by

Zach D. Merino

A thesis submitted to the faculty of The University of North Carolina at Charlotte in partial fulfillment of the requirements for the degree of Master of Science in Applied Physics

Charlotte

2019

Approved by:

Dr. Donald Jacobs

Dr. Michael Grabchak

Dr. Rosario Porras-Aguilar

Zach D. Merino
ALL RIGHTS RESERVED

Abstract

ZACH D. MERINO. High throughput non-parametric probability density estimation via novel multithreaded stitching method. (Under the direction of DR. DONALD JACOBS)

A method of univariant probability density function (pdf) estimation is developed for big data applications. The method employs the use of a non-parametric maximum entropy estimator (NMEM) for a data driven multithreaded probability density estimation algorithm, which has been termed the stitching estimator (SE). The NMEM has previously shown to be a robust pdf estimator for high throughput applications, which has made it the ideal choice for the underlying estimator in the SE's algorithm. This work divides the estimation problem into many smaller estimation problems; termed blocks. The sample is partitioned into blocks by an optimized branching tree algorithm which has been developed to maximize the uniformity for the density of the data in every block. The algorithm finds pdf estimates for blocks using the NMEM then the estimates per block are combined through a stitching procedure that uses a weighted average which utilizes the cumulative probability density functions (cdf) for each pair of adjacent blocks. Further improvements are obtained by implementing a sub-sampling approach that generates sub-samples from the original sample without replacement. The pdfs from each sub-sample are then averaged to give a final estimate. The SE has been extensively benchmarked against a large set of diverse distributions for sample sizes ranging from of 2^{9} up to 2^{20} and 1000 trials per sample size. The quality of the estimates are quantified using scaled quantile residual (SQR) plots, which is a sample size invariant metric that is consistent with the AndersonDarling test. The set of test distributions range from easy single mode distributions to extremely difficult exotic distributions. In all cases tested the SE yields excellent estimates with no need for a priori knowledge of the structure of the data.

ACKNOWLEDGEMENTS

There have been many who have earned my deep gratitude throughout my journey in graduate school. Most notably, my research advisor Dr. Donald Jacobs for all of the insight and guidance he has provided me with over my academic career and to Dr. Jenny Farmer for her invaluable help learning about the NMEM; for this I am truly grateful. I must also thank my research committee for the informative discussions that we've shared over my time as a research member in the BioMolecular Research Group. I have gleaned much from these discussions regarding both research and career related topics. The graduate student and researcher I am today has largely be thanks to the many engaging trials and tribulations myself and fellow graduate students have over come together and I will always relish the memories of these experiences, as well as, the people who I am proud to call my friends. Lastly, I would like the thank two of the most outstanding people I know; my parents. Without their support and unconditional love I would not be the person I am today.

TABLE OF CONTENTS

LIST OF TABLES vii
LIST OF FIGURES viii
LIST OF ABBREVIATIONS xiv
CHAPTER 1: INTRODUCTION 1
1.1. Histograms 1
1.2. Kernel density estimation 3
1.3. Alternative pdf estimation methods 4
1.4. Estimators developed in the BMPG group 4
CHAPTER 2: STITCH ESTIMATOR BASICS 7
2.1. Define blocks 7
2.1.1. Fixed number of blocks 8
2.1.2. M-slope 10
2.2. Create secondary blocks 11
2.3. Find $\hat{f}_{k}(x)$ per block via NMEM estimator 11
2.3.1. Scoring function 12
2.3.2. Scaled quantile residual 13
2.4. Stitch together $\hat{f}_{k}(x)$ and $\hat{f}_{k+1}(x)$ 16
2.5. Stitching method algorithm 17
2.6. Preliminary results 18
2.6.1. Synthetic test dataset 18
2.6.2. Fixed number of points per block 21
2.6.3. Fixed number of blocks 22
2.6.4. Weighted average using CDF 24
2.6.5. Blacklist for $\hat{f}_{k}(x)$ 24
CHAPTER 3: RESEARCH METHODOLOGY 26
3.1. Optimized branching tree 26
3.2. Difference error analysis 29
CHAPTER 4: RESULTS 30
4.1. Optimized branching tree 30
4.1.1. maximum block size 35
4.1.2. Average behavior 36
4.1.3. sub-sampling sampling 37
4.2. Estimator method comparison 38
4.3. Computation time 47
CHAPTER 5: CONCLUSIONS 53
APPENDIX A: Further stitching estimator examples 56
APPENDIX B: Further pdf estimator comparisons 61
APPENDIX C: MATLAB code 70

LIST OF TABLES

TABLE 3.1: Table of the parameter set used to generated the SE pdf 27 estimates.

LIST OF FIGURES

FIGURE 2.1: (a) Total $\hat{f}(x)$ for data generated from a Beta distribution $(a=2, b=0.5)$ that has been stitched together from $\hat{f}_{k}(x)$ for each block. (b) Displaying each $\hat{f}_{k}(x)$ prior to stitching adjacent estimates to produce $\hat{f}(x)$. (c) Number of data points in each block. (d) Length of each block.

FIGURE 2.2: $\hat{f}(x)$ for Beta distribution $(\beta=1.5, \gamma=0.5)$ (a) Blocks created from center outward. (b) $\hat{f}(x)$ for blocks created from center outward. (c) Blocks created from left to right. (d) $\hat{f}(x)$ for blocks created from left to right.

FIGURE 2.3: Visual interpretation for creating block layers for a sample of data.

FIGURE 2.4: Pdf for Log-Likelihood function. This figure shows several threshold values that have a chance of occuring and has come from [1].

FIGURE 2.5: QQ and SQR plots for a standard normal distribution with sample sizes consisting of (a) 256 (b) 1,024 (c) 8,192 (d) 32,768.

FIGURE 2.6: Algorithm flow chart for stitching method.
FIGURE 2.7: (a) Generalized extreme value distribution (b) Uniform distribution (c) Generalized Pareto distribution (d) Mixture of Birnbaum-Saunders and stable distributions (e) Mixture of two normal distributions (f) Mixture of three Stable distributions.

FIGURE 2.8: Visual representation of mixture sampling procedure for the first two distributions in a mixture of five distributions.

FIGURE 2.9: Displays the pdf estimates, $\hat{f}(x)$, for different sample sizes for a Beta distribution ($\mathrm{a}=0.5, \mathrm{~b}=0.5$) and where the number of data points per block were fixed.

FIGURE 2.10: Displays the pdf estimates, $\hat{f}(x)$, for different sample sizes for a Beta distribution $(\mathrm{a}=0.5, \mathrm{~b}=0.5)$ and where the number of blocks were fixed.

FIGURE 2.11: (a) Shows the cdf etimates, $\hat{F}(x)$, for the nth and $\mathrm{n}+1$ block's overlap region. (b) Displays the pdf estimates, $\hat{f}(x)$, for the adjacent blocks, as well as, the weighted averaged estimate labeled stitched pdf.

FIGURE 2.12: Figure (a) shows an example of a failed block estimate for a heavy tailed stable distribution. This leads to visible systematic error in the SQR plot (b) blacklisted routine is implemented for a mixture distribution that is more prone to yield failed block estimates than the single stable distribtuion. The SQR plot shows that the systematic error no longer exists, because there are no longer any failed block estimates.

FIGURE 3.1: R-ratio for a block is calculated by taking the ratio of the average distances between adjacent data points that lie within the windows, w, shown in yellow.

FIGURE 3.2: Example of branching tree algorithm. n_{0} is initially chosen then $\Delta \xi$ is minimized. More levels are created, and the procedure is repeated until all ξ are less than Γ.

FIGURE 4.1: (a) Shows the $\xi=B R$ per block for any given level along with the threshold cut off for the given sample size (b) displays the distribution of the data and the block distribution for a beta distribution.

FIGURE 4.2: (a) Shows the length of each block (b) Shows the number of data points per block for the beta distribution in figure 4.3.

FIGURE 4.3: (a) The SQR plot for the beta distribution (b) Displays the estimates per block prior to stitching (c) Shows $\hat{f}(x)$ for the beta distribution.

FIGURE 4.4: (a) Shows the $\xi=B R$ per block for any given level along with the threshold cut off for the given sample size (b) displays the distribution of the data and the block distribution for a contaminated normal distribution.

FIGURE 4.5: (a) Shows the length of each block (b) Shows the number of data points per block for the beta distribution in figure 4.6.

FIGURE 4.6: (a) The SQR plot for the beta distribution (b) Displays

Abstract

都

FIGURE 4.7: (a) The distribution of $\Delta \xi$ for the partition made in level one when the partition varies from 1 to N. ξ_{0} (black dashed line) and ξ_{1} (grey dashed line) (b) The distribution of R as the partition sweeps over the range of the sample. R_{0} (black dashed line) and R_{1} (grey dashed line) (c) The distribution of B as the partition sweeps of the range of the sample. B_{0} (black dashed line) and B_{1} (grey dashed line)

FIGURE 4.8: (a) The block distribution without limiting the maximum block size (b) The block distribution with limiting the maximum block size to 20,000 .

FIGURE 4.9: The pdf estimates from 1000 trials of samples of size 512 data points and the average across all trials.

FIGURE 4.10: (a) The mean error across the distribution for every estimated data point, the standard deviation of the error, and the maximum/minimum error for 1000 trials (b) The maximum/minimum sqr fluctuations across all 1000 trials.

FIGURE 4.11: $\hat{f}(x)$ determined from averaging 70 pdf estimates from subsamples equal to 60% in size from the original sample of 512 data points. (a) The pdf estimates per subsample and the average pdf estimate (b) The SQR plot for the average pdf estimate.

FIGURE 4.12: $\hat{f}(x)$ determined from averaging 70 pdf estimates from subsamples equal to 60% in size from the original sample of 65,536 data points. (a) The pdf estimates per subsample and the averge pdf estimate (b) The SQR plot for the average pdf estimate.

FIGURE 4.13: $\hat{f}(x)$ for a sample of size $N=1,024$ from a beta distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from $R(e)$ kde estimator.

FIGURE 4.14: $\hat{f}(x)$ for a sample of size $N=1,024$ from a beta distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE 4.15: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of a Birnbaum-Saunders and stable distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.

FIGURE 4.16: $\hat{f}(x)$ for a sample of size $N=1,024$ from a generalized extreme value distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.

FIGURE 4.17: $\hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C. 2 under the name "Stable3". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.

FIGURE 4.18: $\hat{f}(x)$ for a sample of size $N=1,024$ from a uniform distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE 4.19: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of six uniform distributions with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE 4.20: $\hat{f}(x)$ for a sample of size $N=65,536$ from a mixture model of six uniform distributions with the parameters given in the code in appendix C. 2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE 4.21: Six distributions used for the computational efficiency of the SE method. (a) Bimodal distribution (b) Beta distribution $a=2$, $b=0.5$ (c) Beta distribution $a=0.5, b=1.5$ (d) Trimodal normal distribution (e) Contaminated normal distribution (f) Birnbaum Saunders distribution.

FIGURE 4.22: The computational times for the SE method which uses the random search minimization code to minimize $\Delta \xi$. (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{20}.

FIGURE 4.23: The computational times for the SE method which uses the golden ratio bifurcation search minimization code to minimize $\Delta \xi$ and with maximum block sizes of 100,000 . (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{21}.

FIGURE 4.24: The computational times for the SE method which uses the golden ratio bifurcation search minimization code to minimize $\Delta \xi$ and with maximum block sizes of 50,000 . (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{20}.

