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ABSTRACT

SHUBHANKAR CHINTAMANI SHINDGIKAR. Modelling and Control of
Multi-Vehicle Traffic Networks using an Integrated VISSIM-MATLAB Platform.

(Under the direction of DR. AMIR H. GHASEMI)

This thesis aims to optimize the road traffic network by using different control al-

gorithms and techniques to monitor road driving conditions and improve road safety.

Intelligent transportation systems (ITS) have paved the way for opportunities in traf-

fic network monitoring, adaptive signalized intersections, optimized traffic networks

and predictive traffic analysis. This thesis aims to develop a platform for integrating

PTV VISSIM and MATLAB SIMULINK to design and analyze the flow of traffic in

a highway traffic network. As a case study, a 2-lane road network in Charlotte, North

Carolina was designed and simulated in PTV VISSIM which is a microscopic multi

modal traffic flow software. We model a non-signalized traffic network in VISSIM.

The math model and network dynamics were formulated and implemented in MAT-

LAB due to its mathematical prowess. From VISSIM, we take the inflow and outflow

rates data and send them to the controller in MATLAB through a VISSIM Com-

ponent Object Model (COM) interface. A COM-server was created in MATLAB to

merge and integrate the software. By employing an extremum seeking approach, an

optimal velocity is determined and sent back to VISSIM through the COM interface.

Extremum seeking controller is a non model based controller and hence is used in the

research due to limited knowledge of the system. The extremum seeking controller

was designed in MATLAB SIMULINK. Integration of VISSIM-MATLAB-SIMULINK

is done by the COM server. Numerical simulation demonstrates the effectiveness of

the platform for testing different traffic control approaches and optimizing flow.

Keywords: MATLAB-VISSIM integrated, traffic networks,Component Object

Model, Extremum Seeking Control
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CHAPTER 1: INTRODUCTION

Simulation modeling has long been recognized as a very useful tool for designing

upgrades to urban freeway systems. The simulation model allows the engineer to

forecast the effects of a planned freeway system change before it is introduced and

to determine the merits of competing models. Due to the increasing demands for

traffic, continuous maintenance and improvement of road traffic control systems are

essential. The preceding phase of such technology activities is the correct simulation.

Also, our day’s Smart Transportation Systems (ITS) concept requires advanced use

of computer technology.

Economic growth and rapid development have to lead to exponential growth in the

use of automobiles. We face an ever-growing problem of traffic congestion in large-

scale urban traffic networks due to this. Many traffic control strategies have been

tried and tested to reduce congestion and alleviate traffic jams [1].

Traffic jams cost US $87 billion in 2018 [2]. Different control strategies with different

traffic flow models have been developed for the management of traffic networks [3–9].

Among these efforts, connected automated vehicle (CAV) technologies have received

increasing attention recently [3, 9]. Recent studies have shown the positive impacts

of CAVs technology on fuel consumption, reduced travel time, and improved safety

[10–12]. However, for practical purposes, (i) no traffic network in the near future will

consist entirely of automated vehicles, and (ii) vehicles (even automated ones, but

especially the human-driven ones) will never behave entirely homogeneously.

Autonomous cars are looked upon in recent years to reduce traffic congestion due

to the reduced gap and high speed-movement. Hence, in recent years, the concept of

autonomous vehicles is growing fast. The two main differences between human-driven
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vehicles and autonomous vehicles in traffic networks are (i)congestion and (ii)capacity.

Much research has been done toward autonomous vehicles. Development in technol-

ogy has made communication much more accessible. Implementing this communica-

tion technology into cars paves the way for information sharing. Information sharing

between connected autonomous cars lead to more accurate predictions, making bet-

ter decisions, and taking appropriate actions in a short amount of time. All these

benefits lead to fewer safety distances and higher speeds. We can see the smooth flow

of traffic with higher capacity highways.

Traffic network operations in the future may be implicated by allowing wireless

communication between vehicles and the transportation infrastructure. Parameters

such as vehicle speed, position, traffic congestion, obstacles, stoppage time, vehicle

flow, etc. can be known by information sharing, which were earlier unknown or

estimated [13]. Connected, autonomous vehicles have the potential to impact traffic

networks [14,15], positively.

The topic of modeling and controlling the traffic network has been studied both

on the macroscopic and microscopic levels. Specifically, at the microscopic level, two

groups of approaches have recently been presented. The first group, models traffic

networks wherein human-driven vehicles are modeled and their behaviors are either

predetermined [16–18] or bounded [19,20]. Numerous distributed control approaches

have been proposed to address the traffic management for these microscopic models

[21]. On the other hand, the macroscopic models are typically formulated using a

conservation law and an equilibrium relation between density and flow, better known

as the fundamental diagram. While in a traffic network the flow-density relation is no

longer expected to be a real-valued number, recently the concept of the fundamental

macroscopic diagram (MFD) has been adopted to obtain an efficient and elegant

way for control of large-scale urban traffic networks from an aggregated point of

view [22–24]. For instance, in [22], an optimal perimeter control for a two-region
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urban city based on the MFD is proposed to regulate the exchanged traffic flows.

A mixed control strategy integrating perimeter control for urban roads and ramp

metering for freeways has also been presented in [23]. Additional urban traffic control

strategies based on the MFD have also been proposed in [1, 24–30]

Various traffic control algorithms and management strategies are found to be an

effective solution to the ever-increasing demand for road vehicles and manage rapid

growth in travel demand. However, to validate these models with real-life scenarios

is still a challenge researchers are working on. A direct and effective way to an-

alyze these control strategies is field experiments. However, field experiments are

time-consuming, expensive, and require a lot of effort and human resources. [31]

So, to validate these dynamic models, a real-life simulator platform consisting of a

MATLAB-VISSIM interface is developed in this research. This platform consists of

an interface between the real world simulator VISSIM and MATLAB SIMULINK to

implement control strategies. A COM server interface provided by VISSIM is used

to build this platform.

Vissim has powerful micro-simulation functions. However, the software is relatively

closed. [32] Vissim is a microscopic road traffic simulator that can be used for the

study and behavior testing of vehicles. Different vehicle classes like cars, trucks, buses,

bikes, trams, and also pedestrians can be simulated and tested in this software. Thus

a traffic network simulation can be analyzed in detail due to the accurate description

of the traffic network [33]. Vissim’s GUI sometimes does not offer dynamic manip-

ulations, so the user has to turn to something where he can access and manipulate

the objects during the simulation dynamically. This dynamic assignment can be done

through Vissim’s COM interface. The COM interface can communicate between dif-

ferent processes in between the software. Using this COM programming interface, the

parameters in Vissim, which we had initially been defined through the GUI, can be

manipulated by using programming. This programming can be done through several
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languages that are suited to handle COM objects like MATLAB, C++, Java, VB,

Python, etc.

