy
𝑖 × 𝐹Healthy + 𝑆𝑝𝑒𝑐𝑡𝑟𝑢𝑚Diseased

𝑗
× 𝐹Diseased                 (2) 1 
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2.4.1.2), and 𝐹Diseased is the pre-fire fraction of diseased trees in the pixel area (Section 

2.4.2).  

To determine the two optimal spectra (one for healthy trees and one for diseased 

trees), we evaluated all 1170 spectral combinations (30×39). Each of the calculated 

reflectance spectra from Eq. 2 was compared with the reflectance of the corresponding 

Landsat pixel (at the same location) using the Spectral Angle Mapper algorithm (SAM; 

Kruse et al., 1993). Here, SAM measures the similarity (i.e., angle) between the 

calculated and the observed spectral reflectance across Landsat TM bands. SAM has 

proven effective in forest burn severity assessment due to its simplicity and insensitivity 

to differences in illumination (De Santis et al., 2009). The optimal spectra were chosen 

when the simulated reflectance reached the highest similarity with the observed 

reflectance, among all the tested spectral combinations. Consequently, the corresponding 

GeoCBI values were derived from the two LUTs. The estimated burn severity for each 

pixel area is the linear combination of burn severity of healthy and diseased trees, 

weighted by their areal fractions (Eq. 3). This is based on an assumption that the actual 

burn severity from a burned plot should be aggregated using the same proportions of 

healthy and diseased trees. 

𝐵𝑢𝑟𝑛 𝑠𝑒𝑣𝑒𝑟𝑖𝑡𝑦 =  𝐺𝑒𝑜𝐶𝐵𝐼Healthy × 𝐹Healthy + 𝐺𝑒𝑜𝐶𝐵𝐼Diseased × 𝐹Diseased           (3) 

where 𝐺𝑒𝑜𝐶𝐵𝐼Healthy represents burn severity of healthy trees, 𝐺𝑒𝑜𝐶𝐵𝐼Diseased 

represents burn severity of diseased trees, 𝐹Healthy is the fraction of healthy trees within 

each pixel, and 𝐹Diseased is the fraction of diseased trees within each pixel.  
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For model calibration and validation, Leave-One-Out-Cross-Validation 

(LOOCV) was applied due to the limited number of field-measured diseased plots (39 

plots). Specifically, for each round of evaluation, one observation was left out for model 

performance evaluation (computing RMSE), while the remainder was used for building 

the diseased tree LUT.  

2.4.4. Infection stage mapping 

Depending on the invasion stages of sudden oak death, an infected forest 

landscape may show three major symptoms (Meentemeyer et al., 2008; Chen et al., 

2015a): (i) early-stage (host trees retaining their dried foliage and fine twigs for one year 

or more), (ii) middle-stage (some older mortality with host trees losing fine crown fuels 

and surface fuels beginning to accumulate for 1-3 years), and (iii) late-stage (host trees 

being dead for over 4 years and causing gaps due to trees falling over). To understand the 

infection stages in the studied forest landscape at the time of fire occurrence, we 

employed the sudden oak death-caused tree mortality maps from a previous project (He 

et al., 2019). In that project, MESMA was used to extract NPV fractions from Landsat 

TM annual time series. The results were refined using Species Distribution Modeling 

(SDM) that simulated the statistical probability of sudden oak death dispersal patterns 

over space and time, leading to annual map accuracies from 74.24% to 82.50%. In our 

study, we referenced the annual disease maps and divided the diseased trees into three 

infection stages following three criteria: (1) all of the trees that had been killed in or prior 

to 2005 were identified as the late stage; (2) the infection that occurred in 2006 and 2007 

was identified as the middle stage; and (3) the newly detected infection in 2008 was 

identified as the early stage. The mapping result was validated using field-measured data, 
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with overall accuracy, producer’s accuracy, user’s accuracy, and kappa statistic reported 

in this study. 

2.4.5. Burn severity assessment with NBR, dNBR and RdNBR 

For the purpose of comparison, we calculated popular remote sensing spectral 

indices (i.e., NBR, dNBR and RdNBR) for burn severity estimation. Particularly, dNBR 

and RdNBR take into consideration the pre- and post-fire spectral reflectance, which are 

also used in DWAM. To do so, we applied the following equations to calculate these 

indices (López-García and Caselles, 1991; Key and Benson, 2006; Miller and Thode, 

2007).  

NBR =  
B4−B7

B4+B7
                                                                 (4) 

dNBR = NBRPre−fire − NBRPost−fire                                              (5) 

RdNBR =
NBRPre−fire−NBRPost−fire

√ABS(NBRPre−fire/1000)
                                                  (6) 

where B4 and B7 are the spectral reflectance of band 4 (near-infrared, NIR) and band 7 

(short wave infrared, SWIR) of Landsat TM, respectively. Then, we developed linear 

regression models linking individual spectral indices with GeoCBI, with R2 and RMSE 

reported. 

2.5. Results  

2.5.1. Spectral libraries  

The average spectral reflectance for burned trees (a – healthy; b – diseased) is 

presented in Fig. 2.3. We also divided burn severity into five main intervals, i.e., GeoCBI 

∈ [0, 1.0), [1.0, 1.5), [1.5, 2.0), [2.0, 2.5], and (2.5, 3.0]. In most cases, the reflectance 
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curves show similar patterns for both diseased and healthy trees (Fig. 2.3), where 

wildfire reduces forest spectral reflectance with the increase of burn severity from the 

visible to the near-infrared portion of the spectrum. However, burn severity leads to a 

higher variation of spectral reflectance in healthy trees than in diseased trees, particularly 

when GeoCBI values are larger than 1.0 (Fig. 2.3). In the shortwave infrared portion of 

the spectrum, the patterns are different. For diseased trees, varying levels of burn severity 

result in noticeable differences in reflectance curves. However, for healthy trees, the 

spectral reflectance corresponding to two medium-high burn severity intervals (GeoCBI 

∈ [1.5, 2.0), [2.0, 2.5]) show similar reflectance. In the same shortwave infrared portion, 

we further found a stronger effect of medium-low burn severity [GeoCBI ∈ [1.0, 1.5)] on 

diseased trees than healthy trees, resulting in lower spectral reflectance.   
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Fig. 2.3 Average spectral reflectance corresponding to the main intervals of GeoCBI for 

(a) healthy and (b) diseased trees. Healthy tree spectra were derived from De Santis and 

Chuvieco (2009). 