FIGURE A.1: Estimate for a beta distribution with $a=0.5$ and $b=0.5$.
FIGURE A.2: Estimate for a beta distribution with $a=1.5$ and $b=0.5$.
FIGURE A.3: Estimate for a beta distribution with $a=2$ and $b=0.5 . \quad 57$
FIGURE A.4: Estimate for a bimodal normal distribution. 58
FIGURE A.5: Estimate for a Birnbaum Saunders distribution. 58
FIGURE A.6: Estimate for a contaminated normal distribution. 59
FIGURE A.7: Estimate for a mixture model created from uniform 59 distributions.

FIGURE A.8: Estimate for a mixture model created from uniform distributions.

FIGURE A.9: Estimate for a trimodal normal distribution.

FIGURE B.1: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of three uniform distributions with the parameters given in the code in appendix C. 2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from $R(e)$ kde estimator.

FIGURE B.2: $\hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from $R(e)$ kde estimator.

FIGURE B.3: $\hat{f}(x)$ for a sample of size $N=1,024$ from a bimodal normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE B. $4: \hat{f}(x)$ for a sample of size $N=1,024$ from a trimodal normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE B.5: $\hat{f}(x)$ for a sample of size $N=1,024$ from a t locationScale distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE B. $6: \hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C. 2 under the name "Stable2". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE B.7: $\hat{f}(x)$ for a sample of size $N=1,024$ from a contaminated normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

FIGURE B.8: $\hat{f}(x)$ for a sample of size $N=65,536$ from a mixture model

LIST OF ABBREVIATIONS

$N_{\text {blocks }}$ number of data points in a block
block subset of data points from the sample that fall within an upper and lower boundary
cdf cumulative density function
KDE kernel density estimation
LL quasi-log-likelihood
ME mean error
N number of data points in sample
NMEM non-parametric maximum entropy method
OBT optimized branching tree
pdf probability density function
QQ quantile-quantile
SE stitching estimator
SQR scaled quantile residuals
SURD sample uniform random data
SURD coverage a value for the cdf of the LL function
target coverage target SURD coverage for $\hat{f}(x)$ from NMEM

CHAPTER 1: INTRODUCTION

Being able to quickly and accurately estimate a pdf for univariate data is of fundamental importance to many areas both within and outside of physics. An example of this importance is in the field of Bioinformatics in which it is crucial to have methods for pdf estimation that can provide high throughput for large amounts of data. Another example which is outside the field of physics, such as in finance, it is desired to have an estimate for the pdf of a sample of univariant data that is accurate about the most likely to occur events to ensure for lower risk investments. Among the example applications given there are numerous other areas where pdf estimation is of great importance, such as, damage detection in engineering [2], isotope analysis in archaeology [3], and econometric data analysis in economics [4]. The applications for pdf estimators exemplified above assure that the use of a pdf estimator is certainly needed in many areas of analysis, but a continuing issue is that the method of estimation is left to the user. If the annalist has a wide range of experience, the form of the pdf estimate can be selected to obtain an accurate representation of the data. However, this would be an unreasonable approach for large numbers of datasets with no knowledge a priori of the general trends in the data. The annalist must still choose an estimator, but without objective criteria this can introduce subjective bias into the estimated pdfs. There are many methods for pdf estimation all of which contain their own advantages and disadvantages; some of which will be reviewed below.

1.1 Histograms

The first and one of the most widely used is the histogram method. This approach is the easiest to implement method for defining the probability distribution for a
given set of data. Simply: define a bin width, set a bin origin, partition the span of the data using the defined bin width, then generate a bar graph from the number of data points falling in a given bin [5]. Unfortunately, the choice of bin size and bin location can dramatically change the general shape of the probability distribution, which can lead to the loss of crucial information or the detection of erroneous features from random fluctuations in the data. Another downside to using histograms to generate probability distributions is that they do not provide a continuous model for the probability density function, which may be desired to accurately generate other statistical information. The estimate of a pdf, $\hat{f}(x)$, using the histogram method is formally defined by equation 1.1.

$$
\begin{equation*}
\hat{f}(x \mid \widetilde{\boldsymbol{x}}, \boldsymbol{w})=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{w_{i}} I\left(x-\widetilde{x}_{i}, w_{i}\right) \tag{1.1}
\end{equation*}
$$

Where $\widetilde{x}_{i} \equiv$ bin center, $w_{i} \equiv$ bin width, and $I\left(x-\widetilde{x}_{i}, w_{i}\right)$ is normally referred to as the indicator function and is defined by equation 1.2 [6].

$$
I\left(x-\widetilde{x}_{i}, w_{i}\right)= \begin{cases}1 & x \in\left[-\frac{w}{2}, \frac{w}{2}\right) \tag{1.2}\\ 0 & \text { otherwise }\end{cases}
$$

The definition for $\hat{f}(x)$ from the histogram method in equation 1.1 has been left general. When w_{i} and $\widetilde{x}_{i+1}-\widetilde{x}_{i}$ is constant for all i then this is the usually referred to probability density estimate using the histogram method. On the other hand if w_{i} and $\widetilde{x}_{i+1}-\widetilde{x_{i}}$ are allowed to vary based on data driven criterion then the histogram method is referred to as an adaptive histogram method. Adaptive histogram methods improve $\hat{f}(x)$ over the usual histogram approach, however, information about the data's location within a bin is still lost, creating a discontinuous model.

1.2 Kernel density estimation

Another ubiquitous method for univariant data pdf estimation is that of kernel density estimation (KDE). The method consists of choosing a kernel basis function, $K(x)$, with a specific set of parameters. Once the kernel and parameters are selected a linear superposition of the N kernels is constructed to estimate the data. Similar to the bin width size from the histogram method there is a choice of bandwidth size for the kernel function. The most general form of KDE is shown in equation 1.3, where β is the shift parameter and h is the bandwidth parameter. Equation 1.3 describes adaptive bandwidth KDE when h is allowed to be determine from data driven criterion [7] or standard KDE when h is constant.

$$
\begin{equation*}
\hat{f}(x \mid \boldsymbol{\beta}, \boldsymbol{h})=\frac{1}{N} \sum_{i=1}^{N} K\left(x \mid \beta_{i}, h_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{h_{i}} K\left(\frac{x-\beta_{i}}{h_{i}}\right) \tag{1.3}
\end{equation*}
$$

As an example, a common choice of kernel is that of a Gaussian distribution with the parameters being the mean, μ, and standard deviation, σ. Therefore the pdf estimate, $\hat{f}(x)$, of the true pdf, $f(x)$, is calculated using equation 1.4.

$$
\begin{equation*}
\hat{f}(x \mid \boldsymbol{\sigma}, \boldsymbol{\mu})=\frac{1}{N} \sum_{i=1}^{N} K\left(x \mid \sigma_{i}, \mu_{i}\right)=\frac{1}{N} \sum_{i=1}^{N} \frac{1}{\sigma_{i} \sqrt{2 \pi}} e^{-\frac{\left(x-\mu_{i}\right)^{2}}{2 \sigma_{i}{ }^{2}}} \tag{1.4}
\end{equation*}
$$

Using KDE over histograms still has its challenges that the annalist must face. The series of issues that must be considered when using KDE are: 1) Which kernel is the most suited for the dataset? 2) What size basis, N, is necessary to discriminate relevant trends in the data from superfluous noise? 3) What specific values for the parameters fit the data best? Both 1 and 2 are commonly left to the annalist's interpretation of the dataset, however, methods are available to determine the parameters through data driven processes; these methods are termed non-parametric KDE. An example of such a non-parametric method is that of the histogram and another is to
take $\hat{f}(x)$, as in equation 1.3 and minimize the mean square error (MSE), or L_{2} error, for the parameters $\boldsymbol{\beta}, \boldsymbol{h}$ using a data driven bandwidth selector method defined in [8]; other L_{p} errors could be used.

1.3 Alternative pdf estimation methods

More sophisticated non-parametric probability estimation algorithms have been developed over the past few decades that have tried to go beyond the different variants of KDE and adaptive KDE. Many proposed estimators utilize physical concepts that are very familiar to physicist and mathematicians, such as, utilizing the equations that describe diffusion to aid in KDE [9, 10]. Other proposed estimators utilize methods that have been familiar to statisticians and computer scientist since the 1960s and have been developed under statistical learning theory. Examples of these approaches are the use of a support vector machine or an artificial neural network $[11,12]$. These methods have shown improvement over KDE but have their respective relative drawbacks. Either, the methods have increased sophistication in the theory and algorithms or the need for a priori knowledge of the expected random variable's expected outcome i.e. training datasets to teach the algorithm. Therefore, it is advantageous to explore methods of probability density estimation that still can be robust, as well as, relatively simple.

1.4 Estimators developed in the BMPG group

As eluded to above, there are methods of pdf estimation that contain a set of parameters, basis size, that are used to construct a parameter space where with the aid of a specific metric the parameters are estimated. However, in many cases the optimal basis size is unknown or perhaps can never be known, therefore, it is advantageous to use a non-parametric estimation method that can adapt the basis size for a specific criterion. For this reason, the research in the conducted BMPG (BioMolecular Physics Group) utilized an estimator developed by Dr. Jenny Farmer
and Dr. Donald Jacobs for determining $\hat{f}(x)$. This approach has been termed the non-parametric maximum entropy method (NMEM), which uses a method of funnel diffusion defined in $[13,1]$ to estimate the parameters of $\hat{f}(x)$ while exploring and adapting the parameter space.

The NMEM was intended to be used for high data throughput. This method was found to be robust and computationally efficient for a large number of common distributions [1]. However, as is the case when attempting to create a general estimator for a broad range of datasets, the method has limitations. The NMEM estimator becomes computationally inefficient and/or less accurate with divergent and heavy tailed distributions. The samples from these difficult distributions are far from being uniform and the NMEM makes a decision to truncate a series expansion to save on computational cost. The truncation of the series expansion leads to the introduction of systematic errors in the pdf estimates. To improve the estimate of pdfs for these difficult cases Dr. Jacobs developed an estimation method termed the stitching estimator (SE), which utilizes the NMEM estimator to find $\hat{f}(x)$. The stitching estimator is given this name because the range of the sample is partitioned into blocks that the NMEM estimator is applied too. The reduced sample sizes of the blocks create lower variance in the density of the data per block, which allows NMEM to be both fast and accurate. The partitioning of the sample into blocks is akin to how a histogram partitions the data sample into bins. Once the pdf estimates per block are determined, they are then stitched together using a weighted average technique.

The stitching method for determining $\hat{f}(x)$ has empirically shown a significant improvement over the NMEM method for many divergent and heavy tailed distributions. Although noticeable improvement has been observed there are still characteristics of the estimator that must be refined. 1) As the sample size for a given distribution increase the tendency for over fitting arises. 2) For divergent distributions and heavy tailed distributions (ex. stable distribution) $\hat{f}(x)$ for the blocks about the tails or
divergent areas of the distribution retain a non-negligible probability to fail by either taking too long to estimate or being be poorly estimated. 3) The determination of the block lengths or number of data points per block can significantly vary the accuracy of $\hat{f}(x)$ to $f(x)$. Problem 2 turns out to be heavily dependent on problem 3 as will be discussed later and has motivated the focus of this thesis to solve problem 3.

CHAPTER 2: STITCH ESTIMATOR BASICS

2.1 Define blocks

The first procedure for the SE method is akin to a histogram approach, where a bin size must be defined to partition the sample of the random variable. This procedure for the SE method partitions the sample into what are defined as blocks. Once the total number of k blocks has been determined the NMEM estimator is utilized to come up with an estimate, $\hat{f}_{k}(x)$, for all blocks. The method of defining blocks is implemented to divide and concur difficult distribution types, which is a common place tactic when attempting to find solutions to difficult problems. Figure 2.1 shows an example of how the sample data is partitioned into blocks where estimates $\hat{f}_{k}(x)$ for each block are obtained and then stitched together. Figure 2.1 also displays the length and number of data points for the each respective block. It is advantageous to divide the pdf estimate problem into blocks, because this allows for easy implementation of a multithreaded algorithm. Being able to create a multithreaded algorithm with the NMEM estimator as the backbone of the script enables the algorithm to be just as efficient as NMEM estimator while significantly increasing the quality of the pdf estimates for a given sample size.

