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ABSTRACT

LIQIU DENG. Estimation of Semivarying Coefficient Models for Counting
Processes with Applications. (Under the direction of DR. YANQING SUN)

Recurrent events are very common in many different fields, including biological,

medical, engineering and finance. Existing research have developed methodologies

to model constant covariate effects and time-dependent covariate effects. However,

in reality, for instance medical cases, covariate effects can be depending on other

covariates as well. Therefore, in this dissertation, we investigate a semiparametric

model for recurrent events, which incorporates both time-varying covariate effects

and covariate-varying effect.

In our model, we use fixed parameters to model constant covariate effects, while

we assume both time-dependent effects and covariate-varying effects to be unknown

functions. An estimation procedure is proposed to estimate the unknow parame-

ters and functions. Local linear smoothing method is adopted in our estimation

procedure. Detailed computation is carried out by using Newton-Raphson iterative

method. The asymptoptic properties including asymptotic normality and consistency

are established for the proposed estimators.

In order to assess the finite-sample performance of the proposed estimators and

estimation procedure, simulation studies are conducted for different cases. The sim-

ulation results show that the proposed estimators perform very well with small bias

and an empirical coverage probability close to its nominal level 95%.

In addition, the proposed model and methodologies are applied on the dataset from
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the Hemodialysis Study (HEMO). The data applications are aiming at examining

the treatment effects of two different design in the study and exploring factors that

are associated with hemodialysis patients’ mortality and hospitalization rate. The

results show that both treatments are not significant at neither reducing mortality risk

nor hospitalization rate for hemodialysis patients. Some factors, including sex, age,

baseline serum albumin level, ICED score and diabetes, are found to be significantly

associated with the mortality and hospitalization rate for hemodialysis patients.
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CHAPTER 1: INTRODUCTION

Survival analysis aims at modeling time to certain event. It is of interest in many

biological, medical, engineering and financial applications. For example, animals life

in control and experimental groups, time to relapse of a certain disease after dif-

ferent treatments, first time failure of a mechanical part, or time to bankruptcy of

a financial institution. By assuming survival time follows a probability distribution

(e.g. Exponential, Gamma, Weibull, or Log-Normal etc.) that depends on covariates,

a variety of parametric regression models are developed in order to investigate how

survival time distributes given the covariates, as well as exploring how strongly sur-

vival time relates to the covariates. Another approach developed by Cox (1972) is a

semi-parametric, which assumes a parametric and proportional structure that relates

covariates to hazard rate while leaves the non-parametric part completely unspecified.

Since Cox model does not require distribution assumption, it soon becomes one of

the most popular survival regression methods.

The ordinary Cox regression model suffices in survival analysis in which events

are assumed conditionally independent given covariates. However, it is common to

observe that the event of interest occurs multiple times on one single subject, which is

referred as recurrent events. Typical examples include recurrent episodes of a disease

in patients, multiple admissions to hospitals, multiple ear infections on young age

children, multiple delinquencies of credit card customers, earthquakes in one city,
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repairs in machines and automobiles, etc. It is of interest to identify risk factors that

are associated with the frequencies of recurrent events. In this dissertation, we aim

at developing new methodologies for analyzing recurrent events data.

1.1 Motivating Examples - HEMO Study

This dissertation is motivated by the Hemodialysis Study (HEMO). In this section,

we provide a brief description for the HEMO study, including the background of

this clinical trial, experimental design and primary/secondary outcomes of this trial,

followed by a short summary of existing research on the HEMO dataset and our

research questions.

The Hemodialysis Study (HEMO) is a clinical trial conducted in multi-center, with

patients randomized into different treatment groups. The objective of this study is

to test if those treatments can reduce the mortality and mobidity of patients with

hemodialysis.

A total number of 2677 patients were recruited in this study, but only 1846 were

enrolled in this clinical trial after screening process. The following two treatments

were considered in this study.

• The dose of dialysis: standard dose (equilibrated Kt/V level of 1.05) or high

dose (equilibrated Kt/V level of 1.45).

• The dialyzer with different membrane types: a low-flux membrane or a high-flux

membrane.

A 2 x 2 design was considered in this study. A total of 1846 patients were randomly

assigned to different treatment groups as shown in Table 1. It is shown that this study
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is a balanced design in terms of the number of patients in each treatment group.

The enrollment window for patients ranges from March 1995 and October 2000.

Patients were followed up until December 31, 2001 unless loss of follow-up or death

happened before the end of study. The primary outcome of this study was death due

to different causes, while hospitalizations were also of interest as secondary outcomes.

The HEMO study was aiming to check if high-flux membrane and high-dose of dialysis

could reduce the mortality and mobidity of patients with hemodialysis.

Many studies have been conducted on the dataset collected from the HEMO study

(Sattar et al., 2012; Greene et al., 2000; Eknoyan et al., 2002; Hoenich, 2003; Daugir-

das et al., 2004; Lynch et al., 2010; Beddhu et al., 2010; Rocco et al., 2004; Daugirdas

et al., 2003; Cheung AK, 2004; Yan and Greene, 2011; Depner et al., 2004; Argyropou-

los et al., 2015; Jhamb et al., 2011; Burrowes et al., 2011; Liang KV, 2011; Dwyer JT,

2002). The aforementioned studies have a variety of research focuses, including ex-

ploring factors that are associated with hemodialysis patients’ mortality, examining

the treatment effects on mortality, assessing the association between treatments and

secondary outcomes-hospitalizations, evaluating patients’ quality of life, etc.

In particular, Greene et al. (2000) provided a thorough description on the HEMO

study, including the factorial design of the clinical trial, primary outcomes and sec-

ondary outcomes, possible analysis with data collected from the study, etc. In addi-

tion, some statistical issues were also discussed by the study. Using the Cox’s time

varying covariate model, Sattar et al. (2012) found an significant association between

diabetes and the risk of mortality in end stage renal disease (ESRD) patients. In

addition, their results showed an increasing risk of mortality over time among ESRD
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patients. Eknoyan et al. (2002) analyzed the effects of different doses of dialysis

and different levels of flux of dialyzer membrane on hemodialysis patients’ mortality.

Their research found that both treatment effects were not significant, which means

hemodialysis patients did not benefit from taking neither high dose of dialysis nor

high-flux of dialyzer membrane. Cheung AK (2004) conducted an analysis on cardiac

diseases in the HEMO study. This article explored factors associated with cardiac

diseases and checked the treatment effects on mortality and cardiac outcomes, for

instance, cardiac hospitalizations. The results showed no significant effects of high-

flux dialysis on mortality of hemodialysis patients, but significant effects on cardiac

outcomes.

In this dissertation, both primary outcomes mortality and the secondary outcomes

hospitalizations are of interest. We would like to explore the factors that are associ-

ated with mortality and hospitalizations for hemodialysis patients. In particular, it is

of our interest to check if the covariate effects vary along with the duration of being

on dialysis for such patients, or along with patients’ age.



5

Table 1: Allocation of participants in different treatment groups in Hemo study.

low-flux high-flux Total
standard-KTV 467 459 926

high-KTV 458 462 920
Total 925 921 1846



6

1.2 Literature Review

In the recent decades, it has become a great interest to model the occurence of

recurrent events. Intensive studies have been conducted to develp methodoligies to

analyze recurrent event data. For example, the hazard functions of gap times between

recerrent events were considered by Prentice and others (1981) and marginal hazard

function of each recurrent event by Wei and others (1989). Andersen and Gill (1982)

proposed a multiplicative intensity model, in which recurrent events were considered

as non-homogeneous Poisson process. Later on, Pepe and Cai (1993), Lawless and

Nadeau (1995), Lin et al. (2000, 2001) studied a mean/rate model with the Poisson

assumption removed.

E{dN∗i (t) | Xi(t)} = exp{βTXi(t)}λ0i(t)dt, (1.1)

The aforementioned models assume that the covariate coefficients are constant over

time. For many applications, however, the covariate effects change over time instead

of staying constant. For example, in clinical study, the treatment effects may change

over time, and the temporal effects of treatment may be of interest. Chiang and Wang

(2007) modified the above the model to allow the coefficients to be time-dependent.

E{dN∗i (t) | Xi(t)} = exp{β(t)TXi(t)}λ0i(t)dt, (1.2)

Amorim et al. (2008) developed a semiparametric rates model allowing covariate

effects to be time-dependent. Regression splines techniques are incorporated in its

estimation procedure for estimating the time varying covariate coefficients. More
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recently, Sun et al. (2011) proposed a marginal rates model, which allowed some

covariate coefficients to be time-varying while others constant.

E{dN∗i (t) | Xi(t), Zi(t)} = exp{β0(t)TXi(t) + γT0 Zi(t)}dµ0(t), (1.3)

where β0(t) is an unknown p-vactor of time-varying regression coefficients, γ0 is a q-

vector of unknown constant regression coefficients, and µ0(t) is an unspecified baseline

mean function.

In many applications, for instance the motivating example mentioned above, the

covariate effects can not only be time dependent but also vary with other covari-

ates. Thus, a model that can consider such covariate-varying coefficients is desired.

However, to our best knowledge, existing models and methodologists have not yet con-

sidered such covariate-varying effects on recurrent event data. In this dissertation,

we propose a semiparametric model which incorporates both time-varying covariate

effects and covariate-varying effects motivated by our motivating example.

The remainder of the dissertation is organized as follows. In Chapter 2, we in-

troduce the proposed semiparametric model, estimation procedure for estimating the

unknow parameters and functions in the model followed by a detailed computational

algarithm, and bandwidth selection for smoothing. Chapter 3 defines some notations

and presents the asymptotic properties of the proposed parameter estimates, the

proofs for which are given in Appendix. In Chapter 4, the finite-sample performance

of the proposed method is evaluated by two types of simulation studies, one of which

is survival analysis with single-event data and the other is for recurrent event data.

Chapter 5 is a real data application of the proposed method, followed by a discussion
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of our findings on the application.



CHAPTER 2: SEMIPARAMETRIC MODEL WITH NONPARAMETRIC
COVARIATE-VARYING EFFECTS

In Chapter 2, the contents are organized as follows. We introduce the proposed

model in Section 2.1, along with related notations. In Section 2.2, we propose a proce-

dure to estimate the nonparametric parameters and parametric parameters contained

in our model. The detailed algorithm procedure for estimation is given in Section 2.3.

Since bandwidth selection is involved in our estimation procedure, we use cross val-

idation method to choose the optimal bandwidth, details of which are presented in

Section 2.4.

2.1 Model Description

In this section, we start with introducing the notations that are used in our pro-

posed model and methodology.

Let n be the total number of subjects in a random sample, t be the follow up time,

and t ∈ [0, τ ]. Suppose the event of interest can be repeated for the same subject i

and the recurrent event times are recorded by Tij, which means the jth event time for

the ith subject. Let Ki be the total number of recurrent events for subject i, then we

have the event times 0 ≤ Ti1 < Ti2 < · · · < TiKi ≤ τ for subject i.

During the follow up period, it is common that subjects could drop out at somepoint

due to a variety of reasons. For instance, in clinical trial, patients could die due to

unrelated causes or lose interest and thus stop following up with the study. Let Ci be
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the minimum of end of the study τ and censoring time for subject i. For subject i, only

obervations at time points before Ci are possible, which means that the observation

for subject i is terminated at Ci. Thus, if we define N∗i (t) =
∑ni

j=1 I(Tij ≤ t) to be

the number of events recorded for subject i by time t, then the observed event process

can be written as Ni(t) = N∗i (t ∧ Ci). Note that I(·) is the indicator function, and

a ∧ b means the minimum of a and b.

