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ABSTRACT 

 

 

Daidai Shen.  Study of high-skill manufacturing in the space economy: Understanding 

the logic of network and knowledge diffusion through its cities (Under the direction of 

DR. Jean-Claude Thill) 

 

 

 The study of city relations and the concept of network analysis have been a major 

focus in urban and economic geography for decades. Yet, we are still facing many 

contemporary research challenges on questions regarding the network structures defined 

by theoretical economic rationale and their implications in the outcomes of knowledge 

diffusion. In particular, the ever-changing high-tech manufacturing activities continue to 

challenge the deepening of our understanding of current theories and to advance new 

theoretical frameworks. Therefore, this dissertation pursues three objectives: the first is to 

contribute to empirically validate the theoretical conjecture on the notion of city network 

with consideration of economic rationale. The second is to empirically measure the 

advantages cities achieve from networking behavior by building a conceptual framework 

with related schools of thought on innovation and knowledge creation. The third is to 

advance the new theory of location choice in the era of knowledge-based economy. The 

main conclusions are three-fold: first, we find the structure of the high-tech city network is 

consistent with both the complementarity network and the synergy network with a hybrid 

national core-periphery structure. Second, we find that knowledge diffusion along the 

organizational network has significant impacts on both innovation and production. 

However, the effects and strengths are strikingly different for the two high-tech sectors 

under study. Third, our findings are consistent with the hypothesis that human capital or 

talent has become the primary determinant of location choice of high-skilled multinational 
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corporations in a knowledge-intensive economy, thus contributing to the advancement of 

a new location choice theory.     
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CHAPTER 1 : INTRODUCTION 

 

 

The fundamental idea underlying this dissertation research is that the evolution of high-

tech manufacturing activities continues to challenge the deepening of our understanding of current 

theories and to advance new theoretical frameworks. Confronted with complex and ever-changing 

realities, the different lines of scientific research developed in the past provide rich perspectives 

for us to interpret phenomena and develop new theoretical frameworks. This research builds on an 

extensive body of past research to explain the contemporary high-tech manufacturing activities 

along three intersecting directions. The first step of research contributes to corroborate the 

theoretical conjecture regarding city networks based on the economic foundational principles, 

through empirical validation. The second step delves into quantifying the relative advantages cities 

achieve from a networking behavior by building a conceptual framework with related schools of 

thought on innovation and knowledge creation. In the third, we resurface with new insights on 

knowledge creation by advancing the new theory of location choice in the era of knowledge based 

economy (as shown in the Fig 1.1).  
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Figure 1.1 Flowchart of research design 

 

Before proceeding to our analysis, it may be useful to make a brief observation on the 

landscape change of high-tech manufacturing activities over the past decades. In search for 

effectiveness and economies of scale, high-tech corporations have organized different functions in 

separate firms, each with a specific competence, all linked in supply chains through the exchange 

of material and information. Some companies restructured themselves to focus on “core 

competence” while out-sourcing all of their production activities; on the other hand, other 

companies continue with a wide range of different businesses under one corporate roof and 

continue to exhibit vertical structures (Berger 2013). These transformations not only have 

economic consequences, but also bring about the spatial consequences of those firm behaviors.    

Meanwhile, scholars of the economy have evolved their views and often view the economy 

as a system of interactions among individuals, firms and institutions. In this vein, the concepts of 

network and networking have become commonplace for the analysis of many phenomena in 

economic and urban geography including systems of cities, innovation and organizational 

networks, and global production networks (Camagni and Capello 2004; Glückler and Doreian 
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2016; Peris, Meijers, and van Ham 2018; Thill 2018). Relevant theoretical contributions have been 

constructed in order to interpret such spatial phenomena and estimate socioeconomic 

consequences at the various spatial scale, such as a large region, a nation or the global scale.  

Several theoretical positions exist that encompass various approaches to reflect the 

different aspects of intercity relations. With the complex notions and expressions involved in the 

studies of a set of interdependent cities, some research gains insights into the multiplexity of urban 

networks at regional level, such as the notion of polycentric urban regions, and apply a network 

approach based on the commuting flows relying on geographical information systems (Burger, 

van der Knaap, and Wall 2014; Curtin 2007; Hall and Pain 2006; Wen and Thill 2016). There is 

also a group of study that focuses on the urban system from the global perspective which first and 

foremost studies world cities and world city network building on mathematics model (Taylor 2010; 

Taylor and Derudder 2017). Along with the computational trend in social science, the 

methodological progresses in this field draw their inspirations from computer and network science, 

that have created new tools to study the network processes from various angles (Batty 2007; 

Bretagnolle and Pumain 2010; Zhang and Thill 2019). 

These theoretical and methodological building blocks provide us the essentials for 

refinements and the new creation of concepts and theories. Early contributions to the systems of 

cities claim that the classical central place model may not be well explaining contemporary 

structure of city system in the context of intercity relations. The conceptualization of city network 

has been claimed as a successful theoretical framework of a new organizational structure of the 

modern urban system, which overcomes the explainable limitation of the traditional central place 

model (Camagni, Capello, & Caragliu, 2013). In this case, the conceptual framework of city 

network with complex theoretical foundations and hypotheses seeks to consider cities as agents 
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and to interpret the organization of city-system based on two types of network behavior, namely a 

complementarity network and a synergy network. A complementarity urban network entails that 

the cities not only be specialized in different economic activities, but also participate in spatial 

economic interactions and hence integration; meanwhile, synergy networks are comprised of 

similar centers for innovation cooperation to overcome internal know-how weaknesses (Meijers 

2005; van Oort, Burger, and Raspe 2010).   

In spite of the upsurge of literature on networks and urban systems, little attention has been 

paid to validate the underlying theory of city network with the consideration of economic rationale 

that reflects the manufacturing activities. As a result, the first part of the research is to contribute 

to corroborate the theoretical conjecture regarding the city network through empirical validation. 

According to the logic of complementarities and synergy network, we assume that the two types 

of network co-exist in the system of cities as innovation is a crucial function in high-tech 

manufacturing. Therefore, with a dataset of high-tech private manufacturing firms in Chinese 

prefectural cities, this research is dedicated to examining the organizational logic of advanced 

manufacturing cities using a mesoscale inferential approach (Aicher, Jacobs, and Clauset 2015) 

from network science to identify the connectivity pattern of cities based on their functional 

interaction. Two research questions, particularly, are concerned: first, does the city network as a 

new spatial paradigm really exist, given its specific meaning and the economic rationale that 

underpins it? Second, what organizational logic regulates how cities interact with each other to 

produce the observed network behavior of high-tech firms? 

The following chapter is devoted to assessing the impacts of city network on knowledge 

diffusion and innovation. Although it is essential to provide empirical evidence for the abstract 

theory of city network, the measurement of network externalities and their implications for the 
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cooperative outcomes will in turn help to theorize the relational thinking in the field. In line with 

knowledge-based theory and endogenous growth model, various schools of economic thought 

have developed to tackle questions of innovation and knowledge diffusion. Theories on geographic 

clustering of businesses are dominant in understanding the process of knowledge spillover and 

how geographic proximity may facilitate it (Henderson 2003; Rosenthal & Strange 2004). Later, 

the network concept and evolution in economic geography have brought deeper insights into the 

field of knowledge spillover and innovation. Especially, recently proposed concept of 

technological relatedness with the ability of breaking geographical limitation is anticipated to have 

positive impacts on the scope of knowledge spillovers both in short and long terms.  

 Since the 1950s, the literature on knowledge diffusion and creation has been largely 

developed and expanded, but the fragmentation of current research still appears. Although progress 

has been made on theories closely articulating innovation and organizational relations, the extant 

research is still too scarce to have established consensus theories of knowledge spillover and 

innovation (Glückler 2014; Ter Wal 2014). For example, there is little we know about the 

mechanism of knowledge spillover in terms of various technological relatedness embedded in the 

micro organizational relations, such as headquarters and subsidiaries in high-tech manufacturing. 

In particular, organizational networks contain a wide range of business relationships with both 

geographic proximity and social networking, such as headquarters and subsidiaries.  

In this chapter, we develops a conceptual framework that takes into account industrial 

clustering, organizational networking and technological relatedness to assess their impacts on 

knowledge diffusion by placing the city at the heart of this process. Empirical evidence based on 

a new data set on Chinese cities and high-tech industries is used to test the effectiveness of theories 

on different types of knowledge and industrial modes –from fast- (biotech) to slow-changing 
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(technology hardware and equipment) knowledge-based sectors. Our research is not only 

dedicated to tackling the research challenges we are facing regarding the implications of 

organizational network in knowledge diffusion but also pushing the boundaries of various 

theoretical thoughts in refining the concept of technological relatedness and enhance the relational 

thinking in conceptualizing the space economy with our quantitative empirical evidence. We 

mainly focus on three research questions: first, does the organizational city network contribute to 

knowledge spillovers across territories? Second, what types of knowledge spillovers occur 

between cities, and what is their impact on cities’ absorptive and learning capacity in the city 

network context? Third, are there any differences across various industrial activities?   

We thus arrive to chapter 4, which is a contribution to the advancement of new location 

choice theory. Multinational corporations are one of the key actors in the study of intercity relations 

at the global scale. Recent theoretical concerns argue that traditional theories are unable to explain 

the location decisions of contemporary firms, particularly those large corporations with increased 

mobility. Agglomeration theory has been dominant in the traditional locational theory for decades 

since the Fordist industrial era. Industrial agglomeration or clusters has been considered as the key 

element to location decisions of corporations (Krugman 1990; Porter 2000). However, with the 

evolution from the industrial era to post-industrial and knowledge economies, a radical shift in 

research has started to focus on the influence of innovation ecosystems and the role of human 

capital in determining the locational decision of firms in post-industrial capitalism.  

As the largest foreign investment recipient country, China has been characterized by an 

uneven distribution of foreign investment across the country. In 2008, 1,546 high-tech subsidiaries 

of global multinationals were located in only 54 large cities. Under the classical paradigm for 

location choice, early studies on the locational decision of multinational firms mainly focus on 
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traditional perspectives such as industrial clusters, tax rate, or market size to address the leading 

strategy of minimizing costs.  Yet, there has been an increasing change in the geography of 

corporations that the locations of modern knowledge-based firms are less restricted by cost 

considerations, but more often driven by access to high-skill worker or talent in knowledge-based 

economy. 

Therefore, drawing on the literature on the location choice of multinational units and their 

geographical implications, this chapter tries to advance the theory of location choice in knowledge-

based economies with a focus on human capital. Our core hypothesis is that the location choices 

of high-skill multinational manufacturing units will favor places with large concentrations of 

human capital as talent or human capital has become a key factor of location and relocation of 

large corporations and headquarters. We further test whether the interplay of economic institution 

and cultural distance helps to shape the location choices of high-tech MNC firms when considering 

the role of human capital. In this chapter, therefore, we study the location of 1,526 high-tech MNC 

units in five economic regions in year 2008 to test these hypotheses. We estimate mixed discrete 

choice models to examine the relative importance of human capital, economic institution and 

cultural distance variables alongside measures that have been proposed in other studies of the 

determinants of location decision of multinational firms. 

The rest of the dissertation is structured as follows: Chapter two discusses the city network 

paradigm set on economic foundations; Chapter three presents evidence of city in innovation from 

the perspective of networking; Chapter four attempts to advance the new theory of location in 

knowledge based economy. Finally, conclusions of this dissertation research are presented in 

Chapter five.  
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CHAPTER 2 : ON THE ECONOMIC FOUNDATION OF THE CITY NETWORK 

PARADIGM: EVIDENCE FROM HIGH-TECH FIRMS IN CHINA 

 

 

In the light of the city network paradigm of urban economic structure, this section 

empirically examines the underpinnings of advanced manufacturing cities in China. Weighted 

stochastic block modeling of meso-scale structures supplement degree centralities are used to test 

how industrial network linkages of complementarity and synergy configure city networks. Using 

data on headquarters-subsidiary relationships, we find the structure of the high-tech city network 

is consistent with both the complementarity network and the synergy network. Second, a hybrid 

national core-periphery structure with regional community best describes the meso-scale 

properties. Third, there are variations according to high-tech sectors.  

 

2.1.  Introduction 

Cities are commonly regarded as the linchpin of the socio-economic organization of 

contemporary societies within the frame of national territories. As such, the thick web of functional 

interdependencies among cities make it compelling to view a country as a system. As the primary 

theoretical framework on this matter, central place theory has been repeatedly tested and adapted 

to explain the structure of national city systems (Neal 2011; Pacione 2013). However, given its 

intrinsic theoretical limitations, central place theory has largely lost its interpretative power in 

contemporary societies. Meanwhile, the paradigm of city network has gained prominence in 

scientific contexts to define the new theoretical underpinnings of the urban economic structure 

since the late 20th century (Camagni and Capello 2004; Dicken et al. 2001; Glückler 2007; Glückler 

and Doreian 2016; Huggins and Thompson 2013; M. Castells 1996; Peris, Meijers, and van Ham 

2018; Sassen 2011). This paper aims to make initial contribution to examine the organizational 
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logic of advanced manufacturing cities using empirical data from P.R. China. Specifically, we 

supplement the traditional macro-level analysis of city rankings with the novel statistical inference 

method of the weighted stochastic block model to test how the hypothesized industrial network 

linkages may be observed in reality (WSBM, Aicher, Jacobs, and Clauset 2015).      

In this line, the recognition of cities as collections of actors --people and firm agents-- 

interacting with each other internally and externally is the foundation of the concept of network 

that is advanced as an alternative paradigm to the traditional urban system theory (Camagni and 

Capello 2004; Glückler 2007). In their seminal work, Camagni and Capello (2004, p. 496) argue 

that, for the network to be discerned as a new paradigm that breaks away from traditional spatial 

facts, “its exact meaning and theoretical economic rationale must be defined and justified, and the 

novel features of its empirical content need to be clearly identified”. In this context, the 

organization of city-system can assume one of two kinds of city networks, namely a 

complementarity network or a synergy network. A complementarity urban network entails that the 

cities not only be specialized in different economic activities, but also partake in spatial economic 

interactions and hence integration; meanwhile, synergy networks are comprised of similar centers 

for innovation cooperation to overcome internal know-how weaknesses (Meijers 2005; van Oort, 

Burger, and Raspe 2010).  

Although a voluminous literature has been produced on city networks, some just use the 

term ‘network’ to describe interactions or flows within the traditional urban hierarchy. Among 

those focusing on the actual urban network, research has predominantly been tested empirically 

by interaction patterns of people and service-based firms. Manufacturing firms are conspicuously 

absent from city network analysis, in spite of the dramatic transformations this economic sector 

has experienced over the past decades. Especially, manufacturing firms have been increasingly 
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organized into specialized units with different functions in the production cycle; thus, each 

functional unit may choose the most appropriate location according to its production inputs of 

knowledge or skills (Camagni & Capello 2005; Krätke 2014). Such logic of complementarities 

anchored in specialized and complementary centers steep in the practice of division of labor is here 

hypothesized to be highly relevant to the structuring of a city network (Glückler and Doreian 2016; 

van Oort et al. 2010). But more importantly, it has been found that horizontal mergers are common 

activities in high-tech manufacturing firms in search of innovation in recent years (Haucap, Rasch, 

and Stiebale 2019). We believe that this micro-level behavior hidden behind the headquarters-

subsidiary firm relations would produce the same synergy and cooperation networks in high-tech 

cities as already evidenced in the case of financial cities. Therefore, in our research, we assume a 

synergy city network consisting of comparable cities can coexist with a complementarity network 

as a consequence of the complex organizational logic of high-tech firms. 

 Therefore, in search of a corroboration of the underlying theory, this research is 

particularly interested in investigating how such micro-level firm behaviors may interpret the 

macroscopic spatial behavior of cities. In other words, this study aims to answer two related 

questions on the economic foundations of urban networks. First, does the city network as a new 

spatial paradigm really exist, given its specific meaning and the economic rationale that underpins 

it? Second, if city networks are a reality, what organizational logic regulates how cities interact 

with each other to produce the observed network behavior of high-tech firms? To contribute to 

these research questions, the analysis is twofold. First, the study of city rankings of degree 

centrality constructed on headquarters-subsidiary relationships informs about the existence and 

macro-level properties of the city network; next, a meso-scale inferential approach of network 

science is applied to identify complementarity and synergy features of the city networks. As will 
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be explained later, the novel approach of the meso-scale analytical framework can distinguish the 

connectivity pattern of city groups based on the similarity of intensities in pairwise relations and 

their associated network structure, such as core-periphery patterns. The paper is structured as 

follows. First, we review the literature on theoretical frameworks of city networks. Second, we 

introduce the method of WSBM and the sample data from Chinese high-tech manufacturing firms. 

Finally, we present and discuss the results of our analyses and conclude the paper with an overview 

of future research issues.  

2.2.  The economic foundation of city network 

To provide context to our research, we are retracing the history of research on the urban 

system back to the pre-industrial era. Prior to the Industrial Revolution, an urban system consisted 

of a hierarchy of urban centers. A city was identified as a monocentric cluster of people and 

economic activities in the urban center and was clearly separated from the countryside. At the 

intraurban scale, each center and its rural periphery exchange business goods, services and 

agricultural products. At the interurban scale, business flows mainly occur within or between urban 

cores. Also, higher-order centers (known as central places) with a broad range of central functions 

provide specific functions to lower-order centers. As a result, given the impedance of physical 

distance, national space is structured to the well-known Löschian honeycomb of market areas 

(Camagni & Capello 2004; Pacione 2013). For the metropolitan region, the prototype takes the 

form of a central place system that contains a central city as a core.           

 With the development of infrastructure, cities shifted their borders and firms became more 

mobile and flexible. Hence, social and economic activities started to expand into ever-larger 

geographical areas. Suburban areas emerged as local activity centers, which further leads to the 

enlargement of cities with multiple centers, or polycentric cities. Metropolitan regions can also 
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lose independent functions in the urban system and transform into parts of an urban network, or 

polycentric urban region (PUR). In the urban network system, as a result of economic division and 

specialization, one city can be seen as ‘central’ for a certain function, while other cities might be 

the centers for other functions (van Oort et al. 2010).     

The city network paradigm is fundamentally built upon two relevant theoretical 

perspectives. The first is the recognition of cooperation as a successful organizational and 

behavioral strategy for companies. The model of firm collaboration in technological, commercial, 

and financial areas is an efficient form to support market potential, innovation and rapid 

technological change (Lechner and Dowling 2003). The second theoretical perspective is the 

hypothesis of the city as a collective actor encompassing local firms. Cities are becoming 

increasingly central both to the movement of goods and related production factors in inter-regional 

trade. Cities operate on their ‘absolute advantage’ as they engage in inter-regional trade. In search 

for competitiveness, firms rely not only on local resources for production, but also progressively 

on certain advantages and particular assets that cannot be simply achieved through the local 

market. Thus, firms are inclined to cooperate with other local firms or organizations for the 

conception and provision of these resources facilitated by regional conditions (Camagni 2002; 

Camagni & Capello 2004). Therefore, the urban network offers home firms a chance to enlarge 

their market, as well as enhance the diversity and quality of knowledge, or infrastructure (van Oort 

et al. 2010). 

In line with these two logical blocks, two main types of city networks are proposed based 

on differences in firm behaviors, namely complementarity networks and synergy networks 

(Camagni and Capello 2004). A complementarity network is structured under the conditions of 

cities with similar size but carrying out different functions, thus taking advantage of economies of 
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vertical integration, a division of labor and market size (Glückler and Panitz 2016b). In this 

conceptualization, spatial economic dynamics take place within the scope of the spatial 

interactions that have commonly been ascribed to cumulative causation. With firms tending to be 

organized into specialized units, the location of each unit is determined by multiple factors of 

geographical and historical specificities rather than by a single logic. This specialization pattern is 

the root cause of linkages between units, and therefore for an economic relationship between cities, 

especially in manufacturing (Camagni and Capello 2004; van Oort et al. 2010).     

The goals of a synergy network are for the economies of horizontal integration and 

network externalities when innovation and the control of innovation assets are critical for firms. It 

could be described as the interactions among cities operating similar functions. In particular, firms 

may overcome critical technological and informational shortages no matter where they are located 

through the cooperation, which is not allowed in the traditional model. Examples can be found in 

the network of financial centers of higher order and in the interactions among cities performing 

headquarter and advanced services functions (Camagni et al. 2013; Sassen 2011). However, as 

innovation is a crucial function in high-tech manufacturing, horizontal mergers of firms in the 

same industry have been commonly observed when two firms look for economies of scale and 

innovation opportunities (Haucap et al. 2019). As a consequence, if a firm’s goal is to reach a 

higher level of innovation and establish a parent-subsidiary relation with another firm through 

merger, then such firm relation at the micro level could also lead to the similar macro spatial 

behavior as synergy network in high-tech manufacturing.   

A large volume of empirical research has tested the spatial structure of city networks, such 

as the movement of people among global cities (Smith and Timberlake 2001) as well as at more 

regional scales (Burger, Meijers, and Van Oort 2014; Neal 2012). Along this line, studies in China 
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have mainly focused on the regional level, such as Yangtze River Delta region (Luo, He, and Di 

2011) and selected major cities (Liu, Derudder, and Wu 2016;  Wen and Thill 2016). When it 

comes to the organizational interactions of firms and establishments, research has concentrated on 

advanced producer services in the world city network (WCN) (Taylor 2001, 2004) and the global 

production network (GPN) (Coe, Dicken, and Hess 2008; Glückler and Panitz 2016a; Henderson, 

Dicken, and Hess 2002). Despite the broad consensus on the concept of urban network and 

economic complementarities from both the academic literature and the policy arena, few empirical 

studies have assessed the fitness of theoretical urban network models in real contemporary urban 

systems (van Oort et al. 2010). 

 The empirical assessment of national urban systems is more often conducted in European 

countries and China, with only a few in the U.S. (Glaeser, Ponzetto, and Zou 2016; Neal 2011). 

Following the tradition of WCN research, most of these studies emphasize the interactions of 

producer service firms (Pan et al. 2017; Rozenblat 2015). Only a small group of scholars have used 

the relationship between parent and subsidiary firms (multinational or listed firms) to study the 

properties of the urban network globally (Alderson, Beckfield, and Sprague-jones 2010; Rozenblat 

2010) or regionally (Li 2014; Rozenblat and Pumain 2007). Meanwhile, the concept of the city 

network grounded on the behavior of manufacturing firms has seldom been examined in reality 

(Krätke 2014; van Oort et al. 2010), in spite of the great dynamism of this industrial sector and its 

leading role on other economic sectors. Specifically, it has been pointed out that the spatial pattern 

of manufacturing firms in China is characterized by a broad distribution across various cities of 

different sizes in the network rather than by a concentration in a few urban centers (Brakman, 

Garretsen, and Zhao 2017). Moreover, the complex behavior of high-tech manufacturing firms 

under the global economy presents a great opportunity to test its impact on the macro-level spatial 
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logic of cities. Hence, this research aims to stimulate more discussion on economic 

complementarities and synergy in urban networks. 