There are several approaches that can be implemented to partition the data, but the two broad categories are classified as a fixed or adaptive methods. The methods for determining the blocks sizes that were initially implemented in the algorithm are discussed in detail below.

Figure 2.1: (a) Total $\hat{f}(x)$ for data generated from a Beta distribution ($a=2, b=0.5$) that has been stitched together from $\hat{f}_{k}(x)$ for each block. (b) Displaying each $\hat{f}_{k}(x)$ prior to stitching adjacent estimates to produce $\hat{f}(x)$. (c) Number of data points in each block. (d) Length of each block.

2.1.1 Fixed number of blocks

An easily implemented method for determining the block sizes was to require the total number of blocks to be fixed and this was achieved by requiring the number of sample points per block to be proportional to the sample size, as shown in equation 2.1, where c is the percentage coefficient. The number of sample points per block was fixed to be a specific percentage of the sample size. For this method the percentage of points to fall within each block is currently user specified with a common percentage
being 20% of the sample size.

$$
\begin{equation*}
N_{\text {block }}=\lceil c N\rceil \tag{2.1}
\end{equation*}
$$

Figure 2.2 displays two methods for generating blocks with approximately the same number of data points per block. The first approach, show in figure 2.2(a), creates blocks of fixed size by picking a near central point in the samples range then creates blocks $N_{\text {blocks }}$ in size. This processes of creating blocks of size $N_{\text {blocks }}$ continues outward toward the edges of the sample's range until blocks $N_{\text {blocks }}$ in size can no longer be created. This method leads to blocks with the same number of data points until

Figure 2.2: $\hat{f}(x)$ for Beta distribution $(\beta=1.5, \gamma=0.5)$ (a) Blocks created from center outward. (b) $\hat{f}(x)$ for blocks created from center outward. (c) Blocks created from left to right. (d) $\hat{f}(x)$ for blocks created from left to right.
the very edges. The second approach, shown in figure 2.2(c), creates blocks $N_{\text {block }}$ in size starting from the right most position in the sample's range. Similar to the previous method, this process continues until blocks $N_{\text {blocks }}$ in size can no longer be created. The method from creating blocks of fixed size in $2.2(\mathrm{a})$ is a more elegant approach over the method in 2.2 (c) due to the symmetric end block sizes, which eliminates any potential for a bias in $\hat{f}(x)$ due to block partitions. However, in application the choice of method for partitioning the sample into blocks has little effect on the overall estimate $\hat{f}(x)$ for the majority of distribution types.

2.1.2 M-slope

The magic slope (M-slope) method is an adaptive algorithm that was initially implemented to improve the SE which determines the block sizes by updating a given block's size based on a comparison of the M-slope parameter to the ratio of the length of the block to the smallest distance between adjacent points within the block. Equation 2.2 shows the relationship that is used for the comparison of $\alpha^{(k)}$ with Mslope for each block, where $\Delta x_{i} \equiv x_{i+1}-x_{i}$ is the difference between pairs of data points in the block and the set of Δx 's for the k th block is defined as $\{\Delta x\}^{(k)}$.

$$
\begin{equation*}
\alpha^{(k)} \equiv \frac{X_{\text {Right Block Boundary }}^{(k)}-X_{\text {Left Block Boundary }}^{(k)}}{\min \{\Delta x\}^{(k)}} \tag{2.2}
\end{equation*}
$$

Before the minimum distance between data points in the $k t h$ block is computed a few checks are made to ensure that the data is continuous, that there will not be a difference between data points that would numerically result in a difference of zero, and that there are not random pairs of data points exceedingly close due to random sampling. If any of the checks fail a fuzzing procedure is carried out that adds random noise to the dataset. M-slope is optimized through iterative methods to make sure the block sizes are neither too large or small for the block sample under consideration. The conditions for determining whether or not a block is too large or small, as well
as, the initial starting M-slope value has been chosen through empirical investigation. The ratio $\alpha^{(k)}$ is related the expected slope variation of the estimate from a block's sample. Therefore M-slope is optimized to ensure estimates obtained for each block have minimal slope variation across the block. The benefit of this method is that the acceptable M-slope conditions already are well suited for general types of datasets and may be further improved if necessary to increase the scope of distribution types that the SE can readily handle.

2.2 Create secondary blocks

Once the initial bock sizes have been established a secondary set of blocks is created to further improve $\hat{f}(x)$ and may be interpreted as creating block "layers" very similar to how bricks are laid as seen in figure 2.3. The second level of blocks created overlaps the boundaries of the first block level with the second level of block's boundaries being located at the mean position for the first level of blocks. Establishing the second level of blocks helps ensure that a more accurate prediction of $\hat{f}(x)$ is constructed from the stitching of $\hat{f}_{k}(x) \forall k$ by reducing the chance for individual blocks from over fitting to random fluctuations within a block's sample.

Figure 2.3: Visual interpretation for creating block layers for a sample of data.

2.3 Find $\hat{f}_{k}(x)$ per block via NMEM estimator

After all of the block sizes have been established the estimate $\hat{f}(x)$ is computed using the NMEM estimator created by Dr. Farmer and Dr. Jacobs. The C ++
code that performs NMEM estimation on a set of data has been developed to have a number of useful features that a user may control. One which will be mentioned is the return of a total score that is related to the quality of the estimate from a scoring function defined in $[1,14]$. This score has the potential to be used as an acceptance criterion to decide whether $\hat{f}_{k}(x)$ should be excepted, rejected, or recalculated. The NMEM C++ program is quite fast in its default form and may be further sped up by some degree from modification of user controlled input options. It is advantageous to have a powerful estimation method that is also fast to apply to each block, because the algorithm created in MATLAB for the SE is created to be multithreaded. Thus, the SE can be nearly as fast as the NMEM estimator while yielding consistent pdf estimates for common distributions and is able provide pdf estimates for exotic distributions that the NMEM estimator (any many other estimators) have difficulty with. Once the block sizes are defined the NMEM estimator will run for all of the blocks in parallel, which can significantly speed up the time of computation depending on the number of available processors.

2.3.1 Scoring function

The scoring function is a quasi-log-likelihood (LL) function for typical fluctuations in sample uniform random data (SURD) and is rigorously defined defined in [1, 14]. The reason for the use of the qualifier "quasi" is because there are correlations built into the function due sorting the sample.
maximizing the LL function leads to $\hat{f}(x)$ over fitting to the sample, therefore, a target score is set that is in the range of expected $\hat{f}(x)$ outcomes but will not yield an overfitted estimate. Figure 2.4 displays the pdf for the LL function, which shows the typical fluctuations expected in SURD. The quality of the $\hat{f}(x)$ is related to how well it exhibits SURD. Also, a point along the cdf of the LL function is defined as the SURD coverage and relates how much of $\hat{f}(x)$ exhibits SURD. For example, if $\hat{f}(x)$ received a score of -0.37 from the LL function, this would correspond to $\hat{f}(x)$

Figure 2.4: Pdf for Log-Likelihood function. This figure shows several threshold values that have a chance of occuring and has come from [1].
exhibiting approximately 40% SURD coverage.

2.3.2 Scaled quantile residual

For a given sample of size N the data points $x^{(i)}$ for $i \in[1, N]$ are sorted and transformed to $U^{(i)}$ using the cdf of $\hat{f}(x)$. Therefore, $U^{(i)}$ has a range of $[0,1]$ and $U^{(i)}<U^{(i+1)} \forall i \in[1, N]$. From order statistics the pdf of finding $U^{(i)}$ at position u is,

$$
\begin{equation*}
p_{i}(u \mid N)=\frac{N!(1-u)^{N-i} u^{i-1}}{(N-i)!(i-1)!} \tag{2.3}
\end{equation*}
$$

And from this the mean and standard deviation are given by,

$$
\begin{equation*}
\mu_{i}=\frac{i}{N+1} \quad \sigma_{i}=\sqrt{\frac{\mu_{i}\left(1-\mu_{i}\right)}{N+2}} \tag{2.4}
\end{equation*}
$$

Using μ the residuals for the transformed estimate $\hat{f}(x)$ are defined as $U^{(i)}-\mu$ and can be made sample size invariant by multiplying by $\sqrt{N+2}$. Thus, the scaled quantile residuals, Δ_{i}, is defined by,

$$
\begin{equation*}
\Delta_{i}=\sqrt{N+2}\left(U^{(i)}-\mu_{i}\right) \tag{2.5}
\end{equation*}
$$

Using Δ_{i}, SQR plots can be generated to evaluate the quality of the estimates $\hat{f}(x)$. To extend the ability for SQR plots to represent the quality of $\hat{f}(x)$ a 99% confidence interval is plotted along with Δ_{i} using $\pm 3.4 \sqrt{N+1} \sigma_{i}$.

Examples of quantile-quantile (QQ) plots compared to SQR plots as the sample size increases are displayed in figure 2.5. For small sample sizes both QQ and SQR plots exhibit reasonable statistical resolution, however, as the sample size increases from $N=256$ in figure 2.5(a) up to $N=32,768$ in figure 2.5(d) the resolution of the QQ plots diminishes, while the SQR plots maintain the same resolution. The reason for this occurrence is due to the estimated pdf improving as the sample size increases, therefore the residuals between the $\hat{f}(x)$ and $f(x)$ will in general decreases in size. The use of the phrase "in general" is to imply that a reasonable $\hat{f}(x)$ for $f(x)$ must be found, otherwise other features in the QQ plot will be present.

The SQR plots shown in figure 2.5 all are enveloped by a grey oval which represents the boundaries for a 99% confidence interval that the sample comes from $\hat{f}(x)$. If the SQR plotted line starts to fall outside of the 99% confidence interval then $\hat{f}(x)$ could still be a reasonable estimate for the sample, but if much of the SQR plotted line falls outside of the 99% confidence interval $\hat{f}(x)$ should rejected or taken with caution.

Figure 2.5: QQ and SQR plots for a standard normal distribution with sample sizes consisting of (a) 256 (b) 1,024 (c) 8,192 (d) 32,768.
2.4 Stitch together $\hat{f}_{k}(x)$ and $\hat{f}_{k+1}(x)$

The pdf estimates for each individual block are stitched together using a weighted average method defined by equations 2.6-2.12 and an example of the method is shown in section 2.6.4 figure 2.11. For each block the cumulative distribution function, $\hat{F}(x)$, is estimated and the pdf estimate of the overlap region, $\hat{f}_{s}(x)$, for the two blocks is calculated by using the cdf for each block to define weights for that block's pdfs. The variables u and v shown in equations 2.6 and 2.7 are created to ensure that resulting weights, w_{k} and w_{k+1}, will take values in the range $[0,1]$. The variables a and b defined in equations 2.8 and 2.9 are used to effect the rate of transition from the left to the right block's pdf estimate. The rate of transition maybe affected by changing the exponent to equations 2.8 and 2.9 , however, an optimal exponent of 2 has been heuristically determined. The final weights, w_{k} and w_{k+1}, are then defined by equations 2.10 and 2.11 such that w_{k} goes from 1 to 0 and w_{k+1} goes from 0 to 1 as x increases.

$$
\begin{align*}
u & =\frac{\hat{F}_{k}(x)-\min \left(\hat{F}_{k}(x)\right)}{\left.\max \left(\hat{F}_{k}(x)\right)-\min \left(\hat{F}_{k}(x)\right)\right)} \tag{2.6}\\
v & =\frac{\hat{F}_{k+1}(x)-\min \left(\hat{F}_{k+1}(x)\right)}{\left.\max \left(\hat{F}_{k+1}(x)\right)-\min \left(\hat{F}_{k+1}(x)\right)\right)} \tag{2.7}\\
a & =(1-u)^{2} \tag{2.8}\\
b & =v^{2} \tag{2.9}\\
w_{k+1} & =\frac{b}{a+b} \tag{2.10}\\
w_{k} & =\frac{a}{a+b} \tag{2.11}\\
\hat{f}_{s}(x) & =w_{k} \hat{f}_{k}(x)+w_{k+1} \hat{f}_{k+1}(x) \tag{2.12}
\end{align*}
$$

Figure 2.6: Algorithm flow chart for stitching method.