Suppose Qi(t) and Ui(t) are covariates that are associated with subject i. Ui(t)

is a scalor process and has support U . Qi(t) consists three parts Xi(t), Zi(t) and

Wi(t), the dimentions of which are p1, p2 and p3, respectively. Each part of Qi(t) =

(XT
i (t), ZT

i (t),W T
i (t))T is allowed to be either time-dependent or time-independent

over the time interval [0, τ ]. Note that AT means the transpose of matrix/vector A.

We assume that the random processes {Ni(·), Qi(·), Ui(·), i = 1, · · · , n} are inde-

pendent identically distributed (iid). In this dissertation, we only consider the case

that the censoring is caused by the termination of the study or random loss of follow

up, therefore it is reasonable to assume that the censoring time Ci is noninforma-

tive and independent of event time Tij. In other words, we have E{dN∗i (t) |Qi(t),

Ui(t), Ci ≥ t} = E{dN∗i (t)|Qi(t), Ui(t)}. However, the censoring time Ci is allowed

to depend on covariates Qi(t) and Ui(t). Some researchers, for instance Ghosh and

Lin (2003), have developed methodologies to deal with recurrent events data in the

presence of dependent censoring.

Let Ft− denote the filtration, which is the σ-algebra generated by the observed

information. Let λi(t) = E{dN∗i (t)|Ft−} be the intensity or the mean rate λi(t) =

E{dN∗i (t)|Xi(t), Ui(t)}. We propose the following semiparametric varying-coefficients
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intensity model:

λi(t) = exp{αT (t)Xi(t) + βTZi(t) + γT (Ui(t))Wi(t)}, (2.1)

for 0 ≤ t ≤ τ , where

1. α(t) = (α1(t), α2(t), · · · , αp1(t))T is a vector with the same dimension p1 as

Xi(t), each element of which is an unspecified function over the time period

0 ≤ t ≤ τ . By setting the first element of Xi(t) to be identity vector I, the

accoresponding α1(t) is the nonparametric baseline function.

2. β = (β1, β2, · · · , βp2)T ) is a vector of unknown time-independent parameters

with the same dimention p2 as Zi(t);

3. γ(Ui(t)) = (γ1(Ui(t)), γ2(Ui(t)), · · · , γp3(Ui(t)))T is a p3-dimensional vector of

functions of corativate Ui(t).

In the proposed model, we model the time-varying effects by the non-parametric

part α(t), constant effects by the parametric part β, and covariate-varying effects by

the non-parametric part γ(u). γ(u) models the effects of covariate Wi(t) at the level u

of another covariate Ui(t). Compared with model (1.3) proposed by Sun et al. (2011),

our model adds the ability to model the covariate-varying effects, which is common

in reality. For example, in the HEMO study, it is of interest to model if and how

covariate effects change along with duration time of dialysis. The duration time of

dialysis prior to enrollment to the study was recorded as a baseline measurement for

each patient. Let Si(t) denote the baseline measurement of duration time of dialysis

prior to enrollment, we can define Ui(t) = t + Si(t) to be the actual duration time
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of diaysis at time t such that we can model how covariate effects change along with

duration time of dialysis.

2.2 Estimation Procedure

In this section, we describe the estimating procedure for the parameters in our

model. Since the proposed model contains both non-parametric functions α(t) and

γ(u) and parametric parameters β, we divide our estimating procedure into two parts.

First, we estimate the non-parametric part by using Taylor expansion and local linear

approximation. Secondly, we estimate the parametric part by using profile likelihood

method. Details are as follows.

In order to use Taylor expansion, we first assume that α(·) and γ(·) are smooth

functions such that their first and second derivatives α̇(·), γ̇(·), α̈(·) and γ̈(·) exist.

With this assumption, α(·) and γ(·) can be approximated by the first order Taylor

expansion as follows.

For any t that belongs to a neighborhood of t0, t ∈ Nt0 , we have

α(t) = α(t0) + α̇(t0)(t− t0) +O((t− t0)2),

and similarly for any u that belongs to a neighborhood of u0 u ∈ Nu0 , we have

γ(u) = γ(u0) + γ̇(u0)(u− u0) +O((u− u0)2).

Therefore, for t ∈ Nt0 and Ui(t) ∈ Nu0 , the proposed model (2.1) can be approxi-

mated by the following

λ∗i (t, ϑ
∗, β; t0, u0) = exp{ϑ∗T (t0, u0)Q

∗
i (t, t0, u0) + βZi(t)}, (2.2)
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where ϑ∗(t0, u0) consists a total of four parts, not only the functions themselves

but also their first derivatives, as follows.

ϑ∗(t0, u0) = (αT (t0), γ
T (u0), α̇

T (t0), γ̇
T (u0))

T

And similarly for Q∗i (t, t0, u0), we have

Q∗i (t, t0, u0) = (XT
i (t),W T

i (t), XT
i (t)× (t− t0),W T

i (t)× (Ui(t)− u0))T

In our estimation procedure, we adopt kernal smoothing method. Suppose

1. K1(·) and K2(·) are kernel functions,

2. ht and hu are bandwidth parameters,

3. Kht(·) = K1(·/ht)/ht and Khu(·) = K2(·/hu)/hu.

Then, at each t0 and u0, we define Kht,hu(t, Ui(t); t0, u0) = Kht(t− t0)Khu(Ui(t)− u0)

as a two dimentional product kernel function.

For fixed β, at each t0 and u0, by Cook and Lawless (2007), the local log-likelihood

function for α(·) and γ(·) can be written as follows.

`ϑ(ϑ∗; β, t0, u0) =
n∑
i=1

∫ τ

0

[log(λ∗i (t, ϑ
∗, β; t0, u0)) dNi(t)− λ∗i (t, ϑ∗, β; t0, u0) dt]

Kht,hu(t, Ui(t); t0, u0). (2.3)

By taking the first derivative for (2.3) with respect to ϑ∗, at each t0 and u0, the

local score function for α(·) and γ(·) for fixed β is

Uϑ(ϑ∗; β, t0, u0) =
n∑
i=1

∫ τ

0

[dNi(t)− λ∗i (t, ϑ∗, β; t0, u0) dt]Q
∗
i (t, t0, u0)Kht,hu(t, Ui(t); t0, u0)

(2.4)

By setting Uϑ(ϑ∗; β, t0, u0) = 0, we can solve it and denote the solution by ϑ̃∗(β, t0, u0).
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We define the following notations:

1. ϑ̃(β, t, u) be the first p1 + p3 components of ϑ̃∗(β, t0, u0),

2. Q̃i(t) be the first p1+p3 components of Q∗i (t), i.e., Q̃i(t) = ((Xi(t))
T , (Wi(t))

T )T ,

3. λ̃i(t, β) = exp{(ϑ̃(β, t, Ui(t)))
T Q̃i(t) + βTZi(t)}.

Then the profile likelihood function can be written as follow:

`β(β) =
n∑
i=1

∫ t2

t1

[
log(λ̃i(t, β)) dNi(t)− λ̃i(t, β) dt

]
. (2.5)

By maximizing the profile likelihood function (2.5), we can obtain the profile maxi-

mum likelihood estimator β̂ of β.

By taking derivative of (2.5) with respect to β, the profile estimating equation for

β can be obtained by Uβ(β) =
∂`β(β)

∂β
as follows:

Uβ(β) =
n∑
i=1

∫ t2

t1

[
dNi(t)− λ̃i(t, β) dt

]{∂ϑ̃(β, t, Ui(t))

∂β
Q̃i(t) + Zi(t)

}
, (2.6)

where ∂ϑ̃(β,t,Ui(t))
∂β

is the first p1 + p3 columns of

∂ϑ̃∗(β, t, Ui(t))

∂β
= −

{
∂Uϑ(ϑ∗; β, t, Ui(t))

∂ϑ∗

}−1
∂Uϑ(ϑ∗; β, t, Ui(t))

∂β

∣∣∣∣∣
ϑ∗=ϑ̃∗(β,t,Ui(t))

.

By setting Uβ(β) = 0, we can solve it and denote the solution by β̂.

In this dissertation, we adopt the Newton-Raphson iterative method to find the

estimators of the nonparametric components ϑ̂(t0, u0) and the parametric components

β̂.

We define the following notations.

1. ϑ̂(t0, u0) = (α̂(t0, u0), γ̂(t0, u0))
T
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2. α̂(t0, u0) as the first p1 elements of ϑ̂∗(t0, u0) corresponding to the position of

α(t0) in ϑ∗(t0, u0).

3. γ̂(t0, u0) as the p3 elements of of ϑ̂∗(t0, u0) corresponding to the position of γ(u0)

in ϑ∗(t0, u0).

Note that the estimators α̂∗(t0, u0) and γ̂∗(t0, u0) are not efficient, with the rea-

son being that only local observations are utilized during the estimation process.

Therefore, an aggregation through the following formulas are proposed to improve

the efficiency of our estimators for both α(t0) and γ(u0).

α̂(t0) =
1

n

n∑
j=1

α̂(t0, Uj(t0)), γ̂(u0) =
1

nu0

nu0∑
j=1

γ̂(tu0,j, u0), (2.7)

where tu0,j ∈ U−1j (u0) = {t : Uj(t) = u0}, and nu0 is the number of points in the

union ∪nj=1{U−1j (u0)}.

2.3 Computational Algorithm

The previous section derives the estimators α̂(t0) and γ̂(u0) for the non-parametric

functions and β̂ for the parametric parameters in our model. In this section, we

sketch the detailed computational algorithm to accomplish those estimators by using

Newton-Raphson iterative method.

First, we define some notations that will be used in the algorithm as follows.

• Let ϑ̂(t, u){0} be the initial values of ϑ̂(t, u) and β̂{0} be the initial values for β̂.

• Let ϑ̂{k}(t, u) be the kth step estimator of ϑ(t, u) and β̂{k} be the kth step esti-

mator of β
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The steps of computational algorithm are given as follows.

1. Generate equally spaced grid points (t0, u0) over t and u.

2. Initialize ϑ̂(t, u){0} and β̂{0} by using arbitrary values;

3. For each grid point (t, u), plug β̂{k−1}, the (k − 1)th step estimator of β, into

the local score function (2.4). Find the root and denote it as the kth step

estimator ϑ̂∗{k}(t, u) = ϑ̂∗(t, u, β̂{k−1}). The kth step estimator satisfies that

Uϑ(ϑ̂∗{k}(t, u); β̂{k−1}, t, u) = 0

4. Obtain the estimates α̂{k}(t0) and γ̂{k}(u0) by doing aggregation through (2.7)

such that the estimated curves are smooth enough.

5. Plug in α̂{k}(t0) and γ̂{k}(u0) to (2.5). The kth step estimator β̂{k} can be

obtained by maximizing the profile likelihood (2.5).

6. Repeat step 3, 4, and 5 and update the estimators ϑ̂∗{k}(t, u) and β̂{k} at each

iteration until the convergence criteria is met. The estimator β̂ is β̂{k} at the

convergence.

2.4 Bandwidth Selection

Kernel smoothing method is adopted in our estimation procedure, which involves

selecting the optimal bandwidths. Cross-validation method has been commonly used

for bandwidth selection. In this dissertation, we choose the optimal bandwidths for

estimating the non-parametric functions α(t) and γ(u) by using the K-fold cross-

validation method, where K represents the number of groups that a given sample is

to be split into.
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In our estimation procedure, we use a two dimentional product kernel function,

which involves two bandwidths ht and hu parameters. We use K-fold cross-validation

method to choose the optimal bandwidths h∗t,K and h∗u,K parametersfor ht and hu,

respectively. Briefly, we go through each combination of (ht, hu) to see which one

results in the least negative log-likelihood define as follows. The optimal bandwidths

combination (h∗t,K , h
∗
u,K) is the one corresponding to the least negative log-likelihood.