This thesis aims to develop a platform that allows integration of VISSIM and

MATLAB software as the first step towards testing and validating intelligent traf-

fic management systems. To this end, we modeled a non-signalized traffic system

in VISSIM. Additionally, we developed an extremum seeking controller in Simulink

MATLAB. By connecting MATLAB and VISSIM and transferring the traffic states

as well as the control action through a COM interface, we were allowed to maximize

the throughput of the modeled traffic system.

This research talks about the macroscopic modeling tools that have been used

in this study for simulating managed lane-freeway networks. A simplified model of

the fundamental diagram is presented in Chapter 2. Then, this thesis discusses the

control techniques, optimization problem and the cost function that were used for

increasing the mobility of a homogeneous traffic network in Chapter 3. Chapter

4 illustrates the traffic network geometry modelling and their steps in detail while

the COM interface and the working of the integrated VISSIM-MATLAB-SIMULINK

platform is discussed in chapter 5. Simulation results are presented in Chapter 6 and

Chapter 7 concludes the paper by summarizing the results and listing future ideas

and work.



CHAPTER 2: DYNAMICS OF TRAFFIC SYSTEM

Modeling of the traffic network starts with the math model formulation and drafting

of the equations of motion for the system. This research deals with homogeneous

traffic networks. The homogeneous traffic networks consist of human driven vehicles

only. The system equations and the behaviour of the system is further discussed in

this chapter.

Consider a homogeneous traffic network shown in. Figure 2.1 where it consists of

multiple sub-networks or nodes. We characterize each sub-network i ∈ {1, 2, · · · , `}

by its density Ki and the flow Qi.

Figure 2.1: A S-sub-network linear transportation network with no intermediate
on/off-ramps, where Ki, Qi, ui, vi respectively presents the traffic density, flow, inflow
of vehicles and the velocity of vehicles . For each sub-network a fundamental diagram
can be derived which relates the flow within the sub-network to sub-network’s density
K

Density of sub-network i is updated according to the conservation law [34]. Specif-

ically,

K̇i = ui − wi (2.1)

where ui is the flow (number of vehicles) entering the lane from a different node, wi
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is the flow leaving to another sub-network.

Following the lane transmission model [35], the inter-flows ui and wi are dependent

on two intermediate quantities: the node demand and the sub-network supply. The

sub-network demand is the number of vehicles that wish to exit the sub-network i at

time t, and the supply is the number of vehicles that sub-network i can accept at time

T . Both demand and supplies are functions of the density Ki and can be computed

using a fundamental macroscopic diagram. Additionally, the average flow of a sub-

network is a function of its density and can also be computed using the fundamental

diagram.

Figure 2.2: Flow density diagram of the system

Figure 2.2 represents a schematic of a fundamental diagram for a homogeneous

sub-network i. We run a couple of simulations for a scenario in VISSIM to get the

flows for each density. By fitting a fourth-order polynomial curve on the data points

which are driven from VISSIM simulations, we can get the flow-density diagram. The

critical density Ki,Cr is the maximum number of vehicles on the road such that the

average velocity of the vehicles is equal to the free flow velocity. The capacity Ci is the

correspondent flow at the critical density. The MFD curve divides into two sections.

The left sections represent the uncongested state, wherein the average velocity of the
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road is equal to the free flow velocity (i.e., the slope of the curve represents the free-

flow velocity). The right section corresponds to the congested and KJ represents the

jam density where the average velocity of the traffic flow is zero.

In this research, to find out the relationship between the average flow of the lane

and its density, the fourth-order polynomial equation shows the continuous relation

between the mean flow rate of Q and the density in the cell K. Specifically,

Qi(Ki) = −4K4
i + 0.02K3

i − 2.5K2
i + 13Ki + 102 (2.2)



CHAPTER 3: CONTROL OF TRAFFIC SYSTEM

We now pose an optimization problem to determine the optimal velocity which

vehicles should have at the beginning of each segment such that the average flow of

all sub-networks is maximized. For a traffic network shown in Figure 2.1, we define

X = [K1, · · · , KS], and U = [U1, · · · , US]T.

To maximize the mobility of the system, we consider the average of the mean-flow

rate as the cost function. To this end, we defined an objective function that focuses

on maximizing the throughput by keeping the number of vehicles in each lane as close

as possible to their critical densities. To meet this goal, cost function J is defined as

min
U
J =

S∑
i=1

Qi(ki)− Ci (3.1)

where Xi, is the state of the sub-networks and Ui is the control inputs from the con-

troller and Qi is the mean-flow rate of lane i and Ci is the capacity of the subsection.

3.1 Extremum Seeking Controller

In this thesis, we employed the extremum seeking approach for solving the cost

function (3.1). The reason behind selecting this specific approach is that ES control

is a non-model-based real-time optimization approach that is suitable for systems

with unknown or limited knowledge of the optimal operating point. A conventional

ES scheme is illustrated in the context of the optimization of the throughput of a

traffic network. To determine the optimal control input of U∗i , the signal Ui is formed

by adding a sinusoidal perturbation Ai sin(Ωit) to Ūi, where Ūi is the estimated value

of the optimal operating flow rate.

The calculatedQi then passes through a high-pass filterGi,HF = s
s+ωi,H

, where ωi,H is
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Figure 3.1: Schematic of traffic optimization control.

the frequency for the high-pass filter. The output of the high-pass filter passes the low-

pass filter Gi,LF =
ωi,L

s+ωi,L
, where ωi,L is the frequency for low pass filter. The output

of the high pass filter is multiplied by the same perturbation signal, Ai sin(ωt− φ1),

where φi is a phase lag. The resulting signal passes through a low-pass filter, and

then an integrator and a new estimate of Ū〉 is produced in the direction of increasing

Qi (Figure 3.2).

Figure 3.2: Extremum Seeking Controller

Figure 3.3 [36] explains the working of an extremum seeking controller. From the
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graph we can see three operating conditions of the extremum seeking controller viz.

when the operating point is larger, equal and smaller than the extremum seeking

point.

Figure 3.3: Working of Extremum Seeking Controller

The extremum seeking controller moves up and down the graph multiplying the

two phase signals resulting in a signal with either a positive mean if the signals are

in phase with each other or with a negative mean if the two signals are out of phase.

This working of the extremum seeking controller enables us to reach an optimal point

which is the critical density point where the derivative is zero.