To facilitate calculating pre-fire fractions for healthy and diseased trees, we 

extracted 6 GV, 5 NPV, and 6 soil endmembers (see methods in Section 2.4.2.1), with 

their spectra shown in Fig. 2.4. We found a high intra-class spectral variability among 

GV endmembers, possibly due to the high variety of tree species types (e.g., mixed oak 

woodlands and mixed coniferous forests) in the study area. In contrast, the spectral 

signatures from disease-affected trees (i.e., NPV reflectance) and soil are relatively 

homogeneous. 
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Fig. 2.4 The extracted endmember spectra for green vegetation (GV), non-photosynthetic 

vegetation (NPV), and soil. 
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2.5.2. Fraction maps  

The shade normalized fraction maps corresponding to the three endmembers – 

GV, NPV, and soil are illustrated in Fig. 2.5, where light colors represent high fractions 

and dark colors show low fractions. High values in the NPV fraction map mainly 

distribute along the west coast, which is consistent with the findings by Chen et al., 

(2017), who used one-meter resolution KOMPSAT-2 satellite data to map sudden oak 

death-caused tree mortality over the same area. However, a small portion of high-value 

pixels was observed to spread all over the region, suggesting an overestimation of 

disease occurrence by only using NPV as the proxy of disease-caused tree mortality.  

 

Fig. 2.5 Fraction maps of green vegetation (GV), non-photosynthetic vegetation (NPV), 

and soil derived from the pre-fire Landsat image, where values range from low (black 

tone) to high (light tone). 

2.5.3. Burn severity maps  

We generated two types of burn severity maps. For the first one, we assumed that 

all the trees were in the similar, healthy conditions prior to fire occurrence (i.e., the 
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fractions of disease-affected trees were assigned value ‘0’ in DWAM). For the second 

one, we considered the disease effects using the proposed model DWAM. For simplicity 

purposes, the resulting burn severity maps were named as non-DWAM map (not 

considering disease) and DWAM map (considering disease). Both maps are dominated 

by moderate (1.5 ≤ GeoCBI <2.5) to severe burns (2.5 ≤ GeoCBI ≤ 3.0). While 

severe burns dominate the non-DWAM map with a spatial coverage of 78.9% (Fig. 

2.6a), they only account for 27.3% in the DWAM map (Fig. 2.6b), in which moderate 

burns dominate (66.6%).  
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Fig. 2.6 Burn severity maps (a) without considering the effects of sudden oak death, and 

(b) considering the disease effects using DWAM. 
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We further compared field-measured and estimated GeoCBI values using two 

scatter plots in Fig. 2.7. Similar to the findings as illustrated in Fig. 2.6, ignoring the 

effects of disease on burn severity modeling caused an evident overestimation with a 

relatively large error (RMSE=0.62; Fig. 2.7(2)). Using the proposed model, we were able 

to reduce the error (RMSE) to 0.36, a 42% decrease (Fig., 2.7(1)). We also found that the 

proposed DWAM can reduce the overestimation of burn severity in both moderately and 

severely burned plots (Fig. 2.6).         
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Fig. 2.7 Comparisons between field-measured and estimated GeoCBI (2,4,6,8) without 

considering the effects of sudden oak death, and (1,3,5,7) considering the disease effects 

using DWAM across all the infected plots, and the plots at the early-, middle-, and late-

stage infection, respectively. 

Table 2.1 provides summary statistics (area, percentage, minimum, maximum, 

mean, median and standard deviation) of the estimated burn severity at three levels (low, 

moderate and high) using non-DWAM and DWAM. Overall, DWAM considers that the 

majority of the area was subject to moderate burn severity, while the area is considered 

to be heavily burned with non-DWAM.  

Table 2.1 Summary statistics of the estimated burn severity using non-DWAM and 

DWAM. 

Burn severity 
Area 

(ha) 

Percentage 

(%) 
Minimum Maximum Mean Median 

Standard 

deviation 

Non-

DWAM 

Low 60.5 0.7 0.00 1.00 0.74 1.00 0.33 

Moderate  1720.8 20.4 1.50 2.45 2.07 2.30 0.39 

High  6691.5 78.9 2.50 3.00 2.71 2.75 0.11 

DWAM 

Low 509.6 6.1 0.00 1.49 1.31 1.40 0.23 

Moderate  5627.7 66.6 1.50 2.49 2.21 2.27 0.22 

High  2314.1 27.3 2.50 2.99 2.62 2.60 0.09 

 

2.5.4. Infection stage map 

The overall accuracy of mapping the stages of sudden oak death infection is 

69.84%, with a Kappa coefficient of 0.58. As presented in Table 2.2, the producer’s 

accuracies of diseased forest across the three progression stages are high (early-stage: 

81.81%, middle-stage: 81.25%, late-stage: 85.71%), while the corresponding user’s 

accuracies are relatively lower (early-stage: 64.28%, middle-stage: 76.47%, late-stage: 

54.54%). This indicates a slight overestimation of disease infection. Trees may have 
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been affected by both sudden oak death and other disturbances (e.g., drought and strong 

wind). Especially at the late stage, tree gaps may be filled with trunks, branches, leaves 

and/or low-level, live vegetation (e.g., shrubs). The symptom of infestation was not as 

apparent as that at the early-middle stages (see a review by Chen and Meetemeyer, 

2016), increasing uncertainties in disease mapping. Although the disease progression 

map contains errors, it did not affect burn severity modeling in our study and serves as 

valuable baseline data for assessing the performance of our model across stages of 

disease progression. 

Table 2.2 Confusion matrix for the infection stage mapping result. 

User Class 

Reference Class 

Healthy 

Forest 

Early-

stage 

Middle-

stage 
Late-stage Total 

Producer's 

Accuracy 

(%) 

Healthy 

Forest 
16 5 3 3 27 59.25 

Early-stage 2 9 0 0 11 81.81 

Middle-

stage 
1 0 13 2 16 81.25 

Late-stage 0 0 1 6 7 85.71 

Total 19 14 17 11 61  

User's 

Accuracy 

(%) 

84.21 64.28 76.47 54.54   

Overall accuracy = 69.84%; Kappa statistic = 0.58 
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Fig. 2.8 Forest disease infection map showing early-, middle-, and late-stage disease 

progression. 

2.5.5. Performance of NBR, dNBR and RdNBR 

We compared field-measured GeoCBI values with those estimated by NBR, 

dNBR, and RdNBR using scatter plots in Fig. 2.9. In most cases (except the middle-stage 

infestation), dNBR and RdNBR that account for the spectral difference between pre- and 

post-fire conditions reveal better fitting performance and smaller errors than NBR that 

uses only post-fire data across stages of disease progression. The performance of dNBR 
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and RdNBR are comparable. While dNBR shows a better agreement (higher R2 and 

smaller RMSE) with GeoCBI at the early stage of infestation, RdNBR offers a relatively 

better solution in burn severity estimation at the middle and late stages (Fig. 2.9). 
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Fig. 2.9 Comparisons between field-measured GeoCBI and NBR-, dNBR-, RdNBR-

based GeoCBI across all the disease infected plots, and the plots at the early-, middle-, 

and late-stage infection, respectively. 
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2.6. Discussion 

2.6.1. Assessment of burn severity mapping 

The evaluation of DWAM and non-DWAM maps (Fig. 2.7) suggests an 

overestimation of burn severity if pre-fire disease disturbances are not considered in 

modeling. In fact, the comparison between the two maps is equivalent to the comparison 

between our model and the physical simulation model proposed by De Santis et al. 