2.3.  Conceptualization of meso-scale structure of urban network 

With the objective to better understand the organizational logic of city network in China’s 

high-tech manufacturing cities, we supplement the distributional analysis of network degree 

centrality with a meso-scale analytical perspective to study the structures exhibited by the network 

at a granularity between the local (node level) and the global (network as a whole). This approach 

has recently been proposed and validated for the analysis of meso-scale structures in WCN by 

Zhang and Thill (2019). In the latter study, a new analytical framework relying on WSBM is 

empirically investigated to infer latent meso-scale structures among 126 world cities based on 

undirected Internet discourse data flows; the results clearly indicate that there is a multiple core-

periphery hybrid structure in these 126 world cities. When industrial structures are concerned, 

information asymmetry is an important property so that directionality is critical in unraveling 

network logic. Therefore, in this research, given the methodological advantages of the meso-scale 

analytical framework, we extend it to the study of directed industrial relations between cities to 

isolate meso-scale structures and quantify and evaluate the organizational logic in a national city 

system.   

  Under the conceptualization of meso-scale structures, the city network structure can be 

depicted by a schematic block connectivity matrix (Figure 2.1), where each block contains the 

stochastically equivalent cities indicating equivalent roles in generating group relations with 

others. At least six types of network organizations can be hypothesized. The first one is a 

community structure sensu stricto, with dense interactions within each group (dark blocks in Fig. 

2.1-A), while weak connections (white blocks) exist with other groups. Regionalization in national 
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urban systems fits this structure. The second meso-structure is called a core-periphery (CP) 

hierarchy (Fig. 2.1-B) that consists of the core group(s) and edge groups. In this structure, strong 

connections exist not only within the core but also with their peripheries, whereas there is weak 

interaction between peripheries. The CP structure has often been identified as the dominant 

organizational logic in world city networks. Unlike the qualitative angle that uses the ranking 

technique to differentiate the cores in the network, this approach obtains the CP structure based on 

statistics and probability theory that a specific structure is generated from statistical inference. 

Cities in core groups can be classified into alpha, beta, and gamma cores, which differ by their 

connection strength. Third, the random network (Fig. 2.1-C) shows no significant relations among 

groups and operates as a ‘flat world’ in a sense. This structure could be achieved with the 

ubiquitous improvements of connectivity and cooperation among nodes across the network. The 

fourth one is a disassortative community structure with strong links between groups and weak 

interactions within each group. This structure may be present in a two-mode network. Lastly, 

Figures 2.1-E and 2.1-F depict two hybrid structures that represent more complex and denser city 

networks, such as the web-based world city network in Zhang and Thill’s recent findings. 

In a directed network, the off-diagonal blocks inform about the power relations of 

command and operation among cities. This method of meso-scale structures offers several 

advantages when it is applied to examine hypothesized organizational logics. First, it provides a 

more comprehensive understanding of latent connectivity (e.g. CP hierarchies, or hybrid CP 

structures) in addition to the traditional macro-scale analysis. Second, the probability-based 

WSBM enables us to identify the relation in each city pair and return the connection strength based 

on the arc weights. As a result, it disentangles the network by isolating meso-scale structures based 

on the strength of intra- and inter-group connections. One can compare city pairs with a heat map, 
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and from there, interpret the structure of intercity relations. Specifically, a complementary relation 

can be traced by a meso-structure comprised of core(s) exhibiting control order and peripheries 

with lower-order function. A community structure with strong intra-group connection operating 

multiple functions would be indicative of a synergy network. Given the conceptual arguments 

advanced earlier, an integrated national CP structure with regional communities (Fig. 2.1-F) is 

expected to fit well the manufacturing city structure presented in our empirical analysis. 
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Figure 2.1: Hypothetical meso-scale network structures (After Zhang and Thill, 2019) 
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Many methods and algorithms have been proposed to detect meso-scale structures in 

network analysis, ranging from the early k-cores technique with pre-assumed threshold to 

algorithmic community detection. Among them, a lot of work has been sparked by the property of 

modularity in complex systems (Newman 2006; Newman and Girvan 2004), such as the Louvain 

clustering algorithm (Blondel et al. 2008) and Infomap measures (Rosvall and Bergstrom 2008). 

The former algorithm is a hierarchical clustering approach based on the modularity measure that 

provides an effective partition of the network. One expects that the partition groups are more 

densely connected to each other than a statistically null model. In contrast to modularity 

maximization, the approach of Infomap basically rests on flow-based detection that designs to 

assess the clustering quality. The cluster is generated by single meta-nodes with similar dynamical 

function through the process aggregating blocks of nodes (Held, Krause, and Kruse 2016; Peel, 

Larremore, and Clauset 2017). Although these approaches are popular, there is a common 

shortcoming that a certain structure must be presumed beforehand (e.g., either community or core-

periphery), thus leading to overlook the possibility of other meso-scale structures (Zhang and Thill 

2019).  

In order to identify the structure, one of the most popular techniques in network science is 

the stochastic block models (SBMs) (Holland, Laskey, and Leinhardt 1983; Nowicki and Snijders 

2001; Peel et al. 2017). Recently, the introduction of weighted SBM in network structure analysis 

displays several advantages over others. First, this model specifies a natural solution to the 

challenge of unweighted edges in SBMs to learn from both edge presence and weight information. 

More importantly, as sparse network is a common feature in real-world networks --only O(n) pairs 

of connections may have weight--, WSBM is well suited as it is formulated to incorporate sparse 

networks within the model. Finally, the performance of the WSBM from empirical work has been 
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found superior to other methods focusing on edge-weight prediction without pre-assuming group 

numbers. The WSBM is described as a natural generalization of the well-known SBM to edge-

weighted sparse networks with a statistically principled resolution; it also removes the prerequisite 

of any thresholds. Thus, this model can be chosen  to discover the latent group structures in a 

broader range of systems (Aicher et al. 2015). 

2.4.  Model and data 

2.4.1. Weighted Stochastic Block Model     

WSBM is built upon the stochastic block model (SBM) and the exponential family of 

probability distributions, and further generalizes the SBM to weighted networks. In the SBM, there 

is an adjacency matrix A with binary values of edges that represent the city network relations, i.e., 

Aij{0,1}. This network is decomposed into a fixed number of latent groups, K; vector z{1,..,K} 

indicates the group label of city nodes. The number K of potential groups determines the 

complexity of the model. At variance with several other techniques, the approach for choosing K 

is based on Bayes factors that select the number of groups with the largest marginal log-likelihood. 

Each possible group is assigned a vector z to represent group membership. Then, given each pair 

of groups (kk’), the SBM assigns an edge existence parameter to each edge bundle  kk’. For 

example, the edge existence parameter for each interaction (i.e., relation) observed between cities 

in group i and group j respectively is 𝜃𝑧𝑖𝑧𝑗
. The existence probability of the edge parameter 

𝜃𝑧𝑖𝑧𝑗
only depends on the group memberships of cities i and j. Thus, given a city network with any 

latent grouping z and stochastic block matrix , the SBM’s likelihood function is 

Pr(𝐴|𝑧, 𝜃) = ∏ 𝜃𝑧𝑖𝑧𝑗

𝐴𝑖𝑗
(1 − 𝜃𝑧𝑖𝑧𝑗

)
1−𝐴𝑖𝑗

.

𝑖𝑗

 

                                      (2.1) 

Thus, the likelihood function takes the form of the exponential family of probability distributions 
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Pr(𝐴|𝑧, 𝜃) ∝ exp (∑ 𝑇(𝐴𝑖𝑗) ∗

𝑖𝑗

𝜂 (𝜃𝑧𝑖𝑧𝑗
)) 

                                       (2.2) 

where T(x) = (x, 1) is the sufficient statistic of the Bernoulli random variable with vector value 

and 𝜂(x) = (log[x/(1-x)], log[1-x]) are its natural parameters with vector values consistent with 

parametric distributions belonging to the exponential family. By choosing a different pair of 

functions (T, 𝜂) demarcated two domains  and x, a stochastic block model can be generalized 

with weights drawn from an exponential family distribution over .   

In WSBM, each edge parameter zi*zj specifies a weight with distribution drawn from the 

exponential family (T, ), including the normal, exponential, Pareto, and Poisson distributions. 

The group structure of the WSBM adopts the same stochastic equivalence principle as the classic 

SBM. In other words, all cities in one group share the same probabilistic connectivity to all other 

groups. 

For example, given an observed city network C and a range of group numbers K, the edge 

weights are real-valued  = R. We can choose to model the edge weights applying the normal 

distribution. This distribution has sufficient statistic T=(x, x2, 1) and natural parameters  = (/2, 

-1/(22), -2/(22)); as a result, each edge bundle (zizj) is parameterized by a mean and variance 

zi*zj=(
𝑧𝑖𝑧𝑗

, 𝜎2
𝑧𝑖𝑧𝑗

). Finally, the likelihood function would be 

Pr(𝐴|𝑧, 𝜇, 𝜎2) = ∏ Ν (𝐴𝑖𝑗|𝜇𝑧𝑖𝑧𝑗
, 𝜎𝑧𝑖𝑧𝑗

2 ) = ∏ exp (𝐴𝑖𝑗 ∗
𝜇𝑧𝑖𝑧𝑗

𝜎𝑧𝑖𝑧𝑗
2 − 𝐴𝑖𝑗

2 ∗
1

2𝜎𝑧𝑖𝑧𝑗
2 − 1 ∗

𝜇𝑧𝑖𝑧𝑗
2

𝜎𝑧𝑖𝑧𝑗
2 ) .𝑖𝑗𝑖𝑗  (2.3) 

This construction uses a normal distribution to model the values of observed edge bundles. 

To obtain the group structure, the optimization of the likelihood function with z and is required. 

Aicher et al. (2015) apply a Bayesian approach to maximize the likelihood by considering z and  
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as random variables with the prior distribution P(z, ). Given a Bayesian framework, the posterior 

distribution is 

                                     𝑃(𝑧, 𝜃|𝐴)  ∝ 𝑃(𝐴|𝑧, 𝜃) 𝑃(𝑧, 𝜃).                                                        (2.4) 

 

Furthermore, an algorithm on variational Bayesian inference (Aicher et al. 2015) is created 

for the purpose of maximization of the expected log-likelihood, so that WSBM can be used to 

produce the parameters z and  with different values of likelihood. In general, WSBM provides a 

statistical inference method to detect the meso-scale structure of a network. It allows us to find the 

latent groups of nodes that offer the best fit for any observed network, which is particularly 

beneficial to the study of networks with weighted edges. This study uses Matlab 2016b to run the 

analysis of WSBM and Gephi for visualization.     

2.4.2. Data 

The dataset used in this study has been drawn from the China Non-listed Enterprise 

Database (1998-2008). This database is administered by GTA Company and collected from the 

National Bureau of Statistics of China. It covers all non-listed manufacturing firms with annual 

sales over five million Yuan (around $600,000 at the exchange rate of 2000). It provides firm-level 

data on firm structure and operation, such as ownership, location, and capital structure, profits, and 

product categories. More importantly, each firm in this dataset is assigned a single 4-digit Standard 

Industrial Classification (SIC) code according to its main products, which allows us to identify the 

sub-sectors of high-tech manufacturing that best match the firms and their production activities. 

Although firms with sales under 5 million Yuan were not surveyed, there is no loss of 

generalizability as it has been documented that manufacturing firms (listed and non-listed) over 

that size generate 90% of industrial output of China and 98% of total exports (Zhu, He, and Luo 

2019). The following descriptive analysis is based on the enterprises above the designated size.  
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In 2008, the database includes 411,821 non-listed firms (or establishments) that accounted 

for around 97% of all manufacturing firms according to the National Bureau of Statistics of China. 

Firms (either listed or non-listed) can be differentiated on the basis of ownership modalities into 

state-owned enterprises (SOEs), foreign-owned enterprises (FOEs), and privately-owned 

enterprises (POEs) (Zhu et al. 2019). Given our research purpose, SOEs are excluded from the 

analysis. Only POEs and FOEs are considered hereafter since our research assumes that the 

locational behavior of a firm is determined by the market, rather than by national strategy or local 

governments (Guo, He, and Li 2015).  

Data on high-tech POEs and FOEs are further retrieved based on their 4-digit industry 

code. According to the manufacturing classification of OECD (2011), four sub-sectors can be 

identified as high-tech manufacturing: pharmaceuticals and biotech; office and computing 

machinery; radio, TV and communications equipment; as well as medical equipment, precision, 

and optical instruments. Then, we first apply the above high-tech industry classification to our 

dataset and sort out the firms that belong to each of the computing machinery, technology hardware 

and equipment, pharmaceuticals, and biotech sub-sectors. Second, the between-city relational data 

of corporate headquarters and subsidiaries are built from their respective city locations. For 

domestic POEs, we directly assemble corporate affiliations to detect firm’s hierarchy – such as 

headquarters, divisions, subsidiaries, affiliates, and joint ventures – and on where they are located. 

However, for FOEs, we use the position of regional corporate centers in China to present the 

highest order of corporate function, and FOEs also include enterprises from the region of Hong 

Kong, Taiwan, and Macao according to the National Bureau of Statistics.   

After identifying the connections between subsidiaries and their headquarters, the 

geographies of these firms are aggregated into the city level for the sake of network analysis shaped 



24 

 

by the different industrial sectors.  Specifically, in our directed network, a node in the network 

matrix is a city with headquarters and/or subsidiaries of high-tech firms. Each edge represents an 

ownership relationship implying a locational choice. Head offices in city A that choose city B as 

their locations of subsidiaries send an arc toward city B. The weight of each arc denotes the number 

of subsidiaries for each city dyad. Taking firms in Beijing and Tianjin as an example, there are 

five headquarters in Beijing and each one located one manufacturing subsidiary in Tianjin; then 

the weight on the Beijing-to-Tianjin edge is 5.       

Overall, in 2008, there are 1,419 firms in the sector of office and computing machinery; 

172 (12.1%) firms are subsidiaries of domestic enterprises or foreign enterprises with a regional 

business center in China, and they are distributed in 25 cities. For the sector of technology 

hardware and equipment, there are 9,548 firms, and 631 (6.6%) are subsidiaries, including 312 

domestic and 319 foreign subsidiaries with regional headquarters in China. Finally, 4,548 firms 

operate in the sector of pharmaceuticals and biotech; 618 (13.6%) subsidiaries are considered for 

network analysis (Table 2.1).  The matrices for the three sectors containing different sets of nodes, 

edges, and weights not only can be used for standard network analysis, such as degree centrality, 

but more important for the meso-scale city structures shaped by firms and their subsidiaries.    

Table 2.1: Summary information on high-tech manufacturing firms for city network analysis 

Sub-sector 

No. of 

firms 

No. of domestic 

subsidiaries 

No. of foreign 

subsidiaries City matrix 

Computing machinery 1,419 50 122 25×25 
Technology hardware and 

equipment 9,548 312 319 76×76 

Pharmaceuticals and biotech 4,548 400 218 111×111 
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2.5. Analytical results 

2.5.1. City ranking and distributions 

     We start with results of the macro-level analysis of city rankings for the three industrial 

sectors of interest. In detail, the study differentiates between the role of urban regions as control 

centers of corporate ownership (a city’s out-degree centrality) and their role as a place of subsidiary 

business activities (a city’s in-degree centrality).  This is significant for the understanding of city 

networks as conduits of territorial organization by taking into account the direction of inter-city 

links. On the one hand, cities with a high out-degree centrality can be interpreted as exerting strong 

control over others, such as command over capital flows. On the other hand, cities with high in-

degree centrality stand out by attracting inward flows. The in-degree measurement also reveals a 

city’s platform function (Krätke 2014). This function allows firms to utilize the local production 

advantage, or access to specific information and resources, especially in the case of investments 

entering into foreign markets.  

The results indicate that city networks do in fact exist with regard to the three high-tech 

sectors in China. Figures 2.2, 2.4, and 2.6 illustrate the geographic distribution of city nodes and 

city dyads of the respective industries in China. The size of markers denotes the magnitude of out-

degree centrality of cities with consideration of edge weights. Given the state of industry 

development in 2008, it is not a surprise that firms from the three sub-sectors are primarily 

concentrated in fast growing cities in the East Coast region, and thus this is also where the dyadic 

edges with higher weight are. One can describe cities with dense network links as superior centers 

of industry on a national scale. The ranking based on degree centrality introduces the nodal 

centralities of cities involved in the city networks of the different sub-sectors.   
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In the sector of office and computing machinery (Fig. 2.2-2.3), firms are confined to a 

comparatively small and selective geographical territory in 2008 encompassing 25 cities, of which 

17 belong to the regions of the Yangtze River Delta and of the Pearl River Delta. The in-degrees 

and out-degrees (Table 2.2) expose the distinction between control and attraction power. Shanghai, 

Beijing, and Shenzhen are the top three cities in terms of control capacity (out-degrees of 30, 23, 

and 13, respectively), while Suzhou, Shenzhen, and Shanghai show prominently as target city 

nodes in this network. Although Suzhou contains a large number of computing machinery firms, 

the number of headquarters based in the city is much smaller according to its out-degree centrality; 

hence, Suzhou features as a subsidiary center. From the value of out-degrees and the distribution 

of city dyads, one can also garner that Top-3 cities (Shanghai, Beijing, and Shenzhen) not only 

contain the majority of parent companies, but also comprise strong mutual parent-subsidiary 

relationships, which is evidenced by the top-20 city dyads depicted in Fig. 2.2. Furthermore, the 

uneven distribution of firms across the network is also noted in statistical distributions of between-

city weights reported across headquarter city nodes and across city dyads (Fig. 2.3). About 50% 

of weights are concentrated on 20% of city nodes and on about 20% of city dyads. 

In the sector of radio, TV and communications equipment (Fig. 2.4), Shanghai, Shenzhen, 

and Beijing once again demonstrate active command and control capabilities; in fact, their out-

degree values are disproportionately large (98 to 72), while the rest of out-degrees is under 20 

(Table 2.3). Six out of the top-10 controlling cities are the same as for the sector of computing 

machinery, although with slightly different rankings. Moreover, 40% of city nodes account for 

about 75% of edge weights (Fig. 2.5), and they concentrate on about 45% of city dyads. On the 

other hand, Suzhou, Shenzhen, and Dongguan show the best performance of attracting corporate 

interests from other cities and feature as the top subsidiary cities.  
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The pharmaceutical and biotech sector (Fig. 2.6) shows some similarities with the other 

two sectors, but also striking differences. For instance, Beijing and Shanghai are once again among 

the cities with the most corporate headquarters (out-degrees of 35 in Table 2.4 left). They are 

joined by Hangzhou to form the Top-3 cluster of leading centers of control in China. The rest of 

the top ten cities for this sector exhibits notably greater geographic diversity, with several cities 

from the western regions, such as Xi’an, Chengdu and Chongqing, and cities from the northeast, 

like Jilin. As subsidiary centers, Chengdu and Shanghai with in-degree of 7, and Beijing, 

Guangzhou and Suzhou (all with in-degree of 6) stand out. However, this only weakly reflects 

their attracting capabilities in this particular subsector as other cities are not trailing far behind. In 

fact and along the same line, from the distribution of between-city weights across city nodes and 

city dyads, we find that the edge weights (Fig. 2.7) do not show the clumping that was so striking 

in the other two high-tech sectors (Fig. 2.3 & 2.5).   

 The macro-level analysis of city rankings leads to three main conclusions. First, the cities 

of Shanghai, Beijing and Shenzhen consistently exhibit the highest level of command and control 

over the rest of China’s city network across high-tech industries. This is evidenced by the high 

degree of connectivity of these cities in all three high-tech subsectors of manufacturing industries 

as well as by the strong relationships that exist between parent firms in one city and subsidiaries 

in a different city. These cities have a super-gravitational effect for all three sectors, especially for 

computing machinery and communications equipment firms. Second, the location choice of 

headquarters of high-tech manufacturing firms presents a strong preference for large cities with 

diversified economies. Small and medium sized cities with specialized industrial structures are 

better described by their production function, sometimes in a rather pronounced way, such as in 

the case of computing machinery in Suzhou, technology hardware and equipment in Dongguan, 
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or pharmaceuticals and biotech in Xi’an. These features of industrial locations restate the 

significance of traditional principles of ‘urbanization economies’ and ‘specialized economies’. 

Third, at the regional level, cities from the Pearl River Delta and the Yangtze River Delta have 

dense inter-regional as well as intra-regional interdependencies. Beijing, as the core of the Jing-

Jin-Ji region (Beijing-Tianjin-Hebei metropolitan region), barely exhibits any business 

interactions within the confined of the region, whereas it has a number of robust linkages with 

distant cities from the two Delta regions. This raises the question of the detailed nature of 

interdependencies across city networks for different industrial sectors. We will rely on WSBM to 

further the analysis of city network structures. 
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Note: Numbers refer to city names from Table 2.2 (left). 

  

Figure 2.2: Geographical distribution of cities and city-dyads by office and computing machinery 

firms 

  

 Top-20 City Dyads 

City Nodes (Size varies by out-degree centrality) 

20-45 City Dyads 
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Table 2.2: City ranking by out-degree (left) and in-degree (right) centrality by office and 

computing machinery firms 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 
Figure 2.3: Distribution of between-city weights across city nodes (left) and across city dyads 

(right) by office and computing machinery firms 

  

City ranking by out-degree 

centrality: Top-10 cities (degree 

unit: number of headquarters) 

City name Out-degree 

  1 Shanghai 30 

  2 Beijing 23 

  3 Shenzhen 13 

  4 Suzhou  5 

  5 Kunming  4 

  6 Xuancheng  2 

  7 Xiamen  2 

  8 Foshan  1 

  9 Guangzhou  1 

10 Huizhou  1 

City ranking by in-degree 

centrality: Top-10 cities (degree 

unit: number of subsidiaries) 

City name In-degree 

 1 Suzhou 23 

 2 Shenzhen 12 

 3 Shanghai  6 

 4 Dongguan   6 

 5 Beijing  4 

 6 Wuxi  4 

 7 Nantong  3 

 8 Guangzhou  2 

 9 Huizhou  2 

10 Nanjing  2 
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Note: Numbers refer to city names from Table 2.3 (left). 

 

  

Figure 2.4: Geographical distribution of cities and city-dyads by technology hardware and 

equipment firms 

  

 Top-30 City Dyads 

City Nodes (Size varies by out-degree centrality) 

31-180 City Dyads 
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Table 2.3: City ranking by out-degree (left) and in-degree (right) centrality by communications 

equipment firms 

City ranking by out-degree centrality: Top-10 

cities (degree unit: number of headquarters) 

City ranking by in-degree centrality: Top-10 

cities (degree unit: number of subsidiaries) 

City name Out-degree 
 

City name In-degree 

  1 Shanghai 98   1 Suzhou 61 

  2 Shenzhen 78   2 Shenzhen 37 

  3 Beijing 72   3 Dongguan 25 

  4 Suzhou 17   4 Wuxi 22 

  5 Guangzhou 14   5 Shanghai 19 

  6 Huizhou 13   6 Tianjin 12 

  7 Dongguan 8   7 Hangzhou 11 

  8 Zhongshan 7   8 Huizhou 11 

  9 Changzhou 5   9 Beijing 8 

10 Hangzhou 4  10 Guangzhou 7 

 

                                                                    

 

 

 

 

 

Figure 2.5: Distribution of between-city weights across city nodes (left) and across city dyads 

(right) by technology hardware and equipment firms 
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Note: Numbers refer to city names from Table 2.4 (left). 

