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ABSTRACT

ZACH D. MERINO. High throughput non-parametric probability density
estimation via novel multithreaded stitching method. (Under the direction of DR.

DONALD JACOBS)

A method of univariant probability density function (pdf) estimation is developed

for big data applications. The method employs the use of a non-parametric maximum

entropy estimator (NMEM) for a data driven multithreaded probability density esti-

mation algorithm, which has been termed the stitching estimator (SE). The NMEM

has previously shown to be a robust pdf estimator for high throughput applications,

which has made it the ideal choice for the underlying estimator in the SE’s algorithm.

This work divides the estimation problem into many smaller estimation problems;

termed blocks. The sample is partitioned into blocks by an optimized branching tree

algorithm which has been developed to maximize the uniformity for the density of the

data in every block. The algorithm finds pdf estimates for blocks using the NMEM

then the estimates per block are combined through a stitching procedure that uses a

weighted average which utilizes the cumulative probability density functions (cdf) for

each pair of adjacent blocks. Further improvements are obtained by implementing

a sub-sampling approach that generates sub-samples from the original sample with-

out replacement. The pdfs from each sub-sample are then averaged to give a final

estimate. The SE has been extensively benchmarked against a large set of diverse

distributions for sample sizes ranging from of 29 up to 220 and 1000 trials per sample

size. The quality of the estimates are quantified using scaled quantile residual (SQR)

plots, which is a sample size invariant metric that is consistent with the Anderson-

Darling test. The set of test distributions range from easy single mode distributions

to extremely difficult exotic distributions. In all cases tested the SE yields excellent

estimates with no need for a priori knowledge of the structure of the data.
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CHAPTER 1: INTRODUCTION

Being able to quickly and accurately estimate a pdf for univariate data is of funda-

mental importance to many areas both within and outside of physics. An example of

this importance is in the field of Bioinformatics in which it is crucial to have meth-

ods for pdf estimation that can provide high throughput for large amounts of data.

Another example which is outside the field of physics, such as in finance, it is desired

to have an estimate for the pdf of a sample of univariant data that is accurate about

the most likely to occur events to ensure for lower risk investments. Among the ex-

ample applications given there are numerous other areas where pdf estimation is of

great importance, such as, damage detection in engineering [2], isotope analysis in

archaeology [3], and econometric data analysis in economics [4]. The applications for

pdf estimators exemplified above assure that the use of a pdf estimator is certainly

needed in many areas of analysis, but a continuing issue is that the method of esti-

mation is left to the user. If the annalist has a wide range of experience, the form

of the pdf estimate can be selected to obtain an accurate representation of the data.

However, this would be an unreasonable approach for large numbers of datasets with

no knowledge a priori of the general trends in the data. The annalist must still choose

an estimator, but without objective criteria this can introduce subjective bias into

the estimated pdfs. There are many methods for pdf estimation all of which contain

their own advantages and disadvantages; some of which will be reviewed below.

1.1 Histograms

The first and one of the most widely used is the histogram method. This approach

is the easiest to implement method for defining the probability distribution for a



2

given set of data. Simply: define a bin width, set a bin origin, partition the span of

the data using the defined bin width, then generate a bar graph from the number of

data points falling in a given bin [5]. Unfortunately, the choice of bin size and bin

location can dramatically change the general shape of the probability distribution,

which can lead to the loss of crucial information or the detection of erroneous features

from random fluctuations in the data. Another downside to using histograms to

generate probability distributions is that they do not provide a continuous model for

the probability density function, which may be desired to accurately generate other

statistical information. The estimate of a pdf, f̂(x), using the histogram method is

formally defined by equation 1.1.

f̂(x|x̃,w) =
1

N

N∑
i=1

1

wi

I(x− x̃i, wi) (1.1)

Where x̃i ≡ bin center, wi ≡ bin width, and I(x − x̃i, wi) is normally referred to as

the indicator function and is defined by equation 1.2 [6].

I(x− x̃i, wi) =


1 x ∈ [−w

2
, w
2
)

0 otherwise

(1.2)

The definition for f̂(x) from the histogram method in equation 1.1 has been left

general. When wi and x̃i+1 − x̃i is constant for all i then this is the usually referred

to probability density estimate using the histogram method. On the other hand if wi

and x̃i+1 − x̃i are allowed to vary based on data driven criterion then the histogram

method is referred to as an adaptive histogram method. Adaptive histogram methods

improve f̂(x) over the usual histogram approach, however, information about the

data’s location within a bin is still lost, creating a discontinuous model.
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1.2 Kernel density estimation

Another ubiquitous method for univariant data pdf estimation is that of kernel

density estimation (KDE). The method consists of choosing a kernel basis function,

K(x), with a specific set of parameters. Once the kernel and parameters are selected

a linear superposition of the N kernels is constructed to estimate the data. Similar

to the bin width size from the histogram method there is a choice of bandwidth size

for the kernel function. The most general form of KDE is shown in equation 1.3,

where β is the shift parameter and h is the bandwidth parameter. Equation 1.3

describes adaptive bandwidth KDE when h is allowed to be determine from data

driven criterion [7] or standard KDE when h is constant.

f̂(x|β,h) =
1

N

N∑
i=1

K(x | βi, hi) =
1

N

N∑
i=1

1

hi
K
(x− βi

hi

)
(1.3)

As an example, a common choice of kernel is that of a Gaussian distribution with

the parameters being the mean, µ, and standard deviation, σ. Therefore the pdf

estimate, f̂(x), of the true pdf, f(x), is calculated using equation 1.4.

f̂(x|σ,µ) =
1

N

N∑
i=1

K(x | σi, µi) =
1

N

N∑
i=1

1

σi
√

2π
e
− (x−µi)

2

2σi
2 (1.4)

Using KDE over histograms still has its challenges that the annalist must face. The

series of issues that must be considered when using KDE are: 1) Which kernel is

the most suited for the dataset? 2) What size basis, N , is necessary to discriminate

relevant trends in the data from superfluous noise? 3) What specific values for the

parameters fit the data best? Both 1 and 2 are commonly left to the annalist’s inter-

pretation of the dataset, however, methods are available to determine the parameters

through data driven processes; these methods are termed non-parametric KDE. An

example of such a non-parametric method is that of the histogram and another is to
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take f̂(x), as in equation 1.3 and minimize the mean square error (MSE), or L2 error,

for the parameters β,h using a data driven bandwidth selector method defined in [8];

other Lp errors could be used.

1.3 Alternative pdf estimation methods

More sophisticated non-parametric probability estimation algorithms have been

developed over the past few decades that have tried to go beyond the different variants

of KDE and adaptive KDE. Many proposed estimators utilize physical concepts that

are very familiar to physicist and mathematicians, such as, utilizing the equations

that describe diffusion to aid in KDE [9, 10]. Other proposed estimators utilize

methods that have been familiar to statisticians and computer scientist since the

1960s and have been developed under statistical learning theory. Examples of these

approaches are the use of a support vector machine or an artificial neural network

[11, 12]. These methods have shown improvement over KDE but have their respective

relative drawbacks. Either, the methods have increased sophistication in the theory

and algorithms or the need for a priori knowledge of the expected random variable’s

expected outcome i.e. training datasets to teach the algorithm. Therefore, it is

advantageous to explore methods of probability density estimation that still can be

robust, as well as, relatively simple.

1.4 Estimators developed in the BMPG group

As eluded to above, there are methods of pdf estimation that contain a set of

parameters, basis size, that are used to construct a parameter space where with

the aid of a specific metric the parameters are estimated. However, in many cases

the optimal basis size is unknown or perhaps can never be known, therefore, it is

advantageous to use a non-parametric estimation method that can adapt the basis

size for a specific criterion. For this reason, the research in the conducted BMPG

(BioMolecular Physics Group) utilized an estimator developed by Dr. Jenny Farmer
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and Dr. Donald Jacobs for determining f̂(x). This approach has been termed the

non-parametric maximum entropy method (NMEM), which uses a method of funnel

diffusion defined in [13, 1] to estimate the parameters of f̂(x) while exploring and

adapting the parameter space.

The NMEM was intended to be used for high data throughput. This method was

found to be robust and computationally efficient for a large number of common dis-

tributions [1]. However, as is the case when attempting to create a general estimator

for a broad range of datasets, the method has limitations. The NMEM estimator

becomes computationally inefficient and/or less accurate with divergent and heavy

tailed distributions. The samples from these difficult distributions are far from being

uniform and the NMEM makes a decision to truncate a series expansion to save on

computational cost. The truncation of the series expansion leads to the introduc-

tion of systematic errors in the pdf estimates. To improve the estimate of pdfs for

these difficult cases Dr. Jacobs developed an estimation method termed the stitching

estimator (SE), which utilizes the NMEM estimator to find f̂(x). The stitching esti-

mator is given this name because the range of the sample is partitioned into blocks

that the NMEM estimator is applied too. The reduced sample sizes of the blocks

create lower variance in the density of the data per block, which allows NMEM to be

both fast and accurate. The partitioning of the sample into blocks is akin to how a

histogram partitions the data sample into bins. Once the pdf estimates per block are

determined, they are then stitched together using a weighted average technique.

The stitching method for determining f̂(x) has empirically shown a significant im-

provement over the NMEMmethod for many divergent and heavy tailed distributions.

Although noticeable improvement has been observed there are still characteristics of

the estimator that must be refined. 1) As the sample size for a given distribution

increase the tendency for over fitting arises. 2) For divergent distributions and heavy

tailed distributions (ex. stable distribution) f̂(x) for the blocks about the tails or
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divergent areas of the distribution retain a non-negligible probability to fail by either

taking too long to estimate or being be poorly estimated. 3) The determination of the

block lengths or number of data points per block can significantly vary the accuracy

of f̂(x) to f(x). Problem 2 turns out to be heavily dependent on problem 3 as will

be discussed later and has motivated the focus of this thesis to solve problem 3.



CHAPTER 2: STITCH ESTIMATOR BASICS

2.1 Define blocks

The first procedure for the SE method is akin to a histogram approach, where a bin

size must be defined to partition the sample of the random variable. This procedure

for the SE method partitions the sample into what are defined as blocks. Once the

total number of k blocks has been determined the NMEM estimator is utilized to

come up with an estimate, f̂k(x), for all blocks. The method of defining blocks is

implemented to divide and concur difficult distribution types, which is a common

place tactic when attempting to find solutions to difficult problems. Figure 2.1 shows

an example of how the sample data is partitioned into blocks where estimates f̂k(x) for

each block are obtained and then stitched together. Figure 2.1 also displays the length

and number of data points for the each respective block. It is advantageous to divide

the pdf estimate problem into blocks, because this allows for easy implementation

of a multithreaded algorithm. Being able to create a multithreaded algorithm with

the NMEM estimator as the backbone of the script enables the algorithm to be just

as efficient as NMEM estimator while significantly increasing the quality of the pdf

estimates for a given sample size.

There are several approaches that can be implemented to partition the data, but

the two broad categories are classified as a fixed or adaptive methods. The methods

for determining the blocks sizes that were initially implemented in the algorithm are

discussed in detail below.
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Figure 2.1: (a) Total f̂(x) for data generated from a Beta distribution (a = 2, b = 0.5)
that has been stitched together from f̂k(x) for each block. (b) Displaying each f̂k(x)
prior to stitching adjacent estimates to produce f̂(x). (c) Number of data points in
each block. (d) Length of each block.

2.1.1 Fixed number of blocks

An easily implemented method for determining the block sizes was to require the

total number of blocks to be fixed and this was achieved by requiring the number of

sample points per block to be proportional to the sample size, as shown in equation

2.1, where c is the percentage coefficient. The number of sample points per block was

fixed to be a specific percentage of the sample size. For this method the percentage of

points to fall within each block is currently user specified with a common percentage
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being 20% of the sample size.

Nblock = dcNe (2.1)

Figure 2.2 displays two methods for generating blocks with approximately the same

number of data points per block. The first approach, show in figure 2.2(a), creates

blocks of fixed size by picking a near central point in the samples range then creates

blocks Nblocks in size. This processes of creating blocks of size Nblocks continues out-

ward toward the edges of the sample’s range until blocks Nblocks in size can no longer

be created. This method leads to blocks with the same number of data points until

Figure 2.2: f̂(x) for Beta distribution (β = 1.5, γ = 0.5) (a) Blocks created from
center outward. (b) f̂(x) for blocks created from center outward. (c) Blocks created
from left to right. (d) f̂(x) for blocks created from left to right.
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the very edges. The second approach, shown in figure 2.2(c), creates blocks Nblock

in size starting from the right most position in the sample’s range. Similar to the

previous method, this process continues until blocks Nblocks in size can no longer be

created. The method from creating blocks of fixed size in 2.2(a) is a more elegant

approach over the method in 2.2(c) due to the symmetric end block sizes, which elimi-

nates any potential for a bias in f̂(x) due to block partitions. However, in application

the choice of method for partitioning the sample into blocks has little effect on the

overall estimate f̂(x) for the majority of distribution types.

2.1.2 M-slope

The magic slope (M-slope) method is an adaptive algorithm that was initially

implemented to improve the SE which determines the block sizes by updating a given

block’s size based on a comparison of the M-slope parameter to the ratio of the

length of the block to the smallest distance between adjacent points within the block.

Equation 2.2 shows the relationship that is used for the comparison of α(k) with M-

slope for each block, where ∆xi ≡ xi+1 − xi is the difference between pairs of data

points in the block and the set of ∆x’s for the kth block is defined as {∆x}(k).

α(k) ≡
X

(k)
Right Block Boundary −X

(k)
Left Block Boundary

min{∆x}(k)
(2.2)

Before the minimum distance between data points in the kth block is computed a

few checks are made to ensure that the data is continuous, that there will not be a

difference between data points that would numerically result in a difference of zero,

and that there are not random pairs of data points exceedingly close due to random

sampling. If any of the checks fail a fuzzing procedure is carried out that adds random

noise to the dataset. M-slope is optimized through iterative methods to make sure

the block sizes are neither too large or small for the block sample under consideration.

The conditions for determining whether or not a block is too large or small, as well
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as, the initial starting M-slope value has been chosen through empirical investigation.

The ratio α(k) is related the expected slope variation of the estimate from a block’s

sample. Therefore M-slope is optimized to ensure estimates obtained for each block

have minimal slope variation across the block. The benefit of this method is that the

acceptable M-slope conditions already are well suited for general types of datasets

and may be further improved if necessary to increase the scope of distribution types

that the SE can readily handle.

2.2 Create secondary blocks

Once the initial bock sizes have been established a secondary set of blocks is created

to further improve f̂(x) and may be interpreted as creating block "layers" very similar

to how bricks are laid as seen in figure 2.3. The second level of blocks created overlaps

the boundaries of the first block level with the second level of block’s boundaries being

located at the mean position for the first level of blocks. Establishing the second level

of blocks helps ensure that a more accurate prediction of f̂(x) is constructed from the

stitching of f̂k(x) ∀ k by reducing the chance for individual blocks from over fitting

to random fluctuations within a block’s sample.

Figure 2.3: Visual interpretation for creating block layers for a sample of data.

2.3 Find f̂k(x) per block via NMEM estimator

After all of the block sizes have been established the estimate f̂(x) is computed

using the NMEM estimator created by Dr. Farmer and Dr. Jacobs. The C++
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code that performs NMEM estimation on a set of data has been developed to have

a number of useful features that a user may control. One which will be mentioned

is the return of a total score that is related to the quality of the estimate from

a scoring function defined in [1, 14]. This score has the potential to be used as

an acceptance criterion to decide whether f̂k(x) should be excepted, rejected, or

recalculated. The NMEM C++ program is quite fast in its default form and may be

further sped up by some degree from modification of user controlled input options.

It is advantageous to have a powerful estimation method that is also fast to apply

to each block, because the algorithm created in MATLAB for the SE is created

to be multithreaded. Thus, the SE can be nearly as fast as the NMEM estimator

while yielding consistent pdf estimates for common distributions and is able provide

pdf estimates for exotic distributions that the NMEM estimator (any many other

estimators) have difficulty with. Once the block sizes are defined the NMEM estimator

will run for all of the blocks in parallel, which can significantly speed up the time of

computation depending on the number of available processors.

2.3.1 Scoring function

The scoring function is a quasi-log-likelihood (LL) function for typical fluctuations

in sample uniform random data (SURD) and is rigorously defined defined in [1, 14].

The reason for the use of the qualifier "quasi" is because there are correlations built

into the function due sorting the sample.

maximizing the LL function leads to f̂(x) over fitting to the sample, therefore, a

target score is set that is in the range of expected f̂(x) outcomes but will not yield

an overfitted estimate. Figure 2.4 displays the pdf for the LL function, which shows

the typical fluctuations expected in SURD. The quality of the f̂(x) is related to how

well it exhibits SURD. Also, a point along the cdf of the LL function is defined as

the SURD coverage and relates how much of f̂(x) exhibits SURD. For example, if

f̂(x) received a score of -0.37 from the LL function, this would correspond to f̂(x)
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Figure 2.4: Pdf for Log-Likelihood function. This figure shows several threshold
values that have a chance of occuring and has come from [1].

exhibiting approximately 40% SURD coverage.

2.3.2 Scaled quantile residual

For a given sample of size N the data points x(i) for i ∈ [1, N ] are sorted and

transformed to U (i) using the cdf of f̂(x). Therefore, U (i) has a range of [0,1] and

U (i) < U (i+1) ∀ i ∈ [1, N ]. From order statistics the pdf of finding U (i) at position u

is,

pi(u|N) =
N !(1− u)N−iui−1

(N − i)!(i− 1)!
(2.3)
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And from this the mean and standard deviation are given by,

µi =
i

N + 1
σi =

√
µi(1− µi)

N + 2
(2.4)

Using µ the residuals for the transformed estimate f̂(x) are defined as U (i)−µ and can

be made sample size invariant by multiplying by
√
N + 2. Thus, the scaled quantile

residuals, ∆i, is defined by,

∆i =
√
N + 2(U (i) − µi) (2.5)

Using ∆i, SQR plots can be generated to evaluate the quality of the estimates f̂(x).

To extend the ability for SQR plots to represent the quality of f̂(x) a 99% confidence

interval is plotted along with ∆i using ±3.4
√
N + 1σi.