(2009). This is because when disease fractions are treated as zeros, DWAM only relies 

on the spectral library and LUT developed for healthy trees, using the same inputs and 

procedure as those in De Santis’s radiative transfer modeling framework (De Santis et 

al., 2009). Their framework has proven effective in areas that did not contain intensive 

disease disturbances (e.g., De Santis et al., 2010). However, in our study site, the high 

spectral similarity between diseased and burned tree patches (Hultquist et al., 2014) can 

possibly confuse the development of one single, accurate LUT linking burn severity and 

spectra, because a portion of diseased trees (burned or not) may be treated as being 

affected (or more severely affected) by fire. This is evidenced in Table 2.1, where the 

non-DWAM map contains 78.9% of severe burns (GeoCBI ∈ [2.5, 3.0]); but the same 

level of burn severity only accounts for 27.3% in the DWAM map that has a higher 

estimation accuracy. Further because forest landscapes typically show various symptoms 

corresponding to different stages of disease progression (Meentemeyer et al., 2008), the 

relationship between spectra and burn severity becomes complicated as such relationship 

may vary from one disease-affected area to another. It is therefore meaningful and 

effective, as demonstrated in our study, to develop separate spectral libraries and LUTs 

for healthy and diseased trees in burn severity estimation.  
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Spectral mixture analysis (SMA) has been recently introduced in burn severity 

estimation (e.g., Veraverbeke et al., 2014; Quintano et al., 2017). So far, the main 

strategy is decomposing post-fire optical imagery (typically using MESMA) to extract 

NPV or char fractions at the sub-pixel level, which are statistically linked to burn 

severity. Although DWAM also utilizes SMA and MESMA, our model differs from the 

others by incorporating fractions of two broad tree classes (diseased and healthy trees) 

from pre-fire imagery. The fractions are used to identify the optimal spectrum for each of 

the two tree classes, and consequently, burn severity is estimated using the GeoCBI-

spectrum LUTs. While this strategy is not as straightforward as directly extracting NPV 

or char fractions (e.g., Quintano et al., 2017), we circumvent the challenge of potentially 

obtaining large errors in post-fire image decomposition, because the disturbed trees by 

sudden oak death and fire demonstrate similarities in spectral reflectance (Hultquist et 

al., 2014).  

Our model takes advantage of both pre- and post-fire Landsat imagery to quantify 

disease effects. This strategy is similar to several empirical approaches in the way that 

differentiates pre- and post-fire spectral indices, e.g., dNBR (Key and Benson, 2006) and 

RdNBR (Miller and Thode, 2007). While these spectral indices are able to capture the 

spectral variation caused by pre-fire disturbances, it becomes problematic to establish a 

robust statistical relationship between burn severity and the extracted spectral 

differences. For trees not affected by sudden oak death, the difference between pre- and 

post-fire spectral reflectance has been found to be positively correlated with burn 

severity, although such relationship may not be significant in diseased tree patches (Chen 

et al., 2015b). Based on the calculation of dNBR and RdNBR in this study, we found that 
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DWAM explained 51 percent of the variance in all the data, while each of the dNBR- 

and RdNBR-based models explained 29 percent (Fig 2.7 versus Fig. 2.9). It is also true 

for the three stages of disease progression, suggesting that DWAM can better capitalize 

on the pre- and post-fire imagery to fit the data than using the spectral-index-based 

approach in our study area. As Metz et al. (2011) and Chen et al. (2017) pointed out, 

sudden oak death-caused increases in surface fuels may reduce a tree’s resistance to fire 

and in turn lead to high burn severity. This suggests that with the occurrence of sudden 

oak death, the pre- and post-fire spectral differences for diseased trees are possibly 

smaller than those of their healthy counterparts, possibly underestimating burn severity 

(Fig. 2.9). Uncertainties are further introduced by various symptoms of tree mortality 

corresponding to multiple stages of infection, leading to a weak statistical relationship 

between spectral indices and burn severity. This is particularly true for the early or 

middle stage of infestation, where the pre- and post-fire spectral similarity is higher than 

that at the late stage. Finally, the spectral-index-based approach is empirically-based, 

which typically requires new field data for model training at a new site or human 

interventions for determining the thresholds of burn severity classes (Eidenshink et al., 

2007). Field data in our model are mainly used for developing GeoCBI-spectrum LUTs. 

Our model has the potential to be directly used in an area having similar tree species 

types and disturbances, i.e., similar LUTs, as ours. However, the spectral-index-based 

approach is more mature and has been widely used at regional to national scales, such as 

the United States’ MTBS (Monitoring Trends in Burn Severity) program 

(https://www.mtbs.gov). Thorough evaluations on DWAM are expected before our 

model is applicable to large areas. 

https://www.mtbs.gov/
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2.6.2. Performance of burn severity mapping across stages of disease progression 

The results from DWAM and non-DWAM maps were both found to be stage-

dependent (Table 2.3 and 2.4). Compared to the other two stages, the late stage contains 

more trees that suffered from severe burns (Table 2.3). Despite the errors in mapping 

stages of sudden oak death infection, at all stages, the non-DWAM map shows a 

consistent bias with the highest proportion of severely burned landscape (80.9% for the 

early stage, 72% for the middle stage, and 87.4% for the late stage; Table 2.3). In 

contrast, DWAM can reduce the overestimation of burn severity at all the three stages, 

resulting in a landscape dominated by moderate burns (Table 2.4). Particularly at the 

early and middle stages, a large portion of the study area, which is considered as highly 

burned in the non-DWAM map, is dominated by moderate burns in the DWAM map. 

This suggests that DWAM is more likely to show a superior performance in the areas 

where trees still retain fine twigs and large branches, i.e., trees were recently affected by 

the disease. This is in an agreement with our field experience and can be explained by 

the fact that diseased trees were mistreated as burned trees as a result of similar changes 

in biophysical or biochemical properties. Overall, forest responses to disturbances at 

various stages (e.g., disease progression) can introduce different levels of uncertainties in 

remote assessment of burn severity. Better understanding the spectrum-disturbance 

relationship, such as constructing a stage-based spectral library, may further improve the 

performance of burn severity mapping. However, such type of effort also leads to 

increased workloads and high costs in data acquisition. 
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Table 2.3 Summary statistics of the burn severity in forests across three types of forests: 

early-, middle-, and late-stage disease progression in the non-DWAM map. 

