
PREDICTIVE ENERGY FUNCTION BASED POWER SYSTEM TRANSIENT
STABILITY ASSESSMENT AND IMPROVEMENT

by

Amirreza Sahami

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Electrical Engineering

Charlotte

2019

Approved by:

Dr. Sukumar Kamalasadan

Dr. Valentina Cecchi

Dr. Babak Parkhideh

Dr. Srinivas Pulugurtha

Dr. Zia Salami



ii

c
2019
Amirreza Sahami

ALL RIGHTS RESERVED



iii

ABSTRACT

AMIRREZA SAHAMI. Predictive Energy Function Based Power System Transient
Stability Assessment and Improvement. (Under the direction of DR. SUKUMAR

KAMALASADAN)

Transient stability assessment and improvement are critical for power grid opera-

tion. It deals with the assessment of transient behavior of the power grid (especially

the generators) when subjected to large disturbances. State-of-the-art approaches

for transient assessment are classified into two: a) numerical methods and b) direct

energy functions methods. Numerical methods are computationally expensive and

current energy function methods require extensive system knowledge in advance. In

this dissertation, two new approaches for transient stability assessment is investi-

gated. First, a new method for predicting the behavior of power system generators

is presented. The main advantage of this method is that it helps to find the critical

generators, their critical clearing times and angles. Consequently, the system tran-

sient stability prediction can be performed. Also, using the Lyapunov theory and

energy concept, the prediction can be used to find the unstable equilibrium point of

the system. Second, an approach for assessing the potential energy capacity of the

power system to prevent and control the transient instability of the power system is

proposed. The approach can be used to find the appropriate control strategy so that

system instability can be prevented. The proposed methods are tested on IEEE 9

bus, IEEE 39 bus, and North Carolina�South Carolina 500 bus systems. The results

and discussions are provided.
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CHAPTER 1: INTRODUCTION

In this chapter, the main concepts used in the stability area are provided. The

history of the stability issues is briefly reviewed and the importance of studying the

stability of power systems is explained. Then, different types of power system stability

are categorized. Afterward, the concept and importance of transient stability, as the

main stability issue in power systems, is discussed. Further, the main contribution of

this research and dissertation organization are presented.

The power system is a nonlinear, high-order, multi-variable, dynamic system, that

changes continually due to changes in loads, generators’ output power, or operating

parameters. Its dynamic behavior is influenced by a wide array of devices. Main-

taining these large systems operational and stable needs comprehensive studies about

power systems. The main concepts used in power system stability studies revolve

around the following definitions [2, 3, 4]:

Disturbance: A disturbance is a sudden change in the operating parameter or op-

erating condition of a system.

Security: Security is the ability of a power system to endure sudden disturbances,

such as faults, unpredicted loss of generation, or large changes in loads.

Steady State: A system is at steady state when the operating parameters of the

system can be considered constant during the concerned time frame of the study.

Reliability: Reliability of a power system implies the probability of the satisfactory

operation of the system in the long run. It represents the ability to continuously

supply enough power into the grid with few interruptions in a long period of time.

Stability: Stability of a system is the continuance of the correct operation of the

system, following a disturbance. It depends on the initial operating condition, the
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nature of the physical disturbance, and the duration of the disturbance. A system is

called synchronously stable, if the system variables settle down to some steady-state

values as time approaches infinity following the disturbance is removed. Following,

more elaboration about power system stability is provided.

1.1 Power System Stability Importance

Since the 1920s, power system stability has become more important for the secure

operation of power grids. Major blackouts happened so far show the importance of

this phenomenon. Until about fifty years ago, power system analysis was primarily the

area for the system designers, who try to plan and build power networks in a robust

way. During this period, power systems were operated below the related limits. In the

early 1960s, an average generator had a capacity of about 300 MW. However, today,

a single generator, with relatively low inertia constant, has a capacity that exceeds

1000MW. Increasing loads, operating closer to system limits, greater interconnections,

new loads and sources interfaced through power electronics, significant integration of

distributed energy resources, and severe transmission congestion [5, 6, 7] have made

modern power systems very complex. These modern systems are more susceptible to

disturbances due to the increased size of generation units with lower inertia constant,

demand growth, heavy loads on existing transmission lines, equipment failure, and

negative damping effect of controllers, such as fast exciters [8, 9]. The stability of

these modern systems and the generators supplying electricity must be maintained in

order to provide reliable electric service. The growth and evolution of power systems

and the operation of power systems close to their limits resulted in different forms of

instability conditions. For instance, voltage stability, frequency stability, and inter-

area oscillations have become important concerns in the modern power grid when

compared to legacy power systems [10, 11, 12].

Power system stability is the capability of an electric power system, for a given

initial operating condition, to regain an equilibrium operating state after undergoing a
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physical disturbance with most system variables bounded so that practically the entire

system remains stable and operational [8, 13, 14, 15]. The most important ingredient

toward stable operation is synchrony. All generators of the network should stabilize

at the same frequency after a perturbation followed by seconds-short transients. The

second stability goal is maintaining sufficiently high voltages (above 90% of their

nominal values). Lower voltage levels cause a byproduct larger current values for

the same amount of generated power and higher power transmission losses, which

in an extreme case may make it impossible to meet existing loads. A manifestation

of this problem is the so-called “voltage collapse”. The third stability aim, from an

operational perspective, is maintaining line power flows within established bounds

[8, 16, 17, 18].

1.2 Power System Stability Classification

In a synchronous stable power system not only all the generators run at the same

angular velocity (! = !s), but also each one is maintained by a local governor that reg-

ulates the driving torque via managing energy supplied to the rotor prime mover. This

process gives a perfect power balance between generation and demand. Depending

on the network topology, system operating condition, and the forms of disturbances,

different sets of opposing forces may experience imbalance leading to different forms

of instability. Power system stability classification can be done base on three general

considerations [8, 19, 20, 21, 22, 23]:

� The physical nature of the resulting mode of instability as indicated by the main

system variables, in which instability can be observed.

� The size of the disturbance considered, which influences the method of stability

calculation and prediction.

� The devices, processes, and the time span that must be taken into consideration

for stability assessment.
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The following classification of the power system stability problem is suggested in

[8, 24]:

� Rotor Angle Stability (short-term stability):

– Small-disturbance or small- signal rotor angle stability

– Large-disturbance rotor angle stability or transient stability

� Voltage Stability (Short-term or long-term phenomenon stability)

– Small-disturbance voltage stability

– Large-disturbance voltage stability

� Frequency Stability (short-term or long-term stability)

Different stability types can be classified as shown in Fig. 1.1. The main focus of this

research is on transient stability. Therefore, transient stability is more explained in

the rest of this chapter.

1.3 Transient Stability Concept

The transient stability of a power system, also discussed as “first-swing” stability,

refers to the stability of a power system to reach a stable condition following a large

disturbance in the transmission network. Historically, transient stability has been

the dominant stability issue in power systems, and the number of papers and reports

show that it has been the focus of much of the industry’s attention [13, 25, 26].

Transient instability occurs as a disturbance creates a substantial power imbalance

between the input power supplied to the generator via the turbine and the electrical

output power injected into the grid. It can also happen due to substantial changes in

the bus admittance matrix. Under such conditions, generators will swing away from

their equilibrium points, and some of them will swing far enough to lose synchronism

[8, 27, 28].
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Figure 1.1: Power system stability classification.

A power system is called synchronously stable, if the system variables settle down to

some steady-state values as the time approaches infinity after fault removal [13, 14,

15]. Although the stability of the system depends on its initial condition, the Transient

Stability (TS) problem is the study of the post-disturbance system [13, 14, 15, 29].

However, it can be used for other purposes, such as investigating the quality of the

dynamic behavior of a power system [14, 24, 30]. It should be noted that the post-

fault steady state may be different from the pre-fault, depending on the sequence of

the disturbances and controllers’ actions [8, 31, 32].

The time frame of interest in transient stability investigation is up to a few seconds.
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However, a longer period of time can be studied, if the growing oscillations or the

behavior of specific controllers are matters of interest [10, 14, 24]. Critical Clearing

Time (CCT) refers to the maximum fault duration that the system can tolerate when

the post-fault system remains stable after the fault is removed. In transient stability,

computing the critical clearing time, for adjusting circuit breakers operating time,

is probably the most important part for engineers [33, 34, 35]. The importance of

finding the CCT is due to the significant effect of the disturbance duration on the

ability of generators to stay in synchronism. So, accurate CCT helps to have a proper

protection plan. In case a situation is encountered for which the stability limits and

CCT has not been derived off-line, conservative assumptions are made, in order to

not endanger the power system stability, and to prevent cascading outages [24, 36].

1.4 Transient Stability Importance

There are many reasons that make transient stability an important issue in modern

interconnected power networks. Some of the major ones are [24, 37, 38, 39]:

� Increased size units with lower inertia constant and higher short-circuit ratio.

This has a negative effect on system stability.

� Fewer new high voltage transmission lines, which make existing lines to be

congested.

� Demand growth in existing load centric areas.

On top of the mentioned issues, there are negative damping effects on power systems

due to more dependency of the modern power systems on controllers, such as faster

exciters, power system stabilizers, etc. It should be noted that many of these con-

trollers require gentle balancing, which can be easily upset when a disturbance occurs

[24, 40, 41].

Paying attention to the importance of transient stability, designers, at the planning

level, study the stability of the system for a set of disturbances ranging from a rare
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fault, three-phase-to-ground faults for instance, to a single-phase fault, which consti-

tutes about 70 percent of the disturbances. Designers investigate to see if the system

has enough safety margin for a potential fault and will not lose synchronism [14, 42].

This study is a time-consuming process, especially with the enormous number of

different scenarios to be analyzed in a large interconnected power grid. Therefore,

it is an important decision to make a judicious choice between different scenarios,

which is becoming more difficult in today’s environment. Hence, the contingencies

are selected on the basis of having a reasonably high probability of occurrence. It

is not practically and economically possible to design a power system that is stable

for every possible disturbance. Hence, a stable power system, operating at its stable

equilibrium point, has a finite region of attraction if it is disturbed from its normal

operating state. A larger region of attraction means that the system is more sta-

ble against large disturbances. The region of attraction depends on the operating

condition and configuration of the power system [13, 43].

In spite of all the efforts made in the planning level, the system condition might

be different from what have been studied while designing the system. Therefore,

operators would simulate contingencies in advance and assess the results. The next

step is to take preventive control actions so that the security of the system against

probable abnormal conditions, due to contingencies, is ensured. This process is called

dynamic security assessment (DSA) and preventive control [14, 24, 44, 45]. Fast

valving of the steam stream in turbines, tripping generators, using braking resistors,

and controlled opening of tie lines are the commonly used actions to prevent system

instability after a severe disturbance [7, 46, 47].

1.5 Transient Stability Enhancement

Considering the importance of transient stability, various methods have been used

to improve the stability margins in power systems [1, 43, 48, 49, 50, 51, 52].

These methods try to achieve one or more of the following effects:
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� Reduction in the disturbing influence by minimizing the fault severity and du-

ration

� Increase in the restoring synchronizing forces

� Reduction in the accelerating torque through control of prime-mover mechanical

power

� Reduction in the accelerating torque by applying artificial loads

Some of the methods of achieving these objectives are mentioned below:

1. High-Speed Fault Clearing

2. Regulated Shunt Compensation

3. Reduction of Transmission System Reactance

4. Steam Turbine Fast-Valving

5. Generator Tripping

6. Control of HVDC Transmission Links

7. High-Speed Excitation Systems

8. Dynamic Braking

9. Controlled System Separation and Load Shedding

Choosing the right method depends on the network configuration, operating condi-

tion, and available equipment and controllers. In general, a combination of them is

utilized to maintain system stability.
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1.6 Main Contribution of This Research

As discussed earlier, it is important to predict the system behavior so that neces-

sary controlling actions can be done, in order to prevent a system from going unstable

[53, 54, 55, 56]. Different approaches have been studied to achieve this goal. Data-

driven methods, artificial intelligence methods, modern and innovative complex con-

trol structures are among the hot topics of research in this area [57, 58, 59, 60, 61, 62].