 

 

Figure 2.6: Geographical distribution of cities and city-dyads by pharmaceuticals and biotech 

firms 

  

 Top-20 City Dyads 

City Nodes (Size varies by out-degree centrality) 

21-170 City Dyads 
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Table 2.4: City ranking by out-degree (left) and in-degree (right) centrality by pharmaceuticals 

and biotech firms 

 

City ranking by out-degree centrality: Top-10 cities 

(degree unit: number of headquarters) 

City ranking by in-degree centrality: Top-10 

cities (degree unit: number of subsidiaries) 

City name Out-degree 
 

City name In-degree 

  1 Beijing 35   1 Chengdu 7 

  2 Shanghai 35   2 Shanghai 7 

  3 Hangzhou 14   3 Beijing 6 

  4 Chengdu 11   4 Guangzhou 6 

  5 Xi’an 7   5 Suzhou 6 

  6 Shenzhen 6   6 Shaoxing 6 

  7 Zhuhai 5   7 Hangzhou 4 

  8 Chongqing 4   8 Bozhou 4 

  9 Jilin 4   9 Dalian 3 

10 Nanjing 4  10 Nanchang 3 

 

 

 
 

Figure 2.7: Distribution of between-city weights across city nodes (left) and across city dyads 

(right) by pharmaceuticals and biotech firms 
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2.5.2. Meso-scale structure detection 

The second part of this study is to identify the network structure and city partitions by 

industry sector from a meso-scale perspective taking direction into account. This section deals with 

the power and direction of specific inter-city interactions in three subsectors of manufacturing 

firms and visualizes properties of the network structure at the meso-scale level. Unlike the city 

ranking analysis, the advantages of considering meso-scale structures are that this approach offers 

us a more comprehensive depiction of the channels of inter-city linkages in the network based on 

the magnitude of their centrality with arc weights. It defines city groups according to their positions 

in the network, thus underscoring the organizational logic created by the interdependencies of a 

particular interaction. In practice, the best-fit WSBM is determined by the value of maximum log-

likelihood with the number K of city groups allowed to range from 3 to 10. Given the different 

distributional properties of centrality values and edge weights in the three industrial sectors, the 

optimal number of city partitions is anticipated to be different as well. 
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Figure 2.8: Heat map of city-based connectivity matrix formed by office and computing 

machinery firms (Colored by Log of edge weights) 
 

 

 

 
Figure 2.9: 3D block matrix of Meso-scale structure in city network formed by office and 

computing machinery firms 
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For the office and computing machinery sector, the Chinese cities are optimally partitioned 

into five groups according to the maximum likelihood criterion. The heat map of the pairwise city-

based connectivity matrix (25 cities included) of computing machinery activities (Fig. 2.8) depicts 

directed city groups ordered on the magnitude of out-degree centrality of cities. The relation 

between city A on the Y-axis and city B on the X-axis represents that there are headquarters in city 

A and their branches are located in city B. Each pair of cities can be located on one of the blocks 

with headquarter and subsidiary relations. The diagonal refers to the total number of firms from 

this sector in each city. Colored cells correspond to connection strength, whereas clear cells 

correspond to the absence of links between cities in this dyad. For example, in Figure 2.8, 

headquarters from Shenzhen mainly locate their branches in Suzhou and Nantong according to the 

connection strength, and the remaining cities are Dongguan, Hangzhou, Kunming, Zhongshan, 

Xiamen, Huizhou, and Yantai. 

Given the schematic meso-scale structures that may manifest themselves (Fig. 2.1), the 

WSBM suggests the existence of a multiple core-periphery (CP) urban system. More specifically, 

the first group, which also performs as the dominant core, contains three cities: Shenzhen, 

Shanghai, and Beijing. The higher order of functions of these three cities is not only supported by 

a large number of intra-group linkages but also dense business interactions with other groups, 

which is a signature feature of the core group. A single city constitutes the second partition and 

that is Suzhou city. Suzhou possesses a rather weak core function that includes a large number of 

production plants but limited corporate headquarters controlling firms established outside of the 

city. The three remaining city groups are considered as peripheries or semi-peripheries specialized 

in production activities. Figure 2.9 depicts a generalized block matrix of the city network with five 
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city groups as nodes; it shows a strong connectivity between the two cores whereas the other blocks 

are very loosely connected. 

As can be seen from the 3D chart, there are over 4 times as many links between groups one 

and two as between any other groups. While all the cities in the last three groups are peripheries 

of core groups, some cities still stand out.  Headquarters in Kunming locate production plants in 

the core cities of Shenzhen and Beijing; Foshan and Xuancheng (group 5) choose Suzhou as the 

location of their subsidiaries. As most firms select big cities as control centers, parent corporations 

originated from small cities also locate their plants in the core regions. This finding corroborates 

the hypothesis that cities and territories behave like collective actors in the city network paradigm 

(Camagni and Capello 2004). Cities with limited local resources resort to connecting to other cities 

to access these resources. Detailed partition results are given in the form of a color-coded network 

in Figure 2.14. In this figure, the five groups of cities are assigned different colors and the sizes of 

city nodes and labels represent the order of weighted out-degree centralities. The width of each 

edge between a pair of cities illustrates their connection strength. A color-coded table with group 

numbers and city names is listed below the network for convenience.   
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Figure 2.10: Heat map of city-based connectivity matrix (Colored by Log of edge weights) in 

city network formed by technology hardware and equipment firms 
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Figure 2.11: 3D block matrix of Meso-scale structure in city network formed by technology 

hardware and equipment firms 

 

Meso-scale structures for the sector of technology hardware and equipment are investigated 

on a 76-city based connectivity matrix. The WSBM optimization identified 7 city blocks for which 

the corresponding heat map is given in Figure 2.10. It reveals a meso-scale structure that is a hybrid 

of the national CP structure and regional communities. Shenzhen and Shanghai in group one form 

the national core (α-Core) in the system; group 2 (Beijing) and group 3 (Huizhou, Guangzhou, and 

Hangzhou) are considered as β-Core as different level of connectivity with their peripheral cities 

(see Figure 2.15 for detailed partition results). Cities in group four, five and six are semi-

peripheries that control a small number of subsidiaries in other groups. In contrast, cities in the last 

group (group 7) are peripheries with production plants and no outsourcing relations with other 

groups. Unlike the traditional Christallerian model that features a nested hierarchy of cities, we 

find that high-order functions locate in small and specialized cities (cities in groups 3-6) 

interconnected with cities from core groups. This result reinforces the organizational logic of 

complementarity network, which contains specialized and complementary cities interlinking 
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together to achieve scale and agglomeration economies. Moreover, the intra-group links among 

cities are not only found in core groups but also in peripheral groups four, five and six, such as 

Suzhou and Dongguan. This provides evidence on the existence of a synergy network made up of 

big cities as well as smaller but specialized cities. 

Given the features of the network associated with the pharmaceuticals and biotech sector, 

it is much harder to tease out the fundamental structures in contrast to the other two high-tech 

sectors. The heat map in Figure 2.12 suggests a single CP structure where the first group, made up 

of Shanghai, Beijing, and Chengdu, features as the core in the network. The remaining nine groups 

are peripheral, which altogether point to an overall structure that is widespread horizontally and 

vertically compressed. Cities in peripheral groups tend to connect with other spatially proximate 

cities. For example, parent companies in Xi’an (group 2) choose Baoji as the location of 

subsidiaries; Changchun (group 2) has a strong tie with the city of Tonghua in the same province; 

also, firms in Shijiazhuang (group 3) have attempted to establish their branches in the cities of 

Langfang and Baoding. Generally, the city network based on pharmaceutical and biotech firms 

lacks the distinctive meso-scale structure exhibited by the computing machinery and 

communications equipment sectors. These contrasting properties are strongly related to the stage 

in the industrial life cycle of these sectors. Study of the history of development of Chinese 

pharmaceutical firms indicates that most parent firms located in non-core cities and have existed 

in the market for decades. As the industry was easing a transition towards maturity in 2008, a core 

was in place, but a pattern of regional and fragmented communities of spatial proximity remained 

strongly in place across the production systems. Detailed partition results are given in Figure 2.16. 
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Figure 2.12: Heat map of the city-based connectivity matrix formed by pharmaceuticals 

and biotech firms (Colored by Log of edge weights) 
 

 
Figure 2.13: 3D block matrix of Meso-scale structure in city network formed by pharmaceuticals 

and biotech firms 
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Group 
(Number of Cities)                                    City name Role 

1 (3) Shenzhen, Shanghai, Beijing α-Core 

2 (1) Suzhou β-Core 

3 (5) Dongguan, Guangzhou, Hangzhou, Wuxi, Kunming Semi-periphery 

4 (7) Zhongshan, Xiamen, Nanjing, Huizhou, Zhangzhou, Linyi, Xuzhou Periphery#1 

5 (9) 
Fuzhou, Foshan, Tianjin, Dalian, Jiaxing, Nantong, Yantai, Qingdao, 

Xuancheng Periphery#2 
 

Figure 2.14: Multicore-periphery structure in the city network and city distribution across groups 

based on office and computing machinery firms 
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Figure 2.15: Multicore-periphery structure in the city network and city distribution across groups 

based on technology hardware and equipment firms 
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Group  
(Number of Cities)                              City name Roles 

1 (2) Shenzhen, Shanghai α-Core 

2 (1) Beijing β-Core 

3 (3) Huizhou, Guangzhou, Hangzhou γ-Core 

4 (7) 
Suzhou, Dongguan, Zhongshan, Nantong, Changzhou, Nanjing, 

Wuxi 
Semi-

periphery#1 

5 (10) 
Mianyang, Wuhan, Dalian, Fuzhou, Quanzhou, Zhuhai, Loudi, 

Yiyang, Foshan, Nanchang 

Semi-
periphery#2 

6 (19) 

Xiamen, Wenzhou, Zhenjiang, Jiaxing, Cangzhou, Heyuan, Jinan, 
Ningbo, Tangshan, Tongling, Xingtai, Yantai, Chengdu, Harbin, 

Chongqing, Langfang, Tianjin, Urumqi, Zhangzhou 

Semi-
periphery#3 

7 (34) 

Beihai, Binzhou, Changde, Chaoyang, Chenzhou, Chuzhou, 
Ganzhou, Guiyang, Hefei, Hohehot, Huaian, JiAn, Jiangmen, Jilin, 
Lianyungang, Luoyang, Maoming, Qingdao, Qingyuan, Shaoguan, 

Shenyang, Suqian, Taian, Taiyuan, Taizhou, Taichow, Weifang, 
Weihai, Wuhu, Xianning, Xiaogan, Xuzhou, Yangzhou, Yulin Periphery 

Figure 2.15 continued  

  



46 

 

 
Figure 2.16: Multicore-periphery structure in the city network and city distribution across groups 

based on pharmaceuticals and biotech firms 
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Group  
(Number of Cities)                                  City name Role 

1 (3) Beijing, Chengdu, Shanghai α-Core 

2 (8) 
Changchun, Guangzhou, Jinan, Lianyungang, Shaoxing, Xi'An, 

Yantai, Yichun Periphery#1 

3 (9) 
Changsha, Heze, Nantong, Shenyang, Shijiazhuang, Suzhou, 

Taizhou, Wuhan, Xinzhou Periphery#2 

4 (8) 
Changzhou, Chenzhou, Hangzhou, Huizhou, Shenzhen, Weifang, 

YanAn, Yuncheng Periphery#3 

5 (12) 
DingAn, Jinhua, Jiujiang, Maanshan, Nanchang, Nanjing, 

Shaoguan, Tianjin, Wenzhou, Wuxi, Xining, Yueyang Periphery#4 

6 (12) 
Benxi, Binzhou, Deyang, Fuyang, Fuzhou, Guiyang, Weihai, 

Yanbian, Zhenzhou, Zhenjiang, Zhoukou, Zhumadian Periphery#5 

7 (12) 
Baoding, Bozhou, Changde, Foshan, Haikou, Hefei, Huaian, 

Jiaozuo, Jilin, Sanming, Tonghua, Zhuhai Periphery#6 

8 (12) 
Anyang, Baoji, Dalian, Datong, Gandong (Fuzhou), Huanggang, 

JiAn, Jieyang, Jinzhou, Kunming, Meishan, Nanping Periphery#7 

9 (14) 
Chaozhou, Chongqing, GuangAn, Huangshan, Linyi, LuAn, Panjin, 

Putian, Xiangxi, Xingtai, Xinyang, Yancheng, Yinchuan, Yiyang Periphery#8 

10 (21) 

Baicheng, Baishan, Bengbu, Chizhou, Dingxi, Ganzhou, 
Guangyuan, Huainan, Huzhou, Jiaxing, Langfang, Lishui, 

Mianyang, Ningbo, Qiannan, Qingyuan, Wuhu, Xiangtan, 
Xianning, Xuzhou, Zhangjiagang Periphery#9 

Figure 2.16 continued 
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2.6. Conclusions 

The classical central place theory and its subsequent recastings along the lines of the New 

Economic Geography best describe the structure of the city system in strict economic and 

geographic terms, yet the theoretical assumptions display increasing dissonance with behaviors of 

economic activities in the actual space-economy. Under the conceptual framework of city network, 

the organization of the city-system underpinned by the constructs of complementarity network and 

synergy network could be abstracted as a new paradigm in urban and spatial economic sciences 

when precise conditions of exact meaning, theoretical economic rationale and empirical content 

are met. In this article, we used the complementary methods of network degree centrality and 

meso-scale network structure modeling to test the hypothesized network logics of a city system on 

the scale of mainland China through the headquarters-subsidiary relationships of firms. Our 

empirical analysis is implemented on 2008 firm-level data pertaining to each of three high-tech 

manufacturing sectors, and aggregated to prefectural cities of China. The city systems under study 

include several large cities (most notably Beijing, Shanghai and Shenzhen) together with other 

smaller cities that are mostly in the eastern part of China. No earlier empirical research has tested 

the network images framed by economic relations in the manufacturing landscape of China. Thus, 

this work contributes to the city network theory with empirical validation.  

The concept of city network and its underpinnings are partly determined by the behavioral 

logic of firms when specialization and networking play important economic roles. A 

complementarity network allows cities to take advantage of the entire regional market in the 

specialized sectors and to achieve associated scale economies, so that a city can aspire to perform 

higher-order functions that once only happened in high-order cities in the urban system, as 

conceived by the traditional hierarchical model. By the same token, a synergy network emphasizes 
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the need for innovative cooperation in order to reach critical mass by linking to cities with similar 

size and rank. As it has been argued, in some respects, the new theoretical underpinnings of 

complementarity and synergy networks may coexist in the context of certain specific industrial 

sectors.    

In search of empirical validation of the city network theory, our research reached the 

following main conclusions. First, the high-tech city network exhibits macro- and meso-scale 

properties that align well with the organizational logics grounded in the theoretical economic 

rationale of firm behavior. We found evidence of both the complementarity network and the 

synergy network in China’s high-tech manufacturing cities. On the one hand, cities with different 

functional specialization (headquarters versus subsidiary operations) and with division of labor 

partake in complementarity networks in all three industrial sectors; on the other hand, the shared 

goals and aspirations of cities that operate in the same functional tier provide impetus to their 

cooperation through the city network in order to reach economies of scale and emphasize the need 

for innovation. The synergy network is a notion that transcends any specific economic sector since 

it was found to be an important feature of how high-tech manufacturing cities organize within the 

national space-economy, while it was mainly considered in the financial and service cities in 

previous studies. Second, our results show that the city network reflected in high-tech 

manufacturing exhibits the properties ascribed to hybrid CP structure with regional communities. 

The national core is composed by three major cities (Shanghai, Shenzhen, and Beijing) inter-

connected with a wide variety of specialized cities at a lower tier, while the semi-core comprises 

a few medium-sized cities with diverse industrial specialization. Lastly, the city network 

determined by the behavioral logic of the manufacturing firms shows different features in response 

to each of the three high-tech sectors. Some medium-size cities stand out by their high ranking of 



50 

 

out-degree centrality. In this sense, medium-size cities in the Yangtze River Delta and Pearl River 

Delta regions present higher-order in computing machinery and technological equipment sector, 

whereas some cities from western and northeastern regions have disproportionately higher 

rankings for pharmaceuticals and biotech. 

Through empirical validation on high-tech manufacturing activities, the paradigm of city 

networks brought into focus two important aspects of the city network. In future studies of the 

network-based urban hierarchies, we argue that there is a need for further scientific consideration 

of the dynamical evolution of the network and network externalities with longitudinal data series. 

Theoretical underpinnings could also be enhanced with data that convey the business functions 

performed by each establishment of a corporate entity that operates out of multiple sites, possibly 

in multiple cities. Finally, the study of various sectors, both at inter- and intra-city level, will 

provide more evidence on the city network paradigm. 
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2.8. Appendix: City ranking 

Table 2.5: City ranking in terms of out-degree and in-degree for respective sectors 
A. Office and computing machinery 

Ranking City Out-degree Ranking City In-degree 

1 Shanghai 30  1 Suzhou 23 

2 Beijing 23  2 Shenzhen 12 

3 Shenzhen 13  3 Shanghai 6 

4 Suzhou 5  4 Dongguan 6 

5 Kunming 4  5 Beijing 4 

6 Xuancheng 2  6 Wuxi 4 

7 Xiamen 2  7 Nantong 3 

8 Foshan 1  8 Guangzhou 2 

9 Guangzhou 1  9 Huizhou 2 

10 Huizhou 1  10 Nanjing 2 

11 Wuxi 1  11 Zhangzhou 2 

12 Nanjing 0  12 Zhongshan 2 

13 Zhangzhou 0  13 Dalian 2 

14 Dongguan 0  14 Tianjin 2 

15 Zhongshan 0  15 Jiaxing 2 

16 Dalian 0  16 Hangzhou 2 

17 Tianjin 0  17 Kunming 1 

18 Qingdao 0  18 Xiamen 1 

19 Linyi 0  19 Qingdao 1 

20 Jiaxing 0  20 Linyi 1 

21 Hangzhou 0  21 Fuzhou 1 

22 Fuzhou 0  22 Yantai 1 

23 Nantong 0  23 Xuzhou 1 

24 Yantai 0  24 Foshan 0 

25 Xuzhou 0  25 Xuancheng 0 

 

B. Radio, TV and communications equipment  C. Pharmaceuticals and biotech 

Ran-

king City 

Out- 

degree 

Ran-

king City 

In- 

degree 

Ran-

king City 

Out-

degree 

Ran-

king City 

In-

degree 

1 Shanghai 98 1 Suzhou 61 1 Beijing 35 1 Chengdu 7 

2 Shenzhen 78 2 Shenzhen 37 2 Shanghai 35 2 Shanghai 7 

3 Beijing 72 3 Dongguan 25 3 Hangzhou 14 3 Beijing 6 

4 Suzhou 17 4 Wuxi 22 4 Chengdu 11 4 Guangzhou 6 

5 Guangzhou 14 5 Shanghai 19 5 Xian 7 5 Suzhou 6 

6 Huizhou 13 6 Tianjin 12 6 Shenzhen 6 6 Shaoxing 5 

7 Dongguan 8 7 Hangzhou 11 7 Zhuhai 5 7 Hangzhou 4 

8 Zhongshan 7 8 Huizhou 11 8 Chongqing 4 8 Bozhou 4 

9 Changzhou 5 9 Beijing 8 9 Jilin 4 9 Dalian 3 

10 Hangzhou 4 10 Guangzhou 7 10 Nanjing 4 10 Nanchang 3 

11 Mianyang 4 11 Changzhou 6 11 Shijiazhuang 4 11 Nanjing 3 

12 Nanjing 4 12 Dalian 6 12 Changchun 3 12 Shenzhen 3 

13 Quanzhou 4 13 Nanjing 6 13 Changsha 3 13 Taizhou 3 
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14 Nantong 3 14 Wenzhou 6 14 Guangzhou 3 14 Wenzhou 3 

15 Wuhan 3 15 Xiamen 6 15 Hefei 3 15 Yantai 3 

16 Xiamen 3 16 Zhuhai 6 16 Lianyungang 3 16 Nantong 3 

17 Fuzhou 2 17 Chengdu 5 17 Nanchang 3 17 Wuxi 3 

18 Wenzhou 2 18 Chongqing 4 18 Ningbo 3 18 Huaian 3 

19 Wuxi 2 19 Jian 4 19 Taizhou 3 19 Xiangtan 3 

20 Xingtai 2 20 Ningbo 4 20 Tonghua 3 20 Wuhu 3 

21 Cangzhou 1 21 Qingdao 4 21 Yuncheng 3 21 Zhumadian 3 

22 Chengdu 1 22 Qingyaun 4 22 Zhengzhou 3 22 Qiannan 3 

23 Foshan 1 23 Shenyang 4 23 Yanbian 2 23 Jiaxing 3 

24 Harbin 1 24 Yangzhou 4 24 Foshan 2 24 Changchun 2 

25 Heyuan 1 25 Yantai 4 25 Fuyang 2 25 Changsha 2 

26 Jiaxing 1 26 Zhongshan 4 26 Guiyang 2 26 Chongqing 2 

27 Loudi 1 27 Fuzhou 3 27 Panjin 2 27 Foshan 2 

28 Ningbo 1 28 Hohehot 3 28 Shaoxing 2 28 Fuzhou 2 

29 Tongling 1 29 Langfang 3 29 Tianjin 2 29 Jilin 2 

30 Yiyang 1 30 Nanchang 3 30 Weifang 2 30 Jinhua 2 

31 Zhenjiang 1 31 Nantong 3 31 Xinyang 2 31 Ningbo 2 

32 Beihai 0 32 Taizhou 3 32 Yichun 2 32 Shenyang 2 

33 Binzhou 0 33 Chuzhou 2 33 

Zhangjiagan

g 2 33 Tonghua 2 

34 Changde 0 34 Hefei 2 34 Changzhou 1 34 Weifang 2 

35 Chaoyang 0 35 Heyuan 2 35 Deyang 1 35 Yichun 2 

36 Chenzhou 0 36 Huaian 2 36 Fuzhou 1 36 Nanping 2 

37 Chongqing 0 37 Jiangmen 2 37 Haikou 1 37 Datong 2 

38 Chuzhou 0 38 

Lianyunga

ng 2 38 Huizhou 1 38 Yueyang 2 

39 Dalian 0 39 Mianyang 2 39 Jinhua 1 39 Yancheng 2 

40 Ganzhou 0 40 Wuhu 2 40 Linyi 1 40 Fŭzhou 2 

41 Guiyang 0 41 Zhenjiang 2 41 Sanming 1 41 Mianyang 2 

42 Hefei 0 42 Beihai 1 42 Shenyang 1 42 Baicheng 2 

43 Hohhot 0 43 Binzhou 1 43 Wenzhou 1 43 Jian 2 

44 Huaian 0 44 Cangzhou 1 44 Wuhan 1 44 Guangyuan 2 

45 Jian 0 45 Changde 1 45 Xinzhou 1 45 Maanshan 2 

46 Jiangmen 0 46 Chaoyang 1 46 Yantai 1 46 Shaoguan 2 

47 Jilin 0 47 Chenzhou 1 47 Dalian 0 47 Jiujiang 2 

48 Jinan 0 48 Foshan 1 48 Jinan 0 48 Xuzhou 2 

49 Langfang 0 49 Ganzhou 1 49 Bozhou 0 49 Chaozhou 2 

50 Lianyungang 0 50 Guiyang 1 50 Nanping 0 50 Baoding 2 

51 Luoyang 0 51 Jiaxing 1 51 Nantong 0 51 Baoji 2 

52 Maoming 0 52 Jilin 1 52 Datong 0 52 Huainan 2 

53 Nanchang 0 53 Jinan 1 53 Yueyang 0 53 Changzhou 1 

54 Qingdao 0 54 Luoyang 1 54 Wuxi 0 54 Deyang 1 

55 Qingyaun 0 55 Maoming 1 55 Benxi 0 55 Fuyang 1 

56 Shaoguan 0 56 Quanzhou 1 56 Huaian 0 56 Guiyang 1 

57 Shenyang 0 57 Shaoguan 1 57 Xiangtan 0 57 Haikou 1 

58 Suqian 0 58 Suqian 1 58 Wuhu 0 58 Hefei 1 

59 Taian 0 59 Taian 1 59 Suzhou 0 59 Jinan 1 
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60 Taiyuan 0 60 Taiyuan 1 60 Chenzhou 0 60 
Lianyungan
g 1 

