
 

 

IMPACT OF CONNECTED AND AUTONOMOUS VEHICLES ON MOBILITY OF 

HIGHWAY SYSTEMS 

 

 

 

by 

 

Pengfei Liu 

 

 

 

 

A dissertation submitted to the faculty of  

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in  

Infrastructural and Environmental Systems 

 

Charlotte 

 

2020 

 

 

 

 

 

 

         

 

  

        Approved by: 

______________________________ 

Dr. Wei Fan 

______________________________ 

Dr. Martin Kane 

______________________________ 

Dr. David Weggel  

______________________________ 

Dr. Jay Wu 

______________________________ 

Dr. Jing Yang 



ii 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

©2020 

Pengfei Liu 

ALL RIGHTS RESERVED



iii 

 

ABSTRACT 

 

 

PENGFEI LIU. Impact of connected and autonomous vehicles on mobility of highway 

systems. (Under the direction of DR. WEI FAN) 

 

 

 Connected and autonomous vehicle (CAV) technologies are known as an 

effective way to improve safety and mobility of the transportation system. As a 

combination technology of connected vehicle and autonomous vehicle, CAVs share real 

time traffic data with each other, such as position, speed, and acceleration. CAVs are able 

to increase roadway capacity since they require narrower lane width and headway. And 

CAVs can coordinate their maneuvers while weaving in which will result an 

improvement of capacities at weaving areas. Also, CAVs enable the information shared 

between vehicles and traffic signals. The coordinated operation among CAVs and the 

communication between CAVs and traffic signals will improve the throughput at 

signalized intersections and lead to a higher intersection capacity. To evaluate the 

influence of CAVs on freeway capacity and intersection mobility, new guidelines should 

be established. Microsimulation software is used to simulate CAVs as well as AVs and 

regular vehicles. Case studies are conducted both on freeways and signalized 

intersections. It is concluded that CAVs can improve the freeway capacity and the 

improvement of capacity also increases with the increase of freeway speed limit. Also, 

CAVs can help reduce the capacity drops before and after the on-ramp, off-ramp, and 

weaving area as the CAV penetration rate increases. With V2I/I2V communications, 

CAVs can effectively improve the efficiency of signalized intersections. The vehicle 

emissions under all scenarios are also generated. CAVs can reduce vehicle emissions by 

as much as 33.47% compared to regular vehicles and 11.26% compared to AVs. The 
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findings in this research could establish knowledge on how CAVs will improve mobility 

in the highway systems.
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CHAPTER 1 INTRODUCTION 

 

 

1.1 Problem Statement and Motivation 

 Connected and autonomous vehicle (CAV) technologies are known as an 

effective way to enhance safety as well as roadway mobility. As a combination 

technology of connected vehicle and autonomous vehicle, CAVs share real time traffic 

data with each other, such as position, speed, and acceleration. CAVs are able to increase 

roadway capacity since they require narrower lane width and headway. And CAVs can 

coordinate their maneuvers while weaving in which will result an improvement of 

capacities at weaving areas. Also, CAVs enable the information shared between vehicles 

and traffic signals. Traffic signals are essential in urban traffic management. Although 

traffic signals can increase the intersection capacity particularly when the traffic volume 

is high, they may also increase travel time, gas emissions and fuel consumption of 

vehicles. Moreover, stop-and-go traffic increases the possibility of vehicle collisions and 

leads to increased economic cost as a result. The coordinated operation among CAVs and 

the communication between CAVs and traffic signals will improve the throughput at 

signalized intersections and lead to a higher intersection capacity. 

 As the travel demand increases in recent years, traditional intersections are 

generating more delays and gas emissions. As such, there is an urgent need to increase 

intersection capacity and the throughput mobility using the emerging CAV technologies. 

The coordinated through or turning maneuvers of CAVs may also reduce crashes and 

minimize the total delay at an isolated intersection. To evaluate CAVs’ influence on 

freeway capacity and intersection mobility, new guidelines need to be established. Due to 
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the rapid development of CAV technologies, it can be expected that CAVs will soon 

penetrate into the transportation system. The impact of CAVs on traffic delay and 

congestion needs to be quantified under different market penetration levels of CAVs. 

 This research is intended to establish knowledge on CAVs’ impact for 

transportation planners better preparing future highway systems under mixed traffic 

environment. 

1.2 Study Objectives 

 This study is trying to complete several objectives as follows: 

1. To conduct a comprehensive literature review of the cutting-edge knowledge on 

CAVs and their impact on freeway capacity and intersection mobility; 

2. To identify suitable freeway segments and intersections for case study and 

develop potential scenarios; 

3. To use simulation method to measure freeway capacity and intersection mobility 

at different CAV penetration levels;  

4. To evaluate the influence of the CAV technologies on freeway capacity and 

intersection mobility and provide recommendations on future research directions. 

5. To predict CAV trajectory in the highway system using machine learning 

methods. 

1.3 Expected Contributions 

 To evaluate the influence of CAVs on freeways and signalized intersections and 

develop the guidelines, modeling and simulation of CAVs are conducted in this research. 

The outcomes from this research are expected as follows: 
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1. A review of CAV technologies and freeway capacity and intersection mobility 

analysis considering different levels of CAV penetration; 

2. Identification and development of freeway and intersection scenarios and collect 

the characteristics of each scenario; 

3. Guidelines on freeway capacity and intersection mobility at different CAV 

penetration levels. 

4. A machine learning method that predicts CAV trajectory more accurately 

compared to the state-of-the-art. 

1.4 Research Overview 

 The research is structured as shown in Figure 1.1. In this chapter, the motivation 

of the research has been explained, followed by the study objectives and expected 

outcomes. 

 Chapter 2 presents a comprehensive literature review of the current technologies 

of CAVs. Previous studies that were conducted to analyze the impact of CAVs on 

highway systems are classified into three categories: (1) impact of CAVs on freeway 

capacity; (2) impact of CAVs on intersection mobility; (3) CAV trajectory optimization. 

 Chapter 3 presents the basic information needed to evaluate the influence of 

CAVs, including the historical traffic flow and speed data used in this research. The data 

source used to collect real time traffic flow and speed data is introduced. Different 

scenarios collected from the data source are also described in detail.  

Chapter 4 presents the calibration process of the microscopic traffic simulation 

software used in this research. The case study location and the traffic data related to the 

selected location are described first. The genetic algorithm and the objective function 
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used to optimize the difference between simulation results and real world data are also 

discussed. 

 Chapter 5 discusses the simulation results of the impact of CAVs on freeway 

capacity based on the data described in Chapter 3. The driving behavior of CAVs will be 

described first. Then the influence of CAVs on freeway capacity will be examined with 

consideration of different CAV penetration rates. 

Chapter 6 presents the simulation results of the impact of CAVs on intersection 

mobility. The trajectory optimization strategy of CAV approaching intersection will be 

described. Then the impact of CAVs on intersection mobility will be explored with 

different market penetration rates. 

Chapter 7 presents the prediction of vehicle trajectories using the proposed 

machine learning models. The prediction error of the proposed approach will be 

measured. Potential impacts of the machine learning approach on CAV trajectory 

prediction will be discussed. 

Chapter 8 concludes the report by summarizing the impact of CAVs on freeway 

capacity and intersection mobility. Suggestions for future research directions will be also 

provided. 
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CHAPTER 2 LITERATURE REVIEW 

 

 

2.1 Introduction 

This chapter provides a comprehensive literature review of the current 

technologies of CAVs and various methodological approaches developed and used to 

analyze freeway capacity and intersection mobility with or without CAVs. This review 

will include previous freeway capacity and intersection mobility analysis methods with 

and without consideration of CAVs, possible modeling scenarios, and suitable parameters 

used in the estimation. 

This chapter is organized as follows. Section 2.2 presents background of 

connected vehicle and autonomous vehicle technologies, followed by current 

technologies in use and benefits of CAVs. Section 2.3 details existing freeway capacity 

analysis methods with consideration of CAVs. Particular attention will be given to 

simulation-based approaches as they are capable of measuring freeway capacity under 

different modeling scenarios. Section 2.4 presents existing intersection analysis methods 

with consideration of CAVs. Particular attention will be given to trajectory optimization 

approaches as they are capable of measuring intersection mobility under different 

modeling scenarios. Finally, section 2.5 summarizes this chapter.   

2.2 Connected Vehicle and Autonomous Vehicle Technology 

2.2.1 Connected Vehicle Technology 

 Connected vehicles are defined as vehicles that use a number of different 

communication technologies to communicate with the driver, other cars on the road 

(V2V), roadside infrastructure (V2I), and the “Cloud” (V2C) (NHTSA 2016). V2V 
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technology can enable applications such as crash alerts and hazard warnings, while also 

enabling cooperative braking. V2I technology is able to provide real time traffic 

information such as speed, volume, travel time, queue length, and stops (Shladover 2017). 

The USDOT’s Connected Vehicle program is dedicated to new technologies that will 

enable V2V and V2I, by cooperating with state and local transportation agencies and 

stakeholders (Hong et al. 2014). 

By applying connected vehicle technologies, drivers can be noticed in advance 

with the traffic information, such as traffic delay or an accident occurred ahead. Such 

information can greatly help drivers adjust their strategy of driving, which could reduce 

their travel time and also the probability of being involved in a crash. However, the total 

travel time may still increase due to the increased travel demand (Minelli 2015). 

According to National Highway Traffic Safety Administration (NHTSA), connected 

vehicles can reduce as much as 80 percent of crashes. Connected vehicles are a 

combination of technologies in the following categories: 

 In-vehicle or mobile equipment is the most end equipment that provides 

useful information to drivers, such as vehicle speed and travel time. 

 Roadside equipment will interact with connected vehicles with information, 

including both traffic signal and other connected vehicles to support better 

traffic management.  

 Core systems enable the data exchange process between vehicles and 

infrastructure. 

 Support systems create and operate a security credential management system 

that allows connected vehicle applications to establish trust relationships. 
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 Communications systems comprise the data communications infrastructure 

that provides connectivity for other equipment and systems in the connected 

vehicle environment. Dedicated Short Range Communications (DSRC) 

technology was developed specifically for connected vehicle communications 

with a 5.9 GHz frequency. DSRC provides a low-latency communications link. 

While the least stringent latency requirement for Active Safety is 1 second and 

most stringent latency requirement for Active Safety is 0.2 second, DSRC has 

a latency of 0.0002 second. 

Applications-specific systems refer to the equipment supporting specific 

connected vehicle applications. For example, a software system acquires data from 

connected vehicles and integrates them into traffic management systems. 

2.2.2 Autonomous Vehicle Technology 

 NHTSA defines autonomous vehicle as “self-driving vehicles which can execute 

steering, acceleration, and braking without interfering of human drivers.” Society of 

Automotive Engineers (SAE) international defines six levels of vehicle automation from 

level 0 to level 5. Table 2.1 shows different levels of vehicle automation. 

 

Table 2.1 Summary of Different Levels of Vehicle Automation 

Level Description  

Level 0 No automation 

Level 1 Driver assistance: Human driver is assisted with acceleration and 

deceleration. 

Level 2 Partial automation: Vehicle undertakes acceleration and deceleration. 

Level 3 Conditional automation: Automated driving system with human 

driver intervention to a request. 

Level 4 High automation: Vehicle undertakes all dynamic driving task. 

Level 5 Full automation: No human driver needed. 
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Autonomous vehicles use a “sense-plan-act” design like other robotic systems. A 

suite of in-vehicle sensors gather information from the surroundings of the vehicle. The 

automated driving system will analyze sensor data and decide the next step actions, such 

as decelerating or lane changing. Autonomous vehicles use a combination of sensors to 

realize their automotive driving, which include radar, cameras, Lidar, GPS, and so on. 

 Radar systems used in autonomous vehicles contain two ranges: short range 

and long range. Short range radar is used when vehicle speed is relatively low, 

detecting the vehicle’s surroundings within a short distance. And long range 

radar is used when vehicle speed is relatively high, detecting over long 

distance. 

 Cameras are equipped by autonomous vehicles to work as the human’s eyes. 

Videos are captured and processed so that roadside infrastructure can be 

recognized, such as signage, lane markings, and traffic lights. 

 Lidar creates 3D representations of the vehicle’s surroundings. Although 

Lidar makes high resolution profiles, it is also easily disrupted by a temporary 

change of the surroundings, such as rain and snow. 

 GPS receives real time position of the vehicle and provides navigation. 

Litman (2014) explored the influence of AVs on travel demands and 

transportation planning. The analysis indicated that most impacts, including reduced 

traffic congestion and increased safety, will probably take place after 2040. 

2.2.3 Connected and Autonomous Vehicle Technology 

Connected and autonomous vehicle technology is a combination of CV and AV 

technology. CAV can be self-driving as well as communicate with its surroundings. 
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Some examples of existing CAV technologies are active lane keeping assistance, active 

park assistance, automatic braking, blind spot detection, cross traffic alert systems, and 

forward collision warning. USDOT is working closely with state DOTs to catch up with 

the rapid deployment of CAV technologies (Yang et al. 2017). 

By incorporating the two technologies together, CAV has many more benefits 

compared to CV alone, AV alone, and traditional vehicles in the following aspects: 

 Increase safety. By eliminating driver errors during driving, CAVs will 

significantly reduce the number of crashes. CAVs may reduce economy loss 

by over 126 billion dollars per year due to crashes in the United States 

(Kockelman et al. 2016). 

 Increase capacity. CAVs will allow lower headways between vehicles, which 

will increase roadway capacity. 

 Increase mobility. CAVs can increase mobility by providing opportunities to 

people less likely travelling due to various reasons (Duncan 2015, NHTSA 

2016). 

 Reduce emissions. By communicating with each other, CAVs could drive 

more smoothly than human drivers, which will reduce vehicle emissions and 

improve air condition. 

 Save time. During in-vehicle time, people can perform any activity as 

necessary instead of driving. When arrived, CAVs can park themselves which 

will also save time for the both drivers and passengers. 
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 Improve road design. CAVs require narrower lanes and less traffic control 

methods such as median barriers and traffic lights, maximizing land use and 

increasing traffic efficiency. The need for human-centered design for parking 

areas will be significantly reduced (Chapin et al. 2016). 

Policy should be made to maximize the positive impact of CAVs on public transit 

(Zmud 2017). It is predicted that by 2045 there will be 25% level 4 AV in the market 

(Bansal and Kockelman 2017). 

2.3 Freeway Capacity Analysis Methods 

 One critical issue for CAV technology is that higher level of automation is still in 

its infancy. Therefore, there is inadequate historical data of CAVs and associated impacts 

yet. Most researchers used macro and micro simulation, driving simulators, field test and 

analytical methods to estimate the impact of CAVs on freeway capacity (Milakis et al. 

2017). 

2.3.1 Empirical Based Methods 

2.3.1.1 Ni et al.’s research work 

Ni et al. (2012) analyzed the impact of connected vehicle technology (CVT) on 

highway capacity. The model formulation was derived based on Gipps’ car following 

model. The modeling strategy used different driver perception-reaction time for different 

driving modes, such as CVT-automated mode, CVT-assisted mode, and non-CVT mode. 

An illustrative example was conducted by employing different market penetration rates 

of CVT. The result showed that connected vehicle technology could increase highway 

capacity by 20% to 50% depending on the penetration rate. One limitation of this study 

was that the model assumed equilibrium flow and homogeneous type of vehicles. 
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2.3.1.2 Shi and Prevedouros’s research work 

Shi and Prevedouros (2016) examined the possible impact of driverless cars on 

freeway capacity based on Highway Capacity Manual 2010 methodologies. The 

quantification analysis used adjusted average headway and traffic demand flow rate. Two 

case studies were conducted on a basic freeway segment and a freeway weaving segment. 

Two types of driverless cars were considered (i.e., autonomous driverless cars and 

connected driverless cars), by setting different headways. It is concluded that the level of 

service can be improved by increasing the penetration rate of driverless cars in traffic and 

shortening the driverless car following headways. 