2.5 Stitching method algorithm

Features of the SE have been discussed in the previous sections and are part of the algorithm presented in the flow chart shown in figure 2.6. The pseudo code which accompanies this flowchart is described below.

1. Read in univariant sample.
2. Define the weights for different target coverage using the LL scoring function.
3. Define the upper and lower boundaries for the first layer of blocks using initial M-slope criteria.
4. Define the upper and lower boundaries for the second layer of blocks that are staggering the first layer. The second layer's block boundaries are the mean position for the respective upper and lower boundaries of the first block layer.
5. Determine block size for all layers of blocks.
6. Test if the mean block size and the number of total blocks meet acceptable criteria to ensure the blocks are not too small or too large. When the two criteria are met move on to step 7, otherwise, adjust M-slope and return to step 3.
7. Determine the length scale and shift for all blocks.
8. Partition the data according to the number of blocks. Center all the partitions about the origin and scale the data using the information determined in step 7 .
9. Run the NMEM estimator for each partition of data and each target threshold in parallel.
10. Combine the output estimates for each partition using a weighted average of the different target coverage values with the weights defined in step 2. Apply scaling to the pdf estimates, as well as, position each pdf estimate to the block's original starting position.
11. Sync scaled and shifted partitioned estimates back into a single range.
12. Stitch the partitioned data in each block together using the weighted average defined in equation 2.12.

2.6 Preliminary results

2.6.1 Synthetic test dataset

To determine the efficiency and accuracy of the SE over other ubiquitous pdf estimators a standardized dataset of distributions for sample sizes from 2^{9} to 2^{20} along with as many trials per sample as need has been created with the use of a MATLAB script. Having the standard dataset that utilizes MATLAB's random number generators will ensure a method for testing different estimators in an unbiased manor. Some examples of the distributions that will be under consideration are displayed in figure 2.7. This standardized test data will not only be useful for this research endeavor but will become a tool for any future work conducted in the BPMG's lab. The data is generated on call when needed through the MATLAB scripted in appendix C.2.

All random samples generated from mixture distributions were created using a binomial sampling method for each distribution in the mixture. The widely known binomial distribution for number of trials N and probability of success p is given by

Figure 2.7: (a) Generalized extreme value distribution (b) Uniform distribution (c) Generalized Pareto distribution (d) Mixture of Birnbaum-Saunders and stable distributions (e) Mixture of two normal distributions (f) Mixture of three Stable distributions.
equation 2.13. A random sample from this distribution is defined by equation 2.14. Therefore, form distributions in a mixture distribution, the number of samples to be generated from each one is given by equations 2.15-2.17. These equations are used to create the number of data points from each distribution sequentially; starting with n_{1} and ending with n_{m}.

$$
\begin{align*}
B(N, p) & =\binom{N}{x} p^{x}(1-p)^{(N-x)} ; x=0,1,2, \ldots, N \tag{2.13}\\
B_{s}(N, p) & \equiv \text { random sample from } B(N, p) \tag{2.14}\\
n_{1} & =B_{s}\left(N, p_{1}\right) \tag{2.15}\\
n_{i} & =B_{s}\left(N-\sum_{j=1}^{i-1} n_{j}, p_{i}\left(\sum_{j=i}^{m} p_{j}\right)^{-1}\right) \tag{2.16}\\
n_{m} & =N-\sum_{i=1}^{m-1} n_{i} \tag{2.17}
\end{align*}
$$

This ensures proper random sampling from each distribution in the mixture. Other methods using a uniform random sampling method were initially employed but were less computationally efficient compared to using a binomial random sampling approach.

Figure 2.8: Visual representation of mixture sampling procedure for the first two distributions in a mixture of five distributions.

For example, using equations 2.15-2.17 to create a mixture distribution of five with probabilities $p_{1}, p_{2}, p_{3}, p_{4}$, and p_{5} for each distribution type yields,

$$
\begin{align*}
& n_{1}=B_{s}\left(N, p_{1}\right) \tag{2.18}\\
& n_{2}=B_{s}\left(N-n_{1}, \frac{p_{2}}{p_{2}+p_{3}+p_{4}+p_{5}}\right) \tag{2.19}\\
& n_{3}=B_{s}\left(N-n_{1}-n_{2}, \frac{p_{3}}{p_{3}+p_{4}+p_{5}}\right) \tag{2.20}\\
& n_{4}=B_{s}\left(N-n_{1}-n_{2}-n_{3}, \frac{p_{4}}{p_{4}+p_{5}}\right) \tag{2.21}\\
& n_{5}=N-n_{1}-n_{2}-n_{3}-n_{4} \tag{2.22}
\end{align*}
$$

The algorithmic approach used in the example creates starts by calculating n_{1} by randomly sampling the binomial distribution for N and p_{1}. Given n_{1} data points from N are from distribution one, n_{2} data points are generated by random sampling the binomial distribution for $N-n_{1}$ available data points and the new conditional probability $\frac{p_{2}}{p_{2}+p_{3}+p_{4}+p_{5}}$. This procedure is continued until n_{5}, where n_{5} simply equals the number of data points not allocated to any of the other distributions in the mixture. Figure
2.8 shows a visual interpretation for what the mixture sampling procedure does for the first two distributions. The number of data points allocated for a distribution is removed from consideration and the probabilities for the other distributions are then equal to the conditional probability given the remaining distributions.
2.6.2 Fixed number of points per block

Figure 2.9: Displays the pdf estimates, $\hat{f}(x)$, for different sample sizes for a Beta distribution ($\mathrm{a}=0.5, \mathrm{~b}=0.5$) and where the number of data points per block were fixed.

A method initially explored for defining the block size was to require each block to have the same number of data points, $N_{\text {block }}$. Doing so could ensure that the user assigned enough data points per block to gain a reasonable estimate. Fixing the number of data points per block required the number of blocks to vary depending on the sample size. As seen in Figure 2.9 this will led to a high variance in $\hat{f}(x)$ compared to $f(x)$, but an $\hat{f}(x)$ with little bias. Another disadvantage to fixing $N_{\text {block }}$

Figure 2.10: Displays the pdf estimates, $\hat{f}(x)$, for different sample sizes for a Beta distribution ($\mathrm{a}=0.5, \mathrm{~b}=0.5$) and where the number of blocks were fixed.
is that for sets of data where the sample sizes vary greatly over the set an optimal $N_{\text {block }}$ may only work well over a subset of the entire set. Some $N_{\text {block }}$ may work for large samples, but will be incompatible for small samples, while the converse leads to an $\hat{f}(x)$ with high variance. For these reasons this method of block definition was eliminated.

2.6.3 Fixed number of blocks

Another approach to defining the block sizes was to require the number of blocks to be fixed opposed to the number of data points in each block. This approach allowed the user to define the total number of blocks by requiring that a certain percentage of the total sample falls into each block. Figure 2.10 shows $\hat{f}(x)$ for a beta distribution

Figure 2.11: (a) Shows the cdf etimates, $\hat{F}(x)$, for the nth and $\mathrm{n}+1$ block's overlap region. (b) Displays the pdf estimates, $\hat{f}(x)$, for the adjacent blocks, as well as, the weighted averaged estimate labeled stitched pdf.
for varying sample sizes. Fixing the number of blocks by scaling the number of data points reduces the variance of the $\hat{f}(x)$. This was to be expected, because as the sample size increases the NMEM estimator is able to glean what the important trends in the data are verse unimportant noise. However, this method of block definition has difficulties with samples that contain heavy tails or divergences. This is caused from the density of the blocks data being relatively sparse in the one region while dense in another, which can lead to the NMEM having difficulties computing the pdf estimate for the block. For this reason, the block definition method was eliminated.

2.6.4 Weighted average using CDF

The current stitching method uses a weighted average with the cdf, $\hat{F}(x)$, for the adjacent blocks being the weights. Figure 2.11 displays an example of $\hat{F}(x)$ along with $\hat{f}(x)$ for two adjacent blocks. Using the cdf as weights to generated the estimate, $\hat{f}_{s}(x)$, in the blocks overlap region ensures that the stitched curved will still exhibit the behavior for the underlying data.

Another method previously explored for generating $\hat{f}_{s}(x)$ was to us a 3rd-order polynomial fit between $\hat{f}_{k}(x)$ and $\hat{f}_{k+1}(x)$. This was achieved by taking the third order polynomial, $\hat{f}_{s}(x)=c_{4} x^{3}+c_{3} x^{2}+c_{2} x+c_{1}$ and requiring the following boundary conditions,

$$
\begin{align*}
\hat{f}_{k}\left(x_{\text {Right }}\right) & =\hat{f}_{k+1}\left(x_{\text {Right }}\right) \tag{2.23}\\
\hat{f}_{k}\left(x_{\text {Left }}\right) & =\hat{f}_{k+1}\left(x_{\text {Left }}\right) \tag{2.24}\\
\frac{d \hat{f}_{k}\left(x_{\text {Right }}\right)}{d x} & =\frac{d \hat{f}_{k+1}\left(x_{\text {Right }}\right)}{d x} \tag{2.25}\\
\frac{d \hat{f}_{k}\left(x_{\text {Left }}\right)}{d x} & =\frac{d \hat{f}_{k+1}\left(x_{\text {Left }}\right)}{d x} \tag{2.26}
\end{align*}
$$

to be used to solve for the coefficients $c_{4}, c_{3}, c_{2}, c_{1}$. Where $x_{\text {Left }}$ and $x_{\text {Right }}$ are the left and right most x-coordinates for the overlap region under consideration. Using the polynomial fit to stitch the adjacent pdf estimates together yielded similar results to the weighted average method previously discussed and for this reason was not considered further, although in remains a viable alternative.

2.6.5 Blacklist for $\hat{f}_{k}(x)$

For the class of distributions with heavy tails the NMEM has shown to have a high likelihood to fail for the exterior blocks on the heavy tail. For this reason, a blacklist of the failed NMEM estimates, $\hat{f}_{k}(x)$, is created. These blacklisted blocks are
initially removed. The pdf estimate is attempted for a sub sample for the blacklisted blocks. If successful more of the original blacklisted sample may be added and another pdf estimate attempt made. This is an iterative process that allows heavy tails of distributions to be better estimated. Figure 2.12(a) shows an example of how a failed block estimate leads to systematic error in the SQR plots and figure 2.12(b) shows how the blacklisting routine is able to remove the systematic error. However, after further research into another method of block definition, called R-ratio, the need to have the blacklisting routine was potentially unnecessary.

Figure 2.12: Figure (a) shows an example of a failed block estimate for a heavy tailed stable distribution. This leads to visible systematic error in the SQR plot (b) blacklisted routine is implemented for a mixture distribution that is more prone to yield failed block estimates than the single stable distribtuion. The SQR plot shows that the systematic error no longer exists, because there are no longer any failed block estimates.