Suppose we have a given sample. The detailed computational procedure for carry-

ing out the K-fold cross-validation are given as follows.

1. Create combinations for ht and hu.

2. Shuffle the sample randomly, split it into K groups and denote them as (G1, G2, · · · , GK).

3. For each combination of (ht,K , hu,K), do the following:

3.1. Hold out group Gk (k = 1, 2, · · · , K) as a test data set and take the re-

maining groups as a training data set.

3.2. Fit the proposed model on the training set and evaluate it on the test data

set by calculating the negative log-likelihood.

3.3. Retain the evaluation score and discard the model.

3.4. repeat Steps 3.1 - 3.3 until each group gets a turn to be the test data set.

3.5. Take the simple average of all K evaluation scores from the loop, and

denote it as the Score for current testing bandwidth combination.

4. Repeat Step 3 until each bandwidth combination is used to fit the model.



18

5. Compare all scores corresponding to different bandwidth combinations and de-

note the one corresponding to the lowest score as the optimal bandwidth com-

bination (h∗t,K , h
∗
u,K)



CHAPTER 3: ASYMPTOTIC PROPERTIES

In Chapter 2, we propose estimators α̂, γ̂ and β for the non-parametric functions

α(t) and γ(u) and the parameter β, respectively. It is naturally of interest to explore

the asymptotic properties for those estimators. Therefore, in Chapter 3, we will es-

tablish the asymptotic properties for those proposed estimators, including asymptotic

normality, consistency, etc. Chapter 3 are organized as follows. In Section 3.1, we de-

fine all related notations. Section 2 presents all theorems that we establish regarding

the asymptotic properties of our estimators.

3.1 Notations

We define the notations as follows.

• Let I1 = {Iij}p1×(p1+p3) be a matrix with elements like the following.

Iij =


1 for i = 1, . . . , p1, i = j

0 otherwise

• Let I3 = {Iij}p3×(p1+p3) be a matrix with elements like the following.

Iij =


1 for i = 1, . . . , p3, j = i+ p1

0 otherwise

• Let α0(t), β0 and γ0(u) be the true values of α(t), β and γ(u) under model (2.1),
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respectively.

• Let λi0(t) = exp{α0(t)Xi(t) + β0Zi(t) + γ0(Ui(t))Wi(t)}

• Let λ̂i(t) = exp{ϑ̂T (t, Ui(t))Q̃i(t) + βTZi(t)}

• Let fU(t, u) be the density function of U(t) evaluated at u

• Define

e11(t, u) = E
[
(−λi0(t)dt) {Q̃i(t)}⊗2 | Ui(t) = u

]
fU(t, u)

and

e12(t, u) = E
[
(−λi0(t)dt)Zi(t){Q̃i(t)}⊗2 | Ui(t) = u

]
fU(t, u)

• Define

Ê11(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[
−λ̂i(t)dt

]
{Q̃i(t)}⊗2,

and

Ê12(t0, u0) =
1

n

n∑
i=1

∫ τ

0

Kh(t− t0)Kb(Ui(t)− u0)
[
−λ̂i(t)dt

]
Q̃i(t)(Zi(t))

T .

3.2 Asymptotic Properties

In this section, we establish the asymptotic properties for the proposed estimators

α̂(t), γ̂(t) and β̂ in this section. Three theorems are given as follows. The proofs for

theorems are presented in the Appendix.

Theorem 3.1. Assuming the conditions given in Appendix are satisfied, then

√
n(β̂ − β0) −→ N(0, A−1β ΣβA

−1
β )
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in distribution, where

Aβ = E

[∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}⊗2 dt
]

and

Σβ = E

[∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)} dMi(t)

]⊗2
.

The matrices Aβ and Σβ can be consistently estimated by the following two for-

mulas, respectively.

Âβ =
1

n

n∑
i=1

∫ t2

t1

{Zi(t)− (Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1Q̃i(t)}⊗2 dt

and

Σ̂β =
1

n

n∑
i=1

(∫ t2

t1

{dNi(t)−λ̂i(t)dt}{Zi(t)−(Ê12(t, Ui(t)))
T (Ê11(t, Ui(t)))

−1Q̃i(t)}
)⊗2

,

where 0 < t1 < t2 < τ .

Theorem 3.2. Assuming the conditions given in Appendix are satisfied, then

(1) sup
t∈[0,τ ]

|α̂(t)− α0(t)|= op(1);

(2)
√
nht(α̂(t)− α0(t)−

1

2
h2tν2α̈(t))

D−→N (0,Σα(t)) ,

where

Σα(t) = lim
n→∞

htE

[∫ τ

0

{dNi(s)− λi(s)ds}I1e11(t, Ui(s))
−1Q̃i(s)Kht(s− t)

]⊗2
,

which can be consistently estimated by the following formula.

Σ̂α(t) =
ht
n

n∑
i=1

[∫ τ

0

{
dNi(s)− λ̂i(s)ds

}
I1Ê11(t, Ui(s))

−1Q̃i(s)Kht(s− t)
]⊗2

.
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Theorem 3.3. Assuming the conditions given in Appendix are satisfied, then

(1) sup
u∈[u1,u2]

|γ̂(u)− γ0(u)|= op(1);

(2)
√
nhu(γ̂(u)− γ0(u)− 1

2
h2uν2γ̈(u))

D−→N (0,Σγ(u)) .

where

Σγ(u) = lim
n→∞

huE

[∫ τ

0

{dNi(s)− λi(s)ds}I3e11(u, Ui(s))
−1Q̃i(s)Khu(s− u)

]⊗2
,

which can be consistently estimated by

Σ̂γ(u) =
hu
n

n∑
i=1

[∫ τ

0

{
dNi(s)− λ̂i(s)ds

}
I3Ê11(u, Ui(s))

−1Q̃i(s)Khu(s− u)

]⊗2
.



CHAPTER 4: SIMULATION STUDIES

In order to assess the finite sample performance of the proposed model and estima-

tion procedure, we conduct a few simulation studies in this chapter. First, we apply

the methodologies on a survival analysis, which is a single-event case. Second, the

methodologies are applied to recurrent event case. Details for simulations for both

cases will be presented in the following subsections.

4.1 Simulation on Single Event Data - Survival Analysis

In this section, we illustrate our method on single event data and check the finite

sample performance of the proposed method. This section first introduces the method

that is used to generate single event counting process data, followed by a simulation

example with a specific model by using the proposed method.

4.1.1 Generating Single Event Data

Some researchers had studied on how to generate single event data for survival

anaysis. For instance, quite many researchers proposed methods to simulate survival

data with Cox model proposed by Cox (1972).

In the Cox model, the intensity function is written as follows.

λ(t|X) = λ0(t) exp{βTX}, (4.1)

where λ0(t) is the baseline intensity function, β is the parameter vector and X is
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a time independent covariate vector with the same dimention as β. The cumulative

intensity function Λ(t|X)can be written as the integral of λ(t|X) from 0 to t as follows.

Λ(t|X) =

∫ t

0

λ(s|X)ds, (4.2)

The survival function has the following relationship with cumulative intensity func-

tion.

S(t|X) = exp{−Λ(t|X)}, (4.3)

Let F (t|X) = 1− S(t|X), then we have

F (t|X) = 1− exp{−Λ(t|X)}, (4.4)

Supposed Y is a random variable, which follows uniform distribution on [0, 1]. By

setting F (t|X) = Y , we can derive the corresponding T by solving the inverse function

as below. T is the desired time to event.

T = F−1(Y ) = Λ−1(− ln(1− Y )), (4.5)

where F−1() and Λ−1() are the inverse functions of F () and cumulative intensity

function Λ(). In the real world, observations can be censored. For example, patients

do not experience death by the end of the study period and thus are censored. In order

to take into account censoring, we set the study period to be τ . If the T generated by

the equation above is greater than τ , the corresponding subject is marked as censored.

With a given intensity model, a survival dataset with single event can be generated

by following the steps.

1. Set the true value for parameter vector β, true function for λ0(t), study period
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τ , and the total number of observations n (aka. sample size).

2. Simulate the time independent covariates vector X.

3. Plug in all information from step 1 and 2 to (4.1) and calculate (4.1) through

(4.4).

4. Simulate a number y from the distribution Uniform[0, 1].

5. Plug y into (4.5), find T .

6. Compare T with τ , if T is less than τ , set the censoring indicator to be 0,

otherwise set it to be 1.

7. Repeat step 2 through step 6 for n times to simulate data for n subjects.

4.1.2 Simulation Example

By following the procedure presented in the previous subsection, a single-event

sample is generated to be used for evaluating the finite sample performance of our

model. In this example, we consider the following hazard model for failure time to

illustrate our method.

λ(t) = exp {α0(t) + α1(t)X + βZ + γ(t− S)W} , (4.6)

for 0 ≤ t ≤ τ with τ = 2, with the following settings.

• α0(t) = −1.5 + 0.8t, α1(t) = t, β = −0.5, γ(Ui(t)) = −0.5u;

• Xi is generated from truncated normal distribution N(−0.5, 0.5, 0, 1), Zi is an
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uniform random variable on [−0.5, 0.5] and Wi is generated from the distribu-

tion Binary(0.5);

• Ui(t) = t− Si, where Si is generated from the uniform distribution U [ 0, 0.5] ;

• Censoring time Ci is generated from the uniform distribution U [ 1, 3] .

In the generated sample, about 50 % of subjects are censored. Approximately 50

% of subjects experience an event during the study period [0, 2].

During estimation, cross-validation method described in Chapter 2 is applied for

preliminary bandwidth selection. In this example, three sets of bandwidth combina-

tion for ht and hu are selected to reflect different levels of smoothness, including

• ht = hu = 0.30

• ht = hu = 0.40

• ht = hu = 0.50

Boundaries effect is taking into consideration in all simulation examples in this

study, thus we set t1 = ht and t2 = τ − ht in the estimating functions in chapter

2. For all simulations examples in this study, we use the Epanechnikov kernel for

smoothing, which is given as follows.

K(x) = .75(1− x2)I(|x|≤ 1)

For all simulation examples in this dissertation, we consider some criterias to val-

uate the performance of the proposed estimators, which are presented as follows.
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In order to assess the performance of the estimator β̂, we measure the following

items in all simulation examples.

• Bias = estimate - true value

• the sample standard error of the estimates (SSE)

• the sample mean of the estimated standard errors (ESE)

• the 95% empirical coverage probability (CP)

In order to assess the performance of the estimators α̂0(t) for baseline, α̂1(t) for

time varying covariate effects and γ̂(u) for covariate-varying covariate effect, we mea-

sure their pointwise Bias, SSE, ESE, and CP at different fixed time points t and u,

respectively.

Besides Bias, SSE, ESE and CP, to better assess the overall performance for those

estimators for unknown functions, we calculate the sqaure root of integrated mean

square error (RMSE) for each of them respectively.

Suppose

• N is the total number of repetitions;

• α00(t) and α10(t) are the true function values of α0(t) and α1(t) at each time

point t ∈ [0, τ ], respectively;

• γ10(u) and γ20(u) are the true function values of γ1(u) and γ2(u) at each point

u ∈ [0, τ ], respectively;

then, the RMSEs for each of estimators in this chapter are defined as follows.
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RMSEα0 =

{
1

N(τ − 2ht)

N∑
j=1

∫ τ−ht

ht

(α̂0j(t)− α00(t))
2dt

}1/2

,

RMSEα1 =

{
1

N(τ − 2ht)

N∑
j=1

∫ τ−h

h

(α̂1j(t)− α10(t))
2dt

}1/2

,

RMSEγ1 =

{
1

N(τ − 2hu)

N∑
j=1

∫ τ−hu

hu

(γ̂1j(u)− γ10(u))2du

}1/2

,

RMSEγ2 =

{
1

N(τ − 2hu)

N∑
j=1

∫ τ−hu

hu

(γ̂2j(u)− γ20(u))2du

}1/2

,

where α̂0j(t), α̂1j(t), γ̂1j(u) and γ̂2j(u) are the jth estimate of α0(t), α1(t), γ1(u)

and γ2(u), respectively, for j = 1, · · · , N .