2.3.1.3 Michael et al.’s research work 

Michael et al. (1998) presented a methodology to calculate highway capacity as a 

function of inter-vehicle cooperation. The Automated Highway System was assumed to 

be dedicated for use by fully automated vehicles. Under the required spacing between 

inter-platoon vehicles, collisions can be avoided in the Automated Highway System. 

Various system parameters were set for capacity calculation. The minimum inter-vehicle 

separation was constrained for safe operation. It was concluded that highway capacity 

increases as a result of the increasing of inter-vehicle cooperation. 

2.3.1.4 VanderWerf et al.’s research work 

VanderWerf et al. (2002) examined the impacts of autonomous and cooperative 

adaptive cruise control systems on highway capacity. Three mathematical models were 

developed and used to represent vehicles driven by human drivers, Anticipatory Adaptive 

Cruise Control (AACC) system, and Cooperative Adaptive Cruise Control (CACC) 
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system. Monte Carlo simulations approach was used to estimate the lane capacity. To 

keep it realistic, the on-ramp and off-ramp vehicles were set small enough so that they 

would not disturb the merging processes both upstream and downstream. It was 

concluded that the AACC system has a small effect on highway capacity even under the 

most favorable conditions. CACC system can increase highway capacity significantly by 

reducing the time gap between pairs of CACC vehicles. The lane capacity with a full 

penetration of CACC vehicles can accommodate more than 4,200 vehicles per hour. 

2.3.1.5 Authority and Pinjari’s research work 

Authority and Pinjari (2013) pointed out that at low autonomous vehicle 

penetration rates, little improvement of the highway capacity and congestion reduction 

was expected. The reason is human drivers would more likely to keep a longer distance 

from AVs with consideration of safety. As AVs increases, the influence on highway 

capacity could get greater. AVs can improve traffic both on freeways and at intersections. 

It can also avoid traffic collisions at intersections from a safety perspective.  

2.3.1.6 Tientrakool et al.’s research work 

Tientrakool et al. (2011) assessed the influence of V2V technology on highway 

capacity. Different safe inter-vehicle distances were analyzed in different cases, such as 

leading vehicle can communicate and following vehicle can communicate. The authors 

developed a Reliable Neighborcast Protocol which allows vehicle to communicate with 

the surrounding vehicles within a specified distance. The vehicles with sensors would 

always keep a safe following distance with the leading vehicle. The estimated highway 

capacity will increase by about 43% by vehicles with sensors. If all vehicles are 
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communicating vehicles, the capacity could increase significantly by about 3.7 times 

compared to the highway capacity with human driver vehicles.  

2.3.1.7 Treiber et al.’s research work 

Treiber et al. (2000) developed an intelligent driver model (IDM). The IDM 

model calculates vehicle acceleration rate with vehicle speed, headways, and the distance 

between vehicles. Further, the authors improved IDM by defining a limitation for a safe 

acceleration. By using the empirical boundary conditions, the simulation results were 

consistent with a previous theoretical on-ramp phase diagram. 

2.3.1.8 Le Vine et al.’s research work 

Le Vine et al. (2016) assessed the relationship between AVs and intersection 

capacity using VISSIM, which is a microsimulation software. The four-way signalized 

intersection is simulated with speed limit 50 km/h. Vehicle turning speed was defined 

manually because VISSIM does not calculate automatically. The results suggested that 

automated cars may have higher flow rates than regular vehicles. It is anticipated that 

autonomous cars will increase roadway capacity and reduce congestion. The traffic 

streams could be controlled without conflicting and the control methods can be more 

flexible. 

2.3.1.9 Campbell and Alexiadis’s research work 

Campbell and Alexiadis (2016) comprehensively assessed CAVs in transportation 

planning. The authors summarized the needs generated by CAVs. The authors also 

pointed out the limitation of traffic simulation models. They cannot be used to model 

certain real-world driver behaviors or situations, such as inattention or collisions. Traffic 

simulation models require a significant level of input data, such as origin-destination 
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tables for each travel mode. Traffic simulation models also require a substantial 

investment of time and effort, including the time needed for the software to perform the 

simulation once the model is ready. 

2.3.1.10 Talebpour and Mahmassani’s research work 

Talebpour and Mahmassani (2016) simulated CAVs with different models and 

assumptions. This study presented a method to model CAVs with a deterministic 

acceleration rate. Since CAVs can only observe vehicles within its detection range, CAVs 

should be able to control their speed in order to stop at the sensors’ detection range. It 

was found that CAVs will increase the throughput by more than 100%. 

2.3.1.11 Meyer et al.’s research work 

Meyer et al. (2017) used the Swiss national transport model to simulate AVs. 

Three scenarios were considered: extra-urban situations, vehicles can be operated fully 

automated in all situations, and a pre-set vehicle-sharing scheme. The results showed that 

AVs could cause quantum leap in roadway accessibility. 

2.3.1.12 Delis et al.’s research work 

Delis et al. (2015) used macroscopic methods to model the ACC and CACC 

vehicles. The first method was developed to analyze vehicle’s speed change due to the 

accelerating or decelerating of its leading vehicle. The second method considered the 

time gap between vehicles which equipped with ACC or CACC systems. The conclusion 

was that CACC vehicles produce more stable traffic flow compared to ACC vehicles. 

The proposed methods could identify and release the on-ramp bottlenecks by improving 

the dynamic equilibrium. 
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In summary, car following models are capable of evaluating the impacts of 

various types of freeway capacity analysis strategies. A variety of empirical-based 

freeway capacity analysis studies considering CAV technologies have been conducted to 

achieve this goal. Table 2.2 exhibits a summary of the empirical based freeway analysis 

studies. 

Table 2.2 Summary of Existing Empirical Based Freeway Capacity Analysis Studies 

No. Author, Year Vehicle Type Model 
Project  
Purpose 

Capacity 

Impact 

1 Ni et al., 2012 CV 
Gipps’ car 

following 

model 
Highway capacity 

Increase 20% to 

50% 

2 
Shi and 

Prevedouros, 

2016 
CV, AV HCM 2010 

Freeway and weaving 

segment 
Improve LOS 

3 
Michael et al., 

1998 
AV - Highway capacity 

Increase as 

platoon length 

increases 

4 
VanderWerf et al., 

2002 
AACC, CACC 

Three 

mathematical 

models 

Highway traffic flow 

capacity 

AACC small, 

CACC 4,200 

vph 

5 Pinjari, 2013 AV - Highway capacity 
Little 

improvement 

6 
Tientrakool et al., 

2011  

Sensors and 

V2V 

communication 
- Highway capacity 

43% for sensors 

and 3.7 times 

for V2V 

7 
Treiber et al., 

2000 
ACC 

Intelligent 

driver model 
Traffic near on-ramps - 

8 
Le Vine et al., 

2016 
AV 

Wiedemann-

1999 
- 

Higher flower 

rates 
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9 
Campbell and 

Alexiadis, 2016 
CAV - 

Transportation 

planning process 
- 

10 
Talebpour and 

Mahmassani, 

2016 
CAV - throughput 100% 

11 Meyer et al., 2017 AV 

Swiss 

national 

transport 

model 

accessibility 
Quantum leap 

in accessibility 

12 Delis et al., 2015 ACC, CACC - Traffic flow 
CACC increase 

the stabilization 

of traffic flow 

 

2.3.2 Simulation Based Methods 

Simulation based method is widely used in CAV related studies. Compared to 

other approaches, simulation based method is imperative for practical decision making in 

transportation planning and operations. Several representative studies of simulation based 

methods are summarized. 

2.3.2.1 Atkins’s research work 

Atkins (2016) analyzed the influence of CAVs on traffic flow capacity with 

VISSIM. Various simulation models, simplified link and junction models and complex 

real-world situations, were developed to examine the potential effects of CAVs under 

different traffic situations. It is concluded that CAVs can increase road capacity due to 

faster acceleration and shorter headways. However CAVs may reduce roadway capacity 

by as much as 40% if they are more cautious than regular vehicles. 

2.3.2.2 Shelton et al.’s research work 
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Shelton et al. (2016) tested CAVs with traffic modeling software in a complex 

urban roadway network. In order to approximate real-world conditions, a multi-resolution 

model was used, including macroscopic, mesoscopic, and microscopic models. The 

results showed that traffic volume will increase with the increase of CAVs’ market 

penetration level. Under a simplified test network, CAVs can increase the capacity to 

around 4,000 vehicles per hour per lane. 

2.3.2.3 Hartmann et al.’s research work 

Hartmann et al. (2017) employed microscopic traffic simulation to assess the 

influence of automated vehicles on freeway capacity. A number of individual freeway 

component segments were set as input in VISSIM for the simulation, including basic, 

merge, diverge, and weaving segments. It is concluded that AVs could only increase road 

capacity by 7%. CAVs could increase roadway capacity by 30% due to shorter headways 

and the coordinated maneuvering.  

2.3.2.4 Shladover’s research work 

Shladover et al. (2012) employed AIMSUN, a microsimulation software, to 

evaluate the effect of ACC and CACC vehicles. New driver behavior models were 

developed and integrated into AIMSUN. It is found that CACC could increase road 

capacity to 4,000 vph, while ACC has no significant impact on road capacity. 

2.3.2.5 Bierstedt et al.’s research work 

Bierstedt et al. (2014) analyzed the effects of ACC vehicles on road capacity 

using VISSIM. The freeway scenario consists of basic, merge, and diverge segments. The 

default car following model in VISSIM, the Wiedemann model, was modified to better 

represent ACC systems. Two driving behavior were simulated by changing the headways 
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and acceleration rates in the Wiedemann model, including aggressive and conservative 

driving.  It is found that ACC vehicles have no impact to road capacity at a lower 

penetration level. The impact is still minor even the ACC penetration level gets up to 

75%. 

2.3.2.6 Auld et al.’s research work 

Auld et al. (2017) employed POLARIS, an advanced traffic simulation software, 

to explore the influence of CAVs on road capacity. The analysis was conducted on 

different scenarios, including various market penetration levels, road capacity, and travel 

time values. It is concluded that VMT can be increased by 4% if road capacity is 

increased by 80%. 

2.3.2.7 Lioris et al.’s research work 

Lioris et al. (2017) examined the effect of CV platoons on road mobility with 

PointQ, a mesoscopic traffic simulation software. The traffic demand is assumed to be 

Poisson distribution. The simulation is conducted on a four-leg signalized intersection 

with fixed signal setting. The intersection capacity can get up to 4,800 vph if CV 

platooning has 0.75s headway at speed limit 45 mph. Compared to ACC, CACC vehicles 

can keep shorter headways. CV platoons are able to increase travel demand while not 

increase travel delay and travel time. 

2.3.2.8 Arnaout and Arnaout’s research work 

Arnaout and Arnaout (2014) used F.A.S.T., a microscopic simulator, to examine 

the impact of CACC vehicles on freeway. The car following model is developed in Java. 

A mixed traffic environment on a four-lane freeway with a total length of 6km is defined, 

including cars and trucks. The results showed that CACC has no significant impact at a 
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lower penetration rate. The impact can be observed when CACC penetration rate gets up 

to 40% or more.  

2.3.2.9 Arnaout and Bowling’s research work 

Arnaout and Bowling (2011) examined the effects of CACC vehicles on highway 

performance with microscopic traffic simulation tool. The analysis is conducted on a 

freeway segment with an on-ramp with a total length of 6 km. The on-ramp traffic 

volume is set to be 500 vph. It is found that CACC vehicles have better performance in 

peak hours especially when CACC vehicles have more than 40% penetration rate. If the 

average traffic speed and flow rate are increased, the CACC vehicles will have more 

impact. 

2.3.2.10 Olia et al.’s research work 

Olia et al. (2017) simulated CAVs and AVs using a microscopic traffic simulator, 

PARAMICS, to evaluate their effects on highway capacity. The simulation scenario was 

a freeway segment with an on-ramp. User defined car following model and lane changing 

model are developed for CAVs. It is found that CACC vehicles can increase the freeway 

capacity up to 6,450 vph. The increase became significant when CACC vehicles are more 

than 30% in the traffic. ACC vehicles can only increase the capacity up to 2,238 vph.  

2.3.2.11 Monteil et al.’s research work 

Monteil et al. (2014) evaluated V2V cooperation using both analytical and 

simulation methods. User defined car following model and lane changing model are 

developed. A calibration process was first conducted for selected model parameters. 

During the calibration, the trajectory of the object vehicle was calculated every 15 

minutes. With the calibrated models, simulation can be conducted with realistic data. The 
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results showed that V2V cooperation can increase traffic safety and the homogeneity of 

traffic flow.  

In summary, simulation based models are capable of evaluating the impacts of 

CAV technologies on freeway capacity. A variety of simulation-based freeway analysis 

studies have been conducted to achieve this goal. Table 2.3 exhibits a summary of the 

simulation based freeway analysis studies summarized in this section.  

Table 2.3 Summary of Simulation Based Freeway Analysis Studies 

No. Author, Year 
Vehicle 

Type 
Tool 

Project  
Purpose 

Capacity 

Impact 

1 Atkins, 2016 CAV VISSIM Traffic flow capacity Decrease 40% 

2 Shelton et al., 2016 CAV 
Multi-

resolution 

model 
Urban roadway network 4,000 vph 

3 
Hartmann et al., 

2017 
AV VISSIM Freeway capacity Decrease 7% 

4 
Shladover et al., 

2012 
ACC, 

CACC 
AIMSUN Lane capacity 

CACC 4,000 

vph 

5 
Bierstedt et al., 

2014 
ACC VISSIM Freeway capacity Minor 

6 Auld et al., 2017 CAV POLARIS Travel behavior 

80% increase in 

capacity can 

increase 4% 

VMT 

7 Lioris et al., 2017 CV PointQ Four-legged intersection 4,800 vph 

8 
Arnaout and 

Arnaout, 2014 
CACC F.A.S.T. 

U-shaped four-lane 

freeway 

Large 

improvement 

with high 

penetration rate 
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9 
Arnaout and 

Bowling, 2011 
CACC - Traffic performance Highly increase 

10 Olia et al., 2017 CAV PARAMICS Highway capacity 
6,450 vph for 

CACC, 2,046 to 

2,238 for ACC 

11 Monteil et al., 2014 CV - Traffic flow 
Increase traffic 

flow 

homogeneity 

 

2.3.3 Survey Based Methods 

2.3.3.1 Willke et al.’s research work 

Willke et al. (2009) performed an extensive survey of inter-vehicle 

communication applications. The authors pointed out that effective inter-vehicle 

communication is able to reduce the cost and complexity of roadside infrastructure. Also, 

this technology can improve traffic safety and roadway capacity.  

2.3.3.2 Mahmassani et al.’s research work 

Mahmassani et al. (2012) created an application named Intelligent Network Flow 

Optimization (INFLO), which is transformative with high priority by USDOT. This 

application assessed wireless communication technologies, such as CACC, dynamic 

speed information, and queue alert. Traffic congestion at bottlenecks, such as weaving 

area, can be released by vehicle communication. As a result, roadway safety can be 

improved at those specific areas.  

2.3.3.3 Cregger’s research work 

Cregger (2015) summarized the development of CAVs around the world and 

identified importation features contributing to the development. The information was 
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collected through different ways, including print materials, interviews, and web search. 

The results showed that CAV technology is developed rapidly in many countries, such as 

the United States and Japan. In the United States, efforts were made on roadside 

infrastructure. In Japan, DSRC technology starts to benefit drivers on road.  

2.3.3.4 Kockelman et al.’s research work 

Kockelman et al. (2016) used two surveys to estimate the adoption of CAV 

technologies in the future. The survey questions include the vehicle possession number, 

attitude to new technology, future vehicle purchase possibility, and so on.  national 

survey investigated each respondent’s current household vehicle inventory, their 

technology adoption, future vehicle transaction decisions, and so on. Econometric models 

were used to analyze the survey results. The authors believed that with more familiarity 

with CAV technologies, the potential behavior are apt to change rapidly. 

2.3.3.5 Schoettle and Sivak’s research work 

Schoettle and Sivak (2014) conducted a survey examining the attitude of public 

towards CAV technology. The survey results showed that people are willing to benefit 

from the new technology. But they are concerning about the safety since they cannot trust 

the technology completely.  