Burn severity 

Non-DWAM 

Area 

(ha) 

Percentage 

(%) 
Minimum Maximum Mean Median 

Standard 

deviation 

Early 

Stage 

Low 16.8 1.1 0.00 1.00 0.71 1.00 0.34 

Moderate 279.7 18.0 1.50 2.45 2.11 2.30 0.38 

High 1256.5 80.9 2.50 3.00 2.70 2.70 0.10 

 Low 15.3 0.7 0.00 1.00 0.75 1.00 0.32 

Middle 

stage 
Moderate 588.3 27.3 1.50 2.45 1.97 2.0 0.41 

 High 1552.5 72.0 2.50 3.00 2.71 2.75 0.11 

Late 

stage 

Low 5.6 0.3 0.00 1.00 0.61 0.50 0.37 

Moderate 256.4 12.3 1.50 2.45 2.04 2.20 0.39 

High 1820.5 87.4 2.50 3.00 2.76 2.80 0.10 

 

Table 2.4 Summary statistics of the burn severity in forests across three types of forests: 

early-, middle-, and late-stage disease progression in the DWAM map. 

Burn severity 

DWAM 

Area 

(ha) 

Percentage 

(%) 
Minimum Maximum Mean Median 

Standard 

deviation 

Early 

Stage 

Low 84.3 5.4 0.00 1.49 1.25 0.39 0.29 

Moderate 1056.4 68.0 1.50 2.49 2.23 2.28 0.21 

High 412.9 26.6 2.50 3.00 2.60 2.58 0.08 

 Low 231.1 10.7 0.00 1.49 0.34 1.40 0.18 

Middle 

stage 
Moderate 1408.3 65.3 1.50 2.49 2.19 2.25 0.23 

 High 517.5 24.0 2.50 3.00 2.62 2.60 0.09 

Late 

stage 

Low 82.0 3.9 0.00 1.49 1.34 1.42 0.22 

Moderate 1232.1 59.2 1.50 2.49 2.22 2.27 0.21 

High 768.0 36.9 2.50 3.00 2.63 2.62 0.09 

 

2.7. Conclusions 

Forest ecosystems are facing a variety of disturbances including fires and 

emerging infectious diseases. Especially when both fire and non-fire disturbances 

coexist, high uncertainties are introduced to the remote assessment of burn severity. In 
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this study, we developed a new model DWAM to accurately estimate burn severity by 

incorporating the effects of pre-fire, disease-caused tree mortality. Our burn severity 

estimation has an average error of 0.36, a 42% improvement as compared to the result 

without consideration of disease effects. We have further compared DWAM with 

popular spectral-index-based approaches using dNBR and RdNBR for the purpose of 

assessing the generalization capacity of DWAM. Our model’s improvements were 

observed at all three stages of disease progression. While being developed at one study 

site, DWAM demonstrates several strengths making it potentially suitable for burn 

severity mapping in other regions. First, we have carefully selected a California study 

area for model development. The site features a representative Mediterranean climate 

and has been widely studied for forest disturbances, including disease and fire. Second, 

the model was developed to study the general fire-disease effect. The assumptions, input 

data and three model components are not tied to local environment of specific 

requirements. Third, DWAM has the potential to be calibrated in areas affected by 

another type of disease/insect disturbance, e.g., mountain pine beetle (Assal et al., 2014). 

The structure of DWAM remains the same. Field observations, hyperspectral imagery, 

and/or radiative transfer models can be used to build spectral libraries and LUTs for 

capturing the relationship between post-fire spectra and burn severity. However, we also 

note that the generalization potential of DWAM needs to be thoroughly evaluated at 

independent sites to ensure that the model is applicable to large-scale burn severity 

mapping.  
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Chapter 3: Effects of Wildfire on the Spread of Forest Disease Sudden Oak Death 

and Post-fire Forest Recovery 

 

Abstract 

While individual forest disturbances (wildfire and disease) are well studied, how 

disturbances interact with each other and change the spatial patterns of forest landscape 

are rarely quantified. In this study, we aim to analyze the role of wildfire in changing the 

spread pattern of Sudden Oak Death (SOD) in the Big Sur ecoregion of California. We 

used remote-sensing-derived products of post-fire burn severity and disease progression 

maps as the baseline data. We further analyzed the statistical relationship between burn 

severity and SOD progression for the burned and the unburned areas. Our findings reveal 

a significant role of wildfire in the spread of SOD. The rate of disease spread was 

negatively correlated with burn severity in burned forests, while it was found to be 

positively correlated with distance to fire boundaries outside of fire scars. Due to the 

synergistic effects of wildfire and SOD, the spatial patterns of the studied forest 

landscapes (edge density and isolation of healthy tree patches) were significantly altered 

even after eight years of fire occurrence when compared to the pre-fire status. Our study 

advances our understanding of the spatial interactions of forest disturbances, which can 

inform best management practices to improve forest resilience to those disturbances.   

 

3.1. Introduction  

Forest ecosystems are affected by environmental disturbances (e.g., emerging 

infectious disease and wildfire) at an unprecedented pace across spatial and temporal 

scales (Asner, 2013; Buma and Wessman, 2011). Understanding forest responses to 
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various disturbance regimes is pivotal to the short-/long-term projection of ecosystem 

dynamics, promoting informed decisions in sustainable forest resources management 

(Buma and Wessman, 2011; Daniel et al., 2017). Over the past decades, there have been 

a plethora of studies aiming to understand the effects of individual disturbances, such as 

disease- or insect-caused tree mortality (Dillon and Meentemeyer, 2019; Janousek et al., 

2019; Pasquarella et al., 2017; Skowronek et al., 2017; Václavík and Meentemeyer, 

2012), and post-fire burn severity (De Santis et al. 2009; He et al., 2019; Meng et al., 

2017; Quintano et al., 2017). More recently, a growing number of studies have 

confirmed a novel trend of increasing intensities and frequencies of forest disturbances, 

which may interact with each other and jointly affect forest landscape dynamics in 

manners no one has anticipated (Jenkins et al., 2014; Simler et al., 2018; Turner, 2010).  