61 Taizhou 0 61 Tāizhou 1 61 Yaan 0 61 

Shijiazhuan

g 1 

62 Tāizhou 0 62 Tangshan 1 62 Zhumadian 0 62 Xian 1 

63 Tangshan 0 63 Urumqi 1 63 Changde 0 63 Xinyang 1 

64 Tianjin 0 64 Weifang 1 64 Yancheng 0 64 Yuncheng 1 

65 Urumqi 0 65 Weihai 1 65 Guangan 0 65 Zhengzhou 1 

66 Weifang 0 66 Xianning 1 66 Fŭzhou 0 66 Benxi 1 

67 Weihai 0 67 Xiaogan 1 67 Binzhou 0 67 Chenzhou 1 

68 Wuhu 0 68 Xuzhou 1 68 Meishan 0 68 Yaan 1 

69 Xianning 0 69 Yiyang 1 69 Mianyang 0 69 Changde 1 

70 Xiaogan 0 70 Yulin 1 70 Yiyang 0 70 Guangan 1 

71 Xuzhou 0 71 Zhangzhou 1 71 Anyang 0 71 Binzhou 1 

72 Yangzhou 0 72 Harbin 0 72 Baicheng 0 72 Meishan 1 

73 Yantai 0 73 Loudi 0 73 Jian 0 73 Yiyang 1 

74 Yulin 0 74 Tongling 0 74 Dingxi 0 74 Anyang 1 

75 Zhangzhou 0 75 Wuhan 0 75 Lishui 0 75 Dingxi 1 

76 Zhuhai 0 76 Xingtai 0 76 Jieyang 0 76 Lishui 1 

      77 Qiannan 0 77 Jieyang 1 

      78 Luan 0 78 Luan 1 

      79 Jiaxing 0 79 Kunming 1 

      80 Guangyuan 0 80 Xiangxi 1 

      81 Kunming 0 81 Chizhou 1 

      82 Xiangxi 0 82 Bengbu 1 

      83 Chizhou 0 83 Baishan 1 

      84 Bengbu 0 84 Xining 1 

      85 Maanshan 0 85 Huangshan 1 

      86 Baishan 0 86 Huzhou 1 

      87 Xining 0 87 Ganzhou 1 

      88 Huangshan 0 88 Jinzhou 1 

      89 Huzhou 0 89 Putian 1 

      90 Ganzhou 0 90 Xingtai 1 

      91 Shaoguan 0 91 Yinchuan 1 

      92 Jinzhou 0 92 Zhenjiang 1 

      93 Jiujiang 0 93 Xianning 1 

      94 Xuzhou 0 94 Huanggang 1 

      95 Chaozhou 0 95 Langfang 1 

      96 Putian 0 96 Weihai 1 

      97 Xingtai 0 97 Dingan 1 

      98 Yinchuan 0 98 Heze 1 

      99 Zhenjiang 0 99 Zhoukou 1 

      100 Xianning 0 100 Jiaozuo 1 

      101 Huanggang 0 101 Qingyuan 1 

      102 Baoding 0 102 Yanbian 0 

      103 Langfang 0 103 Huizhou 0 

      104 Weihai 0 104 Linyi 0 

      105 Dingan 0 105 Panjin 0 

      106 Baoji 0 106 Sanming 0 
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      107 Huainan 0 107 Tianjin 0 

      108 Heze 0 108 Wuhan 0 

      109 Zhoukou 0 109 Xinzhou 0 

      110 Jiaozuo 0 110 

Zhangjiagan

g 0 

      111 Qingyaun 0 111 Zhuhai 0 
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CHAPTER 3 : CITIES IN INNOVATION 

 

 

We seek to foster new ways of theorizing relational and network thinking across spatial 

scales and develop a conceptual framework that takes into account industrial clustering, 

organizational networking and technological relatedness to assess their impacts on knowledge 

creation by placing city at the heart of this process. Based on headquarters-subsidiary relationships 

in two sectors in China, we find that knowledge diffusion along the organizational network is 

significant but different for fast- (biotech) and slow-changing (technological equipment) 

knowledge-based industries. When tacit knowledge is paramount, it is more effective with 

spatially proximate collaborations; industries with codified knowledge are insensitive to physical 

distant. 

3.1. Introduction 

The integration of the network perspective with the geographic proximity framework is 

arguably one of the critical turning points in the study of innovation and economic growth 

(Balland, Boschma, and Frenken 2015; Glückler and Doreian 2016; Huggins and Thompson 

2013). In line with knowledge-based theory, both the geographic clustering of businesses and the 

weaving of network ties between them are considered crucial for accelerating flows of knowledge 

and technology to spark effective innovation. In particular, organizational networks -a set of 

interdependencies cemented by business relationships among companies of a same organizational 

entity- enable interactive learning and benefit innovative activities. If both geographic proximity 

and social networking facilitate the transmission and sharing of knowledge, then one would expect 
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knowledge diffusion to be particularly significant in cities as well as between cities owing to cities’ 

high density and to the thick communication channels between them. Although progress has been 

made on theories closely articulating innovation and organizational relations, the extant research 

is still too scarce and fragmented to have established consensus theories of knowledge spillover 

and innovation (Glückler 2014; Ter Wal 2014; Zhu, He, and Zhou 2017). This article, therefore, 

aims to test theories of innovation in terms of spatial proximity and network relations using a new 

data set on Chinese cities and high-tech industries. We focus on statistically quantifying the 

respective roles of geographic proximity and organizational networks defined by the headquarters-

subsidiaries relationships in fostering innovation in cities. Based on the activities of two sub-

sectors of high-tech manufacturing between 2008 and 2011, we examine the understandings of 

various theories of knowledge spillovers and innovation on the influence of geographic 

concentration and organizational networking across 264 cities.  

The concept of innovation is understood here in a narrow sense, as the creation of new 

ideas, new inventions or new business models to motivate technological advances. At the regional 

level, it features prominently in the theoretical elaborations of the Marshallian theory, singularly 

in connection with the process of knowledge spillover and how geographic proximity may 

facilitate it (Bathelt and Taylor 2002; Ellison and Glaeser 1997; Henderson 2010; Jaffe, 

Trajtenberg, and Henderson 1993; Porter 2000; Rosenthal and Strange 2004). However, this 

explains only part of the story when economic activities increasingly take the form of webs of 

interactions that may not necessary geographically proximity. In theories that position 

relationships and networking among firms as critically influential factors of the spatial 

organization of the economic system, network externalities provide the deciding impetus to actors 

in the form of economic benefits. Actors achieve scale economies and tap into greater opportunities 



60 

 

by pursing innovation via networks of collaboration and cooperation that extend beyond 

geographical limitations (Bathelt, Malmberg, and Maskell 2004; Camagni and Capello 2004). 

Especially, the very existence of business relations between firm headquarters and their 

subsidiaries is largely overlooked in economic geography. Our contention is that a more refined 

theorization of these organizational networks and their impacts on innovation both across various 

spatial scales and between different agents (individuals, firms, cities and regions) is needed for 

various industrial activities. 

In advancing our argument, we seek to place the city at the heart of the innovation process 

and then to investigate the modalities through which geographic proximity and organizational 

networks condition business innovation. Since regional scientists and geographers brought the 

spatial dimension into the theory of innovation, much has been written on the geography of 

innovation and on the micro elements that determine the geographical patterns of innovation. 

While it is now widely accepted that innovation is more likely to take place in cities or urban 

regions, an argument has been made that the city is indeed at the very heart of the innovation 

process. Specifically, it asserts that innovation is a social process that cannot be produced outside 

the context of cities and urban regions (Florida, Adler, and Mellander 2017). In a sense, it is not 

innovation in city but city in innovation. Cities are organically involved with innovative activities 

in generating new ideas and new organizational forms.  

In this paper, we observe the current innovation system and recognize the coordination of 

economic activities based on the interactions between firm headquarters and their subsidiaries. In 

doing so, we bring together insights on the central role of cities in the processes of innovation from 

the organizational perspective. Our theoretical framework rests on a two-fold assumption, namely 

that the location choice of headquarters and subsidiaries is based on the economic rationale to 
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maximize competitiveness, and that the organizational network of cities behind such behavior 

might play a role in knowledge spillovers beyond pure geographic concentration. Thus, in our 

empirical scenario, the knowledge production function (KPF) framework relates innovation inputs 

to new product output to validate various theories of knowledge spillover and innovation based on 

data on Chinese non-listed private high-tech manufacturing firms in the period of 2008-2011. 

Since the data span a short period, we rely on the spatial Durbin model (LeSage and Pace 2009) to 

study the marginal and joint effects of local clusters and organizational network on innovation. For 

this purpose, we adopt a novel spatial approach (Hazir, LeSage, and Autant-Bernard 2016) to take 

into account the co-existence of local clusters and organizational city network across spatial scales. 

The best model fit is determined by the optimization of the log-likelihood with respect to the 

combination of three components of the weight matrix (local, proximate, and distant). Our research 

questions are as follows. First, does the organizational city network contribute to knowledge 

spillovers across territories? Second, based on the different types of city interactions (local, 

proximate, and distant), what types of knowledge spillovers occur between cities, and what is their 

impact on cities’ absorptive and learning capacity in the city network context? Third, do 

differences exist in the network effects and types of knowledge spillovers across various industrial 

activities? The rest of the paper is structured as follows. First, a literature review on industrial 

linkages and knowledge creation is conducted. Next, the model and data description are 

introduced. Empirical results are presented in section four, followed by our conclusions.           

3.2. Theoretical background 

Starting with the new growth theory (Romer 1986), economic externalities stemming from 

knowledge and technology spillovers have featured prominently as catalyst of innovation and city 

growth. Several specific theories center on technological spillovers, whereby innovative 
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improvements in one firm may increase the productivity of the other firms without paying 

compensation (Glaeser et al. 1992). First, the Marshall-Arrow-Romer (MAR) externality and 

Porter’s industrial clusters focus on the spillovers between firms in the same industry in close 

geographic proximity. The geographic concentration of firms is a powerful conduit, which not 

only facilitates the movement of material and information but also facilitate the exchange of ideas, 

knowledge and social interaction (Camagni et al. 2013; Rosenthal & Strange 2004). In this sense, 

interactions among firms from the cluster and co-located geography deeply impact on firms’ 

creation of new technologies and products. The difference between MAR externalities and Porter’s 

model boils down to local competition. While MAR externalities address the local concentration 

based on internalized externalities (such as a monopoly), Porter supports local competition to 

increase the innovative pressure of firms.     

The second theory proposed on knowledge spillovers is that of Jacobs’ externalities (1969). 

Unlike the externalities from firms in the same industry, Jacobs’ idea emphasizes the spillovers 

from the diversity of activities located in large cities, which in turn gives rise to higher innovation 

in various industries. In other words, industrial variety in Jacobs’ theory is crucial in transferring 

knowledge and improving innovation, rather than industrial specialization (Glaeser et al. 1992). 

From an empirical perspective, a large body of literature is dedicated to distinguishing the impacts 

of MAR and Jacobs’ externalities on growth and innovation then draw comparisons between 

places that differ by the source of externalities. In other words, early theories of externalities 

assume that knowledge spillovers attenuate with distance. Thus, firms in same industry should be 

geographically close to each other in order to absorb the knowledge and each firm is assumed to 

have equal a priori opportunity to receive various spillovers (Rosenthal and Strange 2001).   
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Later, with the various range of the geographic scope of a cluster and the broad 

characterization, it was argued that knowledge spillovers are in fact uneven and that interactions 

are selective among firms in the industrial (Bathelt et al. 2004; Bathelt and Taylor 2002). More 

significantly, firms’ behaviors became more complex through various business forms of 

collaboration and cooperation, which allow them to break the local boundaries and move toward 

a wider range of spatial forms. All these started to raise doubt on whether geographic proximity 

still plays a controlling role in knowledge spillovers and whether other forms of network 

interactions may better explain innovation (Balland et al. 2015; Boschma 2005). It is in this context 

that an organizational network can be proposed as a construct of non-geographic proximity to 

explain the mechanism of interactive learning and its effect on innovation. An organizational 

network describes the membership of firms to the same organizational entity, for example, 

subsidiaries of the same parent company in high-tech manufacturing industry. In principle, because 

the exchange of knowledge requires strong ties to overcome uncertainty, an organizational network 

is believed to enrich the probability of learning and creation, especially in high-tech firms. It can 

reduce the risk with regard to ownership rights and ensure adequate profits from their own 

investments in new technology (Boschma 2005). 

While traditional theories identified the significance of geographic clustering and 

localization of industrial activity in the innovative economy, the network concept and evolution in 

economic geography has brought deeper insights into the field of knowledge spillover and 

innovation. The fundamental challenges brought by organizational networks to traditional 

understandings have two dimensions. First, organizational networks, especially in the high-tech 

manufacturing industry, refine the concept of technological relatedness and enhance the 

conceptualization in the space economy. Relational analysis is central to study the relatedness of 
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technologies and their roles in fostering regional growth and innovation (Boschma et al. 2012; 

Glückler and Doreian 2016). Technological relatedness is anticipated to effect knowledge 

spillovers both in short and long terms. It is argued that technological relatedness could transfer 

learning opportunities and to create more knowledge spillover to drive growth of surviving 

industries in the short term; it also plays a key role in opening new pathways for new industries in 

the long term. However, these results are mainly obtained at the macro level with a coarse 

characterization of technological relatedness (Boschma et al. 2012; Boschma and Capone 2016; 

Coe 2011; Essletzbichler 2015), such as using export data (Zhu et al. 2017). Thus, we know little 

about the mechanism of knowledge spillover in terms of various technological relatedness 

embedded in the micro organizational relations, such as headquarters and subsidiaries in high-tech 

manufacturing.  

Second, it is assumed that the organizational network makes a difference in knowledge 

spillover and learning among different entities. By the same token, while firms in the same 

organization may be located in different places, organizational networks may be leveraged to 

overcome spatial limitations and help to transmit knowledge among different firms at various 

spatial scales through its organizational ties. Hence, the network evolution allows knowledge 

spillovers to occur not only within local clusters but also beyond the local territory, according to 

theoretical foundations. As such, one would expect the structure and evolution of network ties to 

mediate the transfer of knowledge between different organizational nodes in the space. For 

example, there are studies with data on patent coauthorship (Cassi and Plunket 2014; Strumsky 

and Thill 2013) and investment activities between two countries (Bathelt and Li 2014; Glückler 

2014). However, the prevalent structure of headquarters and their subsidiaries in high-tech 

industries has so far been overlooked. In this context, in order to address the research gap on the 
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trade-off between the advantages of spatial clusters and the richness of distributed headquarters 

and subsidiaries, our conceptual framework builds upon the economies of externality and 

organizational network in knowledge transmission. By so doing, we emphasize the interplay 

between local clusters embedded in a network configuration and investigate the types and extent 

of knowledge spillovers through organizational ties across cities. 

3.3. Research design     

3.3.1. Model and an alternative weight matrix approach 

Our empirical investigation relies on a spatially extended Griliches-Jaffe knowledge 

production function (KPF) framework aggregated at the city level to evaluate innovation input and 

output in a single industry. Here, the focus is on the role of knowledge spillovers arising from the 

local territory or from cities being involved in an organizational network through which knowledge 

diffuses over time (Sheng and LeSage 2016).  A standard feature of KPF is to assume an 

augmented production function with value-added innovation output in city i (𝐼𝑛𝑛𝑖) expressed as a 

function of local standard inputs (industrial externalities) (Characteristicsi), internal research input 

specific to the industry (InternalInputi), and public expenditure in research (ExternalInputi). The 

Cobb-Douglas function is adopted for estimation and a baseline description shows as follows: 

𝐼𝑛𝑛𝑖 = 𝛼(𝐶ℎ𝑎𝑟𝑎𝑐𝑡𝑒𝑟𝑖𝑠𝑡𝑖𝑐𝑠𝑖)
𝛽1(𝐼𝑛𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑖)

𝛽2(𝐸𝑥𝑡𝑒𝑟𝑛𝑎𝑙𝐼𝑛𝑝𝑢𝑡𝑖)
𝛽3  .       (3.1) 

From a theoretical perspective, it is rational to assume that some inputs to the innovative 

production process formulated by (3.1) cannot be observed (Autant-Bernard and LeSage 2011). 

Hence, a Spatial Durbin Model (SDM) specification is considered to handle the observable and 

unobservable inputs in the spatial regression extension to KPF. After taking the log-linear form, 

equation (3.1) can be expressed as: 

𝑦𝑡 = 𝜆𝑊𝑦𝑡 + 𝑋𝑡−𝑘𝛽 + 𝑊𝑋𝑡−𝑘𝛿 + 𝑐 + 𝛼𝑡𝑙 + 𝑣𝑡  ,                           (3.2) 
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where 𝑦𝑡 is a column (logged) vector of innovation output on n regions at a particular time t and 

for a specific industry, W is an n*n weight matrix with three spatial components as defined in Eq. 

(3.3). 𝜆 is the parameter exhibiting the strength of dependence among cities’ innovation outputs, 

𝑋𝑡−𝑘  is a matrix of locally and time-varying non-stochastic variables of regional inputs to 

innovation, k is the time lag of effects on outputs, 𝛽  represents a vector of coefficients for 

innovation inputs, 𝛿  is the parameter indicating the strength of dependence among regions’ 

innovation inputs, c is a column vector of individual effects, 𝛼𝑡 is the tth element of the m*1 column 

vector of fixed time effects, 𝑙  is an n*1 constant term vector associated parameter α to 

accommodate situations when 𝑦 does not have a mean value of zero, 𝑣𝑡 is an n*1 column vector 

of identically and independently distributed error terms with standardized normal distribution. In 

this model, k = {1, 2, 3}, one to three years of time lag are assumed to allow for the generation of 

new product as a result of certain input conditions. Although the time lag of the dependent variable 

is applied, this model is still static with regard to the time lags of the dependent variable. This 

specification allows us to examine the impacts of intra-temporal knowledge ties among cities by 

quantifying the static effects of knowledge.  

In order to specify the weight matrix, we adopt an alternative approach proposed by Hazir 

et al. (2016). In this method, there are n regions (cities) and Wn*n is the weight matrix 

demonstrating the interaction structure that controls the regional knowledge spillover processes. 

W is further decomposed as a convex combination of three mutually exclusive components: W1, 

W2, W3, where W1 is the matrix of spatially proximate cities that do not have organizational 

relations; W2 shows the strength of organizational interactions among spatially proximate cities; 

and W3 indicates the strength of organizational links among distant city pairs. A more detailed 

explanation on the construction of matrices is given in section 3.3.3. W1, W2, W3 are all row-
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normalized so that W has row sums of one. λ1, λ2, λ3 are the corresponding scalar weights for W1, 

W2, W3, respectively, so W can be expressed as:      

W = λ1* W1 + λ2* W2 + λ3* W3                               (3.3) 

λ1+ λ2+ λ3 = 1 

The identification of the W matrix starts with the case where 𝜆1 = 1, and𝜆2 = 𝜆3 = 0, where 

dependence of output on regional knowledge spillover is assumed to be driven purely by local 

agglomeration. Later, with a step size of 0.1, we increment 𝜆2 and 𝜆3 using a looping procedure to 

calculate the log-likelihood for each of 66 possible combinations. At last, the model fit is compared 

with the changes in the corresponding scalar weights via the log-likelihood value (Hazir et al. 

2016).                     

Compared to the traditional method of spatial weight matrix, this approach provides several 

advantages in analyzing the effect of network behavior. First, it allows us to assess the relative 

strength of different dependence structures, which dovetails well with our research objectives. The 

matrix W1 and the scalar parameter 𝜆1 provide an overall assessment of the significance of various 

mechanisms accounting for local knowledge flows. The matrices W2 and W3 with associated 

parameters 𝜆2  and 𝜆3  help to distinguish the role played by proximate and distant partners in 

organizational network. Second, this approach also allows us to tease out and interpret direct and 

indirect effects based on conventional matrix derivatives for partials and cross-partials. Third, 

while this methodology was originally introduced on patent data to examine collaboration 

networks and regional knowledge creation, it can also be applied to explore other channels. Hence, 

this method provides us with an important and novel tool to extend the understanding of spatial 

diffusion of knowledge from the local scale to a scale that spans across cities (Hazir et al. 2016) 
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3.3.2. The sample and the data set 

As an empirical analysis, model (3.3) is implemented to quantify the effect of 

organizational network on the innovation-driven activity of Chinese cities in two high-tech sectors. 

According to the ownership modalities, firms (either listed or non-listed) can be differentiated into 

state-owned enterprises (SOEs), foreign-owned enterprises (FOEs), and privately-owned 

enterprises (POEs) (Zhu et al. 2019). Given our research purpose, POEs and FOEs are considered 

hereafter but SOEs are excluded from the analysis according to the assumption that firm behavior 

is determined by market.  We primarily draw from three data sources to prepare a data set on 

prefectural cities with high-tech firms within the 2008-2011 period, namely China Non-listed 

Enterprise Database, China Industry Statistical Yearbook, and China City Statistical Yearbook. 

There is consensus that different manufacturing sectors support knowledge flows via 

diverse mechanisms (labor mobility, trade, research collaborations, for instance) to some degree. 

As a result, the spatial roles played by geographic proximity and organizational proximity in 

network externality may also be quite varied. In this research, we specifically focus on two high-

tech sectors: pharmaceutical and biotechnology, and technology hardware and equipment industry, 

according to the 4-digit industry coding. This choice is motivated by two primary considerations. 

First, although these two sectors are knowledge-intense manufacturing, they stand at different 

stages of their life cycle, with high-tech equipment being a sector at an advantage stage of 

development and moving fast towards maturity, whereas the biotech sector is still accelerating its 

development with highly intensive knowledge (Krätke 2014). With these two sectors, we can 

represent a range of conditions and capture the differences in the knowledge flows in accordance 

with innovation and production activities.  Second, the number of link and node entities in the 

organizational networks of other high-tech sectors (such as computer manufacturing) can be quite 
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limited, which reduces the range of configurations that can possibly be featured, while the selected 

sectors have a more complete city network that spans across the country.          