Examples of quantile-quantile (QQ) plots compared to SQR plots as the sample

size increases are displayed in figure 2.5. For small sample sizes both QQ and SQR

plots exhibit reasonable statistical resolution, however, as the sample size increases

from N = 256 in figure 2.5(a) up to N = 32, 768 in figure 2.5(d) the resolution of the

QQ plots diminishes, while the SQR plots maintain the same resolution. The reason

for this occurrence is due to the estimated pdf improving as the sample size increases,

therefore the residuals between the f̂(x) and f(x) will in general decreases in size.

The use of the phrase "in general" is to imply that a reasonable f̂(x) for f(x) must

be found, otherwise other features in the QQ plot will be present.

The SQR plots shown in figure 2.5 all are enveloped by a grey oval which represents

the boundaries for a 99% confidence interval that the sample comes from f̂(x). If the

SQR plotted line starts to fall outside of the 99% confidence interval then f̂(x) could

still be a reasonable estimate for the sample, but if much of the SQR plotted line falls

outside of the 99% confidence interval f̂(x) should rejected or taken with caution.
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Figure 2.5: QQ and SQR plots for a standard normal distribution with sample sizes
consisting of (a) 256 (b) 1,024 (c) 8,192 (d) 32,768.
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2.4 Stitch together f̂k(x) and f̂k+1(x)

The pdf estimates for each individual block are stitched together using a weighted

average method defined by equations 2.6-2.12 and an example of the method is shown

in section 2.6.4 figure 2.11. For each block the cumulative distribution function, F̂ (x),

is estimated and the pdf estimate of the overlap region, f̂s(x), for the two blocks is

calculated by using the cdf for each block to define weights for that block’s pdfs.

The variables u and v shown in equations 2.6 and 2.7 are created to ensure that

resulting weights, wk and wk+1, will take values in the range [0,1]. The variables a

and b defined in equations 2.8 and 2.9 are used to effect the rate of transition from

the left to the right block’s pdf estimate. The rate of transition maybe affected by

changing the exponent to equations 2.8 and 2.9, however, an optimal exponent of 2

has been heuristically determined. The final weights, wk and wk+1, are then defined

by equations 2.10 and 2.11 such that wk goes from 1 to 0 and wk+1 goes from 0 to 1

as x increases.

u =
F̂k(x)−min(F̂k(x))

max(F̂k(x))−min(F̂k(x)))
(2.6)

v =
F̂k+1(x)−min(F̂k+1(x))

max(F̂k+1(x))−min(F̂k+1(x)))
(2.7)

a = (1− u)2 (2.8)

b = v2 (2.9)

wk+1 =
b

a+ b
(2.10)

wk =
a

a+ b
(2.11)

f̂s(x) = wkf̂k(x) + wk+1f̂k+1(x) (2.12)
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Figure 2.6: Algorithm flow chart for stitching method.

2.5 Stitching method algorithm

Features of the SE have been discussed in the previous sections and are part of the

algorithm presented in the flow chart shown in figure 2.6. The pseudo code which

accompanies this flowchart is described below.

1. Read in univariant sample.

2. Define the weights for different target coverage using the LL scoring function.

3. Define the upper and lower boundaries for the first layer of blocks using initial

M-slope criteria.

4. Define the upper and lower boundaries for the second layer of blocks that are

staggering the first layer. The second layer’s block boundaries are the mean

position for the respective upper and lower boundaries of the first block layer.

5. Determine block size for all layers of blocks.

6. Test if the mean block size and the number of total blocks meet acceptable

criteria to ensure the blocks are not too small or too large. When the two

criteria are met move on to step 7, otherwise, adjust M-slope and return to step

3.
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7. Determine the length scale and shift for all blocks.

8. Partition the data according to the number of blocks. Center all the partitions

about the origin and scale the data using the information determined in step 7.

9. Run the NMEM estimator for each partition of data and each target threshold

in parallel.

10. Combine the output estimates for each partition using a weighted average of

the different target coverage values with the weights defined in step 2. Apply

scaling to the pdf estimates, as well as, position each pdf estimate to the block’s

original starting position.

11. Sync scaled and shifted partitioned estimates back into a single range.

12. Stitch the partitioned data in each block together using the weighted average

defined in equation 2.12.

2.6 Preliminary results

2.6.1 Synthetic test dataset

To determine the efficiency and accuracy of the SE over other ubiquitous pdf esti-

mators a standardized dataset of distributions for sample sizes from 29 to 220 along

with as many trials per sample as need has been created with the use of a MATLAB

script. Having the standard dataset that utilizes MATLAB’s random number genera-

tors will ensure a method for testing different estimators in an unbiased manor. Some

examples of the distributions that will be under consideration are displayed in figure

2.7. This standardized test data will not only be useful for this research endeavor but

will become a tool for any future work conducted in the BPMG’s lab. The data is

generated on call when needed through the MATLAB scripted in appendix C.2.

All random samples generated from mixture distributions were created using a

binomial sampling method for each distribution in the mixture. The widely known

binomial distribution for number of trials N and probability of success p is given by
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Figure 2.7: (a) Generalized extreme value distribution (b) Uniform distribution (c)
Generalized Pareto distribution (d) Mixture of Birnbaum-Saunders and stable distri-
butions (e) Mixture of two normal distributions (f) Mixture of three Stable distribu-
tions.

equation 2.13. A random sample from this distribution is defined by equation 2.14.

Therefore, form distributions in a mixture distribution, the number of samples to be

generated from each one is given by equations 2.15-2.17. These equations are used to

create the number of data points from each distribution sequentially; starting with

n1 and ending with nm.

B(N, p) =

(
N

x

)
px(1− p)(N−x) ; x = 0, 1, 2, ..., N (2.13)

Bs(N, p) ≡ random sample from B(N, p) (2.14)

n1 = Bs(N, p1) (2.15)

ni = Bs

(
N −

i−1∑
j=1

nj, pi

( m∑
j=i

pj

)−1
)

(2.16)

nm = N −
m−1∑
i=1

ni (2.17)
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This ensures proper random sampling from each distribution in the mixture. Other

methods using a uniform random sampling method were initially employed but were

less computationally efficient compared to using a binomial random sampling ap-

proach.

Figure 2.8: Visual representation of mixture sampling procedure for the first two
distributions in a mixture of five distributions.

For example, using equations 2.15-2.17 to create a mixture distribution of five with

probabilities p1, p2, p3, p4, and p5 for each distribution type yields,

n1 = Bs(N, p1) (2.18)

n2 = Bs

(
N − n1,

p2
p2 + p3 + p4 + p5

)
(2.19)

n3 = Bs

(
N − n1 − n2,

p3
p3 + p4 + p5

)
(2.20)

n4 = Bs

(
N − n1 − n2 − n3,

p4
p4 + p5

)
(2.21)

n5 = N − n1 − n2 − n3 − n4 (2.22)

The algorithmic approach used in the example creates starts by calculating n1 by ran-

domly sampling the binomial distribution for N and p1. Given n1 data points from N

are from distribution one, n2 data points are generated by random sampling the bino-

mial distribution for N−n1 available data points and the new conditional probability
p2

p2+p3+p4+p5
. This procedure is continued until n5, where n5 simply equals the number

of data points not allocated to any of the other distributions in the mixture. Figure
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2.8 shows a visual interpretation for what the mixture sampling procedure does for

the first two distributions. The number of data points allocated for a distribution is

removed from consideration and the probabilities for the other distributions are then

equal to the conditional probability given the remaining distributions.

2.6.2 Fixed number of points per block

Figure 2.9: Displays the pdf estimates, f̂(x), for different sample sizes for a Beta
distribution (a = 0.5, b = 0.5) and where the number of data points per block were
fixed.

A method initially explored for defining the block size was to require each block

to have the same number of data points, Nblock. Doing so could ensure that the user

assigned enough data points per block to gain a reasonable estimate. Fixing the

number of data points per block required the number of blocks to vary depending

on the sample size. As seen in Figure 2.9 this will led to a high variance in f̂(x)

compared to f(x), but an f̂(x) with little bias. Another disadvantage to fixing Nblock
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Figure 2.10: Displays the pdf estimates, f̂(x), for different sample sizes for a Beta
distribution (a = 0.5, b = 0.5) and where the number of blocks were fixed.

is that for sets of data where the sample sizes vary greatly over the set an optimal

Nblock may only work well over a subset of the entire set. Some Nblock may work for

large samples, but will be incompatible for small samples, while the converse leads

to an f̂(x) with high variance. For these reasons this method of block definition was

eliminated.

2.6.3 Fixed number of blocks

Another approach to defining the block sizes was to require the number of blocks to

be fixed opposed to the number of data points in each block. This approach allowed

the user to define the total number of blocks by requiring that a certain percentage of

the total sample falls into each block. Figure 2.10 shows f̂(x) for a beta distribution
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Figure 2.11: (a) Shows the cdf etimates, F̂ (x), for the nth and n+1 block’s overlap
region. (b) Displays the pdf estimates, f̂(x), for the adjacent blocks, as well as, the
weighted averaged estimate labeled stitched pdf.

for varying sample sizes. Fixing the number of blocks by scaling the number of

data points reduces the variance of the f̂(x). This was to be expected, because as the

sample size increases the NMEM estimator is able to glean what the important trends

in the data are verse unimportant noise. However, this method of block definition has

difficulties with samples that contain heavy tails or divergences. This is caused from

the density of the blocks data being relatively sparse in the one region while dense in

another, which can lead to the NMEM having difficulties computing the pdf estimate

for the block. For this reason, the block definition method was eliminated.
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2.6.4 Weighted average using CDF

The current stitching method uses a weighted average with the cdf, F̂ (x), for the

adjacent blocks being the weights. Figure 2.11 displays an example of F̂ (x) along

with f̂(x) for two adjacent blocks. Using the cdf as weights to generated the estimate,

f̂s(x), in the blocks overlap region ensures that the stitched curved will still exhibit

the behavior for the underlying data.

Another method previously explored for generating f̂s(x) was to us a 3rd-order

polynomial fit between f̂k(x) and f̂k+1(x). This was achieved by taking the third

order polynomial, f̂s(x) = c4x
3 + c3x

2 + c2x+ c1 and requiring the following boundary

conditions,

f̂k(xRight) = f̂k+1(xRight) (2.23)

f̂k(xLeft) = f̂k+1(xLeft) (2.24)

df̂k(xRight)

dx
=
df̂k+1(xRight)

dx
(2.25)

df̂k(xLeft)

dx
=
df̂k+1(xLeft)

dx
(2.26)

(2.27)

to be used to solve for the coefficients c4, c3, c2, c1. Where xLeft and xRight are the

left and right most x-coordinates for the overlap region under consideration. Using

the polynomial fit to stitch the adjacent pdf estimates together yielded similar results

to the weighted average method previously discussed and for this reason was not

considered further, although in remains a viable alternative.

2.6.5 Blacklist for f̂k(x)

For the class of distributions with heavy tails the NMEM has shown to have a

high likelihood to fail for the exterior blocks on the heavy tail. For this reason, a

blacklist of the failed NMEM estimates, f̂k(x), is created. These blacklisted blocks are
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initially removed. The pdf estimate is attempted for a sub sample for the blacklisted

blocks. If successful more of the original blacklisted sample may be added and another

pdf estimate attempt made. This is an iterative process that allows heavy tails of

distributions to be better estimated. Figure 2.12(a) shows an example of how a failed

block estimate leads to systematic error in the SQR plots and figure 2.12(b) shows

how the blacklisting routine is able to remove the systematic error. However, after

further research into another method of block definition, called R-ratio, the need to

have the blacklisting routine was potentially unnecessary.

Figure 2.12: Figure (a) shows an example of a failed block estimate for a heavy
tailed stable distribution. This leads to visible systematic error in the SQR plot (b)
blacklisted routine is implemented for a mixture distribution that is more prone to
yield failed block estimates than the single stable distribtuion. The SQR plot shows
that the systematic error no longer exists, because there are no longer any failed block
estimates.



CHAPTER 3: RESEARCH METHODOLOGY

3.1 Optimized branching tree

Another adaptive approach for determining the appropriate size of each block, as

well as, the total number of blocks has been termed the optimized branching tree

method. The adaptive algorithm initially evaluates the variation in the density of the

sample’s data points then recursively makes partition decisions based on a comparison

of the parameter ξ with the sample size dependent threshold parameter Γ(N) which

creates new blocks. Γ(N) and ξ are defined in equations 3.1 and 3.2, where c0 is a

scaling coefficient and p is an exponential coefficient that are heuristically determined

to pick the appropriate Γ(N) for general probability density estimation applications.

B represents the number of data points per block and R, referred to as R-ratio, is a

parameter that represents the variation in the density of the data points in the block.

Γ(N) = c0N
p0 (3.1)

ξ =
Bp1 ∗Rp2

Np2
(3.2)

Figure 3.1: R-ratio for a block is calculated by taking the ratio of the average distances
between adjacent data points that lie within the windows, w, shown in yellow.

To calculate R-ratio a block’s data is initially sorted then the difference of all

adjacent pairs of data points are calculated. After, the set of ∆x values are sorted



27

Table 3.1: Table of the parameter set used to generated the SE pdf estimates.

c0 c1 p0 p1 p2 p3 p4

8 0.125 0.25 1 0.5 1 0.5

too. As shown in equations 3.4 and 3.5, ∆xmin is the mean density for the w(N)

most dense pairs of data points in the block’s sample and conversely ∆xmax is the

mean density for the w(N) least dense pairs of data points in the block’s sample.

Figure 3.1 shows which points are being selected for a given block, B, and w. w(N)

is a sample size dependent parameter that is utilized to select the number of values

from the set of ∆x to use when determining ∆xmin and ∆xmax. This parameter is

calculated using equation 3.3 as a rounded up portion of the total sample size, N ,

where c1 is a percentage coefficient. The R-ratio is defined as the ratio of ∆xmin to

∆xmax as shown in equation 3.6. The R-ratio coefficient will approach 1 the more

uniform the density of the data points in the block and otherwise will increase the less

uniform the density of the data points in the block. The parameters from equations

3.1, 3.2, 3.3 are displayed in table 3.1.

w(N) = dc1Np4e (3.3)

∆xmin = mean{∆xk for k ∈ [1, w]} (3.4)

∆xmax = mean{∆xk for k ∈ [N − w + 1, N ]} (3.5)

R =
∆xmax

∆xmin

(3.6)

The optimized branching tree algorithm starts by calculating ξ for the entire sample

and if ξ < Γ then the NMEM is applied to the entire sample without creating blocks,

otherwise a random partition, n0, is picked and ξ is calculated for the two blocks

created by the partitioning. Next the difference between the ξ parameter for the two
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Figure 3.2: Example of branching tree algorithm. n0 is initially chosen then ∆ξ is
minimized. More levels are created, and the procedure is repeated until all ξ are less
than Γ.

blocks,

∆ξ0 = ξ1 − ξ0 (3.7)

is minimized to obtain two blocks that exhibit approximately the same ξ, where ξ0 is

the first level and branch of the tree, while ξ1 is the first level and second branch of

the tree. An example of how the optimized branching algorithm progresses is shown

in figure 3.2.

For every level of the tree ξ is compared to Γ and if ξ < Γ a new branch in the

tree is created, which creates two new blocks. ξ is product of, B, the number of data

points per block with, R, a ratio that represents a measure of how uniform the density

of the data is for the data points of each partition.

The approach aims to create blocks with subsamples that exhibit a maximum level

of uniform density. By requiring the block to contain nearly uniform density data

ensures that the estimate made for each block is computationally easier for the NMEM
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to obtain and less prone to an inferior estimate for difficult samples.

3.2 Difference error analysis

The mean difference is calculated for every data point xn from all estimates gained

from M trials using equation 3.8. This gives a measure of where on average the stitch

estimator is under or over estimating the estimate pdfs of the sample.

ME(xn) =
1

M

M∑
i=1

(f(xn)− f̂(xn)i) (3.8)

Knowing the mean error over the estimate pdfs is quite useful information, however,

if there are large variations in the estimated pdfs they may counter balance to yield

a low mean error. Therefore, the standard deviation of the MAE is computed by

equation 3.9 along with the maximum and minimum error for every point xn that is

estimated over the M trials.

σ(xn) =

√√√√√√ M∑
i=1

((
f(xn)− f̂(xn)i

)
−ME(xn)i

)2

M − 1
(3.9)



CHAPTER 4: RESULTS

4.1 Optimized branching tree

The block definition for a beta distribution (a = 2 and b = 0.5) using the optimized

branching tree (OBT) method is shown in figure 4.1. Figure 4.1(a) shows the value

the natural log of ξ for all blocks per level. Therefore, when ln(ξ) > ln(T ) a new level

is created with two new branches, otherwise the block exhibits acceptable uniformly

dense data. The zeroth level represents the ξ value for the total sample which is

shown in figure 4.1(b) as the grey circles with black edges. The first level in figure

4.1(a) shows two black dots, which are the two values of ξ calculated for the blocks

created by the black partition dot of level 1 in figure 4.1(b).

Figure 4.1: (a) Shows the ξ = BR per block for any given level along with the
threshold cut off for the given sample size (b) displays the distribution of the data
and the block distribution for a beta distribution.

Figure 4.1(b) shows how the blocks are distributed based upon the distribution

of the data. More blocks are created towards the region of data that has a higher

density to try and maximize how uniform the density is across all of the blocks. This
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is done by making the blocks smaller in size, which is shown to be the case in figure

4.2(a).

Figure 4.2: (a) Shows the length of each block (b) Shows the number of data points
per block for the beta distribution in figure 4.3.

The number of data points per block is shown in figure 4.2(b), which for the beta

distribution trends to increases towards the region with higher density. However, due

to the random fluctuations in the sample this trend is only approximate, because

there can exist clusters of data points in dense or sparse regions.

Figure 4.3(c) shows the pdf estimate obtained from the block distribution shown in

figure 4.1(b) and figure 4.2. The OBT block definition method leads to an excellent

pdf estimate with the pdf estimates per block shown in figure 4.3(b). However, from

the SQR plot in figure 4.3(a) the overall pdf estimate is starting to be over fitted to

the sample.

Another example of how the OBT method is able to partition the sample appro-

priately is shown in figure 4.4(a) and (b) for a contaminated normal distribution.

The distribution of the block sizes is displayed in figure 4.5(a) and shows that the

blocks decrease in length as the density increases. Although the block length may

be decreasing, in general, the block size increases when moving from the sparse tails

towards the dense center of the sample as seen in figure 4.5(b).
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Figure 4.3: (a) The SQR plot for the beta distribution (b) Displays the estimates per
block prior to stitching (c) Shows f̂(x) for the beta distribution.