Sample sizes n = 400, 600, 800, 1000 are considered in this example. All results

presented below are calculated based on 500 simulation repetitions. Table 2 summa-

rizes the Bias, SSE, ESE and CP for the fixed covariate coefficient estimator β̂ under

model (4.6). The results show the following.

1. The bias for the estimator β̂ are small among different sample sizes and band-

width combinations, which indicates that the estimates are unbiased.

2. Both empirical and estimated standard errors presented on Table 2 are reason-

ably close to each other, and thus the coverage probabilities are close to the

nominal level 95%.

Note that for a particular sample size, when the bandwidth gets larger, Bias de-

creases while both empirical and estimated standard errors increases. Fan and Gijbels

(1996) find that bigger bandwidth results in larger variance but smaller bias. Our
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results are consistent with their finding. However, the results show that coverage

probabilities are not sensitive to bandwidth selection. To conclude, Table 2 indicates

that the proposed estimator β̂ for fixed covariate effect performs well under model

(4.6).

Figure 1 and Figure 2 summarize the results produced with the bandwidth ht = 0.40

and hu = 0.40. The results are averaged on 500 simulation repetitions. The red curve

corresponds to the results for sample size n = 400, while blue curve for n = 600,

green curve for n = 800 and black curve for n = 1000, respectively.

The left panel of Figure 1 presents the Bias, SSEs, ESEs and CPs at different fixed

time points for α̂0(t), while the right panel for α̂1(t). The results show that the bias for

both estimators are small. The coverage probability fluctuates around the nominal

level 95%. In addition, the plots show that when sample size is 400 or 600, the

estimated standard errors are not stable for the latter half of study period. However,

when sample size increases (n = 800, 1000), SSE and ESE agree to each other very

well. This could be due to data sparcity when sample size is not considerably large.

The estimators perform better when sample size increases.

Figure 1 show that the pointwise bias for γ̂(u) are very small, which indicates that

the pointwise estimates are unbiased. An agreement is observed between pointwise

SSE and ESE, thus the coverage probability curves slightly fluctuate around the line

of 97%, which shows reasonable performance of the estimator γ̂(u).

Table 3 summarizes the RMSEs based on 500 simulation repetitions for α̂0(t),

α̂1(t) and γ̂(u) under model 4.6. The results show that the RMSEs for all those four

estimators decrease when sample size increases. The same trend is observed for all



30

three selected bandwidth combinations.



31

Table 2: Summary of Bias, SSE, ESE and CP for β̂ under model (4.6).

n ht hu Bias SSE ESE CP
400 0.30 0.30 -0.0333 0.3481 0.3511 0.966

0.40 0.40 -0.0241 0.3630 0.3855 0.966
0.50 0.50 -0.0097 0.4109 0.4385 0.972

600 0.30 0.30 0.0055 0.4871 0.2822 0.956
0.40 0.40 -0.0047 0.2939 0.3066 0.958
0.50 0.50 -0.0014 0.3315 0.3517 0.968

800 0.30 0.30 -0.0159 0.2283 0.2347 0.964
0.40 0.40 -0.0128 0.2488 0.2622 0.964
0.50 0.50 -0.0103 0.2902 0.3020 0.964

1000 0.30 0.30 -0.0168 0.1989 0.2079 0.968
0.40 0.40 -0.0136 0.2180 0.2330 0.966
0.50 0.50 -0.0146 0.2493 0.2687 0.970
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Table 3: Summary of RMSEs for α̂0(t), α̂1(t) and γ̂(u) under model (4.6).

n ht hu RMSEα0 RMSEα1 RMSEγ

400 0.30 0.30 0.2701 0.6550 1.0922
0.40 0.40 0.2134 0.5475 0.3863
0.50 0.50 0.1849 0.4778 0.3384

600 0.30 0.30 0.2244 0.5154 0.6548
0.40 0.40 0.1648 0.4418 0.2806
0.50 0.50 0.1457 0.3874 0.2384

800 0.30 0.30 0.1659 0.4422 1.1642
0.40 0.40 0.1404 0.3819 0.2240
0.50 0.50 0.1239 0.3374 0.1934

1000 0.30 0.30 0.1451 0.3996 0.5083
0.40 0.40 0.1243 0.3488 0.2057
0.50 0.50 0.1111 0.3114 0.1800
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Figure 1: Plots for Bias, CP, SSE and ESE for n=400, 600, 800, and 1000 with
ht = 0.4,hu = 0.4 for α0(t) = −1.5 + 0.8t and α1(t) = t for 0 ≤ t ≤ 2 under model
(4.6).
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4.2 Simulation on Recurrent Events Data

The previous section show that the proposed model and estimation procedure work

well under the survival analysis framework. In this section, the goal is to check the

finite sample performance of the proposed methodology when the event of interest

can be repeated for each subject. This section starts with a description on how

to generate recurrent events data by thinning method, followed by two simulation

examples under different models.

4.2.1 Generating Recurrent Events Data

There are many different existing methods for generating a non-Homogeneous Pois-

son Process (NHPP). For instance, a NHPP can be generated through time-scale

transformation of a Homogeneous Poisson Process (HPP) or it can be generated by

using order statistics. Lewis and Shedler (1976) generated a NHPP with log linear

rate function. Another approach for generating a NHPP is the thinning method pro-

posed by Lewis and Shedler (1979). Compared with other methods, the thinning

method has many advantages. For instance, the thinning method does not require

numerical integration of the rate function, ordering of points, or generating Poisson

variates. Thus, in this dissertation, we adopt the thinning method for simulating

recurrent events data.

Given the intensity function λ(t) for 0 ≤ t ≤ τ , choose a constant λ̄ s.t. λ(t) ≤ λ̄

for all t. The detailed procedure for generating recurrent events by using thinning

method are given as follows. By repeating the procedure below, we can generate the

recurrent event times for each subject i in a sample. The recurrent event times are
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recorded by Tij (i = 1, 2, · · · , n and j = 1, 2, · · · , Ki)

1. Set T0 = 0, T ∗ = 0, and j = 1.

2. Generate an random variable V from exponential distribution exp(1/λ̄)

3. Update T ∗ = T ∗ + V .

4. If T ∗ > τ , stop; otherwise generate a random variable R from uniform distribu-

tion U(0, 1).

5. Compare R with λ(T ∗)/λ̄. If R ≤ λ(T ∗)/λ̄, then accept the arrival time, store

it by Tij = T ∗, and j = j + 1; otherwise reject the arrival time and return to

Step 2.

In the following subsections, this procedure is used to generate recurrent event

samples to conduct simulation studies.

4.2.2 Simulation Example 1

We start with a simple model to illustrate the proposed method and evalute the

finite sample performance of the proposed estimators. The model given as follows

considers an intercept term as the baseline, time-independent effect and covariate-

varying effect.

λi(t) = exp {α0(t) + βZi + γ(Ui(t))Wi} , (4.7)

for 0 ≤ t ≤ τ with τ = 5, with the following settings.

• α0(t) = 1.5− log(1 + t), β = 1.5, γ(Ui(t)) =
√
Ui(t)− 2;
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• Zi is an uniform random variable on [−0.5, 0.5] and Wi is generated from trun-

cated normal distribution N(−0.5, 0.5, 0, 1),.

• Ui(t) = t− Si, where Si is generated from the uniform distribution U [ 0, 0.5] .

• Censoring time Ci for the ith subject is generated from the uniform distribution

U [ 4, 9] .

In the generated sample, about 20% of subjects are censored. Approximately a

total of 12 recurrent events are observed per subject during the study period [ 0, 5] .

Three sample sizes (n = 400, 600, 800) are considered in this example. All results

presented below are calculated based on 500 simulation repetitions. Cross-validation

method is applied for bandwidth selection. The following three sets of bandwidth

combinations for ht and hu are selected to reflect different levels of smoothness.

• ht = hu = 0.25

• ht = hu = 0.30

• ht = hu = 0.35

Table 4 summarizes the Bias, SSE, ESE, and CP for the fixed covariate coefficient

estimator β̂ under model (4.7) based on 500 simulation repetitions. The results show

the following.

1. The bias for the estimator β̂ are small among different sample sizes and band-

width combinations, which indicates that the estimates are unbiased.



38

2. Both empirical and estimated standard errors presented on Table 4 agree to

each other, which results coverage probabilities that are close to the nominal

level 95%. In addition, coverage probabilities are found to be not sensitive to

bandwidth selection.

3. Bias, empirical standard errors, and estimated standard errors all decrease when

sample size increases.

4. For a particular sample size, when the bandwidth gets larger, Bias decreases

while both empirical and estimated standard errors increases, which is again

consistent with the finding by Fan and Gijbels (1996).

To conclude, Table 4 indicates that the proposed estimator β̂ for fixed covariate

effect performs well under model (4.7).

Figure 3 plots the pointwise bias, empirical standard errors, estimated standard

errors and coverage probabilities for the estimate of the baseline function α0(t), while

Figure 4 shows the plots for γ̂(u). All plots are generated based on the results from

500 simulation repetitions. The bandwidth combination used to generate these plots

is ht=0.3, hu=0.3. The red curve represents result for sample size n = 400, while blue

for n = 600 and green for n = 800. The plots reveal the following findings.

1. The pointwise bias for α̂0(t) is reasonably small. When sample size increases,

bias decreases. Bias tends to become relatively larger at the end of study period,

which could be the boundary effects.

2. The pointwise bias for γ̂(u) is reasonably small and the curve fluctuates around
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the zero line.

3. For both α̂0(t) and γ̂(u), the pointwise empirical standard error and estimated

standard errors are very close to each other, and consequently the curves for

pointwise coverage probabilities fluctuate around the nominal level 95%.

Besides pointwise bias, SSE, ESE and CP, RMSEs are also calculated to assess the

overall performance of both α̂0(t) and γ̂(u). Table 5 shows the results under model

(4.7) with different sample sizes and bandwidth combinations. It appears that RMSEs

for both α̂0(t) and γ̂(u) drops when sample size increases, regardless of bandwidth

combination.

To conclude, based on the results given by Figure 3, 4 and Table 5, the proposed

estimator α̂0(t) and γ̂(u) show satisfied performance under model (4.7).
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Table 4: Summary of Bias, SSE, ESE and CP for β̂ under model (4.7).

n ht hu Bias SSE ESE CP
400 0.25 0.25 0.0173 0.0724 0.0697 0.934

0.30 0.30 -0.0016 0.0736 0.0702 0.938
0.35 0.35 0.0088 0.0754 0.0722 0.938

600 0.25 0.25 0.0112 0.0580 0.0567 0.944
0.30 0.30 -0.0051 0.0579 0.0572 0.950
0.35 0.35 0.0063 0.0596 0.0589 0.954

800 0.25 0.25 0.0070 0.0498 0.0490 0.936
0.30 0.30 -0.0089 0.0509 0.0495 0.938
0.35 0.35 0.0031 0.0529 0.0510 0.940
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Table 5: Summary of RMSEs for α̂0(t) and γ̂(u) under model (4.7).

n ht hu RMSEα0 RMSEγ

400 0.25 0.25 0.0862 0.2981
0.30 0.30 0.0781 0.2770
0.35 0.35 0.0728 0.2643

600 0.25 0.25 0.0683 0.2395
0.30 0.30 0.0625 0.2230
0.35 0.35 0.0584 0.2126

800 0.25 0.25 0.0584 0.2089
0.30 0.30 0.0536 0.1934
0.35 0.35 0.0502 0.1846
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Figure 3: Plots for bias, CP, SSE and ESE for n=400, 600, 800 with ht=0.3, hu=0.3
for α0(t) = 1.5− log(1 + t) for 0 ≤ t ≤ 5 under model (4.7).
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Figure 4: Plots for bias, CP, SSE and ESE for n=400, 600, 800 with ht=0.3, hu=0.3
for γ(u) =

√
u− 2 under model (4.7).
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4.2.3 Simulation Example 2

The previous simulation example considers fixed covariate effects and covariate-

varying effects. The results show that the proposed method performs well. In example

2, a more complicated model is considered to illustrate the proposed method, which

incorporates fixed covariate effects, time-varying effects and covariate-varying effects.