CHAPTER 4: MODEL OF THE TRAFFIC SYSTEM

Figure 4.1: Sample Vissim Model

The model of the traffic system was designed in a microscopic traffic simulation

software, PTV VISSIM (11.0). The model was set up in an urban setting in the city

of Charlotte, NC, USA. Figure 4.1 [37] below shows a sample road network designed

using the Vissim GUI. As a case study, a 4 node single non-signalized road link with

2 lanes traffic model was designed. Real, exact geometry and traffic parameters were

used to recreate this road traffic network. This exact modeling can be possible in

this software using background images or using the inbuilt map service. The width

of each lane was set to be 12ft, according to the NCDOT. The road network designed

was the North Tryon Street from JW Clay Boulevard to the intersection at East

Mallard Creek Church Road, as seen in figure 4.3. VISSIM offers two map providers,

viz. Bing Maps for an aerial view and Open Street view map provider Mapnik for

generating and designing the traffic network accurately and realistically. For this case

study, Mapnik was used to design the traffic network. The link was set to behave
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as an urban motorized road with free lane selection. A Wiedemann 74 car following

model was used for the car following behavior. The vehicle class to be studied were

only cars. Hence all other vehicle classes were blocked for the traffic network. This

model was used for all the tests and different control algorithms implemented to check

feasibility, control, road network management, traffic flow, and road safety.

Figure 4.2: Homogeneous Traffic Network

The modeling of the traffic network has to be done in the Vissim GUI, after which

it can be called into your desired software for use in COM programming. The step by

step details of the Vissim GUI and the various functions and attributes used to design

the road network geometry for this case study is explained ahead in this chapter.

This research deals with a multi-vehicle homogeneous traffic network. Human-driven

Figure 4.3: Traffic Network
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vehicles are considered in this research. A similar road network was designed for

analysis and optimization in the Vissim GUI. All the steps followed while designing,

and the Vissim interface and attributes are explained hence.

4.1 Graphical User Interface

Vissim offers an extensive graphical user interface (GUI) as seen in figure 4.4 [38]

which consists of a Network Editor, Network Objects sidebar, a quick view sidebar,

and a list menu to show and edit each object attribute data like vehicle inputs, desired

speeds, vehicle routes, reduced speed areas, etc. The network editor is where all the

Vissim attributes like vehicle inputs; signal heads, areas, etc. can be found and used

to design the traffic network. The network editor is where all the objects are placed

and edited to design the network. The background of the network editor can be plain

grey with no maps or inbuilt mapping options like Bing maps can be used to design

the traffic network. For this case study, the traffic network was designed using the

inbuilt maps provided by Vissim.

Figure 4.4: Vissim GUI
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4.2 Designing of Traffic Network

4.2.1 Links

Links will be forming up the roads for our traffic network. A link can be a single

lane link or have multiple lanes. It can be a motorized road or a gravel road or a

train/tram line. The types of vehicles allowed on the road and if it is a turning lane

or not can also be set. So, a lot of options can be selected and set while designing

the road links.

• To start the designing of the link, select the links button (shown by a road)

from the objects sidebar

Figure 4.5: Link in Network Objects

• Once that is selected, go to the desired starting point. To add a new link: Press

Ctrl + to right-click and drag the mouse from the starting point to the ending

point of the while holding down the right-click button

• The graphic screen shows a grey road link in the driving direction of the vehicles

• A dialog box opens up where you can edit three base parameters viz. Lanes,

Pedestrian Areas, Display and Others

• In lanes, the editable attributes are the number of lanes, a width of each lane,

the name of the link, its behavior, allowed/blocked vehicles on the link, and the

lane change policies.

• You can define the lane as a pedestrian area too b selecting that option.

• A 3D rendered lane can be designed by defining the start and end Z-offset values

and the thickness of the lane
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Figure 4.6: Link Dialog Box

• Link segment evaluation parameters and attributes, dynamic assignment, look

ahead distances, and other basic and advanced assumptions too can be set up

in the dialog box

• To generate the opposite direction, right-click inside the link and select generate

opposite direction and select the number of lanes

• To adjust the link according to the road geometry, VISSIM offers spline points

which can be generated by pressing Ctrl + right-clicking inside the link

• The spline point that we generated in the previous step now acts as a pin so

that the link curvature is adjusted only for the section downstream of that spline

point.

• Use spline points to adjust the curvature of links so that the traffic model is

accurate and has the same geometry
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4.2.2 Connectors

In VISSIM, vehicles cannot travel from one link to another just if there is a ge-

ometrical connection between the links. For this purpose, connectors are necessary.

Connectors join two road links and makes travelling between links possible. Link-

connector-link is the typical travel path. The steps to design and place a connector

are listed below.

• Select the links insert mode

Figure 4.7: Connector Dialog Box

• Pan to the end of the link and the start of the link you want to connect it to

• CTRL + right-click inside link and keep the mouse button pressed and drag

the mouse into link you wish to connect

• The connector dialog box opens on releasing the mouse button
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• For turning connectors, select the number of splines points

• Select the lanes you want to connect and hit okay

4.2.3 Vehicle Inputs

The next step used to design the road geometry and attributes in the research

are configuring the vehicle inputs. These inputs define which road link should have

motorized traffic travelling through them and the vehicle volumes for that link. Each

link can have a different vehicle volume and composition. Different vehicle volumes

for the same link can be defined based on time interval. Vehicles traveling on public

transport lines are modeled separately and must not be included here. In this research

we shall only be simulating human driven cars and the volume is 3000 vehicles/hour.

The steps used to model the vehicle inputs is explained below.

• Select the Vehicle Inputs attributes from the network objects sidebar as shown

in figure 4.8

Figure 4.8: Vehicle Inputs

• To place a vehicle input, Ctrl + right click on the link which adds a vehicle

input at the start of the link shown in black

• A list opens which allows you to select the vehicle flow volume (3000 veh/hr)

Different volume types can be set viz. Exact and Stochastic. In this research,

random volume fluctuations occur since the stochastic volume type was selected.

This means that vehicle inputs will have a random probability distribution pattern.
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4.2.4 Vehicle Routes

In this research, a single non signalized road section was designed as part of the

case study. However, for more complex traffic networks, an array of road sections

and connectors consisting of different turns and routes may be possible. For this

reason, it is necessary when modelling a traffic network to assign vehicle routes. If

vehicle routes are not assigned, the vehicles either follow a straight path or disappear

at the end of a link even with turning connectors present and connecting links at

different turns. Thus, at road branches, the vehicle path is defined by routes. Each

vehicle without a routing decision is assigned a path in VISSIM when it arrives at

a routing decision. Route proportions for all the routes are taken into consideration

when assigning paths to vehicles. Vehicles are neither generated, nor are they taken

out of the network at this point.