In summary, survey based method is capable of evaluating the public attitude 

towards the CAV technologies. A variety of survey-based freeway analysis studies have 

been conducted to achieve this goal. Table 2.4 exhibits the survey based freeway analysis 

studies summarized in this section.  
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Table 2.4 Summary of Survey Based CAV Studies 

No. Author, Year Content Object Findings 

1 
Willke et al., 

2009 
Inter-vehicle 

communication 
- Decrease 40% 

2 
Mahmassani et 

al., 2012 
Wireless 

connectivity 
- 

Harmonize traffic flow and reduce the 

impending shockwaves 

3 Cregger, 2015 CAV 

Interview, 

electronic 

searches, print 

materials 

Identify best practices to strengthen CAV 

programs 

4 
Kockelman et 

al., 2016 
CAV 

National 

survey, Texas 

survey 

Potential behavior are apt to change 

rapidly 

5 
Schoettle and 

Sivak, 2014 
AC 

US, UK, 

Australia 
High level of concern about security 

 

2.4 Intersection Efficiency Analysis Methods 

The recent development of CAV technologies provides the potential for better 

traffic operations. V2I communications between CAVs and infrastructures allow vehicles 

and traffic signals be adjusted thus to enhance roadway efficiency and benefit the 

environment. Most studies focused on either vehicle trajectory optimization or signal 

optimization. 

2.4.1 Trajectory Optimization Based Methods 

2.4.1.1 Yu et al.’s research work 

Yu et al. (2019) optimized CAV trajectories with a mixed-integer linear 

programming (MILP) model. Both the car following model and the lane changing model 

were optimized. All vehicle trajectories were considered at each intersection. Traffic 

signal is not needed since CAVs have coordinate maneuvers. The average delay under the 
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CAV-based control was from 1.1 to 3.9 seconds. And the delay under the signal 

control was from 27 to 116.9 seconds. 

2.4.1.2 Liu et al.’s research work 

Liu et al. (2019) proposed a strategy for CAVs at the unsignalized intersections. 

To ensure safety, CAVs are organized with different priorities by communicating with 

the organization center. CAVs can choose the optimized speed when passing through the 

intersection. The calculation is conducted through MATLAB and the simulation is 

conducted in SUMO. It is concluded that the proposed algorithm can successfully 

decrease traffic delay by more than 10%. The intersection capacity can be increased by as 

much as 20%.  

2.4.1.3 Mirheli et al.’s research work 

Mirheli et al. (2019) developed mixed-integer non-linear programs (MINLPs) to 

help CAVs pass through intersections. The programs provide CAVs a conflict free 

environment when passing through the intersection. It is concluded that the proposed 

programs can reduce travel time by 43%-70%. And the intersection capacity can be 

increased by 116% compared to signal controlled intersection. Also, the average vehicle 

speed can be increased by 400%. 

2.4.1.4 Stebbins et al.’s research work 

Stebbins et al. (2017) proposed a vehicle trajectory advice algorithm for CAVs 

passing through the intersections. The algorithm can provide vehicle an optimal trajectory 

for CAVs to follow. The travel delay can be reduced by 50% compared to signal 

controlled intersection. And vehicle stop time can be reduced to 0 with the help of the 

proposed algorithm. 
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2.4.1.5 Yao et al.’s research work 

Yao et al. (2018) proposed a Variable Speed Limits with Location Optimization 

(IVSL-LC) method to smooth vehicle trajectory at intersections. Dynamic speed limits 

are assigned to CAVs based on real time traffic volume and signal timing through V2I 

technology. With the help of the proposed method, CAVs can pass through the 

intersection without stopping. As a result, intersection efficiency can be improved and 

fuel consumption can be reduced. 

2.4.1.6 He et al.’s research work 

He et al. (2015) proposed a constrained optimization model for CAVs on 

signalized intersections. By considering vehicle queue length and signal timing, an 

optimal speed is calculated for each individual vehicle. The proposed model was proved 

to increase intersection efficiency successfully. 

2.4.1.7 Wei et al.’s research work 

Wei et al. (2017) proposed dynamic and integer programming models to optimize 

vehicle trajectories. Newell’s car following model is used to simulate vehicle driving 

behavior. The models can improve safety and increase throughput at the intersections 

efficiently by controlling real time vehicle trajectories. 

2.4.1.8 Abbas and Chong’s research work 

Abbas and Chong (2013) employed Neuro-Fuzzy Actor-Critic Reinforcement 

Learning network to control vehicle trajectory. It is concluded that both machine learning 

method and regression models can predict vehicle trajectories.  But machine learning 

method has less prediction errors and can reproduce vehicle trajectories which regression 

models cannot. 
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2.4.1.9 Guler et al.’s research work 

Guler et al. (2014) proposed a vehicle discharging strategy at signalized 

intersections. Optimal sequences were assigned to each vehicle to minimize total travel 

delay. The results showed that at low travel demand, AVs can decrease the total travel 

delay by 7%. In comparison, CVs can decrease total travel delay by 60%. 

2.4.1.10 Yang et al.’s research work 

Yang et al. (2016) proposed a branch and bound method to optimize vehicle 

trajectory at intersections. The optimal discharge sequence can be calculated by the 

method based on current vehicle position information. It was found that this algorithm 

can reduce total travel delay and vehicle stops by up to 50%. 

2.4.1.11 Lazar et al.’s research work 

Lazar et al. (2018) employed vehicle platooning strategy for CAVs at 

intersections. The platoon was first generated at the stop line while signal is red. When 

signal turns to green, vehicles in the platoon will accelerate simultaneously. Vehicle 

platoon guarantee vehicles to keep a minimum headway in which way roadway capacity 

can be improved successfully.  

In summary, trajectory optimization methods are capable of increasing 

intersection mobility, reducing vehicle emissions, and reducing traffic delay. A variety of 

trajectory optimization based intersection mobility analysis studies considering CAV 

technologies have been performed to achieve this goal. Table 2.5 exhibits a summary of 

the trajectory optimization based intersection analysis studies summarized in this section. 
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Table 2.5 Summary of the Trajectory Optimization Based Intersection Analysis Studies 

No. Author, Year Model Object Findings 

1 Yu et al., 2019 
Mixed-integer linear 

programming 

Optimize car-following 

and lane-changing 

behaviors 

Average delay 

under the CAV-

based control is 

from 1.1 to 3.9 

seconds 

2 Liu et al., 2019 
Cooperative scheduling 
mechanism 

Minimize traffic delay 
Increases 

throughput by 

over 20% 

3 Mirheli et al., 2019 
Distributed cooperative 

control logic 
Minimize travel time 

Reduced travel 

time by 43.0–

70.5% 

4 Stebbins et al., 2017 - Optimize delay 
Delay was 

reduced typically 

by 30–50% 

5 Yao et al., 2018 
Trajectory smoothing 

method 
- 

Increase traffic 

efficiency and 

reduce fuel 

consumption 

6 He et al., 2015  
Multi-stage optimal 

control formulation 
Obtain optimal vehicle 

trajectory 

Optimal speed 

control strategies 

updated in real 

time 

7 Wei et al., 2017 
Integer programming 

and dynamic 

programming models 

Scheduling longitudinal 

trajectories 

Effectively 

control the 

complete set of 

trajectories in a 

platoon 

8 
Abbas and Chong, 

2013 
Machine learning 

approach 
- 

Machine 

learning 

approach could 

reproduce 

vehicle 

trajectory 

9 
IlginGuler et al., 

2014 
- 

Optimize cars discharging 

from intersection 

Reduce average 

delay by up to 

60% 

10 Yang et al., 2016 
Branch and bound 

method 
Minimize total delay 

Decrease in the 

total number of 

stops and delay 

https://www.sciencedirect.com/topics/computer-science/scheduling-mechanism
https://www.sciencedirect.com/topics/computer-science/scheduling-mechanism
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11 Lazar et al., 2018 
Cooperative adaptive 

cruise control 
- 

Generates 

shorter following 

gaps 

 

2.4.2 Signal Optimization Based Methods 

Traffic signal optimization plays an important role in transportation management. 

The goal of traffic signal optimization is to minimize travel delay and maximize 

intersection throughput. Several representative studies of signal optimization based 

methods are summarized. 

2.4.2.1 He et al.’s research work 

He et al. (2012) used a mixed-integer linear program to calculate optimal signal 

plan based on the current traffic condition. The algorithm will first identify existing 

queue information and generate all vehicle platoons approaching the intersection. 

VISSIM is used to conduct the simulation and the results showed that total travel delay 

can be reduced effectively.  

2.4.2.2 Priemer and Friedrich’s research work 

Priemer and Friedrich (2009) proposed a decentralized adaptive signal 

optimization method through V2I technology. This is a dynamic program which can 

provide optimal signal phases every 5 seconds. The simulation is conducted in AIMSUN, 

a microscopic traffic simulator, under a mixed traffic environment. It was found that 

average travel delay can be reduced by 24% and traffic speed can be increased by 5%. 

2.4.2.3 Feng et al.’s research work 

Feng et al. (2015) proposed an adaptive signal phase allocation program to 

minimize total travel delay and queue length at intersections. The simulation is conducted 
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in VISSIM under various market penetration rates of CAVs. The proposed algorithm can 

reduce travel delay by as much as 16%. 

2.4.2.4 Datesh et al.’s research work 

Datesh et al. (2011) developed an IntelliGreen Algorithm (IGA) to control traffic 

signals using K-means clustering. The performance of IGA is compared with traditional 

intersection in VISSIM. It is concluded that IGA can improve intersection mobility and 

traffic sustainability effectively and efficiently. 

2.4.2.5 Qi and Hu’s research work 

Qi and Hu (2019) proposed a Monte Carlo Tree Search-based model to optimize 

traffic signals. At each time step, the proposed model will choose the best signal phase 

sequences. The model was compared with Synchro and the results showed that it has 

better performance at both saturate and unsaturated traffic flow.  

2.4.2.6 Li and Sun’s research work 

Li and Sun (2019) used a cell mapping method to optimize signal timing and lane 

assignment. The simulation scenario is developed in a conflict free environment 

considering pedestrian. It was concluded that the proposed optimization method can 

improve intersection mobility effectively. 

2.4.2.7 Chow et al.’s research work 

Chow et al. (2019) proposed a kinematic wave model to generate decentralized 

solution for signal optimization. The simulation scenario was selected from a roadway 

segment in London. The results showed that the network-wide delay under high demand 

scenarios can be improved by up to 59.6 veh-h. 



31 

 

In summary, signal optimization based methods are capable of improving the 

intersection mobility considering the impacts of CAV technologies. A variety of 

signalized optimization based intersection analysis studies have been conducted to 

achieve this goal. Table 2.6 exhibits a summary of the signal optimization based 

intersection analysis studies summarized in this section. 

Table 2.6 Summary of the Signal Optimization Based Intersection Analysis Studies 

No. Author, Year Model Object Findings 

1 He et al., 2012 
Platoon-based 

mathematical 

formulation 
Optimal signal plans 

Reduce delay 

under both non-

saturated and 

oversaturated 

traffic conditions 

2 
Priemer and Friedrich, 

2009 

Dynamic 

programming and 

complete 

enumeration 

Decentralized adaptive 

traffic signal control 

Reduce average 

delay by up to 

24 % 

3 Feng et al., 2015 
Real time adaptive 

signal phase 

allocation 
Optimal phase sequence 

Reduce delay by 

as much as 16% 

4 Datesh et al., 2011 
IntelliGreen 

Algorithm 
Improve efficacy of 

traffic signals 

Achieve system-

wide benefits at 

lower 

computational 

costs 

5 Qi and Hu, 2019 
Monte Carlo Tree 

Search-based model 
Intersection optimization 

Better than 

Synchro 

6 Li and Sun, 2019 
Multi-objective 

optimization method 
Optimal signal setting 

Effective in 

controlling the 

traffic at the 

intersection 

7 Chow et al., 2019 

Hamilton-Jacobi 

formulation of 

kinematic wave 

model 

Optimal signal control 

framework 

Improve the 

network-wide 

delay by up to 

59.6 veh-h 

 

https://www.sciencedirect.com/topics/mathematics/multiobjective-optimization
https://www.sciencedirect.com/topics/mathematics/multiobjective-optimization
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2.4.3 Integrated Optimization Methods 

2.4.3.1 Guo et al.’s research work 

Guo et al. (2019) present a dynamic program with shooting heuristic (DP-SH) to 

optimize signal timing as well as vehicle trajectories. The simulation scenario considered 

a mixed traffic environment including CAVs and regular vehicles. Numerical results 

showed that the proposed program can reduce travel time and fuel consumption by 36% 

and 31%, respectively. The impact is observed even at a low penetration level of CAVs.  

2.4.3.2 Yu et al.’s research work 

Yu et al. (2018) developed a mixed integer linear programming (MILP) model to 

find the optimal vehicle trajectory and signal timing at the intersections. A mixed traffic 

environment including CAVs and human driven vehicles is considered. The objective 

function is to minimize total travel delay and vehicle emissions at the intersection. The 

proposed algorithm can help CAVs pass through the intersection without stopping. As a 

result, no queue will generate at the stop line. It is found that intersection capacity, total 

travel delay, and vehicle emissions were all improved significantly.  

2.4.3.3 Feng et al.’s research work 

Feng et al. (2018) proposed a two-stage optimization program for intersection 

optimization. The first stage is to optimize the signal timing and the second stage is to 

optimize vehicle trajectory. The objective function is aim to minimize total travel delay 

and vehicle emissions. The proposed program can reduce vehicle delay by as much as 

24%. And vehicle emission can be reduced by 14%. 

2.4.3.4 Li et al.’s research work 
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Li et al. (2014) present a joint control algorithm for both vehicle trajectory and 

signal phases. Vehicle will be assigned an optimized path through V2I communication 

between vehicle and signal controller. The proposed algorithm was compared with 

traditional signalized intersection under different traffic volumes. It was found that total 

travel delay can be reduced by 37% and intersection throughput can be increased by 20%. 

In summary, with the rapid development of V2I technology, CAVs can 

communicate with signal controller efficiently and effectively. The optimization of 

vehicle trajectory and signal timing can be done simultaneously. Thus, better intersection 

mobility can be expected. Table 2.7 exhibits a summary of the integrated optimization 

based intersection analysis studies summarized in this section. 

Table 2.7 Summary of the Integrated Optimization Based Intersection Analysis Studies 

No. Author, Year Model Object Findings 

1 Guo et al., 2019 

Dynamic 

programming 

with 

shooting 

heuristic 

Near-optimal 

intersection and 

trajectory 

control 

Reduce travel time by 36% 

2 Yu et al., 2018 
Mixed 

integer linear 

program 

Optimize 

vehicle 

trajectories and 

traffic signals 

Decrease of vehicle delays by up to 80% 

3 
Feng et al., 

2018 
Dynamic 

programming 
Minimize 

vehicle delay 
Reduce about 10% vehicle delay 

4 Li et al., 2014 
Rolling 

horizon 

scheme 

Optimize 

vehicle paths 

and signal 

control 

Increase throughput by 2.7–20.2% 
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2.5 Summary 

 A comprehensive literature review and synthesis of the current and historical 

research studies related to CAV technology, freeway capacity analysis, intersection 

mobility analysis methods, simulation scenarios, and parameters are summarized in the 

this chapter. This provides a solid preparation for future research with respect to model 

development and simulation scenario selection. 
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CHAPTER 3 DATA DESCRIPTION 

 

 

3.1 Introduction 

This chapter will describe the database used to collect necessary data in this 

research. The California Department of Transportation (Caltrans) Performance 

Measurement System (PeMS) is used as the source to develop and calibrate the 

microsimulation software and determine the potential freeway segments as well. 

The following sections are structured as follows. Section 3.2 introduces 

information about the Caltrans Performance Measurement System. Section 3.3 details 

potential freeway segments with necessary data related to the select freeway segments. 

Finally, section 3.4 summarizes this chapter. 

3.2 The Caltrans Performance Measurement System 

 In this chapter, the Caltrans Performance Measurement System is used to select 

potential freeway segments. The PeMS is briefly present in this section.  