The model is given as follows.

λi(t) = exp {α1(t) + α2(t)Xi(t) + βZi + γ1(Ui(t))W1i + γ2(Ui(t))W2i} , (4.8)

for 0 ≤ t ≤ τ and τ = 5, with the following settings.

• α1(t) = 2− log(1 + t), α2(t) = sin(0.2t);

• β = 1.5;

• γ1(Ui(t)) = Ui(t)− 1, γ2(Ui(t)) =
√
Ui(t)− 2;

• Covariate Xi is generated from truncated normal distribution N(−0.5, 0.5, 0, 1);

• Zi is generated from uniform distribution U [−0.5, 0.5] ;

• W1i and W2i are generated from truncated bivariate normal with marginal

N(−0.5, 0.5, 0, 1) and correlation ρ = 0.2;

• Cencoring time Ci is generated from an uniform distribution U [ 4, 9] ;

• Ui(t) = t− Si, where Si is generated from an uniform distribution U [ 0, 0.5] .

With the above settings, about 20% of subjects are cencored. Approximately a

total of 12 recurrent events are observed per subject during the study period [ 0, 5] .



45

Similar to previous examples, we set t1 = ht and t2 = τ − ht in the estimating

functions to deal with boundary effects. Cross-validation method is applied for band-

width selection, and the following three sets of bandwidth combination for ht and hu

are selected to reflect different levels of smoothness.

• ht = hu = 0.25

• ht = hu = 0.30

• ht = hu = 0.35

Three sample sizes (n = 400, 600, 800) are considered in this tudy. All results

presented below are calculated based on 500 simulation repetitions.

Table 6 summaries the Bias, SSE, ESE, and CP for the fixed covariate coefficient

estimator β̂ under model (4.8), averaging over 500 simulation repetitions. The results

show that the bias for the estimator β̂ are small among different sample sizes and

bandwidth combinations, which indicates that the estimates are unbiased. Both em-

pirical and estimated standard errors presented on Table 6 agree to each other, and

thus the coverage probabilities are close to 95%. In addition, Bias, empirical stan-

dard errors, and estimated standard errors all decrease when sample size increases.

However, the results show that coverage probabilities are not sensitive to bandwidth

selection. To conclude, Table 6 indicates that the proposed estimator β̂ for fixed

covariate effect performs well under model (4.8).

To assess the performance of the estimators for time varying covariate effects α̂1(t)

and α̂2(t) and those for covariate-varying covariate effects γ̂1(u) and γ̂2(u), we calcu-

late their Bias, SSE, ESE, and CP at different fixed time points t and u, respectively.
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Figure 5 and Figure 6 summarize the results produced with the bandwidth ht = 0.30

and hu = 0.30. The results are averaged on 500 simulation repetitions. The left panel

of Figure 5 presents the Bias, SSEs, ESEs and CPs at different fixed time points for

α̂1(t), while the right panel for α̂2(t). The left panel of Figure 6 shows the Bias, SSEs,

ESEs and CPs at different fixed time points for γ̂1(t), while the right panel for γ̂2(t).

The plots from Figure 5 and Figure 6 show the following findings.

1. The pointwise bias for all four sets of estimates α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u)

are very small, thus the pointwise estimates are unbiased. In addition, bias

decreases along with increasing sample size.

2. For each of all four estimators, an agreement is observed between pointwise

empirical standard error and estiamted standard error. The coverage probability

curves slightly fluctuate around the line of nominal level 95%.

To assess the overall performance of α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u), the RMSE is

calculated for each of them. Table 7 summarizes the RMSEs based on 500 simulation

repetitions for α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) under model 4.8. The results show that

the RMSEs for all those four estimators decrease when sample size increases. The

same trend is observed for all three selected bandwidths.

To conclude, the proposed estimators α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) for unknown

non-parametric functions shows strong performance under model 4.8.

In this chapter, in order to illustrate our proposed method and assess the finite

sample performance, two simulation examples are conducted on survival analysis

framework and another two simulation examples on recurrent events data framework.
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All examples show reasonably small bias for our estimates and an agreement between

empirical standard errors and estimated standard errors, which result in coverage

probabilities that are close to the nominal level 95%. Therefore, the proposed method

performs very well with finite samples.
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Table 6: Summary of Bias, SSE, ESE and CP for β̂ under model (4.8).

n ht hu Bias SSE ESE CP
400 0.25 0.25 0.0164 0.0532 0.0521 0.930

0.30 0.30 -0.0018 0.0539 0.0525 0.936
0.35 0.35 0.0082 0.0559 0.0540 0.936

600 0.25 0.25 0.0099 0.0436 0.0422 0.934
0.30 0.30 -0.0067 0.0444 0.0426 0.932
0.35 0.35 0.0046 0.0459 0.0439 0.940

800 0.25 0.25 0.0072 0.0371 0.0364 0.942
0.30 0.30 -0.0082 0.0380 0.0368 0.938
0.35 0.35 0.0035 0.0396 0.0379 0.938
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Table 7: Summary of RMSEs for α̂1(t), α̂2(t), γ̂1(u) and γ̂2(u) under model (4.8).

n ht hu RMSEα1 RMSEα2 RMSEγ1 RMSEγ2

400 0.25 0.25 0.0722 0.2051 0.2190 0.2091
0.30 0.30 0.0643 0.1891 0.2016 0.1948
0.35 0.35 0.0597 0.1786 0.1917 0.1855

600 0.25 0.25 0.0567 0.1672 0.1787 0.1685
0.30 0.30 0.0511 0.1549 0.1654 0.1566
0.35 0.35 0.0476 0.1463 0.1574 0.1491

800 0.25 0.25 0.0482 0.1451 0.1528 0.1451
0.30 0.30 0.0437 0.1349 0.1417 0.1353
0.35 0.35 0.0407 0.1278 0.1349 0.1288
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Figure 5: Plots for Bias, CP, SSE and ESE for n=400, 600, 800 with ht = 0.3,
hu = 0.3 under model (4.8). Left panel is for α1(t) = 2 − log(1 + t). Right panel is
for α2(t) = sin(0.2t).
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CHAPTER 5: DATA APPLICATIONS ON HEMO STUDY

In the HEMO study, the primary outcome is mortality of hemodialysis patients and

the secondary outcomes are hospitalizations with different causes, including cardio-

vasculor and infection. In this chapter, the proposed model and estimation procedure

will be applied to the HEMO dataset.

This chapter is arranged as follows. In Section 5.1, descriptive statistics on the

HEMO dataset will be presented to show the distribution of the data. Section 5.2

is an application on time to composite events, combining deaths and transplants.

Section 5.3 presents an application on recurrent hospitalizations. Both applications

will consider two time dimentions including follow up time and either duration time

of dialysis or age of patients.

5.1 Data Description

In this section, we provide a summary of descriptive statistics from the HEMO

dataset. A total of 1846 hemodialysis patients enrolled in this clinical trial and were

randomized into different treatment groups for different doses/types of dialysis. They

were followed up by the study for up to 6.65 years, unless they experienced death,

transplant or transfer to non-trial dialysis center, which can be considered as drop

out.

In the application of time to composit events of deaths and transplants, patients
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are censored by either transfer or end of study, whichever comes first. Figure 7

shows that a total of 796 patients either transfered to non-trial dialysis center or

did not experience death or transplant, and therefore are considered censored in the

application of time to compsite events of deaths and transplants. A total of 895

deaths and 197 transplants were observed during the HEMO study.

Since hospitalization records were not collected after patients either received trans-

plant or transfered to non-trial dialysis center. Thus, in the application of recurrent

hospitalizations, such patients are considered as censored. Patients that did not expe-

rience any of transplant, transfer or death were censored by the end of the trial, which

is December 31, 2001. Figure 7 summarizes the numbers of patients with different

types of censoring.

A total of 1503 patients had at least one or recurrent hospitalizations and 343

patients did not experience any hospitalizations. A total of 7832 hospitalizations

were collected for all patients, which produces approximately 4 hospitalizations per

patient during the study period.

In this study, the covariates considered in our model include both categorical co-

variates and continuous covariates. The detailed description for each covariate is

listed as follows.

• AGE: baseline age (in years) at randomization date

• BLACK: black race (1=black, 0=others)

• SEX: gender (1=male, 0=female)

• BALB: mean baseline serum albumin (neph)
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• DIABET: diabetic (1=diabetic, 0=non-diabetic)

• DURATION: years the patient had been on dialysis prior to randomization date

• FLUX: randomized flux group (1=low-flux, 0=high-flux)

• KTV: randomized Kt/V group (1=standard-ktv, 0=high-ktv)

• ICED: baseline ICED score (=0,1,2,3). The term ICED refers to the Index of

Coexisting Disease (Greenfield and Nelson, 1992), which is used to quantify a

patient’s level of comorbidity. It takes on values 0,1,2,3, with 3 the most severe

comorbidity.

Figure 8 and Figure 9 visualize the demographics for patients in HEMO study. The

demographics are summarized as follows.

1. About 44% of patients are male, while about 56% are female.

2. About 63% of patients are African American, while about 37% being other

races.

3. About 45% of patients are diabetic, while about 55% are non-diabetic. As men-

tioned in Chapter 1, diabetes were shown to be associated with the mortality of

hemodialysis patients by Sattar et al. (2012) using Cox’s time varying covariate

model. We would like to check such association by using our method. In addi-

tion, we would like to check if such association can be found between diabetes

and hospitalization rates.
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4. The number of patients are roughly even across different ICED scores 1, 2 and

3. However, only 4 patients are with ICED score 0. To avoid the issue of sparse

data, we combine the categories ICED score 0 and 1 in our analysis.

5. The number of patients for each treatment group is roughly the same, which

means that the HEMO study is a balance design in terms of number of patients.

6. The ages of patients in this trial range from 18 to 80 years, with a mean age

56.6 and a median 59.

7. Before enrolled in this clinical trial, each patient had been on dialysis for dif-

ferent amounts of time, which was recorded by the covariate DURATION (in

years). It ranges from 0 to about 30 years. With the baseline duration time

available, it is of interest to check if covariate effects vary along with duration

time at baseline.

8. Upon enrollment, each patient was measured twice for their serum albumin

levels. The baseline serum albumin level (BALB) is the mean of those two

measurements. As shown by Figure 9, it ranges from 0.1 to 5.7. We consider

the baseline serum albumin level as a covariate, trying to explore if the baseline

albumin level is associated with mortality or the rate of hospitalizations.