• To insert vehicle routes, from the network objects sidebar select the Vehicle

Routes (Static) mode as shown in figure 4.9

Figure 4.9: Vehicle Routes

• To add a new routing decision, Ctrl + right click on the starting point of the

link which creates a purple bar which signifies the starting point of the vehicle

routing decision

• Start moving the mouse along the routes you want to the final location and

click the left mouse button

• The route destination is defined and shown as a yellow band

• Similarly, add other route destination markers for the same link for the vehicles



19

• Double-clicking outside of the Vissim network exits the vehicle routing decision

for the particular link

4.2.5 Reduced Speed Areas

Since this research deals with a non-signalized traffic network with a single two

lane link, analysing congestion in the networks required an initialization criteria that

caused congestion in the network. The two approaches thought of to initialize conges-

tion were (i) Reduced Speed Areas and (ii) Desired speed decisions. Reduced speed

areas enable modelling speed reductions for selected vehicle classes for a selected du-

ration of time. In this research, a temporary speed reduction to simulate a block or

stop sign was used as an alternate strategy. At the end of sub-network 3, a reduced

speed area was set up for each lane for 450 seconds where the speed was set to be

3 mph or 5 kmph. This created a jam scenario so that we could analyse and test

the working of the extremum seeking controller and the platform. The steps used to

design and set up reduced speed decisions are explained below.

• To set up reduced speed areas, first select the Reduced Speed Area mode from

the network objects sidebar as shown in figure 4.10

Figure 4.10: Reduced Speed Areas

• To add a reduced speed area, Ctrl + Right click on the desired start point of

the area and drag the mouse for the desired length which pressing down the

right click mouse button

• The dimensions of the reduced speed area are indicated by a yellow polygon

• Once the dialog box opens, for each relevant vehicle class assign speed distribu-

tion and deceleration
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4.2.6 Right of Way/Conflict Areas

To model non-signalized road networks, conflict areas are needed to set priority

right of way decisions for vehicles. Conflict areas are widely used for turning vehicle

right of way decisions. They are preferred way to model non-signlazied intersections.

The method to model this is explained below.

• All potential conflict areas are displayed as yellow (passive) once the conflict

areas button is selected from the network objects sidebar as shown in figure

4.11

Figure 4.11: Conflict Areas

• Right-click on the conflict area opens the context menu where select the desired

right of way such that the area is marked as green and the other one as red

• For branching, to avoiding vehicle overlap when queuing select set status to

undermined

4.2.7 Desired Speed Decisions

Desired speed decisions are basically speed limits. They are used to define vehicle

speeds at certain user defined points for desired time intervals. Desired speed decisions

act like variable speed limits based on the control instructions from the extremum

seeking controller and hence are used extensively in this research. The desired speed

decisions are set up at every 250m for the road link in the geometry for each lane.

There are 4 desired speeds that will be changed dynamically in between simulations.

There are a total of 6 desired speed decisions. Initially to create congestion and attain

jam density the speed decisions at the outflow of node 3 are set to be 3 mph/5kmph

for the first 450 seconds. The controller kicks in at each 225 seconds and changes these
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velocities dynamically depending on the traffic scenario condition at that moment.

The steps to set up the speed limits is explained below.

• From the network objects sidebar, select the desired speed decisions button as

shown in figure 4.12

Figure 4.12: Desired Speed Decisions

• Ctrl + right click on the road link and the specific lane you wish to set the

desired speed limit for

• A yellow bar signifies that a desired speed decision has been set

• Now, set the position where you want the desired speed decision which is at

250m for this research

• Add the vehicle classes and their respective speed limits by clicking add

• Similarly repeat these steps and set up desired speed decisions for every lane of

each sub-network of the entire road link

4.2.8 Data Collection Points

Datapoint collection measurements are assigned points in the VISSIM road network

where the user wishes to collect data. This research utilizes this functionality exten-

sively to collect and analyse data and give appropriate control instructions. There are

various attributes that can be collected like the queue delays, number of vehicles in

the network, occupancy rate, speeds (arithmetic and harmonic averages) and acceler-

ation. In this thesis, the queue delays and the number of vehicles are collected every

225 seconds. This data is analysed and control instructions are given to improve flow

and reduce congestion. The steps used to setup the data collection measurements are

explained below.
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• Select the Data Collection Measurement button from the network objects side-

bar as shown in figure 4.13

Figure 4.13: Data Collection Points

• Ctrl + right click on the link and lane where you want to collect data

• A brown bar denotes that a data collection point has been set up at that position

and a list opens showing the created data collection point

• Like the desired speed decisions, select the position where you would like the

data collection point to be at which for this research is at every 250m

• Create data collection points at the entry and exit of each node

• By default the data collection point collects all possible data and to refine what

data should be collected, select the attribute selection button from the list and

unselect all the data not needed to be collected for the simulation

• Once the data collection points are set up, define them in the data collection

measurements and then configure them to be collected at every 225 seconds

• Defining data collection points can be done through evaluation, measurement

definition, data collection measurement and configuration can be done by eval-

uation, configuration

• Until the above two steps are done, the data collection points will not collect

data

• Once the data collection points are set up, results of the data collection points

can be further filtered to just show the required data
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In this thesis we are collecting only number of vehicles and the queue delays results

from the data collection points measurements. The number of vehicles entering and

exiting the node are used to calculate the flow of that node while the queue delays

measurements are used to define a condition for the controller to run. The controller

only exports new speed limits if the queue delay is over 5 seconds. If the queue delay

is less than 5 seconds the system keeps running signifying that there is no congestion

in the network.

4.2.9 Displaying and Analysing Results

VISSIM offers a data analysis package which is used for post processing and analysis

of results. In this thesis, we are using this module of VISSIM to validate our platform

and see if the controller is able to reduce congestion in the road network. After each

simulation, the data collection results and the link collection results are plotted as

a line graph to see how the densities, speeds and the flows fluctuates after every

simulation time interval. These results are discussed in brief in Section 6. The steps

to display the results are listed and explained below.

• After the simulation is complete, go to the data collection measurements list

and select the data to be graphed

• Right click the data and select "plot data for selected attributes"

• A graphical window will open showing bar graphs of the selected attribute

• Change the graph parameters to desired values and representation

4.2.10 Simulation

After performing all the steps above, the network is ready for simulation. VISSIM

offers single step and continuous simulation options. This thesis utilizes the contin-

uous simulation with breaks at every 225 seconds when the network is analysed. To

just get data and perform analysis when the graphical representation of the states of
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the system is not required, VISSIM offers a quick mode simulation which suspends

the updating of the graphic network window and the simulation runs quicker. For

this thesis we do not use the quick mode as we are interested in the visual state of

the system too. The steps to run the simulation are explained below.

• To run the simulation and set up the parameters for the simulation like simula-

tion time, step time and random seed parameters, select simulation, parameters

and input the desired attribute values

• Set the simulation break times

• Save the network file

• Click on the RUN CONTINUOUS button in the main toolbar.