To reduce forest vulnerability and improve best management practices, 

researchers have begun to examine how major disturbances interact and subsequently 

change tree mortality and their regeneration patterns, with an emphasis on two 

disturbance types – wildfire and disease/insect outbreak (Simler et al., 2018). One 

important research question that has yet to be fully answered is whether and how wildfire 

changes the spatial spread of forest disease or insect infestations. Depending on its 

severity, wildfire directly damages or removes the disease-/insect-infected host trees, 

which affects the survival of pathogens or insects in the fire (Beh et al., 2012). Recent 

studies also discovered that fire-stressed or moderately injured trees that were previously 

healthy are more susceptible than the unburned counterparts to insect attacks in the 

western United States (Jenkins et al., 2014; Powell et al., 2012). With new trees recover 

from the fire, disease or insect outbreaks likely re-occur in the forest (White et al. 1996). 
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Beh et al. (2012) found that although the occurrence of the plant disease Sudden Oak 

Death was reduced by wildfire, the disease-causing pathogen persisted in soil and some 

unburned vegetation. Similarly, Davis et al. (2012) discovered that the thick bark of pine 

trees can protest for bark beetles during wildfire. During the forest recovery stage, 

pathogen or insect intensity tends to increase under appropriate climate conditions and 

re-attack the forest, disturbing or altering its regeneration trajectory. While stand-

replacing fires were found to reduce beetle mortality by limiting the abundance and 

distribution of host trees, forest resilience to interacting disturbances may also depend on 

landscape connectivity (Loehman et al., 2017), and dominant species composition 

(Sánchez-Pinillos et al., 2019). Consequently, forest structure and function exhibit high 

uncertainties during forest recovery (Bonan, 2008; Buma and Wessman, 2011; Canelles 

et al., 2019; Chambers et al., 2014; Coates et al., 2016; Gornish and Ambrozio dos 

Santos, 2016). While the aforementioned literature has provided preliminary knowledge 

about the effects of wildfire on disease or insect outbreak, most of the studies have relied 

on sparsely distributed samples collected from the field. This limits our capacity to 

analyze the spread patterns of disease or insect infestations, which is crucial for locating 

susceptible trees and promoting effective forest management (Beh et al., 2014; Kane et 

al., 2017). 

Remote sensing offers a feasible solution to efficiently and repetitively monitor 

the impacts of forest disturbances in a synoptic view (Chen and Meentemeyer, 2016; 

Keeley, 2009; Hatala et al., 2010). It is especially suitable for understanding the spatially 

explicit patterns of forest mortality and disturbance progression (Chen et al., 2017). The 

estimation of disease- or insect-caused tree mortality using remotely sensed data makes 
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use of the spectral responses of damaged trees, such as altered spectral and spatial 

characteristics, which are distinct from their healthy counterparts (Lentile et al., 2006; 

Wulder et al., 2006; Keeley, 2009). The outbreak of forest disease/insect is typically 

chronic stress spanning years to decades. Satellite image time series has recently gained 

popularity to quantify spatiotemporal trajectories of infestations at the landscape level 

(e.g., Coops et al., 2010; Meigs et al., 2015). Fire effects on forests (i.e., burn severity) 

are typically mapped through comparing the pre- and post-fire spectral responses from 

the burned trees. Both statistical (e.g., linear regression and random forests; Hultquist et 

al., 2014) and physical models (e.g., radiative transfer model by integrating PROSPECT 

and GeoSail; De Santis et al., 2009) are viable solutions to burn severity estimation. 

While remote sensing data and products have demonstrated considerable benefits in 

forest management and research, their capacity to analyze interacting disturbances has 

been rarely evaluated (Chen and Meentemeyer, 2016).      

The main goal of this study is to analyze the role of wildfire in changing the 

spread patterns of a forest disease Sudden Oak Death in the Big Sur, California 

ecoregion. Sudden Oak Death is a forest disease caused by the plant pathogen 

Phytophthora ramorum, which has led to substantial mortality of oak (Quercus spp.) and 

tanoak (Notholithocarpus densiflorus) trees since the mid-1990s (Rizzo et al., 2005). 

Extreme wildfire events co-occurred with the outbreak of Sudden Oak Death during the 

past decade, which offers an ideal opportunity to study the role of wildfire in changing 

the disease spread patterns. By taking advantage of remote-sensing-derived burn severity 

and Sudden Oak Death estimates, we asked two specific questions in this study: (i) Did 

wildfire significantly affect the spread rate of Sudden Oak Death? (ii) Following the 
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wildfire, whether and (if yes) how did Sudden Oak Death change forest fragmentation 

patterns during tree recovery?  

3.2. Materials and methods   

3.2.1. Study area 

Our study was conducted in a forest ecosystem that has been affected by both 

wildfire and Sudden Oak Death. The study site (centered at 36°16' N, 121°44' W) is in 

the Big Sur ecoregion on the western flank of Santa Lucia Mountain of California with a 

total area of 80, 000 ha (Fig. 3.1). The area has a Mediterranean-type climate, 

experiencing two main seasons – cool wet season (November-April) and hot dry season 

(May-October), and a rugged landscape dissected by steep slopes and drainages with 

elevations ranging from sea level to 1,571 m within 5 km of the coast (Meentemeyer et 

al., 2008b). The environmentally complex region supports a diversity of plant 

communities, where the area is dominated by a range of  tree species: (i) mixed 

coniferous forest, composing of ponderosa pine (Pinus ponderosa), sugar pine (Pinus 

lambertiana), Jeffrey pine (Pinus jeffreyii), coulter pine (Pinus coulteri), and Santa Lucia 

fir (Abies bracteata), which are located on upper elevation slopes and rocky ridges; and 

(ii) mixed oak woodland consisting of coast live oak (Quercus agrifolia), Shreve’s oak 

(Q. parvula), bay laurel (Umbellularia californica), and madrone (Arbutus menziesii), 

which were found on moister slopes, giving way to riparian corridors of redwood-tanoak 

forest at lower elevations.  

Since the mid-1990s, an invasive pathogen Phytophthora ramorum causing the 

disease – Sudden Oak Death – has led to extensive tree mortality in the study area 

mainly found in two plant communities – mixed oak and redwood-tanoak forests (Rizzo 
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et al., 2005). The disease involves a multi-year progress especially under suitable 

temperature and rainfall conditions, girdling a tree over years or making the tree more 

susceptible to attack by other pathogens or insects (Chen et al., 2015). In 2008, a wildfire 

– Basin Complex Fire – was ignited from a dry lightning storm in late June and burned 

over 28, 383 ha of federal, state and private lands. The fire divided our study area into 

burned (within the fire boundary) and unburned (outside the fire scar) areas (Fig. 3.1). 

The total cost of containment action was around $77.2 million mainly due to the sheer 

size of the fires, the ruggedness of the terrain and the extremely dry conditions (USDA 

Forest Service, 2008).  

 

Fig. 3.1 Study area located in the Big Sur ecoregion on the western flank of the Santa 

Lucia Mountains in California. The extent of the 2008 Basin Complex Fire in the region 
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is outlined in red.The Landsat TM imagery was from a color composite using bands 3 

(red), 2 (green) and 1 (blue). The AVIRIS (Airborne Visible InfraRed Imaging 

Spectrometer) image is from a color composite using bands 51 (NIR), 33 (Red), and 22 

(Green). 