In order to check if the HEMO study is a balanced design, we further investigate the

randomization of patients. Table 8 summarizes the randomization of patients for the

combination of treatment groups and different groups of each categorical variables,

including ICED, BLACK, DIABET and SEX. As shown by the table, covariate levels
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were fully taken into accout in the process of randomization of patients into different

treatment groups. Table 9 summarizes the randomization of patients for the combina-

tion of treatment groups and different values of each continuous variables, including

AGE, BALB and DURATION. Descriptive statistics including mean, standard devi-

ation (std), minimum, 25% quartile, 50% quartile, 75% quartile and maximum for

the covariate in each treatment group are summarized by Table 9. It is shown that

the randomization process also considered the baseline age of patients, baseline albu-

min serum level and duration of dialysis. Therefore, the HEMO study is a balanced

design.
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Figure 7: Summary of # of patients for different types of censoring.
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(a) (b)

(c) (d)

(e) (f)

Figure 8: Demographics for patients in HEMO study: (a)-(f) show the percentages
of patients for each category of covariates SEX, BLACK, DIABETIC, ICED, FLUX
and KTV, respectively.



59

(a) age (b) duration of dialysis prior to enrollment

(c) baseline albumin level (d) distribution of hospitalizations

Figure 9: Demographics for patients in HEMO study: (a) is the distribution of age
(in years), (b) is the number of years on dialysis prior to enrollment to the study
, (c) is the distribution of the baseline serum albumin level (in gm/dL) and (d) is the
number of hospitalizations over follow up time.
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Table 8: Summary of randomization of patients for the combination of treatment
groups and different groups of categorical variables.

Variables low-flux high-flux standard-ktv high-ktv
ICED 1 338 319 323 334

2 292 285 286 291
3 295 317 317 295

BLACK black 579 577 594 562
others 346 344 332 358

DIABET diabetic 411 412 414 409
non-diabetic 514 509 512 511

SEX male 409 399 405 403
female 516 522 521 517
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Table 9: Summary of randomization of patients for the combination of treatment
groups and different groups of continuous variables.

variable treatment mean std min 25% 50% 75% max
AGE low-flux 57.09 14.18 18.00 48.00 59.00 68.00 80.00

high-flux 57.19 13.92 18.00 48.00 60.00 68.00 80.00
standard-ktv 57.34 13.95 18.00 48.00 59.00 68.00 80.00

high-ktv 920 14.15 18.00 48.00 60.00 68.00 80.00
BALB low-flux 3.62 0.37 2.55 3.40 3.63 3.87 4.90

high-flux 3.62 0.35 2.63 3.40 3.64 3.85 4.72
standard-ktv 3.62 0.36 2.60 3.37 3.63 3.85 4.90

high-ktv 920 0.36 2.55 3.40 3.64 3.85 4.75
DURATION low-flux 3.70 4.23 0.19 0.92 2.20 4.68 26.00

high-flux 3.80 4.48 0.23 0.96 2.11 4.68 31.27
standard-ktv 3.86 4.46 0.23 1.02 2.27 4.79 31.27

high-ktv 3.64 4.25 0.19 0.90 2.06 4.43 27.95
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5.2 Application on Failure Time to Composite Events

One of the major objectives of the HEMO study was to explore the factors that

are associated with the mortality of hemodialysis patients. In this application, we

consider death and transplant as composite events. The proposed methodology is

applied on the HEMO dataset to explore the factors that are associated with the

failure time to composite events to death or transplant.

As a mentioned in Section 5.1, there are a total of 895 deaths and a total of 197

transplants during the HEMO study, with 24 of those patients received transplant

before death. Thus, a total of 1068 (57.3%) composite events were detected from the

HEMO dataset and 796 (42.7%) patients were censored by either transfer to non-trial

clinical or the end of trial.

Before diving into modeling the failure time to composite events, we conduct a

bivariate analysis between composite events rate and each covariate considered in

this study. For continuous variables, we describe the distribution of each covariate

for events group and non-events group seperately. Table 10 shows that the group of

patients with composite events are older than those in the non-events group. The

baseline serum albumin level for patients with composite events seems to be slightly

lower than that for patients without composite events. No noticeable difference is

observed for duration of dialysis between the group with composite events and the

group without composite events. For categorical covariates, we calculate the rate

of composite events for each category of each covariate. Table 11 summarizes the

number of composite events in each category for each covariate as well as the rate
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of composite events. It is shown that the composite events rate for patients with

ICED 1 is much lower than that for patients with ICED score 2 or 3. The composite

events rate for patients with ICED score 2 is slightly lower than that for patients with

ICED score 3. African American patients has lower composite events rate compared

with patients with other races. Patients with diabetes have higher composite events

rate than those without diabetes. The composite events rate between male patients

and female patients are not noticeable. There are no difference between different

treatment groups in terms of composite events rate.

In order to check if and how the treatment interventions and other covariates are

associated with time to composite events defined, we consider a full model as follows.

λ(t) = exp {α0(t) + β1FLUX + β2KTV + β3AGE + β4SEX + β5BALB + β6DIABET
+ β7ICED 1 + β8ICED 2 + β9DURATION + γ(t+DURATION)BLACK} ,

(5.1)

for 0 ≤ t ≤ 6.65, with the dummies for ICED groups defined as follows.

• ICED 1 = 1 represents ICED score 1, 0 for others;

• ICED 2 = 1 represents ICED score 2, 0 for others.

In the above model, we have U(t) = t + DURATION . Given that DURATION

is the baseline duration time prior to study enrollment, u is representing the total

duration time since first dialysis. With this setting, we can model the trend of effect

difference between African American patients and those with other races over total

duration time of dialysis. The total follow up time t is 6.65 years. The range of u is

from 0 to 34.3 in years. The left panel of Figure 10 shows the distribution of such

events over follow up time t. The right panel of Figure 10 shows the distribution of
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such events over duration time of dialysis u. As shown by Figure 10, the number of

observed composite events is very low for the tail period of both t and u. Therefore,

for the estimations of unkown functions in model (5.1), the tail period t > 4.5 and

u > 15 are not estimated.

Table 12 summarizes the estimates, 95% confidence intervals and p-values for all

parameters β1 to β9 in model 5.1, respectively. Figure 12 shows the estimated func-

tions for the baseline α0(t) and γ(u). Figure (a) and (b) are the estimated functions

for α0(t) and γ(u), respectively, while Figure (c) and (d) are the estimated func-

tions along with pointwise 95% confidence intervals. The results show the following

findings.

1. Both treatment interventions are not significantly associated with the defined

composite events to death or transplant for hemodialysis patients. The positive

estimates for β1 indicates that a dialyzer with high-flux membrane compared

with low-flux membrane can lower the risk to composite events to death or

transplant, while the positive estimates for β2 suggests that high dose of dialysis

delivered can lower the risk to such composite events for hemodialysis patients.

2. The baseline age of patients is very significantly associated with the risk to

composite events to death or transplant. In addition, the possitive coefficient

suggests that the risk to such composite events is higher for older patients than

younger patients.

3. The baseline albumin serum level is significantly associated with the risk to

composite events. Such risk increases along with increasing baseline serum
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albumin level.

4. Diabetes is significantly associated with the risk to composite events. Com-

pared with non-diabetic patients, diabetic patients have higher risk to compos-

ite events to death or transplant, which is consistent with the finding by Sattar

et al. (2012) mentioned previously in Section 5.1.

5. The effect difference between ICED score 1 and ICED score 3 and that for

ICED score 2 and ICED score 3 are significant. Compared with patients ICED

score 3, patients with either ICED score 1 or ICED score 2 have lower risk to

composite events to death or transplant.

6. The duration time of dialysis is not significantly associated with the risk to

composite events.

7. In Figure 12, Figures (a) and (c) indicate that the baseline function is roughly

flat over time. Figures (b) and (d) imply that African American hemodialysis

patients tend to have lower risk to composite events to death or transplant

compared to patients with other races. In addition, such difference between

African American and other races is significant. Figures (b) and (d) also indicate

that the difference between African American patients and those with other

races decrease when the duration time of dialysis is from 0 to 4 years but then

increases when the duration time is from 10 to 14 years.

It is worth mentioned that all above findings are consistent with the descriptive

statistics given by Table 10 and Table 11 above.
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In order to explore the trend of effect difference between African American and

other races over patients’ age, another full model with u(t) = t + AGE is fitted as

follows.

λ(t) = exp {α0(t) + β1FLUX + β2KTV + β3AGE + β4SEX + β5BALB + β6DIABET
+ β7ICED 1 + β8ICED 2 + β9DURATION + γ(t+ AGE)BLACK} ,

(5.2)

for 0 ≤ t ≤ 6.65.

In this example, we consider U(t) = t + AGE, which ranges from 18 to 86.65

years. Given that AGE stands for the baseline age at enrollment, U(t) = t + AGE

represents the age of patients at time t. As shown by Figure 11, the number of

observed composite events is very low for the right tail of t and left tail of u. Therefore,

we do not estimate unkown functions in model (5.2) for the tail period t > 4.5 and

u < 40.

Table 13 presents the coefficient estimates along with the 95% confidence inter-

vals and p-values for all parameters in model 5.2. The results suggest the following

findings.

1. Based on the results, baseline serum albumin level (BALB), diabetes (DIA-

BET), ICED score and duration time of dialysis (DURATION) are significantly

associated with the risk to composite events to death or transplant for hemodial-

ysis patients, while other covariates are not.

2. Patients with diabetes have higher risk to composite events to death or trans-

plant.

3. The positive coefficient estimates β̂5 and β̂9 indicate that the risk to composite
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events increase along with albumin level and duration time of dialysis. Com-

pared with patients with ICED score 3, those with lower ICED scores (1 or 2)

have lower risk to composite events to death or transplant.

4. It is worth to note that given all other covariates in the model, treatment

effects and their interaction effects for neither dose of dialysis nor dialyzers

with standard or high-flux membrane turn out to be non-significant.

The estimated functions for α0(t) and γ(u) given by Figure 13 show that African

American patients have significantly lower risk to composite events compared with

patients with other races. Furthermore, such difference increases along with age when

patients are between 40 to 60 years old but decreases along with age when patients

are between 60 to 80 years old.
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Table 10: Distribution of continuous variables in event group and non-event group.

variable group mean std min 25% 50% 75% max
AGE non-event 54.51 14.05 18.00 45.00 55.50 66.00 80.00

event 59.05 13.74 18.00 50.75 62.00 70.00 80.00
BALB non-event 3.67 0.35 2.61 3.45 3.68 3.90 4.90

event 3.59 0.37 2.55 3.35 3.60 3.80 4.75
DURATION non-event 3.75 4.57 0.23 0.86 1.99 4.44 31.27

event 3.75 4.20 0.19 1.04 2.26 4.75 29.02
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Table 11: Event rate in event group and non-event group for different categories of
categorical variables.

Variables non-event event total event rate
ICED 1 347 310 657 0.47

2 231 346 577 0.60
3 200 412 612 0.67

BLACK black 523 633 1156 0.55
others 255 435 690 0.63

DIABET diabetic 307 516 823 0.63
non-diabetic 471 552 1023 0.54

SEX male 334 474 808 0.59
female 444 594 1038 0.57

FLUX low-flux 388 537 925 0.58
high-flux 390 531 921 0.58

KTV standard-ktv 389 537 926 0.58
high-ktv 389 531 920 0.58
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(a) (b)

Figure 10: Distribution of composite events over follow up time t and duration time
of dialysis u. Figure (a) represents # of composite events over follow up time and (b)
represents # of composite events over time of dialysis.
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(a) (b)

Figure 11: Distribution of composite events over follow up time t and patients’ age u.
Figure (a) represents # of composite events over follow up time and (b) represents #
of composite events over patients’ age.
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Table 12: Summary of estimates, standard deviation, 95% confidence interval, Z
score and P-value for β̂s under time to composite events model (5.1) with u(t) =
t+DURATION .