The simulation will run for the first 225 seconds and break after which on pressing

the RUN CONTINUOUS button again, the simulation will start. In this thesis, these

parameters are set through the COM server. The detailed working of the COM server

and how the integrated platform works is explained further in Chapter 5



CHAPTER 5: PTV MODELLING AND CONNECTING TO MATLAB

Vissim is microscopic road traffic simulator which can be used for the study and

behaviour testing of vehicles. Different vehicle classes like cars, trucks, buses, bikes,

trams and also pedestrians can be simulated and tested in this software. Thus a

traffic network simulation can be analysed in detail due to the accurate description of

the traffic network [33]. The road network geometry was designed and developed in

Vissim’s user friendly and easy to understand graphical user interface (GUI). However,

Vissim’s GUI sometimes does not offer dynamic manipulations so the user has to turn

to something where he can access and manipulate the objects during the simulation

dynamically. This dynamic assignment can be done through Vissim’s COM interface.

The COM interface can communicate between different processes in between the

software. Using this COM programming interface, the parameters in Vissim which we

had originally defined through the GUI can be manipulated by using programming.

This programming can be done through a number of languages that are suited to

handle COM objects like Matlab,C++,Java,VB,Python, etc.

5.1 COM Interface

In this research, we have used MATLAB to program GUI parameters and manipu-

late them dynamically. Parameters that are aimed to be changed dynamically in this

research are the desired speeds, in flows or vehicle inputs at each link and data col-

lection parameters and collection points. For this, a road network was first designed

in the Vissim GUI using the integrated maps that it offers. To do this dynamically,

a component object (COM) server was set up in MATLAB and all commands were

passed through this interface to VISSIM. Using Matlab programming language, a
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COM client i.e. an ActiveX server was created.

A strict object hierarchy structure are followed by the Vissim COM programming

and it consists of two kinds of object types [33] viz. collections (array,lists) and

containers. Objects are linked to one another and addition or removal of objects

is only possible in the container due to which this distinction is necessary [38]. In

the figure below a hierarchical structure of the VISSIM COM object is shown. The

interface of objects are always represented by an ’I’. The head is always the Vissim

object which is followed by different interfaces and objects as seen in figure 5.1.

Figure 5.1: Vissim COM Hierarchy

These interfaces can be acessed through the Vissim help within the software which

can be found in Help > Vissim-COM > IVissim as shown in figure 5.2.

Also, for more help with the COM object methods, the Matlab command window

can be used. For example, to check the object methods created via the Vissim-COM

server, type "vis.methods" in the command window. Matlab will provide you with a

list of the methods that can be used in the command window.

This closed loop will continue running till we have reached critical velocity which

will give us maximum flow or free flow. The step by step procedure followed while
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Figure 5.2: Vissim COM Hierarchy

integrating Matlab and Vissim is explained hencefurther.

5.2 Data Transfer and Communication between Packages

There is data and control signal command transfer between three different software

in this platform as seen in figure 5.3. Each communication link acts as a port for data

and command transfer between VISSIM and MATLAB.

Figure 5.3: Data Transfer between Vissim-COM-Controller

5.2.1 VISSIM-To-COM Link

The simulation is designed and set up and simulation is started using the COM

interface. A time step of 1 second is used to simulate the network for 2475 seconds.
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The vehicle inflows, outflows and density data is collected at each node of the road

network. This data in the form of a list is saved and exported to the COM server

through the data collection measurement interface at each time step. The ItemByKey

syntax is used to get the flows for each data collection point. The number of vehicles

passing each data collection point are recorder by VISSIM and saved in the list. This

list can be accessed in MATLAB using:

DC = vis.Net.DataCollectionMeasurements.ItemByKey(m);

NoVeh= DC.get( ’AttValue’,’Vehs(Current,Last,All)’);

Once the inflow and outflow are in MATLAB, the density is further calculated by

using equation 2.1 in MATLAB. These calculated densities are stored in the MATLAB

workspace which will be further exported to the controller in SIMULINK.

5.2.2 COM-To-Controller Link

The density data saved in the workspace is processed and conditioned into a time-

series that is readable by the traffic controller and exported to it. These attribute

values are imported into SIMULINK using inbuilt "From Workspace" blocks which

import the densities for each time step. These go through the fundamental diagram

and eventually to the controller. The controller gives the optimal values as discussed

in section 3. The controller is designed in SIMULINK so the data transfer between

MATLAB workspace and SIMULINK goes smoothly without any discrepancies or

latency.

5.2.3 Controller-To-COM Link

The controller calculates the optimal flows and velocities according to the traffic

scenario as explained above. These new attribute values are then sent to the COM

interface i.e. MATLAB workspace using predefined SIMULINK blocks again and

those variables are saved in the MATLAB workspace. Here the "To Workspace"

block is used to transmit the data generated by the controller.
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5.2.4 COM-To-VISSIM Link

The COM server i.e. MATLAB now reconditions the data again in a format that is

readable by VISSIM and transfers the data using predefined COM objects using the

"set.AttValue" method as shown below using MATLAB script. Here, our attribute

is velocity and this is set using the desired speed decisions method in VISSIM. This

method is under the DesSpeedDecision interface.

desiredspeed=vnet.DesSpeedDecisions; speed=desiredspeed.ItemByKey(w); speed.set(’AttValue’,’DesSpeedDistr(10)’,vsimspeed(w,j));

Since we are just dealing with cars, the results for only cars’ vehicle class (10) are

set and exported throughout the simulation.

5.3 Vissim-COM Server Creation

We start the programming by the creation of the ActiveX server. To do this we

need to start MATLAB and create a new script file(’.m’ extension). A new network

editor will open which is where the programming will be done. Start by clearing

the command window, clearing the workspace variables and their values and closing

all the open MATLAB windows. This can be done by using the following three

commands:

clc;

clear all;

close all;

We want MATLAB to pass only single dimension arrays to Vissim. To do this use

the feature which defines the attribute for dimensions of array and set it to one. This

can be done by using the following command:

feature=(’COM_SafeArraySingleDim’,1);

Next, create the COM server using the ’actxserver’ command in MATLAB. This

can be done using the following command:

vsim = actxserver(’Vissim.Vissim’);
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If there are multiple versions of Vissim installed on your device, you can call out

the particular version on Vissim you would like to use. This can be done by adding

the version number like shown below for version 11.

For Vissim version 11:

vsim = actxserver(’VISSIM.vissim.11’);

Here, ’vsim’ is the variable for the ActiveX server which we will be using further

throughout the programming when we have to output to Vissim through MATLAB

using the COM-server. actxserver is the command for calling the ActiveX feature

and Vissim.Vissim is the syntax for calling Vissim. 11 is the version of Vissim you

would like to use.