Figure 4.4: (a) Shows the ξ = BR per block for any given level along with the
threshold cut off for the given sample size (b) displays the distribution of the data
and the block distribution for a contaminated normal distribution.

The overall pdf estimate for the sample along with the pdf estimates per block are

shown in figure 4.6(c) and (b) and show the OBT block definition method calculates

a block distribution that produces an excellent pdf estimate for the contaminated
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Figure 4.5: (a) Shows the length of each block (b) Shows the number of data points
per block for the beta distribution in figure 4.6.

normal distribution sample. The SQR plot in figure 4.6(a) shows that the overall pdf

estimate is an acceptable estimate.

Figure 4.6: (a) The SQR plot for the beta distribution (b) Displays the estimates per
block prior to stitching (c) Shows f̂(x) for the contaminated normal distribution.

The methods for minimizing ∆ξ have all consisted of efficiently finding a global

minimum for ∆ξ. When evaluating ξ for a block there are two extremes, either when



34

ξ is calculated for the entire block or calculated for the smallest allowable potential

new block to be created. When ξ is calculated for the entire block both B and R

will be maximum, but when ξ is calculated for the smallest allowable potential new

block, then B will be its minimum value and R will be less than that for the entire

block. Therefore, as ξ0 for one potentially new block is decreasing in value the ξ1 for

the other potentially new block will be increasing, which will lead to a point where

ξ0 = ξ1 or ∆ξ = 0. Figure4.7 shows an example of the behavior for R, B, and ξ.

Figure 4.7: (a) The distribution of ∆ξ for the partition made in level one when the
partition varies from 1 to N. ξ0 (black dashed line) and ξ1 (grey dashed line) (b) The
distribution of R as the partition sweeps over the range of the sample. R0 (black
dashed line) and R1 (grey dashed line) (c) The distribution of B as the partition
sweeps of the range of the sample. B0 (black dashed line) and B1 (grey dashed line)
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4.1.1 maximum block size

Figure 4.8: (a) The block distribution without limiting the maximum block size (b)
The block distribution with limiting the maximum block size to 20,000.

After developing the OBT method for determining the optimum block distribution

and heuristically determining a parameter set that worked for general distribution

cases, it was observed that the total number of blocks scaled as the sample size, but

perhaps not as quickly as desired. Future work will see if this can be mitigated us-

ing another parameter set. It could be that the current parameter set is optimal for

maintaining uniformity in the density of data within each block even when the sample

sizes becomes very large, however, even when this is true it becomes more compu-

tationally costly to generate pdf estimates per block. Also, if a block has roughly

uniform density across the block for a very large Nblock, it is reasonable to be able

to split the block into smaller blocks that still contain adequate information to make

good pdf estimates. For these reasons, there was motivation for the development of a

script routine that could control the maximum block size to maintain computational

efficiency for very large samples. Figure 4.8(a) shows the block distribution for a

sample with 262,144 data points generated from a beta distribution. Figure 4.8(b)

shows the new block distribution for the sample after the maximum block size limit
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of 20,000 was enforced. This method will be later shown to drastically improve the

computation cost the SE requires for large samples.

4.1.2 Average behavior

To evaluate how consistent the SE is when determine the pdf estimate for a specific

sized sample, 1000 trials were generated for a sample size of 512 data points for a

normal bimodal distribution. Figure 4.9, shows the pdf estimates for all 1000 trial

samples and the average overall 1000 trials. There are large fluctuations over the 1000

trials, but all estimates show to capture the features of the data well.

Figure 4.9: The pdf estimates from 1000 trials of samples of size 512 data points and
the average across all trials.

Figure 4.10(a) shows the distribution for the ME over the 1000 trials along the

with standard deviation, minimum, and maximum error for all pdf points estimated.
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This style of figure has been useful for evaluating where the SE is doing well or not

for various distributions. To confirm that the pdf estimates for 1000 trials were all

acceptable, the maximum and minimum SQR points were checked to ensure that they

all stay with in the 99% confidence interval. Figure 4.10(b) shows that for the 1000

trials all of the SQR plots stayed within the 99% confidence interval.

Figure 4.10: (a) The mean error across the distribution for every estimated data point,
the standard deviation of the error, and the maximum/minimum error for 1000 trials
(b) The maximum/minimum sqr fluctuations across all 1000 trials.

4.1.3 sub-sampling sampling

sub-sampling sampling consist of starting with a sample and then generating new

samples from the original. There are many specific detail differences when one talks

of sub-sampling sampling, but in this work the sub-sampling sampling procedure con-

sist of generating subsamples without replacement that are smaller than the original

sample. Then the pdf estimate is determined for each subsample and averaged to give

the final pdf estimate. There were two motivations for implementing this method 1)

the quality of the pdf estimate could be improved by averaging over many random

fluctuations in pdf estimates that would arise and 2) the random fluctuations in the

pdf estimates may reduce over fitting. Over fitting is characterized by the SQR plots

having small fluctuations centered around zero.
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Figure 4.11: f̂(x) determined from averaging 70 pdf estimates from subsamples equal
to 60% in size from the original sample of 512 data points. (a) The pdf estimates
per subsample and the average pdf estimate (b) The SQR plot for the average pdf
estimate.

Figure 4.11(a) displays 70 pdf estimates calculated from subsamples that were 60%

the size of the original sample. The pdf estimate for the sample of 512 data points

from the uniform distribution shows a good pdf estimate for the actual distribution.

Figure 4.11(b) further confirms that the pdf estimate is acceptable for the original

sample.

Figure 4.12(a) displays the same sub-sampling sampling procedure but from a sam-

ple of size 65,636 data points. The pdf estimates from the boot strap samples all give

excellent pdf estimates and prevents over fitting as seen through the random fluctu-

ations in the SQR plots from figure 4.12(b).

4.2 Estimator method comparison

In the figures that follow the SE methods is compared to the NMEM estimator

along with several popular pdf estimators commonly used in the programming lan-

guage R. Packages available in R were used for the qualitative comparison of the SE

due to the popularity of the language as well as its accessibility. For the comparison of

the five pdf estimators used a range of distributions were evaluated. Some of the illu-
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Figure 4.12: f̂(x) determined from averaging 70 pdf estimates from subsamples equal
to 60% in size from the original sample of 65, 536 data points. (a) The pdf estimates
per subsample and the averge pdf estimate (b) The SQR plot for the average pdf
estimate.

minating cases will be immediately discuss, however, other distribution comparisons

are available in appendix B.

The five pdf estimators that are evaluated below are the: SE, NMEM estimator,

density estimator built into R, bkde estimator in the KernSmooth R package, and

kde estimator in the ks R package. The figures showing f̂(x) calculated by the

bkde package show two estimates with a gridsize = 406, but one with a bandwidth

= 0.05 (blue line) and the other with a bandwidth = 0.25 (black line). Similarly,

the figures showing f̂(x) calculated by the density estimator show two estimates,

one using Sheather-Jones bandwidth selection [15] (black line) and the other using

the Silverman’s "rule of thumb" [16] for bandwidth selection (blue line). The kde

estimator in the ks package uses a data driven bandwidth selector developed [17].

The true pdf distribution is displayed as the grey line for reference.

The two bandwidth sizes for the bkde estimator were chosen to show how KDE

performs at resolving different features of the sample, while the bandwidth selection

methods used for the density estimator were picked to show how well KDE performs
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without the need for human intervention. As expected, the figures 4.13-B.1 show that

in general a larger bandwidth has a hard time resolving fine features in the sample, but

is less prone to over fitting. Also, a smaller bandwidth will resolve the fine features,

but will over fit and run the risk of resolving erroneous features in the sample. The two

data driven bandwidth selection methods used for the density estimator show overall

better pdf estimates when compared to just setting a fixed bandwidth for many

distributions. This was expected, because the two methods use either the standard

deviation or the interquartile range of the sample to determine the bandwidth. In

general, the Sheather-Jones bandwidth selection method out preforms Silverman’s

"rule of thumb" and is able to better resolve features in the sample across many

distribution types. The bandwidth selection method employed in the kde estimator

produces pdf estimates that in general are somewhere in between the estimates gained

from the Silverman’s "rule of thumb" and the Sheather-Jones method.

Both the SE and the NEMEM in figure 4.13 (c) and (d) show an excellent estimate

of the beta distribution for only 1024 data points, while the KDE methods have

difficulty with the divergences. This is due to the selection of the normal distribution

as the kernel for these methods. The KDE could be improved with the use of another

kernel, but this would require a priori knowledge about the sample.

Similarly to figure 4.13, figure 4.15(c) shows an excellent estimate, however, the

NMEM estimator shows wiggles near the divergence, which comes from the use of

many Lagrange multipliers to try and resolve the divergence. The NMEM can do

better, but the number of Lagrange multipliers is truncated to limit the computational

cost. There is no need for this truncation with the use of the NMEM estimator in

the SE method, because no block is too large for this to be a problem.

The SE in figure 4.16(c) does a great job of resolving the features in the sample,

while being able to handle the extreme outliers that come from the use of the stable

distribution; these can typically be on the order of 1015 and larger. The NMEM in
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Figure 4.13: f̂(x) for a sample of size N = 1, 024 from a beta distribution with
the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density
estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

4.16(d) returns a great pdf estimate, but at a slightly lesser resolution compared to

the SE. In figures 4.16(b) and (e) the pdf estimate completely fails to resolve the

sample’s features. This is due to the stable distribution theoretically having infinite

variance and an extremely large variance numerically. This causes the data driven
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Figure 4.14: f̂(x) for a sample of size N = 1, 024 from a beta distribution with
the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density
estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

bandwidth selection methods to improperly set the bandwidths to be much too large.

On the other hand, the fixed bandwidths in 4.16(a) return pdf estimates that resolve

the features well.

Similar to the case in figure 4.16, the generalized extreme value distribution shown
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Figure 4.15: f̂(x) for a sample of sizeN = 1, 024 from a mixture model of a Birnbaum-
Saunders and stable distribution with the parameters given in the code in appendix
C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d)
NMEM estimator from R (e) kde estimator. Both the density estimator and the kde
estimator fail to return adequate pdf estimates, and sometimes fail completely as seen
for the kde estimator.

in figure 4.19 leads to the same failures for the data driven bandwidth selection

methods used in KDE. Both the SE and the NMEM estimator return excellent results,
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Figure 4.16: f̂(x) for a sample of size N = 1, 024 from a generalized extreme value
distribution with the parameters given in the code in appendix C.2. (a) bkde estima-
tor. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R
(e) kde estimator. Both the density estimator and the kde estimator fail to return
adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.

and the fixed bandwidth estimator does the same for a larger bandwidth. however,

the smaller bandwidth introduces high variance into the estimate.

The KDE estimators have the same qualitative behavior as in the cases shown in
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Figure 4.17: f̂(x) for a sample of size N = 1, 024 from a stable distribution with the
parameters given in the code in appendix C.2 under the name "Stable3". (a) bkde
estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator
from R (e) kde estimator. Both the density estimator and the kde estimator fail
to return adequate pdf estimates, and sometimes fail completely as seen for the kde
estimator.

figure 4.16 and figure 4.19 for the case shown in figure 4.17. This is again from the large

variance of the the samples created from these distributions. With the mixture model
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of three stable distributions the variance of the sample numerically is significantly

larger that the previous two cases. This causes the NMEM estimator’s pdf estimate

shown in figure 4.17(d) to be heavily smoothed. The smoothing arises from the need

of many Lagrange multipliers to force a smooth (and nearly zero) estimate far out onto

the tails of the distribution, which makes resolving the sharp center features difficult.

The NMEM can be improved if the maximum number of Lagrange multipliers was

increased, but this would increase computation cost. The SE estimator shown in

figure 4.17(c) does a great job of resolving the features, however, does have a slight

difficulty resolving the edge modes as being identical to one another.

In figure B.7, the KDE estimators do a great job of resolving the majority of

the features, however, have difficulty with the edges due to the use of the normal

distribution kernel. Also, as expected the smaller fixed bandwidth KDE estimator

has high variance in the pdf estimate. The SE does a great job of capturing the sharp

edges of the uniform distribution, however, can pick up on random fluctuations in the

sample. The NMEM estimator returns an excellent pdf estimate for only 1024 data

points.

As to be expected, in figure 4.19(a) the large bandwidth has difficulty resolving

the sharp edges of the uniform distributions, while the small bandwidth resolves the

edges, but high variance. The data driven bandwidth selection methods preform

quite well, except for Silverman’s "rule of thumb". This is due to the bandwidth in

that method being depended solely on the sample size and standard deviation of the

sample. In figure 4.19(d) the NMEM estimator shows to have difficulty consistently

resolving all of the features as being uniform compared to one another. The SE in

4.19(c) also exhibits this difficulty but to a lesser degree. However, as sample size

increases the features of the data are able to be nicely resolved as seen in figure 4.20.
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Figure 4.18: f̂(x) for a sample of size N = 1, 024 from a uniform distribution with
the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density
estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

4.3 Computation time

To evaluate the efficiency of the SE method pdf estimates for the six distributions

in figure 4.21 were obtained for a variety of sample sizes. The time of computation was

calculated using the tic/toc and cputime functions. The cputime function returns the
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Figure 4.19: f̂(x) for a sample of size N = 1, 024 from a mixture model of six
uniform distributions with the parameters given in the code in appendix C.2. (a) bkde
estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator
from R (e) kde estimator.

elapsed CPU time which sums across all threads, while the tic/toc function returns the

wall-clock time. For the computational efficiency analysis of the SE method 4 threads

were used and the background processes for the machine were kept at a minimum.

The SE method may be sped up significantly from the analysis below depending on
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Figure 4.20: f̂(x) for a sample of size N = 65, 536 from a mixture model of six
uniform distributions with the parameters given in the code in appendix C.2 under
the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created
in MATLAB (d) NMEM estimator from R (e) kde estimator.

the userâs available computer hardware and ability to add more threads to compute

pdf estimates per block.

The computation time returned for the tic/toc function in figure 4.22(b) in general

shows a linear behavior on the log-log plot, however, the wall-clock times for pdf
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Figure 4.21: Six distributions used for the computational efficiency of the SE method.
(a) Bimodal distribution (b) Beta distribution a = 2, b = 0.5 (c) Beta distribution a =
0.5, b = 1.5 (d) Trimodal normal distribution (e) Contaminated normal distribution
(f) Birnbaum Saunders distribution.

estimates from the two beta distributions have a noticeably larger slope. This increase

in wall-clock time for these two distributions is to be expected. The reason for the

larger slope is caused by the number of blocks being too small for the size of the sample

and the difficulty of the distributions. The divergences in the two beta distributions

are computational expensive for the NMEM, because it requires many more Lagrange

multipliers to estimate the divergent regions.

The computation times returned for the cputime function in figure 4.22(a) ap-

proaches the same slope of approximately 3
4
as the sample size increases on the log-log

plot. The asymptotic behavior for the CPU times seen in figure 4.22(a) is from the

NMEM approaching a linear time dependence to N for large samples, but the SE

doesn’t approach the N time dependence as rapidly as the NMEM estimator; this is

due to the partitioning of the sample into blocks. This is confirmed in figures 4.24(a)

and 4.23(a) which exhibit the same asymptotic behavior even though the overall times

decrease compared to 4.22(a) as well as the rate at which the SE approaches a linear
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Figure 4.22: The computational times for the SE method which uses the random
search minimization code to minimize ∆ξ. (a) The CPU times (b) The wall-clock
times for sample sizes 29 up to 220.

Figure 4.23: The computational times for the SE method which uses the golden ratio
bifurcation search minimization code to minimize ∆ξ and with maximum block sizes
of 100, 000. (a) The CPU times (b) The wall-clock times for sample sizes 29 up to
221.

time dependence to N.

While NMEM can handle large block sizes and the results are good, forcing a

maximum block size enables even faster estimates from the NMEM. Figure 4.23(a)

and (b) shows that by requiring all blocks to not exceed 100, 000 data points that the

wall-clock and CPU times can be reduced. To further improve the over wall-clock
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Figure 4.24: The computational times for the SE method which uses the golden ratio
bifurcation search minimization code to minimize ∆ξ and with maximum block sizes
of 50, 000. (a) The CPU times (b) The wall-clock times for sample sizes 29 up to 220.

and CPU times of the SE for all distributions, the maximum block size was limited

to 50, 000, which is shown in figure 4.24(a). Doing this substantially improved the

efficiency of the SE.

Overall, the SE method shows to be computationally efficient. This conclusion is

reach since in the cases discussed so far all of the log-log slopes for the (b) figures have

a slope less than 1
2
for the range of sample sizes explored. This means the wall-clock

time scales as a power less than 1
2
compared to sample size. This time dependent

relationship is due to the NMEM being less than linearly dependent to N for small

samples. If larger samples then 220 were explored it would be expected that the wall-

clock times would approach a linear dependence to N. Similarly, in the large sample

region the slope of the (a) figures are close to one, which means the CPU time scales

approximately linearly with sample size, which is caused from the underlying NMEM

estimator.



CHAPTER 5: CONCLUSIONS

The SE method has shown to be a robust nonparametric pdf estimator which has

improved upon the work that developed the NMEM. Also, the SE has shown to be

a good estimator for high throughput applications for both small and large sample

sizes and is largely limited by the available number of processors one has to run a

parallel job. The use of the R-ratio method for determining the appropriate number of

blocks and block sizes has shown to be an elegant data driven approach. In addition,

the sub-sampling sampling method for obtaining pdf estimates yields estimates that

do not over fit to the sample under consideration, which has been confirmed by the

random fluctuations in the SQR plots for small or large samples. Lastly, the SE can

consistently calculate good pdf estimates over many trials of the same sample size,

which was confirmed by evaluating the average ME and SQR range for 1000 trials of

a sample of 512 data points.

In the future, the SE’s code will be improved to perform better with memory

usage and ensure the fasted computation operations are being used. The SE can

be further improved by writing the algorithm in a programming language that has

better multithreading capabilities, such as, C++ or Python. Also, the heuristically

determined parameters used to define the threshold Γ will be studied more extensively

by running batches of the SE code varying one parameter at a time. This will give a

deep insight into the effect each parameter has of the quality of the pdf estimates.
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APPENDIX A: Further stitching estimator examples

The figures that follow are further examples of the SE estimator. These figures were

omitted from the body of the thesis, but contain useful information about capabilities

of the SE. The examples that follow do not employ the subsampling procedure.