3.2.2. Disease progression maps 

We acquired disease-caused tree mortality maps annually (2005-2016) from a 

regional mapping project described by He et al. (2019b). The maps were created at the 

30 m resolution based on a novel algorithm integrating remote sensing and species 

distribution modeling. Specifically, (i) spectral mixture analysis (Roberts et al., 1998) 

was first applied to the satellite Landsat time series (Wulder et al., 2012) for extracting 

disease-killed host candidates featuring isolated, patchy-distribution patterns. (ii) The 

uncertainties in the candidates were reduced by species distribution modeling which 

informed the likelihood of Sudden Oak Death’s occurrence at specific locations. The 

maps demonstrate an annual disease infection rate of 7% from 2005 to 2016, with overall 

mapping accuracies ranging from 76% to 83%. The results indicate the spatial pattern of 

disease transmission from the west coast to the east (Fig. 3.2). Here, we did not use maps 

from 2009 to 2012 in our study, because of the high uncertainties in extracting diseased 

trees from the burned trees. 
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Fig. 3.2 Annual maps of tree mortality caused by Sudden Oak Death (2005-2008, 2013-

2016). 

3.2.3. Burn severity estimation 

The burn severity map over the same area was produced by He et al. (2019a), 

who developed the Disturbance Weighting Analysis Model (DWAM) to intentionally 

estimate post-fire burn severity in the forest landscape that has been jointly affected by 

wildfire and Sudden Oak Death. DWAM treats burn severity in each basic mapping unit 

as a linear combination of burn severity of trees affected and not affected by the disease, 
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weighted by their areal fractions in each unit. Landsat and AVIRIS (Airborne Visible 

InfraRed Imaging Spectrometer) imagery (Green et al., 1998) were used to create the 

map at the 30 m resolution (Fig. 3.3), which is consistent with that of the disease maps.  

The burn severity result has an average error of 0.36 measured in Geometrically 

structured Composite Burn Index (GeoCBI; De Santis and Chuvieco, 2009), which 

showed a 42% improvement as compared with results ignoring the existence of pre-fire 

forest disturbances (e.g., disease presence) in burn severity modeling (He et al., 2019a). 

The resulting burn severity map (Fig. 3.3) suggests that moderate burns (1.5≤GeoCBI < 

2.5) occurred in the majority of the burned area, accounting for 63.5% of the land surface 

within the fire boundary. Low burns (0≤GeoCBI < 1.5) covered 3.7% of the surface, 

while severe burns (2.5≤GeoCBI≤3.0) affected 32.8% of the region. The estimated 

average GeoCBI scores of the three burn levels from low to severe are 1.26, 2.20 and 

2.64, respectively; while the standard deviation of these scores is 0.27, 0.22 and 0.09, 

respectively. 
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Fig. 3.3 Burn severity map with GeoCBI showing the severity of burn from low (0) to 

high (3). 

3.2.4. Environmental factors 

The environmental factors used in this study included three groups: climatic, 

topographic and fire-related factors. Both climate and topography are known to affect 

Sudden Oak Death outbreaks (Kelly et al., 2005). For climatic factors, we extracted the 

monthly mean precipitation and temperature in the disease’s general reproductive season 
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from December to May (Meentemeyer et al., 2008a). The climatic data are part of a 

broader-scale database Daily surface weather data (Daymet) (https://daymet.ornl.gov), 

which is a continuous surface dataset available at a spatial resolution of 1 km for the 

Contiguous United States (Thornton et al., 2018). 

Due to the complex topography in the study area, we used the fine-resolution 10 

m Digital Elevation Model (DEM) from the National Elevation Dataset (NED; 

http://ned.usgs. gov/). Elevation, topographic moisture index (TWI), and solar insolation 

index (SII) were generated from the DEM. TWI describes the effect of topography on 

local moisture availability, which was calculated as the natural log of the ratio between 

the upslope contributing drainage area and the slope gradient of the grid cell (Moore et 

al., 1991). Specifically, the upslope contributing drainage area is the accumulation of 

flow from upstream. SII characterizes the potential mean solar irradiation for the rainy 

season (December to May), and was calculated using the cosine of illumination angle on 

slope equation (Dubayah, 1994).  

We have further extracted two fire-related factors to quantify the effect of 

wildfire on disease spread, including burn severity (i.e., GeoCBI) for the trees within the 

fire boundary (i.e., unburned trees), and the shortest Euclidean distance to the fire 

boundary for the trees outside of the fire scar (i.e., unburned trees). 
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Table 3.1 Description of environmental factors. 

Factor Description 

Climate  

● Precipitation ● Monthly mean precipitation (December to May) 

● Temperature ● Monthly mean temperature (December to May) 

Topography  

● Elevation ● Mean elevation 

● TWI ● Mean Topographic Wetness Index  

● SII ● Mean Solar Insolation Index (December to May) 

Fire-related  

● Burn severity ● Mean burn severity 

● Distance ● Shortest Euclidean distance to fire boundary 

 

3.2.5. Statistical analysis 

To evaluate the significance of wildfire in changing the disease spread rate, we 

compared four different circumstances. Temporally, we divided the disturbance time 

window into two: pre-fire (2005 to 2008), and post-fire (2013 to 2016). Here, we did not 

consider the post-fire early stage of tree recovery (2008-2013), because burned and 

disease-killed trees revealed high spectral similarities in remotely sensed data causing 

uncertainties to identify diseased trees (Chen et al., 2017). After five years of recovery 

(starting from 2013), fire-damaged tree crowns started to turn green, facilitating the 

identification of diseased trees (Chu et al., 2017). Spatially, we divided the study area 

into two: burned (area within the fire boundary) and unburned (area outside the fire 

boundary). In total, the four disturbances cases included: (a) pre-fire and burned, (b) pre-

fire and unburned, (c) post-fire and burned, and (d) post-fire and unburned.  

We fit a multiple regression model on the data for each of the four circumstances. 

The dependent variable was the average rate of disease spread during each of the two 
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time windows, while the independent variables varied. Specifically, for the pre-fire 

circumstances (a) and (b), the independent variables were climatic (precipitation and 

temperature), and topographic factors (elevation, TWI, and SII). Fire-related factors were 

not used because the Basin Complex Fire had not occurred yet. For the post-fire 

circumstance (c), the independent variables included climatic (precipitation and 

temperature), topographic (elevation, TWI, and SII), and burn severity factors. For case 

(d), we replaced burn severity with the shortest Euclidean distance to fire boundary. We 

intended to evaluate whether the proximity to wildfire may have played a role in disease 

progression. All models were developed at a 0.05 significance level using Akaike’s 

information criterion (AIC) for determining the best model. The development of all the 

models was completed in the statistical environment R package (R Core Team, 2019). 