Using direct energy methods, many efforts are done to find the critical clearing

time (CCT). All employed techniques of finding the CCT need to have the Unstable

Equilibrium Point (UEP) of the post-disturbance system. Hence, different methods,

such as Boundary Controlling Unstable equilibrium point (BCU), and Potential En-

ergy Boundary Surface (PEBS) methods, are proposed in the literature to find the

UEP [63, 64, 65, 66, 67]. The shortcoming in all proposed methods is that an offline

study is required to find the UEP before using direct methods to find the CCT.

As the first contribution of this dissertation, a technique is proposed to overcome

the problem of not having the UEP. The method is based on the Taylor series ex-

pansion and is used to predict the dynamic behavior of the generators. Being able

to predict the generators’ behavior, critical generators, critical clearing time, and the

critical clearing angles of generators can be found. Having an appropriate TCP/IP

infrastructure [68, 69], each generator station can send its data to a central control

unit. The data will be processed in the central control unit, and generators that

lose synchronism and the moment and the angle of the loss of synchronism will be

determined. This makes it possible to find the critical clearing time, and critical

clearing angle of the generators for a specific fault once it happens. Accordingly, the

due decision can be made in the main control unit.

Another application of generators’ behavior prediction, is predicting the energy of

the system. This is beneficial when doing transient stability assessment via direct

methods. An approximation of the kinetic and potential energy of the system can
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be obtained via substituting the predicted values in related equations. This, in turn,

helps to introduce a new approach for transient stability enhancement as the second

contribution of this research.

The second contribution of this research is introducing a new approach, based on

the concept of the potential energy of a power grid, for improving the stability margin

of a power system. It is shown that at the critical state of the system, the potential

energy of the system reaches a maximum. Hence, increasing the potential energy

capacity of the system, even momentarily, can help to improve transient stability.

Traditionally, shunt capacitors, reactors, and breaking resistors are utilized for tran-

sient stability enhancement. However, the goal for using them was to reduce or

consume the kinetic energy of generators, which changed during the disturbance. In

contrast, the proposed method here considers the potential energy of the system in-

stead. The advantage of this approach is that it can be used for energy resources

without a rotating part. These resources do not have kinetic energy to be controlled

or reduced. However, they contribute to the potential energy capacity of a power

grid.

1.7 Dissertation Organization

The organization of this thesis is as follows: In chapter 2, dynamics of power sys-

tems, and different approaches for system behavior assessment are discussed. Chapter

3 elaborates how the Taylor series can be used for predicting generators’ behavior.

Related equations and illustrative examples are provided. To show the scalability,

more studies and results are provided in Chapter 4. Chapter 5 is about the energy

function in a multi-machine system. The concept of potential energy and unstable

equilibrium points are also discussed in chapter 5. Chapter 6 talks about combining

the prediction method and energy concept to control the system and enhance system

stability. Conclusions and suggestions for future works are mentioned in chapter 7.

The structure of this thesis is depicted in figure 1.2.
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Dissertation Structure

Chapter 1:

Power System Stability

- Concept

- Importance

- Classification

Proposed Technique to 

Overcome the Shortcomings:

Predicting Generators’ 

Behavior (Trajectory)

Chapter 3:

- Theoretical Framework of the 

Proposed Technique

- Proof of Efficiency

Chapter 4:

Case Studies Illustrating the 

Accuracy of the Proposed 

Prediction Method

(9 Bus, 39 Bus, 500 Bus)

Chapter 2:

Power System Dynamics:

- Solution methods, 

Advantages, Disadvantages

- Shortcomings of Solutions 

Chapter 5:

Predicting UEP, Critical 

Clearing Time, Critical 

Clearing Angle via Energy 

Balance

Chapter 6:

- Role of Potential Energy in Transient 

Stability

- Online Prediction and Enhancement of 

Power System Transient Stability

( 9 Bus, 39 Bus, 500 Bus )

Figure 1.2: Structure of this dissertation.

1.8 Summary

In this chapter, the history and importance of studying the power system stability

were reviewed. A classification of different stability issues was presented. Then, the

concept and importance of power system transient stability, as the main stability issue

in power systems and the focus of this research, were discussed. Finally, the main
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contribution of this research, and the organization of this dissertation was explained.

Following is chapter 2, where the necessary equations for studying the dynamics of

power systems, and different approaches for solving them are elaborated.



CHAPTER 2: POWER SYSTEM DYNAMICS SOLUTIONS

In order to study and solve an engineering problem (usually of a physical nature),

first, we have to formulate the problem as a mathematical expression in terms of

variables, functions, and equations. Such an expression is known as a mathematical

model of the given problem. Many physical concepts, such as velocity and accelera-

tion, are derivatives. Hence, a model is very often an equation containing derivatives

of an unknown function. This is called a differential equation. An ordinary differ-

ential equation (ODE) is an equation that contains one or several derivatives of an

unknown function, which is usually called y(x) or y(t) depending on its variable. The

equation may also contain variable y itself, known functions of x (or t), and constants.

2.1 Introduction

In power system transient stability analysis, the main modeling equations are those

describing the dynamic behavior of the synchronous generators, such as torque equa-

tions related to the generators’ rotors and their controllers. The rest of the system is

modeled only to the extent that influences the torques of the generators [14, 24, 70, 71].

This chapter initially presents the main equations used for transient stability. Later,

two main approaches, numerical and direct methods, for solving differential equations

of a dynamic system are explained. Next, the advantages and disadvantages of these

methods and more information regarding direct methods of stability assessment and

its possible applications are provided.
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2.2 Power System Dynamics

Consider the following equations for a power system:

_x(t) = f I (x(t)) ; 0 < t < tDisturb (2.1)

_x(t) = fDisturbed (x(t)) ; tDisturb < t � tcl (2.2)

_x(t) = fPost (x(t)) ; tcl < t <1 (2.3)

Function f represents the dynamic behavior of the system, while Eq. 2.1 describes

the pre-fault system, Eq. 2.2 describes the fault-on system, and Eq. 2.3 is for post-

disturbance system. The solution of Eq. 2.2 provides the initial condition for Eq. 2.3.

Suppose that Eq. 2.3 has a Stable Equilibrium Point (SEP). The transient stability

question is whether the trajectory of Eq. 2.3 solution, with initial condition obtained

from Eq. 2.2, will converge to an SEP or not, while time goes to infinity [14].

Dynamics of generators are mostly represented by the so-called “swing equation”:

2Hi

!s

d!i
dt

+Di!i = Pmi
� Pei

(2.4)

d�i
dt

= !i � !s; i = 1; 2; : : : ; n (2.5)

Where � is the generator angle with respect to the synchronous frame, !s is the

reference speed, !i is the speed of generator i, Di is the damping factor, and Hi is

inertia constant of the generator i. This model is called the classical model, which is

the simplest power system model used for stability studies. It is limited to the analysis

of the “first swing” transients. The model is based on the following assumptions:

� Input mechanical power is considered constant.

� Asynchronous power and damping are not modeled.
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� The generator is modeled via a constant voltage source behind the direct axis

transient reactance. This assumption is valid if the exciter (not modeled here)

responses much faster than the electromechanical transients under study.

� Angle of the voltage behind the transient reactance represents the mechanical

rotor angle of a synchronous generator.

� Loads are modeled by passive impedances, obtained from pre-disturbance con-

ditions and are considered constant during the stability study.

2.3 Transient Stability Assessment

Different approaches for transient stability assessment have been discussed in the

literature. They can be studied in two general categories, “Numerical Methods” and

“Direct Methods” [72, 73, 74, 75, 76]. These methods are briefly explained in this

section.

2.3.1 Numerical Methods

The most straightforward approach to assess the post-fault system stability has

been via numerical integration of equations 2.1-2.3 based on direct time simulation

of transient dynamics, following a contingency. In this method, iterative integration

methods, such as Runge-Kutta, Euler, etc. are used to solve the differential equations

modeling the system behavior. Advances in computational hardware have made this

methodology fast and accurate even for large scale systems [5, 69, 77, 78, 79, 80].

2.3.2 Advantages and Disadvantages of Numerical Methods

The main advantages of using numerical methods in studying power systems are:

� Understanding the behavior of system variables in desired time frames

� Capability to study the desired variables’ behavior, such as voltages and currents

of transmission lines
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Some of the important disadvantages in employing numerical methods are:

� Inefficient use of computational resources:

Numerical methods need generators’ angles and other variables to be calculated

at each time instant and repeating the process after adjusting the parameters.

This process is an inefficient use of computational resources, and it is very

time-consuming.

� Overall Inefficiency:

Another disadvantage of numerical methods is their overall inefficiency. Most

of the contingencies are safe due to the reliable operation of the system and

certifying this via direct simulation is an inefficient use of computational re-

sources. Alternatively, the dynamics following non-critical scenarios could be

proven stable using advanced approaches exploiting the mathematical structure

of the dynamic systems [14, 24, 81].

It is worth mentioning, while the amount of computational efforts depends on the

complexity of the mathematical model used, the only way to have the time solution

is by using numerical methods. A comparison between the pros and cons of numerical

methods and direct methods is provided in table 2.3.

2.3.3 Direct Methods

An alternative approach for stability assessment is via qualitative methods. Qual-

itative methods obtain qualitative information on solutions without solving system

equations. These methods are particularly valuable to be used for systems with dif-

ficult or impossible analytic solutions.

2.3.3.1 History of Direct Methods

Early investigations of using direct methods for transient stability assessment were

conducted in 1930s and 1940s [24, 81, 82, 83]. Not much work can be found in the

West literature in the 1940s and 1950s. The early 1960s is when the application
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of Lyapunov’s second method in power systems was considerably used in researches

[24, 84]. The first approach for stability analysis, based on the Lyapunov theory,

was proposed in 1966 by Gless, El-Abiad, and Nagappan. According to Lyapunov’s

theory, by using the concept of energy, a function can be defined for a system. This

function represents a relationship between the accumulated energy and the dynamics

of a system. Based on his theory, a system is stable if the system’s energy after a dis-

turbance is continuously decreasing until an equilibrium state is reached [85, 86, 87].

In the 1960s, it was mentioned that direct methods provide a much faster solution for

determining critical clearing time compared to conventional time solutions. However,

this claim is outdated because first, more advanced computers and solution methods

are employed today and second, there are more complex stability-related concerns

rather than just finding the critical clearing time of generators.

Early researches on energy criteria were mainly about two issues involved in di-

rect stability analysis: firstly, great emphasis on the development of new Lyapunov

functions, and secondly, finding the critical value of the systems’ energy. The second

issue involves the investigation of equilibrium conditions, i.e., the stable and unsta-

ble solutions of dynamic equations of the employed power system model. Achieved

results using these functions for power system transient stability problems were con-

servative, which means smaller critical clearing time was obtained compared to what

was obtained by the conventional time simulation method, and what could be the

actual case in the real world. Following is a brief summary of the basic efforts in this

area [24, 33, 40]:

� Gorev defined an energy criterion for stability represented by T , where T is the

summation of the kinetic energy of all the generators. Gorev’s second energy

criterion of stability states that “a sufficient condition of stability is for the value

of T at the highest saddle point of the surface T to be less than zero” [24, 88, 89].

� Magnusson’s method, presented in 1947, is similar to the Gorve’s. Magnusson’s
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potential function and Gorve’s energy function are similar, and they both use

the same procedure for determining the criteria of stability. A region of stability

is determined by the potential of the nearest saddle to the equilibrium point

[90, 24, 91].

� Aylett studied a multi-machine system based on the classical model. For the

multi-machine system, he obtained a set of differential equations in the inter-

machine angle coordinates. Aylett states that in the critical case, the potential

energy is equal to kinetic energy; in stable situations, the potential energy is

greater than kinetic energy, and instability occurs if kinetic energy is greater

than the potential energy. An important aspect of Aylett’s work is the formu-

lation of the system equations based on inter-machine movements [24, 92].