Figure A.1: Estimate for a beta distribution with a = 0.5 and b = 0.5.
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Figure A.2: Estimate for a beta distribution with a = 1.5 and b = 0.5.

Figure A.3: Estimate for a beta distribution with a = 2 and b = 0.5.
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Figure A.4: Estimate for a bimodal normal distribution.

Figure A.5: Estimate for a Birnbaum Saunders distribution.
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Figure A.6: Estimate for a contaminated normal distribution.

Figure A.7: Estimate for a mixture model created from uniform distributions.



60

Figure A.8: Estimate for a mixture model created from uniform distributions.

Figure A.9: Estimate for a trimodal normal distribution.



61

APPENDIX B: Further pdf estimator comparisons

The figures that follow are further comparisons of the SE estimator to KDE meth-

ods and the NMEM estimator. These figures were omitted from the body of the thesis

but contain useful information about all of the pdf estimators.
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Figure B.1: f̂(x) for a sample of size N = 1, 024 from a mixture model of three
uniform distributions with the parameters given in the code in appendix C.2 under
the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created
in MATLAB (d) NMEM estimator from R (e) kde estimator.
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Figure B.2: f̂(x) for a sample of size N = 1, 024 from a stable distribution with
the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density
estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
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Figure B.3: f̂(x) for a sample of size N = 1, 024 from a bimodal normal distribution
with the parameters given in the code in appendix C.2. (a) bkde estimator. (b)
Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde
estimator.
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Figure B.4: f̂(x) for a sample of size N = 1, 024 from a trimodal normal distribution
with the parameters given in the code in appendix C.2. (a) bkde estimator. (b)
Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde
estimator.
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Figure B.5: f̂(x) for a sample of size N = 1, 024 from a t location-Scale distribution
with the parameters given in the code in appendix C.2. (a) bkde estimator. (b)
Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde
estimator.
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Figure B.6: f̂(x) for a sample of size N = 1, 024 from a stable distribution with the
parameters given in the code in appendix C.2 under the name "Stable2". (a) bkde
estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator
from R (e) kde estimator.
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Figure B.7: f̂(x) for a sample of size N = 1, 024 from a contaminated normal distri-
bution with the parameters given in the code in appendix C.2. (a) bkde estimator.
(b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e)
kde estimator.
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Figure B.8: f̂(x) for a sample of sizeN = 65, 536 from a mixture model of a Birnbaum-
Saunders and stable distribution with the parameters given in the code in appendix
C.2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c)
SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
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APPENDIX C: MATLAB code

C.1 Optimized branching tree

C.1.1 Rtree.m code

1 close all; clear all; clc;
2 % Initialize variables
3 distributionVector = [" BirnbaumSaunders ","Bimodal -Normal...

","Stable "];
4 distributionVector = ["Normal -Contaminated ","Square -...

periodic "];
5
6 maxSamplesExp = 18; %<-maximum exponent to ...

generate samples
7 minSamplesExp = 18; %<-minimum exponent to ...

generate samples
8 dataTypeflag = true; %<-true/false integer powers...

of
9 % 2/real powers of 2

10 ntrials = 1; %<-trials to run to generate ...

heuristics
11 % for programs
12 step = 8; %<-control synthetic random ...

samples to
13 % skip being created
14 lowLim0 = 0; %<-lower limit to plot
15 upLim0 = 10; %<-upper limit to plot
16 saveImage = false; %<-true/false save figures ...

yes/no
17
18 treeType = false; %<- true/false ballanced/...

unbalanced
19
20 % create functions
21 br = @brProduct;
22 r = @getRation;
23
24 for j = 1: length(distributionVector)
25
26 % Create vector of samples labels
27 sampleVec = ...
28 samplesVector(minSamplesExp ,maxSamplesExp ,...

dataTypeflag ,step);
29
30 for i = 1: ntrials
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31 for k = 1: length(sampleVec)
32
33 Ns = sampleVec(k);
34
35 % parameters vector --
36 % p = [b, r, n, n-for -T, T-scale , window , ...

maximum levels ];
37 % BR product function parameters ---
38 % br = @(b,r,p,n) (b^p(1)*r^p(2))/n^p(3);
39 %-
40 % p = [1 ,0.5 ,1 ,0.5 ,0.005 , ceil (0.1*Ns) ,6];
41 % p = [1,0.5,1,0.5,0.25 , ceil (0.1* Ns) ,6];
42 % p = [1,0.5,1,0.5,4, ceil (0.125* Ns^0.5) ,20];
43 % % % % % % % % what has been used for all ...

figures
44 % % % % % % % p = [1,0.5,1,0.25,8, ceil (0.125*...

Ns^0.5) ,20];
45 p = [1,0.5,1,0.25,8, ceil (0.125* Ns^0.5) ,20];
46 % % % % p = [1,0.5,1,0.25,8, ceil (0.0125* Ns)...

,7];
47 % p = [1,1,1,0.25,8,ceil (0.125* Ns^0.5) ,20];
48 % good p vectors
49 % p = [1 ,1 ,0 ,1.5 ,2.5 ,100 ,100];
50 % p = [1 ,1 ,0 ,1.5 ,2.5 ,150 ,100];
51 % p = [1 ,1 ,0 ,1.5 ,2.5 ,200 ,100];
52 % p = [1,0.5,1,0.5,0.05 , ceil (0.4* Ns) ,100];
53 % p = [1,0.5,1,0.5,0.5, ceil (0.1*Ns) ,6];
54 % create T threshold -
55 T = p(5)*Ns^p(4);
56 % T = p(5)*Log(Ns+1)^p(4);
57 % T = p(5)*log(Ns+1);
58 % window parameter for top/bottom points to ...

average ------------
59 window = p(6);
60 % maximum number of potential levels/splits...

------
61 maxLevel = p(7);
62 % minimum blocksize --
63 binmin = ceil (2* window);
64
65 % file name based on data generation code
66 filename = sprintf(['D_', char(...

distributionVector(j)) ,...
67 '_T_','%d', '_S_','%d'],i, Ns);
68
69 % windows
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70 filepath = ['D_',char(distributionVector(j))...
,'\',...

71 char(filename),'.txt ']
72 % linux
73 % filepath = ['D_',char(distributionVector(j))...

,'/',...
74 % char(filename),'.txt '];
75
76 % sample to be partitioned
77 sample = importdata(filepath);
78
79 % special cases for plot window limits
80 if distributionVector(j) == "Beta -a0p5-b1p5" ...

||...
81 distributionVector(j) == "Beta -a2-b0p...

5" ||...
82 distributionVector(j) == "Beta -a0p5-b0...

p5"
83 lowLim = 0;
84 upLim = 1;
85 else
86 lowLim = lowLim 0;
87 upLim = upLim0;
88 end
89
90
91 if binmin > Ns
92 error('sample size too small for window ...

size ')
93 end
94
95 % display useful variable values
96 disp(['Ns: ', num2str(Ns)])
97 disp(['T: ', num2str(T)])
98 disp(['window: ', num2str(window)])
99 disp(['binmin: ', num2str(binmin)])

100 disp(' ')
101
102 tic
103 % track number of branches per level
104 nbranch = 1;
105 % set end points of sample length as partition...

left (pL) and
106 % partion right (pR)
107 pL = 1;
108 pR = Ns;
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109 % initialize vector to track all created ...

partitions
110 pList = [pL pR];
111 % track every attempted partition for all ...

levels
112 plevel = {{[1;Ns]}};
113 % initialize array to track newly created ...

partitions
114 % for plotting purposes
115 pdiff = {[1;Ns]};
116
117 % initial exit flag
118 exit = false;
119
120 % calcualte inital BR of intire sample
121 B0 = Ns;
122 R0 = r(sample ,window);
123 BR0 = br(B0,R0,p,Ns);
124 % clear array to hold all BR values per block ...

per level
125 BRlevel = {BR0};
126 % beggin level loop
127 if BR0 > T
128
129 for jj = 1: maxLevel
130 disp(' ')
131 disp ([ '\\\\ START LEVEL: ', num2str(jj...

)])
132
133 % vector to hold all attempted ...

partitions per level
134 plevHold = [];
135 % vector to hold all BR values per ...

level
136 BRHold = [];
137
138 % beggin branch loop
139 for b = 1: nbranch
140 disp([' START branch: ', num2str(b...

)])
141
142 % define block size (B)
143 B = pList(b+1) - pList(b);
144
145 if binmin > B
146 disp(['block size (', num2str(...

B) ,...
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147 ') smaller than: ', num2...
str(binmin)])

148 disp(['End this branch '])
149 continue
150 end
151
152 % update left
153 bLeft = binmin + 1;
154 bRight = B - binmin;
155
156 % block to small for for ...

minimization
157 % given window size
158 if bRight - bLeft < 3
159 break;
160 end
161
162 % minimization techniques ...

------------
163
164 % random search minimization
165 % minimization functions
166 % [dxBR ,brL ,brR ,partition ,...

rtreeFlag ]...
167 % = minimizeBRrand (...
168 % sample(pList(b):pList(b+1))...

,...
169 % window ,p,binmin);
170
171 % golden ration bifraction ...

minimization
172 [dxBR ,brL ,brR ,partition] =...
173 minimizeBRgold(sample(pList(b)...

:pList(b+1)) ,...
174 window ,p,binmin);
175
176 % distribution of dxBR: VERY SLOW ...

FOR N > 2^14
177 % minimizeBRdiff(sample(pList(b):...

pList(b+1)) ,...
178 % window ,p,binmin ,saveImage ,...

filename ,j);
179 %---
180
181 % update block boundaries of ...

sample with correctly
182 % placed partition
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183 newPar = pList(b) + partition;
184
185 % calcualte R and BR for possilbe ...

branches (b)
186 % R = r(sample(pList(b):pList(b+1)...

),window);
187 % BR = br(B,R,p,Ns);
188
189 Rr = r(sample(newPar:pList(b+1)),...

window);
190 BRr = br(B,Rr,p,Ns);
191
192 Rl = r(sample(pList(b):newPar),...

window);
193 BRl = br(B,Rl,p,Ns);
194
195 BR = min(BRr ,BRl);
196
197 % hold all BRs per level for later...

evaluation
198 BRHold = [BRHold ,BR];
199
200 disp(['BR: ',num2str(BR)])
201 disp(['T: ', num2str(T)])
202
203 if treeType
204 % balanced tree ----
205 % STOP SEARCH: if any BR < T
206 if BR < T
207 break;
208 exit = true;
209 end
210 plevHold = [plevHold , newPar ];
211 disp([' partition 1: ',num2str(...

newPar)])
212 else
213 % un-balanced tree -
214 if BR ≥ T
215 plevHold = [plevHold , ...

newPar ];
216 disp([' partition 1: ',num2...

str(newPar)])
217 end
218 end
219 end
220
221 disp(['BR: ',num2str(BR)])
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222 disp(['T: ', num2str(T)])
223
224 if treeType
225 % balanced tree --------
226 if BR ≥ T
227 pList = [pList plevHold ];
228 disp([' partition 2: ',num2str(...

newPar)])
229 end
230 else
231 % un-balanced tree -----
232 temp = sort(BRHold);
233 if temp (end) ≥ T
234 pList = [pList plevHold ];
235 disp([' partition 2: ',num2str(...

newPar)])
236 end
237 end
238 pList = sort(pList);
239
240 % update nbranch
241 nbranch = length(pList) - 1;
242
243 % assign partition list to array for ...

plotting
244 plevel{jj+1,1} = {pList '};
245
246 % exit for special cases where B < ...

binmin
247 % or bRight - bLeft < 3
248 if isempty(BRHold)
249 break;
250 end
251
252 % assign BR per level to array for ...

plotting
253 BRlevel{jj+1,1} = BRHold;
254
255 if exit
256 break;
257 end
258
259 % find newly accepted partitions
260 [C,¬] = setdiff(plevel{jj...

+1 ,1}{1 ,1}(: ,1) ,...
261 plevel{jj ,1}{1 ,1}(: ,1));
262
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263 % STOP SEARCH: if no new partitions ...

are accepted
264 if isempty(C)
265 break;
266 end
267
268 % update changes with newly created ...

partitions
269 pdiff{jj+1,1} = C;
270 end
271
272 endTime = toc;
273 pList = pList ';
274 disp(' ')
275 disp ( '********* pList FINAL ANSWER ')
276 disp(pList)
277 disp(['Elapse time: ',num2str(endTime),'s...

'])
278 disp ( '****************************** ')
279 pList = pList ';
280 sample = sort(sample);
281
282 %SPLITTING ROUTINE FOR LARGE SAMPLES...

---------
283
284 % vector to to add new partitons too
285 LargNcheck = pList;
286 % vector to hold updated partition list
287 holder = pList;
288 % while loop flag
289 runSplit = true;
290 while runSplit
291 % triggers exit flag for while loop
292 splitCount = 0;
293 % loop over modified partition list (...

holder)
294 for k = 1: length(holder) -1
295 % calcualte difference
296 diff = holder(k+1)-holder(k);
297 % add partion between elements ...

when diff >20000
298 if holder(k+1)-holder(k) > 20000
299 split = floor(( holder(k+1)-...

holder(k))/2);
300 % update new partiton list
301 LargNcheck = [LargNcheck ,...

LargNcheck(k)+ split];
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302 % update counter: number of ...

found splits
303 splitCount = splitCount + 1;
304 end
305 end
306 LargNcheck = sort(LargNcheck);
307 holder = LargNcheck;
308 % if no splits exit routine
309 if splitCount == 0
310 runSplit = false;
311 end
312 end
313 pList = LargNcheck;
314 disp ( '****************** pList SPLIT ')
315 disp(pList ')
316 disp ( '****************************** ')
317 %-----------
318 end
319 % FIGURES ------
320 figure('Name ','br values per level ')
321 hold on
322 plot (0: size(plevel ,1),log(T*ones(size(plevel...

,1)+1)), '-r');
323 for k = 1:size(BRlevel ,1)
324 plot((k-1)*ones(size(BRlevel{k,1}(1 ,:) ,1)...

,1) ,...
325 log(BRlevel{k,1}(1 ,:)) ,...
326 'o',...
327 'MarkerEdgeColor ',[0,0,0],...
328 'MarkerFaceColor ',[0,0,0],...
329 'MarkerSize ',4,'DisplayName ','none ')
330 levelTrack = 1:size(plevel ,1);
331 end
332
333 str = cell(1,size(levelTrack ,2));
334 for ii = 1: length(levelTrack)
335 str{ii} = sprintf('%1.0f',levelTrack(ii));
336 end
337 xticks(levelTrack)
338 xticklabels(str)
339 ylabel('ln(BR)')
340 xlabel('Tree Level ')
341 legend('Threshold ')
342 if saveImage
343 binFileName = ['BR_',char(filename)];
344 pngfile = strcat(binFileName ,'.png ');
345 saveas(gcf ,pngfile)
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346 figfile = strcat(binFileName ,'.fig ');
347 saveas(gcf ,figfile)
348 end
349
350 figure('Name ','tree branching ')
351 subplot (2,1,1)
352 histogram(sample)
353 ylabel('Number of Data Points ','Interpreter ','...

latex ')
354
355 subplot (2,1,2)
356 hold on
357 % branching level track markers
358 for k = 1:size(plevel ,1) -1
359 plot(sample(plevel{k,1}{1 ,1}(: ,1)) ,...
360 (size(plevel ,1)-k)*...
361 ones(size(plevel{k,1}{1 ,1}(: ,1) ,1) ,1)...

,...
362 'o',...
363 'MarkerEdgeColor ' ,[0.6 ,0.6 ,0.6] ,...
364 'MarkerFaceColor ' ,[0.6 ,0.6 ,0.6] ,...
365 'MarkerSize ',5)
366
367 levelTrack = 0:size(plevel ,1) -1;
368 end
369 % final partition markers
370 % plot(sample(plevel{end ,1}{1 ,1}(: ,1)) ,...
371 % zeros(size(plevel{end ,1}{1 ,1}(: ,1) ,1) ,1)...

,...
372 % 'o',...
373 % 'MarkerEdgeColor ',[1,0,0],...
374 % 'MarkerFaceColor ',[1,0,0],...
375 % 'MarkerSize ',5)
376
377 plot(sample(pList) ,...
378 zeros(length(pList) ,1) ,...
379 'o',...
380 'MarkerEdgeColor ',[1,0,0],...
381 'MarkerFaceColor ',[1,0,0],...
382 'MarkerSize ',5)
383
384 % boundries of sample markers
385 plot(sample(pdiff {1 ,1}(: ,1)) ,...
386 (size(plevel ,1) -1)*...
387 ones(size(pdiff {1 ,1}(: ,1) ,1) ,1) ,...
388 'o',...
389 'MarkerEdgeColor ',[0,0,0],...
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390 'MarkerFaceColor ' ,[0.6 ,0.6 ,0.6] ,...
391 'MarkerSize ',8)
392 % new partion markers
393 for k = 2:size(pdiff ,1)
394 plot(sample(pdiff{k,1}(: ,1)) ,...
395 (size(plevel ,1)-k)*...
396 ones(size(pdiff{k,1}(: ,1) ,1) ,1) ,...
397 'o',...
398 'MarkerEdgeColor ',[0,0,0],...
399 'MarkerFaceColor ',[0,0,0],...
400 'MarkerSize ',8)
401 end
402
403 str = cell(1,size(levelTrack ,2));
404 for ii = 1: length(levelTrack)
405 str{ii} = sprintf('%1.0f',levelTrack(end...