In building the organizational city networks, we first sort out the firms that belong to each 

of the industry sub-sectors of technology hardware and equipment, and pharmaceuticals and 

biotech. Second, the organizational city network of each industry is built from the corporate 

headquarters and subsidiaries mapped onto their corresponding city locations. For domestic POEs, 

we directly assemble corporate affiliations to detect each firm’s hierarchy – such as headquarters, 

divisions, subsidiaries, affiliates, and joint ventures – and tie to city geography. The case of FOEs 

is handled a little differently. Here, we use the position of regional corporate centers holding the 

highest level of corporate functions in China; also, FOEs include enterprises from Hong Kong, 

Taiwan, and Macao, as recognized by the National Bureau of Statistics. After identifying the 

connections between subsidiaries and their headquarters, the geographies of these firms are 

aggregated into the city level for the sake of network analysis shaped by the different industrial 

sectors. 

Overall, as shown in Table 3.1, 264 of the 337 prefectural cities house facilities of either 

of the two industrial sectors in our study. Since our empirical scenario is static, the organizational 

networks of headquarters and subsidiaries are constructed for the single year of 2008. In 2008, 

there were 9,548 private firms in technology hardware and equipment, 631 of them being 

subsidiaries or plants located in cities different from the location of their headquarters. 4,548 firms 

were in the sector of pharmaceuticals and biotech, among which 539 subsidiaries were located in 

cities other than their headquarters. When firm data are integrated to cities, 76 cities are in the 

organizational network of the technology hardware and equipment sector, and 111 cities compose 

the pharmaceutical/biotech network. 
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Table 3.1: Summary of two sectors in the study 

  

Total 

firms 

Total 

cities 

Total 

subsidiaries 

Subsidiaries 

located in different 

cities from HQ 

Network cities with 

organizational links 

Pharmaceuticals and 

biotech 4,548 264 539 293 111 

Technology hardware and 

equipment  9,548 264 631 356 76 

 

There are several possible indicators of innovation, including patent applications, granted 

patents, or new product output (Sheng and LeSage 2016). Given the measurement limitation of 

patents that may not truly reflect the innovative activities in the industry, in this research, the 

dependent variable of city technological innovation is represented by the value of new product 

output in each year from 2009 to 2011. To draw a contrast in the space-time analysis of different 

knowledge flow externalities on innovation, we also estimate a benchmark model of overall city 

production where total product output is the dependent variable. As explained earlier, we use 

different time windows for the dependent variable and the independent variables due to the fact 

that knowledge creation and innovation take time. Considering data availability, we assume a lag 

of three years. Thus, the time range for the dependent variable is 2009-2011, while 2008 is used 

as a base for the explanatory variables as well as for the construction of organizational networks.  

Drawing on the regional innovation literature, we specify the model with four groups of 

knowledge input of cities as explanatory variables. The first measures the three key sources of 

externalities for city innovation, namely urbanization, diversity and specialization. We use the 

location quotient (LOC) of employment at the 4-digit manufacturing sector level to measure the 

industrial specialization of a city region. Urbanization, also known as Jacobs’ externalities, 

captures the diversified level of human activities and urban amenities, which may have either a 
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negative or positive impact on production and innovation activities. It is measured by the private-

sector employment in each city. Finally, as a concept that contrasts with specialization, diversity 

captures the differences in regional industrial diversity and is calculated by the share of 

employment in non-top-5 sectors of 4-digit industries (Renski 2011). The second group of 

explanatory variables pertains to financial inputs, including regional science expenditure and 

internal R&D input of each sector. Regional science expenditure is the public spending on all types 

of research activities, whereas internal industry R&D input is aggregated by firm-level R&D input 

to approximately capture the regional R&D input in specific high-tech sectors.  

The third and fourth variables are considered to capture the influence of human resources 

and export, respectively. We use the number of faculty members per university weighted by the 

number of universities rated ‘211 Project’ to indicate the human capital available. The designation 

‘211 Project’ encompasses flagship provincial universities for the purpose of priority to receive 

public financial support grow faster than other universities. It has been argued that export 

orientation may increase innovation to meet the higher standards in global markets (Sheng and 

LeSage 2016). With China being the largest export country in the world, we also consider the 

regional export value of each high-tech sector by aggregating the firm-level export value. All the 

variables are log-transformed based on the KPF function, so the coefficients estimate the elasticity 

responses of innovation output to changes in independent variables. 

3.3.3. Construction of spatial weight matrices 

To disentangle the effects of geographic proximity and social networking, the spatial 

weight matrices (W) are built upon the three matrices W1, W2, W3 mentioned earlier, for each sector. 

For this purpose, we first define contiguous cities using the rook criterion that a common edge 

exists between spatial entities representing them. For W1, 𝑊1𝑖𝑗
= 1 if and, only if, cities i and j are 
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geographically proximate (i.e., share a common border) and have no corporate relationships 

between headquarters and subsidiary firms. For W2,  𝑊2𝑖𝑗
= 1 if cities i and j not only share a 

common border but also have some organizational relationship. Finally, we define 𝑊3𝑖𝑗
= 1 for 

city pairs that do not share any physical borders but are organizationally connected with each other. 

All three matrices are row-standardized.  

It should be pointed out that the conditions on the three matrices are intended to be mutually 

exclusive. Also, although W1 is designed to account for spillover among city neighbors that lack 

any organizational network relations, it may also encompass some other latent social networking 

effects, such as social and institutional interactions (Balland et al. 2015). Finally, in line with a 

number of empirical studies (Balland et al. 2019; Bathelt et al. 2004; Jaffe, Trajtenberg, and 

Henderson 1993; Rosenthal and Strange 2003; Zhang and Wu 2019), we take the position that W1 

also comprises spillover effects that are entirely within the confines of the city boundaries, 

including both intentional (such as organizational interactions in the city) and unintentional effects 

(pure spillovers). When they are internal to the city, these effects covary with the spillover effects 

measured outside the city, so that the latter serve as proxy of the former and the mechanism of 

place-based relatedness is implicitly embedded in the W1 weight matrix. Figures 1 and 2 illustrate 

the spatial structure of the organizational networks for the two high-tech sectors.  

When estimating the spatial regression model, simultaneous feedback could arise from 

dependence relations (LeSage and Pace 2009). As in the case of SDM, model (3.2) can be further 

expressed as: 

                                𝑦𝑡(𝐼𝑛 − 𝜆𝑊𝑦𝑡
) = 𝑋𝑡−𝑘𝛽 + 𝑊𝑋𝑡−𝑘𝛿 + 𝑐 + 𝛼𝑡𝑙 + 𝑣𝑡 ,                          (3.4) 

                  𝑦𝑡 = (𝐼𝑛 − 𝜆𝑊𝑦𝑡
)

−1
𝑋𝑡−𝑘𝛽 + (𝐼𝑛 − 𝜆𝑊𝑦𝑡

)
−1

𝑊𝑋𝑡−𝑘𝛿 + (𝐼𝑛 − 𝜆𝑊𝑦𝑡
)

−1
휀                 (3.5) 
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    The inverse (In - 𝜆 W)-1 can be expressed as an infinite sequence: In + 𝜆 W + 𝜆 2 W2 + 𝜆 

3 W3 +···, 

𝑦𝑡 = 𝑋𝑡−𝑘𝛽 +  𝜆𝑊𝑦𝑡
𝑋𝑡−𝑘𝛽 + 𝜆

2
𝑊𝑦𝑡

2 𝑋𝑡−𝑘𝛽 + ⋯ 

+𝑊𝑋𝑡−𝑘𝛿 + 𝜆𝑊𝑦𝑡
𝑊𝑋𝑡−𝑘𝛿 + 𝜆2𝑊𝑦𝑡

2𝑊𝑋𝑡−𝑘𝛿 + ⋯ 

+휀 + 𝜆𝑊𝑦𝑡
휀 + 𝜆2𝑊𝑦𝑡

2휀                                           (3.6) 

The rows of weight matrix W are constructed to represent first-order contiguous neighbors. 

The matrix W2 thus reflects second-order contiguous neighbors, those that are neighbors to the 

first-order neighbors. In W2, second-order neighbors also include observation i itself; thus the 

weight matrix has positive elements on the principal diagonal. As a result, high-order spatial lags 

can lead to a connectivity relation for an observation i, which produces a small feedback effect 

where a change in the value of neighboring region j will feedback to region i. In line with the static 

cross-sectional model, the observations reflect a steady equilibrium outcome, as a result feedback 

effects are considered instantaneous and their interpretation should indicate a movement to the 

next steady state (Anselin 2013; LeSage and Pace 2009). 
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Figure 3.1: Organizational city network of pharmaceuticals and biotech 

  

Long-distant organizational network (W3) 

Spatially proximate organizational network (W2) 
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Figure 3.2: Organizational city network of technology hardware and equipment 

 

3.4. Results 

3.4.1. Spatial and network effects in regional pharmaceutical and biotechnology industry  

Estimation results on innovation in the pharmaceutical and biotech industry as measured 

by the value of new products from 2009 to 2011 are presented in Table 3.2 and Tables 3.4-3.7. We 

start with the analysis of relative weights of components of the spatial matrix W, to study the 

respective roles of spatial effects and network effects. Table 3.2 reports the combinations of 

weights (λ1, λ2, λ3) on spatial matrix W that have the ten highest likelihood values. The case of new 

Long-distant organizational network (W3) 

Spatially proximate organizational network (W2) 
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product output can be evaluated against the case of gross output (Table 3.3) to tease out the specific 

behaviors when innovation drives the economic activities. 

Several important results can be drawn from Tables 3.2 and 3.3. First, the best model fit 

for new product output is obtained when a relatively larger weight (at least 20% in Table 3.2) is 

assigned to spatially proximate city organizational interactions (W2) and to distant partners (W3), 

especially in the first two years after 2008; the balance of 50-60% is assigned to local externalities 

(W1). In contrast, for gross production, 90% of the weight is assigned to local externalities (W1) 

and only a small weight (10%) to spatially proximate city interactions (W2), as shown in Table 3.3. 

Second, the increasing weight of W2 and the decrease in W3 weight over time underscore the role 

played by a geographically organizational interactions (via W2) in regional knowledge creation in 

the biotech industry. In addition to the growing importance of spatially proximate collaboration, 

other types of proximate interactions also have a great impact on spatially proximate knowledge 

spillovers including non-organizational, face-to-face connections. As a result, reviewing the 

combination results of three weights for the production output of the biotech industry in each city, 

we have evidence that knowledge spillovers are overwhelmingly derived from spatial 

concentration where the tradition agglomeration economies are effective. However, the magnitude 

of the weights W2 and W1 implies that network externalities reflected by local interactions and 

interactions with proximate cities have great and growing impacts on knowledge creation and 

business success in the pharmaceutical and biotech industry. For gross production (Table 3.3), we 

find no meaningful changes in weights over time and local proximity-induced effects dwarf any 

others. Hence, our analysis demonstrates that, as far as innovation intensive activities of the biotech 

industry are concerned, externalities associated with a particular network of organizational 
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interactions operating within a tight geographic context stand out as a powerful form of 

technological relatedness and knowledge creation that channels city innovation.  

Table 3.2: Log-likelihood for new product output of pharmaceutical and biotechnology industry 

2009     2010     2011     

Rank λ1 λ2 λ3 log-lik Rank λ1 λ2 λ3 log-lik Rank λ1 λ2 λ3 log-lik 

1 0.5 0.3 0.2 -456.343 1 0.6 0.2 0.2 -456.026 1 0.5 0.5 0 -444.200 

2 0.5 0.4 0.1 -456.375 2 0.7 0.2 0.1 -456.801 2 0.6 0.3 0.1 -445.161 

3 0.6 0.3 0.1 -456.941 3 0.8 0.1 0.1 -457.715 3 0.7 0.3 0 -445.853 

4 0.6 0.2 0.2 -457.234 4 0.7 0 0.3 -456.983 4 0.7 0.2 0.1 -445.921 

5 0.5 0.5 0 -457.445 5 0.6 0.3 0.1 -456.067 5 0.8 0.2 0 -446.716 

6 0.5 0.2 0.3 -457.449 6 0.6 0 0.4 -456.379 6 0.8 0.1 0.1 -446.921 

7 0.7 0.2 0.1 -457.666 7 0.9 0 0.1 -458.647 7 0.7 0 0.3 -447.103 

8 0.6 0.4 0 -457.826 8 0.8 0.2 0 -457.678 8 0.6 0 0.4 -447.134 

9 0.7 0.3 0 -458.242 9 0.8 0 0.2 -457.796 9 0.8 0 0.2 -447.398 

10 0.4 0.2 0.4 -458.365 10 0.9 0.1 0 -458.569 10 0.9 0.1 0 -447.652 

 

Table 3.3: Log-likelihood for gross output of pharmaceutical and biotechnology industry 

2009      2010      2011     

Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik 

1 0.9 0.1 0 -345.347  1 0.9 0.1 0 -320.677  1 0.8 0.2 0 -330.706 

2 0.9 0 0.1 -345.430  2 0.9 0 0.1 -321.027  2 0.7 0.2 0.1 -330.939 

3 0.8 0.1 0.1 -345.640  3 0.8 0.1 0.1 -321.081  3 0.7 0.3 0 -331.053 

4 0.8 0.2 0 -345.825  4 0.8 0.2 0 -321.148  4 0.8 0.1 0.1 -331.189 

5 0.7 0.2 0.1 -346.330  5 0.7 0.2 0.1 -321.809  5 0.9 0.1 0 -331.272 

6 0.8 0 0.2 -346.482  6 0.8 0 0.2 -321.896  6 0.6 0.3 0.1 -331.631 

7 0.7 0 0.3 -346.804  7 0.7 0.1 0.2 -322.237  7 0.9 0 0.1 -332.077 

8 0.7 0.3 0 -346.804  8 0.7 0.3 0 -322.415  8 0.6 0.4 0 -332.210 

9 0.7 0.1 0.2 -346.968  9 0.7 0 0.3 -322.999  9 0.7 0.1 0.2 -332.357 

10 0.6 0.3 0.1 -347.541  10 0.6 0.2 0.2 -323.056  10 0.6 0.2 0.2 -332.500 

 

In order to further investigate the types of spillovers that operate among cities and their 

circumstances, we study the estimation results for direct, indirect, and total effects. In the SDM 

model, we cannot interpret the partial derivatives as measures of impacts of predictors, as in the 

ordinary least-squares regression model. Thus, we use , the summary measures of direct, indirect, 

and total effects to evaluate the sign and magnitude of impacts on new product output that are 
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determined by the changes in the explanatory variables. The direct effect provides a summary 

measure of the impact arising from changes in city i on the dependent variable in city i; the average 

indirect effect measures the impact of changes in neighboring city j on the changes of dependent 

variable in city i; the total effect includes both the direct and indirect effects (LeSage and Pace 

2009). Indirect effects are able to detect flows of knowledge arising both from spatial proximity 

and organizational networks, which can be explained in two ways: one shows how changes from 

inputs in all other cities j impact region i, or how changes to region i’s inputs influence all other 

regions (Hazir et al. 2016). In Tables 3.4-3.7, we report coefficient estimates and direct, indirect, 

and total effects that are statistically significant at 1% for new product activity in the 

pharmaceutical and biotech industry.  For benchmarking purposes, corresponding results for gross 

product activity are reported in Tables 3.8-3.11. 

After decomposing the total effects into direct and indirect effects, we find that the 

mechanism of knowledge spillovers between cities is mainly supported by internal R&D 

investment. There is statistical evidence of indirect effects that associate a one per cent change in 

region i’s R&D input to new product creation over all cities with spatial proximity or network 

relations in the order of 1.458% in 2009 (Table 3.5) and 0.910% in 2010 (Table 3.6). However, as 

the only statistically significant evidence of indirect effects, the magnitude of this effect of internal 

R&D input is found largest in 2009 and decreasing quickly across the three years. In other words, 

knowledge spillovers of spatially proximate and organizationally related cities depend on 

continuous internal R&D investments, otherwise the spillover effects decline each year to zero. 

When it comes to gross production, contrarily, variables other than R&D expenditure also show 

strong statistical evidence for indirect effects (Tables 3.9-3.11). There are indirect effects arising 

from regional science expenditures and export (with a negative impact). It implies that local 
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expenditures in science and R&D, and weak involvement in exports are the main knowledge 

spillover sources in production at spatially proximate and well networked cities. Unlike the 

significance of sustained investment in innovation, the role of internal R&D in gross production 

activities is increasing across the three years. This result is consistent with the nature of 

biotechnology revealed in previous findings that the industry fits the intensive R&D-based model 

(Malecki 2014). 

Direct effects are found to be consistent with previous empirical results. For new product 

creation, we find Science expenditure in a city is the only factor that has a significant direct effect 

in each of the three years of study, while Urbanization, Industrial Specialization and R&D 

investment are significant twice, and Export are significant once (Tables 3.5, 3.6, and 3.7). Table 

3.5 illustrates that a one per cent change in region i’s science expenditure will increase new 

products by 1.23%, which also reveals a very small feedback effect as it is slightly different from 

the coefficient of 1.25 in Table 3.4. Later, four variables present their strong statistical evidence 

for direct effects (Urbanization, Regional science expenditure, Specialization, and R&D) with a 

dominant influence arising from urbanization. By and large, the same set of strong and significant 

predictors have direct effect on gross production (Tables 3.9, 3.10, 3.11). 

When it comes to the total effects on production, internal R&D investment is the only 

element that has a positive and significant impact on new product output in the industry, and this 

impact is short lived (two years) in our static scenario. Table 3.5 shows that, in 2009, a one percent 

change in R&D input increases new product output in region i by 1.61 per cent (an elasticity 

response because of the log-transformation), but this effect shrinks to 1.24 percent in 2010. The 

factors are much more broad-based when we look at gross production in the biotech industry as a 

whole. Here, three explanatory variables positively and significantly impact production across all 
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three years. It is notable that a prominent role is played by regional science expenditures in 2009, 

whereas industrial specialization and the industry’s R&D input become more vital in the following 

two years. Table 3.9 shows that, in 2009, a one percent change in regional science expenditures 

increases output in region i by 2.1 percent (an elasticity response because of the log-

transformation), whereas R&D input in this industry is observed to have an increasingly higher 

impact in in 2010 and 2011 (Tables 3.10 and 3.11).  

Table 3.4: Estimation results of new product output of the pharmaceutical and biotech industry 

 2009  2010  2011 

Variable Coef. z-prob.  Coef. z-prob.  Coef. z-prob. 

Constant  1.032 0.350   1.642 0.155  2.289 0.026 

Urbanization  0.361 0.442   1.188 0.011  1.175 0.008 

Human capital -0.215 0.464  -0.524 0.072  -0.479 0.086 

Science expenditure  1.251 0.000   1.063 0.000  1.003 0.000 

Industrial diversity -0.349 0.665   0.355 0.658  0.651 0.399 

Specialization  0.365 0.241   0.867 0.005  0.944 0.001 

R&D  0.135 0.099   0.313 0.000  0.283 0.000 

Export  0.263 0.000   0.095 0.149  0.075 0.226 

W-urbanization  1.192 0.400   0.381 0.771  1.833 0.149 

W-human capital -0.406 0.595   0.236 0.719  -0.670 0.376 

W-science exp. -1.683 0.016  -0.914 0.145  -0.101 0.866 

W-industr. diversity -1.450 0.556  -0.181 0.933  -0.902 0.705 

W-specialization  0.427 0.613   0.038 0.959  0.401 0.603 

W-R&D  0.849 0.005   0.402 0.118  0.311 0.276 

W-export -0.256 0.236  -0.205 0.272  -0.497 0.011 

W-output  0.369 0.015   0.401 0.002  0.430 0.003 

log likelihood -456.343         -456.026   -444.200  

R-squared  0.419           0.371      0.396  

 

Table 3.5: Average marginal effects for new product output of the pharmaceutical and biotech industry, 

2009 

2009 direct effects indirect effects total effects 
Science expenditure 1.226*** -1.990 -0.764 

R&D 0.150  1.458**  1.609** 

Export 0.261*** -0.261  0.000 

Notes: *** 99% confidence level, ** 95% confidence level. 

 



81 

 

Table 3.6: Average marginal effects for new product output of the pharmaceutical and biotech industry, 

2010 

2010 direct effects indirect effects total effects 

Urbanization 1.225**  1.342 2.567 

Science expenditure 1.047*** -0.786 0.261 

Specialization 0.889**  0.648 1.537 

R&D 0.332***  0.910* 1.242** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

 

Table 3.7: Average marginal effects for new product output of the pharmaceutical and biotech industry, 

2011 

2011 direct effects indirect effects total effects 

Urbanization 1.245** 4.336 5.582 

Science expenditure 1.001*** 0.646 1.647 

Specialization 0.974** 1.437 2.411 

R&D 0.294*** 0.821 1.115 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

 

Table 3.8: Estimation results of gross output of pharmaceutical and biotechnology industry 

 2009  2010  2011 

Variable Coef. z-prob.  Coef. z-prob.  Coef. z-prob. 

Constant 2.762 0.002  3.146 0.000  4.439 0.000 

Urbanization 0.648 0.035  0.985 0.000  1.130 0.000 

Human capital 0.352 0.065  0.041 0.815  -0.341 0.059 

Science expenditure 0.597 0.000  0.640 0.000  0.686 0.000 

Industrial diversity 0.145 0.783  0.212 0.660  0.762 0.126 

Specialization 1.185 0.000  1.087 0.000  1.189 0.000 

R&D 0.102 0.057  0.308 0.000  0.274 0.000 

Export 0.125 0.003  0.023 0.558  0.001 0.987 

W-urbanization -0.144 0.820  0.074 0.901  -0.081 0.905 

W-human capital 0.128 0.686  0.168 0.555  0.268 0.415 

W-science exp. 0.768 0.011  0.441 0.106  0.155 0.610 

W-industr. diversity 0.123 0.906  -0.336 0.725  1.021 0.351 

W-specialization -0.103 0.768  0.007 0.983  -0.353 0.339 

W-R&D 0.331 0.003  0.375 0.001  0.370 0.003 

W-export -0.213 0.016  -0.102 0.209  -0.065 0.483 

W-output 0.331 0.000  0.233 0.008  0.368 0.000 

log likelihood -345.347  -320.677  -330.706 

R-squared  0.535  0.576  0.549 
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Table 3.9: Average marginal effects for gross output of pharmaceutical and biotechnology industry, 2009 

2009 direct effects indirect effects total effects 

Urbanization 0.656**  0.093  0.748 

Science expenditure 0.662***  1.397**  2.059*** 

Specialization 1.191***  0.413  1.604** 

R&D 0.122**  0.531**  0.653*** 

Export 0.114** -0.253** -0.139 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.10: Average marginal effects for gross output of pharmaceutical and biotechnology industry, 

2010 

2010 direct effects indirect effects total effects 

Urbanization  0.995*** 0.388  1.383 

Science expenditure  0.667*** 0.755**  1.422*** 

Specialization  1.095*** 0.322  1.417** 

R&D  0.328*** 0.562***  0.889*** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.11: Average marginal effects for gross output of pharmaceutical and biotechnology industry, 

2011 

2011 direct effects indirect effects total effects 

Urbanization  1.151*** 0.487  1.638 

Science expenditure  0.710*** 0.639  1.349** 

Specialization  1.208*** 0.149  1.358** 

R&D  0.298*** 0.718***  1.015*** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

To sum up, using new product output as dependent variable to capture the spillover effects 

from various indicators in the pharmaceutical and biotechnology industry, we see that spatial 

concentration is an important source of knowledge spillovers, but network externalities instilled 

by local interactions and interactions with proximate citied play a large and growing role. 