5.4 Vissim Network and Layout

Creation of the Vissim-COM server is done and the next step is to load your net-

work layout into the MATLAB workspace. We cannot create the network objects and

geometry through the COM programming. This has to be done using Vissim’s graph-

ical user interface (GUI). Create the geometry and save it in your defined workspace

which is the same as where your Matlab file is being saved to reduce further complica-

tion. If you are unable to save it in the same location, alternate syntax are provided

further to access those files. There should be able to identify two files associated with

your Vissim network. A project file with the .inpx extension and a layout file with a

.layx extension.

Now, incorporate them in the COM program code using predefined commands.

To load the network use the command "LoadNet and to load the layout use the

’LoadLayout’ method. The syntax to do this is shown below:

PathCOM = cd;

Here, cd means current directory. You could also use ’pwd’ which means it shows

the access path of the current directory and use that path displayed in the command

window.
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Netfile= fullfile(PathCOM, ’COMsetup.inpx’);

flag_read_additionally = false;

If you would like to also access and read the network elements then set the above

to true.

vsim.LoadNet(Netfile, flag_read_additionally);

Layfile = fullfile(PathCOM, ’COMsetup.layx’);

vsim.LoadLayout(Layfile);

Alternately, you could also define the path, the file name and use the following

syntax:

vsim.LoadNet(’D:\VissimCOM\COMsetup.inpx’);

vsim.LoadNet(’D:\VissimCOM\COMsetup.layx’);

5.5 Simulation Settings

In order for our simulation to run for a specific period of time and with a desired

step time, we need to set these parameters in our COM program. We can run the

simulation for a single time step or run it continuously. We can also break the break

at a certain time and set new parameters accordingly. There are again different ways

to do this as shown below:

period_time = 3600;

step_time = 10;

random_seed = 42;

Variation 1:

sim = vsim.Simulation;

sim.set(’AttValue’,’SimPeriod’,period_time);

sim.set(’AttValue’,’SimPeriod’,step_time);

sim.set(’AttValue’,’RandSeed’,random_seed);

Variation 2:

set(Vissim.Simulation, ’AttValue’, ’SimPeriod’, period_time);
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set(Vissim.Simulation, ’AttValue’, ’SimPeriod’, step_time);

set(Vissim.Simulation, ’AttValue’, ’RandSeed’, random_seed);

5.6 Defining and Setting the Network Objects

Network objects and attributes can defined through COM programming and set

to desired values. First, we define a network object that will be used to set or get

various attributes. This can be done using the command:

netob=vsim.Net;

Now we define the needed attributes. Suppose, you want to set vehicle inputs for

different links. You start by defining the vehicle input number, selecting the new

volume and setting it to that link using the following syntax:

vin=netob.VehicleInputs;

For link 1:

Set the vehicle input number:

vin_no=1;

Setting the new volume:

vol_1=1500;

vin_1 = vin.ItemByKey(vin_no);

vin_1.set(’AttValue’,’Volume(1),vol_1’);

For link 2:

Set the vehicle input number:

vin_no=2;

Setting the new volume:

vol_2=2500;

vin_2 = vin.ItemByKey(vin_no);

vin_2.set(’AttValue’,’Volume(1),vol_2’);

If you would like to have different volumes for the same link but after a set time

interval, first define time intervals in the Vissim GUI and then do the same process
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as said above but with a change in the volume numbers i.e. Volume(1), Volume(2),

Volume(3), ... and so on. So, if you have 4 time intervals each of 100 seconds (0-

100,101-200,201-300,301-400) and wish to set different volumes for each, it can be

done using the syntax shown below.

vin_no=1;

For 0-100:

Setting the new volume:

vol_1=1500;

vin_1 = vin.ItemByKey(vin_no);

vin_1.set(’AttValue’,’Volume(1),vol_1’);

For 101-200:

Setting the new volume:

vol_2=2500;

vin_2 = vin.ItemByKey(vin_no);

vin_2.set(’AttValue’,’Volume(2),vol_2’);

For 201-300:

Setting the new volume:

vol_2=3500;

vin_3 = vin.ItemByKey(vin_no);

vin_3.set(’AttValue’,’Volume(3),vol_3’);

For 301-400:

Setting the new volume:

vol_4=4500;

vin_4 = vin.ItemByKey(vin_no);

vin_4.set(’AttValue’,’Volume(4),vol_4’);

So, Volume(1) basically means the first defined time interval. However, you can set

different volumes for different time intervals only if continuous is deactivated. If it is
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activated, the above is not possible and you will get an error saying that volume is

not subject to change. Hence, if you wish to have varying volumes for different time

intervals for a single link, continuous has to be deactivated.

Similarly, you can change desired speeds or any other attribute you wish to change.

The command identifier for each attribute which can be changed can be found in

the help section. For example, for vehicle inputs, it can be found in Help>Vissim-

COM>IVehicleInput

5.7 Simulation

We now run the simulation using for loops or different syntax’s. It is preferable

to eliminate for loops as they require more computation time and memory.However,

both the syntax’s are explained below. We run the simulation for the set desired

period time, random seed and step time. It is possible to break the simulation at

a certain time to change parameters dynamically in between a simulation using this

feature of the COM programming. This can be done using the following syntax:

for i=0:(period_time*step_time)

sim.RunSingleStep;

end

Alternately,

vsim.Simulation.RunSingleStep

To run a simulation continuously,

set(vsim.Simulation, ’AttValue’, ’SimPeriod’, period_time);

break = 200;

set(vsim.Simulation, ’AttValue’, ’SimBreakAt’, break);

To set the maximum speed of the simulation:

set(vsim.Simulation, ’AttValue’, ’UseMaxSimSpeed’, true);

Hint: to change the speed use:

set(vsim.Simulation, ’AttValue’, ’SimSpeed’, 10);
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Where, 10 = 10 Sim. sec./s

Run the simulation continuously:

vsim.Simulation.RunContinuous;

To stop the simulation:

vsim.Simulation.Stop;

5.8 Datapoint Collection and Accessing Results

Vissim offers a variety of data collection results that can be collected any user

defined location or coordinate. Different parameters like vehicle average speeds, queue

length, occupancy rate, queue delays, travel times, etc. can be calculated and used

for post-processing. Once the datapoints are defined and set, the results are exported

in a attribute file (.att) which can be accessed through different software like excel

and even in MATLAB. We first define what parameters we would like to obtain by

programming it in our editor and we can use it in our for loop for optimization

problems. For example, in our case study we could collect densities of road sections

and if it is above a certain value and there is congestion in the road network, we could

reduce the flow or increase the desired speed decisions dynamically at every time step

if required using if else statements. The syntax to accessing datapoints and collecting

required data is shown below:

For number of vehicles:

datapoint.get(’AttValue’,Vehs(Current,Last,All)’)

For speed:

datapoint.get(’AttValue’,Speed(Current,Last,All)’)

Here, AttValue means the attribute value we would like to get, Vehs,Speed being

the attributes we want to obtain for the Current simulation, Last time step and for

All type of vehicles. We can change this by changing the syntax according to our

needs. For example for the current simulation, average of all time steps and for cars,

the syntax would be:
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For number of Cars in the network:

datapoint.get(’AttValue’,Vehs(Current,Avg,10)’)

Where 10 is the vehicle class for cars and avg means the average of all time steps.