CHAPTER 3: RESEARCH METHODOLOGY

3.1 Optimized branching tree

Another adaptive approach for determining the appropriate size of each block, as well as, the total number of blocks has been termed the optimized branching tree method. The adaptive algorithm initially evaluates the variation in the density of the sample's data points then recursively makes partition decisions based on a comparison of the parameter ξ with the sample size dependent threshold parameter $\Gamma(N)$ which creates new blocks. $\Gamma(N)$ and ξ are defined in equations 3.1 and 3.2 , where c_{0} is a scaling coefficient and p is an exponential coefficient that are heuristically determined to pick the appropriate $\Gamma(N)$ for general probability density estimation applications. B represents the number of data points per block and R , referred to as R-ratio, is a parameter that represents the variation in the density of the data points in the block.

$$
\begin{align*}
\Gamma(N) & =c_{0} N^{p_{0}} \tag{3.1}\\
\xi & =\frac{B^{p_{1}} * R^{p_{2}}}{N^{p_{2}}} \tag{3.2}
\end{align*}
$$

Figure 3.1: R-ratio for a block is calculated by taking the ratio of the average distances between adjacent data points that lie within the windows, w, shown in yellow.

To calculate R-ratio a block's data is initially sorted then the difference of all adjacent pairs of data points are calculated. After, the set of Δx values are sorted

Table 3.1: Table of the parameter set used to generated the SE pdf estimates.

c_{0}	c_{1}	p_{0}	p_{1}	p_{2}	p_{3}	p_{4}
8	0.125	0.25	1	0.5	1	0.5

too. As shown in equations 3.4 and $3.5, \Delta x_{\min }$ is the mean density for the $w(N)$ most dense pairs of data points in the block's sample and conversely $\Delta x_{\max }$ is the mean density for the $w(N)$ least dense pairs of data points in the block's sample. Figure 3.1 shows which points are being selected for a given block, B, and $w . w(N)$ is a sample size dependent parameter that is utilized to select the number of values from the set of Δx to use when determining $\Delta x_{\min }$ and $\Delta x_{\max }$. This parameter is calculated using equation 3.3 as a rounded up portion of the total sample size, N, where c_{1} is a percentage coefficient. The R-ratio is defined as the ratio of $\Delta x_{\min }$ to $\Delta x_{\max }$ as shown in equation 3.6. The R-ratio coefficient will approach 1 the more uniform the density of the data points in the block and otherwise will increase the less uniform the density of the data points in the block. The parameters from equations 3.1, 3.2, 3.3 are displayed in table 3.1.

$$
\begin{align*}
w(N) & =\left\lceil c_{1} N^{p_{4}}\right\rceil \tag{3.3}\\
\Delta x_{\min } & =\operatorname{mean}\left\{\Delta x_{k} \text { for } k \in[1, w]\right\} \tag{3.4}\\
\Delta x_{\max } & =\operatorname{mean}\left\{\Delta x_{k} \text { for } k \in[N-w+1, N]\right\} \tag{3.5}\\
R & =\frac{\Delta x_{\max }}{\Delta x_{\min }} \tag{3.6}
\end{align*}
$$

The optimized branching tree algorithm starts by calculating ξ for the entire sample and if $\xi<\Gamma$ then the NMEM is applied to the entire sample without creating blocks, otherwise a random partition, n_{0}, is picked and ξ is calculated for the two blocks created by the partitioning. Next the difference between the ξ parameter for the two

Figure 3.2: Example of branching tree algorithm. n_{0} is initially chosen then $\Delta \xi$ is minimized. More levels are created, and the procedure is repeated until all ξ are less than Γ.
blocks,

$$
\begin{equation*}
\Delta \xi_{0}=\xi_{1}-\xi_{0} \tag{3.7}
\end{equation*}
$$

is minimized to obtain two blocks that exhibit approximately the same ξ, where ξ_{0} is the first level and branch of the tree, while ξ_{1} is the first level and second branch of the tree. An example of how the optimized branching algorithm progresses is shown in figure 3.2.

For every level of the tree ξ is compared to Γ and if $\xi<\Gamma$ a new branch in the tree is created, which creates two new blocks. ξ is product of, B, the number of data points per block with, R, a ratio that represents a measure of how uniform the density of the data is for the data points of each partition.

The approach aims to create blocks with subsamples that exhibit a maximum level of uniform density. By requiring the block to contain nearly uniform density data ensures that the estimate made for each block is computationally easier for the NMEM
to obtain and less prone to an inferior estimate for difficult samples.

3.2 Difference error analysis

The mean difference is calculated for every data point x_{n} from all estimates gained from M trials using equation 3.8. This gives a measure of where on average the stitch estimator is under or over estimating the estimate pdfs of the sample.

$$
\begin{equation*}
M E\left(x_{n}\right)=\frac{1}{M} \sum_{i=1}^{M}\left(f\left(x_{n}\right)-\hat{f}\left(x_{n}\right)_{i}\right) \tag{3.8}
\end{equation*}
$$

Knowing the mean error over the estimate pdfs is quite useful information, however, if there are large variations in the estimated pdfs they may counter balance to yield a low mean error. Therefore, the standard deviation of the MAE is computed by equation 3.9 along with the maximum and minimum error for every point x_{n} that is estimated over the M trials.

$$
\begin{equation*}
\sigma\left(x_{n}\right)=\sqrt{\frac{\sum_{i=1}^{M}\left(\left(f\left(x_{n}\right)-\hat{f}\left(x_{n}\right)_{i}\right)-M E\left(x_{n}\right)_{i}\right)^{2}}{M-1}} \tag{3.9}
\end{equation*}
$$

CHAPTER 4: RESULTS

4.1 Optimized branching tree

The block definition for a beta distribution ($a=2$ and $b=0.5$) using the optimized branching tree (OBT) method is shown in figure 4.1. Figure 4.1(a) shows the value the natural \log of ξ for all blocks per level. Therefore, when $\ln (\xi)>\ln (T)$ a new level is created with two new branches, otherwise the block exhibits acceptable uniformly dense data. The zeroth level represents the ξ value for the total sample which is shown in figure $4.1(\mathrm{~b})$ as the grey circles with black edges. The first level in figure 4.1(a) shows two black dots, which are the two values of ξ calculated for the blocks created by the black partition dot of level 1 in figure 4.1(b).

Figure 4.1: (a) Shows the $\xi=B R$ per block for any given level along with the threshold cut off for the given sample size (b) displays the distribution of the data and the block distribution for a beta distribution.

Figure 4.1(b) shows how the blocks are distributed based upon the distribution of the data. More blocks are created towards the region of data that has a higher density to try and maximize how uniform the density is across all of the blocks. This
is done by making the blocks smaller in size, which is shown to be the case in figure 4.2(a).

Figure 4.2: (a) Shows the length of each block (b) Shows the number of data points per block for the beta distribution in figure 4.3.

The number of data points per block is shown in figure $4.2(\mathrm{~b})$, which for the beta distribution trends to increases towards the region with higher density. However, due to the random fluctuations in the sample this trend is only approximate, because there can exist clusters of data points in dense or sparse regions.

Figure 4.3(c) shows the pdf estimate obtained from the block distribution shown in figure 4.1(b) and figure 4.2. The OBT block definition method leads to an excellent pdf estimate with the pdf estimates per block shown in figure 4.3(b). However, from the SQR plot in figure $4.3(\mathrm{a})$ the overall pdf estimate is starting to be over fitted to the sample.

Another example of how the OBT method is able to partition the sample appropriately is shown in figure $4.4(\mathrm{a})$ and (b) for a contaminated normal distribution. The distribution of the block sizes is displayed in figure 4.5(a) and shows that the blocks decrease in length as the density increases. Although the block length may be decreasing, in general, the block size increases when moving from the sparse tails towards the dense center of the sample as seen in figure 4.5(b).

Figure 4.3: (a) The SQR plot for the beta distribution (b) Displays the estimates per block prior to stitching (c) Shows $\hat{f}(x)$ for the beta distribution.

Figure 4.4: (a) Shows the $\xi=B R$ per block for any given level along with the threshold cut off for the given sample size (b) displays the distribution of the data and the block distribution for a contaminated normal distribution.

The overall pdf estimate for the sample along with the pdf estimates per block are shown in figure 4.6(c) and (b) and show the OBT block definition method calculates a block distribution that produces an excellent pdf estimate for the contaminated

Figure 4.5: (a) Shows the length of each block (b) Shows the number of data points per block for the beta distribution in figure 4.6.
normal distribution sample. The SQR plot in figure 4.6(a) shows that the overall pdf estimate is an acceptable estimate.

Figure 4.6: (a) The SQR plot for the beta distribution (b) Displays the estimates per block prior to stitching (c) Shows $\hat{f}(x)$ for the contaminated normal distribution.

The methods for minimizing $\Delta \xi$ have all consisted of efficiently finding a global minimum for $\Delta \xi$. When evaluating ξ for a block there are two extremes, either when
ξ is calculated for the entire block or calculated for the smallest allowable potential new block to be created. When ξ is calculated for the entire block both B and R will be maximum, but when ξ is calculated for the smallest allowable potential new block, then B will be its minimum value and R will be less than that for the entire block. Therefore, as ξ_{0} for one potentially new block is decreasing in value the ξ_{1} for the other potentially new block will be increasing, which will lead to a point where $\xi_{0}=\xi_{1}$ or $\Delta \xi=0$. Figure 4.7 shows an example of the behavior for R, B, and ξ.

Figure 4.7: (a) The distribution of $\Delta \xi$ for the partition made in level one when the partition varies from 1 to N . ξ_{0} (black dashed line) and ξ_{1} (grey dashed line) (b) The distribution of R as the partition sweeps over the range of the sample. R_{0} (black dashed line) and R_{1} (grey dashed line) (c) The distribution of B as the partition sweeps of the range of the sample. B_{0} (black dashed line) and B_{1} (grey dashed line)
4.1.1 maximum block size

Figure 4.8: (a) The block distribution without limiting the maximum block size (b) The block distribution with limiting the maximum block size to 20,000 .

After developing the OBT method for determining the optimum block distribution and heuristically determining a parameter set that worked for general distribution cases, it was observed that the total number of blocks scaled as the sample size, but perhaps not as quickly as desired. Future work will see if this can be mitigated using another parameter set. It could be that the current parameter set is optimal for maintaining uniformity in the density of data within each block even when the sample sizes becomes very large, however, even when this is true it becomes more computationally costly to generate pdf estimates per block. Also, if a block has roughly uniform density across the block for a very large $N_{\text {block }}$, it is reasonable to be able to split the block into smaller blocks that still contain adequate information to make good pdf estimates. For these reasons, there was motivation for the development of a script routine that could control the maximum block size to maintain computational efficiency for very large samples. Figure 4.8(a) shows the block distribution for a sample with 262,144 data points generated from a beta distribution. Figure 4.8(b) shows the new block distribution for the sample after the maximum block size limit
of 20,000 was enforced. This method will be later shown to drastically improve the computation cost the SE requires for large samples.

4.1.2 Average behavior

To evaluate how consistent the SE is when determine the pdf estimate for a specific sized sample, 1000 trials were generated for a sample size of 512 data points for a normal bimodal distribution. Figure 4.9, shows the pdf estimates for all 1000 trial samples and the average overall 1000 trials. There are large fluctuations over the 1000 trials, but all estimates show to capture the features of the data well.

Figure 4.9: The pdf estimates from 1000 trials of samples of size 512 data points and the average across all trials.