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX 0.0965 0.0795 -0.0593 0.2524 1.2138 0.2248
KTV 0.0993 0.0799 -0.0572 0.2559 1.2441 0.2135
AGE 0.0245 0.0036 0.0173 0.0316 6.7120 <0.0001
SEX -0.0036 0.0838 -0.1680 0.1607 -0.0434 0.9654

BALB 0.2974 0.1318 0.0391 0.5557 2.2567 0.0240
DIABET 0.1865 0.0850 0.0199 0.3531 2.1947 0.0282
ICED 1 -0.3082 0.1004 -0.5050 -0.1115 -3.0701 0.0021
ICED 2 -0.2248 0.0946 -0.4101 -0.0395 -2.3773 0.0174

DURATION 0.0394 0.0246 -0.0089 0.0877 1.6002 0.1096
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Table 13: Summary of estimates, standard deviation, 95% confidence interval, Z score
and P-value for β̂s under time to composite events model (5.2) with u(t) = t+AGE.

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX 0.1086 0.0656 -0.0200 0.2371 1.6552 0.0979
KTV 0.0922 0.0662 -0.0374 0.2219 1.3941 0.1633
AGE 0.0231 0.0170 -0.0103 0.0565 1.3562 0.1750
SEX 0.0126 0.0694 -0.1235 0.1487 0.1817 0.8558

BALB 0.2567 0.1087 0.0436 0.4698 2.3608 0.0182
DIABET 0.2384 0.0724 0.0966 0.3802 3.2944 0.0010
ICED 1 -0.3232 0.0835 -0.4868 -0.1595 -3.8699 0.0001
ICED 2 -0.1816 0.0789 -0.3362 -0.0269 -2.3006 0.0214

DURATION 0.0227 0.0081 0.0069 0.0385 2.8199 0.0048
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(d) γ̂(u) with 95% confidence interval

Figure 12: Estimated functions under model (5.1) with u(t) = t+DURATION with
bandwidth (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t)
and γ(u), respectively; (c) and (d) are the estimated functions with pointwise 95%
confidence intervals.
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Figure 13: Estimated functions under model (5.2) with u(t) = t + AGE with band-
width (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t) and γ(u),
respectively; (c) and (d) are the estimated functions with pointwise 95% confidence
intervals.
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5.3 Application on Recurrent Hospitalizations

In the previous application, we focus on modeling time to mortality representing

by the composite events to death or transplant. In this section, the goal is to model

the rate of recurrent hospitalizations for hemodialysis patients.

Similarly, before we apply our proposed method on the HEMO dataset, we ob-

tain some descriptive statistics regarding the hospitalization rates across different

categories of each covariate. Figure 14 and Figure 15 suggest the following findings.

1. There are notable difference across different categories regarding the # of hospi-

talizations per patient for covariates including sex, age, baseline serum albumin

(BALB), black race, ICED score 1 compared with ICED socres 2 and 3, and

diabetes.

2. The # of hospitalizations per patient does not differ much when duration time

of dialysis prior to enrollment is less than 15 years. However, the # of hospi-

talizations per patient dramatically decreases when duration time of dialysis is

greater than 15 years.

3. The difference of the # of hospitalizations per patient for different treatments

or different treatment combinations are not notable.
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(a) (b)

(c) (d)

(e) (f)

Figure 14: The # of Hospitalization per patient for different categories of covariates:
sex, baseline age, baseline serum albumin, black race, ICED score and diabetic.
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(a) (b)

(c) (d)

Figure 15: The # of Hospitalization per patient for different categories of covariates:
FLUX, KTV, treatment groups of FLUX and KTV combinations and duration of
dialysis prior to enrollment.
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We start with a simpler model with U(t) = t+DURATION as follows to check if

the treatments effects on hospitalization rate are significant for hemodialysis patients.

(5.3)λ(t) = exp {α0(t) + β1FLUX
+ β2KTV + β3DURATION + γ(t+DURATION)BLACK} ,

for 0 ≤ t ≤ 6.65.

First, records of hospitalizations are plotted against t and u, respectively, to check

how they are distributed. The left panel of Figure 16 shows the # of hospitaliza-

tion records against follow up time t, while the right panel against duration time of

dialysis u. The issue of data sparseness is detected for the same time windows as in

Application 1. Thus, we only estimate α0(t) for 0 ≤ t ≤ 4.5 and γ(u) for 0 ≤ u ≤ 15.

The estimated coefficients for β1 and β2 are summarized by Table 14 along with

their 95% confidence intervals and p-values. Based on the results, no significant associ-

ation between neither treatments and hospitalization rates are found for hemodialysis

patients. The duration time of dialysis prior to enrollment of study is found to be

not significantly associated with hospitalization rate neither.

Figure 17 shows the estimated functions for baseline α0(t) and γ(u). It indicates

that the baseline intensity for hospitalization is roughly constant over time. Figures

(d) shows that he difference between African American patients and patients with

other races regarding hospitalization rate is not significant. In addition, the race

effect does not change over total duration time of dialysis.

In order to explore the factors that are associated with hospitalization rate for

hemodialysis patients, a full model as below is fitted by including all covariates in

this study.
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λ(t) = exp {α0(t) + β1FLUX + β2KTV + β3AGE + β4SEX + β5BALB + β6DIABET
+ β7ICED 1 + β8ICED 2 + β9DURATION + γ(t+DURATION)BLACK} ,

(5.4)

for 0 ≤ t ≤ 6.65.

Table 15 summarizes the estimated coefficients for all covariates included in model

(5.4). The results suggest the following remarkable findings.

1. Covariates that are significantly associated with hospitalization rate for hemodial-

ysis patients include age, sex, diabetes and ICED score.

2. Male patients tend to have lower hospitalization rate compared with female

patients.

3. The hospitalization rate for patients increases along with age. Older patients

tend to have higher hospitalization rate compared with younger patients.

4. Diabetic hemodialysis patients have higher hospitalization rate compared with

non-diabetic patients.

5. Hemodialysis patients with ICED score 1 have significantly lower hospitalization

rate compare with those with ICED score 3, however, the difference regarding

hospitalization rate between patients with ICED score 2 and ICED score 3 is

not significant.

6. The duration time of dialysis prior to enrollment is not significantly associated

with the hospitalization rate of hemodialysis patients. Figure 15 (d) shows that

the # of hospitalization per patient do not vary across different levels of duration
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time, except for the duration interval [15, 32]. However, not many patients in

the data set falls into this duration time interval indicated by Figure 9. Thus,

it could be the case that the model (5.4) could not capture the difference of

hospitalization due to data sparseness in the duration time interval [15, 32].

7. Given other covariates, both treatments effects (FLUX and KTV) are not sig-

nificant in the full model. In other words, the dose of dialysis delivered to

hemodialysis patients and dialyzers with standard or high-flux membrane are

not significantly associated with patients’ hospitalization rate.

Figure 18 presents the estimated functions for α0(t) and γ(u). The plots show

a very similar estimate for baseline α0(t) as that in the simpler model (5.3). No

significant difference regarding hospitalization rate between African American and

other races are found when total duration time of dialysis is less than 25 years, while

the difference between those groups becomes significant when total duration time of

dialysis is between 25 to 30 years.

Table 14 and Table 15 visulize the HEMO dataset and summarize the pairwise

correlation between each covariate and hospitalization rate. It is worth mentioned

that all the findings from the full model are consistent with those suggested by the

pairwise plots in Table 14 and Table 15.
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(a) (b)

Figure 16: Distribution of hospitalizations over follow up time t and duration time
of dialysis u. Figure (a) represents # of hospitalizations over follow up time and (b)
represents # of hospitalizations over time of dialysis.
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Table 14: Summary of estimates, standard deviation, 95% confidence interval, Z score
and P-value for β̂s under simpler model (5.3) with U(t) = t+DURATION .

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX 0.1165 0.1030 -0.0853 0.3184 1.1316 0.2578
KTV 0.1116 0.1033 -0.0908 0.3140 1.0805 0.2799

DURATION -0.0139 0.0184 -0.0500 0.0222 -0.7561 0.4496



84

Table 15: Summary of estimates, standard deviation, 95% confidence interval, Z score
and P-value for β̂s under full model (5.4) with U(t) = t+DURATION .

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX 0.0642 0.0938 -0.1198 0.2481 0.6837 0.4942
KTV 0.0280 0.0941 -0.1564 0.2124 0.2976 0.7660
AGE 0.0073 0.0038 -0.0001 0.0147 1.9401 0.0524
SEX -0.2184 0.0986 -0.4116 -0.0253 -2.2164 0.0267

BALB -0.1733 0.1460 -0.4595 0.1129 -1.1866 0.2354
DIABET 0.2203 0.1109 0.0029 0.4376 1.9865 0.0470
ICED 1 -0.3693 0.1285 -0.6212 -0.1173 -2.8730 0.0041
ICED 2 -0.1514 0.1148 -0.3764 0.0737 -1.3182 0.1874

DURATION -0.0068 0.0171 -0.0404 0.0268 -0.3992 0.6898
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(d) γ̂(u) with 95% confidence interval

Figure 17: Estimated functions under model (5.3) with U(t) = t + DURATION
and bandwidth (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t)
and γ(u), respectively; (c) and (d) are the estimated functions with pointwise 95%
confidence intervals.
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Figure 18: Estimated functions under model (5.4) with U(t) = t + DURATION
and bandwidth (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t)
and γ(u), respectively; (c) and (d) are the estimated functions with pointwise 95%
confidence intervals.
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In the last example, we consider U(t) = t+AGE instead of U(t) = t+DURATION

in our model. The purpose is to explore if and how the difference of hospitalization

rate between African American and other races changes along with patients’ age.

As usual, we start with a simpler model as follows to check if the treatments effects

on hospitalization rate are significant for hemodialysis patients.

λ(t) = exp {α0(t) + β1FLUX + β2KTV + AGE + γ(t+ AGE)BLACK} , (5.5)

for 0 ≤ t ≤ 6.65

With the defined U(t) = t + AGE, the range of u is 18 ≤ u ≤ 86.65. Figure

19 plots hospitalizations against follow up time t and patients’ age u, respectively.

It is shown that not many hospitalizations happened in the window [0, 35] for u.

Therefore, to avoid the issue of sparse data, α0(t) is estiamted for 0 ≤ t ≤ 4.5 and

γ(u) for 35 ≤ u ≤ 86.65.

The results given by Table 16 indicate that both treatment effects are not signif-

icant, which means that no significant difference regarding hospitalization rate are

detected neither between different dose of dialysis delivered nor different type of dia-

lyzer used for dialysis. The baseline age is not a significant factor to hospitalization

rate for hemodialysis patients neither.

The plots from Figure 20 suggest that African American patients, compared with

other races, have higher hospitalization rates when they are between 35 to 45 years

old or 75 to 85 years old, but lower hospitalization rates when they are 45 to 75 years.

However, such difference between African American patients and patients with other

races is not significant since the 95% confidence band covers the zero line.
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Next, a full model is considered as below to examine the factors that are considered

in this study.

λ(t) = exp {α0(t) + β1FLUX + β2KTV + β3AGE + β4SEX + β5BALB + β6DIABET
+ β7ICED 1 + β8ICED 2 + β9DURATION + γ(t+ AGE)BLACK} ,

(5.6)

for 0 ≤ t ≤ 6.65.

Results for estimated coefficients are presented by Table 16. Some notable findings

are listed as follows.

1. The set of covariates found to be significantly associated with hospitaliza-

tion rate for hemodialysis patients includes sex, baseline serum albumin level

(BALB), diabetic and ICED score.

2. For each of the significant covariate, similar effects are found compared with

the previous full model (5.4) with U(t) = t+DURATION .

3. Other covariates are not significantly associated with hospitalization rate for

hemodialysis patients, including age and duration time of dialysis prior to study

enrollment.