� In 1972, Tavora and Smith investigated the transient energy of a multi-machine

system and equilibrium conditions [4, 79, 93]. They used the classical model of

machine and network with considering transfer conductance equal to zero. They

suggested confining the fault trajectory of the system to a bounded region for

stability studies, after the last phase of the disturbance. An interesting part of

their work is defining synchronous equilibrium by conditions that the speed and

acceleration of the generators are zero in the COI frame. They also introduced

expressions for the total kinetic energy of the system and the transient (or inter-

machine) kinetic energy, which can determine the stability according to their

claim.

� In 1972, Uyemura suggested approximating the path-dependent term in the

Lyapunov functions by path-independent terms [94].

� In 1976, El-Abiad and his colleagues found that the important UEP is not the

one with the lowest energy, but the UEP closest to the system trajectory [95].
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� The work by Athay, Podmore, and colleagues, in 1976-1979 became the basis

for the transient energy function method we use today. Their 1979 report is

considered as a benchmark reference for investigating in the TEF area. Their

work includes [24, 96]:

– Search for UEP and critical transient energy in the direction of system

trajectory

– Studying the potential energy boundary surface (PEBS)

– Linear approximation of path-dependent terms and COI formulation

– Studying more practical power system sizes than previously used in direct

stability analysis research

– Studying the behavior of the system’s energy at different instants using

computer simulations.

Tables 2.1 and 2.2 provide a summary of important findings of using direct meth-

ods in power system studies, their shortcomings, and the proposed solutions in this

dissertation.

2.3.4 Advantages and Disadvantages of Direct Methods

Similar to the numerical approach, there are advantages and disadvantages of using

direct methods. Understanding the characteristics of direct methods helps to use them

in the most beneficial manner. The main advantages of using direct methods are as

follows:

� Avoiding the complicated mathematics of solving differential equations

� Saving computational resources and time

� Gaining qualitative assessment about systems dynamics

The main disadvantages of using direct methods are as follows:
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Table 2.1: Summary of important findings of using direct methods in power system studies.

Year
Researcher(s) Contribution

1899
Lyapunov

- Developing a method to define the stability of
sets of ordinary differential equations

1930 - 1950
Magnusson

- Claiming the region of stability is determined by the
potential of the nearest saddle to the equilibrium point

1958 - 1966
Aylett, Gless,

El-Abiad, Nagappan

- Introducing the first energy function
for power system stability

1970 - 1980
Tavora,
Smith,

Uyemura,

- Investigating the transient energy of
a multi-machine system and equilibrium conditions
- Finding that the important UEP
is not the one with the lowest energy
- Approximating the path-dependent term
in the Lyapunov functions by path-independent terms

1976 - 1979
Athay,

Podmore

- Introducing the Center of Inertia
- Studying the potential energy boundary surface
- Searching for UEP and critical transient energy
in the direction of system trajectory
- Studying more practical power system sizes

1984
Narasimhamurthi

- Proving that the standard energy function
of a lossless system cannot be extended
in a general manner to a system

1989
Pai

- Finding an energy function for
lossy systems with two generators

1989
Chiang

- Proving that a general Lyapunov function does not exist
when losses are considered in the power system model

2000 - Present
Different
researchers

- Trying to find a new method for finding UEP
- Using machine learning for predicting the energy
- Studying energy function in structure-preserved
power system models
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Table 2.2: Shortcomings of the previous researches in using direct methods in power system studies,
and the proposed solutions.

Common
Shortcomings

1- Requiring numerical solution until
the moment of fault removal
2- Having the post-fault UEP
prior to using the direct method
3- Impractical for online applications.

Proposed Solution
in this dissertation

1- Predicting the system behavior
using conditions of the fault moment
2- Predicting the post-fault UEP
by using predicted values in PEBS method
3- Using parallel processing for prediction

� The numerical simulation should be used to calculate the initial condition for

the post-fault system

� Not delivering the detail of systems behavior

� The requirement of knowledge about the post-disturbance system

� Conservative results

A comparison between the pros and cons of numerical methods and direct methods

is provided in table 2.3. More discussions about the shortcomings of using direct

methods for power system transient stability assessment is provided in chapter 5,

section 2.5.

2.4 Possible Application of Direct Methods

Considering the characteristics of direct methods, the main possible applications

of them are as follows [97]:

� A screening tool used before conducting traditional studies

� Online operations dynamic security monitoring

� A method of analyzing the results of traditional transient stability studies and

computing the stability margin
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Table 2.3: Main advantages and disadvantages of numerical and direct methods.

Advantage Numerical
Methods

Direct
Methods

Provide time solution of each variable Yes No
Capability of studying different variables Yes No

Fast screening tool before comprehensive studies No Yes
Qualitative view about system dynamics No Yes

Disadvantage Numerical
Methods

Direct
Methods

Calculating the system variables at each time step Yes No
Time-consuming Yes No

Overall inefficiency and waste in computational resources Yes No
Requiring numerical solution

to find post-disturbance initial condition Yes Yes

Conservative stability assessment No Yes

� Identifying stability limits for system operations

� A way for adding systems’ stability as one of constraint in optimal power-flow

Also, obtaining qualitative information on system stability behavior, identifying crit-

ical generators, which are severely affected by disturbances, and studying the sensi-

tivity of systems’ parameters are some of the incentives of researches in this area.

2.5 Shortcomings of Using Direct Methods for Transient Stability Assessment

The main problems on the way of direct methods to be reliably applicable are [97]:

� Current energy functions and equations are based on classical generator models

and dynamic characteristics of loads, and the effects of controls and stability

aids are not represented in these models. Energy functions have been defined

for a detailed generator model connected to an infinite bus, but not for a multi-

machine model. It seems possible that more detailed generator models can be

presented, but probably progress in this will not be fast and easily achievable.

� The response of the system up to the last switching operation should be calcu-

lated by conventional time-domain solutions of the system equations. Then the
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direct method is used by treating the system as an autonomous system. This

limitation is essentially inherent to direct methods because they are based upon

the Lyapunov stability theory for autonomous systems.

� The results of an analysis using direct methods do not provide time responses

of system variables, which can give us valuable information about the dynamic

features of the system.

� Representing automatic switching operations is not possible. For example, au-

tomatic switching of reactors and capacitors as a function of bus voltage cannot

be represented.

� Direct methods do not indicate how the system loses synchronism if the system

is unstable, and do not indicate if the separated parts collapse or survive.

� Monitoring of protective relays is important in stability studies since their op-

eration can lead to cascading system breakups. System operating limits are

sometimes dictated by relay margin requirements rather than stability limits.

However, apparent impedances, line flows, and bus voltages, required for mon-

itoring and simulating protective relay operations, cannot be computed.

� Using high speed reclosing and switching of reactors and capacitors, the last

switching operation may happen beyond 0.5 seconds following the initial dis-

turbance. For such situations, there is not really an advantage in using direct

methods.

Direct methods have the potential to be employed for the online derivation of tran-

sient stability limits. However, as mentioned earlier in this chapter, the UEP, the

path of the angles and the rotor speed of the generators are unknown without nu-

merically solving the system’s dynamic equations in the time domain. This is one

of the obstacles to achieving utilizing direct methods as an online tool. One way to
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overcome this shortcoming is to predict the behavior of the generators' angles and

speed. The prediction provides us with the ability to gain a better understanding of

the system trajectories during a disturbance, which in turn helps to have a better

estimation of the system's energy and stability margin.

In chapter 3, a novel approach for prediction of generators angles and speed is pro-

vided.

2.6 Summary

In this chapter, the dynamics of the power system and di�erent approaches for as-

sessment of a system's behavior were discussed. The bene�ts of using direct methods

for transient stability assessment was explained, and its possible applications were

mentioned. In order to use direct methods for assessment of system behavior, an

appropriate function, which describes the energy of the system should be introduced.

To be able to use this function in a more e�cient way, having a prediction about

the generators' behavior would be bene�cial. So, in the next chapter, a method for

predicting generators' behavior is proposed.



CHAPTER 3: Theoretical Framework of Prediction of Generator Behavior

Reliable and continuous energy supply is one of the major expectations of a power

system. Several studies are conducted on power systems, and many di�erent con-

trollers are employed to meet such an expectation in spite of frequent changes in op-

erating conditions of a real power grid. In addition, due to the signi�cant economic

impacts and security consequences, which might happen following a failure in a power

system, accurately predicting and controlling the behavior of modern interconnected

power systems are of crucial importance [69, 98, 99].

3.1 Introduction

In spite of all the e�orts made in the planning level, the system condition might be

di�erent from what has been studied during the design process. Therefore, operators

would simulate contingencies in advance and assess the results and then take pre-

ventive control actions to ensure the security of the power systems against probable

abnormal conditions due to contingencies. This process is called dynamic security as-

sessment (DSA) and preventive control [14, 24, 100, 101]. If the behavior of a power

system could be predicted real-time or close to real-time, the preventive control ac-

tions would be conducted better, and consequently, the reliability of the system would

be increased. In the rest of this chapter, the theoretical framework and mathematical

discussions for the proposed prediction method followed by illustrative examples are

provided. Results and discussions are presented in each part.
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3.2 Mathematical Theory of the Proposed Method

Before discussing in detail on the prediction method and the results, some de�ni-

tions and discussions about analytic functions and representing them by power series

are provided.

3.2.1 Analyticity Concept

A function f (z) is said to be analytic in a domainD if f (z) is de�ned and di�er-

entiable at all points in the domainD. The function f (z) is said to be analytic at a

point z = z0 in D if f (z) is analytic in a neighborhood ofz0. Also, by an analytic

function, we mean a function that is analytic in some domains. Hence, analyticity of

f (z) at z0 means thatf (z) has a derivative at every point in vicinity of z0 (including

z0 itself, since, by de�nition, z0 is a point of all its neighborhood). This concept is

motivated by the fact that if a function is di�erentiable merely at a single point z0

but not throughout some neighborhood ofz0, it will be of no practical interest.

Analytic functions can be locally represented by power series. Such functions are usu-

ally divided into two important classes: real analytic functions and complex analytic

functions, which are commonly called holomorphic functions [102].

The exceptional importance of the class of analytic functions is due to the follow-

ing reasons. First, the class is su�ciently large; it includes the majority of functions

encountered in the principal problems of mathematics and its applications to science

and technology. Second, the class of analytic functions is closed with respect to the

fundamental operations of arithmetic, algebra, and analysis. Finally, an important

property of an analytic function is its uniqueness. Each analytic function is an �organ-

ically connected whole�, which represents a �unique� function throughout its natural

domain of existence [102, 103, 104, 105].

There are di�erent approaches to the concept of analyticity. One de�nition, which

was originally proposed by Cauchy and considerably advanced by Riemann, is based
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on structural property of the function, the existence of a derivative with respect to

the complex variable, i.e. its complex di�erentiability. This approach is closely con-

nected with geometric ideas. Another approach, which was systematically developed

by Weierstrass, is based on the possibility of representing functions by power series;

it is thus connected with the analytic apparatus by means of which a function can be

expressed. Several criterions for the analyticity of functionf can be established. A

popular one is the existence of positive constantsC, R and � such that [102, 103]:

�
� f (n)(x)

�
� � Cn ! Rn (3.1)

8x 2]x0 � �; x 0 + � [; 8n 2 N

3.2.2 Power Series for Real Functions

The power series method is the standard method for solving linear ODEs with vari-

able coe�cients. It gives solutions in the form of power series. These series can be

used for computing values, graphing curves, proving formulas, and exploring proper-

ties of solutions. Any real analytic function can be locally extended to a holomorphic

(or complex analytic) function [102, 103]:

1X

m=0

am (x � x0)m = a0 + a1(x � x0) + a2(x � x0)2 + � � � (3.2)

Here,x is a variable. a0; a1; a2; � � � are constants, called the coe�cients of the series.x0

is a constant, called the center of the series. More precisely, assume that the left hand

side of Eq. 3.2 converges for somex with jx � x0j = R. Then the series converges for

any complex value ofx with jx � (x0 + 0i )j < R and de�nes a holomorphic function,

which coincides withf on the interval ]x0 � R; x0 + R[. A power series with a nonzero

radius of convergence(R) represents an analytic function at every point interior to its

circle of convergence. The derivatives of this function are obtained by di�erentiating
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the original series term by term. All the series thus obtained have the same radius

of convergence as the original series. Hence, by the �rst statement, each of them

represents an analytic function. Consider a real (non-complex) power series shown in

equation 3.2. In particular, if x0 = 0, we obtain a power series in powers ofx, shown

in Eq. 3.3:
1X

m=0

amxm = a0 + a1x + a2x2 + � � � (3.3)

We shall assume that all variables and constants are real. Also, the term �power

series� usually refers to a series of the form 3.2 or 3.3, but does not include series of

negative or fractional powers ofx.