+1-ii));
406 end
407
408 yticks(levelTrack)
409 yticklabels(str)
410 xlabel('x Range ','Interpreter ','latex ')
411 ylabel('Tree Level ','Interpreter ','latex ')
412 if saveImage
413 binFileName = ['Tree_',char(filename)];
414 pngfile = strcat(binFileName ,'.png ');
415 saveas(gcf ,pngfile)
416 figfile = strcat(binFileName ,'.fig ');
417 saveas(gcf ,figfile)
418 end
419 end
420 end
421 end

C.1.2 getRatio.m code

1 function r = getRatio(sample ,window)
2 sample = sort(sample);
3 n = length(sample);
4 dx = zeros(1,n-1);
5 dx(1:n-1) = sample (2:n) - sample (1:n-1);
6 dx = sort(dx ');
7 dxmin = mean(dx(1: window));
8 dxmax = mean(dx(end -window :end));
9 r = dxmax/dxmin;
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10 end

C.1.3 brProduct.m code

1 function BR = brProduct(b,r,p,n)
2 BR = (b^p(1)*r^p(2))/n^p(3);
3 end

C.1.4 minimizeBRgold.m code

1 function [dxbr1,brL ,brR ,partition] = minimizeBRgold(sample...
,window ,p,binmin)

2 % function definition
3 br = @brProduct;
4 % sample size
5 sample = sort(sample);
6 Ns = length(sample);
7 % left and right search boundaries
8 bLeft = 1 + binmin;
9 bRight = Ns - binmin;

10 % golden ratio
11 goldenR = (1+ sqrt (5))/2;
12 % distance from patition to evaluate dxBR
13 jiggle = 1;
14 dxbr = [];
15 % initial partion
16 partition = ceil(Ns/2);
17 while bRight -bLeft > 2
18 % update boundries
19 bLeft1 = partition ;
20 bRight1 = Ns - partition ;
21 % calculate R-ratio for given partition
22 rRight1 = getRation(sample(partition :end),window);
23 rLeft1 = getRation(sample (1: partition),window);
24 % calculate dxBR for partition location (center dxBR)
25 dxbrC = abs(br(bLeft1,rLeft1,p,Ns)-br(bRight1,rRight1,...

p,Ns));
26 % -----------
27 % define new partition to the left of center
28 leftPar = partition - jiggle;
29 bLeft2 = leftPar;
30 bRight2 = Ns - leftPar ;
31 rRight2 = getRation(sample(leftPar :end),window);



82

32 rLeft2 = getRation(sample (1: leftPar),window);
33 % calculate dxBR for leftPar location (left dxBR)
34 dxbrL = abs(br(bLeft2,rLeft2,p,Ns)-br(bRight2,rRight2,...

p,Ns));
35 % -----------
36 % define new partition to the right of center
37 rightPar = partition + jiggle;
38 bLeft3 = rightPar;
39 bRight3 = Ns - rightPar ;
40 rRight3 = getRation(sample(rightPar :end),window);
41 rLeft3 = getRation(sample (1: rightPar),window);
42 % calculate dxBR for leftPar location (rightPar dxBR)
43 dxbrR = abs(br(bLeft3,rLeft3,p,Ns)-br(bRight3,rRight3,...

p,Ns));
44 % -----------
45 % calculate differences of dxBR for L,R,C
46 dxCR = dxbrC - dxbrR;
47 dxCL = dxbrC - dxbrL;
48 dxLR = dxbrL - dxbrR;
49 % dxbrR is smallest
50 if dxCR ≥ 0 && dxLR > 0
51 bLeft = leftPar;
52 %---
53 if bRight -bLeft < 2
54 % matrix to track useful variables
55 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1;...

bRight 1; rRight 1]);
56 else
57 % matrix to track useful variables
58 dxbr = horzcat(dxbr ,[dxbrR;bLeft3;rLeft3;...

bRight 3; rRight 3]);
59 % use golden ratio to define new partion
60 partition = round((bLeft+bRight*goldenR)/(1+...

goldenR));
61 % disp('Shrink --->')
62 end
63 end
64 % dxbrL is smallest
65 if dxCL ≥ 0 && dxLR < 0
66 bRight = rightPar;
67 %---
68 if bRight -bLeft < 2
69 % matrix to track useful variables
70 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1;...

bRight 1; rRight 1]);
71 else
72 % matrix to track useful variables
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73 dxbr = horzcat(dxbr ,[dxbrL;bLeft2;rLeft2;...
bRight 2; rRight 2]);

74 % use golden ratio to define new partion
75 partition = round((bLeft*goldenR+bRight)/(1+...

goldenR));
76 % disp('<--- Shrink ')
77 end
78 end
79 % dxbrC is smallest: solution found
80 if dxCL < 0 && dxCR < 0
81 dxbrFinal = dxbrC;
82 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1; bRight 1;...

rRight 1]);
83 break
84 end
85 end
86 % disp(' ')
87 % disp('Program Results ...

======================================= ')
88 dxbr = dxbr ';
89 % dxbrDisplay1 = [dxbr (:,1),dxbr (:,2)];
90 dxbr1 = dxbr(end ,1);
91 bL1 = partition;
92 % dxbr(end ,2),dxbr(end ,3)
93 % dxbr(end ,4),dxbr(end ,5)
94 % brL = br(bLeft1,rLeft1,p,Ns);
95 % brR = br(bRight1,rRight1,p,Ns);
96 brL = br(dxbr(end ,2),dxbr(end ,3),p,Ns);
97 brR = br(dxbr(end ,4),dxbr(end ,5),p,Ns);
98 partition = dxbr(end ,2);
99 end

C.1.5 minimizeBRrand.m code

1 function [dxbr1,brL ,brR ,partition ,rtreeFlag] = ...
2 minimizeBRrand(sample ,window ,p,binmin)
3 % function definition
4 br = @brProduct;
5 % sample size
6 sample = sort(sample);
7 Ns = length(sample);
8 bLeft = 1 + binmin;
9 bRight = Ns - binmin;

10 jiggle = 1;
11 dxbr = [];
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12 rtreeFlag = false;
13 while bRight -bLeft > 2
14 partition = round((bRight -bLeft)*rand) + bLeft;
15 % disp('--')
16 % disp([' partition: ', num2str(partition)])
17 % disp('--')
18 % -----------
19 bLeft1 = partition ;
20 bRight1 = Ns - partition ;
21 rRight1 = getRation(sample(partition :end),window);
22 rLeft1 = getRation(sample (1: partition),window);
23 % disp(['bLeft1: ',num2str(bLeft 1)])
24 % disp(['rLeft1: ',num2str(rLeft 1)])
25 % disp(['bRight 1: ',num2str(bRight 1)])
26 % disp(['rRight 1: ',num2str(rRight 1)])
27 dxbrC = abs(br(bLeft1,rLeft1,p,Ns)-br(bRight1,rRight1,...

p,Ns));
28 % disp(' ')
29 % disp(['dxbrC: ',num2str(dxbrC)])
30 % -----------
31 Lpar = partition - jiggle;
32 bLeft2 = Lpar;
33 bRight2 = Ns - Lpar ;
34 rRight2 = getRation(sample(Lpar :end),window);
35 rLeft2 = getRation(sample (1: Lpar),window);
36 dxbrL = abs(br(bLeft2,rLeft2,p,Ns)-br(bRight2,rRight2,...

p,Ns));
37 % disp(['dxbrL: ',num2str(dxbrL)])
38 % -----------
39 Rpar = partition + jiggle;
40 bLeft3 = Rpar;
41 bRight3 = Ns - Rpar ;
42 rRight3 = getRation(sample(Rpar :end),window);
43 rLeft3 = getRation(sample (1: Rpar),window);
44 dxbrR = abs(br(bLeft3,rLeft3,p,Ns)-br(bRight3,rRight3,...

p,Ns));
45 % disp(['dxbrR: ',num2str(dxbrR)])
46 % disp(' ')
47 % -----------
48 dxCR = dxbrC - dxbrR;
49 dxCL = dxbrC - dxbrL;
50 dxLR = dxbrL - dxbrR;
51 % disp(['old bLeft: ', num2str(bLeft)])
52 % disp(['old bRight: ', num2str(bRight)])
53 % disp('--------')
54 if dxCR ≥ 0 && dxLR > 0
55 bLeft = Lpar;
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56 %---
57 if bRight -bLeft < 2
58 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1;...

bRight 1; rRight 1]);
59 else
60 dxbr = horzcat(dxbr ,[dxbrR;bLeft3;rLeft3;...

bRight 3; rRight 3]);
61 % disp('Shrink --->')
62 end
63 end
64 if dxCL ≥ 0 && dxLR < 0
65 bRight = Rpar;
66 %---
67 if bRight -bLeft < 2
68 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1;...

bRight 1; rRight 1]);
69 else
70 dxbr = horzcat(dxbr ,[dxbrL;bLeft2;rLeft2;...

bRight 2; rRight 2]);
71 % disp('<--- Shrink ')
72 end
73 end
74 if dxCL < 0 && dxCR < 0
75 bRight = Rpar;
76 dxbrFinal = dxbrC;
77 dxbr = horzcat(dxbr ,[dxbrC;bLeft1;rLeft1; bRight 1;...

rRight 1]);
78 % disp(['Solution: ', num2str(dxbrC)])
79 break
80 end
81 % disp(['new bLeft: ', num2str(bLeft)])
82 % disp(['new bRight: ', num2str(bRight)])
83 end
84
85 % disp(' ')
86 % disp('Program Results ...

======================================= ')
87 dxbr = dxbr ';
88 % dxbrDisplay1 = [dxbr (:,1),dxbr (:,2)];
89 dxbr1 = dxbr(end ,1);
90 bL1 = partition;
91 % dxbr(end ,2),dxbr(end ,3)
92 % dxbr(end ,4),dxbr(end ,5)
93 % brL = br(bLeft1,rLeft1,p,Ns);
94 % brR = br(bRight1,rRight1,p,Ns);
95 brL = br(dxbr(end ,2),dxbr(end ,3),p,Ns);
96 brR = br(dxbr(end ,4),dxbr(end ,5),p,Ns);
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97 partition = dxbr(end ,2);
98 end

C.1.6 minimizeBRdiff.m code

1 function [dxbr ,dxbrTrack ,brL ,brR ,partition ,rtreeFlag] = ...

...
2 minimizeBRdiff(sample ,window ,p,binmin ,saveImage ,...

filename ,j)
3 % function definition
4 br = @brProduct;
5 Ns = length(sample);
6 sample = sort(sample);
7 step = 1;
8 dxbrTrack = [];
9 rLTrack = [];

10 rRTrack = [];
11 bRTrack = [];
12 bLTrack = [];
13 brLTrack = [];
14 brRTrack = [];
15 BRleft = [];
16 BRright = [];
17 trig = -1;
18 rtreeFlag = false;
19 while trig < 0
20 % bL = bL + binmin + step;
21 bL = binmin + step;
22 bR = Ns - step - binmin;
23 if bR < binmin + 2
24 break;
25 rtreeFlag = true;
26 end
27 rL = getRation(sample (1:bL),window);
28 rR = getRation(sample(bL :end),window);
29 rLTrack = [rLTrack , rL];
30 rRTrack = [rRTrack ,rR];
31 dxbr = abs(br(bL,rL,p,Ns)-br(bR,rR,p,Ns));
32 BRleft = [BRleft ,br(bL,rL ,p,Ns)];
33 BRright = [BRright ,br(bR,rR,p,Ns)];
34 brLTrack = [brLTrack , br(bL,rL,p,Ns)];
35 brRTrack = [brRTrack , br(bR,rR,p,Ns)];
36 bLTrack = [bLTrack , bL];
37 bRTrack = [bRTrack ,bR];
38 dxbrTrack = [dxbrTrack ,dxbr];
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39 % will end loop once solution is found
40 % if step > 3 && dxbr > dxbrTrack(step -1) &&...
41 % dxbr > dxbrTrack(step -2) &&...
42 % dxbr > dxbrTrack(step -3)
43 % final = dxbrTrack(step -2);
44 % break
45 % end
46 step = step + 1;
47 % disp(['step: ', num2str(step)])
48 % disp('-------------')
49 % pause
50 end
51 if j == 1
52 figure('Name ','BRleft and BRright ')
53 subplot (2,2,[1,2])
54 hold on
55 plot (1: length(BRright),BRright ,'--','Color...

' ,[0.5 ,0.5 ,0.5])
56 plot (1: length(BRleft),BRleft ,'--k')
57 plot (1: length(dxbrTrack),dxbrTrack ,'-k')
58 ylabel ('$\Delta \xi_0 = \xi_0 - \xi_1$','Interpreter ...

','latex ')
59 xlabel('$n_{ partition}$','Interpreter ','latex ')
60 xlim([0,Ns])
61
62 subplot (2,2,3)
63 hold on
64 plot (1: length(rLTrack),rLTrack ,'-k')
65 plot (1: length(rRTrack),rRTrack ,'Color ' ,[0.5 ,0.5 ,0.5])
66 ylabel('$R$','Interpreter ','latex ')
67 xlabel('$n_{ partition}$','Interpreter ','latex ')
68 xlim([0,Ns])
69
70 subplot (2,2,4)
71 hold on
72 plot (1: length(bRTrack),bRTrack ,'Color ' ,[0.5 ,0.5 ,0.5])
73 plot (1: length(bLTrack),bLTrack ,'-k')
74 ylabel('$B$','Interpreter ','latex ')
75 xlabel('$n_{ partition}$','Interpreter ','latex ')
76 xlim([0,Ns])
77
78 if saveImage
79 binFileName = [num2str(Ns),'_BRacrossSample_',char...

(filename)];
80 pngfile = strcat(binFileName ,'.png ');
81 saveas(gcf ,pngfile)
82 figfile = strcat(binFileName ,'.fig ');
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83 saveas(gcf ,figfile)
84 end
85 end
86 [dxbr ,bL]= min(dxbrTrack);
87 brL = brLTrack(bL);
88 brR = brRTrack(bL);
89 partition = bLTrack(bL);
90 dxbrTrack = dxbrTrack ';
91 end

C.1.7 samplesVector.m

1 function [sampleVec] = ...
2 samplesVector(minSamplesExp ,maxSamplesExp ,dataTypeflag ...

,step)
3
4 % to be function inputs
5 %-------------
6 %step = 1; %<---- can be changed to skip number of samples...

created
7 %minSamplesExp;
8 %maxSamplesExp;
9 %dataTypeflag = true; %<--- true/false integer powers of ...

2/real powers of 2
10
11 % Define a vector of samples to generate
12 %-------------
13 exponents = minSamplesExp:step:maxSamplesExp;
14 sampleVec = zeros(1,length(exponents));
15
16 if dataTypeflag
17 % Generates vector of samples from integer power 2
18 sampleVec (1: length(exponents)) = 2.^ exponents (1: length...

(exponents));
19 else
20 % Generates vector of samples from real power 2
21 for i = 1: length(exponents)
22 n = minSamplesExp + i + rand;
23 sampleVec(i) = floor (2^n);
24 end
25 end
26 end
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C.2 Sample Generation

C.2.1 randomSampleCreationDriver.m code

1 %-------------
2 % This script is design to generate univariant data ...

samples for a list of
3 % standard probability distributions. Multiple trials can ...

be created for
4 % any range of sample sizes for each distribution. Samples...

can be created
5 % over a range of sizes for integer powers of two either ...

for every integer
6 % power in the range or by skipping integer powers based ...

on a step
7 % variable.The samples can be created using interger ...

powers of two or using
8 % real number powers of two. An actual probabilty ...

distribution data file
9 % can be created for later reference as well as plotted to...

aid in finding
10 % appropriate distribution parameters. PNG files may be ...

saved of the actual
11 % distrbution plots.
12 %-------------
13 clc;clear all; close all;tic
14 % class assignment
15 actual = distributions;
16 % User Options
17 % Script switching board \\\\\\\\
18 generateRandomData = false; %<- true/false ...

generate random data
19 % on/off
20 generateActData = true; %<- true/false ...

generate actual
21 % distribution on/...

off
22 ActDistPlot = true; %<- true/false plot ...

actual
23 % distribution on/...

off
24 dataTypeflag = true; %<- true/false integer...

powers of
25 % 2/real powers of 2
26 savePNG = true; %<- true/false save ....

png of plots
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27 % on/off
28 % random data generation parameters \\\\\\
29 maxSamplesExp = 10; %<---- maximum exponent to...

generate samples
30 minSamplesExp = 10; %<---- minimum exponent to...

generate samples
31 actual.precision = 15; %<---- condtrol number of ...

digits for
32 % created data
33 ntrials = 1; %<---- trials to run to ...

generate heuristics
34 % for programs
35 step = 1; %<---- control synthetic ...

random samples to
36 % skip being created
37 actual.lowerLimit = 0; %<---- lower limit to plot
38 actual.upperLimit = 10; %<---- upper limit to plot
39 % PROBABILITY DISTRIBUTION LIST \
40 % Total set
41 %
42 distributionVector = ["Beta -a0p5-b1p5","Beta -a2-b0p5",...
43 "Beta -a0p5-b0p5","Bimodal -Normal"," BirnbaumSaunders...

",...
44 "BirnbaumSaunders -Stable","Burr"," Exponential ",...
45 "Extreme -Value","Gamma","Generalized -Extreme -Value...

",...
46 "Generalized -Pareto"," HalfNormal ","Normal ",...
47 "Square -periodic","Stable","Stable 2"," Stable 3",...
48 "tLocationScale ","Uniform","Uniform -Mix","Weibull ",...
49 "Chisquare"," InverseGaussian ","Trimodal -Normal "];
50 %}
51 %\\\\\\\\\\
52 % Main Loop for probability distribution data generation ...

and vizualization
53 for j = 1: length(distributionVector)
54 % Define plot vector for distributions from 0-1
55 if distributionVector(j) == "Beta -a0p5-b1p5" ||...
56 distributionVector(j) == "Beta -a2-b0p5" ||...
57 distributionVector(j) == "Beta -a0p5-b0p5" ...

||...
58 distributionVector(j) == "Mix -Beta -Stable -1"
59 actual.lowerLimit = 0;
60 actual.upperLimit = 1;
61 % vector used to create/plot actual distribution
62 actual.x = linspace(actual.lowerLimit ,actual....

upperLimit ,1000);
63 else
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64 % Define plot vector for distribution from ...

lowerLimit -upperLimit
65 actual.lowerLimit = 0;
66 actual.upperLimit = 10;
67 % vector used to create/plot actual distribution
68 actual.x = linspace(actual.lowerLimit ,actual....

upperLimit ,1000);
69 end
70 % Current distribution name
71 actual.distributionName = distributionVector(j);
72 % file name for actual distribution. "A_" puts at the ...

top of the folder
73 % for convenience
74 actual.fileName = ...
75 sprintf(['A_', char(actual.distributionName),'_Act...