3.2.1 Introduction to PeMS 

PeMS is a statewide system in California since 1999. There are over 35,000 

detectors which can report real-time traffic data every 30 seconds. Users are able to 

access the PeMS database via a standard internet browser with no charge generated. 

PeMS is a web-based database providing historical traffic data in different aspects, 

such as speed, flow, capacity, and delay. By using PeMS, researchers can conduct 

research with the comprehensive information on selected freeway segments, identify 

congestion bottlenecks, evaluate freeway performance, and make better decisions on 

freeway operation. 
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A consolidated real-time traffic dataset can be collected by PeMS. The raw data 

sent to PeMS are from the following sources (PeMS 2001): 

 “Traffic Detector and Census Stations 

 Weight-In-Motion Sensors 

 California Highway Patrol Incident Data 

 The Caltrans Photolog 

 Arterial Detector data and Timing Plans 

 Transit data such as routes and schedules, Automated Vehicle Location and 

Automated Passenger Count data” 

 

3.2.2 PeMS Data Sources 

Data are collected and sent to PeMS by sensors and detector stations. The 

inductive loops are the most common detection devices used by PeMS. The inductive 

loops are installed at specific locations on the freeways, with a controller in a cabinet at 

the roadside recording the data. The inductive loops collect traffic flow and vehicle 

occupancy data and then send the information to PeMS through the controller every 30 

seconds. 

There are also other data sets that can provide information to the PeMS database. 

The detector configuration information is provided by the Caltrans Districts.  

3.2.3 Functionality of PeMS 

Users can query traffic data from PeMS to conduct analyses. PeMS provides users 

information on required freeway segment. Several freeway performance data can also be 

obtained, such as traffic volume, vehicle speed, travel delay, and so on. With the 

assistance of PeMS, users can conduct traffic analysis using analytical or simulation 

method. The PeMS data can be used as an input to the simulation models for research 

projects and other transportation planning objectives. Users can also use PeMS data for 
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model calibration so that more accurate results can be achieved under the real-world 

traffic condition. Below are some examples of what PeMS can do (PeMS 2001): 

 “Export data in different formats including Excel file, CSV text file, HTML 

tables, and plots. 

 Integrate with current internet-based mapping tools, such as Google Maps and 

Google Earth. 

 Compute basic freeway performance measures, such as flow, speed, truck 

volume, delay, and Level of Service. 

 Compute advanced freeway performance measures, such as VMT ratio and 

VHT ratio. 

 Conduct special freeway system analyses. 

 Provide users with incident information. 

 Identify freeway bottlenecks, recurrent or non-recurrent congestion through a 

special algorithm. 

 Produce summary reports of different variables.” 

3.3 Potential Freeway Segments 

Three different freeway segments are selected through the PeMS database as 

potential simulation scenarios. To identify the impact of CAV technology under different 

freeway scenarios, the selected freeway segments contain a mix of configurations, such 

as on-ramp, off-ramp, and weaving area. All three freeway segments are selected around 

the City of Los Angeles, a large population area. These sites are selected because their 

preexisting congestion issues during the peak hour, as well as the fact that they are the 

major interstate freeways with high traffic volumes. According to the literature review in 

Chapter 2, each selected freeway segment has a length of around 3 miles. Table 3.1 

summarizes the length of the simulation scenarios in previous studies. The following 

sections will describe each freeway segment in detail. 
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Table 3.1 Summary of the Length of Simulation Scenarios in Previous Studies 

Authors Length of Scenarios 

Atkins (2016) 1 km Single-lane link  

Atkins (2016) 1 km Multi-lane link  

Bierstedt, J. et al. (2014) 3.2 mi Mix of merge, diverge and weaving area 

Arnaout, G., and Bowling, S. (2011) 6 km 

Olia et al. (2017) 20 km Two-lane with an on-ramp 

Kesting et al. (2008) 13 km 

Shelton (2016) 12 mi Corridor 

Fernandes and Nunes (2010) 5 km 

Arnaout and Arnaout (2014) 6 km U-shaped four-lane freeway 

Fernandes and Nunes (2015) 4 km 

  

3.3.1 I10 EB Postmile 7.36 – 10.08 

The first freeway segment is a mainline segment of I-10 freeway eastbound in the 

west of downtown LA. It has a total length of 2.72 miles including three weaving 

sections with distances of 2,700 ft, 2,200 ft, and 2,800 ft, respectively. Figure 3.1 shows 

where the freeway segment is located. The selected freeway segment is inside the blue 

square. Table 3.2 shows the roadway information provided by the vehicle detector station 

VDS 717022. 

 
Figure 3.1 Freeway Segment at I-10 EB 
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Table 3.2 Roadway Information Provided by VDS 717022 

Roadway Information 

Road Width 60 ft 

Lane Width 12.0 ft 

Inner Shoulder Width 10 ft 

Inner Shoulder Treated Width 10 ft 

Outer Shoulder Width 10 ft 

Outer Shoulder Treated Width 10 ft 

Inner Median Width 22 ft 

Terrain Flat 

Population Urbanized 

Barrier Concrete Barrier 

Surface Concrete 

 

Figure 3.2 shows the daily traffic flow collected by VDS 717022 on Monday 02/19/2018. 

 
Figure 3.2 Daily Traffic Flow Example at VDS 717022 

 

Figure 3.3 shows the daily traffic speed collected by VDS 717022 on Monday 

02/19/2018. 
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Figure 3.3 Daily Traffic Speed Example at VDS 717022 

 

3.3.2 I-110 North Bound Postmile 15.03 – 17.90 

The second freeway segment is a mainline segment of I-110 freeway northbound 

in the south of downtown LA. It has a total length of 2.87 miles including four weaving 

sections with distances of 2,900 ft, 1,500 ft, 650 ft, and 550 ft, correspondingly. Figure 

3.4 shows the location of the freeway segment. Figure 3.5 provides a detailed 

configuration of the freeway segment. Table 3.3 shows the roadway information provided 

by the vehicle detector station VDS 763384. 
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Figure 3.4 Freeway Segment at I-110 NB 

 

 
Figure 3.5 Configuration of Freeway Segment at I-110 NB 

 

Table 3.3 Roadway Information Provided by VDS 763384 

Roadway Information 

Road Width 48 ft 

Lane Width 12.0 ft 

Inner Shoulder Width 7 ft 

Inner Shoulder Treated Width 7 ft 

Outer Shoulder Width 10 ft 

Outer Shoulder Treated Width 10 ft 

Inner Median Width 16 ft 

Terrain Flat 

Population Urbanized 

Barrier Concrete Barrier w/Glare Screen 
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Surface Concrete 

 

Figure 3.6 shows the daily traffic flow collected by VDS 763384 on Monday 

02/19/2018. 

 
Figure 3.6 Daily Traffic Flow Example at VDS 763384 

 

Figure 3.7 shows the daily traffic speed collected by VDS 763384 on Monday 

02/19/2018. 

 
Figure 3.7 Daily Traffic Speed Example at VDS 763384 
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3.3.3 I-405 South Bound Postmile 69.87 – 66.22 

The third freeway segment is a mainline segment of I-405 freeway southbound in 

the northwest of downtown LA. It has a total length of 3.65 miles including three on-

ramp and off-ramp pairs with distances of 5,700 ft, 3,100 ft, and 5,100 ft, respectively. 

Also, this freeway segment has a lane drop from six lanes to four lanes. Figure 3.8 shows 

the location of the freeway segment. Figure 3.9 provides a detailed configuration of the 

freeway segment. Table 3.4 shows the roadway information provided by the vehicle 

detector station VDS 737529. 

 
Figure 3.8 Freeway Segment at I-405 SB 
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Figure 3.9 Configuration of Freeway Segment at I-405 SB 

 

Table 3.4Roadway Information Provided by VDS 737529 
Roadway Information 

Road Width 56 ft 

Lane Width 11.2 ft 

Inner Shoulder Width 1 ft 

Inner Shoulder Treated Width 1 ft 

Outer Shoulder Width 0 ft 

Outer Shoulder Treated Width 0 ft 

Inner Median Width 6 ft 

Terrain Flat 

Population Urbanized 

Barrier Concrete Barrier 

Surface Bridge Deck 

 

Figure 3.10 shows the daily traffic flow collected by VDS 737529 on Monday 

02/19/2018. 

 
Figure 3.10 Daily Traffic Flow Example at VDS 737529 
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Figure 3.11 shows the daily traffic speed collected by VDS 737529 on Monday 

02/19/2018. 

 
Figure 3.11 Daily Traffic Speed Example at VDS 737529 

 

3.4 Summary 

PeMS provides real-time traffic data across the state of California. A 

comprehensive introduction to PeMS has been presented in the preceding section. After 

examining the PeMS database, three freeway segments have been selected as potential 

simulation scenarios. The selected freeway segments contain a mix of merging, diverging, 

and weaving area. There are vehicle detector stations before and after each merging, 

diverging, and weaving area. The basic information about the selected freeway segments 

is discussed and traffic speed and flow data from three vehicle detector stations are 

shown as an example of the necessary data related to the selected freeway segments. This 

is a basic preparation for simulating freeway capacity with CAV technologies in the 

future tasks.   
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CHAPTER 4 CALIBRATION OF THE MICROSIMULATION SOFTWARE 

 

 

4.1 Introduction 

Microscopic simulation models are widely used in transportation analysis. 

Compared to field testing, simulation provides a safer, faster, and costless environment 

for researchers. However, in order to obtain reliable results through simulation, the 

default parameters in the simulation model should be calibrated. The calibration 

procedure aims to minimize the differences between the simulated and the observed data. 

This chapter presents the calibration process for the simulation model built in VISSIM by 

a case study from a freeway segment selected from PeMS. VISSIM allows users to input 

other values for the parameters. To obtain a better match between the simulated and 

observed data, a proper calibration of the VISSIM parameters needs to be conducted. 

Genetic Algorithm (GA) is employed to find the optimal solutions for the optimization 

function. 

This chapter is structured as follows. Section 4.2 summarizes the study site 

selected through PeMS for conducting the calibration procedure. Section 4.3 describes 

the objective function used in the calibration including proper performance measures. 

Section 4.4 introduces the GA process and section 4.5 presents the set of parameters in 

VISSIM being calibrated. Section 4.6 shows the calibration results. Finally, section 4.7 

summarizes this chapter. 

4.2 Study Site 

As an example, the study site used for the conduct of case study in this paper is a 

basic freeway segment that is selected through the PeMS database. The freeway segment 
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is a portion of the I-405 freeway located in the city of Los Angles, California, as shown 

in Figure 4.1 (within the rectangular area). This freeway stretch is a four-lane basic 

freeway segment with a total length of 2100 ft. The study period spans 1 hour of the a.m. 

peak, from 7:00 to 8:00 a.m. on May 16th, 2018, and the field traffic data (i.e. flow and 

speed) are aggregated into 5-min counts. Table 4.1 shows the traffic flow and speed in 

each lane during a 5-min interval. And the right two columns show the total traffic flow 

and the average traffic speed of four lanes. 

 
Figure 4.1 Map of the Study Site at I-405 from the PeMS 

 

Table 4.1 Traffic Flow and Speed throughout the Study Period 

Tim

e  

Lane 

1 

Flow 

(Veh/

5 

Mins) 

Lane 

1 

Speed 

(mph

) 

Lane 

2 

Flow 

(Veh/

5 

Mins) 

Lane 

2 

Speed 

(mph) 

Lane 

3 

Flow 

(Veh/5 

Mins) 

Lane 

3 

Speed 

(mph) 

Lane 

4 

Flow 

(Veh/5 

Mins) 

Lane 

4 

Speed 

(mph) 

Flow 

(Veh/5 

Mins) 
Speed 

(mph) 

7:00 98 73.70 114 67.60 113 60.10 75 57.00 400 65.00 

7:05 132 73.20 134 68.00 116 57.80 77 55.60 459 64.80 

7:10 116 73.00 122 66.50 120 56.00 85 52.70 443 62.70 

7:15 122 71.90 141 66.00 136 57.30 92 56.60 491 63.30 
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7:20 135 69.60 153 65.30 133 56.30 116 54.30 537 61.80 

7:25 139 69.50 158 65.10 132 55.20 114 53.80 543 61.40 

7:30 131 70.00 148 64.80 150 56.20 110 55.40 539 61.80 

7:35 154 69.90 155 64.40 142 56.80 113 54.10 564 61.90 

7:40 150 71.00 142 63.90 135 54.80 113 52.80 540 61.30 

7:45 146 68.60 159 62.90 140 54.70 127 52.10 572 60.00 

7:50 136 70.30 152 64.50 155 52.80 111 50.80 554 59.90 

7:55 136 70.90 145 66.10 152 56.10 115 53.80 548 61.90 

 

4.3 Objective Function 

In order to minimize the discrepancy between observed and simulated traffic data, 

the parameters of the microscopic traffic simulation model should be calibrated for the 

existing human driven vehicles. In this regard, the general optimization framework is 

formulated as follows. 

𝑚𝑖𝑛 𝑓(𝑽𝑜𝑏𝑠, 𝑽𝑠𝑖𝑚)         (4.1) 

Subject to the constraints: 

𝒍𝑥𝑖 ≤ 𝒙𝑖 ≤ 𝒖𝑥𝑖
, 𝑖 = 1…𝑛,        (4.2) 

Where 

𝒙𝑖= the model parameters to be calibrated. 

𝑓(. )= objective function. 

𝑽𝑜𝑏𝑠, 𝑽𝑠𝑖𝑚= observed and simulated value of model parameters being calibrated. 

𝒍𝑥𝑖 , 𝒖𝑥𝑖
= the respective lower and upper bounds of model parameter 𝒙𝑖. 

n = number of variables. 

In this study, the objective function uses the Mean Absolute Normalized Error 

(MANE), which is provided by the following equation. The objective function aims to 
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minimize the differences between simulated and observed traffic flow and speed data: 

𝑀𝑖𝑛𝑖𝑚𝑖𝑧𝑒𝑀𝐴𝑁𝐸(𝒒, 𝒗) =
1

𝑁
∑ (

|𝒒𝑜𝑏𝑠,𝑖−𝒒𝑠𝑖𝑚,𝑖|

𝒒𝑜𝑏𝑠,𝑖

𝑁
𝑖=1 +

|𝒗𝑜𝑏𝑠,𝑖−𝒗𝑠𝑖𝑚,𝑖|

𝒗𝑜𝑏𝑠,𝑖
   (4.3) 

Where 

𝒒𝑜𝑏𝑠,𝑖, 𝒒𝑠𝑖𝑚,𝑖= observed and simulated traffic flow for a given time period i. 

𝒗𝑜𝑏𝑠,𝑖, 𝒗𝑠𝑖𝑚,𝑖= observed and simulated traffic speed for a given time period i. 

N = total number of observations. 

4.4 Genetic Algorithm 

Genetic Algorithm is available to achieve near-global optima during the calibration 

procedure of the microscopic traffic simulation model. The GA is an inspiration of 

biological evolution process with selection, crossover and mutation as its three steps. The 

GA starts from a random population set. For each generation, the better solutions have 

higher probabilities to be selected and used to generate new populations after crossover 

and mutation within the selected solutions. In this study, the population size is set to be 

10, and the crossover and mutation rate are set to be 0.8 and 0.2, respectively. The max 

generation number is 20. The GA-based calibration is conducted through MATLAB. A 

population of binary chromosomes is generated randomly at the very beginning and each 

represents a feasible solution. Then the chromosomes are decoded to relative model 

parameters and passed onto the VISSIM for simulation. The objective function value is 

calculated based on the simulated traffic flow and speed data. The calibration process will 

not stop until the maximum number of generation is reached or the stopping criterion is 

met. Figure 4.2 shows the GA calibration process.  
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Figure 4.2 GA Calibration Process 

 

4.5 VISSIM Calibration Parameters 

VISSIM uses the Wiedemann’s car following model to capture the physical and 

human components of vehicles (PTV 2015). As the Wiedemann model stated, a vehicle 

has four driving modes: free driving, approaching, following and braking. The model has 

ten unique parameters (i.e. 𝐶𝐶0, 𝐶𝐶1,… , 𝐶𝐶9) representing the car following 

characteristics. 𝐶𝐶0 (standstill distance) is the desired distance between two stopped 

vehicles. 𝐶𝐶1 (headway time) represents the travel time between two consecutive 

vehicles. Thus, at a given speed 𝑣, the safety distance dx_safe is defined as follows: 

𝑑𝑥_𝑠𝑎𝑓𝑒 = 𝐶𝐶0 + 𝐶𝐶1 × 𝑣        (4.4) 
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Other than CC0 and CC1, CC2-CC5, and CC7 can also significantly impact the 

simulation results (Lownes and Machemehl, 2006). So, in this study, 𝐶𝐶0-CC5, and 𝐶C7 

are calibrated. 