3.2.2.1 Theory of Using Power Series for Approximation

The nth partial sum of Eq. 3.2 is de�ned as Eq. 3.4:

Sn (x) = a0 + a1(x � x0) + a2(x � x0)2 + � � � + an (x � x0)n (3.4)

Wheren = 0; 1; � � � . If we omit the terms ofSn from Eq. 3.2, the remaining expression

would be like Eq. 3.5:

Rn (x) = an+1 (x � x0)n+1 + an+2 (x � x0)n+2 + � � � (3.5)

This expression is called the remainder of Eq. 3.2 after the terman (x � x0)n .

This way, we have associated with Eq. 3.2 the sequence of the partial sumss0(x),

s1(x), s2(x) � � � . If for somex = x1 this sequence converges,limn!1 sn (x1) = s(x1),

then the series Eq. 3.2 is called converged atx = x1. The number s(x1) is called the

value of sum of Eq. 3.2 atx1, and we write:

s(x1) =
P 1

m=0 am (x1 � x0)m

Then, for any value ofn:

S(x1) = sn (x1) + Rn (x1) (3.6)
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If that sequence diverges atx = x1, the series of Eq. 3.2 is called divergent atx = x1.

In the case of convergence, for any positive� , there is anN (depending on� ) such

that:

jRn (x1)j = js(x1) � sn (x1)j < �; 8n > N (3.7)

Geometrically, this means that all sn (x1) with n > N lie between s(x1) � � and

s(x1) + � (Fig. 3.1). Practically, this means that in the case of convergence, we can

approximate the sums(x1) of series of Eq. 3.2 atx1 by sn (x1) as accurately as we

please by takingn large enough. Now if we choosex = x0 in Eq. 3.2, the series

Figure 3.1: Geometric explanation of remainder in a Taylor expansion (Eq. 3.6).

reduces to the single terma0 since all the other terms are zero. Hence, the series

converges atx0. In some cases, this may be the only value ofx for which Eq. 3.2

converges. If there are other values ofx for which the series converges, these values

form an interval, called the convergence interval. This interval may be �nite, as in

Fig. 3.2, with midpoint x0. Then the series Eq. 3.2 converges for allx in the interior

of the interval, that is, for all x that:

jx � x0j < R (3.8)

and diverges forjx � x0j > R . The interval may also be in�nite, that is, the series may

converge for allx. The quantity R in Fig. 3.2 is called the �radius� of convergence,
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Figure 3.2: Radius of convergence concept.

since for a complex power seriesR is the radius of the disk of convergence. If the

series converges for allx, we setR = 1 (and 1
R = 0) .

The radius of convergence can be determined from the coe�cients of the series by

Figure 3.3: Area of convergence concept.

means of each of the formulas below, provided that these limits exist and are not

zero.

R =
1

limm!1
m
p

jam j
(3.9)
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R =
1

limm!1

�
�
� am +1

am

�
�
�

(3.10)

If these limits are in�nite, then Eq. 3.2 converges only at the centerx0. For exam-

ple, for all three following series letm ! 1 . Convergence radius areR = 1 ; 1; 0

respectively.

ex =
1X

m=0

xm

m!
= 1 + x +

x2

2!
+ :::

�
�
�
�
am+1

am

�
�
�
�

=
1=(m + 1)!

1=m!
=

1
m + 1

! 0; R = 1 (3.11)

1
1 � x

=
1X

m=0

xm = 1 + x + x2 + � � �

�
�
�
�
am+1

am

�
�
�
� =

1
1

= 1; R = 1 (3.12)

1X

m=0

m! xm = 1 + x + 2x2 + � � �

�
�
�
�
am+1

am

�
�
�
�

=
(m + 1)!

m!
= m + 1 ! 1 ; R = 0 (3.13)

3.3 Taylor Polynomial

Taylor polynomial of degreen, for a function f that is n times di�erentiable at

x = x0 is presented in Eq. 3.14:

Pn (x) =
nX

k=0

f (k)(x0)
k!

(x � x0)k (3.14)

The values of the Taylor polynomial and its derivatives up to ordern inclusive at

the point x = x0 coincide with the values of the function and of its corresponding

derivatives at the same point:

f (k)(x0) = P (k)
n (x0); k = 0; � � � ; n (3.15)
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The Taylor polynomial is the best polynomial approximation of the functionf as

x ! x0, in the sense that

f (x) � Pn (x) = O((x � x0)n ); x ! x0 (3.16)

and if some polynomialQn (x) of degree not exceedingn has the property that

f (x) � Qn (x) = O((x � x0)m ); x ! x0 (3.17)

wherem � n, then it coincides with the Taylor polynomialPn (x). In other words, the

polynomial having the property of Eq. 3.15 is unique. If at least one of the derivatives

f (k)(x); k = 0; � � � ; n is not equal to 0 at the point x0, then the Taylor polynomial is

the principal part of the Taylor formula. Let U be an open set of< and consider a

function f : U ! < . If f is in�nitely di�erentiable at x0, its Taylor series atx0 is the

power series given by
1X

n=0

f (n)(x0)
n!

(x � x0)n (3.18)

where we use the convention that00 = 1. The partial sums

Pk(x) :=
kX

n=0

f (n)(x0)
n!

(x � x0)n (3.19)

of a Taylor series are called Taylor polynomial of degreek and the �remainder�, f (x) �

Pk(x), can be estimated in several ways (see Taylor formula in appendix A).

3.3.1 Approximating a Function via Taylor Series

The most common method of approximating the real-valued functionf : R ! R

by a simpler function is to use the Taylor series representation. The Taylor series has

the form of a polynomial, where the coe�cients of the polynomial are derivatives of

f evaluated at a point. So long as all derivatives of the function exist at the point
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x = x0, f (x) can be expressed in terms of the value of the function and it's derivatives

at x0 as:

f (x) = f (x0) + ( x � x0)f 0(x0) +
(x � x0)2

2!
f 00(x0) + � � �

+
(x � x0)k

k!
f (k)(x0) + � � � (3.20)

This is known as the Taylor series forf about x0. It is valid for x �close� tox0 (strictly,

within the �radius of convergence� of the series). This is an in�nite series (the sum

contains in�nitely many terms), so it cannot be directly computed. In practice, we

truncate the series aftern terms to get the Taylor polynomial of degreen centred at

x0, which we denotef̂ n (x; x0):

f (x) � f̂ n (x; x0) =
nX

k=0

(x � x0)k

k!
f (k)(x0) (3.21)

This is an approximation of f that can be readily calculated so long as the �rstn

derivatives of f evaluated at x0 can be calculated. The approximation can be made

arbitrarily accurate by increasingn. The quality of the approximation also depends

on the distance ofx from x0, the closerx is to x0, the better the approximation would

be.
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3.4 Approximating the Answer of a Set of Dependant First Order Di�erential

Equation of Functions f and g

As mentioned in chapter 2, dynamic equations ruling the motion of a generator

consist of two �rst order ODEs called the swing equation. In this section, in order

to predict the behavior of a system with similar dynamic equations, some feasible

scenarios are investigated and the prediction accuracy and the radius of convergence

are discussed.

3.4.1 Scenario 1:

When f 0 Is Always Accurate and Independent of Prediction

Assume that we have the initial points of a function, we have the accurate value of

f 0 at every point, and the derivatives of the function (f (n) ; 8n 2 N ) are independent

of the prediction. It means that the error of prediction will not be a�ected by the

error from approximating f at each time step or iteration. Also, assume that we have

derivatives of functiong as a coe�cient of function f . Mathematically it means:

8
>>>><

>>>>:

f (n)(x) Always Accurate

8n 2 N

g(n)(x) = af (n� 1)

(3.22)

Hence, the derivatives of functiong will be accurate except forg0 = g(1) = f , which

cause the equation to include the error from approximatingf . The total accumulative

error after k iterations of prediction, meaningf (x + kh) can be found via following

equations [appendix B.1]:

�
�
�Error f

k

�
�
� � k � Cf

m (eh �
NX

n=0

hn

n!
) (3.23)
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For 1st order approximation (N = 1):

�
�
�Error f

k

�
�
� � k � Cf

m (eh � 1 � h) (3.24)

whereh is the prediction step and

Cf
m = max(Cf

i ) i 2
�

1; 2; � � � ; k

�
(3.25)

where

Cf
i = max(

�
�f (n)(t0 + ( i � 1)h)

�
�) n; i 2 N (3.26)

Similarly, for function g we will have:

Cg
m = aCf

m (3.27)

jError g
k j � (k + h(k � 1)2) � j aj Cf

m (eh �
NX

n=0

hn

n!
) (3.28)

In power system equations, the maximum change happens in the beginning of a

disturbance, hence, in equation 3.25,Cf
m = Cf

1 .

The limits that are found for Error f
k and Error g

k are based on the worst case

scenario. Hence, it is guaranteed that the error will not exceed the mentioned limits

and in reality, the error will be less than these limits.

3.4.1.1 An Illustrative Example for Scenario 1

(When f 0 is always accurate and independent of prediction)

Assume functionsf , g, and q as:

g(t) = 0 :1sin(t) +
�
6

(3.29)

f (t) = 0 :1cos(t) (3.30)
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q(t) =
1
5

(1 + 0:5sin(t)) (3.31)

It can be seen that the followings hold true for them:

dg(t)
dt

= f (t) (3.32)

d2g(t)
dt2

=
df (t)

dt
= 1 � q(t) (3.33)

The goal is to use the Taylor series to predict the values of the functionsf and g in

the desired time interval if we have the functionq and the initial point of f and g.

The initial point refers to their values at the beginning of the time interval of interest.

Let us consider the desired time interval as0 < t < � . The initial value of f and g

are:

g(t0 = 0) = �
6 and f (t0 = 0) = 0 :1

Consider the time steps of the prediction ash = 0:01 seconds. The �rst order Taylor

series for prediction is used. So:

f (t0 + kh) = f (t0 + ( k � 1)h) + h � f 0(t0 + ( k � 1)h) + Rf
k (3.34)

where,

Rf
k =

1X

n=2

hn

n!
f (n)(t0 + ( k � 1)h) (3.35)

The maximum error can be calculated from equation 3.23. To do so, we need to �nd

the maximum of g(n) , which can be calculated fromq(t) as0:1. Hence,Cm is 0:1. So,

Error f
k � k � 0:1(e0:01 �

1X

n=0

0:01n

n!
)

�
�
�Error f

k

�
�
� � k � 0:1(e0:01 � 1 � 0:01) = k � 5:0167� 10� 5
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Table 3.1 and �gure 3.4 represent the graph of actual and predicted functionf and

its related errors.

Table 3.1: Function f values whenf 0 is always accurate and independent of prediction.