']);
76 % Create actual distribution data and folders
77 if generateActData
78 actual.randomVSactual = "actual ";
79 actual = actual.distributionsChoices ();
80 end
81 % creat random object
82 random = actual;
83 % generate multiple trials for a given distribution ...

and sample size
84 for i = 1: ntrials
85 % Create vector of samples
86 sampleVec = samplesVector(minSamplesExp ,...
87 maxSamplesExp ,dataTypeflag ,step);
88 for k = 1: length(sampleVec)
89 % size of sample to generate
90 random.Ns = sampleVec(k);
91 % Create fun.fileName for each distribtuion
92 random.fileName = sprintf(['D_',...
93 char(actual.distributionName) ,...
94 '_T_','%d', '_S_','%d'],i, random.Ns);
95 % Generate random data for each distribution ...

of varying sizes
96 if generateRandomData
97 random.randomVSactual = "random ";
98 random.distributionsChoices ();
99 end

100 end
101 end
102 % Act dist plots
103 if generateActData
104 if ActDistPlot
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105 figure('Name ','Standard Distributions ')
106 % Plot Actual PDF for each distribution
107 plot(actual.x,actual.pdfCurve ,'-k')
108 ylabel('$f(x)$','Interpreter ','latex ')
109 xlabel('x','Interpreter ','latex ')
110 title(char(actual.distributionName),'...

Interpreter ','latex ')
111 if max(actual.pdfCurve) > 1
112 ylim ([0 ,5])
113 else
114 ylim ([0 ,1])
115 end
116 xlim([ actual.lowerLimit ,actual.upperLimit ])
117 if savePNG
118 figureName = ['Act_D_',...
119 char(actual.distributionName) ,...
120 'S_',int2str(actual.Ns)];
121 pngfile = strcat(char(figureName) ,'.png ');
122 saveas(gcf ,pngfile)
123 figfile = strcat(char(figureName) ,'.fig ');
124 saveas(gcf ,figfile)
125 end
126 end
127 end
128 end
129 toc

C.2.2 distributions.m

1 classdef distributions
2 properties
3 x
4 Ns
5 fileName
6 pdfCurve
7 precision = 15;
8 lowerLimit = 0;
9 upperLimit = 10;

10 distributionName
11 distInfo
12 randomVSactual = "actual"
13 end
14 methods
15 function obj = distributionsChoices(obj)
16 debug = true;
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17 switch obj.distributionName
18 case 'Beta -a0p5-b1p5'
19 % Beta1 Case Statement
20 % First shape obj
21 a = 0.5;
22 % Second shape obj
23 b = 1.5;
24 % PDF Curve \
25 obj.distInfo = makedist('Beta ','a',a,'...

b',b);
26 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
27 %\
28 % generate random sample or actual pdf
29 if obj.randomVSactual == "random"
30 rndData = random(obj.distInfo ,1,...

obj.Ns);
31 elseif obj.randomVSactual == "actual"
32 data = vertcat(obj.x,obj.pdfCurve)...

;
33 end
34 case 'Beta -a2-b0p5'
35 % Beta2 Case Statement
36 % First shape obj
37 a = 2;
38 % Second shape obj
39 b = 0.5;
40 % PDF Curve \
41 obj.distInfo = makedist('Beta ','a',a,'...

b',b);
42 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
43 %\
44 % generate random sample or actual pdf
45 if obj.randomVSactual == "random"
46 rndData = random(obj.distInfo ,1,...

obj.Ns);
47 elseif obj.randomVSactual == "actual"
48 data = vertcat(obj.x,obj.pdfCurve)...

;
49 end
50 case 'Beta -a0p5-b0p5'
51 % Beta3 Case Statement
52 % First shape obj
53 a = 0.5;
54 % Second shape obj
55 b = 0.5;
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56 % PDF Curve \
57 obj.distInfo = makedist('Beta ','a',a,'...

b',b);
58 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
59 %\
60 % generate random sample or actual pdf
61 if obj.randomVSactual == "random"
62 rndData = random(obj.distInfo ,1,...

obj.Ns);
63 elseif obj.randomVSactual == "actual"
64 data = vertcat(obj.x,obj.pdfCurve)...

;
65 end
66 case 'Bimodal -Normal '
67 % Normal Case Statement
68 % mixture weights
69 p1 = 0.65;
70 p2 = 1 - p1;
71 p = [p1,p2];
72 % Mean
73 Mu1 = 2;
74 Mu2 = 6;
75 % Standard deviation
76 Sigma1 = 0.8;
77 Sigma2 = 0.3;
78 % PDF Curve \
79 % Distribution 1
80 distributionLabel1 = 'Normal ';
81 distInfo1 = makedist(distributionLabel...

1,...
82 'Mu', Mu1, 'Sigma ', Sigma1);
83 pdfCurve1 = pdf(distInfo1,obj.x);
84 % Distribution 2
85 distInfo2 = makedist(distributionLabel...

1,...
86 'Mu', Mu2, 'Sigma ', Sigma2);
87 pdfCurve2 = pdf(distInfo2,obj.x);
88 % Mixture PDF Curve
89 obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...

pdfCurve 2;
90 data = vertcat(obj.x,obj.pdfCurve);
91 %\
92 % generate random sample or actual pdf
93 if obj.randomVSactual == "random"
94 % mixture string array flag for ...

mixSampling ()
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95 mixtureType = "two";
96 % generate n vector for mixture ...

samplings
97 n = mixSampling(obj.Ns,p,...

mixtureType);
98 % generate random sample
99 rndData1 = random(distInfo1,1,n(1)...

);
100 rndData2 = random(distInfo2,1,n(2)...

);
101 rndData = [rndData1,rndData 2];
102 elseif obj.randomVSactual == "actual"
103 data = vertcat(obj.x,obj.pdfCurve)...

;
104 end
105 % CREATE DISTRIBUTION OBJECT ...

------------
106 % mixture string array flag for ...

mixSampling ()
107 mixtureType = "two";
108 % generate m vector for mixture ...

samplings
109 m = mixSampling (10000 ,p,mixtureType);
110 % generate random sample to create ...

distribution
111 % object
112 actData1 = random(distInfo1,1,m(1));
113 actData2 = random(distInfo2,1,m(2));
114 actData = [actData1,actData 2];
115 % generate numerical cdf: f=cdf , s=x-...

coordinates
116 [f,s] = ecdf(actData);
117 f = f(1:2 :end);
118 s = s(1:2 :end);
119 % generate distribution object
120 obj.distInfo = ...
121 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
122 % create cdf/pdf from distribution ...

object.
123 % for debugging and vizualization.
124 if debug
125 if obj.randomVSactual == "actual"
126 xMix = linspace(obj.lowerLimit ...

,...
127 obj.upperLimit ,1000);
128 CDF = cdf(obj.distInfo ,xMix);
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129 % numerically differentiate
130 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
131 for i = 2:size(CDF ,2) -1
132 dx1 = (xMix(i+1)-xMix(i-1)...

);
133 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
134 end
135 % smooth pdf data
136 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
137 % plot cdf ,pdf ,smoothed -pdf
138 figure('Name ',['Debug: ',...
139 char(obj.distributionName)...

])
140 subplot (2,1,1)
141 hold on
142 plot(xMix ,CDF ,'-m')
143 plot(xMix(1 :end -1),PDF ,'-r')
144 plot(xMix(1 :end -1),smoo1,'-b')
145 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
146 xlabel('x','Interpreter ','...

latex ')
147 legend('cdf ','pdf ','smoothed -...

pdf ')
148 % plot histogram for random ...

sample
149 subplot (2,1,2)
150 histogram(random(obj.distInfo ...

,1000 ,1) ,...
151 'Normalization ','...

probability ')
152 end
153 end
154 %-------
155 case 'Binomial '
156 % Binomial Case Statement
157 % Number of trials
158 n = 2000;
159 % Porbability of success for each ...

trial
160 p = 0.2;
161 % PDF Curve \
162 obj.distInfo = ...
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163 makedist(obj.distributionName ,'n',...
n,'p',p);

164 obj.pdfCurve = binopdf(obj.x,n,p);
165 %\
166 % generate random sample or actual pdf
167 if obj.randomVSactual == "random"
168 rndData = binornd(obj.Ns,p);
169 elseif obj.randomVSactual == "actual"
170 data = vertcat(obj.x,obj.pdfCurve)...

;
171 end
172 case 'BirnbaumSaunders '
173 % BirnbaumSaunders Case Statement
174 % Scale parameter
175 Beta = 1.5;
176 % Shape parameter
177 Gamma = 0.5;
178 % PDF Curve \
179 obj.distInfo = makedist(obj....

distributionName ,...
180 'Beta ',Beta ,'Gamma ',Gamma);
181 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
182 %\
183 % generate random sample or actual pdf
184 if obj.randomVSactual == "random"
185 rndData = random(obj.distInfo ,1,...

obj.Ns);
186 elseif obj.randomVSactual == "actual"
187 data = vertcat(obj.x,obj.pdfCurve)...

;
188 end
189 case 'BirnbaumSaunders -Stable '
190 % BirnbaumSaunders Case Statement
191 % mixture weights
192 p1 = 0.35;
193 p2 = 1 - p1;
194 p = [p1,p2];
195 % BirnbaumSaunders distribution ...

---------
196 % Scale parameter
197 Beta = 1.5;
198 % Shape parameter
199 Gamma = 0.5;
200 % Stable distribution -----
201 % First shape parameter
202 Alpha1 = 0.5;
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203 % Second shape parameter: -1 ≤ Beta ≤ ...

1
204 Beta1 = 0.05;
205 % Scale parameter
206 Gam1 = 1;
207 % Location parameter
208 Delta1 = 7;
209 % PDF Curve \
210 % BirnbaumSaunders distribution
211 distributionLabel1 = 'BirnbaumSaunders ...

';
212 distInfo1 = makedist(distributionLabel...

1,...
213 'Beta ',Beta ,'Gamma ',Gamma);
214 pdfCurve1 = pdf(distInfo1,obj.x);
215 % Stable distribution
216 distributionLabel2 = 'Stable ';
217 distInfo2 = makedist(distributionLabel...

2,...
218 'Alpha ', Alpha1,'Beta ', Beta 1,...
219 'Gam ', Gam1, 'Delta ', Delta1);
220 pdfCurve2 = pdf(distInfo2, obj.x);
221 % Mixture PDF Curve
222 obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...

pdfCurve 2;
223 data = vertcat(obj.x,obj.pdfCurve);
224 %\
225 % generate random sample or actual pdf
226 if obj.randomVSactual == "random"
227 % mixture string array flag for ...

mixSampling ()
228 mixtureType = "two";
229 % generate n vector for mixture ...

samplings
230 n = mixSampling(obj.Ns,p,...

mixtureType);
231 % generate random sample
232 rndData1 = random(distInfo1,1,n(1)...

);
233 rndData2 = random(distInfo2,1,n(2)...

);
234 rndData = [rndData1,rndData 2];
235 elseif obj.randomVSactual == "actual"
236 data = vertcat(obj.x,obj.pdfCurve)...

;
237 end
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238 % CREATE DISTRIBUTION OBJECT ...

------------
239 % mixture string array flag for ...

mixSampling ()
240 mixtureType = "two";
241 % generate m vector for mixture ...

samplings
242 m = mixSampling (10000 ,p,mixtureType);
243 % generate random sample to create ...

distribution
244 % object
245 actData1 = random(distInfo1,1,m(1));
246 actData2 = random(distInfo2,1,m(2));
247 actData = [actData1,actData 2];
248 % generate numerical cdf: f=cdf , s=x-...

coordinates
249 [f,s] = ecdf(actData);
250 f = f(1:2 :end);
251 s = s(1:2 :end);
252 % generate distribution object
253 obj.distInfo = ...
254 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
255 % create cdf/pdf from distribution ...

object.
256 % for debugging and vizualization.
257 if debug
258 if obj.randomVSactual == "actual"
259 xMix = linspace(obj.lowerLimit ...

,...
260 obj.upperLimit ,1000);
261 CDF = cdf(obj.distInfo ,xMix);
262 % numerically differentiate
263 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
264 for i = 2:size(CDF ,2) -1
265 dx1 = (xMix(i+1)-xMix(i-1)...

);
266 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
267 end
268 % smooth pdf data
269 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
270 % plot cdf ,pdf ,smoothed -pdf
271 figure('Name ',['Debug: ',...
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272 char(obj.distributionName)...
])

273 subplot (2,1,1)
274 hold on
275 plot(xMix ,CDF ,'-m')
276 plot(xMix(1 :end -1),PDF ,'-r')
277 plot(xMix(1 :end -1),smoo1,'-b')
278 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
279 xlabel('x','Interpreter ','...

latex ')
280 legend('cdf ','pdf ','smoothed -...

pdf ')
281 % plot histogram for random ...

sample
282 subplot (2,1,2)
283 histogram(random(obj.distInfo ...

,1000 ,1) ,...
284 'Normalization ','...

probability ')
285 end
286 end
287 %-------
288 case 'Burr '
289 % Burr Case Statement
290 % Scale parameter
291 Alpha = 1;
292 % Shape parameter one
293 c = 2;
294 % Shape parameter one two
295 k = 2;
296 % PDF Curve \
297 obj.distInfo = makedist(obj....

distributionName ,...
298 'Alpha ',Alpha ,'c',c,'k',k);
299 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
300 %\
301 % generate random sample or actual pdf
302 if obj.randomVSactual == "random"
303 rndData = random(obj.distInfo ,1,...

obj.Ns);
304 elseif obj.randomVSactual == "actual"
305 data = vertcat(obj.x,obj.pdfCurve)...

;
306 end
307 case 'Chisquare '
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308 % Chisquare Case Statement
309 % Degrees of freedom
310 Nu = 4;
311 % PDF Curve \
312 obj.pdfCurve = chi2pdf(obj.x,Nu);
313 %\
314 % generate random sample or actual pdf
315 if obj.randomVSactual == "random"
316 rndData = chi2rnd(Nu ,1,obj.Ns);
317 elseif obj.randomVSactual == "actual"
318 data = vertcat(obj.x,obj.pdfCurve)...

;
319 end
320 case 'Exponential '
321 % Exponential Case Statement
322 % Mean
323 Mu = 1;
324 % PDF Curve \
325 obj.distInfo = makedist(obj....

distributionName ,'Mu',Mu);
326 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
327 %\
328 % generate random sample or actual pdf
329 if obj.randomVSactual == "random"
330 rndData = random(obj.distInfo ,1,...

obj.Ns);
331 elseif obj.randomVSactual == "actual"
332 data = vertcat(obj.x,obj.pdfCurve)...

;
333 end
334 case 'Extreme -Value '
335 % Extreme Value Case Statement
336 % Location parameter
337 Mu = 1;
338 % Scale parameter
339 Sigma = 2;
340 % PDF Curve \
341 distributionLabel = 'Extreme Value ';
342 obj.distInfo = makedist(...

distributionLabel ,...
343 'Mu',Mu, 'Sigma ', Sigma);
344 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
345 %\
346 % generate random sample or actual pdf
347 if obj.randomVSactual == "random"
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348 rndData = random(obj.distInfo ,1,...
obj.Ns);

349 elseif obj.randomVSactual == "actual"
350 data = vertcat(obj.x,obj.pdfCurve)...

;
351 end
352 case 'Gamma '
353 % Gamma Case Statement
354 % Shape parameter
355 a = 2;
356 % Scale parameter
357 b = 2;
358 % PDF Curve \
359 obj.distInfo = ...
360 makedist(obj.distributionName ,'a',...

a,'b',b);
361 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
362 %\
363 % generate random sample or actual pdf
364 if obj.randomVSactual == "random"
365 rndData = random(obj.distInfo ,1,...

obj.Ns);
366 elseif obj.randomVSactual == "actual"
367 data = vertcat(obj.x,obj.pdfCurve)...

;
368 end
369 case 'Generalized -Extreme -Value '
370 % Generalized Extreme Value Value ...

Statement
371 % Shape parameter
372 k = 1;
373 % Scale parameter
374 Sigma = 2;
375 % Location parameter
376 Mu = 2;
377 % PDF Curve \
378 distributionLabel = 'Generalized ...

Extreme Value ';
379 obj.distInfo = makedist(...

distributionLabel ,...
380 'k',k, 'Sigma ', Sigma ,'Mu',Mu);
381 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
382 %\
383 % generate random sample or actual pdf
384 if obj.randomVSactual == "random"
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385 rndData = random(obj.distInfo ,1,...
obj.Ns);

386 elseif obj.randomVSactual == "actual"
387 data = vertcat(obj.x,obj.pdfCurve)...

;
388 end
389 case 'Generalized -Pareto '
390 % Generalized Pareto Value Value Case ...

Statement
391 % Tail MemTracker (shape) parameter
392 k = 2;
393 % Scale parameter
394 Sigma = 1;
395 % Threshold (location) parameter
396 theta = 0;
397 % PDF Curve \
398 distributionLabel = 'Generalized ...

Pareto ';
399 obj.distInfo = makedist(...

distributionLabel ,...
400 'k',k, 'Sigma ', Sigma ,'Theta ', ...

theta);
401 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
402 % Mu parameter is not recognized
403 %\
404 % generate random sample or actual pdf
405 if obj.randomVSactual == "random"
406 rndData = random(obj.distInfo ,1,...

obj.Ns);
407 elseif obj.randomVSactual == "actual"
408 data = vertcat(obj.x,obj.pdfCurve)...

;
409 end
410 case 'HalfNormal '
411 % Half Normal Value Case Statement
412 % Location parameter
413 Mu = 0;
414 % Scale parameter
415 Sigma = 1;
416 % PDF Curve \
417 obj.distInfo = makedist(obj....

distributionName ,...
418 'Mu', Mu, 'Sigma ', Sigma);
419 obj.pdfCurve = pdf(obj....

distributionName ,obj.x);
420 %\
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421 % generate random sample or actual pdf
422 if obj.randomVSactual == "random"
423 rndData = random(obj.distInfo ,1,...

obj.Ns);
424 elseif obj.randomVSactual == "actual"
425 data = vertcat(obj.x,obj.pdfCurve)...

;
426 end
427 case 'InverseGaussian '
428 % Inverse Gaussian Case Statement
429 % Scale parameter
430 Mu = 1;
431 % Shape parameter
432 Lambda = 1;
433 % PDF Curve \
434 obj.distInfo = makedist(obj....

distributionName ,...
435 'mu', Mu, 'lambda ', Lambda);
436 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
437 %\
438 % generate random sample or actual pdf
439 if obj.randomVSactual == "random"
440 rndData = random(obj.distInfo ,1,...

obj.Ns);
441 elseif obj.randomVSactual == "actual"
442 data = vertcat(obj.x,obj.pdfCurve)...