4.6 Calibration Results 

The calibrated value of 𝐶𝐶0 is 2.20 ft compared to the default value of 4.92 ft. 

And the optimized value of 𝐶𝐶1 calibrated by the GA is 1.20 seconds compared to the 

default value of 0.90 seconds. Figure 4.3 presents the GA objective function MANE 

values during the optimization period. The y-axis represents the minimum objective 

function value up to every generation and the x-axis denotes the number of generations. 

Table 4.2 shows all the calibration results for the car following model parameters. 

 

 
Figure 4.3 GA Objective Function Value vs. Generation 
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Table 4.2 Calibration Results of the Car Following Model Parameters 

Parameter Default Value Calibrated 

Value 

CC0-Standstill distance (ft) 4.92 2.12 

CC1-Headway time (gap between vehicles) 

(seconds) 

0.9 1.2 

CC2-Car-following distance/following variation 

(ft) 

13.12 11 

CC3 - Threshold for entering following (seconds) -8 -13 

CC4 - Negative following threshold (ft/s) -0.35 -0.8 

CC5 - Positive following threshold (ft/s) 0.35 1.3 

CC7 - Oscillation during acceleration (ft/s2) 0.82 1.5 

 

4.7 Summary 

This chapter presents the calibration procedure of the microscopic simulation 

model. The GA is adopted to find optimized values of calibrated parameters which can 

reduce the differences between field and simulated data. It should be mentioned that only 

local optimal solutions can be obtained due to the inherent characteristics of GA and 

limited generations. It is noted that, with more generations, the solution can be further 

improved to approach closer to global optimal. 
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CHAPTER 5 IMPACT OF CAV ON FREEWAY CAPACITY 

 

 

5.1 Introduction 

This chapter discusses the numerical results of the simulation. An External Driver 

Behavior Model (EDBM) is employed to simulate the CAVs and AVs. Four different 

freeway scenarios are finally selected according to the results of Chapter 3. The impacts 

of CAVs and AVs on the freeway segments are evaluated under different penetration 

level of CAVs and AVs.  

The chapter is structured as follows. Section 5.2 presents the External Driver 

Behavior Model. Section 5.3 shows the numerical results of the analysis conducted on the 

four selected freeway segments. Finally, section 5.4 summarizes this chapter. 

5.2 External Driver Behavior Model 

VISSIM cannot simulate operations of CAVs with its internal driver behavior 

model. However, VISSIM provides the option to replace the internal model with an 

External Driver Behavior Model (EDBM), which is a fully user-defined driving behavior 

model for CAVs. The EDBM is implemented as a C++ Dynamic Link Library (DLL) 

plug-in, which contains specific algorithms for CAVs. These algorithms can determine 

the next step maneuver (i.e. acceleration, lane change) for each affected vehicle. During 

each simulation time step, VISSIM calls the DLL file to determine the behavior of the 

vehicle by passing the current state of the vehicle and its surroundings to the DLL and 

retrieving the updated state calculated by the DLL. 

The EMDB model is developed in C++ and needs to be compiled to generate a 

DLL file. The DLL file can be implemented as a V2V communication device, wherein 
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the leading vehicle informs the following vehicle of its location, speed and acceleration. 

The following vehicle can change its speed quickly to avoid rear-end collisions. The 

algorithm continuously adjusts the acceleration rates by measuring the headways between 

vehicles to keep short headways. The headway between CAVs is set as 0.6 s and the 

headway between CAVs/AVs and AVs or regular vehicle is set to be 0.9 s. Headway for 

regular vehicles followingeach other and CAVs/AVs is set to be 0.9s also. 

5.3 Numerical Results 

Based on the potential freeway segments identified from Chapter 3, four freeway 

segments are finally selected from PeMS to conduct the analysis. The selected freeway 

segments represent four different freeway scenarios including basic freeway segment, on-

ramp, off-ramp, and weaving segment. The impacts of CAVs and AVs on each freeway 

segment are examined under different CAV/AV penetration levels. The numerical results 

are presented in detail in the following sections.  

5.3.1 Basic Freeway Segment 

The basic freeway segment is obtained from a portion of the I-405 freeway 

identified in Chapter 3, as shown in Figure 5.1 (in red). The study period is the peak hour 

from 7:00 to 8:00 a.m. on May 16th, 2018. The traffic flow data are collected from PeMS 

and used as input in the simulation. This freeway segment stretch is a four-lane basic 

freeway segment with a total length of 2500 ft. 



55 

 

 
Figure 5.1 Location of the Basic Freeway Segment 

 

The freeway capacity for different penetration level of CAVs and AVs are shown 

in Table 5.1. The speed limit on the tested freeway segment is 104 km/h (65 mph). Figure 

5.2 plots the tendency of the capacity change with different penetration level of CAVs 

and AVs. And the simulations are also conducted under other three speed limits, which 

are 80 km/h, 90 km/h, and 120 km/h, respectively. The results are shown in Table 5.2, 

Table 5.3, and Table 5.4, respectively. 

Table 5.1 Capacity Analysis on Basic Freeway Segment under Speed Limit 104 km/h 
Basic Freeway Segment with Speed Limit 104 km/h 

  AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2160 2209 2305 2371 2472 2537 

20% 1798 2092 2272 2464 2699  

40% 2603 3067 3472 3705   

60% 3902 3838 3856    

80% 3927 3929     

100% 3980      
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Figure 5.2 The Capacity Tendency on Basic Freeway Segment under Speed Limit 104 

km/h 

 

Table 5.2 Capacity Analysis on Basic Freeway Segment under Speed Limit 80 km/h 
Basic Freeway Segment with Speed Limit 80 km/h 

  AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2105 2173 2269 2363 2472 2567 

20% 1840 1850 2007 2416 2482  

40% 2668 2985 3090 3336   

60% 3314 3459 3479    

80% 3526 3530     
100% 3575           

 

Table 5.3 Capacity Analysis on Basic Freeway Segment under Speed Limit 90 km/h 
Basic Freeway Segment with Speed Limit 90 km/h 

  AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2134 2211 2289 2378 2469 2576 

20% 1745 2075 2085 2402 2498  

40% 2666 2827 3296 3543   

60% 3716 3747 3750    

80% 3806 3813     
100% 3854           
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Table 5.4 Capacity Analysis on Basic Freeway Segment under Speed Limit 120 km/h 
Basic Freeway Segment with Speed Limit 120 km/h 

  AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2162 2234 2321 2382 2454 2566 

20% 1895 2130 2289 2537 2829  

40% 2674 2942 3438 3712   

60% 4117 4234 4214    

80% 4297 4300     
100% 4345           

 

The all-manual case can be seen as a base case with a nominal capacity around 

2,200 vehicles per hour per lane (vphpl). With 100% penetration level of CAVs, freeway 

capacity can be increased by 101%, 84.3%, 80.6%, and 69.8% under speed limits of 120 

km/h, 104 km/h, 90 km/h, and 80 km/h, respectively. With 100% penetration level of 

AVs, freeway capacity can be increased by 18.7%, 17.5%, 20.7%, and 21.9% under 

speed limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively. 

5.3.2 On-ramp Freeway Segment 

The on-ramp freeway segment is obtained from a portion of the I-405 freeway 

identified in Chapter 3, as shown in Figure 5.3 (in red). The study period is the peak hour 

from 7:00 to 8:00 a.m. on May 16th, 2018. The traffic flow data are collected from PeMS 

and used as input in the simulation. This freeway segment stretch is a four-lane freeway 

segment with an on-ramp with a total length of 2000 ft. 
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Figure 5.3 Location of the On-ramp Freeway Segment 

 

The freeway capacity before and after the on-ramp for different penetration level 

of CAVs and AVs are shown in Table 5.5. Figure 5.4 plots the tendency of the capacity 

change before the on-ramp with different penetration level of CAVs and AVs. Figure 5.5 

plots the tendency of the capacity changes after the on-ramp with different penetration 

level of CAVs and AVs. The simulations are also conducted under other three speed 

limits, which are 80 km/h, 90 km/h, and 120 km/h, respectively. The capacity results 

before and after the on-ramp are shown in Table 5.6, Table 5.7, and Table 5.8, 

respectively.  
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Figure 5.4 The Capacity Tendency before On-ramp under Speed Limit 104 km/h 

 
Figure 5.5 The Capacity Tendency after On-ramp under Speed Limit 104 km/h 

 

Table 5.5 Capacity Analysis on Freeway On-ramp Segment under Speed Limit 104 km/h 

Freeway On-ramp Segment with Speed Limit 104 km/h 

Before On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2131 2214 2310 2394 2493 2511 

20% 1752 2028 2149 2421 2635  

40% 2746 2744 3361 3751   

60% 3948 3980 3981    

80% 4008 4025     
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100% 4058           

After On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2089 2175 2220 2357 2404 2476 

20% 1582 1847 1925 2195 2418  

40% 2524 2490 3142 3587   

60% 3823 3874 3882    

80% 3902 3924     

100% 3947           

 

Table 5.6 Capacity Analysis on Freeway On-ramp Segment under Speed Limit 80 km/h 

Freeway On-ramp Segment with Speed Limit 80 km/h 

Before On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2121 2176 2270 2357 2444 2497 

20% 1652 1920 2268 2286 2619  

40% 2643 3147 3244 3402   

60% 3499 3491 3531    

80% 3559 3574     

100% 3611           

After On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2048 2104 2195 2292 2385 2438 

20% 1447 1700 2042 2071 2413  

40% 2460 2950 3014 3242   

60% 3377 3350 3418    

80% 3441 3451     

100% 3487           

 

Table 5.7 Capacity Analysis on Freeway On-ramp Segment under Speed Limit 90 km/h 

Freeway On-ramp Segment with Speed Limit 90 km/h 

Before On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2127 2207 2302 2404 2482 2515 

20% 1872 2004 2042 2377 2457  

40% 2705 3094 3425 3609   

60% 3791 3810 3816    

80% 3840 3859     

100% 3887           

After On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 
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CAV 

0% 2096 2157 2266 2333 2409 2463 

20% 1701 1809 1846 2191 2246  

40% 2462 2922 3221 3417   

60% 3676 3697 3706    

80% 3731 3750     

100% 3777           

 

Table 5.8 Capacity Analysis on Freeway On-ramp Segment under Speed Limit 120 km/h 

Freeway On-ramp Segment with Speed Limit 120 km/h 

Before On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2140 2221 2332 2434 2480 2534 

20% 1876 2067 2172 2487 2716  

40% 2689 3083 3442 3746   

60% 4108 4246 4290    

80% 4327 4337     

100% 4370           

After On-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2132 2197 2287 2369 2418 2506 

20% 1685 1841 1937 2284 2517  

40% 2474 2877 3245 3529   

60% 3940 4120 4189    

80% 4224 4244     

100% 4272           

 

With 100% penetration level of CAVs, freeway capacity before on-ramp can be 

increased by 104%, 90.4%, 82.7%, and 70.2% under speed limits of 120 km/h, 104 km/h, 

90 km/h, and 80 km/h, respectively. And with 100% penetration level of CAVs, freeway 

capacity after on-ramp can be increased by 100%, 88.9%, 80.2%, and 70.3% under speed 

limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively.  

With 100% penetration level of AVs, freeway capacity before on-ramp can be 

increased by 18.4%, 17.8%, 18.2%, and 17.7% under speed limits of 120 km/h, 104 km/h, 

90 km/h, and 80 km/h, respectively. And with 100% penetration level of AVs, freeway 



62 

 

capacity after on-ramp can be increased by 17.5%, 18.5%, 17.5%, and 19.0% under speed 

limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively. 

5.3.3 Off-ramp Freeway Segment 

The off-ramp freeway segment is obtained from a portion of the I-405 freeway 

identified in Chapter 3, as shown in Figure 5.6 (in red). The study period is the peak hour 

from 7:00 to 8:00 a.m. on May 16th, 2018. The traffic flow data are collected from PeMS 

and used as input in the simulation. This freeway segment stretch is a four-lane freeway 

segment with an off-ramp with a total length of 2000 ft. 

 
Figure 5.6 Location of the Off-ramp Freeway Segment 

 

The freeway capacity before and after the off-ramp for different penetration level 

of CAVs and AVs are shown in Table 5.9. Figure 5.7 plots the tendency of the capacity 

change before the off-ramp with different penetration level of CAVs and AVs. Figure 5.8 

plots the tendency of the capacity change after the off-ramp with different penetration 

level of CAVs and AVs. The speed limit on the tested freeway segment is 104 km/h (65 

mph). And the simulations are also conducted under other three speed limits, which are 

80 km/h, 90 km/h, and 120 km/h, respectively. The results before and after the on-ramp 

are shown in Table 5.10, Table 5.11, and Table 5.12, respectively. 
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Table 5.9 Capacity Analysis on Freeway Off-ramp Segment under Speed Limit 104 km/h 

Freeway Off-ramp Segment with Speed Limit 104 km/h 

Before Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2003 1963 2164 2396 2303 2473 

20% 1681 1798 1892 1856 2160  

40% 2133 2332 2739 3065   

60% 3666 3894 4002    

80% 4034 4044     

100% 4086           

After Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1706 1717 1785 2087 2040 2235 

20% 1264 1474 1506 1409 1707  

40% 1738 1800 2202 2545   

60% 3172 3377 3685    

80% 3750 3749     

100% 3791           

 

 
Figure 5.7 The Capacity Tendency before Off-ramp under Speed Limit 104 km/h 
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Figure 5.8 The Capacity Tendency after Off-ramp under Speed Limit 104 km/h 

 

Table 5.10Capacity Analysis on Freeway Off-ramp Segment under Speed Limit 80 km/h 

Freeway Off-ramp Segment with Speed Limit 80 km/h 

Before Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1843 1930 1894 2012 2025 2116 

20% 1749 1749 1799 2053 2219  

40% 2223 2372 2455 2856   

60% 3427 3419 3498    

80% 3546 3558     

100% 3596           

After Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1537 1554 1572 1698 1605 1826 

20% 1343 1430 1421 1544 1723  

40% 1782 1845 2052 2308   

60% 2940 2873 3066    

80% 3256 3266     

100% 3317           
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Table 5.11 Capacity Analysis on Freeway Off-ramp Segment under Speed Limit 90 km/h 

Freeway Off-ramp Segment with Speed Limit 90 km/h 

Before Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1907 1934 2030 2120 2235 2204 

20% 1757 1879 1872 1915 2375  

40% 2248 2501 2634 2887   

60% 3511 3762 3796    

80% 3817 3837     

100% 3873           

After Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1552 1663 1730 1848 1846 1814 

20% 1372 1491 1428 1555 1892  

40% 1798 1974 2202 2297   

60% 2995 3343 3478    

80% 3526 3536     

100% 3603           

 

Table 5.12 Capacity Analysis on Freeway Off-ramp Segment under Speed Limit 120 

km/h 

Freeway Off-ramp Segment with Speed Limit 120 km/h 

Before Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 2035 2227 2085 1907 2176 2538 

20% 1748 1882 1851 1984 2211  

40% 2249 2411 2534 2856   

60% 3363 4104 4267    

80% 4295 4322     

100% 4352           

After Off-ramp  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1728 1866 1808 1648 1835 2315 

20% 1337 1479 1423 1560 1702  

40% 1819 1996 1935 2348   

60% 2923 3622 3953    

80% 4023 4034     

100% 4088           
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With 100% penetration level of CAVs, freeway capacity before off-ramp can be 

increased by 114%, 104%, 103%, and 95.1% under speed limits of 120 km/h, 104 km/h, 

90 km/h, and 80 km/h, respectively. And with 100% penetration level of CAVs, freeway 

capacity after off-ramp can be increased by 137%, 122%, 132%, and 116% under speed 

limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively.  