Innovation sets businesses apart since gross output is marked by the preponderance of proximity-

induced effects and the absence of long-distance network effects. Finally, internal R&D 

investment is the sole source of indirect effects that transmit knowledge between organizationally 

related cities. 
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3.4.2. Spatial and network effects in the technology hardware and equipment industry 

As innovation is fostered along different pathways across industries, we further investigate 

the space-time effects of spatial proximity and organizational networking for another high-tech 

industry, namely the technology hardware and equipment industry (including information and 

communication technology and semiconductors). Estimation results on innovation in the 

technology hardware and equipment industry are reported in Table 3.14, with the benchmark 

results for gross production in Table 3.18. Following the same research design as earlier, we report 

the different combinations of spatial weights for two measures of economic activities, new product 

output as an indicator of innovation and gross production as a benchmark. Several conclusions 

could be drawn from Tables 3.12 and 3.13. First, with the consideration of new product output as 

indicator of innovation, the best model fit is obtained when a large weight (70%) is assigned to 

distant network partners (W3) and a small non-zero weight to spatially adjacent cities (W2) since 

the second year in 2010 and continuing on for 2011. It explains the important role of organizational 

interactions taking place between distant cities in knowledge exchange in technology hardware 

and equipment industry. This is also consistent with the low impact (20%) of local externalities 

(W1). The small weights used to express the impact of neighboring cities may point out that, with 

the importance of industrial specialization, a network stretching over long distances may be more 

functional in terms of knowledge flows to fulfill and increase the probability of creating new 

product than those of adjacent city pairs. In this industry, spatial proximity is of little value to 

incubating innovation so that businesses are intent on expanding organizationally wherever human 

talent effective at unleashing innovation is available. Second, the impact of the type of spillovers 

was drastically different in 2009, where the preponderance of effects was tied to spatial proximity 

(70%), with 30% pointing to long-distance networks and no effect of proximate networks. This 

suggests that 2009 was a year of transition of the industry, with a shift of emphasis from the 
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geographic concentration to organizational networks operating at the scale of the national territory 

as the industry grew more mature. Third, overall output of the industry exhibited the reverse pattern 

over the same period, with the best model fit obtained with a large and growing weight (at least 

80%) assigned to local interactions (W1) and a small and dwindling weight for organizational 

network at long distance (20% and lower). Therefore, given the weights assigned to all three 

components, we conclude that organizational network beyond the spatial concentration is 

increasingly important for the value of new products in technology hardware and equipment 

industry, whereas more traditional production activities remain largely structured by spatial 

spillover effects. 

Table 3.12: Log-likelihood of new product output of the technology hardware and equipment industry 

2009      2010      2011     

Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik 

1 0.7 0 0.3 -401.041  1 0.2 0.1 0.7 -418.331  1 0.2 0.1 0.7 -406.249 

2 0.7 0.1 0.2 -401.071  2 0.2 0 0.8 -418.730  2 0.1 0 0.9 -406.332 

3 0.8 0 0.2 -401.080  3 0.3 0 0.7 -418.771  3 0.2 0 0.8 -406.552 

4 0.6 0.1 0.3 -401.087  4 0.5 0.1 0.4 -418.860  4 0.5 0.3 0.2 -408.031 

5 0.6 0 0.4 -401.138  5 0.4 0 0.6 -418.966  5 0.5 0.2 0.3 -408.080 

6 0.6 0.2 0.2 -401.206  6 0.5 0 0.5 -419.083  6 0.4 0.5 0.1 -408.134 

7 0.5 0.1 0.4 -401.270  7 0.6 0 0.4 -419.133  7 0.5 0.1 0.4 -408.205 

8 0.5 0.2 0.3 -401.285  8 0.3 0.6 0.1 -419.140  8 0.5 0 0.5 -408.294 

9 0.8 0.1 0.1 -401.310  9 0.4 0.5 0.1 -419.145  9 0.3 0 0.7 -408.305 

10 0.9 0 0.1 -401.334  10 0.5 0.4 0.1 -419.178  10 0.5 0.4 0.1 -408.307 

 

 

Table 3.13: Log-likelihood of gross output of the technology hardware and equipment industry 

2009      2010      2011     

Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik  Rank λ1 λ2 λ3 log-lik 

1 0.8 0 0.2 -417.728  1 0.9 0 0.1 -409.719  1 0.9 0.1 0 -419.141 

2 0.7 0 0.3 -417.736  2 0.9 0.1 0 -409.735  2 0.8 0.2 0 -419.178 

3 0.6 0 0.4 -417.781  3 0.8 0 0.2 -409.807  3 0.7 0.3 0 -419.236 

4 0.9 0 0.1 -417.820  4 0.7 0 0.3 -409.898  4 0.6 0.4 0 -419.378 

5 0.5 0 0.5 -417.918  5 0.8 0.2 0 -409.901  5 0.5 0 0.5 -419.381 

6 0.6 0.1 0.3 -418.167  6 0.8 0.1 0.1 -409.919  6 0.9 0 0.1 -419.452 

7 0.5 0.1 0.4 -418.209  7 0.6 0 0.4 -410.065  7 0.8 0.1 0.1 -419.492 

8 0.7 0.1 0.2 -418.226  8 0.7 0.1 0.2 -410.083  8 0.7 0.2 0.1 -419.552 
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9 0.8 0.1 0.1 -418.368  9 0.7 0.3 0 -410.162  9 0.6 0.1 0.3 -419.657 

10 0.4 0.1 0.5 -418.484  10 0.7 0.2 0.1 -410.199  10 0.6 0.3 0.1 -419.657 

 

Estimates for direct, indirect, and total effects on innovation are reported in order to more 

completely explain the spillover effects in this industry (Tables 3.15-3.17 and Tables 3.19-3.21). 

Specialization is the single indicator showing strong statistical evidence for indirect effects with a 

large positive impact on new product creation in technology hardware and equipment sector in 

2010 and 2011. Given the strong network feature of this industry where a large proportion of the 

spillover weight is imputed to the long-distance organizational network, the prevailing indirect 

effect of industrial specialization unravels the unique spillovers of specialization between city 

pairs. It is worth noting this effect is not statistically significant in 2009 when spillovers are mainly 

local and that it amplifies between 2010 and 2011. Likewise, statistical evidence is also found on 

specialization as a channel of knowledge and technology spillovers in gross production (Tables 

3.19-3.21), although the effect is weaker. Furthermore, export produces positive indirect effects 

on technology hardware and equipment products from the second year onward, but the same does 

not apply to new product output. In other words, being organizationally close to cities that are 

heavily involved in export of this specific industry may boost overall production, but not 

innovation or product derivatives. In general, our results are consistent with previous studies on 

the externalities of technological-related network that organizational proximity to region i is 

important to capture the spillover effects of industrial specialization 

When focusing on direct effects, consistent results are once again observed for innovation 

and gross production. Table 3.15 and 3.16 show positive direct effects of four variables from 2009 

to 2011 and these are urbanization, regional science expenditure, internal R&D investment in the 

industry, and export. Urbanization, as the indicator of market diversity and urban amenities, has a 

dominant impact on innovation in region i, but not on gross production in the industry. Small 
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feedback effects are found for four variables. There is no enough statistical evidence of direct 

effects associated with industrial specialization in region i. In contrast, specialization produces 

direct effects in production activity. 

The total effects (sum of direct and indirect effects) from a three-year view show that 

specialization and export keep generating significant and positive impacts both on innovation and 

gross production activity, although with different strength. For innovation, export shows a 

weakening effect over time, whereas specialization acquires the dominant role in industrial 

innovation from 2009 to 2011. Tables 3.15 & 3.16 indicate that one per cent change in export in 

technology hardware and equipment industry increases new product output in region i by 0.47 and 

0.39 percent in 2009 and 2010, respectively. From 2010 to 2011, a much higher elasticity is 

obtained from specialization in Tables 3.16 and 3.17. The highest impact of specialization is 

observed in the third year (2011) that a one percent change increases new product output in region 

i by 1.32 percent. Overall, industrial export activity produces a quick but small effect, whereas 

specialization in this particular industry has an increasing and much bigger impact on new product 

activities, which can largely be imputed to spillover effects through the organizational network.  

Table 3.14: Estimation results of new product output of technology hardware and equipment industry 

 2009  bio2 output 2010  Gross output 2011 

Variable Coef. z-prob.  Coef. z-prob.  Coef. z-prob. 

Constant  0.479 0.643   0.784 0.433   0.707 0.430 

Urbanization  1.254 0.001  
 1.211 0.002 

 
 1.061 0.005 

Human capital -0.008 0.973  
-0.067 0.797 

 
-0.126 0.605 

Science expenditure  0.736 0.001  
 0.835 0.000 

 
 0.739 0.001 

Industrial diversity  0.644 0.324  
-0.076 0.914 

 
 0.018 0.979 

Specialization  0.098 0.297  
 0.131 0.200 

 
 0.121 0.208 

R&D  0.317 0.000  
 0.379 0.000 

 
 0.345 0.000 

Export  0.266 0.000  
 0.213 0.001 

 
 0.228 0.000 

W-urbanization -1.028 0.293  
 0.250 0.862 

 
 0.488 0.794 

W-human capital  0.221 0.692  
 0.004 0.995 

 
 0.057 0.937 

W-science input -0.577 0.265  
-0.890 0.262 

 
-1.125 0.244 

W-industr. diversity -1.282 0.419  
-1.230 0.585 

 
-2.401 0.359 
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W-specialization  0.291 0.233  
 0.977 0.025 

 
 1.662 0.018 

W-R&D  0.056 0.788  
 0.352 0.349 

 
-0.046 0.939 

W-export  0.021 0.877  
 0.243 0.296 

 
 0.277 0.439 

W-output  0.375 0.001  
-0.154 0.352 

 
-0.384 0.037 

log likelihood   -401.041 
  

-418.966 
  

-406.249 
 

R-squared         0.639 
  

0.603 
  

  0.588 
 

 
Table 3.15: Average marginal effects for new product output of the technology hardware and equipment 

industry, 2009 

2009 direct effects indirect effects total effects 

Urbanization 1.236** -0.907 0.329 

Science expenditure 0.722** -0.481 0.241 

R&D 0.318***  0.258 0.577 

Export 0.270***  0.198 0.468** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.16: Average marginal effects for new product output of the technology hardware and equipment 

industry, 2010 

2010 direct effects indirect effects total effects 

Urbanization  1.221**  0.085  1.305 

Science expenditure  0.830** -0.894 -0.063 

Specialization  0.129  0.839**  0.969** 

R&D  0.378***  0.271  0.649 

Export  0.213**  0.179  0.392** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.17: Average marginal effects for new product output of the technology hardware and equipment 

industry, 2011 

2011 direct effects indirect effects total effects 

Urbanization 1.068**   0.052  1.120 

Science expenditure 0.747 ** -1.053 -0.306 

Specialization 0.105  1.219**  1.323** 

R&D 0.346*** -0.102  0.244 

Export 0.226**  0.128  0.355 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.18: Estimation results of gross output of technology hardware and equipment industry 

 2009  bio2 output 2010  Gross output 2011 

variable Coef. z-prob.  Coef. z-prob.  Coef. z-prob. 

Constant  0.953 0.412   1.257 0.277   1.774 0.148 

Urbanization  0.155 0.097   0.828 0.028   0.788 0.047 

Human capital  0.428 0.035   0.272 0.268   0.236 0.358 

Science expenditure  0.871 0.000   0.641 0.004   0.565 0.015 

Industrial diversity -0.280 0.688  -0.091 0.891   0.318 0.647 

Specialization  0.170 0.093   0.149 0.116   0.186 0.059 
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R&D -0.047 0.529   0.156 0.029   0.165 0.027 

Export  0.426 0.000   0.413 0.000   0.470 0.000 

W-urbanization  0.442 0.639  -1.793 0.026  -1.664 0.047 

W-human capital -0.443 0.432   0.281 0.569   0.598 0.253 

W-science input -0.232 0.640  -0.385 0.354  -0.375 0.382 

W-diversity -0.347 0.822   0.247 0.851   1.539 0.259 

W-specialization  0.664 0.004   0.426 0.031   0.402 0.050 

W-R&D -0.348 0.071  -0.218 0.180  -0.146 0.392 

W-export  0.092 0.492  -0.013 0.909   0.043 0.718 

W-output  0.146 0.168   0.491 0.000   0.359 0.000 

log likelihood   -417.728     -409.719     -419.141  

R-squared         0.657          0.657          0.669  

 

 

 

Table 3.19: Average marginal effects for gross output of the technology hardware and equipment 

industry, 2009 

2009 direct effects indirect effects total effects 

Science expenditure  0.871*** -0.145  0.725 

Specialization  0.186  0.796**  0.982** 

Export  0.427***  0.175  0.602*** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.20: Average marginal effects for gross output of the technology hardware and equipment 

industry, 2010 

2010 direct effects indirect effects total effects 

Science expenditure  0.645** -0.135  0.510 

Specialization  0.198**  0.939**  1.137** 

Export   0.431***  0.361**  0.792*** 

Notes: *** 99% confidence level, ** 95% confidence level. 

 

Table 3.21: Average marginal effects for gross output of the technology hardware and equipment 

industry, 2011 

2011 direct effects indirect effects total effects 

Science expenditure  0.565** -0.267 0.299 

Specialization 0.217** 0.693** 0.910** 

R&D  0.157** -0.139 0.018 

Export 0.483*** 0.321** 0.805*** 

Notes: *** 99% confidence level, ** 95% confidence level. 

  



89 

 

3.5. Conclusions 

Contemporary scholars regard industrial innovation and knowledge creation as the result 

of interactive learning processes both within and across firms to collaboratively solve particular 

production problems. Various theories have been proposed and discussed to better understand such 

processes. Our contribution is dedicated to overcoming the major myth in interpretation the local 

knowledge flows that were generally considered as the same of local knowledge externalities in 

earlier studies. This explanation overstates how much spatial constraints condition knowledge 

diffusion, while underestimating the role of other non-spatial forms of interactions such as the 

organizational network. In addition, the value and standard of innovation are not the same across 

the full spectrum of industries spanning from highly creative industries requiring fast-changing 

knowledge to slow-changing and more mature industries paying more attention to efficiency over 

creativity. Thus, the relationship between knowledge diffusion and innovation, on the one hand, 

and their modalities, on the other hand, is enhanced by a conceptualization that is sensitive to the 

context of each industrial sector, especially in knowledge-based industries.  

In this research, we advanced a new way to support the theorization on the generative 

effects of interactions and organizational relations on innovation via knowledge flows by placing 

the city at its heart. We empirically examined the effects of knowledge diffusion of organizational 

networking on a city’s innovation and production activities by taking into account that the 

innovation process involves learning in spatial concentrations as well as via city networks. These 

networks often support both physically and functionally proximate cities to learn and absorb 

knowledge from each other. Following the theoretical rationale of network externalities to 

innovation and production, we applied a spatial Durbin model to investigate high-tech 

manufacturing activities in two industrial sectors in 264 Chinese prefectural cities over the 2008-
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2011 period. We used a framework that highlights interaction between cities as a hybrid 

combination of three spatial scales to address our research concerns on the relative significance of 

physical proximity versus broader city relations based on organizational networks.  

Our findings suggest that the organizational network plays a role in transferring knowledge 

among cities, thus affecting both industrial activities of innovation and gross production output. 

However, extra attentions are required in explaining the effects and strengths for industries with 

different mode of knowledge creation and innovative activity, such as the two high-tech sectors in 

our study. For the pharmaceutical and biotechnology network, both proximate and distant 

interactions show a more extensive role in promoting new product activities than in gross 

production, but the effects of spatially proximate networks are only significant in the latter. Our 

results confirm the internal R&D investment as the only source of knowledge diffusion that flows 

among organizationally related cities with significant impact on city innovation. When further 

comparing the weights for proximate and distant networks of organizational cities, we find that 

the invention process of the biotech industry in city i takes advantage of knowledge exchange both 

from spatially proximate and distant neighbors only if there is a continuously high amount of 

interaction by means of internal R&D investment. For the technology hardware and equipment 

network, our findings suggest that spillover effects have shifted from being mostly based on spatial 

proximity to being driven by organizational network relations on great distance. Specifically, the 

organizational network affects innovative activity extensively through the flows of specialized 

employment at distant city pairs, whereas it has a small impact on gross production.    

From a policy perspective, previous research on technological relatedness suggests that 

regions or countries could break technological trajectories and jump ahead by investing in building 

up external linkages (such as organizational network) and in their own innovation ability. Instead, 
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we find that not all industries respond similarly and knowledge diffusion follows rather diverse 

spatial pathways through organizational networking, which depends on the core properties of 

pertinent knowledge and of the process of knowledge creation. The sharp differences found 

between the two high-tech sectors underscore that different types of knowledge bases may have 

different diffusion mechanisms. For industries that are in early development stages requiring tacit 

knowledge, such as biotechnologies, knowledge can be transferred both via short and long distance 

of the organizational network. However, the organizational flow of tacit knowledge requires 

continued investment by means of internal R&D input. Conversely, more mature industries with 

codified knowledge –like hardware and equipment industries-- are relatively insensitive to 

geographical distance; hence relations via distant organizational network play an important role in 

innovation. More importantly, although they are limited to a short time span, our spatial-temporal 

findings also suggest that the effectiveness of organizational connections in expanding innovative 

activities relies on distinct processes in two sectors. When the key element of innovation is the 

internal R&D investment in biotechnology, it requires a sustained investment to maintain the 

diffusion effects of organizational networks in promoting knowledge creation, otherwise such 

effects will decrease to zero shortly. In contrast, the organizational network of mature industries is 

strengthened by means of industrial specialization without the extra input each year.             

Finally, this study points to further research opportunities along this line of work. First, 

consideration of local knowledge flows including pure geographical and non-geographical 

dimensions at the local level will provide us deeper understanding of how knowledge is transferred 

through various types of interactions so that the local knowledge externalities can be further 

explained. Second, data on other types of interactions, such as social and institutional, is expected 

to overcome limitations of the present study to unravel the link between knowledge diffusion and 
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innovative activities. Third, comparing the modes of operation of domestic and foreign firms in 

the same economic space may reveal the risks and opportunities that contrasted familiarity with 

the domestic business environment may present. Finally, investigation covering a longer time 

period will allow us to develop a dynamic framework of knowledge creation and transformation, 

which will provide more evidence on building transformative innovation policy. 
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CHAPTER 4 : MULTINATIONAL CORPORATIONS' LOCATION CHOICE IN 

KNOWLEDGE-BASED ECONOMY 

 

 

In order to advance a new location choice theory, we argue that human capital or talent has 

become the primary determinant of location choice of high-tech multinational corporations in a 

knowledge-intensive economy. We apply a mixed discrete choice model to test hypothesis by 

estimating the relative importance of human capital, agglomeration and localization effects, and 

other traditional factors on firm location decisions. We use data from five leading economic 

regions of China. The findings are consistent with the hypothesis and show that human capital 

plays a much larger role than industrial localization in determining the location of high-tech 

multinational corporations. 

4.1. Introduction 

During the Fordist industrial era, industrial clusters were central to location decisions of 

corporations and their subsidiaries (Krugman 1990; Porter 2000). While industrial districts are 

considered an important feature in the traditional locational theory (Alonso 1960; Lösch 1954; 

Walter 1966) and while extensive efforts went into validating it with empirical evidence (Feldman 

and Audretsch 1999; Henderson 2003; McCann and Folta 2011; Nakamura 1985; Saxenian 2002), 

a radical shift in research has started to focus on the influence of talent and related factors building 

innovation ecosystem in the locational choice and spatial organization of firms in post-industrial 

capitalism. Meanwhile, the location choices of multinational corporations (MNCs) and their 

organizational changes have deeply altered the character of the world economy in recent decades 

(Nielsen, Asmussen, and Weatherall 2017). The recurrent state of flux in units of MNCs around 



97 

 

the world, especially the high-skill corporate units, is of particular interest to corporate strategists 

and economic geographers as they seek to renew their theoretical understanding of the locational 

processes of knowledge-based firms. This research intersects these lines of inquiry and seeks to 

better articulate the circumstances where human capital stands as a determining factor in the 

location theory of knowledge-based MNC firms in post-industrial economies. The empirical 

analysis studies the location of 1,526 high-tech MNCs from five economic regions in China to test 

a web of three related hypotheses within a mixed discrete choice modeling framework. 

In this vein, when it comes to the location choice of foreign direct investment (FDI), as for 

domestic enterprises, industrial districts have been the concept of reference. There has been intense 

scrutiny on the determinants of the location choice of FDI firms, such as the traditional factors 

including market size, taxes, industrial cluster, costs of inputs, international trade policies, 

exchange rate, infrastructure and so on (Alonso 1960; Blanc-Brude et al. 2014; Krugman 1979; 

Ohlin 1935; Vernon 1966). More recently, the emphasis has been drawn towards other 

considerations, among which the effect of economic institutions and cultural embeddedness of the 

host countries stands out (He and Zhu 2017; Nielsen et al. 2017). Economic institutions can be 

defined as the multiple components of institutions that provide opportunities and constraints to 

smooth the operation of a market economy. It includes contract enforcement, the legal system and 

government efficiency. The institutional viewpoint has been increasingly applied as a framework 

of business strategy (Dacin, Goodstein, and Scott 2002; North 1990)  and the behavior of MNCs 

in particular (Du, Lu, and Tao 2008).  

A recent debate in economic geography has sought to realign the respective merits of 

prevailing theories of industrial clustering and related theoretical extensions on economic and 

institutional structures (Florida 2003; Penco et al. 2020). It is particularly striking that 
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contemporary firms are much more footloose in locating their corporate headquarters and 

branches. The relocation of operations of large companies presents several inconsistencies with 

the traditional theories, which brings to light that cost minimization is not the most important 

corporate strategy any more, but the composite of talent or human capital plays an increasingly 

significant role in orienting their location choices (Duranton and Puga 2005). Although the 

prominence of talent or human capital to the thriving of the modern knowledge-based economy 

has been extensively documented (for instance, Bell 1976; Drucker 1994; Machlup 1962; Simon 

1998), it has been claimed that their role in the location and relocation of corporations necessitates 

a new paradigm in theory (Adler and Florida 2019). 

By the same token, we argue that the essential differences between traditional and new 

paradigms of location choice theory lie in the basic assumption of the labor in the economic model. 

From the traditional theoretical view, labor is considered as the cost of production and can be 

replaced by capital in the production function (Roncaglia 2005). As a result, cost minimization is 

a key to increase profit in industrial era. However, in post-industrial economy, as knowledge is 

internalized in the labor, labor is not only irreplaceable but also heterogeneous. Therefore, our 

hypothesis, or theoretical conjecture, is that when knowledge plays a pivotal role which makes 

labor heterogeneous, talent or human capital is the primary consideration in location choice, when 

two labors possess the same skill-set or quality of knowledge, then firms might tend to choose a 

place with lower cost.         

Drawing on the literature on the location choice of MNC units and their geographical 

implications, this research aims to advance the theory of MNCs’ location choice in knowledge-

based economies with a focus on human capital. We argue that, as talent or human capital has 

become a key factor of location and relocation of large corporations and headquarters, the location 
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choices of high-skill MNC manufacturing units will favor places with large concentrations of 

human capital. We also test whether the economic institution helps to shape the location choices 

of high-tech MNC firms when considering the role of human capital. In addition, we look at 

cultural affinities as a factor of MNC location in a host country. Specifically, China as a host 

country of inward FDI encompasses a rich variety of sources, such as Taiwan, North America, 

Europe, Japan, and South Korea. Different FDI home countries display diverse cultural distances 

to mainland China. For example, Hong Kong and Taiwan substantively share the same culture as 

mainland China, while Europe and North America are more distant from the Chinese culture. 