;
443 end
444 case 'Normal '
445 % Normal Case Statement
446 % Mean
447 Mu = 5;
448 % Standard deviation
449 Sigma = 1;
450 % PDF Curve \
451 obj.distInfo = makedist(obj....

distributionName ,...
452 'Mu', Mu, 'Sigma ', Sigma);
453 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
454 %\
455 % generate random sample or actual pdf
456 if obj.randomVSactual == "random"
457 rndData = random(obj.distInfo ,1,...

obj.Ns);
458 elseif obj.randomVSactual == "actual"
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459 data = vertcat(obj.x,obj.pdfCurve)...
;

460 end
461 case 'Normal -Contaminated '
462 % Normal Case Statement
463 % mixture weights
464 p1 = 0.5;
465 p2 = 1 - p1;
466 p = [p1,p2];
467 % Mean
468 Mu1 = 5;
469 Mu2 = 5;
470 % Standard deviation
471 Sigma1 = 2;
472 Sigma2 = 0.25;
473 % PDF Curve \
474 % Distribution 1
475 distributionLabel1 = 'Normal ';
476 distInfo1 = makedist(distributionLabel...

1,...
477 'Mu', Mu1, 'Sigma ', Sigma1);
478 pdfCurve1 = pdf(distInfo1,obj.x);
479 % Distribution 2
480 distInfo2 = makedist(distributionLabel...

1,...
481 'Mu', Mu2, 'Sigma ', Sigma2);
482 pdfCurve2 = pdf(distInfo2,obj.x);
483 % Mixture PDF Curve
484 obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...

pdfCurve 2;
485 data = vertcat(obj.x,obj.pdfCurve);
486 %\
487 % generate random sample or actual pdf
488 if obj.randomVSactual == "random"
489 % mixture string array flag for ...

mixSampling ()
490 mixtureType = "two";
491 % generate n vector for mixture ...

samplings
492 n = mixSampling(obj.Ns,p,...

mixtureType);
493 % generate random sample
494 rndData1 = random(distInfo1,1,n(1)...

);
495 rndData2 = random(distInfo2,1,n(2)...

);
496 rndData = [rndData1,rndData 2];
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497 elseif obj.randomVSactual == "actual"
498 data = vertcat(obj.x,obj.pdfCurve)...

;
499 end
500 % CREATE DISTRIBUTION OBJECT ...

------------
501 % mixture string array flag for ...

mixSampling ()
502 mixtureType = "two";
503 % generate m vector for mixture ...

samplings
504 m = mixSampling (10000 ,p,mixtureType);
505 % generate random sample to create ...

distribution
506 % object
507 actData1 = random(distInfo1,1,m(1));
508 actData2 = random(distInfo2,1,m(2));
509 actData = [actData1,actData 2];
510 % generate numerical cdf: f=cdf , s=x-...

coordinates
511 [f,s] = ecdf(actData);
512 f = f(1:2 :end);
513 s = s(1:2 :end);
514 % generate distribution object
515 obj.distInfo = ...
516 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
517 % create cdf/pdf from distribution ...

object.
518 % for debugging and vizualization.
519 if debug
520 if obj.randomVSactual == "actual"
521 xMix = linspace(obj.lowerLimit ...

,...
522 obj.upperLimit ,1000);
523 CDF = cdf(obj.distInfo ,xMix);
524 % numerically differentiate
525 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
526 for i = 2:size(CDF ,2) -1
527 dx1 = (xMix(i+1)-xMix(i-1)...

);
528 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
529 end
530 % smooth pdf data
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531 smoo1 = smooth(xMix(1 :end -1),...
PDF ,0.03);

532 % plot cdf ,pdf ,smoothed -pdf
533 figure('Name ',['Debug: ',...
534 char(obj.distributionName)...

])
535 subplot (2,1,1)
536 hold on
537 plot(xMix ,CDF ,'-m')
538 plot(xMix(1 :end -1),PDF ,'-r')
539 plot(xMix(1 :end -1),smoo1,'-b')
540 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
541 xlabel('x','Interpreter ','...

latex ')
542 legend('cdf ','pdf ','smoothed -...

pdf ')
543 % plot histogram for random ...

sample
544 subplot (2,1,2)
545 histogram(random(obj.distInfo ...

,1000 ,1) ,...
546 'Normalization ','...

probability ')
547 end
548 end
549 %-------
550 case 'Square -periodic '
551 % Uniform Case Statement
552 % mixture weights
553 p1 = 1/6;
554 p2 = 1/6;
555 p3 = 1/6;
556 p4 = 1/6;
557 p5 = 1/6;
558 p6 = 1 - p1 - p2 - p3 - p4- p5 ;
559 p = [p1,p2,p3,p4,p5,p6];
560 % Lower bound
561 Lower1 = 1;
562 Lower2 = 2.5;
563 Lower3 = 4;
564 Lower4 = 5.5;
565 Lower5 = 7;
566 Lower6 = 8.5;
567 % Upper Bound
568 Upper1 = 2;
569 Upper2 = 3.5;
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570 Upper3 = 5;
571 Upper4 = 6.5;
572 Upper5 = 8;
573 Upper6 = 9.5;
574 % PDF Curve \
575 distributionLabel1 = 'Uniform ';
576 % Distribution 1
577 distInfo1 = makedist(distributionLabel...

1,...
578 'Lower ', Lower1, 'Upper ', Upper1);
579 pdfCurve1 = pdf(distInfo1,obj.x);
580 % Distribution 2
581 distInfo2 = makedist(distributionLabel...

1,...
582 'Lower ', Lower2, 'Upper ', Upper2);
583 pdfCurve2 = pdf(distInfo2,obj.x);
584 % Distribution 3
585 distInfo3 = makedist(distributionLabel...

1,...
586 'Lower ', Lower3, 'Upper ', Upper3);
587 pdfCurve3 = pdf(distInfo3,obj.x);
588 % Distribution 4
589 distInfo4 = makedist(distributionLabel...

1,...
590 'Lower ', Lower4, 'Upper ', Upper4);
591 pdfCurve4 = pdf(distInfo4,obj.x);
592 % Distribution 5
593 distInfo5 = makedist(distributionLabel...

1,...
594 'Lower ', Lower5, 'Upper ', Upper5);
595 pdfCurve5 = pdf(distInfo5,obj.x);
596 % Distribution 6
597 distInfo6 = makedist(distributionLabel...

1,...
598 'Lower ', Lower6, 'Upper ', Upper6);
599 pdfCurve6 = pdf(distInfo6,obj.x);
600 % Mixture PDF Curve
601 obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...

pdfCurve2 +...
602 p(3)*pdfCurve3 + p(4)*pdfCurve4 ...

+...
603 p(5)*pdfCurve5 + p(6)*pdfCurve 6;
604 %\
605 % generate random sample or actual pdf
606 if obj.randomVSactual == "random"
607 % mixture string array flag for ...

mixSampling ()
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608 mixtureType = "six";
609 % generate n vector for mixture ...

samplings
610 n = mixSampling(obj.Ns,p,...

mixtureType);
611 % generate random sample
612 rndData1 = random(distInfo1,1,n(1)...

);
613 rndData2 = random(distInfo2,1,n(2)...

);
614 rndData3 = random(distInfo3,1,n(3)...

);
615 rndData4 = random(distInfo4,1,n(4)...

);
616 rndData5 = random(distInfo5,1,n(5)...

);
617 rndData6 = random(distInfo6,1,n(6)...

);
618 rndData = [rndData1,rndData2,...

rndData 3,...
619 rndData4,rndData5,rndData 6];
620 elseif obj.randomVSactual == "actual"
621 data = vertcat(obj.x,obj.pdfCurve)...

;
622 end
623 % CREATE DISTRIBUTION OBJECT ...

------------
624 % mixture string array flag for ...

mixSampling ()
625 mixtureType = "six";
626 % generate m vector for mixture ...

samplings
627 m = mixSampling (10000 ,p,mixtureType);
628 % generate random sample to create ...

distribution
629 % object
630 actData1 = random(distInfo1,1,m(1));
631 actData2 = random(distInfo2,1,m(2));
632 actData3 = random(distInfo3,1,m(3));
633 actData4 = random(distInfo4,1,m(4));
634 actData5 = random(distInfo5,1,m(5));
635 actData6 = random(distInfo6,1,m(6));
636 actData = [actData1,actData2,actData...

3,...
637 actData4,actData5,actData 6];
638 % generate numerical cdf: f=cdf , s=x-...

coordinates
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639 [f,s] = ecdf(actData);
640 f = f(1:2 :end);
641 s = s(1:2 :end);
642 % generate distribution object
643 obj.distInfo = ...
644 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
645 % create cdf/pdf from distribution ...

object.
646 % for debugging and vizualization.
647 if debug
648 if obj.randomVSactual == "actual"
649 xMix = linspace(obj.lowerLimit ...

,...
650 obj.upperLimit ,1000);
651 CDF = cdf(obj.distInfo ,xMix);
652 % numerically differentiate
653 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
654 for i = 2:size(CDF ,2) -1
655 dx1 = (xMix(i+1)-xMix(i-1)...

);
656 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
657 end
658 % smooth pdf data
659 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
660 % plot cdf ,pdf ,smoothed -pdf
661 figure('Name ',['Debug: ',...
662 char(obj.distributionName)...

])
663 subplot (2,1,1)
664 hold on
665 plot(xMix ,CDF ,'-m')
666 plot(xMix(1 :end -1),PDF ,'-r')
667 plot(xMix(1 :end -1),smoo1,'-b')
668 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
669 xlabel('x','Interpreter ','...

latex ')
670 legend('cdf ','pdf ','smoothed -...

pdf ')
671 % plot histogram for random ...

sample
672 subplot (2,1,2)
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673 histogram(random(obj.distInfo ...
,1000 ,1) ,...

674 'Normalization ','...
probability ')

675 end
676 end
677 %}
678 %-------
679 case 'Stable '
680 % Stable Case Statement
681 % First shape parameter
682 Alpha = 0.5;
683 %{
684 Alpha = 0.4;
685 Alpha = 0.35
686 Alpha = 0.5 %<---- use to start
687 Alpha = 0.2; %<---- very hard to ...

estimate
688 %}
689 % Second shape parameter: -1 ≤ Beta ≤ ...

1
690 Beta = 0.05;
691 %{
692 Beta = 0.9;
693 Beta = 1;
694 Beta = .05;
695 Beta = .05;
696 %}
697 % Scale parameter
698 Gam = 1;
699 % Location parameter
700 Delta = 4;
701 % PDF Curve \
702 obj.distInfo = makedist(obj....

distributionName ,...
703 'Alpha ', Alpha ,'Beta ', Beta ,...
704 'Gam ', Gam , 'Delta ', Delta);
705 obj.pdfCurve = pdf(obj.distInfo , obj.x...

);
706 %\
707 % generate random sample or actual pdf
708 if obj.randomVSactual == "random"
709 rndData = random(obj.distInfo ,1,...

obj.Ns);
710 elseif obj.randomVSactual == "actual"
711 data = vertcat(obj.x,obj.pdfCurve)...

;
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712 end
713 case 'Stable1'
714 % Stable Case Statement
715 % First shape parameter
716 Alpha = 0.2;
717 %{
718 Alpha = 0.4;
719 Alpha = 0.35
720 Alpha = 0.5 %<---- use to start
721 Alpha = 0.2; %<---- very hard to ...

estimate
722 %}
723 % Second shape parameter: -1 ≤ Beta ≤ ...

1
724 Beta = 0.05;
725 %{
726 Beta = 0.9;
727 Beta = 1;
728 Beta = .05;
729 Beta = .05;
730 %}
731 % Scale parameter
732 Gam = 1;
733 % Location parameter
734 Delta = 4;
735 % PDF Curve \
736 distributionLabel = 'Stable ';
737 obj.distInfo = makedist(...

distributionLabel ,...
738 'Alpha ', Alpha ,'Beta ', Beta ,...
739 'Gam ', Gam , 'Delta ', Delta);
740 obj.pdfCurve = pdf(obj.distInfo , obj.x...

);
741 %\
742 % generate random sample or actual pdf
743 if obj.randomVSactual == "random"
744 rndData = random(obj.distInfo ,1,...

obj.Ns);
745 elseif obj.randomVSactual == "actual"
746 data = vertcat(obj.x,obj.pdfCurve)...

;
747 end
748 case 'Stable2'
749 % mixture model for 2 stable ...

distributions
750 % mixture weights
751 p1 = 0.25;
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752 p2 = 1 - p1;
753 p = [p1,p2];
754 % First shape parameter
755 Alpha1 = 0.5;
756 Alpha2 = 0.5;
757 % Second shape parameter: -1 ≤ Beta ≤ ...

1
758 Beta1 = 0.05;
759 Beta2 = 0.05;
760 % Scale parameter
761 Gam1 = 1;
762 Gam2 = 1;
763 % Location parameter
764 Delta1 = 2;
765 Delta2 = 5;
766 % PDF Curve \
767 distributionLabel = 'Stable ';
768 % stable 1
769 distInfo1 = makedist(distributionLabel ...

,...
770 'Alpha ', Alpha1,'Beta ', Beta 1,...
771 'Gam ', Gam1, 'Delta ', Delta1);
772 pdfCurve1 = pdf(distInfo1, obj.x);
773 % stable 2
774 distInfo2 = makedist(distributionLabel ...

,...
775 'Alpha ', Alpha2,'Beta ', Beta 2,...
776 'Gam ', Gam2, 'Delta ', Delta2);
777 pdfCurve2 = pdf(distInfo2, obj.x);
778 % Mixture PDF Curve
779 obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...

pdfCurve 2;
780 %\
781 % generate random sample or actual pdf
782 if obj.randomVSactual == "random"
783 % mixture string array flag for ...

mixSampling ()
784 mixtureType = "two";
785 % generate n vector for mixture ...

samplings
786 n = mixSampling(obj.Ns,p,...

mixtureType);
787 % generate random sample
788 rndData1 = random(distInfo1,1,n(1)...

);
789 rndData2 = random(distInfo2,1,n(2)...

);
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790 rndData = [rndData1,rndData 2];
791 elseif obj.randomVSactual == "actual"
792 data = vertcat(obj.x,obj.pdfCurve)...

;
793 end
794 % CREATE DISTRIBUTION OBJECT ...

------------
795 % mixture string array flag for ...

mixSampling ()
796 mixtureType = "two";
797 % generate m vector for mixture ...

samplings
798 m = mixSampling (10000 ,p,mixtureType);
799 % generate random sample to create ...

distribution
800 % object
801 actData1 = random(distInfo1,1,m(1));
802 actData2 = random(distInfo2,1,m(2));
803 actData = [actData1,actData 2];
804 % generate numerical cdf: f=cdf , s=x-...

coordinates
805 [f,s] = ecdf(actData);
806 f = f(1:2 :end);
807 s = s(1:2 :end);
808 % generate distribution object
809 obj.distInfo = ...
810 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
811 % create cdf/pdf from distribution ...

object.
812 % for debugging and vizualization.
813 if debug
814 if obj.randomVSactual == "actual"
815 xMix = linspace(obj.lowerLimit ...

,...
816 obj.upperLimit ,1000);
817 CDF = cdf(obj.distInfo ,xMix);
818 % numerically differentiate
819 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
820 for i = 2:size(CDF ,2) -1
821 dx1 = (xMix(i+1)-xMix(i-1)...

);
822 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
823 end
824 % smooth pdf data
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825 smoo1 = smooth(xMix(1 :end -1),...
PDF ,0.03);

826 % plot cdf ,pdf ,smoothed -pdf
827 figure('Name ',['Debug: ',...
828 char(obj.distributionName)...

])
829 subplot (2,1,1)
830 hold on
831 plot(xMix ,CDF ,'-m')
832 plot(xMix(1 :end -1),PDF ,'-r')
833 plot(xMix(1 :end -1),smoo1,'-b')
834 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
835 xlabel('x','Interpreter ','...

latex ')
836 legend('cdf ','pdf ','smoothed -...

pdf ')
837 % plot histogram for random ...

sample
838 subplot (2,1,2)
839 histogram(random(obj.distInfo ...

,1000 ,1) ,...
840 'Normalization ','...

probability ')
841 end
842 end
843 %-------
844 case 'Stable3'
845 % mixture model for 3 stable ...

distributions
846 % mixture weights
847 p1 = 0.25;
848 p2 = 0.5;
849 p3 = 1 - p1 - p2;
850 p = [p1,p2,p3];
851 % Stable distributions ----
852 % First shape parameter
853 Alpha1 = 0.5;
854 Alpha2 = 0.5;
855 Alpha3 = 0.5;
856 % Second shape parameter: -1 ≤ Beta ≤ ...

1
857 Beta1 = 0.05;
858 Beta2 = 0.05;
859 Beta3 = 0.05;
860 % Scale parameter
861 Gam1 = 1;
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862 Gam2 = 1;
863 Gam3 = 1;
864 % Location parameter
865 Delta1 = 2;
866 Delta2 = 5;
867 Delta3 = 8;
868 % PDF Curve \
869 distributionLabel = 'Stable ';
870 % stable 1
871 distInfo1 = makedist(distributionLabel ...

,...
872 'Alpha ', Alpha1,'Beta ', Beta 1,...
873 'Gam ', Gam1, 'Delta ', Delta1);
874 pdfCurve1 = pdf(distInfo1,obj.x);
875 % stable 2
876 distInfo2 = makedist(distributionLabel ...

,...
877 'Alpha ', Alpha2,'Beta ', Beta 2,...
878 'Gam ', Gam2, 'Delta ', Delta2);
879 pdfCurve2 = pdf(distInfo2,obj.x);
880 % stable 3
881 distInfo3 = makedist(distributionLabel ...

,...
882 'Alpha ', Alpha3,'Beta ', Beta 3,...
883 'Gam ', Gam3, 'Delta ', Delta3);
884 pdfCurve3 = pdf(distInfo3,obj.x);
885 % Mixture PDF Curve
886 obj.pdfCurve = p(1)*pdfCurve1 +...
887 p(2)*pdfCurve2 + p(3)*pdfCurve 3;
888 %\
889 % generate random sample or actual pdf
890 if obj.randomVSactual == "random"
891 % mixture string array flag for ...

mixSampling ()
892 mixtureType = "three ";
893 % generate n vector for mixture ...

samplings
894 n = mixSampling(obj.Ns,p,...

mixtureType);
895 % generate random sample
896 rndData1 = random(distInfo1,1,n(1)...