With 100% penetration level of AVs, freeway capacity before off-ramp can be 

increased by 24.7%, 23.5%, 15.6%, and 14.8% under speed limits of 120 km/h, 104 km/h, 

90 km/h, and 80 km/h, respectively. And with 100% penetration level of AVs, freeway 

capacity after off-ramp can be increased by 34.0%, 31%, 16.9%, and 18.8% under speed 

limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively. 

5.3.4 Weaving Freeway Segment 

The weaving freeway segment is selected from the I-110 freeway identified in 

Chapter 3, as shown in Figure 5.9 (in red). The study period is the peak hour from 7:00 to 

8:00 a.m. on May 16th, 2018. The traffic flow data are collected from PeMS and used as 

input in the simulation. This freeway segment stretch is a four-lane freeway segment with 

a weaving area with a total length of 2000 ft. The weaving area has a total length of 700 

ft. 
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Figure 5.9 Location of the Weaving Freeway Segment 

 

The freeway capacity before and after the weaving area for different penetration 

level of CAVs and AVs are shown in Table 5.13. Figure 5.10 plots the tendency of the 

capacity change before the weaving area with different penetration level of CAVs and 

AVs. And Figure 5.11 plots the tendency of the capacity change after the weaving area 

with different penetration level of CAVs and AVs. The speed limit on the tested freeway 

segment is 104 km/h (65 mph). And the simulations are also conducted under other three 

speed limits, which are 80 km/h, 90 km/h, and 120 km/h, respectively. The results before 

and after the weaving area are shown in Table 5.14, Table 5.15, and Table 5.16, 

respectively. 

Table 5.13 Capacity Analysis on Freeway Weaving Segment under Speed Limit 104 

km/h 

Freeway Weaving Segment with Speed Limit 104 km/h 

Before Weaving Area 
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1674 1699 1757 1843 1955 1858 

20% 1586 1803 1828 1980 1961  

40% 2390 2237 2465 3076   

60% 3674 3719 3921    

80% 3961 3981     

100% 4019           

After Weaving Area   AV 
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  0% 20% 40% 60% 80% 100% 

CAV 

0% 1565 1572 1680 1721 1807 1728 

20% 1396 1616 1637 1750 1739  

40% 2107 1968 2214 2786   

60% 3349 3379 3575    

80% 3632 3646     

100% 3682           

 

 
Figure 5.10 The Capacity Tendency before Weaving Area under Speed Limit 104 km/h 

 

 
Figure 5.11 The Capacity Tendency after Weaving Area under Speed Limit 104 km/h 
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Table 5.14 Capacity Analysis on Freeway Weaving Segment under Speed Limit 80 km/h 

Freeway Weaving Segment with Speed Limit 80 km/h 

Before Weaving Area 
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1630 1642 1760 1889 1892 1925 

20% 1475 1722 1937 1642 1905  

40% 2084 2410 2682 2776   

60% 3346 3339 3394    

80% 3444 3453     

100% 3496           

After Weaving Area  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1508 1538 1640 1759 1740 1767 

20% 1319 1530 1702 1520 1712  

40% 1873 2189 2414 2471   

60% 3027 3009 3104    

80% 3141 3154     

100% 3179           

 

Table 5.15 Capacity Analysis on Freeway Weaving Segment under Speed Limit 90 km/h 

Freeway Weaving Segment with Speed Limit 90 km/h 

Before Weaving Area 
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1619 1595 1800 1842 1802 1876 

20% 1634 1685 1832 1951 2134  

40% 2299 2378 2540 2745   

60% 3542 3581 3698    

80% 3715 3737     

100% 3776           

After Weaving Area  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1518 1477 1662 1711 1676 1726 

20% 1448 1504 1635 1746 1867  

40% 2034 2128 2248 2439   

60% 3208 3238 3355    

80% 3397 3409     

100% 3454           
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Table 5.16 Capacity Analysis on Freeway Weaving Segment under Speed Limit 120 

km/h 

Freeway Weaving Segment with Speed Limit 120 km/h 

Before Weaving Area 
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1702 1798 1771 1837 1922 1939 

20% 1705 1800 1791 1828 1947  

40% 2330 2542 2755 2881   

60% 3565 3722 4106    

80% 4187 4200     

100% 4245           

After Weaving Area  
 AV 

  0% 20% 40% 60% 80% 100% 

CAV 

0% 1591 1683 1623 1730 1756 1811 

20% 1535 1588 1540 1626 1746  

40% 2053 2255 2446 2596   

60% 3250 3346 3728    

80% 3858 3877     

100% 3907           

 

With 100% penetration level of CAVs, freeway capacity before weaving area can 

be increased by 149%, 140%, 133%, and 114% under speed limits of 120 km/h, 104 

km/h, 90 km/h, and 80 km/h, respectively. And with 100% penetration level of CAVs, 

freeway capacity after weaving area can be increased by 146%, 135%, 128%, and 111% 

under speed limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively.  

With 100% penetration level of AVs, freeway capacity before weaving area can 

be increased by 13.9%, 11.0%, 15.9%, and 18.1% under speed limits of 120 km/h, 104 

km/h, 90 km/h, and 80 km/h, respectively. And with 100% penetration level of AVs, 

freeway capacity after weaving area can be increased by 13.8%, 10.4%, 13.7%, and 17.2% 

under speed limits of 120 km/h, 104 km/h, 90 km/h, and 80 km/h, respectively. 
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5.4 Summary 

This chapter describes the numerical results of the capacity analysis under the 

selected freeway scenarios. The External Driver Behavior Model used to simulate CAV 

and AV is presented. For each scenario, the freeway capacities under different CAV and 

AV penetration rate and speed limits are evaluated. The freeway capacities before and 

after on-ramp, off-ramp, and weaving area are also compared. The numerical results 

show that CAVs are able to increase the freeway capacity under the four freeway 

scenarios. And the improvement of capacity increases if freeway speed limit gets higher. 

With 100% penetration level of CAVs, freeway capacity can be increased by over 100%. 

Compared to CAVs, there is no significant impact of AVs on freeway capacity. With 

100% penetration level of AVs, freeway capacity can be increased by around 20%.
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CHAPTER 6 TRAJECTORY OPTIMIZATION OF CAVs AT SIGNALIZED 

INTERSECTIONS 

 

 

6.1 The Potential Signalized Intersection 

6.1.1 Layout of the Potential Signalized Intersection 

To better explore the influence of CAV technologies on the operation of 

signalized intersection(s), the potential intersection should have existing congestion 

problem with regular vehicles. Based on this criterion, the selected signalized intersection 

is located in the north of Charlotte, NC. It is a four-leg signalized intersection with two-

way road in each direction. The westbound has three through lanes and two left turn 

lanes. The eastbound has three through lanes and two left turn lanes. The southbound has 

two through lanes, two left turn lanes, and one right turn lane. The northbound has two 

through lanes, two left turn lanes, and one right turn lane. The map of the selected 

signalized intersection is shown in Figure 6.1. 
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Figure 6.1 The Map of the Selected Signalized Intersection 

 

6.1.2 Traffic Volumes of the Selected Intersection 

The study period is the midday peak hour from 12:30p.m. to 1:30p.m. on April 3rd, 

2018. The detail traffic volume information onthe study period is shown in Table 6.1. 

Table 6.1 Traffic Volume of the Selected Signalized Intersection 
Leg 

Direction 
N. Tryon St 
Southbound 

Harris Blvd 
Westbound 

Time R T L U All R T L U All 
12:30 PM 66 80 94 0 240 65 328 49 11 453 
12:45 PM 47 60 69 0 176 65 307 61 14 447 
1:00 PM 54 84 92 0 230 59 277 60 10 406 
1:15 PM 49 69 98 0 216 50 317 42 10 419 

Total 216 293 353 0 862 239 1229 212 45 1725 
% 

Approach 
25.1 34.0 41.0 0 - 13.9 71.2 12.3 2.6 - 

% Total 4.3 5.8 7.0 0 17.2 4.8 24.5 4.2 0.9 34.3 
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Leg 

Direction 
N. Tryon St 
Northbound 

Harris Blvd 
Eastbound 

Time R T L U All R T L U All 
12:30 PM 48 83 84 15 230 51 276 27 1 355 
12:45 PM 71 98 96 12 277 39 261 46 1 347 
1:00 PM 76 107 82 11 276 40 234 36 6 316 
1:15 PM 56 109 85 19 269 39 279 49 2 369 

Total 251 397 347 57 1052 169 1050 158 10 1387 
% 

Approach 
23.9 37.7 33.0 5.4 - 12.2 75.7 11.4 0.7 - 

% Total 5.0 7.9 6.9 1.1 20.9 3.4 20.9 3.1 0.2 27.6 

 

6.1.3 Signal Plan 

The cycle length of the selected intersection is 140s and there are eight 

movements in one cycle. Detailed time split for each movement can be seen in Table 6.2. 

The signal phasing is shown in Figure 6.2. 

Table 6.2 Time Split for Each Movement 
Movement 1 2 3 4 5 6 7 8 Total 

Split (s) 28 46 20 46 24 50 18 48 140 
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Figure 6.2 Signal phasing 

 

6.2 Speed Advisory Strategy 

In this study, three types of vehicles are considered in the network, which are 

regular vehicles, AVs, and CAVs. Only CAVs can receive the signal information and 

adjust their speeds accordingly. The speed advisory strategy is developed and aims to 

help CAVs arrive at green without stopping. The detail of the strategy is explained in the 

following section. 
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Since fixed signal timing plan is used in this study, it is assumed that the total 

cycle length is 𝑇seconds, green starts at 𝑇𝐺𝑆 second, and green ends at 𝑇𝐺𝐸 second. As 

such, 𝑇𝐺𝑆 and 𝑇𝐺𝐸 should satisfy 

0 ≤ 𝑇𝐺𝑆 < 𝑇𝐺𝐸 ≤ 𝑇         (6.1) 

CAVs will receive the current cycle second 𝑡𝑐 through V2I/I2V communication, 

and 𝑡𝑐 should be within the cycle length that satisfies 

0 ≤ 𝑡𝑐 ≤ 𝑇          (6.2) 

Therefore, CAVs’ travel time until next green start 𝑡𝐺𝑆 can be calculated as 

follows: 

𝑡𝐺𝑆 = {
𝑇𝐺𝑆 − 𝑡𝑐, 0 ≤ 𝑡𝑐 < 𝑇𝐺𝑆

𝑇 + 𝑇𝐺𝑆 − 𝑡𝑐, 𝑇𝐺𝑆 ≤ 𝑡𝑐 ≤ 𝑇
       (6.3) 

CAVs’ travel time until next green end 𝑡𝐺𝐸 can be calculated as follows: 

𝑡𝐺𝐸 = {
𝑇𝐺𝐸 − 𝑡𝑐, 0 ≤ 𝑡𝑐 ≤ 𝑇𝐺𝐸

𝑇 + 𝑇𝐺𝐸 − 𝑡𝑐, 𝑇𝐺𝐸 < 𝑡𝑐 ≤ 𝑇
       (6.4) 

Since CAVs can also receive information about distance to intersection 𝐷 through 

V2I/I2V communication, the maximum speed for CAVs arriving after next green start 

𝑣𝑚𝑎𝑥 can be calculated as follows: 

𝑣𝑚𝑎𝑥 =
𝐷

𝑡𝐺𝑆
          (6.5) 

This speed ensures that CAVs arrive at green start. If vehicle speed is higher than 

𝑣𝑚𝑎𝑥, the vehicle will arrive early and have to wait until next green starts. If vehicle 

speed is less than 𝑣𝑚𝑎𝑥, the vehicle will arrive after green starts, which will waste some 

green time thus reduce the intersection efficiency. 
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The minimum speed for CAVs arriving before next green end 𝑣𝑚𝑖𝑛 can be 

calculated as follows: 

𝑣𝑚𝑖𝑛 =
𝐷

𝑡𝐺𝐸
          (6.6) 

This speed makes CAVs arrive at green end. CAVs should travel no less than 

𝑣𝑚𝑖𝑛 in order to arrive at green. 

Then, CAVs will determine the optimal speed to arrive at green without stopping 

according to the signal status. Note that CAVs’ speeds will not exceed the speed limit 𝑣𝑆𝐿 

of the roadway segment. 

If the signal display is green, optimal speed 𝑣𝑜𝑠 is calculated by 

𝑣𝑜𝑠 = {
min(𝑣𝑚𝑎𝑥, 𝑣𝑆𝐿), 𝑣𝑚𝑖𝑛 > 𝑣𝑆𝐿

𝑣𝑆𝐿 , 𝑣𝑚𝑖𝑛 ≤ 𝑣𝑆𝐿
       (6.7) 

CAVs will first try to arrive before green end of current cycle with a speed higher 

than 𝑣𝑚𝑖𝑛. So, if the speed limit is higher than 𝑣𝑚𝑖𝑛, CAVs will drive at the speed limit. 

However, if the speed limit is less than 𝑣𝑚𝑖𝑛, it means that CAVs cannot arrive at next 

green end, because CAVs cannot drive at a higher speed than the speed limit. Then CAVs 

will change their speed to arrive at green start of the next cycle. Then the optimal speed is 

calculated the same way as the situation when signal is red. 

If the signal is red, optimal speed 𝑣𝑜𝑠 is calculated by 

𝑣𝑜𝑠 = min(𝑣𝑚𝑎𝑥 , 𝑣𝑆𝐿)        (6.8) 

CAVs will try to arrive at next green start with 𝑣𝑚𝑎𝑥, but still, they cannot exceed 

the speed limit. So CAVs will choose the smaller one as their optimal speeds. 
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6.3 Vehicle Driving Behavior 

VISSIM uses the Component Object Model (COM) interface to integrate 

algorithms from other programs. The speed advisory strategy for CAVs is written in 

Python. During each simulation time step, VISSIM calls the Python script to determine 

the optimal speed of the vehicle by passing the current state of the vehicle and signal 

information to the script and retrieving the updated state calculated by the script. 

 CAVs and AVs behave more deterministically than regular vehicles without 

stochastic value spreads. For acceleration and deceleration functions, the maximum and 

minimum values are identical to the median value of regular vehicles. Speed limit is 50 

km/h on all intersection legs. VISSIM’s default values for regular vehicles are stochastic 

and speed-dependent. The maximum and desired acceleration is uniformly distributed 

between 0.9 m/s2 and 3.3 m/s2 with a median value of 2.0 m/s2 at 50 km/h. The desired 

deceleration is distributed uniformly between -2.5m/s2 and -3.0 m/s2 with a median value 

of -2.8 m/s2 at 50 km/h. The maximum deceleration is distributed uniformly between -6.0 

m/s2 and -8.0 m/s2 with a median value of -7.0 m/s2 at 50 km/h. The average headway is 

0.5s for CAVs and AVs and 0.9s for regular vehicles.Headway for regular vehicles 

following each other and CAVs/AVs is 0.9s. 

 The simulation includes a 15-min warm-up time followed by a 60-min analysis 

time. Fifteen scenarios are analyzed under a mixed traffic environment. For each scenario, 

10 runs are performed with different random seeds and the average of the results is 

calculated as the final outputs of the simulation. 
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6.4 Numerical Results 

Based on the selected signalized intersection, the simulation is conducted in 

VISSIM under a mixed traffic environment. The speed advisory strategy is provided to 

adjust CAVs’ speed approaching the intersection. The impact of CAVs on intersection 

efficiency and environment is examined under different CAV penetration levels. The 

numerical results are presented in the following sections.  

6.4.1 Performance of the Strategy 

The performance of the proposed strategy is discussed by comparing the vehicle 

trajectories, speeds, and acceleration rates of CAVs, AVs, and regular vehicles. The 

comparison is conducted in one signal cycle and there are six vehicles passed through the 

intersection in this cycle.  