Figure 4.10 (a) shows the distribution for the ME over the 1000 trials along the with standard deviation, minimum, and maximum error for all pdf points estimated.

This style of figure has been useful for evaluating where the SE is doing well or not for various distributions. To confirm that the pdf estimates for 1000 trials were all acceptable, the maximum and minimum SQR points were checked to ensure that they all stay with in the 99% confidence interval. Figure 4.10 (b) shows that for the 1000 trials all of the SQR plots stayed within the 99% confidence interval.

Figure 4.10: (a) The mean error across the distribution for every estimated data point, the standard deviation of the error, and the maximum/minimum error for 1000 trials (b) The maximum/minimum sqr fluctuations across all 1000 trials.

4.1.3 sub-sampling sampling

sub-sampling sampling consist of starting with a sample and then generating new samples from the original. There are many specific detail differences when one talks of sub-sampling sampling, but in this work the sub-sampling sampling procedure consist of generating subsamples without replacement that are smaller than the original sample. Then the pdf estimate is determined for each subsample and averaged to give the final pdf estimate. There were two motivations for implementing this method 1) the quality of the pdf estimate could be improved by averaging over many random fluctuations in pdf estimates that would arise and 2) the random fluctuations in the pdf estimates may reduce over fitting. Over fitting is characterized by the SQR plots having small fluctuations centered around zero.

Figure 4.11: $\hat{f}(x)$ determined from averaging 70 pdf estimates from subsamples equal to 60% in size from the original sample of 512 data points. (a) The pdf estimates per subsample and the average pdf estimate (b) The SQR plot for the average pdf estimate.

Figure 4.11(a) displays 70 pdf estimates calculated from subsamples that were 60% the size of the original sample. The pdf estimate for the sample of 512 data points from the uniform distribution shows a good pdf estimate for the actual distribution. Figure 4.11 (b) further confirms that the pdf estimate is acceptable for the original sample.

Figure 4.12 (a) displays the same sub-sampling sampling procedure but from a sample of size 65,636 data points. The pdf estimates from the boot strap samples all give excellent pdf estimates and prevents over fitting as seen through the random fluctuations in the SQR plots from figure 4.12(b).

4.2 Estimator method comparison

In the figures that follow the SE methods is compared to the NMEM estimator along with several popular pdf estimators commonly used in the programming language R. Packages available in R were used for the qualitative comparison of the SE due to the popularity of the language as well as its accessibility. For the comparison of the five pdf estimators used a range of distributions were evaluated. Some of the illu-

Figure 4.12: $\hat{f}(x)$ determined from averaging 70 pdf estimates from subsamples equal to 60% in size from the original sample of 65,536 data points. (a) The pdf estimates per subsample and the averge pdf estimate (b) The SQR plot for the average pdf estimate.
minating cases will be immediately discuss, however, other distribution comparisons are available in appendix B.

The five pdf estimators that are evaluated below are the: SE, NMEM estimator, density estimator built into R, bkde estimator in the KernSmooth R package, and kde estimator in the ks R package. The figures showing $\hat{f}(x)$ calculated by the bkde package show two estimates with a gridsize $=406$, but one with a bandwidth $=0.05$ (blue line) and the other with a bandwidth $=0.25$ (black line). Similarly, the figures showing $\hat{f}(x)$ calculated by the density estimator show two estimates, one using Sheather-Jones bandwidth selection [15] (black line) and the other using the Silverman's "rule of thumb" [16] for bandwidth selection (blue line). The kde estimator in the ks package uses a data driven bandwidth selector developed [17]. The true pdf distribution is displayed as the grey line for reference.

The two bandwidth sizes for the bkde estimator were chosen to show how KDE performs at resolving different features of the sample, while the bandwidth selection methods used for the density estimator were picked to show how well KDE performs
without the need for human intervention. As expected, the figures 4.13-B. 1 show that in general a larger bandwidth has a hard time resolving fine features in the sample, but is less prone to over fitting. Also, a smaller bandwidth will resolve the fine features, but will over fit and run the risk of resolving erroneous features in the sample. The two data driven bandwidth selection methods used for the density estimator show overall better pdf estimates when compared to just setting a fixed bandwidth for many distributions. This was expected, because the two methods use either the standard deviation or the interquartile range of the sample to determine the bandwidth. In general, the Sheather-Jones bandwidth selection method out preforms Silverman's "rule of thumb" and is able to better resolve features in the sample across many distribution types. The bandwidth selection method employed in the kde estimator produces pdf estimates that in general are somewhere in between the estimates gained from the Silverman's "rule of thumb" and the Sheather-Jones method.

Both the SE and the NEMEM in figure 4.13 (c) and (d) show an excellent estimate of the beta distribution for only 1024 data points, while the KDE methods have difficulty with the divergences. This is due to the selection of the normal distribution as the kernel for these methods. The KDE could be improved with the use of another kernel, but this would require a priori knowledge about the sample.

Similarly to figure 4.13 , figure 4.15 (c) shows an excellent estimate, however, the NMEM estimator shows wiggles near the divergence, which comes from the use of many Lagrange multipliers to try and resolve the divergence. The NMEM can do better, but the number of Lagrange multipliers is truncated to limit the computational cost. There is no need for this truncation with the use of the NMEM estimator in the SE method, because no block is too large for this to be a problem.

The SE in figure 4.16(c) does a great job of resolving the features in the sample, while being able to handle the extreme outliers that come from the use of the stable distribution; these can typically be on the order of 10^{15} and larger. The NMEM in

Figure 4.13: $\hat{f}(x)$ for a sample of size $N=1,024$ from a beta distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
4.16(d) returns a great pdf estimate, but at a slightly lesser resolution compared to the SE. In figures 4.16(b) and (e) the pdf estimate completely fails to resolve the sample's features. This is due to the stable distribution theoretically having infinite variance and an extremely large variance numerically. This causes the data driven

Figure 4.14: $\hat{f}(x)$ for a sample of size $N=1,024$ from a beta distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
bandwidth selection methods to improperly set the bandwidths to be much too large. On the other hand, the fixed bandwidths in 4.16(a) return pdf estimates that resolve the features well.

Similar to the case in figure 4.16, the generalized extreme value distribution shown

Figure 4.15: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of a BirnbaumSaunders and stable distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.
in figure 4.19 leads to the same failures for the data driven bandwidth selection methods used in KDE. Both the SE and the NMEM estimator return excellent results,

Figure 4.16: $\hat{f}(x)$ for a sample of size $N=1,024$ from a generalized extreme value distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.
and the fixed bandwidth estimator does the same for a larger bandwidth. however, the smaller bandwidth introduces high variance into the estimate.

The KDE estimators have the same qualitative behavior as in the cases shown in

Figure 4.17: $\hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C. 2 under the name "Stable3". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator. Both the density estimator and the kde estimator fail to return adequate pdf estimates, and sometimes fail completely as seen for the kde estimator.
figure 4.16 and figure 4.19 for the case shown in figure 4.17. This is again from the large variance of the the samples created from these distributions. With the mixture model
of three stable distributions the variance of the sample numerically is significantly larger that the previous two cases. This causes the NMEM estimator's pdf estimate shown in figure 4.17 (d) to be heavily smoothed. The smoothing arises from the need of many Lagrange multipliers to force a smooth (and nearly zero) estimate far out onto the tails of the distribution, which makes resolving the sharp center features difficult. The NMEM can be improved if the maximum number of Lagrange multipliers was increased, but this would increase computation cost. The SE estimator shown in figure 4.17 (c) does a great job of resolving the features, however, does have a slight difficulty resolving the edge modes as being identical to one another.

In figure B.7, the KDE estimators do a great job of resolving the majority of the features, however, have difficulty with the edges due to the use of the normal distribution kernel. Also, as expected the smaller fixed bandwidth KDE estimator has high variance in the pdf estimate. The SE does a great job of capturing the sharp edges of the uniform distribution, however, can pick up on random fluctuations in the sample. The NMEM estimator returns an excellent pdf estimate for only 1024 data points.

As to be expected, in figure 4.19 (a) the large bandwidth has difficulty resolving the sharp edges of the uniform distributions, while the small bandwidth resolves the edges, but high variance. The data driven bandwidth selection methods preform quite well, except for Silverman's "rule of thumb". This is due to the bandwidth in that method being depended solely on the sample size and standard deviation of the sample. In figure $4.19(\mathrm{~d})$ the NMEM estimator shows to have difficulty consistently resolving all of the features as being uniform compared to one another. The SE in 4.19(c) also exhibits this difficulty but to a lesser degree. However, as sample size increases the features of the data are able to be nicely resolved as seen in figure 4.20.

Figure 4.18: $\hat{f}(x)$ for a sample of size $N=1,024$ from a uniform distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

4.3 Computation time

To evaluate the efficiency of the SE method pdf estimates for the six distributions in figure 4.21 were obtained for a variety of sample sizes. The time of computation was calculated using the tic/toc and cputime functions. The cputime function returns the

Figure 4.19: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of six uniform distributions with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
elapsed CPU time which sums across all threads, while the tic/toc function returns the wall-clock time. For the computational efficiency analysis of the SE method 4 threads were used and the background processes for the machine were kept at a minimum. The SE method may be sped up significantly from the analysis below depending on

Figure 4.20: $\hat{f}(x)$ for a sample of size $N=65,536$ from a mixture model of six uniform distributions with the parameters given in the code in appendix C. 2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.
the userâs available computer hardware and ability to add more threads to compute pdf estimates per block.

The computation time returned for the tic/toc function in figure $4.22(\mathrm{~b})$ in general shows a linear behavior on the log-log plot, however, the wall-clock times for pdf

Figure 4.21: Six distributions used for the computational efficiency of the SE method. (a) Bimodal distribution (b) Beta distribution $a=2, b=0.5$ (c) Beta distribution $a=$ $0.5, b=1.5$ (d) Trimodal normal distribution (e) Contaminated normal distribution (f) Birnbaum Saunders distribution.
estimates from the two beta distributions have a noticeably larger slope. This increase in wall-clock time for these two distributions is to be expected. The reason for the larger slope is caused by the number of blocks being too small for the size of the sample and the difficulty of the distributions. The divergences in the two beta distributions are computational expensive for the NMEM, because it requires many more Lagrange multipliers to estimate the divergent regions.

The computation times returned for the cputime function in figure 4.22(a) approaches the same slope of approximately $\frac{3}{4}$ as the sample size increases on the log-log plot. The asymptotic behavior for the CPU times seen in figure $4.22(\mathrm{a})$ is from the NMEM approaching a linear time dependence to N for large samples, but the SE doesn't approach the N time dependence as rapidly as the NMEM estimator; this is due to the partitioning of the sample into blocks. This is confirmed in figures 4.24(a) and 4.23(a) which exhibit the same asymptotic behavior even though the overall times decrease compared to $4.22(\mathrm{a})$ as well as the rate at which the SE approaches a linear

Figure 4.22: The computational times for the SE method which uses the random search minimization code to minimize $\Delta \xi$. (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{20}.

Figure 4.23: The computational times for the SE method which uses the golden ratio bifurcation search minimization code to minimize $\Delta \xi$ and with maximum block sizes of 100,000 . (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{21}.
time dependence to N .
While NMEM can handle large block sizes and the results are good, forcing a maximum block size enables even faster estimates from the NMEM. Figure 4.23(a) and (b) shows that by requiring all blocks to not exceed 100, 000 data points that the wall-clock and CPU times can be reduced. To further improve the over wall-clock

Figure 4.24: The computational times for the SE method which uses the golden ratio bifurcation search minimization code to minimize $\Delta \xi$ and with maximum block sizes of 50,000 . (a) The CPU times (b) The wall-clock times for sample sizes 2^{9} up to 2^{20}.
and CPU times of the SE for all distributions, the maximum block size was limited to 50,000 , which is shown in figure $4.24(\mathrm{a})$. Doing this substantially improved the efficiency of the SE.