Therefore, we try to expand the understanding of how the interactive between economic 

institutions and cultural distance shapes the location of high-tech firms from diverse countries and 

regions.   

In this paper, therefore, we study the location of 1,526 high-tech MNC units in five 

economic regions in year 2008 to test these hypotheses. These MNCs are from five major countries 

and regions including Taiwan, Japan, South Korea, North America, and Europe. We estimate 

mixed discrete choice models that examine the relative importance of human capital, economic 

institution and cultural distance variables alongside measures that have been proposed in other 

studies of the determinants of location decision of MNC firms. The paper is structured as follows. 

The next section surveys the related location theories and discusses the empirical implications of 

competing theoretical frameworks. Then, data sources and the empirical methodology are 

described in the third section. Finally, we present our estimation results and discuss conclusions 

with directions for future studies.  
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4.2. Location, knowledge-based economy and MNCs 

In order to explain the locational decision of multinational firms, a large body of theoretical 

arguments have been expanded (Faeth 2009). In attempting to disentangle the drivers of location 

choices of high-tech MNCs, we focus on the essential theories articulated in connection with the 

evolving character of global economies and business goals. International trade has been studied 

for centuries and its related theories have been advanced to understand the phenomenon of FDI in 

the early stages of foreign investments. In addition to the pure economic factors, theoretical 

perspectives of agglomeration and institutions were later introduced to reflect a broader range of 

effects related to destination location characteristics. Finally, as many of the existing explanations 

have failed to explain the location choices of high-tech MNCs in recent decades, we discuss a new 

location theory focusing on large and knowledge-based corporations, which supports the 

cornerstone theoretical argument of this research that human capital or talent is the primary 

determinant of the location choice of high-skill MNCs in knowledge-based economy.   

Early studies on the economic interaction between countries were based on the classical 

trade theories of Ricardo (1871) and Ohlin (1933) and subsequent work specifically focusing on 

FDI was in the lineage of the New Trade Theory (Krugman 1979). In order to distinguish the 

location factors that have direct impact on business profits, research on ‘pure economic factors' 

mainly builds the FDI firm performance upon a cost and revenue model. On the costs side, most 

studies consider tax rate and physical infrastructure, as well as the wage levels; characteristics 

from destination location such as market size and human capital are on the revenue side behind 

FDI location choices. Overall, there are studies focusing on one or more of these variables, also 

others considering them as control variables (Faeth 2009).  
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In addition to the purely economic factors, attention has also been drawn towards three 

complex theoretical frameworks, namely industrial agglomeration, institutions, and global cities 

(Kim and Aguilera 2016; Nielsen et al. 2017). Since Marshall’s seminal work, study on the nature 

of the agglomeration externalities across industries has been extensive (Krugman 1990; Porter 

2000). Three dimensions are commonly recognized, namely industrial scope, geographic scope, 

and temporal scope.  Industrial scope encompasses localization economies (also known as intra-

industry agglomeration) and urbanization economies (known also as industrial clustering). The 

original agglomeration theory discusses how firms from the same industry clustered at the same 

location share knowledge and information, thus improving productivity. Therefore, irrespective of 

national sources, firms within the same industry supported by the geographic concentration could 

take advantage of knowledge spillover (Ciccone and Hall 1993; Krugman 1990; Rosenthal and 

Strange 2004). Thus, such theoretical perspective points to drivers of FDI location choice.  

In contrast to agglomeration theory, the study of globalization implies that it reinforces 

both geographical patterns of international business activities and new forms of industrial 

organization that makes the former possible (He and Zhu 2017). Global cities, for example, have 

been argued to have a strong ability to attract FDI (Goerzen, Asmussen, and Nielsen 2013). In this 

frame, global cities are different in ways of exhibiting good interconnectedness to both the local 

and the global market with a cosmopolitan feature and clusters of advanced producer services 

(Sassen 2011). These arguments lead to the position that inflow FDI is more likely to choose a 

place as a destination where there is a higher level concentration of foreign firms (Nielsen et al. 

2017). In this sense, globalization is viewed as one of the determinants for the uneven geographic 

distribution of FDI. 
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In spite of its continued overall prominence, agglomeration theory’s ability to encapsulate 

the guiding principles of how large knowledge-based firms make their location decisions is waning. 

Under the classical paradigm for location choice, the leading strategy of a corporation is to 

minimize costs including labor, land, rent, and taxes. Agglomeration theory is effective at 

explaining the activities of small and medium-size firms and how they take advantage of horizontal 

linkages within the cluster. Nevertheless, it tends to understate the economic power and to 

overlook the prerogatives of large corporations, which may show heterogeneity in location choices 

(McCann and Folta 2011; Rigby 2015). For example, an empirical study by Mariotti, Piscitello, 

and Elia (2010) finds that multinational firms are more willing to agglomerate with other MNCs 

and tend not to agglomerate with domestic companies in order to prevent knowledge leaking to 

other firms in the cluster. More importantly, there has been an increasing change in the geography 

of corporations that the locations of modern knowledge-based firms are less restricted by cost 

considerations, but more often driven by access to high-skill worker or talent in knowledge-based 

capitalism. Therefore, it has been argued that there is a need to recognize the essential resources 

that large corporations search for in locations, thus building a new paradigm of such changing 

geography of large and knowledge-based firms in a post-industrial economy (Penco et al. 2020). 

Among the related body of empirical studies, Adler and Florida (2019) provide strong 

evidence of the necessity of a new paradigm for location choice of knowledge-based corporations. 

In their research, they use the locations of corporate headquarters of the largest corporations on 

the well-known Fortune 500 list in 1955, 1975, 1996, 2000 and 2017, and find that headquarters 

location is mainly shaped by access to talent or human capital. Because human capital is unevenly 

clustered in certain cities and metropolitan areas, a firm will search for the desired specialization 

of the local labor force in order to keep up with specific competencies. In other words, knowledge-
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intensive firms will bear on relative higher costs in order to benefit from the source of human 

capital. As a result, larger corporations would ideally locate in a skilled city, which is usually a 

city with great access to universities and talent clusters (Adler and Florida 2019).        

In line with the extensive literature documenting the pivotal role of human capital in the 

knowledge economy (for instance, Bell 1976; Drucker 1994; Powell and Snellman 2004), research 

on the new economic geography concurs to find that human capital growth is unevenly distributed 

in a small number of skilled cities with advantages in both consumption and production (Berry and 

Glaeser 2005; Shapiro 2006). Especially, a select set of industrial sectors in high-level technology, 

finance, corporate strategy and marketing - which are strategically important to large corporates 

and global multinational firms - are even more spatially concentrated (Duranton and Puga 2005). 

These competitive environments rich in knowledge and talent sought after by large firms are 

unevenly distributed in space. In the agglomeration theory, such skilled labor is regarded as human 

capital shared among the firms that belong to the cluster; however, knowledge required by large 

corporations and multinational firms is confined to a few cities, such as cities with access to 

university assets (Florida, Mellander, and Holgersson 2015). This implies that the dimension of 

location decisions of large and small firms is assumed to be contrasted (Adler and Florida 2019).  

Although the new location theory mainly focuses on the geography of corporation 

headquarters of large firms, we argue for expanding the new theory and paradigm to encompass 

global MNCs location decisions. As knowledge has become the key element of long-term 

sustainable development across the world (Carrillo et al. 2014), by their nature, corporate 

headquarters and global MNCs share many similarities in location decisions and corporate strategy 

in the knowledge-based economy (Duranton and Puga 2005; Mariotti, Piscitello, and Elia 2010). 

Since specific kinds of talent or human capital are important to knowledge-intensive MNCs, 
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seeking to prioritize human capital over costs has become a core strategy when choosing their unit 

locations in other countries. Taking China as an example, the location of MNCs’ subsidiaries 

mainly concentrate in a few big cities where the costs of labor and land are higher than in the rest 

of the country. In 2008, 1,546 high-tech subsidiaries of global MNCs were located in only 54 large 

cities, which include both major urban centers such as Beijing and Shanghai as well as all the 

provincial capitals. We seek to unravel the essential resource these multinational firms are drawn 

to while considering where to locate among a potential set of over 300 Chinese cities.   

In addition to factors of human capital and agglomeration, the literature identifies other 

factors that bear on the location choices of MNCs in other countries. From the theoretical 

perspective of new institutional economics, business transactions are reflected in firms’ costs, for 

example, the cost of obtaining information and the contract writing and enforcing. Such costs can 

be reduced by the efficiency of institutional environments that provide the rules of interactions in 

societies and organizations (Coase 1937; North 1991). In the case of the MNCs' decision making, 

these costs can be minimized by an efficient institutional environment. Institutional environment 

broadly encompasses several dimensions: the state of contract enforcement, government 

intervention in business operation, and bureaucratic corruption based on the New Institutional 

Economics framework (Grosse and Trevino 2005). In general, beyond the traditional economic, 

political, and financial dimensions, an effective set of local institutions in both private and public 

sectors may help to improve firms’ embeddedness and to reduce their possible relocation. A region 

featured poor economic institutions is often functioning with weak contract enforcement, 

insufficient protection of property rights, heavy government intervention and a bad reputation for 

corruption.  
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In principle, contract enforcement depending on the state of law enforcement and legal 

institutions could provide adequate protection on technology transfer and well-defined property 

rights for firms. The rigor of law enforcement is also closely intertwined with the role of 

government intervention in business operations. On the one hand, firms may find that government 

help is an alternative when the lack of properties protection and a weak court system are endemic. 

On the other hand, increased government involvement in business can easy evolve into rent-

seeking and even corruption. The various models on how bureaucrats and entrepreneurs interact 

(Frye and Shleifer 1997) are quite enlightening in this respect. In the model of invisible-hand, the 

legal system is strong, government is well organized and generally free of corruption. Government 

function is restricted to providing basic public goods and some regulations while leaving most 

allocative decisions to the private sector. Court system is effective in dispute resolution. In the two 

alternative models of helping-hand and grabbing-hand, due to the large influence of government, 

there are rising of corruption and the ineffectiveness of courts. Under the helping-hand model, 

bureaucrats are intimately interacting with private economic activity by selectively supporting 

some firms, pursuing industrial policy and keeping close relationship with entrepreneurs. While 

the legal framework is deemphasized, bureaucrats adjudicate most disputes. Corruption exists but 

is relatively limited compared to the grabbing-hand model. Under the latter model, government 

has the strongest power to impose their will on business and there is no unified regulatory 

framework. Recently, empirical evidence finds that a U-shaped relationship exists between 

corruptions and each of the two models, where helping hand model shows higher level of 

corruption than grabbing hand (Petrou and Thanos 2014).    

All international business relationships depend on communications and negotiations 

between people of different cultures (Chandler and Graham 2010). Communication efficiency is 
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even more important when two countries are perceived to have large disparity in national cultural. 

As a result, the institutional environment is regarded as more influential for the success of in 

international markets. As for the case of China, while it has been suggested that government 

intervention in the form of a helping-hand might be appealing to culturally remote countries in 

reducing the communication costs, others have argued the opposite (Du, Lu, and Tao 2012). Hence, 

our analysis further tests the interplay between the role of institutions and cultural distance in 

attracting high-tech MNCs from different countries.     

4.3. Estimation model and sample data 

In support of our empirical analysis, the mixed discrete choice model (McFadden and Train 

2000; Train 2009) is implemented to study the effects of key hypothesized factors while 

controlling for other variables acknowledged in the literature. Compared to McFadden’s 

conditional logit choice model, the mixed logit model can fit random coefficients for alternative-

specific variables. This enables to relax the assumption of independence of irrelevant alternatives 

(IIA), which leads to a model that is more general than the conditional logit model.  

More specifically, the choice situation under study is that of an MNC choosing a location 

that yields the highest profit over any other possible city. Let yij be the profit of firm i operating in 

city j; it is assumed to be a function of observed attributes of locations:   

 yij = βixij + wija + εij                                                             (4.1) 

 

where βi are random coefficients that vary over cities, and xij  is a vector of location-specific 

variables of city j chosen by firm i. α are fixed coefficients on wij-1, a vector of location-specific 

variables. ε is a random term that follows a type I extreme value distribution. The mixed logit 
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model estimates the parameters of ƒ(β), for example, if the random coefficients βi follow a normal 

distribution,  βi ~ N (μ, Σ), then the mixed logit model estimates μ and Σ. 

The probability of firm i locating in city j is the standard logistic probability integrated over 

the density ƒ(β),  

Pi j=∫ Pij(β)ƒ(β) dβ                                                                      (4.2) 

The location j chosen by firm i must offer the highest profit over all other possible regions,  

               Pi j = Prob {yij  ≥ yik} for all  k ≠ j                                            (4.3) 

                   = {βixij + wijα + εij  ≥  βixik + wikα + εik} for all  k ≠ j 

Pi j  can be further simplified to the following logit expression: 

      Pi  j=  
e

βixij+wijα+εij

∑ e
βixij+wijα+εij A

j=1

                                                                 (4.4) 

where A is the set of location choices faced by firm i. The model estimates how each city 

characteristic increases or decreases the chance that a city will be chosen rather than any other 

possible cities.  

Our research focuses on high-tech MNCs in four subsectors: pharmaceuticals and biotech; 

office and computing machinery; radio, TV and communications equipment; as well as medical 

equipment, precision, and optical instruments. Also, to address a consistent set of choice 

considerations, we do not study the case of firms that are invested by foreign individuals, firms 

jointly owned by a Chinese government entity and some foreign company, nor firms set up with 

venture capital. Since there is no official data on the activities of high-tech MNCs in Chinese cities, 

we compiled data from the China Industry Statistical Yearbook (2008) according to the industrial 

code, types of holding and ownership of MNCs. First, we use the four-digit Standard Industrial 

Classification (SIC) code reported in the dataset to identify the high-tech firms in the four targeted 

subsectors. There are 19, 957 high-tech manufacturing firms including domestic, Taiwan, Hong 
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Kong, Macau, and foreign invested. Second, information on holdings and ownership allows us to 

identify firms co-owned or co-invested by the Chinese government and domestic corporations. 

After excluding these firms, approximately 4,000 firms are distinguished as fully invested by firms 

or individuals from Taiwan, Hong Kong, Macau, and other international countries. Third, we use 

the geographic location of each firm to aggregate at the city level for the further analysis. Despite 

having on hand information on holdings and ownership, our data source does not report the country 

origin of FDI firms. As a substitute, we used web scrapping to identify the country origin of each 

firm. In addition, we also searched each firm’s public website to validate the ownership and 

national origin. After filtering out firms owned by foreign individuals and invested by venture 

capital, the sample is further reduced to 1,743 establishments in 121 cities.  

To understand the location decision factors of high-tech MNCs in knowledge-based 

economies, we focus on MNC units from the five most important MNC source countries/regions 

in five major urban regions of China. The analysis is conducted on the subset of the broader sample 

that is comprised of 1,526 high-tech MNCs out of 1,743 high-tech establishments that originate 

from Taiwan, North America (US and Canada), Europe (EU and associated countries), Japan and 

South Korea, and are located in the following five leading economic regions: the Yangtze river 

delta, the South Coast, the Shandong peninsula, the Jing-Jin-Ji Metropolitan Region (Beijing-

Tianjin-Hebei), and the Northeast. Fig. 4.1 presents the geography of the five regions as well as 

the 37 cities they are comprised of. The distribution of MNCs by country of origin and by Chinese 

regions is shown in Table 4.1. As described in the table, the Yangtze delta region contains the 

largest number of the MNCs (53%) in our sample and 77% of MNCs in total are located in the 

regions of the Yangtze delta and the South Coast.   
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Region Cities 

Yangtze delta Suzhou Shanghai Wuxi Hangzhou Ningbo Changzhou 

 Nanjing Jiaxing Nantong Taizhou Shaoxing  
South coast Xiamen Fuzhou Zhangzhou Shenzhen Dongguan Guangzhou 

 Huizhou Foshan Jiangmen Zhuhai   
Shandong 

peninsula 
Qingdao Weihai Yantai Jinan Tai’an Weifang 

 Zibo      
Jing-Jin-Ji Beijing Tianjin Langfang Baoding Cangzhou Tangshan 

Northeast Dalian Shenyang Anshan       

Figure 4.1: Map of 5 regions as location of MNCs  

Table 4.1: Distribution of high-tech MNCs across 5 regions in China 

  

North 

America Europe    Japan 

South 

Korea Taiwan 

Yangtze delta 105 149 244 27 288 

South coast  51   48   82 19 159 

Shandong 

peninsula   9   15   15 86    7 

Jing-Jin-Ji 32   48   32 37  10 

Northeast   2   10   33   8   3 



110 

 

 

The main independent variables that enable us to test the research questions presented in 

the introduction of this article include factors of human capital, public institutions, and cultural 

distance. These variables are now discussed, followed by several control variables that assure a 

well specified model.     

As a measurement of human capital in each region, we aim to take the talent pool associated 

with innovation and knowledge creation at the best institutions of higher learning. Empirical work 

on this topic has often relied on measures of undergraduate students or above the bachelor degree. 

These measures can be underestimated, particularly across industries, and are at different levels of 

analysis. This paper uses as a proxy the number of full-time faculty members (from lecturer to 

professor) weighted with so-called 211-project institutions in the region. A select number of 

flagship provincial universities received this designation in 1995 for the purpose of further 

strengthening their research standing and accelerating their growth through a prioritization of 

public financial support. Therefore, the human capital level of a region is given by: 

 

                     Human capitali = Log [ (Ti / ti) * pi]                                             (4.5) 

where Ti is the total number of full-time faculty members (from lecturer to professor) in region i, 

ti is the total number of institutions of higher education in that region, and pi is the total number of 

211-project institutions in each region (pi < ti). The list of 211-project institutions is obtained from 

the website of Ministry of Education of PRC. Ti and ti are sourced from the Statistical Yearbook 

of Chinese Cities 2008. 

The second set of variables pertains to public institutions and their impact on business 

practices; it is secured from the Investment Climate Survey (ICS) 2005 conducted by the World 
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Bank1 . Based on the face-to-face interviews with managers of sampled private firms in the 

manufacturing industry, the ICS aims to provide a range of qualitative and quantitative 

information. The purpose of this survey is to track changes in the business environment in the 

private sector over time. This survey has been conducted twice (2005 and 2012) with questions on 

the company’s operations and growth, and business relations with clients and local 

administrations, and so on. The sample of interviewed firms was selected using stratified random 

sampling according to industry, establishment size, and geographic region. Only the 2005 survey 

is used because firms in a more limited number of cities were surveyed in 2012. The 2005 sample 

included 10,042 manufacturing firms in 120 prefectural cities; among these, 990 firms are from 

Hong Kong, Macau, and Taiwan and 1,398 enterprises are from other foreign countries. Given our 

concern with economic institutions and cultural differences, we only use the feedback from the 

latter 2,388 establishments to apprehend the business environment faced by MNCs in China; 

responses are aggregated to regions according to their city location. Thus, we select the ICS 

questions pertaining to the relationship with other companies and with government agencies, 

particularly those with local jurisdiction. 

As legal institutions and law enforcement are the key components, we construct an 

indicator on business contract enforcement based on two questions on the ICS survey addressing 

this matter. From the question on ‘the percentage that employed lawsuit to resolve business 

disputes’, we obtain the average proportion of cases where a lawsuit is used to resolve disputes 

between a company and their dealers/clients and suppliers for each region. Next, the proportion is 

weighted by the average confidence companies have in the local legal system, which is obtained 

from the question “In the case of commercial disputes with the suppliers, clients or subsidiaries 

                                                           
1 https://microdata.worldbank.org/index.php/catalog/602 
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in your province, how much confidence do you have that the disputes will be settled with justice 

by the local legal system?” (Percentage from 0 to 100).  As shown in Table 2, the minimum value 

of 6.779% is from the Shandong peninsula whereas the Yangtze region shows the largest value on 

the measure of business contract enforcement, with 8.603%.  

The indicator of government intervention in the management and operation of the 

businesses is also constructed on the ICS survey data. In the survey, there is a question asking 

“how much autonomy management has over each of the three aspects of production, investment, 

employment without government interferences (1=0-19%; 2=20-39%; 3=40-59%; 4=60-69%; 

5=70-79%; 6=80-89%; 7=90-99%; 8=100%).” We use this question to construct the 

measurement of government intervention in each region. First, the average score on each of the 

dimensions of production, investment, employment is calculated for each region; second, the three 

scores are summed and used as the overall score of government intervention; third, to facilitate 

interpretation, we inverse the measurement scale by subtraction the score from the maximum of 

24 (8 for each dimension). As a result, the higher the indicator, the more government intervenes in 

business practices in the region. The highest score of government intervention is 3.214 for the 

Northeast region, whereas the lowest of score of 1.709 is in the Shandong peninsula (as shown in 

Table 4.2). 

The notion of corruption encompasses a tremendous complexity and it is apprehended 

differently according to the national culture (Chandler and Graham 2010). Given data availability, 

we focus on the risk of rent-seeking and construct a score based on two ICS questions. The first 

score counts the number of firms that had loans using the question “Do you have loans from banks 

or other financial institutions” while the second gives the number of firms that “need to make 

informal payment to staff from the banks or lending institutions”. We calculate the proportion of 
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firms having loans in each region that made informal payments weighted by the percentage of 

informal payments in each region out the total informal payment of five regions. As presented in 

Table 4.2, the highest score on rent-seeking is 0.10 (in the Shandong peninsula) and the lowest 

score of 0.05 is in the Yangtze delta region. 

We adopt Hofstede’s (2011) cultural values framework to account for the cultural 

differences between MNC home countries and China. The Hofstede model 2  provides 

comprehensive insight on working values influenced by national culture, which has been widely 

applied in both academic and management settings. It consists of six dimensions that distinguish 

countries; the score for each dimension ranges from 0 to 100. These six dimensions include: (1). 

power distance index (PDI), illustrating how a society handles inequalities among people; (2). 

Individualism versus collectivism (IDV), which denotes how loosely-knit the social fabric is; (3). 

Masculinity versus femininity (MAS), representing preferences for achievement and cooperation; 

(4). Uncertainty avoidance index (UAI), expressing how a society copes with the inherent 

unpredictability of the future; (5). Long-term orientation versus short-term normative orientation 

(LTO), addressing societies’ horizon when planning for the future; and (6). Indulgence versus 

restraint (IVR). Based on the scores of Hofstede’s six dimensions, the cultural difference between 

two countries is calculated by the following function (Ng, Lee, and Soutar 2007): 

CD =
1

n
∑ {(IiA-IiB)2/Vi}

6
i=1                                                                 (4.6) 

where CD is the cultural distance between countries A and B, IiA  is Hofstede’s score on ith 

dimension of country A and IiB is the same dimensional score of country B. Vi is the score variance 

of all study countries on the ith dimension, and n (here n=6) is the number of cultural dimensions. 