5.9 Saving the Files and Releasing the Server

Once the simulation is complete, MATLAB can be used to save the changes made

to the network and layout. Once the files are saved, we can release the COM server

which will also close the Vissim GUI and the simulation will be over. This can be

done using the following syntax:

To save the network and layout:

Netfile= fullfile(PathCOM, ’COMsetup.inpx’);

vsim.SaveNetAs(Netfile)

Layfile = fullfile(PathCOM, ’COMsetup.layx’);

vsim.SaveLayout(Layfile)

To release and end Vissim:

vsim.release

This brings an end to the Vissim-COM program. As mentioned earlier, the Vissim-

COM is beneficial in changing required parameters dynamically. However, you cannot

change the read-only parameters in between the simulation or once the simulation

has begun. You can only change parameters which are already programmed in to be

changed at stipulated times where there is a break in simulation, at the beginning or

at the end of the simulation.



CHAPTER 6: A CASE STUDY

To verify the performance of the developed platform, we designed a case study.

For this case study, a vehicle input of 3000 vehicles per hour was initially set for the

road network. Also, the vehicles are travelling from west to east. The road network

is discretized into 4 nodes and data collection points are set up at the start and end

of each road to collect the number the vehicles. For this paper, we shall be analyzing

node 2 and node 3 of the traffic network. The simulation was set to run for 2475

seconds with step time 1 sec and a random seed of 42. We break the simulation at

each 225 seconds to study the traffic scenario for that time period. Data collection

points at the entry and exit to each node collect data after each break for every 15

seconds. The data being collected is the number of vehicles passing the data collection

point. We also evaluate every link for its density, speed and volume of cars at each

node using the link evaluation feature of VISSIM.

In this case study, a non signalized road network is designed as mentioned in section

4. A jam scenario is created by introducing a block for the first break. The controller

kicks in and analyses the jam using the queue delay results collected at the end of each

225 seconds. If the queue delay is more than 5 seconds for any node, the controller

switches on, analyses the traffic scenario for each node and suggests a new optimal

velocity and flow for each node. The system is in a state of congestion for the first and

second break after which from the new speeds limits, the network is optimized.The

simulation was run for 2475 seconds and the results for the second node and third

node were graphed. The results are displayed below. The results are shown for each

node. First we display results for node 2 and then for node 3. Speed, flow, and

density graphs are shown at each time step and the characteristics are analysed in
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detail.

6.1 Traffic Scenarios

The traffic networks were setup to simulate a jam in the initial phases of the

simulation to test the extremum seeking controller working and check whether the

traffic controller is maximizing flow earlier than expected. Figure 6.1 depicts the

traffic scenario at 250 seconds. As seen from the figure, there is congestion in both

the nodes that we are aiming to analyse.

Figure 6.1: Comparison of Traffic Network Scenarios at 450 seconds

Further moving ahead in the simulation, figure 6.2 compares the traffic scenario

for the baseline (without controller) and optimized (working controller) cases. This

concludes that the extremum seeking controller is working in conjunction with the

real time traffic model and maximizing the flow rate.
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Figure 6.2: Comparison of Traffic Network Scenarios at 450 seconds

6.2 Node 2 Results

Density, flow and velocity for the first node at every 75 seconds are displayed below

for each scenario viz. with and without the controlled speed limits. As seen, when we

use the traffic controller, the simulation reached optimal free flow quicker. Here, the

graphs are limited to 900 seconds i.e for 4 breaks after which the simulation stabilizes.

Figure 6.3: Node 2: Speed vs. Time Without Controller

Shown above are the speed changes with time from the second node for both the

baseline and optimized case. As seen from the graphs, the vehicles velocity start at

70 km/hr, stay constant and then reduce over time to about 5 km/hr by 100 seconds

for both the cases. These remain same for different amount of time for the two cases.
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Figure 6.4: Node 2: Speed vs. Time With Controller

For the baseline case with no controller, the speeds remain at 5 km/hr for 450 seconds

which is the initialization condition for creating the jam. After this the speeds start

increasing and attain maximum free flow velocity for the road network. However, for

the optimized case, the controller kicks in at 225 seconds due to the network state

feedback from VISSIM and sets new speeds to increase traffic flow. As seen from

the graphs, the speeds increase to 40 km/hr based on the controller and remain so

until the next break where data transfer takes places i.e. at 450 seconds. Again the

controller gives new outputs depending on the states of the system and increases the

velocity further to reach optimal velocity earlier than the baseline case.

Figure 6.5: Node 2: Volume vs. Time Without Controller

Figure 6.6: Node 2: Volume vs. Time With Controller

A similar trend as the speeds is shown above by the volume changes with time
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graphs. For both the baseline and the optimized case, the system initializes, reaches

maximum volume when the speeds are higher and similarly drops down to a couple

hundred vehicles per hour by the end of 75 seconds. This volume remains constant

for up to 450 seconds too for the baseline case after which the system starts attaining

free flow. However, again for the optimized case, after the controller gives control

instructions, the system volume start increasing earlier than that of the baseline case.

Figure 6.7: Node 2: Density vs. Time Without Controller

Figure 6.8: Node 2: Density vs. Time With Controller

The density graphs depicted in the figures above, show the density fluctuations

over time. The densities up to 225 seconds before the controller kicks in are the same

but once the controller starts when the queue delays reach higher levels, the densities

for the optimized case start reducing and the system starts its path towards attaining

free flow. The densities reach a maximum of 292 vehicles per kilometer (veh/km)

which is the jam density at 135 seconds and reduce to 210 veh/km by the end of 225

seconds. The densities remain at 210 veh/km for 450 seconds and 350 seconds for the

baseline and optimized cases respectfully. The densities reach critical density or free

flow density quicker for the optimized case.
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Figure 6.9: Node 2: Queue Delays

The queue delay results are shown in figure 6.9. As seen from the graph, for

the second node, the blue line graph denotes the queue delay times for the baseline

case without the controller whereas the red line graph denotes the queue delay times

for the optimized case with the controller. This graph shows us clearly that the

optimized case queue delays were significantly lower than than the baseline case. For

the optimized case, the maximum delay time value was around 250 seconds whereas

for the baseline case the maximum delay time was around 350 seconds. That is almost

a difference of a 100 seconds. Also, the delay times for the optimized case dropped to

near zero by 465 seconds whereas the baseline case took around 570 seconds to drop

to a near zero value. This graph shows us that the integrated VISSIM-MATLAB

platform has managed to integrate our controller with the traffic model in VISSIM

and through its controlled speed decisions, has lowered queue delays and eventually

reduced congestion and increased flow.
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6.3 Node 3 Results

Similarly like for node 2, density, flow and velocity for the second node at every 75

seconds are displayed below for each scenario viz. with and without the controlled

speed limits. From the graphs, when we use the traffic controller, the simulation

reached optimal free flow quicker. Here, the graphs are limited to 900 seconds i.e for

4 breaks after which the simulation stabilizes. A prominent difference between the

baseline and optimized cases are seen in the results for node 3. This is due to the

vehicles exiting the second node at higher speeds set by the controller than for the

first node.