Overall, the SE method shows to be computationally efficient. This conclusion is reach since in the cases discussed so far all of the log-log slopes for the (b) figures have a slope less than $\frac{1}{2}$ for the range of sample sizes explored. This means the wall-clock time scales as a power less than $\frac{1}{2}$ compared to sample size. This time dependent relationship is due to the NMEM being less than linearly dependent to N for small samples. If larger samples then 2^{20} were explored it would be expected that the wallclock times would approach a linear dependence to N. Similarly, in the large sample region the slope of the (a) figures are close to one, which means the CPU time scales approximately linearly with sample size, which is caused from the underlying NMEM estimator.

CHAPTER 5: CONCLUSIONS

The SE method has shown to be a robust nonparametric pdf estimator which has improved upon the work that developed the NMEM. Also, the SE has shown to be a good estimator for high throughput applications for both small and large sample sizes and is largely limited by the available number of processors one has to run a parallel job. The use of the R-ratio method for determining the appropriate number of blocks and block sizes has shown to be an elegant data driven approach. In addition, the sub-sampling sampling method for obtaining pdf estimates yields estimates that do not over fit to the sample under consideration, which has been confirmed by the random fluctuations in the SQR plots for small or large samples. Lastly, the SE can consistently calculate good pdf estimates over many trials of the same sample size, which was confirmed by evaluating the average ME and SQR range for 1000 trials of a sample of 512 data points.

In the future, the SE's code will be improved to perform better with memory usage and ensure the fasted computation operations are being used. The SE can be further improved by writing the algorithm in a programming language that has better multithreading capabilities, such as, $\mathrm{C}++$ or Python. Also, the heuristically determined parameters used to define the threshold Γ will be studied more extensively by running batches of the SE code varying one parameter at a time. This will give a deep insight into the effect each parameter has of the quality of the pdf estimates.

REFERENCES

[1] J. Farmer and D. Jacobs, "High throughput nonparametric probability density estimation.(research article)(report)," PLoS ONE, vol. 13, no. 5, p. e0196937, 2018.
[2] L. Yu and Z. Su, "Application of kernel density estimation in lamb wave-based damage detection," Mathematical Problems in Engineering, vol. 2012, no. 2012, 2012.
[3] M. J. Baxter, C. C. Beardah, and S. Westwood, "Sample size and related issues in the analysis of lead isotope data," Journal of Archaeological Science, vol. 27, no. 10, pp. 973-980, 2000.
[4] J. DiNardo, N. M. Fortin, and T. Lemieux, "Labor market institutions and the distribution of wages, 1973-1992: a semiparametric approach," Econometrica, vol. 64, no. 5, p. 1001, 1996.
[5] A. Gramacki, Nonparametric Kernel Density Estimation and Its Computational Aspects. Studies in Big Data, 37, Cham: Springer International Publishing, 2018.
[6] I. Narsky, "Statistical analysis techniques in particle physics : fits, density estimation and supervised learning," 2014.
[7] G. R. Terrell and D. W. Scott, "Variable kernel density estimation," The Annals of Statistics, vol. 20, no. 3, pp. 1236-1265, 1992.
[8] B. U. Park and J. S. Marron, "Comparison of data-driven bandwidth selectors," Journal of the American Statistical Association, vol. 85, no. 409, pp. 66-72, 1990.
[9] T. Keith Yuan Patarroyo, "Mean conservation for density estimation via diffusion using the finite element method," BoletiÌn de MatemaÌticas, vol. 24, no. 1, pp. 9199, 2017.
[10] Z. Botev, J. Grotowski, and D. Kroese, "Kernel density estimation via diffusion," arXiv.org, vol. 38, no. 5, 2010.
[11] I. Sadeh, F. B. Abdalla, and O. Lahav, "Annz2: photometric redshift and probability distribution function estimation using machine learning," Publications of the Astronomical Society of the Pacific, vol. 128, no. 968, p. 104502, 2016.
[12] V. N. Vapnik, "An overview of statistical learning theory," Neural Networks, IEEE Transactions on, vol. 10, no. 5, pp. 988-999, 1999.
[13] D. J. Jacobs, "Best probability density function for random sampled data," Entropy (Basel, Switzerland), vol. 11, no. 4, p. 1001, 2009.
[14] J. Farmer and D. J. Jacobs, "Nonparametric maximum entropy probability density estimation," 2016.
[15] S. J. Sheather and M. C. Jones, "A reliable dataâbased bandwidth selection method for kernel density estimation," Journal of the Royal Statistical Society: Series B (Methodological), vol. 53, no. 3, pp. 683-690, 1991.
[16] C. D. Kemp and B. W. Silverman, "Density estimation for statistics and data analysis," The Statistician, vol. 36, no. 4, p. 420, 1987.
[17] M. P. Wand and M. C. Jones, Kernel smoothing. Monographs on statistics and applied probability, London ; New York: Chapman Hall, 1st ed., 1995.

APPENDIX A: Further stitching estimator examples

The figures that follow are further examples of the SE estimator. These figures were omitted from the body of the thesis, but contain useful information about capabilities of the SE. The examples that follow do not employ the subsampling procedure.

Figure A.1: Estimate for a beta distribution with $a=0.5$ and $b=0.5$.

Figure A.2: Estimate for a beta distribution with $a=1.5$ and $b=0.5$.

Figure A.3: Estimate for a beta distribution with $a=2$ and $b=0.5$.

Figure A.4: Estimate for a bimodal normal distribution.

Figure A.5: Estimate for a Birnbaum Saunders distribution.

Figure A.6: Estimate for a contaminated normal distribution.

Figure A.7: Estimate for a mixture model created from uniform distributions.

Figure A.8: Estimate for a mixture model created from uniform distributions.

$$
N=512
$$

Figure A.9: Estimate for a trimodal normal distribution.

APPENDIX B: Further pdf estimator comparisons

The figures that follow are further comparisons of the SE estimator to KDE methods and the NMEM estimator. These figures were omitted from the body of the thesis but contain useful information about all of the pdf estimators.

Figure B.1: $\hat{f}(x)$ for a sample of size $N=1,024$ from a mixture model of three uniform distributions with the parameters given in the code in appendix C. 2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.2: $\hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.3: $\hat{f}(x)$ for a sample of size $N=1,024$ from a bimodal normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.4: $\hat{f}(x)$ for a sample of size $N=1,024$ from a trimodal normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.5: $\hat{f}(x)$ for a sample of size $N=1,024$ from a t location-Scale distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.6: $\hat{f}(x)$ for a sample of size $N=1,024$ from a stable distribution with the parameters given in the code in appendix C. 2 under the name "Stable2". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from $R(e)$ kde estimator.

Figure B.7: $\hat{f}(x)$ for a sample of size $N=1,024$ from a contaminated normal distribution with the parameters given in the code in appendix C.2. (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

Figure B.8: $\hat{f}(x)$ for a sample of size $N=65,536$ from a mixture model of a BirnbaumSaunders and stable distribution with the parameters given in the code in appendix C. 2 under the name "Uniform-Mix". (a) bkde estimator. (b) Density estimator (c) SE created in MATLAB (d) NMEM estimator from R (e) kde estimator.

APPENDIX C: MATLAB code

C. 1 Optimized branching tree
C.1.1 Rtree.m code

```
close all; clear all; clc;
% Initialize variables
distributionVector = ["BirnbaumSaunders","Bimodal - Normal...
    ","Stable"];
distributionVector = ["Normal - Contaminated","Square - ...
    periodic"];
5
maxSamplesExp =
            18; %<-maximum exponent to ...
        generate samples
minSamplesExp =
            18; %<-minimum exponent to ...
        generate samples
dataTypeflag = true; %<-true/false integer powers...
        of
    9% 2/real powers of 2
0 ntrials = 1; %<-trials to run to generate ...
        heuristics
1% for programs
step = 8; %<-control synthetic random ...
        samples to
% skip being created
lowLim0 = 0; %<-lower limit to plot
upLim0 = 10; %<-upper limit to plot
savelmage = false; %<-true/false save figures ...
        yes/no
1 7
8 \text { treeType = false; \%<- true/false ballanced/...}
    unbalanced
% create functions
br = @brProduct;
r = @getRation;
for j = 1:length(distributionVector)
        % Create vector of samples labels
        sampleVec = ...
            samplesVector(minSamplesExp,maxSamplesExp,...
                dataTypeflag,step);
30 for i = 1:ntrials
```

29

```
for k = 1:length(sampleVec)
```

for k = 1:length(sampleVec)
Ns = sampleVec(k);
Ns = sampleVec(k);
% parameters vector--
% parameters vector--
% p = [b, r, n, n-for-T, T-scale, window, ...
% p = [b, r, n, n-for-T, T-scale, window, ...
maximum levels];
maximum levels];
% BR product function parameters---
% BR product function parameters---
% br = @(b,r,p,n) (b^p(1)*r^p(2))/n^p (3);
% br = @(b,r,p,n) (b^p(1)*r^p(2))/n^p (3);
% -
% -
% p = [1,0.5,1,0.5,0.005, ceil(0.1*Ns),6];
% p = [1,0.5,1,0.5,0.005, ceil(0.1*Ns),6];
% p = [1,0.5,1,0.5,0.25, ceil (0.1*Ns),6];
% p = [1,0.5,1,0.5,0.25, ceil (0.1*Ns),6];
% p = [1,0.5,1,0.5,4, ceil(0.125*Ns^0.5), 20];
% p = [1,0.5,1,0.5,4, ceil(0.125*Ns^0.5), 20];
% % % % % % % % what has been used for all ...
% % % % % % % % what has been used for all ...
figures
figures
%%%%%%%p=[1,0.5,1,0.25,8,ceil(0.125*···
%%%%%%%p=[1,0.5,1,0.25,8,ceil(0.125*···
Ns-0.5), 20];
Ns-0.5), 20];
p = [1,0.5,1,0.25,8, ceil (0.125*Ns^^0.5), 20];
p = [1,0.5,1,0.25,8, ceil (0.125*Ns^^0.5), 20];
% % % % p = [1,0.5,1,0.25,8,ceil(0.0125*Ns) ...
% % % % p = [1,0.5,1,0.25,8,ceil(0.0125*Ns) ...
,7] ;
,7] ;
% p = [1,1,1,0.25,8, ceil (0.125*Ns^0.5), 20];
% p = [1,1,1,0.25,8, ceil (0.125*Ns^0.5), 20];
% good p vectors
% good p vectors
% p = [1,1,0,1.5,2.5,100,100];
% p = [1,1,0,1.5,2.5,100,100];
% p = [1,1,0,1.5,2.5,150,100];
% p = [1,1,0,1.5,2.5,150,100];
% p = [1,1,0,1.5,2.5,200,100];
% p = [1,1,0,1.5,2.5,200,100];
% p = [1,0.5,1,0.5,0.05, ceil (0.4*Ns), 100];
% p = [1,0.5,1,0.5,0.05, ceil (0.4*Ns), 100];
% p = [1,0.5,1,0.5,0.5, ceil(0.1*Ns),6];
% p = [1,0.5,1,0.5,0.5, ceil(0.1*Ns),6];
% create T threshold-
% create T threshold-
T = p (5)*Ns^p (4);
T = p (5)*Ns^p (4);
% T = p(5)*Log(Ns+1)^p(4);
% T = p(5)*Log(Ns+1)^p(4);
% T = p(5)*log(Ns+1);
% T = p(5)*log(Ns+1);
% window parameter for top/bottom points to ...
% window parameter for top/bottom points to ...
average------------
average------------
window = p(6);
window = p(6);
% maximum number of potential levels/splits...
% maximum number of potential levels/splits...