                                                           
2 https://www.hofstede-insights.com/models/national-culture/ 
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For the European countries, we first calculate the CD for each country between China, including 

France, Germany, Switzerland, Denmark, United Kingdom, Sweden, Netherlands, Italy, Spain, 

Norway, Finland, Austria, and Belgium. Then, the values are weighted by the 2008 population of 

each European country based on the data from World Bank. As a result, the arithmetic average 

value of CD = 4.015 is used for the overall cultural distance between Europe and China. Similarly, 

the arithmetic average value of CD of North America, including U.S. and Canada, is 4.747. At 

last, the CD between China and Japan, South Korea, and Taiwan are 2.307, 1.491, and 1.315, 

respectively. Although physical distance can reasonably be expected to be influential in the sheer 

magnitude of the cultural distances between two countries, there is no consensus on how to 

measure the physical distances between any two countries/regions (particularly large ones like the 

United States and China), which may further lead to the misspecification of the spatial dependence 

structure in the model. Therefore, our measurement of cultural distance is assumed to subsume the 

correlation between geographic and cultural distances. 

In addition, for a fully specified model, we also include several control variables. First, we 

add a variable of industrial structure. Specifically, the location quotient (LQ) of employment in 

the studied 4-digit high-tech manufacturing sectors measures the high-tech industrial localization 

across the five regions:  

LQ=(eir/er)/(Ei/E)                                                                  (4.7) 

where eir is the employment in region r in 4-digit high-tech sector i, er is the employment in region 

i in all industries, Ei is the employment of all five regions in the same high-tech sector i, and E is 

the total employment of the five regions in all industries. 

We also consider the effect of the agglomeration of MNCs from the same home region in 

Chinese urban regions on the location decisions of firms: 
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Agglomeration_MNCsrm = (nmr/nr) / (Nm/ N)                                                       (4.8) 

where nmr is the number of high-tech firms from home country m in region r, nr is the number of 

high-tech MNC units in region r, Nm is the total number of high-tech units from home country m 

across all five urban regions, and N is the total number of high-tech MNC units of all regions.  

Finally, we include the annual volume of civil aviation passenger traffic (10k people) at all 

airports in a region, which is sourced from the Statistical Yearbook of Chinese Cities 2008, to 

indicate the importance of airport infrastructure in support of the knowledge-based economy.      

Table 4.2: Descriptive statistics on variables 

Variable  Mean Std. Deviation Minimum Maximum 

Human capital 3.949 0.398 3.450 4.334 

Economic institutions     
Contract enforcement     7.532 0.742     6.779      8.603 

Government intervention 2.567 0.781 1.709 3.214 

Regional corruption 0.072 0.017 0.054 0.096 

Cultural distance 2.775 1.535 1.315  4.747 

Localization 0.902 0.122  0.771  1.034 

Agglomeration_home     
Europe   0.760   0.452   0.272   1.432 

North America   0.396   0.303   0.066   0.805 

Japan   0.438   0.317   0.105   0.922 

Taiwan   0.350   0.425   0.042   0.939 

South Korea   2.189   1.978   0.859   5.552 

Airport   5.886   0.768   4.746   6.622 

  

4.4. Results 

Table 4.3 presents the results of our statistical analysis of the high-tech MNCs’ location 

choices among urban regions of China and of their determinants. To alleviate the effects of 

multicollinearity when the three institutional indicators are jointly used as predictors in the model 

(variance inflation factor over 2), we study the influence of these factors via three separate models 

of location choices, with one institutional indicator in each. Except for one parameter that is not 
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significant at 90%, all other estimates are statistically significant at the 95% confidence level or 

higher. Table 4.4 further estimates the direct marginal effects of each indicator on the predicted 

probabilities across the five urban regions. In other words, they indicate how the probability of 

choosing one region changes with the change of each region-specific variable. Our core hypothesis 

is that the geography of knowledge-based MNC firms in Chinese cities is determined by 

concentration of human capital. We are also interested in how the cultural distance between the 

MNC home country and mainland China impacts the location decision of MNCs in China in 

response to local economic institutions.  

Estimation results show that human capital is a statistically significant factor of MNC 

location choices, and its effect is positive; in other words, the higher the concentration of human 

capital in an urban region, the more likely this region is selected by an MNC, all other factors 

being held constant. The evidence in Table 4.4 also indicates that human capital has the largest 

marginal effect on the probability of choosing a region over any of the others among all the factors 

considered. This is in fact a very general result of our analysis as it applies to all five urban regions 

under the three model specifications tested. Furthermore, the marginal effects of human capital 

and localization can be compared to evaluate the relative merit of the human capital hypothesis 

against the traditional perspective rooted in localization effects. Estimation results in Table 4.4 

show that the impact of human capital always exceeds that of localization. It does so by a wide 

margin that can be as high as fivefold, particularly with model specifications (1) and (3). In the 

Yangtze delta region, the estimate of the direct average marginal effect of human capital taking 

government intervention into account (Model (1)) shows the highest value of 0.802 across the 

table, indicating a sharp and positive response in the probability of choosing this region if human 

capital in this region increases. The marginal effect of human capital is noticeably lower for the 
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South coast region (0.612 in model (1)), and even more so in the remaining three regions (ranging 

between 0.326 and 0.122). These trends carry over to the other models. It conveys the equilibrium 

development mode of human capital both in quantity and quality in the Yangtze region compared 

to other regions, which in turn helps to build a better environment and opportunity of collaboration 

and cooperation for companies in the region. Overall, with various economic institutions effects 

accounted for, human capital remains the factor with the strongest direct effect in each region. In 

this respect, our results indicate that as the essential structure of the economy has drifted towards 

knowledge-based activities globally, access to human capital has become pivotal for high-skill 

corporations and such a transformation now molds the location choices of MNCs in other 

countries. The empirical evidence provided by the model strongly supports that the probability of 

a high-tech MNC choosing a place to do business increases as human capital expands.  

Government intervention in business practices has a positive impact on MNC location 

decisions, whereas the interaction between government intervention and cultural distance 

influences negatively. It demonstrates that regional government intervention in business is valued 

by MNCs and helps attract MNC business units, but also that its effect is weaker for MNCs from 

home countries/regions that are culturally more distinct from mainland China. In other words, local 

bureaucrats in China are perceived overall as extending a helping hand in business operations, 

such as nurturing a supportive business environment for MNCs and promoting their entry. The 

South coast and the Yangtze region are better positioned to capitalize on bureaucratic 

interventionism than other regions (Table 4.4). However, the success at turning these interventions 

into the entry of high-tech MNCs varies according to the source country. MNCs from 

countries/regions with closer cultural affinities more readily take advantage of government 

interventions than those MNCs from source countries/regions further away from China. Because 
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of bureaucratic interventions, the South coast and the Yangtze region are more likely to lose out 

than other regions when seeking to attract business from more culturally different countries. 

As hypothesized, for high-tech firms, contract enforcement shows a positive impact on 

MNC entry in an urban region. As stringent contract enforcement hinges on the dependable 

business environment framed by legal institutions and law enforcement, it significantly affects the 

location choices of knowledge-based MNC corporations. However, the marginal effect of contract 

enforcement is very small in all urban regions. In addition, the non-significant interaction term 

between contract enforcement and cultural distance suggests that the stringency of contract 

enforcement is equally influential for all high-tech MNCs across the various country sources.  

Besides, our findings on corruption are mixed. First, overall, corruption has a significant 

negative impact that deters high-tech MNC entry in an urban region. However, given the positive 

role of the interplay between corruption and cultural distance, we find that MNCs from countries 

with close cultural affinities with mainland China are more sensitive to corruption than others, and 

adjust their locational decisions accordingly. In other words, western countries from Europe and 

North America show less concern for a culture of corruption in a region. Interestingly, prior 

research found the link between corruption and FDI to be ambivalent. Studies have reported results 

in opposite directions. From one body of research, it has been argued that since the US Foreign 

Corrupt Practices Act (FCPA) passed in 1977 and with similar restrictions on bribery in the 

Organization for Economic Cooperation and Development (OECD), the corruptibility of foreign 

government officials would have no effect on the differential attractiveness of countries (Chandler 

and Graham 2010). Another stream of research (Egger and Winner 2005; Leff 1964) holds the 

opposite view that practice of corruption acts has been adopted by many large MNCs since the late 

1990s in order to gain access to the foreign market (such as the Chinese market). We find that 
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MNCs with cultural affinities with China shy away from corruption, but more western minded 

MNCs tend to espouse that corruption may be good for their business, as articulated by the second 

view on corruption.   

Also, the choice model shows that MNC firms are more likely to co-locate with other high-

tech establishments from the same home country. As it has been suggested by the literature, the 

clustering of foreign firms from the same home country/region helps to transform information into 

business practices and to share experience, thus accelerating the procedure of new entries to the 

new business environment. On the other hand, the statistical analysis found no support for an 

agglomeration effect with domestic firms (results are not reported in Table 4.3 because they are 

not statistically significant). Thus, we can say there is preponderance of evidence that MNC high-

tech firms make a deliberate choice to co-locate with other MNC high-tech firms. Finally, a body 

of literature argues that, as the structure of the economy shifts from industrial to post-industrial, 

airport connectivity may play a more important role than highway for knowledge-based large 

corporations. Our results support that airport connectivity has a statistically significant and positive 

impact on high-tech MNCs entry, although marginal effects are usually weak. We also tested the 

factor of highway infrastructure and it is not significant in any of the models (results not reported 

in Table 4.3). 

Table 4.3: Results of mixed logit choice models 

Variables (1) (2) (3) 

    

Human capital   

3.471*** 

1.992*** 1.480*** 

   (0.319) (0.129) (0.180) 

Economic institution     

   Government intervention in business       

1.189*** 

  

   (0.239)   

    

   Government intervention in business * cultural  -   
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distance 0.097** 

  (0.056) 

       

   Contract enforcement   

0.761*** 

 

  (0.209)  

   Contract enforcement * cultural distance     0.044  

  (0.031)  

    

   Regional corruption   - 0.581*** 

   (0.084) 

   Regional corruption * cultural distance     0.123*** 

   (0.020) 

    

Localization  

0.762*** 

0.987*** 0.453** 

 (0.057) (0.067) (0.191) 

Agglomeration effects    

  Agglomeration_home  

0.758*** 

(0.045) 

0.741***  

(0.046)   

   0.876*** 

(0.053) 

    

Airport 0.810*** 0.352** 0.151** 

 (0.123) (0.085) (0.086) 

    

No. of choosers 1,526 1,526 1,526 

No. of choices 5 5 5 

Wald Chi2 1056.51 1047.84 1011.54 

Log pseudo-likelihood -1719.31 -1720.34 -1703.00 

    

Notes: *** 99% confidence level, ** 95% confidence level, * 90% confidence level. 
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Table 4.4: Average marginal effects 

 
Jing-Jin-Ji 

Northeast South coast 
Yangtze delta 

Shandong 

peninsula 

Model (1)      

Human capital  0.326*** 0.122*** 0.612*** 0.802*** 0.182*** 

Government intervention in business     0.087*** 0.034*** 0.167*** 0.217*** 0.052*** 

Government intervention in business * cultural 

distance -0.018* -0.011*   -0.043* -0.042*  -0.009* 

Localization 0.068*** 0.026*** 0.128*** 0.168*** 0.038*** 

Agglomeration_home 0.071*** 0.027*** 0.134*** 0.175*** 0.040*** 

Airport 0.076*** 0.029*** 0.143*** 0.187*** 0.043*** 

      

Model (2)      

Human capital 0.187*** 0.070*** 0.352*** 0.462*** 0.104*** 

Contract enforcement 0.019*** 0.007*** 0.035*** 0.047*** 0.010*** 

Contract enforcement * cultural distance   0.020   0.009        0.032      0.048   0.009 

Localization 0.093*** 0.035*** 0.174*** 0.229*** 0.051*** 

Agglomeration_home 0.070*** 0.026*** 0.132*** 0.173*** 0.039*** 

Airport 0.015*** 0.006*** 0.029*** 0.038*** 0.008*** 

      

Model (3)      

Human capital 0.136*** 0.052*** 0.262*** 0.341*** 0.078*** 

Corruption -0.020*** -0.009*** -0.048*** -0.060*** -0.015*** 

Corruption * cultural distance 0.089*** 0.030*** 0.132*** 0.153*** 0.062*** 

Localization 0.042*** 0.016*** 0.080*** 0.105*** 0.024*** 

Agglomeration_home 0.081*** 0.031*** 0.155*** 0.202*** 0.046*** 

Airport   0.014*   0.005*        0.028*       0.035*   0.008* 

*** 99% confidence level, ** 95% confidence level, * 90% confidence level. 
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4.5. Conclusions 

In this study, we contributed to the advancement of a new theory of the location choice and 

geography of high-tech manufacturing multinationals. We argued that, as the system of the 

economy has gradually shifted toward post-industrial and knowledge-based, close to talent and 

human capital has become more compelling for the location decision of high-tech MNCs, with a 

solid cadre of economic institutions playing a complementary role. The combination of these two 

can be a primary source of sustainable advantages of competition and cooperation for a region. 

Based on a dataset on the location of 1,526 high-tech manufacturing units of MNCs in mainland 

China, we tested our hypothesis using a mixed discrete choice model.  

Our analysis confirms the primary thinking that knowledge-based MNCs show a strong 

tendency towards locating their high-tech manufacturing firms in places with great access to talent 

or human capital. Human capital is consistently positive and significant in our statistical models. 

Although localization still matters in manufacturing, when the magnitude of factors of human 

capital and industrial localization are compared, human capital is revealed to have a much greater 

impact over industrial localization on the location of high-skill large corporations. Our analysis is 

based on 2008 data, and we anticipate that such effect has amplified over the years in line with the 

increasing knowledge orientation of many manufacturing businesses. This is broadly consistent 

with our core argument and logic of the new location theory. Large knowledge-based firms do not 

need to follow the same ecosystems as much as smaller firms do. In the history of location theory, 

emphasis has mainly been on industrial clusters or on agglomeration for the purpose of increasing 

returns, whereas human capital is only considered as a control variable for the purpose of building 

a theoretical model of the space economy. Our contention is that a fundamental change is needed 

to develop new theoretical frameworks that accommodate the era of the knowledge economy. Our 
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empirical analysis provides sound evidence of the shift on economic principles structuring the 

space economy and that location theory needs to develop further along this line of recognizing the 

specific nature of knowledge-intensive corporations in location theory. Our analysis also 

determined that airport connectivity is an important urban asset; it is a significant factor that is 

positively and consistently associated with the location of high-tech MNCs. As a vital piece of 

infrastructure, airports are a critical component from the perspective of the location theory of 

knowledge-intensive economic activities, in contrast to highways that are featured in the traditional 

location theory.  

Economic institutions and their interaction with cultural distance also matter in the location 

choices of MNC high-tech firms. Using data on 1,526 MNC units from five major source regions, 

we find that contract enforcement has a significantly positive impact on all MNCs from different 

countries and regions whereas government intervention is seen as much more attractive to MNCs 

from countries with stronger cultural affinities. When government intervention extends as a 

helping hand, it not only attracts business but more importantly increases the magnitude of 

marginal effects of human capital. The negative interplay between government intervention and 

cultural distance raises future questions on the effectiveness of governments when dealing with 

different countries and regions. Furthermore, corruption is perceived quite differently depending 

on the origin of the MNC, with culturally close countries shying away while others welcome it. 

This appeal for rent-seeking or corruption by more western-minded MNCs calls for further 

investigation. Overall, the quality of economic institutions not only has impact on location choices 

but, more importantly, it affects the magnitude of human capital as the most influential factor in 

the knowledge-intensive economy. Research with longitudinal data can further enhance our 

understanding of how deeply these factors shape regional economic characteristics.  
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CHAPTER 5 : CONCLUSIONS 

 

 

In the introductory chapter of the dissertation, I pointed out that the evolution of economic 

activities, high-tech manufacturing in particular, challenge our understanding of contemporary 

theories and require us to revamp the conceptual foundations of theoretical models now in use. 

This means following the process of examination of current complex theories and abstraction 

underlying models with better evaluation. What conclusions does this lead us to at the end of the 

journey? 

Three main motivations were taken into account before dealing with the research questions. 

The first aspect was to contribute to corroborate the theoretical conjecture regarding city network 

based on the economic foundation through empirical validation. The second was to empirically 

measure the advantages cities achieve from networking behavior by building a conceptual 

framework with related schools of thought on innovation and knowledge creation. The third was 

to advance the new theory of location choice in the era of knowledge-based economy, where 

traditional theories have diminishing explanatory power.  

The first aspect from Chapter two provided a corroboration of the underlying theory of 

systems of cities from the network perspective. Based on the two complementary methods of 

network degree centrality and its ranking, and of meso-scale network structure modeling, we 

successfully identified the two theoretically conceptualized forms of network: complementarity 

network and synergy network. Theoretically, complementarity network and synergy network are 

two types of organizational logic of the city-system abstracted from the micro-level behavior of 

firms or individuals. These structures were hypothesized to serve different economic purposes as 

they apply to different sectoral specificities. While complementarity network describes economies 
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of specialization and division of labor, which could be found in manufacturing cities, synergy 

network addresses economies of scale and innovative cooperation of cities with similar size, such 

as in the financial city network. Given the complex behavior of high-tech firms, our purpose was 

to provide precise insights into the organizational logics and the structure of city networks with 

empirical evidence.    

Using 2008 firm-level data for three high-tech manufacturing sectors, our main conclusions 

of this chapter were as follows. First, city networks present variations in comparison with different 

high-tech sectors. Medium-sized cities in the Yangtze River Delta and Pearl River Delta regions 

present higher-order in the computing machinery and technological equipment sector, whereas 

some cities from the western and northeastern regions have disproportionately higher rankings for 

pharmaceuticals and biotech. Second, we found evidence of both the complementarity network 

and the synergy network in high-tech manufacturing cities. This not only supports the theoretical 

principle of the coexistence of two types of organizational logic of the city system, but also 

uncovers the fact that a synergy network exists also in high-tech manufacturing cities, which was 

mainly found in financial and service cities so far. Third, our results suggest that the city network 

reflected in high-tech manufacturing has a hybrid CP structure with regional communities. In 

addition, the core contribution regarding the geographic distance is that cities both from same and 

from different orders of functions are interconnected over long geographic distances, which breaks 

the premise of central place theory that a high-order city only interacts with its proximal hinterland. 

Our conclusions are based on the economic rationale of high-tech manufacturing activities over a 

single year; more empirical analysis with longitudinal data will further improve our understanding 

of the spatio-temporal evolution of city networks.    
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In the preceding chapter, we sought to foster new and more critical ways of theorizing 

relational and network thinking across spatial scales, as well as transformative change in 

innovation policy. To this end, we developed a conceptual framework that breaks the 

fragmentation of economic theories on industrial clustering, organizational networking and 

technological relatedness. All boiled down to headquarter and subsidiary relations to assess their 

impacts on knowledge creation by placing the city at the heart of this process. Based on the 

activities of two sub-sectors of high-tech manufacturing from 264 Chinese prefectural cities 

between 2008 and 2011, our empirical evidence focuses on statistically quantifying the respective 

roles of geographic proximity and organizational networks defined by the headquarters-

subsidiaries relationships in fostering innovation in cities using the spatial approach that takes into 

account the co-existence of local clusters and organizational city network across spatial scales of 

proximate and distant. 

Empirical evidence based on a new data set on Chinese cities and high-tech industries was 

used to test the effectiveness of theories on different types of knowledge and industrial modes –

from fast- (biotech) to slow-changing (technology hardware and equipment) knowledge-based 

sectors. We found that knowledge diffusion along the organizational network has significant 

impacts on both innovation and production. However, the effects and strengths are strikingly 

different for the two high-tech sectors under study. In industries in early stage of development, 

where tacit knowledge is paramount, it is more effective with spatially proximate collaborations 

that allow face-to-face contact, co-presence and co-location of people and firms to accelerate 

knowledge creation. In contrast, in industries with codified knowledge, like hardware and 

equipment, emphasizing efficiency over creativity, the spillover effects of the organizational 

network are insensitive to physical distant. Compared to the previous findings on knowledge flows, 



130 

 

our major contribution is that we not only quantifying the relative role of organizational networks 

by controlling the effect of local knowledge flows, but more importantly find that both tacit and 

codified knowledge can be transferred by long spatial distance via the organizational network of 

high-tech manufacturing cities. Since our empirical model is based on new product output of two 

high-tech sectors in a static scenario, results and conclusions may be somewhat different when 

applying to other types of interactions.  

The third aspect stemmed from the critical evaluation of the first two. On the one hand, it 

was recognized that the concept of city network and its underpinnings could be determined by the 

behavioral logic of firms when specialization and networking play important economic roles. On 

the other hand, when it comes the externalities of organizational network on knowledge diffusion 

among cities, it suggests that industries respond differently and knowledge diffusion follows rather 

diverse spatial pathways through organizational networking, which depends on the core properties 

of pertinent knowledge and of the process of knowledge creation. Previous research on 

technological relatedness suggests that regions or countries could break technological trajectories 

and jump ahead by investing in building up external linkages (such as organizational network) and 

in their own innovation ability. What is left, then, is what lead us into considering the primary 

investment to build in knowledge based economy for a region beyond the dependence on network 

externalities. 

The determinants of location choice of large high-skilled companies may convey us some 

concept on how a region could thrive while trying to survive in the modern networked economy.   

In knowledge-based economy, multinational corporations present several inconsistencies with the 

traditional theories that address cost minimization. Talent or human capital plays an increasingly 

significant role in orienting location choices of large corporations. In other words, knowledge-
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intensive firms will bear on relative higher costs in order to benefit from the source of human 

capital. It has been argued that there is a need to build a new paradigm of such changing geography 

of large and knowledge-based firms in a post-industrial economy.  

In order to advance the new location choice theory and test our hypothesis, we applied the 

mixed discrete choice model to estimate the relative importance of human capital, agglomeration 

effects, and other traditional factors in the literature of location decisions using the data from five 

economic regions in China. Moreover, we examined the interaction of economic institutions and 

cultural distance in shaping the location choices of high-tech MNC firms when considering the 

role of human capital. According to the location choices of 1,526 high-tech MNC units in five 

economic regions in year 2008, our analysis confirmed the initial idea that knowledge-based 

MNCs show a strong tendency of locating their high-tech manufacturing firms in the place with 

great access to talent or human capital. Human capital has revealed its greater impact over 

industrial localization on the location of high skilled large corporations. Besides, economic 

institutions and its interaction with cultural distance also matters. Our theoretical conjecture is 

mainly built upon knowledge-based large corporations in the post-industrial era. As a result, 

neglecting these assumptions may lead to a misspecification of location choice theory. For the new 

paradigm of location choice theory, extra effort is required using longitudinal data to investigate 

the spatio-temporal evolution.    

Following this path, although the theory of networking or relational thinking in economic 

geography has been popular for decades, with the slow change from hierarchical to horizontal in 

urban systems and the dominance of profit maximization in market economy, the concept of city 

network in general and the advantages of network externalities still have a long way to flourish as 

it is described in theoretical conjectures. There is a need for innovations in organizations and policy 
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to fulfill the transformation of networking paradigm. More importantly, there is value in having 

more theoretical thinking depending on the methodological progress to enhance the 

conceptualization in the space economy. Finally, we suggest that access to human capital or talent 

along with decent institutional environment is the key for a region to conquer the realistic 

dilemmas and lead to a sustainable development in knowledge economy. 
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