Iteration
(k)

Time
(s)

Actual
Value

Predicted
Value

Absolute of
Actual
Error

Absolute of
Maximum

Error
1 0.01 0.1 0.1 4.9999e-6 5.0167e-6
25 0.25 0.0969 0.0968 1.2368e-4 1.2542e-4
50 0.50 0.0878 0.0875 2.3964e-4 2.5084e-4
75 0.75 0.0732 0.0728 3.4060e-4 3.7625e-4
100 1.00 0.0540 0.0536 4.2035e-4 5.0167e-4
150 1.50 0.0071 0.0066 4.9797e-4 7.5752e-4
200 2.00 -0.0416 -0.0421 4.5347e-4 0.001
314 3.14 -0.1 -0.1 8.7034e-7 0.0016

Figure 3.4: Function f(t) when f 0 is always accurate and independent of prediction.

Let's predict g:

g(t0 + kh) = g(t0 + ( k � 1)h) + h � g0(t0 + ( k � 1)h) + Rg
k (3.36)

where,

Rg
k =

1X

n=2

hn

n!
g(n)(t0 + ( k � 1)h) (3.37)
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Table 3.2: Real and Maximum Percentage Error for Function f when f 0 is always accurate and
independent of prediction.

Iteration
(k)

Time
(s)

Actual Error
Percentage

Limit Error
Percentage

1 0.01 0.005 0.005
25 0.25 0.1276 0.1294
50 0.5 0.2729 0.2857
75 0.75 0.4653 0.5140
100 1 0.7784 0.9290
150 1.5 7.0137 10.6693
200 2 1.0901 2.4038
314 3.14 0.87 1.6

jError g
k j � (k + 0:01� (k � 1)2) � 1 � 0:1 � (e0:01 � 1 � :01) (3.38)

Table 3.3 and �gure 3.5 represent the graph of actual and predicted functiong and

its related errors.

Figure 3.5: Function g(t) when f 0 is always accurate and independent of prediction.
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Table 3.3: Function g values whenf 0 is always accurate and independent of prediction.

Iteration
(k)

Time
(s)

Actual
Value

Predicted
Value

Actual
Error

Maximum
Error

1 0.01 0.5246 0.5246 8.3332e-8 5.0167e-6
25 0.25 0.5483 0.5483 3.1910e-5 1.5431e-4
50 0.50 0.5715 0.5714 1.2400e-4 3.7129e-4
75 0.75 0.5918 0.5915 2.7052e-4 6.5097e-4
100 1.00 0.6077 0.6073 4.6237e-4 9.9336e-4
150 1.50 0.6233 0.6224 9.3216e-4 0.0019
200 2.00 0.6145 0.6131 0.0014 0.003
314 3.14 0.5238 0.5218 0.002 0.0065

Table 3.4: Real and Maximum Percentage Error for Function g when f 0 is always accurate and
independent of prediction.

Iteration
(k)

Time
(s)

Actual Error
Percentage

Limit Error
Percentage

1 0.01 0000 0.001
25 0.25 0.0058 0.0281
50 0.5 0.0217 0.0650
75 0.75 0.0457 0.1100
100 1 0.0761 0.1635
150 1.5 0.1496 0.3048
200 2 0.2278 0.4882
314 3.14 0.3818 1.2409
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3.4.2 Scenario 2:

When f 0 Is Not Accurate and Depends on Predicted Value forf

Assume that we have the initial points of a function and the derivative of this

function as a function that depends on its value. Then, we want to predict this

function and a second function, while the derivative of the second function depends

on the �rst function. In the mathematical expression:

8
>>>><

>>>>:

f (n)(t) = q(t) � bf (n� 1)(t)

8n 2 N

g(n)(t) = af (n� 1)(t)

(3.39)

whereq(t) is a function that is unlimited times di�erentiable. The accumulative error

of prediction after k iterations can be calculated via the following equations [appendix

B.2]:
NX

n=1

(hb)n

n!
= � (3.40)

�
�
�Error f

k

�
�
� � Cf

m (eh � 1 � � )
k� 1X

i =0

(j1 � � j) i (3.41)

where,

� =
1X

n=2

hn

n!
(3.42)

According to geometric progression, if�� 6= 0, which imposeb6= 0, it can be said:

k� 1X

i =0

(j1 � � j) i =
1 � (j1 � � j)k

1 � (j1 � � j)
(3.43)

�
�
�Error f

k

�
�
� � Cf

m (eh � 1 � � ) �
1 � (j1 � � j)k

1 � (j1 � � j)
(3.44)
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If j1 � � j > 1, the error will increase in an unacceptable rate after some iterations.

However, if j1 � � j � 1, we can say:

k� 1X

i =0

(j1 � � j) i �
k� 1X

i =0

1 = k (3.45)

Hence:
�
�
�Error f

k

�
�
� � k � Cf

m (eh � 1 � � ) (3.46)

Similarly, for function g it can be said that:

jError g
k j � k jaj Cf

m (eh � 1 � � ) � [1 + h(k � 1)] (3.47)

3.4.2.1 An Illustrative Example for Scenario 2

(when f 0 is not accurate and depends on predicted value forf )

Assume functionsf , g, and q as:

g(t) = 0 :1sin(t) +
�
6

(3.48)

f (t) = 0 :1cos(t) (3.49)

q(t) =
1
5

(1 + 0:5sin(t) � cos(t)) (3.50)

It is seen that the followings hold true for mentioned functions:

dg(t)
dt

= f (t) (3.51)

d2g(t)
dt2

=
df (t)

dt
= 1 � q(t) � 10f (t) (3.52)

The goal is to use the Taylor series to predict the values of the functionsf and g in

the desired time interval, if we have the functionq and the initial point of f and g,

meaning their values at the beginning of the time interval. Here,df (t )
dt is not accurate
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since it depends on the value of the functionf at each time step.

Let us consider the desired time interval as0 < t < � . The initial value of f and g

are:

g(t0 = 0) = �
6 and f (t0 = 0) = 0 :1

Consider the time steps of the prediction ash = 0:01 seconds. The �rst order Taylor

series is used for prediction. So:

f (t0 + 0:01� k) = f (t0 + ( k � 1) � 0:01) + 0:01� f 0(t0 + ( k � 1) � 0:01) + Rf
k (3.53)

where,

Rf
k =

1X

n=2

0:01n

n!
f (n)(t0 + ( k � 1) � 0:01) (3.54)

Table 3.5 and �gure 3.6 represent the graph of actual and predicted functionf and

its related errors.

Figure 3.6: Function f(t) when f 0 is not accurate and depends on predicted value forf .

The graph of actual and predicted functiong and its related errors are shown in table

3.6 and �gure 3.7.

In the next section, the method for predicting generators behavior is elaborated.
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Table 3.5: Function f values whenf 0 is not accurate and depends on predicted value forf .

Iteration
(k)

Time
(s)

Actual
Value

Predicted
Value

Absolute of
Actual
Error

Absolute of
Maximum

Error
3 0.03 0.1 0.1 -4.9995e-6 1.5050e-5
25 0.25 0.0971 0.0972 -9.1902e-5 1.2542e-4
50 0.50 0.0882 0.0884 -1.4751e-4 2.5084e-4
75 0.75 0.0738 0.0740 -1.6927e-4 3.7625e-4
100 1.00 0.0549 0.0550 -1.6562e-4 5.0167e-4
150 1.50 0.0081 0.0082 -1.0546e-4 7.5251e-4
200 2.00 -0.0407 -.0407 -5.7389e-6 0.0010
314 3.14 -0.1 -0.1002 1.9983e-4 0.0016

Table 3.6: Function g values whenf 0 is not accurate and depends on predicted value forf .

Iteration
(k)

Time
(s)

Actual
Value

Predicted
Value

Absolute of
Actual
Error

Absolute of
Maximum

Error
3 0.03 0.5256 0.5256 -6.6665e-8 1.5351e-5
25 0.25 0.5474 0.5474 -2.5103e-5 1.5552e-4
50 0.50 0.5707 0.5708 -9.9875e-5 3.7374e-4
75 0.75 0.5910 0.5912 -2.1173e-4 6.5468e-4
100 1.00 0.6072 0.6076 -3.4882e-4 9.9832e-4
150 1.50 0.6233 0.6239 -6.5314e-4 0.0019
200 2.00 0.6149 0.6159 -9.2631e-4 0.0030
314 3.14 0.5248 0.5259 -0.0011 0.0065

Table 3.7: Real and Maximum Percentage Error for Functionf when f 0 is not accurate and depends
on predicted value for f .

Iteration
(k)

Time
(s)

Actual Error
Percentage

Limit Error
Percentage

1 0.01 0.0000 0.0002
25 0.25 0.0009 0.0013
50 0.5 0.0017 0.0028
75 0.75 0.0023 0.0051
100 1 0.0030 0.0091
150 1.5 0.0130 0.0929
200 2 0.0001 0.0246
314 3.14 0.0020 0.0160
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Figure 3.7: Function g(t) when f 0 is not accurate and depends on predicted value forf .

Table 3.8: Real and Maximum Percentage Error for Functiong when f 0 is not accurate and depends
on predicted value for f .

Iteration
(k)

Time
(s)

Actual Error
Percentage

Limit Error
Percentage

1 0.01 0.0000 0.0000
25 0.25 0.0000 0.0003
50 0.5 0.0002 0.0007
75 0.75 0.0004 0.0011
100 1 0.0006 0.0016
150 1.5 0.0010 0.0030
200 2 0.0015 0.0049
314 3.14 0.0021 0.0124
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3.5 Predicting Generators' Behavior

Phasor Measurement Units (PMUs) are devices that provide real-time phasor mea-

surements at those locations of a power system network, where they are placed. Due

to advancements in the �eld of relay technology, digital relays can now act as PMUs,

which has signi�cantly reduced the cost of PMUs [99].

In what follows, it is assumed that there are PMUs or digital relays at all genera-

tor buses, which is a realistic assumption. The goal is to predict the values of! (t),

� (t), and Pe(t) using Taylor series. In order to use Taylor series for approximating a

function, three concerns should be addressed:

1. Is the function analytic?

2. What is the radius of the convergence?

3. What is the error of approximation?

In the rest of this section, �rst, the analyticity of the behavior of � ,! , and Pe is proved.

Then the prediction equations are obtained. Finally, the convergence and error of the

prediction are discussed.

3.5.1 Analyticity of Variables

Power system main variable,� , ! , and Pe are analytic, according to the de�nition

of analyticity, and can be approximated via Taylor series. These variables are always

de�ned since they are related to real physical systems. They are unlimited times

di�erentiable since they are sinusoidal in the frequency of power systems operation.

However, at switching moments, due to a sudden change in the value of these variables,

they are not di�erentiable. Hence at those moments, Taylor expansion cannot be used

for approximating their values.
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3.5.2 Predicting Generators' Angle and Speed

Consider that the behavior of any of these variables of power network is represented

by a function. We do not know the value of the function at the moment oft1, but

we know it for previous moments. Considering the discussion about approximating a

function via Taylor series, we may choose a moment close tot1, such ast1� � t; � t > 0,

to approximate the value of each function at the moment oft1. Since we do not know

the value of f (t1 + � t), we chooset1 � � t and the value of the function at that

moment f (t1 � � t) for approximation. To make it easier to understand, let's consider

t1 � � t = t0, meaningt1 = t0 + � t. Therefore, we can approximate the value off (t1)

using Taylor Series. After approximatingf (t1), it is possible to approximate the value

of f (t2) = f (t1 + � t); we substitute t1 in t0 and considert2 ast1 and this process will

be repeated. The error of approximatingf (t2) comes from two sources: the inherent

error approximation due to neglecting higher order terms in Taylor expansion, and

the error from the approximation of f (t1). Therefore, the error will be accumulative

and it may increase as a longer period of time is predicted. The error is explained

and calculated later in this chapter.

Let the dynamics of generators be modeled using (3.55) and (3.56).

2H
! s

d!
dt

+ D! = Pm � Pe (3.55)

d�
dt

= ! � ! s (3.56)

where! s is the synchronous speed, which is equal to 1 p.u.