All the factors were derived from 300 randomly sampled plots, in which 106 

plots were within the burned area, and 194 plots were not. To ensure minimized spatial 

autocorrelation among the plots, we conducted a semivariogram analysis in the ArcGIS 

environment (Esri, Redlands, California, USA). The effective distance of spatial 

autocorrelation was found at 600 m, which was smaller than the average distance 

between our tested plots. We also set up a minimum distance value of 400 m between 

any two plot centers to avoid overlaps. 

3.2.6. Landscape pattern analysis 

Forest landscape may demonstrate a unique fragmentation pattern caused by the 

fire-disease disturbances. Here, we applied landscape metrics to quantify such patterns 

and compare the differences among the four circumstances: (a) pre-fire and burned, (b) 

pre-fire and unburned, (c) post-fire and burned, and (d) post-fire and unburned. While a 
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range of metrics have been examined to assess the effects of disease/insect outbreaks on 

landscape change (Chen et al. 2017; Coops et al., 2010; Gillanders et al. 2008; Lee et al., 

2009), we selected and calculated four representative metrics in Fragstats (Table 3.2; 

McGarigal, 2014) with data from the annual disease maps (Fig. 3.2): Class Area (CA), 

Number of Patches (NP), Edge Density (ED), Mean Proximity Index (PROX_MN). 

These metrics were chosen to represent three categories of landscape, including area (CA 

and NP), shape (ED), and isolation/proximity (PROX_MN), respectively. We focused on 

healthy tree patches for calculating the metrics, aiming to understand how disturbances 

have affected the spatial patterns of tree recovery. The 8-neighbor rule was chosen for 

patch delineation treating both cardinal and diagonal pixels/cells as adjacent neighbors. 

This rule has been found to generate appropriate patches in previous studies (e.g., Chen 

et al. 2017; Richardson and Moskal, 2011). 

Table 3.2 Descriptions of the selected landscape pattern indices applied to this study. 

Landscape Metrix Description Category 

Class Area (CA) Total class area Area 

Number of Patches (NP) Total number of patches in a class Area 

Edge Density (ED) 
The ratio of total edges and total 

area  
Shape 

Mean Proximity Index 

(PROX_MN) 

The degree of isolation and 

fragmentation of the 

corresponding patch type 

Isolation/proximity 

 

3.3. Results and discussion 

3.3.1. Effects of wildfire on disease spread rate 

Fire-related factors (Burn Severity and Distance) demonstrated a significant 

contribution to disease spread as revealed in the post-fire circumstances (Table 3.3). 
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Specifically, for the burned area, we found a significantly (p < 0.01) negative correlation 

between the rate of disease spread and burn severity (Table 3.3). This is consistent with 

the finding by Beh et al. (2012), who studied the same fire-disease disturbances and 

discovered a substantial decrease of the Sudden Oak Death causing pathogen due to the 

hot environmental condition and the removal of host trees. However, their analysis was 

based on the data acquired immediately following the wildfire, while ours reflected a 

longer-term recovery stage from 2013 to 2016. These findings together suggest a 

persistent, significant effect of wildfire on Sudden Oak Death spread for nearly a decade. 

Table 3.3 Multiple regression models for the four disturbance scenarios. 

Scenario 
Independent 

Variable 
Estimate 

Standard  

Error 
t Value 

Pre-fire & 

Burned 

Intercept -4.6928 1.9801 -2.37* 

TWI 0.6014 0.1629 3.69*** 

     

Pre-fire & 

Unburned 

Intercept -7.1633 1.4831 -4.83*** 

TWI 0.8136 0.2311 3.52*** 

     

Post-fire & 

Burned 

Intercept -8.6673 3.8866 -2.23* 

Burn Severity -0.3456 0.1144 -3.02** 

Elevation -0.0340 0.0121 -2.81** 

     

Post-fire & 

Unburned 

Intercept -12.343 -4.1419 2.98** 

Distance  0.0036 0.0016 2.25* 

* p < 0.05; ** p < 0.01; *** p < 0.001. 

Outside of the fire scar, we found a significantly (p < 0.05) positive correlation 

between disease spread and the distance to the fire boundary (Table 3.3). That is, with 

the host trees being closer to the wildfire, they were less susceptible to disease attack 

after the fire. Because Sudden Oak Death spreads faster in the wet environment 

(Davidson et al. 2005, Condeso and Meentemeyer 2007), the fire-enhanced dry habitat 

may have suppressed disease activity. The elongated shape of the mountainous study site 
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may have also played a role (Fig. 3.1). The burned area was not well surrounded by the 

unburned area. As the distance from the fire boundary increased, the amount of host trees 

increased proportionally, significantly influencing the spatial pattern of disease spread. 

When comparing the pre- and the post-fire model for the burned area, we found 

that elevation became significant, replacing the moisture factor TWI following fire 

occurrence (Table 3.3). According to the definition of TWI (Beven and Kirkby, 1979), 

small upslope drainage areas (e.g., ridges) have lower TWI values than the sites having 

large upslope areas (e.g., valleys). When the upslope areas are the same, the sites with 

steep slopes have lower TWI values than those having gentle slopes. Previous field 

studies discovered the positive contribution of moisture to the spread of Sudden Oak 

Death (Anacker et al., 2008; Cushman and Meentemeyer, 2008), which was also 

confirmed in our study in the pre-fire models. After the area was affected by the fire 

event, however, elevation started to demonstrate a significant effect on disease spread. 

This is possibly explained by the fact that severe burns occurred mostly at high altitudes 

along ridgetops (Chen et al., 2017), reducing the odds of pathogen survival and outbreak.  

Although significant effects of the wildfire on disease spread are apparent in our 

findings, caution is advised when extrapolating the conclusions to other regions. In a 

case study examing the interaction between bark beetle and wildfire in the Northern 

Rocky Mountains, Harvey et al. (2014) did not find a direct relationship between beetle 

outbreak and post-fire tree seedling establishment, suggesting strong resilience of the 

lodgepole pine (Pinus contorta var. latifolia) dominated subalpine forests to the 

interacting disturbances. It is possible that post-fire disease or insect spread not only 

depends on the complex environmental factors (as discussed in our study), but also relies 
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on the spatial patterns of host tree recovery (Lombardero et al., 2011). Nevertheless, our 

results strongly suggest that these impacts are worth evaluating in a greater range of 

forest types. 

3.3.2. Effects of disturbance interaction on forest fragmentation pattern 

Prior to wildfire occurrence, the calculated landscape metrics were different for 

the burned versus the unburned area suggesting different fragmentation patterns (Fig. 