4. Given other covariates, no significant effects are detected for neither treatments.

Figure 21 suggests very similar results as the simpler model (5.5) for the interaction

of black race and age. No significance difference regarding hospitalization rate for

hemodialysis patients are detected by the full model (5.5).

To conclude, the findings in this example are consistent with not only data vi-

sulization of hospitalization records but also the findings in previous example with

U(t) = t+DURATION .
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(a) (b)

Figure 19: Distribution of hospitalizations over follow up time t and patients’ age u.
Figure (a) represents # of hospitalizations over follow up time and (b) represents #
of composite events over patients’ age.
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Table 16: Summary of estimates, standard deviation, 95% confidence interval, Z score
and P-value for β̂s under simpler model (5.5) with U(t) = t+ AGE.

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX -0.0783 0.0480 -0.1723 0.0157 -1.6328 0.1025
KTV -0.0552 0.0480 -0.1493 0.0389 -1.1493 0.2504
AGE 0.0016 0.0060 -0.0102 0.0134 0.2662 0.7901
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Table 17: Summary of estimates, standard deviation, 95% confidence interval, Z score
and P-value for β̂s under full model (5.6) with U(t) = t+ AGE.

Covariate Coefficient SD 95% Upper 95%Lower Z Score P-value
FLUX 0.0067 0.0473 -0.0861 0.0994 0.1414 0.8876
KTV 0.0094 0.0472 -0.0831 0.1020 0.1997 0.8417
AGE 0.0091 0.0082 -0.0069 0.0252 1.1129 0.2657
SEX -0.1930 0.0508 -0.2926 -0.0934 -3.7980 0.0001

BALB -0.3030 0.0755 -0.4509 -0.1551 -4.0143 0.0001
DIABET 0.2066 0.0549 0.0991 0.3141 3.7663 0.0002
ICED 1 -0.3009 0.0649 -0.4280 -0.1737 -4.6379 <0.0001
ICED 2 -0.0347 0.0573 -0.1470 0.0776 -0.6061 0.5444

DURATION 0.0027 0.0055 -0.0081 0.0134 0.4909 0.6235
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Figure 20: Estimated functions under model (5.5) with U(t) = t + AGE and band-
width (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t) and γ(u),
respectively; (c) and (d) are the estimated functions with pointwise 95% confidence
intervals.
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Figure 21: Estimated functions under model (5.6) with U(t) = t + AGE and band-
width (ht = 0.5, hu = 5): (a) and (b) are the estimated functions for α0(t) and γ(u),
respectively; (c) and (d) are the estimated functions with pointwise 95% confidence
intervals.
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APPENDIX: PROOFS OF THE THEOREMS

Conditions

The following conditions are needed for our derivation of asymptotic properties in

this study.

• The censoring time Ci is noninformative in the sense that E{dN∗i (t)|Qi(t), Ui(t),

Ci ≥ t} = E{dN∗i (t)|Qi(t), Ui(t)}, while the censoring time Ci is allowed to

depend on the left continuous covariate process Qi(·);

• The processes Qi(t) and λi(t), 0 ≤ t ≤ τ , are bounded and their total variations

are bounded by a constant; E|Ni(t2)−Ni(t1)|2≤ L(t2− t1) for 0 ≤ t1 ≤ t2 ≤ τ ,

where L > 0 is a constant; E|Ni(t+ h)−Ni(t− h)|2+v= O(h), for some v > 0;

• The kernel function K(·) is symmetric with compact support on [−1, 1] and

Lipschitz contimuous; Bandwidths ht � hu; ht → 0; nh2t → ∞ and nh5t is

bounded;

• α0(t), γ0(u), e11(t) and e12(t) are twice differentiable; (e11(t))
−1 is bounded over

0 ≤ t ≤ τ ; the matrices Aβ and Σβ are positive definite;

• The following two limits exist and are finite.

limn→∞ htE
[∫ τ

0
{dNi(s)− λi(s)ds}I1e11(t, Ui(s))

−1Q̃i(s)Kht(s− t)
]⊗2

,

and

limn→∞ huE
[∫ τ

0
{dNi(s)− λi(s)ds}I3e11(u, Ui(s))

−1Q̃i(s)Khu(s− u)
]⊗2

.
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Proof of Theorems

Proof of Theorem 3.1

By Lemma B.1 and Lemma B.3 in Qi (2015) and applying the Glivenko-Cantelli

theorem to the estimating function (2.6), we have the following

1

n
Uβ(β)

=
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ̃i(t, β)dt]{∂ϑ̃(β, t, Ui(t))

∂β
Q̃i(t) + Zi(t)}]

P−→E
∫ τ

0

[dNi(t)− λ{ϑTβ (t, Ui(t))Q̃i(t) + βTZi(t)}dt]

× {Zi(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1Q̃i(t)}

= E

∫ τ

0

[ϕ{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}dt− ϕ{ϑTβ (t, Ui(t))Q̃i(t) + βTZi(t)}dt]

× {Zi(t)− (eβ,12(t, Ui(t)))
T (eβ,11(t, Ui(t)))

−1Q̃i(t)}

= u(β), (1)

where β0 is the unique root of u(β). By the Theorem 5.9 of Van Der Vaart (1998),

we have β̂
P−→β0.

By the Lemma B.3 in Qi (2015) and the Glivenko-Cantelli theorem, we have the
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following

− 1

n

∂Uβ(β)

∂β
|β=β0

=
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}dt]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}

+
1

n

n∑
i=1

∫ τ

0

[−λ{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}]

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}⊗2
dt

+
1

n

n∑
i=1

∫ τ

0

[dNi(t)− λ{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)}dt]

{
∂2ϑ̃(t, Ui(t), β0)

∂2β
Q̃i(t)

}

(2)

The first and third terms go to zero as n→∞. Thus, we have

− 1

n

∂Uβ(β)

∂β
|β=β0

P−→E
∫ τ

0

λ{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}

× {Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}⊗2dt ≡ Aβ (3)

Now we show that n−1/2Uβ(β0) converges in distribution to a normal distribution. By

Taylor expansion,

exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)} − exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}

= exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}[ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))]Q̃i(t)

+Op(‖ϑ̃(t, Ui(t), β0)− ϑ0(t, Ui(t))‖2) (4)
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We define dMi(t) = dNi(t)− exp{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}dt, then we have

1√
n
Uβ(β0) =

1√
n

n∑
i=1

∫ τ

0

[dNi(t)− exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)}dt]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}

=
1√
n

n∑
i=1

∫ τ

0

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dMi(t)

− 1√
n

n∑
i=1

∫ τ

0

[exp{ϑ̃T (t, Ui(t), β0)Q̃i(t) + βT0 Zi(t)} − ϕ{ϑT0 (t, Ui(t))Q̃i(t) + βT0 Zi(t)}]

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dt

(5)

By Lemma 1 in Lin et al. (2001), the second term equals to the following

1√
n

n∑
i=1

∫ τ

0

exp{ϑ̃T (t, Ui, β0)Q̃i(t) + βT0 Zi(t)}[ϑ̃T (t, Ui(t), β0)− ϑT0 (t, Ui(t))]Q̃i(t)dt

×

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
= op(1)

(6)

Thus, we have

1√
n
Uβ(β0)

=
1√
n

n∑
i=1

∫ τ

0

{
∂ϑ̃(t, Ui(t), β0)

∂β
Q̃i(t) + Zi(t)

}
dMi(t) + op(1)

=
1√
n

n∑
i=1

∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}dMi(t)

(7)
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which converges in distribution to N(0,Σβ) by Central Limit Theorem, where

Σβ = E

(∫ τ

0

{Zi(t)− (e12(t, Ui(t)))
T (e11(t, Ui(t)))

−1Q̃i(t)}dMi(t)

)⊗2
.

By Taylor expansion, we have

Uβ(β̂) = Uβ(β0) +
∂Uβ(β)

∂β
|β=β0(β̂ − β0) +Op(‖β̂ − β0‖2).

Thus,

√
n(β̂ − β0) =

(
− 1

n

∂Uβ(β)

∂β
|β=β0

)−1
× 1√

n
Uβ(β0)

Hence, by Slutsky Theorem, we have
√
n(β̂ − β0)

D−→N(0, A−1β ΣβA
−1
β ).

Proof of Theorem 3.2

(a) Since ϑ̂(t0, u0) = ϑ̃(t0, u0, β̂), we have ϑ̂(t0, u0)
P−→ϑ0(t0, u0) uniform in t ∈ [0, τ ]

and u ∈ [u1, u2] by Lemma B.1 in Qi (2015) and Theorem 1. Then we have the

following

sup
t0∈[t1,t2]

|ϑ̂(t0)− ϑ0(t0)|= sup
t0∈[t1,t2]

|n−1
n∑
j=1

{ϑ̂(t0, Uj(t0))− ϑ0(t0, Uj(t0))}|

≤ sup
t0∈[t1,t2],u0∈[u1,u2]

|ϑ̂(t0, u0)− ϑ0(t0, u0)|= op(1).

(b) By Lemma B.4 in Qi (2015), we have

√
nhthu{α̃(t0, u0, β0)− α0(t0, u0)}

= −I1e
−1
11 (t0, u0)

√
hthu
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}X̃i(t)Kht(t− t0)Khu(Ui(t)− u0)

+
1

2

√
nhbh2ν2e

−1
11 (t0, u0)bα(t0, u0) +

1

2

√
nhbb2ν2e

−1
11 (t0, u0)bγ(t0, u0)

+ op(
√
nhb(h2 + b2))
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Since e−111 (t0, u0)bγ(t0, u0) is zero for the first p1 components and e−111 (t0, u0)bα(t0, u0)

is α̈(t0) for the first p1 components. Then

√
nht{α̂(t0)− α0(t0)}

= −
√
ht
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}{
1

n

n∑
j=1

I1e
−1
11 (t0, Uj(t0))Qi(t)Khu(Ui(t)− Uj(t0))}

×Kht(t− t0)

+

√
ht
n

1

n

n∑
j=1

{e11(t0, Uj(t0))−1e12(t0, Uj(t0))}(β̂ − β0) +
1

2

√
nhth

2
tν2α̈(t0).

By Lemma A.1 in Yin et al. (2008),

1

n

n∑
j=1

e−111 (t0, Uj(t0))Khu(u− Uj(t0)) = e−111 (t0, u) +Op(
log hu√
nhu

) +O(h2u)

uniformly in t ∈ [t1, t2] and u ∈ [u1, u2]. It follows that

√
nht{α̂(t0)− α0(t0)−

1

2
h2tν2α̈(t0)}

=

√
ht
n

n∑
i=1

∫ τ

0

{dNi(t)− λi(t)dt}I1e
−1
11 (t0, Ui(t))Qi(t)Kht(t− t0) + op(1)

= n−1/2
n∑
i=1

gi(t0) + op(1),

where gi(t0) = h
1/2
t

∫ τ
0
{dNi(t)− λi(t)dt}I1e

−1
11 (t0, Ui(t))Qi(t)Kht(t− t0) .

Following the arguments of Lemma 2 of Sun (2010),

√
nht(α̂(t)− α0(t)−

1

2
h2tν2α̈(t0))

D−→N (0,Σα(t)) (8)

where

Σα(t0) = lim
n→∞

htE

[∫ τ

0

{dNi(t)− λi(t)dt}I1e
−1
11 (t0, Ui(t))Qi(t)Kht(t− t0)

]⊗2
.
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Proof of Theorem 3.3

By following the same proofing process of Theorem 3.2, we have the following

γ̂(u)
P−→γ0(u) uniformly in u ∈ [u1, u2], and

√
nhu(γ̂(u)− γ0(u)− 1

2
h2uν2γ̈(u))

D−→N (0,Σγ(u)) .