Let 2H
! s

= M , So,M = 2H . Then Eq. (3.55) can be presented as:

M
d!
dt

+ D! = Pm � Pe (3.57)

Assume that the behavior of the system between any two consequent time steps is



47

linear. This is a valid assumption since the waveforms of any stable power system

variables are analytic functions, except at switching moments. Hence, Taylor series

can be used to linearize the system dynamics, and� and ! can be expanded as:

� (t) = � (0) + �
0
(0)t + �

00
(0)

t2

2!
+ ::: + � (n)(0)

tn

n!
+ ::: (3.58)

! (t) = ! (0) + !
0
(0)t + !

00
(0)

t2

2!
+ ::: + ! (n)(0)

tn

n!
+ ::: (3.59)

Neglecting terms with order higher than two and consideringt0 as the initial point

leads to:

� (t0 + � t) = � (t0) + �
0
(t0)� t + �

00
(t0)

� t2

2!
+ O(� t3) (3.60)

� (t0 + � t) = � (t0) + ! (t0)� t + !
0
(t0)

� t2

2!
+ O(� t3) (3.61)

! (t0 + � t) = ! (t0) + !
0
(t0)� t + !

00
(t0)

� t2

2!
+ O(� t3) (3.62)

whereO(� t3) represents neglected terms. From the swing equation it is known that:

M
d!
dt

= Pm � Pe � D! = M � a(t) (3.63)

Assuming a linear behavior for the system between two consequent moments, leads

to:

dt = � t = One T ime Step (3.64)

So:

M
� !
� t

= Pm � Pe � D! (3.65)

M � ! = ( Pm � Pe)� t � D! � t (3.66)

d�
dt

= ! � ! s (3.67)

d�
dt

=
� �
� t

= ! ) � � = ! � t (3.68)
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) M � ! = ( Pm � Pe)� t � D � � (3.69)

� ! = (
Pm � Pe

M
)� t �

D
M

� � (3.70)

! (t0 + � t) = ! (t0) + (
Pm � Pe

M
)� t �

D
M

� � (3.71)

� (t0 + � t) = � (t0) + [ ! (t0)� t + (
Pm � Pe

M
�

D
M

! (t0))
� t2

2!
] � 2�f (3.72)

Using (3.71) and (3.72) behaviors of the generators of the system can be predicted.

Since the function that shows the variables' behavior is not an analytic function at

switching moments,n samples of data at switching moments are required to be known

to approximate a function with Taylor series of ordern.

As could be seen in the aforementioned discussions, there is a termPe in prediction

formulas. Pe is the electrical output of the understudy generator. The most accurate

prediction happens when the actual output electrical power of generators (Pe) is

known. This way, the accelerating power can be found accurately (refer to 3.4.1).

However, it is not practically possible, since the swing equation should be numerically

solved to �nd Pe at each moment, and it contrasts the prediction. Also, in real-time

studies, the actual output of generators cannot be known beforehand to be used for

prediction. Therefore, the output of generators for predicting their speed and angle

should be found in another way. Three di�erent approaches can be considered for

approximating Pe during the fault:

� AssumingPe of generators equal to zero.

� Assuming Pe as a constant number. This amount is the amount ofPe one

moment after the fault.

� Predicting Pe of generators. Because the behavior of the system is predicted

for the next time step, Taylor Series can be used. This method is elaborated in
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the next session.

Following, a comprehensive discussion about the third assumption is provided. A

comparison between the e�ect of these assumptions in predicting IEEE 9 bus system

generator behavior is provided in table 4.4.

3.5.3 Predicting Generators Output Power

In order to predict the generator output power,Pe, the behavior ofPe is considered

linear between every two consecutive moments, except at switching times. Hence, the

Taylor series ofPe can be employed. The Taylor expansion ofPe is:

P(t) = P(0) + P0(0)t + P00(0)
t2

2!
+ � � � (3.73)

M
d!
dt

= Pm � Pe � D! (3.74)

M
d2!
dt2

= 0 �
dPe

dt
� D

d!
dt

(3.75)

d!
dt

= a(t) (3.76)

dPe

dt
= 0 � M

d2!
dt2

� D
d!
dt

= � M
da(t)

dt
� Da(t) (3.77)

Assuming the above equations for one time step and substitutingdPe and dt with

� Pe and � t, respectively, leads to:

� Pe

� t
= � M

� a
� t

� Da(t) (3.78)

� Pe = Pe(0) � M � a(0) � Da(0)� t (3.79)

So, the �rst order prediction for Pe will be:

Pe(t0 + � t) = Pe(t0) � M � a(t0) � Da(t0)� t (3.80)
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This equation has been used for predicting electrical power during the fault. To

increase the accuracy, we may have to add a higher order term to the prediction

equation:

M
d3!
dt3

= 0 �
d2Pe

dt2
� D

d2!
dt2

(3.81)

Substituting the second term in (3.75) will result in:

M
d2a
dt2

= �
d2Pe

dt2
� D

da
dt

(3.82)

Assuming above equations for one time step and substitutingdPe and dt with � Pe

and � t respectively, leads to:

M
� 2a

(� t)2
= �

� 2Pe

(� t)2
� D

� a
� t

(3.83)

� 2Pe

(� t)2
= � M

� 2a
(� t)2

� D
� a
� t

(3.84)

P(t) = P(0) + P0(0)t + P00(0)
t2

2!
+ � � � (3.85)

Pe(t0 + � t) = Pe(t0) � M � a(t0) � Da(t0)� t +
1
2

(� t)2 � 2Pe

(� t2)
(3.86)

Pe(t0 + � t) = Pe(t0) � M � a(t0) � Da(t0)� t

+
1
2

(� M � 2a(t0) � D � a(t0)� t �
D 2

M
a(t0)� t2 +

D 2

M 2
a(t0)� t2) (3.87)

Pe(t0 + � t) = Pe(t0) � M � a(t0) � Da(t0)� t

�
D
2

� a(t0)� t +
1
2

� t2(
D 2

M 2
a(t0) �

D 2

M
a(t0)) �

M
2

(� 2a(t0)) (3.88)

Considering� t = TS as a constant time step, we have:

� a(t0) = a(t0) � a(t0 � � t) = a(t0) � a(t0 � TS) (3.89)

� 2a(t0) = � a(t0) � � a(t0 � � t) = a(t0) � 2 � a(t0 � � t) + a(t0 � 2� t) (3.90)
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Hence, (3.88) can be written in discrete form as follows:

Pe(i + 1) = Pe(i ) � M � a(i ) � Da(i )� t �
D
2

� a(i )� t

+
1
2

� t2(
D 2

M 2
a(i ) �

D 2

M
a(i )) �

M
2

(� 2a(i )) (3.91)

Substituting (3.89) and (3.90) in (3.91) leads to (3.92).

Pe(i + 1) = Pe(i ) � M (a(i ) � a(i � 1)) � Da(i ) � TS �
D
2

(a(i ) � a(i � 1)) � TS

+
1
2

TS2(
D 2

M 2
a(i ) �

D 2

M
a(i )) �

M
2

(a(i ) � 2a(i � 1) + a(i � 2)) (3.92)

Based on (3.92), we can predict the output of electrical power. Using equations

(3.71), (3.72), and (3.92), angles, speeds, and output electrical power of generators

can be predicted. It is worth reminding that, since2nd order Taylor series is utilized,

the data for the �rst two moments after the fault or after fault removal is required

for predicting the system's variables during the fault and after the fault removal,

respectively.

PMUs can be employed to improve the accuracy of the prediction for the post-fault

system. It means that we may update the initial point of the prediction using PMU

data when the post-fault system is being predicted.

It should be mentioned that the scope of this work is to predict the behavior of the

system during the fault so that using direct methods becomes possible without numer-

ically solving the swing equation for during-the-fault system studies. The prediction

also helps to apply predictive controllers and have a more stable system. In addition,

considering a sustained fault in a system and predicting the system behavior can be

employed to �nd the UEP of a system. Finally, with de�ning appropriate criteria,

prediction can be used for �nding the critical clearing time and critical machines,

which refer to machines that lose synchronism �rst. These topics are discussed in



52

chapters 5 and 6.

3.5.4 Proof of Prediction Convergence in Power Systems

Following, the area of convergence for the prediction equations is discussed. For

ease of study, the swing equation is presented again.

M
d!
dt

= Pm � Pe � D! (3.93)

3.5.4.1 Convergence of Generator Speed Prediction

The goal is to prove the convergence of predicted the behavior of generators speed,

! (t), with Taylor series to its actual values. It is assumed that! (t1 � � t) and

! (t1 � 2� t) are known and! (t1) is to be approximated. It means writing the Taylor

series of! (t) about the point t0.

! (t = t1 = t0 + � t) = ! (t0) + !
0
(t0)� t + !

00
(t0)

� t2

2!
+ ::: + ! (n)(t0)

� tn

n!
+ ::: (3.94)

! (t) =
1X

n=0

an � tn (3.95)

where

an =
1
n!

! (n)(t0) (3.96)

Since the process is repeated every time steps, we can assume thatPm and Pe are

constant during each step of prediction. Having this assumption, we can di�erentiate

swing equations 3.93 multiple times:

! (1) = ! 0 =
1

M
(Pm � Pe � D! ) (3.97)

! (2) = ! 00=
1

M
(0 � 0 � D! (1) ) =

� D
M

! (1) (3.98)

! (3) =
� D
M

! (2) (3.99)
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...

! (n) =
� D
M

! (n� 1) (3.100)

! (n+1) =
� D
M

! (n) (3.101)

! (n+1)

! (n)
=

� D
M

(3.102)

To �nd the radius of convergence, Eq. 3.10 can be used:

1
R

= lim
n!1

�
�
�
�
an+1

an

�
�
�
� = lim

n!1

�
�
�
�
�

1
(n+1)! ! (n+1)

1
(n)! !

(n)

�
�
�
�
�

= lim
n!1

1
n + 1

�
�
�
�
! (n+1)

! (n)

�
�
�
� = lim

n!1

1
n + 1

�
D
M

= 0 (3.103)

So,R = 1 .

3.5.4.2 Convergence of Generator Angle Prediction

The goal is to prove that the Taylor series approximation of generators angles,

function � (t), is convergent.

� (t = t1 = t0 + � t) = � (t0) + �
0
(t0)� t + �

00
(t0)

� t2

2!
+ ::: + � (n)(t0)

� tn

n!
+ ::: (3.104)

� (t) =
1X

n=0

bn � tn (3.105)

where

bn =
1
n!

� (n)(t0) (3.106)

d�
dt

= � 0 = ! ) � (1) = ! (0) (3.107)

� (2) = ! (1) =
1

M
(Pm � Pe � D! ) (3.108)

� (3) = ! (2) =
1

M
(0 � 0 � D! (1) ) = �

D
M

� (2) (3.109)



54

so:

� (3) = ! (2) = �
D
M

! (1) = �
D
M

� (2) (3.110)

� (4) = ! (3) = �
D
M

! (2) = �
D
M

� (3) (3.111)

...

� (n) = ! (n� 1) = �
D
M

! (n� 2) = �
D
M

� (n� 2) (3.112)

� (n+1) = ! (n) = �
D
M

! (n� 1) = �
D
M

� (n� 1) (3.113)

To �nd the radius of convergence we can use Eq. 3.10:

1
R

= lim
n!1

�
�
�
�
bn+1

bn

�
�
�
� = lim

n!1

�
�
�
�
�

1
(n+1)! � (n+1)

1
(n)! �

(n)

�
�
�
�
�

= lim
n!1

1
n + 1

�
�
�
�
� (n+1)

� (n)

�
�
�
� = lim

n!1

1
n + 1

�
�
�
�
�
� D

M ! (n� 1)

! (n� 1)

�
�
�
�
�

(3.114)

= lim
n!1

1
n + 1

�
D
M

= 0 (3.115)

So,R = 1 .

3.5.4.3 Convergence of Generator Output Power Prediction

Approximating generators output power with Taylor series were discussed earlier.

Following, the convergence of this approximation is proved.