Figure 6.10: Node 3: Speed vs. Time Without Controller

Figure 6.11: Node 3: Speed vs. Time With Controller

Shown above are the speed changes with time from the third node for both the

baseline and optimized case. As seen from the graphs, the vehicles velocity start at

80 km/hr, stay constant and then reduce over time to about 5 km/hr by 60 seconds

for both the cases. These remain same for different amount of time for the two cases.

For the baseline case with no controller, the speeds remain at 5 km/hr for 400 seconds

which is the initialization condition for creating the jam. After this the speeds start
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increasing and attain maximum free flow velocity for the road network. However, for

the optimized case, the controller kicks in at 225 seconds due to the network state

feedback from VISSIM and sets new speeds to increase traffic flow. As seen from

the graphs, the speeds increase to 60 km/hr based on the controller and remain so

until the next break where data transfer takes places i.e. at 450 seconds. Again the

controller gives new outputs depending on the states of the system and increases the

velocity further to reach optimal velocity earlier than the baseline case.

Figure 6.12: Node 3: Volume vs. Time Without Controller

Figure 6.13: Node 3: Volume vs. Time With Controller

A similar trend as the speeds is shown above by the volume changes with time

graphs. For both the baseline and the optimized case, the system initializes, reaches

maximum volume when the speeds are higher and similarly drops down to a couple

hundred vehicles per hour by the end of 60 seconds. This volume remains constant

for up to 400 seconds for the baseline case after which the system starts attaining

free flow. However, again for the optimized case, after the controller gives control

instructions, the system volume start increasing earlier (at about 300 seconds) than

that of the baseline case.
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Figure 6.14: Node 3: Density vs. Time Without Controller

Figure 6.15: Node 3: Density vs. Time With Controller

The density graphs depicted in the figures 6.14 and 6.15, show the density fluctua-

tions over time. The densities up to 300 seconds are the same but once the controller

starts when the queue delays reach higher levels, the densities for the optimized case

start reducing and the system starts its path towards attaining free flow. The densi-

ties reach a maximum of 200 vehicles per kilometer (veh/km) which is the jam density

at 100 seconds and reduce to 50 veh/km by the end of 375 seconds. The densities

remain at 200 veh/km for 400 seconds and 300 seconds for the baseline and optimized

cases respectfully. The densities reach critical density or free flow density quicker for

the optimized case.

The queue delay results are shown in figure 6.16. As seen from the graph, similarly

like node 2 for node 3 too, the blue line graph denotes the queue delay times for the

baseline case without the controller whereas the red line graph denotes the queue

delay times for the optimized case with the controller. This graph in figure 6.16 too

shows us clearly that the optimized case queue delays were significantly lower than

than the baseline case. For the optimized case, the maximum delay time value was

around 250 seconds whereas for the baseline case the maximum delay time was around
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Figure 6.16: Node 3: Queue Delays

350 seconds. That is almost a difference of a 100 seconds. Also, the delay times for

the optimized case dropped to near zero by 465 seconds whereas the baseline case

took around 570 seconds to drop to a near zero value. This graph shows us that the

integrated VISSIM-MATLAB platform has managed to integrate our controller with

the traffic model in VISSIM and through its controlled speed decisions, has lowered

queue delays and eventually reduced congestion and increased flow.



CHAPTER 7: CONCLUSION AND FUTURE WORK

This thesis is focused on developing a platform between VISSIM and MATLAB to

employ different types of traffic control strategies. The math model and dynamics

of the system in Chapter 2 focused on the equations of motion of the system and

this model was successfully developed, designed and tuned in MATLAB. The real

world traffic model was designed in PTV VISSIM such that exact geometry and traffic

conditions were replicated. Microsoft developed an idea of a binary interface standard

for software components which is known as the component object model (COM).

Inter-process communication object creation is possible using a COM. A component

object model (COM) server was created in MATLAB called ActiveX and was used

as a virtual port between the real world testing software and our controller model.

This virtual port or COM integrated MATLAB-VISSIM-SIMULINK to validate our

control techniques and check for data and control command transfer between software.

In particular, in this thesis, we modeled a non-signalized traffic system in VISSIM. To

maximize the throughput of a non-signalized traffic network, an extremum seeking

controller is developed. An extremum seeking approach is used in this research as the

extremum seeking controller is a non model based controller and due to the limited

knowledge of the system states. By using COM programming, we were able to transfer

the flow rate between different sub networks from VISSIM to MATLAB. Knowing

the current state of the traffic network, an optimal velocity is generated in MATLAB

and transferred to VISSIM. The case study demonstrated that the integration was

successful and shows that the controller is optimizing the flow of traffic effectively

and the data and control signal transfer between VISSIM-MATLAB-CONTROLLER

is smooth and without any discrepancies and latency’s.
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In the future, work towards the development of a managed lane highway with

managed lane changes and variable speed limits is underway. A heterogeneous traffic

network consisting of connected autonomous vehicle (CAV) and human driven vehi-

cles is being designed in VISSIM and the dynamics and equations of motion of the

system are being formulated. Also, a plan of simulating for a more complex road

geometry with more number of lanes, signalized intersections and heterogeneous traf-

fic is thought of. Different control strategies including model predictive control are

thought to be implemented to control various different aspects of the road network.

Different reasons for congestion will be worked on and optimized using this platform.

This platform will form a base in implementing control strategies for traffic models.

Hence a collaboration of control engineering and transportation engineering will pave

way to intelligent transportation systems (ITS). ITS will make room for connected

autonomous vehicles (CAVs) and hence more effective travel, added safety, lesser fuel

consumption, lower travel times will be achievable. Ultimately the cost to the country

will reduce. A model predictive control technique is planned to be implemented to

predict possible outcomes and reduce congestion.
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