The trajectory of regular vehicles is shown in Figure 6.3. According to the slope 

of the trajectory, one can see that regular vehicles keep a relative constant speed while 

approaching the intersection without any deceleration. If the signal is red, regular 

vehicles have to decelerate with a high rate when they are close to the stop line. As a 

result, queue will gradually form at the intersection. The speed of regular vehicles is 

shown in Figure 6.4. It can be seen that the speed decreases from free flow speed to zero 

in a short time. The acceleration rate of regular vehicles is shown in Figure 6.5. One can 

see that regular vehicles have unstable acceleration rate while approaching to the 

intersection ranging from -3 to 3 m/s2. 

 



80 

 

 
Figure 6.3 Trajectory of regular vehicles 

 

 
Figure 6.4 Speed of Regular Vehicles 
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Figure 6.5 Acceleration Rate of Regular Vehicles 

 

The trajectory of AVs is shown in Figure 6.6. The trajectory of AVs is similar to 

regular vehicles but smoother, which means that AVs keep a relatively constant speed 

and acceleration rate. This can be verified from Figure 6.7 and Figure 6.8, which are the 

speed and acceleration rate of AVs, respectively. It can be seen from Figure 6.8 that AVs 

have more stable acceleration rate while approaching to the intersection ranging from -3 

to 0.5 m/s2. 
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Figure 6.6 Trajectory of AVs 

 

 
Figure 6.7 Speed of AVs 
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Figure 6.8 Acceleration Rate of AVs 

 

The trajectory of CAVs is shown in Figure 6.9. According to the slope of the 

trajectory, one can see that CAVs can change their speed while approaching to the 

intersection. As a result, all CAVs can pass through the intersection at green without any 

stopping. The speed of CAVs is shown in Figure 6.10. It can be seen that CAVs start to 

decrease their speed earlier than the other two types of vehicles. And the minimum speed 

is around 10 m/s which means CAVs can pass the intersection without idling. The 

acceleration rate of CAVs is shown in Figure 6.11. One can see that CAVs have the most 

stable acceleration rate compared to AVs and regular vehicles while approaching to the 

intersection ranging from -1.5 to 1 m/s2. 
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Figure 6.9 Trajectory of CAVs 

 

 
Figure 6.10 Speed of CAVs 
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Figure 6.11 Acceleration Rateof CAVs 

 

By comparing the vehicle trajectories, it can be found that CAVs can be 

decelerated in advance to avoid stops at the intersection. All CAVs can pass the 

intersection smoothly without idling so that the traffic efficiency is improved. Through 

the comparison of speed trajectories, it can be seen that the minimum speed for CAVs is 

around 10 m/s and 0 m/s for AVs and regular vehicles. It means that CAVs can arrive at 

green due to the speed advisory strategy while AVs and regular vehicles have to wait for 

the green light. By comparing vehicle acceleration trajectories, one can see that CAVs 

maintain a small range of acceleration/deceleration rates. This indicates that CAVs travel 

with relatively stable speeds, which is consistent with the results of speed trajectories. 

From the comparison among CAVs, AVs, and regular vehicles, it can be concluded that 
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the proposed strategy could effectively reduce travel delay at signalized intersections and 

thus improve traffic efficiency. 

6.4.2 Performance of the Intersection 

The intersection performance and vehicle emissions are recorded during the 60-

min simulation with different combinations of CAVs, AVs, and regular vehicles. The 

travel delay for each penetration level of three vehicle type is shown in Table 6.3. The 

vehicle delay is the total travel delay of all vehicles passing through the intersection 

during the simulation. It can be seen that with only CAVs, AVs, or regular vehicles on 

road, the vehicle delay is 41.23s, 49.30s, and 76.43s, respectively. With 100% penetration 

rate of CAVs vehicle delay can be reduced by 46.06% compared to regular vehicles only. 

AVs can reduce vehicle delay by as much as 35.50% compared to regular vehicles only. 

So with V2I/I2V communications, CAVs can effectively improve the efficiency of 

signalized intersections.  

Table 6.3 Traffic Delay under Different CAV Penetration Rates 

Vehicle Delay (s) CAV 

  0% 25% 50% 75% 100% 

AV 0% 76.43 56.79 51.61 45.66 41.23 

25% 55.55 53.46 47.39 44.44  

50% 51.98 49.98 46.22   

75% 50.70 48.86    

100% 49.30     

 

The vehicle stop for each penetration level of three vehicle type is shown in Table 

6.4. The vehicle stop is the number of vehicle stops per vehicle during the simulation. It 

can be seen that with only CAVs, AVs, or regular vehicles on road, the vehicle stop is 

0.56, 0.75, and 1.36, respectively. With 100% penetration rate of CAVs, vehicle stop can 
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be reduced by 58.82% compared to regular vehicles only. AVs can reduce vehicle stop by 

as much as 44.85% compared to regular vehicles only. 

Table 6.4 Vehicle Stops under Different CAV Penetration Rates 

Stops CAV 

0% 25% 50% 75% 100% 

AV 0% 1.36 1.26 1.09 0.75 0.56 
25% 0.85 1.08 0.85 0.65  
50% 0.80 0.94 0.77   
75% 0.78 0.86    

100% 0.75     

 

The stopped delay for each penetration level of three vehicle type is shown in 

Table 6.5. The stopped delay is the stopped delay per vehicle during the simulation. It can 

be seen that with only CAVs, AVs, or regular vehicles on road, the stopped delay is 

23.04s, 39.73s, and 63.02s, respectively. With 100% penetration rate of CAVs,stopped 

delay can be reduced by 63.44% compared to regular vehicles only. AVs can reduce 

stopped delay by as much as 36.96% compared to regular vehicles only. 

Table 6.5 Stopped Delay under Different CAV Penetration Rates 

Stopped Delay (s) CAV 

0% 25% 50% 75% 100% 

AV 0% 63.02 38.25 29.81 25.61 23.04 
25% 44.41 36.20 27.49 25.03  
50% 41.69 33.20 26.69   
75% 40.74 32.33    

100% 39.73     

 

The queue length for each penetration level of three vehicle type is shown in 

Table 6.6. It can be seen that with only CAVs, AVs, or regular vehicles on road, the 

queue length is 10.45m, 10.02m, and 23.88m, respectively. With 100% penetration rate 

of CAVs, the queue length can be reduced by 56.24% compared to regular vehicles only. 
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Table 6.6 Average Queue Length under Different CAV Penetration Rates 

Queue Length (m) CAV 

0% 25% 50% 75% 100% 

AV 0% 23.88 17.27 15.64 12.58 10.45 
25% 14.08 14.89 12.27 11.02  
50% 12.14 12.55 10.85   
75% 11.12 11.11    

100% 10.02     

 

The maximum queue length for each penetration level of three vehicle type is 

shown in Table 6.7. It can be seen that with only CAVs, AVs, or regular vehicles on road, 

the maximum queue length is 186.76m, 138.90m, and 272.96m, respectively. With 100% 

penetration rate of CAVs, the maximum queue length can be reduced by 31.58% 

compared to regular vehicles only. 

Table 6.7 Maximum Queue Length under Different CAV Penetration Rates 

Qlen Max (m) CAV 

0% 25% 50% 75% 100% 

AV 0% 272.96 208.04 207.22 199.71 186.76 
25% 226.50 185.29 175.48 183.85  
50% 177.82 192.79 184.19   
75% 155.20 158.49    

100% 138.90     

 

The CO emissions under all scenarios are shown in Table 6.8. The numbers 

reflect the quantity of carbon monoxide emitted by all vehicles passing the intersection 

during the simulation. As one can see from Table 6.8, with only CAVs, AVs, or regular 

vehicles on road, the CO emissions are 6594.78g, 7431.42g, and 9912.17g, respectively. 

CAVs can reduce CO emissions by as much as 33.47% compared to regular vehicles and 

11.26% compared to AVs. As a result, CAVs can benefit the environment through 

V2I/I2V communications. 
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Table 6.8 CO Emissions under Different CAV Penetration Rates 

CO Emissions (grams) CAV 

0% 25% 50% 75% 100% 

AV 0% 9912.17 8725.95 8126.39 7187.46 6594.78 
25% 7928.60 8224.88 7465.15 6936.46  
50% 7667.01 7794.19 7260.71   
75% 7543.33 7589.18    

100% 7431.42     

 

The NOx emissions under all scenarios are shown in Table 6.9. The numbers 

reflect the quantity of nitrogen oxides emitted by all vehicles passing the intersection 

during the simulation. As one can see from Table 6.9, with only CAVs, AVs, or regular 

vehicles on road, the NOx emissions are 1283.10g, 1445.89g, and 1928.55g, respectively. 

Table 6.9 NOx Emissions under Different CAV Penetration Rates 

NOx Emissions (grams) CAV 

0% 25% 50% 75% 100% 

AV 0% 1928.55 1697.75 1581.10 1398.42 1283.10 
25% 1542.62 1600.26 1452.45 1349.58  
50% 1491.72 1516.47 1412.67   
75% 1467.66 1476.58    

100% 1445.89     

 

The VOC emissions under all scenarios are shown in Table 6.10. The numbers 

reflect the quantity of volatile organic compounds emitted by all vehicles passing the 

intersection during the simulation. As one can see from Table 6.10, with only CAVs, 

AVs, or regular vehicles on road, the VOC emissions are 1528.40g, 1722.30g, and 

2297.24g, respectively. 

Table 6.10 VOC Emissions under Different CAV Penetration Rates 

VOC Emissions (grams) CAV 

0% 25% 50% 75% 100% 

AV 0% 2297.24 2022.32 1883.37 1665.76 1528.40 
25% 1837.53 1906.20 1730.12 1607.59  
50% 1776.90 1806.38 1682.74   
75% 1748.24 1758.87    
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100% 1722.30     

 

The fuel consumptions under all scenarios are shown in Table 6.11. The numbers 

reflect the fuel consumptions by all vehicles passing the intersection during the 

simulation. As one can see from Table 6.11, with only CAVs, AVs, or regular vehicles on 

road, the fuel consumptions are 94.35 gallon, 106.32 gallon, and 141.80 gallon, 

respectively. 

Table 6.11 Fuel Consumption under Different CAV Penetration Rates 

FC (gallon) CAV 

0% 25% 50% 75% 100% 

AV 0% 141.80 124.83 116.26 102.82 94.35 
25% 113.43 117.67 106.80 99.23  
50% 109.69 111.50 103.87   
75% 107.92 108.57    

100% 106.32     

 

6.5 Summary 

This chapter describes the simulation results at the selected intersection using 

VISSIM. The detailed information (e.g., vehicle trajectory, speed, acceleration rate, and 

vehicle emissions) on the case studies is presented. From the comparison among CAVs, 

AVs, and regular vehicles, it can be concluded that the proposed strategy could 

effectively reduce travel delay at signalized intersections and thus improve traffic 

efficiency. Also, CAVs can benefit the environment through V2I/I2V communications.
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CHAPTER 7 TRAJECTORY PREDICTION USING MACHINE LEARNING 

APPROACH 

 

 

7.1 XGBoost algorithm 

XGBoost is a prevalent boosting tree algorithm employed in industry because of 

its accuracy and high efficiency in predicting. In fact, XGBoost is developed from 

gradient boosting decision tree (GBDT) algorithm and employed in classification and 

regression problems with multiple decision trees (Xu et al., 2019). XGBoost can prevent 

over-fitting by normalizing the objective function. The details of the model are illustrated 

as follows. 

A dataset is assumed as𝐷 = {(𝑥𝑖, 𝑦𝑖)}(𝑖 = 1,2, … , 𝑛), and the model has 𝑘 trees. 

The model result 𝑦�̂�is expressed as: 

𝑦�̂� = ∑𝑓𝑘(𝑥𝑖), 𝑓𝑘 ∈ 𝐹

𝐾

𝑘=1

 (7.1) 

where 𝐹 is the hypothesis space, and 𝑓(𝑥) denotes a decision tree: 

𝐹 = {𝑓(𝑥) = 𝜔𝑞(𝑥)} (7.2) 

where 𝜔𝑞(𝑥) represents the score of each leaf node; 𝑞(𝑥) is the number of leafs. 

When a new tree is developed to fit the residual errors of last tree, the predicted 

score for the t-th tree can be calculated as: 

𝑦�̂�
𝑡 = 𝑦�̂�

𝑡−1 + 𝑓𝑡(𝑥) (7.3) 

The objective function is as follows: 

𝐽(𝑡) =∑𝐿(𝑦𝑖, 𝑦�̂�) + Ω(𝑓𝑡)

𝑛

𝑖=1

 (7.4) 
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where 𝐿 is the loss function, Ω is a penalizing term, and: 

Ω(𝑓) = 𝛾𝑇 +
1

2
𝜆∑𝜔𝑗

2

𝑇

𝑗=1

 (7.5) 

where 𝛾 is a parameter represents the complexity of the leaf; 𝑇denotes the number of the 

leaves; 𝜆 is a parameter scaling the penalty; and 𝜔is the vector of scores on each leaf. 

Unlike the general gradient boosting methods, the XGBoost employs the second-

order Taylor expansion to the loss function. Formula (7.4) is then simplified as follows: 

𝐽(𝑡) =∑[𝐿(𝑦𝑖, 𝑦�̂�
𝑡−1) + 𝑔𝑖𝑓𝑡(𝑥𝑖) +

1

2
ℎ𝑖𝑓𝑡

2(𝑥𝑖)] + 𝛺(𝑓𝑡)

𝑛

𝑖=1

 (7.6) 

𝑔𝑖 =
𝜕𝐿(𝑦𝑖, 𝑦�̂�

𝑡−1)

𝜕𝑦�̂�
𝑡−1  (7.7) 

ℎ𝑖 =
𝜕2𝐿(𝑦𝑖, 𝑦�̂�

𝑡−1)

𝜕𝑦�̂�
𝑡−1  (7.8) 

Then, the final objective function can be generated as follows: 

𝐽(𝑡) =∑[𝑔𝑖𝜔𝑞(𝑥𝑖)
+
1

2
ℎ𝑖𝜔𝑞(𝑥𝑖)

2 )] + 𝛾𝑇 +
1

2
𝜆∑𝜔𝑗

2

𝑇

𝑗=1

𝑛

𝑖=1

=∑[(∑𝑔𝑖
𝑖∈𝐼𝑗

)𝜔𝑗 +
1

2
(∑ℎ𝑖
𝑖∈𝐼𝑗

+ 𝜆)𝜔𝑗
2]

𝑇

𝑗=1

+ 𝛾𝑇 

(7.9) 

where 𝐼𝑗 = {𝑖|𝑞(𝑥𝑖) = 𝑗} is the set of data point indices belonged to the j-th leaf. Since 

the same score is assigned to all the data points on the same leaf, the index of the 

summation in the second line can be revised. The terms 𝑔𝑖and ℎ𝑖denote the first and 

second derivativesof the loss function. Let 𝐺𝑗 = ∑ 𝑔𝑖𝑖∈𝐼𝑗
 and 𝐻𝑗 = ∑ ℎ𝑖𝑖∈𝐼𝑗

, then the final 

objective function is changed to a quadratic function as follows: 
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𝐽(𝑡) =∑[𝐺𝑗𝜔𝑗 +
1

2
(𝐻𝑗 + 𝜆)𝜔𝑗

2]

𝑇

𝑗=1

+ 𝛾𝑇 (7.10) 

Finally, the optimal solution of the optimized objective function can be generated: 

𝜔𝑗
∗ = −

𝐺𝑗

𝐻𝑗 + 𝜆
 (7.11) 

𝐽∗ = −
1

2
∑

𝐺𝑗
2

𝐻𝑗 + 𝜆

𝑇

𝑗=1

+ 𝛾𝑇 (7.12) 

7.2 Intelligent Driver Model 

The Intelligent Driver Model (IDM) produces better realism than most of the 

deterministic car following models (Treiber et al. 2000). The fundamental of the IDM is 

to calculate the acceleration rate of the object vehicle by considering both the ratio of 

desired velocity versus actual velocity and the ratio of desired headway versus actual 

headway. The calculation of acceleration rate is expressed as follows: 

])
),(

()(1[ 2
*

0 s

vvs

v

v
aa m


   (7.13) 

*

0 1

0

( , )
2 m

v v v
s v v s s vT

v a b


      (7.14) 

where 

a  = acceleration rate of the object vehicle; 

ma  = maximum acceleration; 

v  = current velocity of the object vehicle; 

0v  = desired velocity; 

  = acceleration exponent; 
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),(* vvs   = desired minimum headway; 

v  = speed difference between the object vehicle and the leading vehicle; 

s  = current headway between the object vehicle and the leading vehicle; 

0s  = linear jam distance; 

1s  = non-linear jam distance; 

T  = desired headway; 

b  = comfortable deceleration. 