P(t = t1 = t0 + � t) = P(t0) + P
0
(t0)� t + P

00
(t0)

� t2

2!
+ ::: + P (n)(t0)

� tn

n!
+ ::: (3.116)

P(t) =
1X

n=0

cn � tn (3.117)

where

cn =
1
n!

P (n)(t0) (3.118)
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Pe = Pm � M
d!
dt

� D! (3.119)

Pe = Pm � M! (1) � D! (3.120)

P (1)
e = 0 � M! (2) � D! (1) (3.121)

P (2)
e = 0 � M! (3) � D! (2) (3.122)

...

P (n)
e = 0 � M! (n+1) � D! (n) (3.123)

P (n+1)
e = 0 � M! (n+2) � D! (n+1) (3.124)

To �nd the radius of convergence Eq. 3.10 can be used:

1
R

= lim
n!1

�
�
�
�
cn+1

cn

�
�
�
� = lim

n!1

�
�
�
�
�

1
(n+1)! P (n+1)

1
(n)! P

(n)

�
�
�
�
�

= lim
n!1

1
n + 1

�
�
�
�
P (n+1) (t0)
P (n)(t0)

�
�
�
� = lim

n!1

1
n + 1

�
�
�
�
� M! (n+2) � D! (n+1)

� M! (n+1) � D! (n)

�
�
�
� (3.125)

we know

! (n+1) =
� D
M

! (n) (3.126)

= lim
n!1

1
n + 1

�
D
M

= 0 (3.127)

So,R = 1 .

3.5.4.4 Discussion about Radius of Convergence

In this section, it was proved that for power system main variables, the radius of

convergence is in�nity (R = 1 ). Actually, it will be the case if there is no switching

or sudden change in system variables. However, as mentioned at the beginning of the

section, these variables are not analytic at the switching moments. This limits the

radius of convergence. Figure 3.8 shows the graph of power system variables for a
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three-phase fault on a random bus in a 500 bus system. It can be seen that at the

switching moments the graphs are not di�erentiable. However, one time-step after or

before the switching moments, the graphs are analytic.

In our studies, the time frame of the prediction is limited between the switching

moments. At one time step after the switching, the radius of convergence is equal

to time step, R = � t. As we continue the prediction, the radius of convergence

increases. This increase continues until we are in the middle of switching moments.

Afterward, the radius of convergence decreases until we reach the switching moment.

This is shown in �gure 3.9. In the scope of this research, the radius of convergence

equal to one time-step su�ces, since the result from each moment is used for the next

moment prediction.

3.5.5 Calculating Prediction Error

In previous discussions, it was shown that prediction equations converge to desired

functions. However, there will be some errors due to: a) the omission of higher order

terms in Taylor series, and b) the accumulative error of prediction of each step in the

following steps of prediction.

To study the prediction error, similar to the discussion in 3.4, three possible scenarios

for swing equation are discussed:

3.5.5.1 Scenario 1:

The Derivative of ! Is Independent of Prediction

The initial points of a function and the derivative of the �rst function, which is

independent of prediction, are available. The goal is to �nd the errors when predicting

the �rst function, and predicting the values of a second function, while its derivative

depends on the �rst function.
d!
dt

=
Pm � Pe

M
(3.128)

d�
dt

= ! (3.129)
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Figure 3.8: Radius of convergence and analyticity concept for power system variables.

Here,! (t) is function 1, that its derivatives do not depend on its value explicitly.� (t)

is the second function that its derivative comes from! . The goal is to predict both
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Figure 3.9: Change in radius of convergence between switching moments.

of them and �nd the prediction error.

R!
i and R�

i are the remainder of Taylor polynomial at each iteration of prediction for

generator i , while E !
i and E �

i are the accumulative total error afterk iterations of

prediction.

Iteration 1:

! (t0 + h) = ! (t0) +
NX

n=1

hn

n!
! (n)(t0) + R!

1 (3.130)

E !
1 = R!

1 (3.131)

R!
1 =

1X

n= N +1

hn

n!
! (n)(t0) (3.132)

� (t0 + h) = � (t0) +
NX

n=1

hn

n!
� (n)(t0) + R�

1 (3.133)

E �
1 = R�

1 (3.134)

R�
1 =

1X

n= N +1

hn

n!
� (n)(t0) (3.135)
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Iteration 2:

! (t0 + 2h) = ! (t0 + h) � R!
1 +

NX

n=1

hn

n!
! (n)(t0 + h) + R!

2 (3.136)

E !
2 = R!

1 + R!
2 (3.137)

� (t0 + 2h) = � (t0 + h) � R�
1 +

NX

n=1

hn

n!
� (n)(t0 + h) + R�

2 (3.138)

� (t0 + 2h) = � (t0 + h) � R�
1 + h(! (t0 + h) � E !

1 )

+
NX

n=2

hn

n!
! (n� 1)(t0 + h) + R�

2 (3.139)

E �
2 = R�

2 + R�
1 + hE !

1 (3.140)

Iteration 3:

! (t0 + kh) = ~! (t0 + 3h) + E !
3 (3.141)

E !
3 = R!

1 + R!
2 + R!

3 (3.142)

� (t0 + 3h) = � (t0 + 2h) � E �
2 + h(! (t0 + 2h) � E !

2 )

+
NX

n=2

hn

n!
! (n� 1)(t0 + 2h) + R�

3 (3.143)

E �
3 = R�

3 + R�
2 + R�

1 + hE !
2 (3.144)

...

Iteration k:

! (t0 + kh) = ~! (t0 + kh) + E !
k (3.145)

E !
k =

kX

i =1

R!
i (3.146)

R!
i =

1X

n= N +1

hn

n!
! (n)(t0 + ( i � 1)h) (3.147)
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� (t0 + kh) = ~� (t0 + kh) + E �
k (3.148)

E �
k =

kX

i =1

R�
i � hE !

k� 1 (3.149)

E �
k =

kX

i =1

R�
i � h

k� 1X

i =1

R!
i (3.150)

R�
i =

1X

n= N +1

hn

n!
! (n� 1)(t0 + ( i � 1)h) (3.151)

3.5.5.2 Scenario 2:

The Derivative of ! Depends Only on Its Value

The initial points of a function and the derivative of it as a function of itself

are available. The goal is to �nd the errors when predicting the �rst function, and

predicting the values of a second function, while its derivative depends on the �rst

function.
d!
dt

=
1

M
(Pm � Pe � D! ) (3.152)

d�
dt

= ! (3.153)

Iteration 1:

! (t0 + h) = ! (t0) +
NX

n=1

hn

n!
! (n)(t0) + R!

1 (3.154)

E !
1 = R!

1 (3.155)

R!
1 =

1X

n= N +1

hn

n!
! (n)(t0) (3.156)

� (t0 + h) = � (t0) +
NX

n=1

hn

n!
� (n)(t0) + R�

1 (3.157)

E �
1 = R�

1 (3.158)

R�
1 =

1X

n= N +1

hn

n!
� (n)(t0) (3.159)
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Iteration 2:

! (t0 + 2h) = ! (t0 + h) � R!
1 +

NX

n=1

hn

n!
! (n)(t0 + h)

�
NX

n=1

hn

n!
DR !

1 + R!
2 (3.160)

E !
2 = R!

2 + (1 + �D )R!
1 (3.161)

� (t0 + 2h) = � (t0 + h) � R�
1 +

NX

n=1

hn

n!
� (n)(t0 + h) + R�

2 (3.162)

� (t0 + 2h) = � (t0 + h) � R�
1 +

NX

n=1

hn

n!
! (n� 1)(t0 + h)

�
NX

n=1

hn

n!
(E !

1 )(n� 1) + R�
2 (3.163)

E �
2 = R�

2 + R�
1 + �E !

1 (3.164)

E �
2 = R�

2 + R�
1 + �R !

1 (3.165)

Iteration 3:

! (t0 + 3h) = ! (t0 + 2h) � E !
2 +

NX

n=1

hn

n!
! (n)(t0 + 2h)

�
NX

n=1

hn

n!
DE !

2 + R!
3 (3.166)

E !
3 = R!

3 + (1 + �D )E !
2 (3.167)

E !
3 = R!

3 + (1 + �D )R!
2 + (1 + �D )2R!

1 (3.168)

� (t0 + 3h) = � (t0 + 2h) � E �
2 +

NX

n=1

hn

n!
� (n)(t0 + 2h) + R�

3 � �E !
2 (3.169)

E �
3 = R�

3 + E �
2 + �E !

2 (3.170)
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E �
3 = R�

3 + R�
2 + R�

1 + [ � (1 + �D ) + � ]R!
1 + �R !

2 (3.171)

...

Iteration k:

! (t0 + kh) = ~! (t0 + kh) + E !
k (3.172)

E !
k =

kX

i =1

(1 + �D )k� i R!
i (3.173)

E !
k � C!

m (eh � 1 � � )
kX

i =1

(1 + �D ) i (3.174)

� (t0 + kh) = ~� (t0 + kh) + E �
k (3.175)

E �
k =

kX

i =1

R�
i + �

k� 1X

i =1

E !
i (3.176)

E �
k =

kX

i =1

R�
i + �

k� 1X

j =1

jX

i =1

(1 + �D ) j � i R!
i (3.177)

E �
k � kC �

m (eh � 1 � � ) + �C !
m (eh � 1 � � )

k� 1X

j =1

jX

i =1

(1 + �D ) i (3.178)

E �
k � kC �

m (eh � 1 � � ) + �kC !
m (eh � 1 � � )

kX

i =1

(1 + �D ) i (3.179)

3.5.5.3 Scenario 3:

The Derivative of ! Depends on Its Value and onPe

This scenario is similar to scenario 2. The initial points of a function and the

derivative of it as a function of itself are available. The di�erence this time is thatPe,

as a term in! 's derivative has an error at every step. However, the amount of thePe

error at each step is unknown. The worst case is when we consider thePe equal to

its value at the moment of the fault, while the actual value is zero. So, the maximum
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possible error at each step will bePe0. This is the most general assumption.

Pe � Pe0 (3.180)

The goal is to �nd the errors when predicting the �rst function, and predicting the

values of a second function, while its derivative depends on the �rst function.

d!
dt

=
1

M
(Pm � Pe � D! ) (3.181)

d�
dt

= ! (3.182)

Iteration 1:

! (t0 + h) = ! (t0) +
NX

n=1

hn

n!
! (n)(t0) + R!

1 (3.183)

E !
1 = R!

1 (3.184)

R!
1 =

1X

n= N +1

hn

n!
! (n)(t0) (3.185)

� (t0 + h) = � (t0) +
NX

n=1

hn

n!
� (n)(t0) + R�

1 (3.186)

E �
1 = R�

1 (3.187)

R�
1 =

1X

n= N +1

hn

n!
� (n)(t0) (3.188)

Iteration 2:

! (t0 + 2h) = ! (t0 + h) � R!
1 +

NX

n=1

hn

n!
! (n)(t0)

+
NX

n=1

hn

n!
DR !

1 +
NX

n=1

hn

n!
P (n)

e02(t0 + h) + R!
2 (3.189)

E !
2 = R!

2 + (1 + �D )R!
1 + �P e02 (3.190)

...
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Iteration k:

E !
k =

kX

i =1

(1 + �D )k� i R!
i +

kX

i =2

� (1 + �D ) i � 2Pe0i (3.191)

E !
k � C!

m (eh � 1 � � )
kX

i =1

(1 + �D ) i + �P e0

kX

i =2

(1 + �D ) i (3.192)

E �
k =

kX

i =1

R�
i + �

k� 1X

i =1

E !
i (3.193)

E �
k =

kX

i =1

R�
i + �

k� 1X

j =1

(
jX

i =1

(1 + �D )k� i R!
i )

+ � 2
k� 1X

j =1

(
jX

i =1

(1 + �D ) i � 2Pe0i ) (3.194)

E �
k � C �

m (eh � 1 � � ) + k�C !
m (eh � 1 � � )

kX

j =1

(1 + �D ) j

+ k� 2Pe0

kX

j =2

(1 + �D ) j (3.195)

Tables 3.9 and 3.10 provide a summary of the equations used for predicting generator

behavior and related errors in the most general scenario.