);
897 rndData2 = random(distInfo2,1,n(2)...

);
898 rndData3 = random(distInfo3,1,n(3)...

);
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899 rndData = [rndData1,rndData2,...
rndData 3];

900 elseif obj.randomVSactual == "actual"
901 data = vertcat(obj.x,obj.pdfCurve)...

;
902 end
903 % CREATE DISTRIBUTION OBJECT ...

------------
904 % mixture string array flag for ...

mixSampling ()
905 mixtureType = "three ";
906 % generate m vector for mixture ...

samplings
907 m = mixSampling (10000 ,p,mixtureType);
908 % generate random sample to create ...

distribution
909 % object
910 actData1 = random(distInfo1,1,m(1));
911 actData2 = random(distInfo2,1,m(2));
912 actData3 = random(distInfo3,1,m(3));
913 actData = [actData1,actData2,actData...

3];
914 % generate numerical cdf: f=cdf , s=x-...

coordinates
915 [f,s] = ecdf(actData);
916 f = f(1:2 :end);
917 s = s(1:2 :end);
918 % generate distribution object
919 obj.distInfo = ...
920 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
921 % create cdf/pdf from distribution ...

object.
922 % for debugging and vizualization.
923 if debug
924 if obj.randomVSactual == "actual"
925 xMix = linspace(obj.lowerLimit ...

,...
926 obj.upperLimit ,1000);
927 CDF = cdf(obj.distInfo ,xMix);
928 % numerically differentiate
929 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
930 for i = 2:size(CDF ,2) -1
931 dx1 = (xMix(i+1)-xMix(i-1)...

);
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932 PDF(i) = (CDF(i+1) - CDF(...
i-1))/dx1;

933 end
934 % smooth pdf data
935 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
936 % plot cdf ,pdf ,smoothed -pdf
937 figure('Name ',['Debug: ',...
938 char(obj.distributionName)...

])
939 subplot (2,1,1)
940 hold on
941 plot(xMix ,CDF ,'-m')
942 plot(xMix(1 :end -1),PDF ,'-r')
943 plot(xMix(1 :end -1),smoo1,'-b')
944 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
945 xlabel('x','Interpreter ','...

latex ')
946 legend('cdf ','pdf ','smoothed -...

pdf ')
947 % plot histogram for random ...

sample
948 subplot (2,1,2)
949 histogram(random(obj.distInfo ...

,1000 ,1) ,...
950 'Normalization ','...

probability ')
951 end
952 end
953 %-------
954 case 'Trimodal -Normal '
955 % Normal Case Statement
956 % mixture weights
957 p1 = 0.33;
958 p2 = 0.33;
959 p3 = 1 - p1 - p2;
960 p = [p1,p2,p3];
961 % Mean
962 Mu1 = 4;
963 Mu2 = 5;
964 Mu3 = 6;
965 % Standard deviation
966 Sigma1 = 0.5;
967 Sigma2 = 0.25;
968 Sigma3 = 0.5;
969 % PDF Curve \
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970 % Distribution 1
971 distributionLabel1 = 'Normal ';
972 distInfo1 = makedist(distributionLabel...

1,...
973 'Mu', Mu1, 'Sigma ', Sigma1);
974 pdfCurve1 = pdf(distInfo1,obj.x);
975 % Distribution 2
976 distInfo2 = makedist(distributionLabel...

1,...
977 'Mu', Mu2, 'Sigma ', Sigma2);
978 pdfCurve2 = pdf(distInfo2,obj.x);
979 % Distribution 3
980 distInfo3 = makedist(distributionLabel...

1,...
981 'Mu', Mu3, 'Sigma ', Sigma3);
982 pdfCurve3 = pdf(distInfo3,obj.x);
983 % Mixture PDF Curve
984 obj.pdfCurve = p(1)*pdfCurve1 +...
985 p(2)*pdfCurve2 + p(3)*pdfCurve 3;
986 %\
987 % generate random sample or actual pdf
988 if obj.randomVSactual == "random"
989 % mixture string array flag for ...

mixSampling ()
990 mixtureType = "three ";
991 % generate n vector for mixture ...

samplings
992 n = mixSampling(obj.Ns,p,...

mixtureType);
993 % generate random sample
994 rndData1 = random(distInfo1,1,n(1)...

);
995 rndData2 = random(distInfo2,1,n(2)...

);
996 rndData3 = random(distInfo3,1,n(3)...

);
997 rndData = [rndData1,rndData2,...

rndData 3];
998 elseif obj.randomVSactual == "actual"
999 data = vertcat(obj.x,obj.pdfCurve)...

;
1000 end
1001 % CREATE DISTRIBUTION OBJECT ...

------------
1002 % mixture string array flag for ...

mixSampling ()
1003 mixtureType = "three ";
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1004 % generate m vector for mixture ...

samplings
1005 m = mixSampling (10000 ,p,mixtureType);
1006 % generate random sample to create ...

distribution
1007 % object
1008 actData1 = random(distInfo1,1,m(1));
1009 actData2 = random(distInfo2,1,m(2));
1010 actData3 = random(distInfo3,1,m(3));
1011 actData = [actData1,actData2,actData...

3];
1012 % generate numerical cdf: f=cdf , s=x-...

coordinates
1013 [f,s] = ecdf(actData);
1014 f = f(1:2 :end);
1015 s = s(1:2 :end);
1016 % generate distribution object
1017 obj.distInfo = ...
1018 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
1019 % create cdf/pdf from distribution ...

object.
1020 % for debugging and vizualization.
1021 if debug
1022 if obj.randomVSactual == "actual"
1023 xMix = linspace(obj.lowerLimit ...

,...
1024 obj.upperLimit ,1000);
1025 CDF = cdf(obj.distInfo ,xMix);
1026 % numerically differentiate
1027 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
1028 for i = 2:size(CDF ,2) -1
1029 dx1 = (xMix(i+1)-xMix(i-1)...

);
1030 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
1031 end
1032 % smooth pdf data
1033 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
1034 % plot cdf ,pdf ,smoothed -pdf
1035 figure('Name ',['Debug: ',...
1036 char(obj.distributionName)...

])
1037 subplot (2,1,1)
1038 hold on
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1039 plot(xMix ,CDF ,'-m')
1040 plot(xMix(1 :end -1),PDF ,'-r')
1041 plot(xMix(1 :end -1),smoo1,'-b')
1042 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
1043 xlabel('x','Interpreter ','...

latex ')
1044 legend('cdf ','pdf ','smoothed -...

pdf ')
1045
1046 % plot histogram for random ...

sample
1047 subplot (2,1,2)
1048 histogram(random(obj.distInfo ...

,1000 ,1) ,...
1049 'Normalization ','...

probability ')
1050 end
1051 end
1052 %-------
1053 case 'tLocationScale '
1054 % t-Location Scale Case Statement
1055 % Location parameter
1056 Mu = 4;
1057 % Scale parameter
1058 Sigma = .05;
1059 % Shape parameter
1060 Nu = 1;
1061 % Location parameter
1062 % Delta = 3;
1063 % PDF Curve \
1064 obj.distInfo = makedist(obj....

distributionName ,...
1065 'Mu', Mu, 'Sigma ', Sigma , 'Nu', Nu...

);
1066 obj.pdfCurve = pdf(obj.distInfo , obj.x...

);
1067 %\
1068 % generate random sample or actual pdf
1069 if obj.randomVSactual == "random"
1070 rndData = random(obj.distInfo ,1,...

obj.Ns);
1071 elseif obj.randomVSactual == "actual"
1072 data = vertcat(obj.x,obj.pdfCurve)...

;
1073 end
1074 case 'Uniform '
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1075 % Uniform Case Statement
1076 % Lower bound
1077 Lower = 4;
1078 % Upper Bound
1079 Upper = 8;
1080 % PDF Curve \
1081 obj.distInfo = makedist(obj....

distributionName ,...
1082 'Lower ', Lower , 'Upper ', Upper);
1083 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
1084 %\
1085 % generate random sample or actual pdf
1086 if obj.randomVSactual == "random"
1087 rndData = random(obj.distInfo ,1,...

obj.Ns);
1088 elseif obj.randomVSactual == "actual"
1089 data = vertcat(obj.x,obj.pdfCurve)...

;
1090 end
1091 case 'Uniform -Mix '
1092 % Uniform Case Statement
1093 % mixture weights
1094 p1 = 0.1;
1095 p2 = 0.6;
1096 p3 = 1 - p1 - p2;
1097 p = [p1,p2,p3];
1098 % Lower bound
1099 Lower1 = 1;
1100 Lower2 = 3.5;
1101 Lower3 = 7;
1102 % Upper Bound
1103 Upper1 = 2;
1104 Upper2 = 5.5;
1105 Upper3 = 9;
1106 % PDF Curve \
1107 % Distribution 1
1108 distributionLabel1 = 'Uniform ';
1109 distInfo1 = makedist(distributionLabel...

1,...
1110 'Lower ', Lower1, 'Upper ', Upper1);
1111 pdfCurve1 = pdf(distInfo1,obj.x);
1112 % Distribution 2
1113 distInfo2 = makedist(distributionLabel...

1,...
1114 'Lower ', Lower2, 'Upper ', Upper2);
1115 pdfCurve2 = pdf(distInfo2,obj.x);
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1116 % Distribution 3
1117 distInfo3 = makedist(distributionLabel...

1,...
1118 'Lower ', Lower3, 'Upper ', Upper3);
1119 pdfCurve3 = pdf(distInfo3,obj.x);
1120 % Mixture PDF Curve
1121 obj.pdfCurve = p(1)*pdfCurve1 +...
1122 p(2)*pdfCurve2 + p(3)*pdfCurve 3;
1123 %\
1124 % generate random sample or actual pdf
1125 if obj.randomVSactual == "random"
1126 % mixture string array flag for ...

mixSampling ()
1127 mixtureType = "three ";
1128 % generate n vector for mixture ...

samplings
1129 n = mixSampling(obj.Ns,p,...

mixtureType);
1130 % generate random sample
1131 rndData1 = random(distInfo1,1,n(1)...

);
1132 rndData2 = random(distInfo2,1,n(2)...

);
1133 rndData3 = random(distInfo3,1,n(3)...

);
1134 rndData = [rndData1,rndData2,...

rndData 3];
1135 elseif obj.randomVSactual == "actual"
1136 data = vertcat(obj.x,obj.pdfCurve)...

;
1137 end
1138 % CREATE DISTRIBUTION OBJECT ...

------------
1139 % mixture string array flag for ...

mixSampling ()
1140 mixtureType = "three ";
1141 % generate m vector for mixture ...

samplings
1142 m = mixSampling (10000 ,p,mixtureType);
1143 % generate random sample to create ...

distribution
1144 % object
1145 actData1 = random(distInfo1,1,m(1));
1146 actData2 = random(distInfo2,1,m(2));
1147 actData3 = random(distInfo3,1,m(3));
1148 actData = [actData1,actData2,actData...

3];
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1149 % generate numerical cdf: f=cdf , s=x-...
coordinates

1150 [f,s] = ecdf(actData);
1151 f = f(1:2 :end);
1152 s = s(1:2 :end);
1153 % generate distribution object
1154 obj.distInfo = ...
1155 makedist('PiecewiseLinear ','x',s,'...

Fx',f);
1156 % create cdf/pdf from distribution ...

object.
1157 % for debugging and vizualization.
1158 if debug
1159 if obj.randomVSactual == "actual"
1160 xMix = linspace(obj.lowerLimit ...

,...
1161 obj.upperLimit ,1000);
1162 CDF = cdf(obj.distInfo ,xMix);
1163 % numerically differentiate
1164 PDF = zeros(1,size(CDF(1 :end...

-1) ,2));
1165 for i = 2:size(CDF ,2) -1
1166 dx1 = (xMix(i+1)-xMix(i-1)...

);
1167 PDF(i) = (CDF(i+1) - CDF(...

i-1))/dx1;
1168 end
1169 % smooth pdf data
1170 smoo1 = smooth(xMix(1 :end -1),...

PDF ,0.03);
1171 % plot cdf ,pdf ,smoothed -pdf
1172 figure('Name ',['Debug: ',...
1173 char(obj.distributionName)...

])
1174 subplot (2,1,1)
1175 hold on
1176 plot(xMix ,CDF ,'-m')
1177 plot(xMix(1 :end -1),PDF ,'-r')
1178 plot(xMix(1 :end -1),smoo1,'-b')
1179 ylabel('$f(x) or F(x)$','...

Interpreter ','latex ')
1180 xlabel('x','Interpreter ','...

latex ')
1181 legend('cdf ','pdf ','smoothed -...

pdf ')
1182 % plot histogram for random ...

sample
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1183 subplot (2,1,2)
1184 histogram(random(obj.distInfo ...

,1000 ,1) ,...
1185 'Normalization ','...

probability ')
1186 end
1187 end
1188 %-------
1189 case 'Weibull '
1190 % Weibull Case Statement
1191 % Scale parameter
1192 a = 1;
1193 % Shape parameter
1194 b = 2;
1195 % PDF Curve \
1196 obj.distInfo = ...
1197 makedist(obj.distributionName ,'a',...

a, 'b', b);
1198 obj.pdfCurve = pdf(obj.distInfo ,obj.x)...

;
1199 %\
1200 % generate random sample or actual pdf
1201 if obj.randomVSactual == "random"
1202 rndData = random(obj.distInfo ,1,...

obj.Ns);
1203 elseif obj.randomVSactual == "actual"
1204 data = vertcat(obj.x,obj.pdfCurve)...

;
1205 end
1206 otherwise
1207 % Warning Statement
1208 warning('No distribution was picked ')
1209 end
1210 % Create data file
1211 if obj.randomVSactual == "random"
1212 dataCreation(rndData ,obj.fileName ,obj....

precision ,1)
1213 elseif obj.randomVSactual == "actual"
1214 dataCreation(data ,obj.fileName ,obj....

precision ,1)
1215 end
1216 % Create folder for distribution data \\\
1217 % Define folder name
1218 folderName = sprintf(['D_', char(obj....

distributionName)]);
1219 % If folder already exist don 't make it again
1220 if exist(folderName ,'dir ') == 0



126

1221 mkdir(char(folderName))
1222 end
1223 %\\\\\\\\\
1224 % Move datafile to folder
1225 if exist([char(obj.fileName),'.txt '],'file ') ...

== 2
1226 movefile ([char(obj.fileName),'.txt '] ,char...

(folderName));
1227 end
1228 end
1229 end
1230 end

C.2.3 mixSampling.m

1 function n = mixSampling(N,p,mixtureType)
2 % Probability Distribution Data Generation function
3 % Created By: Zach D. Merino a MS candidate
4 % Updated: 3/22/19
5 %-------------
6 % This function generates the size of the sample to be ...

taken from each
7 % individual distrbution in a mixture distribution. This ...

method uses
8 % random sampling from a binomial distribution. This ...

method can easily be
9 % generalized to any size mixture , but for practial use ...

the option to
10 % created a mixture from 2-5 has been included.
11 %-------------
12 % n = vector of subsamples for each distribution in the ...

mixture
13 % N = sample size to take from total mixture distribution
14 % p = vector of probability weights for each distribution ...

in the mixture
15
16 switch mixtureType
17 case "two"
18
19 % get random sample from binomial distribution
20 n1 = binornd(N,p(1));
21 % find sample points for last distribution in the ...

mixture
22 n2 = N - n1;
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23 % save number of samples to take from each ...

distribution
24 n = [n1,n2];
25
26 case "three"
27
28 % get random sample from binomial distribution
29 n1 = binornd(N,p(1));
30 % get random sample from binomial distribution ...

with conditional
31 % probabilies
32 n2 = binornd(N-n1,p(2)/(p(2)+p(3)));
33 % find sample points for last distribution in the ...

mixture
34 n3 = N - n1 - n2;
35 % save number of samples to take from each ...

distribution
36 n = [n1,n2,n3];
37
38 case "four"
39
40 % get random sample from binomial distribution
41 n1 = binornd(N,p(1));
42 % get random sample from binomial distribution ...

with conditional
43 % probabilies
44 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)));
45 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)));
46 % find sample points for last distribution in the ...

mixture
47 n4 = N - n1 - n2 - n3;
48 % save number of samples to take from each ...

distribution
49 n = [n1,n2,n3,n4];
50
51 case "five"
52
53 % get random sample from binomial distribution
54 n1 = binornd(N,p(1));
55 % get random sample from binomial distribution ...

with conditional
56 % probabilies
57 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)+p(5)));
58 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)));
59 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)));
60 % find sample points for last distribution in the ...

mixture
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61 n5 = N - n1 - n2 - n3 - n4;
62 % save number of samples to take from each ...

distribution
63 n = [n1,n2,n3,n4,n5];
64
65 case "six"
66
67 % get random sample from binomial distribution
68 n1 = binornd(N,p(1));
69 % get random sample from binomial distribution ...

with conditional
70 % probabilies
71 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)+p(5)+p(6)))...

;
72 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)+p(6)));
73 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)+p(6)));
74 n5 = binornd(N-n1-n2-n3-n4,p(5)/(p(5)+p(6)));
75 % find sample points for last distribution in the ...

mixture
76 n6 = N - n1 - n2 - n3 - n4 - n5;
77 % save number of samples to take from each ...

distribution
78 n = [n1,n2,n3,n4,n5,n6];
79 end

C.2.4 dataCreation.m

1 function dataCreation(data ,fileName ,percision ,dimIndex)
2 % Probability Distribution Data Generation function
3 % Created By: Zach D. Merino a MS candidate
4 % Updated: 8/3/18
5 %-------------
6 % Comments with no leading space are for diagnostic ...

purposes.
7 % The function creates a collimated data.txt file with a ...

specific precision
8 % from the data and fileName variables.
9 %-------------

10 % Initialize column spacing
11 num_column = '\r\n';
12 % Loop for text file set up
13 % dimIndex can vary depending on data format
14 for i = 1:size(data ,dimIndex)
15 num_column = ['%.',num2str(percision),'g ' num_column...

];
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16 end
17 % Define full file name and type
18 full_name = [fileName ,'.txt '];
19 % Generate txt with double precision error output
20 [file_id, msg] = fopen(full_name ,'w');
21 if file_id < 0
22 warning(['errorID: ', file_id])
23 warning(['errorMSG:', msg])
24 end
25 fprintf(file_id, num_column , data);
26 fclose(file_id);
27 end