3.4). Specifically, the burned area demonstrated lower CA and NP and higher ED than 

the unburned area. However, the trajectories (2005-2008) were similar for the two areas, 

i.e., decreased CA, increased NP, decreased ED, and decreased PROX_MN. Due to the 

increased disease severity showing an isolated, patchy progression pattern, the number of 

healthy tree patches decreased, with an exception in 2008. Meanwhile, the distance 

between those patches increased in general (Meentemeyer et al., 2012). Because healthy 

trees gradually declined in both areas, it was also reasonable for their edge density to 

show a downward trend. The effect of Sudden Oak Death outbreak on landscape change 

is not unique, which is similar to previous findings studying forest mortality caused by 

Mountain Pine Beetle (Dendroctonus ponderosae) (Coops et al., 2010; Vorster et al., 

2017). 
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Fig. 3.4 Comparisons of the spatial patterns for the burned (red line) and the unburned 

area (blue line) in two time windows: pre-fire (2005-2008) and post-fire (2013-2016). 

While Sudden Oak Death affected the burned and the unburned area in a similar 

way prior to fire occurrence in 2008, the forest landscapes revealed different changing 

patterns after the fire event (Fig. 3.4). Specifically, forests in the burned area remained at 

the recovery stage in the 2013-2016 period, where new and healthy tree patches 

continued to appear in the area, with CA and NP values showing an upward trend. The 

same reason also applies to the increase of edge density ED. The unburned area, 

however, showed relatively flat trending lines for all the four metrics, suggesting that the 

fragmentation level of the forest has reached a stable period. We further noticed that the 

wildfire, together with Sudden Oak Death had a long-term detrimental effect on forest 

recovery. Although the pre-fire ED and PROX_MN values for the burned area were 
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consistently higher than or equal to those for the unburned area, their relationship was 

reversed for most of the forest recovery period even after eight years of fire occurrence 

(Fig. 3.4). While the rate of forest recovery from wildfire depends on multiple factors 

(e.g., severity of fire, plant species, and climate), our study showed slower recovery rate 

than that of a forest in a similar Mediterranean climate (Viana-Soto et al., 2017) and the 

boreal ecoregion (Pickell et al., 2016).  

3.4. Conclusion  

In this study, we investigated the role of wildfire in changing the spread pattern 

of forest disease Sudden Oak Death in the Big Sur, California ecoregion. The use of 

remote-sensing-derived burn severity and disease-caused tree mortality maps allowed us 

to quantify the change in disease spread prior to (2005-2008) and after the fire event 

(2013-2016).  The outcome of this research reveals a significant impact of wildfire on the 

post-fire spread of Sudden Oak Death. For the burned forest, the severity of fire exerted a 

significantly negative effect on the spread rate of the disease. Outside the fire scar, the 

distance to fire boundary showed a significantly positive effect on the spread rate of the 

disease. Our findings also suggest a slowdown of forest recovery due to the disease-fire 

interaction, as compared with several other disturbance studies. The spatial patterns of 

the forest landscape (e.g., edge density and isolation of healthy tree patches) were not 

able to return to the pre-fire status even after eight years of the fire event. Although our 

study focused on one case study, it adds to our knowledge of understanding disturbance 

interactions in a coastal forest ecosystem. Our results strongly suggest that these 

interactions are worth evaluating in a greater range of forest types. This research further 
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highlights the benefit of applying remote sensing data and products in spatially explicit, 

and high-frequency disturbance monitoring and evaluation at the landscape scale.  
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CONCLUSIONS 

Dissertation Conclusion 

The purpose of this dissertation is to increase our understanding of the interacting 

disturbances of wildfire and EIDs in forest ecosystems through remote sensing 

technology. Sudden oak death is used as an example of a chronic EID disturbance that 

has caused widespread tree mortality in the Big Sur, California ecoregion, which 

interacted with a short-term wildfire disturbance which occurred in 2008. The outcomes 

from this dissertation have the potential to advance the scientific understanding of how a 

prior disturbance regime (i.e., disease) influences the spatial and temporal response of a 

forest ecosystem to another disturbance (i.e., wildfire).  

In this dissertation, my novel Ph.D. contribution is the integration of multiple 

satellite and airborne sensors to investigate how environmental disturbances (i.e., EIDs 

and wildfire) interact, and how such novel interactions affect a forest ecosystem. 

Specifically, in Chapter 1, I integrated multi-sensor remote sensing and species 

distribution modeling, which for the first time applied species distribution modeling to 

refine a remote sensing model for remotely identifying the cause of tree mortality related 

to sudden oak death. In Chapter 2, my novel contribution was to consider the effects of 

pre-fire disease disturbances, which has significantly improved the results in burn 

severity mapping. None of the other existing remote sensing models have accounted for 

the non-fire disturbances in burn severity modeling. In Chapter 3, I applied the remote 

sensing products of burn severity and disease maps to study the spatial patterns of fire 

effects on disease spread and post-fire forest recovery. The findings were not revealed in 

previous studies due to their limited field observations. 
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Future Research 

The study in this dissertation also provides some possibilities for future research. 

The availability of NASA’s HyspIRI images provides the research community with new 

opportunities for mapping disease/insect mortality and detecting the changes with high 

spatial and temporal accuracies. As suggested by He et al. (2019b), using hyperspectral 

data with enhanced spectral signatures from the shortwave infrared portion of the 

spectrum may contribute to the discrimination among disturbances. Because different 

types of disturbances may reveal varying progression patterns over time, high-resolution 

time series images have the potential to capture those patterns. Although DWAM has 

proven its ability to mitigate the overestimation of burn severity, this model has not been 

evaluated for other data sources (e.g., MASTER and AVIRIS). In addition, a 

comprehensive comparison is needed to clearly understand the performance of existing 

models, including physical and empirical models (e.g., random forests, joint deep 

learning) in the face of hyperspectral imagery. The comparison would also benefit 

natural resource and ecosystem management. Meanwhile, the performance of those 

models is highly depended upon the reliability and sufficiency of field samples and is 

site-specific, which reduce the generality across complex geographic conditions. 

Physical models have been used to address such limitation due to their wide generality 

and applicability. Nevertheless, current physical models have been calibrated and 

validated only in the healthy forests without accounting for other pre-fire disturbances. 

More efforts should be placed in terms of the compound effects of multiple disturbances. 

Another goal is to adjust the radiative transfer models (i.e., leaf-level PROSPECT and 

canopy-level GeoSail models) to simulate the physical interactions between radiation 
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and burned canopies under compound disturbance situation, establishing the 

correspondence between reference spectra and tree damages that are caused by fires and 

diseases. 
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