Table 3.9: Equations used for predicting generator behavior.

Variable Prediction Formula
Equation
Number

! ! (t0 + � t) = ! (t0) + ( Pm � Pe
M )� t � D

M � � 3.70
� � (t0 + � t) = � (t0) + [ ! (t0)� t + ( Pm � Pe

M � D
M ! (t0)) � t2

2! ] � 2�f 3.71

Pe

Pe(i + 1) = Pe(i ) � M (a(i ) � a(i � 1))
� Da(i ) � TS � D

2 (a(i ) � a(i � 1)) � TS
+ 1

2TS2( D 2

M 2 a(i ) � D 2

M a(i ))
� M

2 (a(i ) � 2a(i � 1) + a(i � 2))

3.91
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Table 3.10: Equations used for calculating prediction error.

Variable Error Formula
Equation
Number

!
E !

k � C!
m (eh � 1 � � )

P k
i =1 (1 + �D ) i

+ �P e0
P k

i =2 (1 + �D ) i 3.191

�
E �

k � C �
m (eh � 1 � � ) + k�C !

m (eh � 1 � � )
P k

j =1 (1 + �D ) j

+ k� 2Pe0
P k

j =2 (1 + �D ) j 3.194

Pe Pe � Pe0 3.179

3.6 An Illustrative Example:

Predicting Generator Behavior in a Single Machine - In�nite Bus System

Consider the network shown in �gure 3.10. It is a Single-Machine In�nite-Bus

(SMIB). A three-phase symmetrical fault happens at Bus 3 att = 0:1 seconds. Ac-

cording to the numerical simulation, Critically Stable Clearing Time(CSCT) is0:150

seconds, and Critically Unstable Clearing Time(CUCT) is0:151seconds. The goal is

to predict the system behavior and compare it with the results of numerically solving

the system equations, which is referred as �simulated� or �actual� in this script.

Figure 3.10: SMIB network for illustrating generator behavior prediction [1].
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Table 3.11: Prediction results for the SMIB network shown in Fig. 3.10.

Time ! �
Predicted Simulated Predicted Simulated

0.11 0.0013 0.0013 0.7310 0.7311
0.20 0.0129 0.0129 0.9310 0.9311

During the fault, the voltage of Bus 3 is zero. So, no active power is transferred

from the generator to the grid (Pe = 0). The inertia constant of the generator is 3.5

(H = 3:5 and M = 7), and input mechanical power is 0.9 P.U. (Pm = 0:9 P.U.).

Assume that the post-fault con�guration of the system is the same as the pre-fault.

Suppose that the results fort = 0:13s are available, and the goal is to predict� and

! for fault duration. Two sample calculations are provided below. Table 3.11, and

�gures 3.11 and 3.12 provide a comparison between the actual and predicted values.

The blue curves in �gures represent the predicted behavior of the generator if the

fault is not cleared (sustained fault).

� (t = 0:13) = 0:74734radian = 41:77�

! (t = 0:13) = 0:0039

M = 7

! (t = 0:14)predicted = ! (t = 0:13) + 0:9� 0
7 � :01 = 0:0052

! (t = 0:14)simulated = 0:0051

� (t = 0:14)predicted = 2 � � � 50�
n

0:9� 0
7

0:012

2! + 0:0039� 0:01
o

+ 0:74734 = 0:7616

� (t = 0:14)simulated = 0:7615
...

! (t = 0:2)predicted = ! (t = 0:13) + 0:9� 0
7 � :07 = 0:0129! (t = 0:2)simulated = 0:0129

� (t = 0:2)predicted = 2 � � � 50�
n

0:9� 0
7

0:072

2! + 0:0039� 0:07
o

+ 0:74734 = 0:9321

� (t = 0:2)simulated = 0:9311

As can be seen in the �gures 3.11 and 3.12, the prediction have great accuracy in

this simple system and completely matches with the actual results.
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Figure 3.11: Actual and predicted generator angle - SMIB network for transient stability study.

Figure 3.12: Actual and predicted generator speed - SMIB network for transient stability study.
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3.7 Summary

In this chapter, the Taylor series fundamental concept was discussed. Later, it

was presented how to use Taylor series to predict the speed, angle, and output power

of generators. The error of prediction was calculated, and results for testing the

proposed prediction method for a SMIB were presented. In the next chapter, chapter

4, the proposed method is applied to multi-machine larger systems and the accuracy

of the prediction is discussed.



CHAPTER 4: Generator Behavior Prediction in Multi-Machine Power Systems

In previous chapters, the importance of power systems stability and methods of

facing the equations modeling a dynamic system were explained. Later, in chapter 3,

a prediction method was proposed and the results for a SMIB case study was shown.

In this chapter, the proposed prediction technique is employed for predicting the

behavior of larger multi-machine systems. Case studies are IEEE 9 bus system, IEEE

39 bus system, and North Carolina - South Carolina 500 bus system. The results of

the studies are presented and discussed.

4.1 Introduction

As mentioned earlier in section 3.5.2, three di�erent assumptions forPe can be

considered when predicting angles and speeds of generators. The most accurate pre-

diction happens when the actual output electrical power of generators (Pe) is known.

This way, the accelerating power can be found accurately. However, this is not prac-

tically possible, since the swing equation should be numerically solved. Also, in real-

time studies, the actual output power of generators cannot be known beforehand to

be used for the prediction. Therefore, the output power of generators, for predicting

their speed and angle, should be found in another way. Three di�erent approaches

can be considered for approximatingPe during the fault:

� AssumingPe of generators equal to zero

� AssumingPe as a constant number

This amount can be the amount ofPe one moment after the fault.

� Predicting Pe of generators

Because the behavior of the system is predicted for next time step, Taylor's
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Series can be used.

In what follows, the prediction has been used to predict the behavior of IEEE 9 bus,

IEEE 39 bus, and the 500 bus South Carolina-North Carolina synthetic network.

The study is shown for di�erent assumptions ofPe. Also, to show the authenticity of

the method, although impractical, prediction of� and ! with actual values of Pe is

shown for post-disturbance graphs. Figures 4.1 and 4.2 show how to use the proposed

technique.

The prediction error for desired variable (X ), has been calculated and provided using

equations 4.1 and 4.2.

Error (X t i )(%) =
X actual

t i
� X predicted

t i

X actual
t i

� 100 (4.1)

Mean Error (x) =
P n

i =1 jError (X t i )j
n

(4.2)

wheren is the number of moments that the variables are predicted and can be found

using Eq.4.3.

n =
t(fault removal ) � t(fault start )

T ime Step
(4.3)
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Figure 4.1: Data acquisition for the proposed method.
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Figure 4.2: Algorithm of proposed prediction method.
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4.2 Predicting Generators Angle and Speed in IEEE 9 Bus System

In what follows, the behavior of the IEEE 9 bus test system, shown in �gure 4.3,

is being predicted based on three di�erent assumptions forPe during the fault. In

this system, generator 1 is the reference machine, meaning� 1 = 0 during the entire

study. A three-phase fault is applied on bus 2 at the terminal of generator 2. Hence,

electrical output of generator 2 is zero,Pe2 = 0.

The prediction for system behavior during the fault is only based on the PMU data

for two time-steps after the fault. However, the prediction for the post-fault system

is corrected by updating the initial point in the related formulas every 8 time-steps

(every 0.08 seconds).

Figure 4.3: IEEE 9 bus system one-line diagram and its load �ow result.

4.2.1 Assumption 1: Generators Output Power During the Fault Is Zero

During the fault, generators electrical output,Pe, are considered constant and equal

to zero (Pe(During Fault ) = 0 ). Table 4.1 shows maximum and average errors of

predicting generators' rotor speed and angle. Figures 4.4 and 4.5 depict the actual

and predicted rotor speed and rotor angle for generators 1 and 2, respectively.
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Figure 4.4: Actual and predicted rotor speed of G1 whenPe(During Fault ) is assumed to be zero
- Fault on bus 2 - IEEE 9 bus test system.

Figure 4.5: Actual and predicted rotor angle of G2 whenPe(During Fault ) is assumed to be zero
- Fault on bus 2 - IEEE 9 bus test system.

4.2.2 Assumption 2: Generators Output Power During the Fault Is Constant

During the fault, generators electrical output,Pe, are considered constant and equal

to their value of one moment after the fault happens (Pe(During Fault ) = Pe(t+
fault )).

Table 4.2 shows maximum and average errors of predicting generators' rotor speed
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Table 4.1: Absolute of prediction error(percent) when Pe(During Fault ) is assumed to be zero -
Fault on bus 2 - IEEE 9 bus test system.

Variable � 2 � 3 ! 1 ! 2 ! 3 Pe1 Pe3
Maximum

Error
12.3897 45.2952 72.8179 2.0025 67.7492 100 100

Mean
Error

4.0723 10.1968 29.8803 0.3840 23.1830 50 50

and angle. Figures 4.6 and 4.7 depict the actual and predicted rotor speed and rotor

angle for generators 1 and 2, respectively.

Table 4.2: Absolute of prediction error(percent) whenPe(During Fault ) is assumed to be equal to
Pe(t+

fault ) - Fault on bus 2 - IEEE 9 bus test system.

Variable � 2 � 3 ! 1 ! 2 ! 3 Pe1 Pe3
Maximum

Error
16.0125 45.2952 16.2606 2.0025 10.7717 88.9390 32.0227

Mean
Error

4.9704 4.3801 4.1981 0.3840 2.3184 14.6063 7.6442

4.2.3 Assumption 3: Generators Output Power During the Fault Is Approximated

In this scenario, generators electrical output power,Pe, during the fault, are pre-

dicted via Taylor Series (Pe(During Fault ) = Predicted Pe). Table 4.3 shows maxi-

Figure 4.6: Actual and predicted rotor speed of G1 whenPe(During Fault ) is assumed to be equal
to Pe(t+

fault ) - Fault on bus 2 - IEEE 9 bus test system.
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Figure 4.7: Actual and predicted rotor angle of G2 whenPe(During Fault ) is assumed to be equal
to Pe(t+

fault ) - Fault on bus 2 - IEEE 9 bus test system.

mum and average errors of predicting generators' rotor speed and angle. Figures 4.8

and 4.9 depict the actual and predicted rotor speed and rotor angle for generators 1

and 2, respectively.

Figure 4.8: Actual and predicted rotor speed of G1 whenPe(During Fault ) is predicted - Fault on
bus 2 - IEEE 9 bus test system.
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Figure 4.9: Actual and predicted rotor angle of G2 whenPe(During Fault ) is predicted - Fault on
bus 2 - IEEE 9 bus test system.

Table 4.4 shows a comparison between the accuracy of prediction, based on the dif-

ferent assumptions that were discussed. As can be seen in table 4.4, minimum error

belongs to the third scenario, wherePe during the fault were predicted. Therefore, in

the following, predicting the behavior of the system is based on predictingPe during

the fault.

Table 4.3: Absolute of prediction error(percent) when Pe(During Fault ) is predicted - Fault on
bus 2 - IEEE 9 bus test system.

Variable � 2 � 3 ! 1 ! 2 ! 3 Pe1 Pe3
Maximum

Error
15.8884 17.8510 16.2606 2.0025 9.3593 82.8961 28.7392

Mean Error
During Fault

4.9495 4.2157 3.8519 0.4033 1.9940 13.2629 6.6263
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Table 4.4: Mean percentage of prediction error for di�erent assumption of generators output power
- Fault on bus 2 - IEEE 9 bus test system.

Variable � 1 � 2 � 3 ! 1 ! 2 ! 3
Pe = 0 0 4.0723 10.1968 29.8803 0.3840 23.1830

Pe = Pe(t+
fault ) 0 4.9704 4.3801 4.1981 0.3840 2.3184

Pe = PredictingPe 0 4.9495 4.2157 3.8519 0.4033 1.9940