Table 7.1 presents the values of all the parameters in the proposed IDM in this 

study. 

Table 7.1 Values of Parameters in the IDM 

Parameters Values Parameters Values 

ma  0.73 m/s2 
1s  3 m 

0v  29 m/s T  0.6 s 

  4 b  1.67 m/s2 

0s  2 m   

 

7.3 Model comparison 

Root mean square error (RMSE) and Mean absolute error (MAE) are employed to 

examine the performance of the proposed models.  

RMSE calculates the average of square errors between predicted values and actual 

values: 

𝑅𝑀𝑆𝐸 = √
1

𝑛
∑ (𝑦𝑖

∗ − 𝑦𝑖)2
𝑁

𝑖=1
 (7.15) 

Mean absolute error (MAE) is calculated by averaging the absolute errors 

between predicted values and actual values: 
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𝑀𝐴𝐸 =
1

𝑁
∑ |𝑦𝑖

∗ − 𝑦𝑖|
𝑁

𝑖=1
 (7.16) 

where 𝑁 is the number of data points; 𝑦𝑖
∗ and 𝑦𝑖 represent the predicted and actual values. 

7.4 Data and Features 

7.4.1 Dataset 

In this study, the Next Generation Simulation (NGSIM) dataset is used to train the 

proposed model. It is an open source of real vehicle trajectory data collected by the 

United States Federal Highway Administration (FHWA) in 2005. NGSIM dataset has 

been widely used in vehicle trajectory prediction (Tomar et al., 2010; Ding et al., 2013; 

Altché and Fortelle, 2017; Deo and Trivedi, 2018; Li et al., 2019). More specifically, this 

research considers a 15 minute interval of vehicle trajectories on the US101 highway. 

Since different vehicle type has different car following behavior, only passenger cars are 

involved in the analysis. The time period is between 7:50am and 8:05am, June 15th, 2005. 

In total, the selected dataset includes trajectories for 1,993 individual vehicles, recorded 

at 10 Hz. To examine the performance of the XGBoost model, 80% vehicles in the 

selected dataset are used as the training set and the rest 20% are used in the testing phase. 

7.4.2 Feature Extraction  

The NGSIM dataset provides vehicle speed, position, acceleration rate, and 

headway of each individual vehicle. In this study, the objective is to predict the 

acceleration rate for the object vehicle, which is the determining factor of vehicle 

trajectory. Under the CAV environment, the object vehicle can receive information from 

its leading vehicle. The acceleration rate of the object vehicle is then predicted according 
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to the status of both the object vehicle and its leading vehicle. The following features are 

defined for predicting the acceleration rate for the object vehicle: 

 Lateral position of the object vehicle 𝑥 which is the lateral position of the vehicle 

based on the leftmost edge of the road 

 Longitudinal position of the object vehicle𝑦 

 Speed of the object vehicle 𝑣 

 Space headway between object vehicle and its leading vehicle𝑠𝑝 

 Lateral position of the leading vehicle 𝑥𝑙 
 Longitudinal position of the leading vehicle 𝑦𝑙 
 Speed of the leading vehicle 𝑣𝑙 
 Acceleration rate of the leading vehicle 𝑎𝑙 

 

7.5 Results and Discussions 

7.5.1 Performance of the models 

In this study, RMSE and MAE are employed to evaluate the prediction accuracy 

of the XGBoost model and the IDM. Table 7.2 shows the RMSE and MAE values for the 

proposed models. As one can see from the table, the RMSE and MAE of the XGBoost 

model are 3.9953 and 2.6950, respectively, which are smaller than the errors of the IDM 

(i.e., 6.2748 and 4.7164). This illustrates the superiority of the XGBoost model in the 

prediction of vehicle trajectory.  

Table 7.2 Comparison of the Two Models in Acceleration Rate Prediction 

Algorithm RMSE MAE 

XGBoost 3.9953 2.6950 

IDM 6.2748 4.7164 

 

Figure 7.1 shows the predicted and observed values in a predict horizon of 30 

seconds. As can be seen in the figure, the XGBoost model can effectively predict the 

acceleration rate of the object vehicle. The prediction results of the IDM are inferior to 
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those of the XGBoost model. By comparing the prediction results, one can conclude that 

the XGBoost model is more reliable for vehicle trajectory prediction than the IDM. 

 
Figure 7.1 Comparison of the Predicted Results and the Actual Data 

 

7.5.2 Feature Importance 

To further explore the impact of each feature on the vehicle trajectory prediction, 

the relative importance of the eight input features in the XGBoost model is calculated. 

The feature importance is ranked based on the F score, which is a measurement of the 

frequency that a variable is selected for splitting. The feature will get higher score if it is 

used to make decisions in the decision trees more frequently. The importance ranking of 

the input features are displayed in Figure 7.2. It can be seen from the figure, the 

longitudinal position, lateral position, and the velocity of the object vehicle are the most 

important features to predict the vehicle trajectory. 
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Figure 7.2 Feature Importance Ranking 

 

7.6 Summary 

In this research, the XGBoost model is developed in order to predict vehicle 

trajectories in a CAV environment. The predicted results are compared with the IDM, 

which is a traditional car following model. The NGSIM dataset is utilized to train and test 

the proposed XGBoost model. The predicted results show that the XGBoost model gets 

higher prediction accuracy than the IDM model. The longitudinal position of the object 

vehicle is the most important feature to predict the vehicle trajectory. The results of this 

research could help guide the machine learning approaches in the area of vehicle 

trajectory prediction. 
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CHAPTER 8 SUMMARY AND CONCLUSIONS 

 

 

8.1 Introduction 

Connected and autonomous vehicle (CAV) technologies are known as an 

effective way to improve roadway safety and mobility. As a combination technology of 

connected vehicle and autonomous vehicle, CAVs share real time information with each 

other, such as position, speed, and acceleration. CAV requires narrower lane width and 

shorter headway which will results in a higher roadway capacity. Also, CAVs enable the 

communication between vehicles and transportation infrastructures. The coordination 

operation among CAVs and the communication between CAVs and traffic signals will 

improve the throughput at signalized intersections and lead to a higher intersection 

capacity. The coordinated through or turning maneuvers of CAVs may eliminate crashes 

and reduce the total travel delay at the intersection.  

Traffic signals are essential in urban traffic management. On the other hand, 

traffic signals increase travel time, gas emissions and fuel consumption of vehicles. 

Moreover, stop-and-go traffic increases the possibility of vehicle collisions and lead to 

economic cost in result. As the increasing travel demand in recent years, traditional 

signalized intersections are generating more delays as well as gas emissions. There is an 

urgent need to enhance intersection efficiency and the throughput mobility using the 

emerging CAV technologies.  

By using VISSIM, a traffic microsimulation tool, four different freeway scenarios 

are chosen from PeMS. To obtain reliable results, selected parameters are calibrated in 

the car following model. Genetic algorithm is used to find the optimal solution of the 
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objective function. After the calibration process, the simulation is conducted on freeway 

segments and intersections under a mixed traffic environment.  

To better examine the impact of CAVs on the operation of freeway and signalized 

intersections, autonomous vehicles (AVs) are also involved in this study, so that a mixed 

traffic environment can be investigated including regular vehicles, AVs, and CAVs. 

Overall, the results of this study can help traffic engineers and stakeholders better 

understand how different market penetration levels of CAVs influence freeway capacity 

and traffic operation of signalized intersections. 

8.2 Summary and Conclusions 

Through a comprehensive literature review of the current CAV technologies, 

various methodological approaches to analyze highway capacity with or without CAVs 

are summarized. Simulation based method is widely used in CAV related studies. 

Compared to other approaches, simulation based method is imperative for practical 

decision making in transportation planning and operations. To conduct analysis using 

microsimulation models, potential scenarios need to be selected. 

PeMS is used to select potential freeway segments. PeMS is a web-based database 

consists of historical traffic data in different aspects, such as speed, flow, capacity, and 

delay. By using PeMS, researchers can conduct research with the comprehensive 

information of selected freeway segments, make better decisions on freeway operation, 

identify congestion bottlenecks, and evaluate freeway performance. Three different 

freeway segments are selected through the PeMS database as potential simulation 

scenarios. In order to examine the impact of CAV technology on different freeway 

scenarios, the selected freeway segments contain a mix of configurations, such as on-
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ramp, off-ramp, and weaving area. The three freeway segments are all selected around 

the city of Los Angeles, a large population area. These sites are selected because their 

preexisting congestion issues during the peak hour, as well as they are the major 

interstate freeway with high traffic volumes. The traffic flow and speed data is collected 

from PeMS and used in the microsimulation model. 

Microscopic simulation models are widely employed in transportation planning 

and operation analysis. Compared to field testing, simulation provides a safer, faster, and 

costless environment for researchers. However, in order to obtain reliable results through 

simulation, the model parameters have to be calibrated. The calibration procedure can 

minimize the differences between the simulated and observed data. Genetic Algorithm is 

available to achieve near-global optima during the calibration procedure of the 

microscopic traffic simulation model. The GA is an inspiration of biological evolution 

process with selection, crossover and mutation as its three steps. The GA starts from a 

random population set. For each generation, the better solutions have higher probabilities 

to be selected and used to generate new populations after crossover and mutation within 

the selected solutions. In this study, the population size is set to be 10, and the crossover 

and mutation rate are set to be 0.8 and 0.2, respectively. The max generation number is 

10. The GA-based calibration is conducted through MATLAB. A population of binary 

chromosomes is generated randomly at the very beginning and each represents a feasible 

solution. Then the chromosomes are decoded to relative model parameters and passed 

onto the VISSIM for simulation. The objective function value is calculated based on the 

simulated traffic flow and speed data. The calibration process will not stop until the 

maximum number of generation is reached or the stopping criterion is achieved. 
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VISSIM uses the Wiedemann’s car following model to capture the physical and 

human components of vehicles. As the Wiedemann model stated, a vehicle has four 

driving modes: free driving, approaching, following and braking. The model has ten 

unique parameters (i.e. 𝐶𝐶0, 𝐶𝐶1,… , 𝐶𝐶9) representing the car following characteristics. 

The optimized value of 𝐶𝐶0 calibrated by the GA is 7.75 ft compared to the default value 

of 4.92 ft. And the optimized value of 𝐶𝐶1 calibrated by the GA is 1.14 seconds 

compared to the default value of 0.90 seconds. 

VISSIM cannot simulate operations of connected and autonomous vehicles with its 

internal driver model. However, VISSIM provides the option to replace the internal 

model by an External Driver Behavior Model (EDBM), which is a fully user-defined 

driving behavior model for connected and autonomous vehicles. The EDBM is 

implemented as a C++ Dynamic Link Library (DLL) plug-in, which contains specific 

algorithms for connected and autonomous vehicles. These algorithms can determine the 

next step maneuver (i.e. acceleration, lane change) for each affected vehicle. During each 

simulation time step, VISSIM calls the DLL file to determine the behavior of the vehicle 

by passing the current state of the vehicle and its surroundings to the DLL and retrieving 

the updated state calculated by the DLL. 

The EMDB model is developed by the Open Source Application Development 

Portal (OSADP). The code is written in C++ and needs to be compiled to generate a DLL 

file. The DLL file can be implemented as a V2V communication device, wherein the 

leading vehicle informs the following vehicle if its location, speed and acceleration. The 

following vehicle can change its speed quickly to avoid rear-end collisions. The 

algorithm continuously adjusts the acceleration rates by measuring the headways between 



103 

 

the leading vehicles and following vehicles to keep short headways. The headway 

between two connected and autonomous vehicles is set 0.9 s and the headway between 

connected and autonomous vehicle and regular vehicle is set 1.2 s. 

For each scenario, the freeway capacity under different CAV penetration rate and 

speed limit is evaluated. And the freeway capacity before and after on-ramp, off-ramp, 

and weaving area is also compared. The numerical results show that CAVs can increase 

the freeway capacity under the four freeway scenarios. Also, CAVs can reduce the 

capacity drop before and after the on-ramp, off-ramp, and weaving area. 

With the rapid development of CAV technologies, CAVs can share information 

with both other CAVs and infrastructures. Traffic signal control framework can be 

optimized to improve intersection mobility. In this study, three types of vehicles are 

considered in the network, which are regular vehicles, AVs, and CAVs. Only CAVs can 

receive the signal information and adjust their speed accordingly. The speed advisory 

strategy is developed and aims to help CAVs arrive at green without stopping. The speed 

advisory strategy for CAVs is written in Python. During each simulation time step, 

VISSIM calls the Python script to determine the optimal speed of the vehicle by passing 

the current state of the vehicle and signal information to the script and retrieving the 

updated state calculated by the script. 

CAVs and AVs behave more deterministically than regular vehicles without 

stochastic value spreads. For acceleration and deceleration functions, the maximum and 

minimum values are identical to the median value of regular vehicles. Speed limit is 50 

km/h. VISSIM’s default values for regular vehicles are stochastic and speed-dependent. 

The maximum and desired acceleration is uniformly distributed between 0.9 m/s2 and 3.3 
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m/s2 with a median value of 2.0 m/s2 at 50 km/h. The desired deceleration is distributed 

uniformly between -2.5m/s2 and -3.0 m/s2 with a median value of -2.8 m/s2 at 50 km/h. 

The maximum deceleration is distributed uniformly between -6.0 m/s2 and -8.0 m/s2 with 

a median value of -7.0 m/s2 at 50 km/h. The average headway is 0.5s for CAVs and AVs 

and 0.9s for regular vehicles.  

The simulation includes a 15-min warm-up time followed by a 60-min analysis 

time. Fifteen scenarios are analyzed in a mixed traffic environment. For each scenario, 10 

runs are performed with different random seeds and the average of the results is 

calculated as the final outputs of the simulation. 

The intersection performance and vehicle emissions are recorded with different 

combinations of CAVs, AVs, and regular vehicles. For example, with 100% penetration 

rate of CAVs, vehicle delay can be reduced by 46.06% compared to regular vehicles only. 

AVs can reduce vehicle delay by as much as 35.50% compared to regular vehicles only. 

So with V2I/I2V communications, CAVs can effectively improve the efficiency of 

signalized intersections. The vehicle emissions under all scenarios are also generated. 

CAVs can reduce vehicle emissions by as much as 33.47% compared to regular vehicles 

and 11.26% compared to AVs. As a result, CAVs can benefit the environment through 

V2I/I2V communications. 

To better predict the vehicle trajectories, the XGBoost model is developed to 

predict vehicle trajectories in CAV environment. The predicted results are compared with 

the IDM, which is a traditional car following model. The NGSIM dataset is used to train 

and test the XGBoost model. The predicted results prove that the XGBoost model gets 

higher prediction accuracy than the IDM model. The longitudinal position of the object 
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vehicle is the most important feature to predict the vehicle trajectory. The results of this 

study could help guide the machine learning approaches in the area of vehicle trajectory 

prediction.  

The case studies in this paper only focus on simple freeway segments or an 

isolated intersection. Future studies will focus on more complicated scenarios, such as 

freeways with multiple ramps and weaving sections, and arterial roadswith multiple 

intersections. A mixed traffic environment will be considered including both trucks and 

passenger cars. An advanced car following model considering lane change situations is 

another research direction. Future research efforts will also investigate other machine 

learning models to predict vehicle trajectory considering lane changing in different 

roadway scenarios. 
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