maxLevel = p(7);
maxLevel = p(7);
% minimum blocksize--
% minimum blocksize--
binmin = ceil(2*window);
binmin = ceil(2*window);
% file name based on data generation code
% file name based on data generation code
filename = sprintf(['D_', char(...
filename = sprintf(['D_', char(...
distributionVector(j)),...
distributionVector(j)),...
'_T_','%d', '_S_','%d'],i, Ns);
'_T_','%d', '_S_','%d'],i, Ns);
% windows

```
% windows
``` , '/', ..
```

filepath = ['D_',char(distributionVector(j))...
,'\',...
char(filename),'.txt']
% linux
filepath = ['D_',char(distributionVector(j))...
char(filename),'.txt'];
% sample to be partitioned
sample = importdata(filepath);
% special cases for plot window limits
if distributionVector(j) == "Beta-a0p5-b1p5" ...
||...
distributionVector(j) == "Beta-a2-b0p...
5" ||...
distributionVector(j) == "Beta-a0p5-b0...
p5"
lowLim = 0;
upLim = 1;
else
lowLim = lowLim0;
upLim = upLim0;
end
if binmin > Ns
error('sample size too small for window ...
size')
end
% display useful variable values
disp(['Ns: ', num2str(Ns)])
disp(['T: ', num2str(T)])
disp(['window: ', num2str(window)])
disp(['binmin: ', num2str(binmin)])
disp(' ')
tic
% track number of branches per level
nbranch = 1;
% set end points of sample length as partition...
left (pL) and
% partion right (pR)
pL = 1;
pR = Ns;

```

109
```

% initialize vector to track all created ...
partitions
pList = [pL pR];
% track every attempted partition for all ...
levels
plevel = {{[1;Ns]}};
% initialize array to track newly created ...
partitions
% for plotting purposes
pdiff = {[1;Ns]};
% initial exit flag
exit = false;
% calcualte inital BR of intire sample
BO = Ns;
R0 = r(sample,window);
BRO = br(BO,RO,p,Ns);
% clear array to hold all BR values per block ...
per level
BRlevel = {BRO};
% beggin level loop
if BRO > T
for jj = 1:maxLevel
disp(' ')
disp(['<br><br> START LEVEL: ', num2str(jj...
)])
% vector to hold all attempted ...
partitions per level
plevHold = [];
% vector to hold all BR values per ...
level
BRHold = [];
% beggin branch loop
for b = 1:nbranch
disp([' START branch: ', num2str(b...
)])
% define block size (B)
B = pList(b+1) - pList(b);
if binmin > B
disp(['block size (', num2str(...
B) , ...

```
```

1 4 7
148
1 4 9
1 5 0
151
152
153
154
155
156
1 5 7
158
1 5 9
160
161
1 6 2
163
164
1 6 5
166 %
rtreeFlag]...
167 %
168 %
, ...
169 %
1 7 0
1 7 1
1 7 2
173
1 7 4
1 7 5
1 7 6
177 %
pList(b+1)),...
178 %
filename,j);
1 7 9
180
181
1 8 2

```
```

            ') smaller than: ', num2...
    ```
 ') smaller than: ', num2...
 str(binmin)])
 str(binmin)])
 disp(['End this branch'])
 disp(['End this branch'])
 continue
 continue
 end
 end
 % update left
 % update left
 bLeft = binmin + 1;
 bLeft = binmin + 1;
 bRight = B - binmin;
 bRight = B - binmin;
 % block to small for for ...
 % block to small for for ...
 minimization
 minimization
 % given window size
 % given window size
 if bRight - bLeft < 3
 if bRight - bLeft < 3
 break;
 break;
 end
 end
 % minimization techniques...
 % minimization techniques...

 % random search minimization
 % random search minimization
 % minimization functions
 % minimization functions
 [dxBR,brL,brR,partition,...
 [dxBR,brL,brR,partition,...
 = minimizeBRrand(...
 = minimizeBRrand(...
 sample(pList(b):pList(b+1))...
 sample(pList(b):pList(b+1))...
 window, p,binmin);
 window, p,binmin);
 % golden ration bifraction ...
 % golden ration bifraction ...
 minimization
 minimization
 [dxBR,brL,brR,partition] =...
 [dxBR,brL,brR,partition] =...
 minimizeBRgold(sample(pList(b)...
 minimizeBRgold(sample(pList(b)...
 :pList(b+1)),...
 :pList(b+1)),...
 window,p,binmin);
 window,p,binmin);
 % distribution of dxBR: VERY SLOW ...
 % distribution of dxBR: VERY SLOW ...
 FOR N > 2^14
 FOR N > 2^14
 minimizeBRdiff(sample(pList(b):...
 minimizeBRdiff(sample(pList(b):...
 window, p,binmin,saveImage,...
 window, p,binmin,saveImage,...
% - - -
% - - -
% update block boundaries of ...
% update block boundaries of ...
 sample with correctly
 sample with correctly
 % placed partition
```

    % placed partition
    ```
```

183
184
185
186 %
), window);
187 %
188
1 8 9
190
1 9 1
192
193
194
195
196
197
198
199
200
201
202
203
204
205
206
207
208
209
210
211
212
213
214
215
216
217
218
219
220
221

```
```

    newPar = pList(b) + partition;
    ```
 newPar = pList(b) + partition;
 % calcualte R and BR for possilbe ...
 % calcualte R and BR for possilbe ...
 branches (b)
 branches (b)
 R = r(sample(pList(b):pList(b+1)...
 R = r(sample(pList(b):pList(b+1)...
 BR = br (B,R,p,Ns);
 BR = br (B,R,p,Ns);
 Rr = r(sample(newPar:pList(b+1)),\ldots
 Rr = r(sample(newPar:pList(b+1)),\ldots
 window);
 window);
 BRr = br (B,Rr,p,Ns);
 BRr = br (B,Rr,p,Ns);
 Rl = r(sample(pList(b):newPar),...
 Rl = r(sample(pList(b):newPar),...
 window);
 window);
 BRl = br (B,Rl,p,Ns);
 BRl = br (B,Rl,p,Ns);
 BR = min(BRr,BRI);
 BR = min(BRr,BRI);
 % hold all BRs per level for later...
 % hold all BRs per level for later...
 evaluation
 evaluation
 BRHold = [BRHold,BR];
 BRHold = [BRHold,BR];
 disp(['BR: ',num2str(BR)])
 disp(['BR: ',num2str(BR)])
 disp(['T: ', num2str(T)])
 disp(['T: ', num2str(T)])
 if treeType
 if treeType
 % balanced tree----
 % balanced tree----
 % STOP SEARCH: if any BR < T
 % STOP SEARCH: if any BR < T
 if BR < T
 if BR < T
 break;
 break;
 exit = true;
 exit = true;
 end
 end
 plevHold = [plevHold, newPar];
 plevHold = [plevHold, newPar];
 disp(['partition1: ',num2str(...
 disp(['partition1: ',num2str(...
 newPar)])
 newPar)])
 else
 else
 % un-balanced tree-
 % un-balanced tree-
 if BR \geq T
 if BR \geq T
 plevHold = [plevHold, ...
 plevHold = [plevHold, ...
 newPar];
 newPar];
 disp(['partition1: ',num2...
 disp(['partition1: ',num2...
 str(newPar)])
 str(newPar)])
 end
 end
 end
 end
end
end
disp(['BR: ',num2str(BR)])
```

disp(['BR: ',num2str(BR)])

```

222
223
224
```

disp(['T: ', num2str(T)])

```
disp(['T: ', num2str(T)])
if treeType
if treeType
 % balanced tree--------
 % balanced tree--------
 if BR \geq T
 if BR \geq T
 pList = [pList plevHold];
 pList = [pList plevHold];
 disp(['partition2: ',num2str(...
 disp(['partition2: ',num2str(...
 newPar)])
 newPar)])
 end
 end
else
else
 % un-balanced tree-----
 % un-balanced tree-----
 temp = sort(BRHold);
 temp = sort(BRHold);
 if temp(end) \geq T
 if temp(end) \geq T
 pList = [pList plevHold];
 pList = [pList plevHold];
 disp(['partition2: ',num2str(...
 disp(['partition2: ',num2str(...
 newPar)])
 newPar)])
 end
 end
 end
 end
 pList = sort(pList);
 pList = sort(pList);
 % update nbranch
 % update nbranch
 nbranch = length(pList) - 1;
 nbranch = length(pList) - 1;
 % assign partition list to array for ...
 % assign partition list to array for ...
 plotting
 plotting
 plevel{jj+1,1}={pList'};
 plevel{jj+1,1}={pList'};
 % exit for special cases where B < ...
 % exit for special cases where B < ...
 binmin
 binmin
 % or bRight - bLeft < 3
 % or bRight - bLeft < 3
 if isempty(BRHold)
 if isempty(BRHold)
 break;
 break;
 end
 end
 % assign BR per level to array for ...
 % assign BR per level to array for ...
 plotting
 plotting
 BRlevel{jj+1,1}= BRHold;
 BRlevel{jj+1,1}= BRHold;
if exit
if exit
 break;
 break;
 end
 end
 % find newly accepted partitions
 % find newly accepted partitions
 [C,\neg] = setdiff(plevel{jj...
 [C,\neg] = setdiff(plevel{jj...
 +1,1}{1,1}(:, 1),\ldots
 +1,1}{1,1}(:, 1),\ldots
 plevel{jj,1}{1,1}(:, 1));
```

        plevel{jj,1}{1,1}(:, 1));
    ```
```

    % STOP SEARCH: if no new partitions ...
        are accepted
    if isempty(C)
        break;
    end
    % update changes with newly created ...
        partitions
    pdiff{jj+1,1}=C;
    endTime = toc;
pList = pList';
disp(' ')
disp('********* pList FINAL ANSWER')
disp(pList)
disp(['Elapse time: ',num2str(endTime),'s...
'])
disp('******************************')
pList = pList';
sample = sort(sample);
%SPLITTING ROUTINE FOR LARGE SAMPLES...

```
end
\% vector to to add new partitons too
LargNcheck = pList;
\% vector to hold updated partition list
holder \(=\) pList;
\% while loop flag
runSplit = true;
while runSplit
 \% triggers exit flag for while loop
 splitCount \(=0\);
 \% loop over modified partition list (...
 holder)
 for \(k=1: l e n g t h(h o l d e r)-1\)
 \% calcualte difference
 diff = holder (k+1)-holder (k);
 \% add partion between elements ...
 when diff \(>20000\)
 if holder \((k+1)\)-holder \((k)>20000\)
 split \(=\) floor (holder \((k+1)-\ldots\)
 holder (k))/2) ;
 \% update new partiton list
 LargNcheck = [LargNcheck,...
 LargNcheck(k) + split];
```

            % update counter: number of ...
                        found splits
            splitCount = splitCount + 1;
            end
        end
        LargNcheck = sort(LargNcheck);
        holder = LargNcheck;
        % if no splits exit routine
        if splitCount == 0
            runSplit = false;
        end
    end
    pList = LargNcheck;
    disp('****************** pList SPLIT')
    disp(pList')
    disp('******************************')
    %-----------
    end
% FIGURES ------
figure('Name','br values per level')
hold on
plot(0:size(plevel,1),log(T*ones(size(plevel...
,1)+1)), '-r');
for k = 1:size(BRlevel,1)
plot((k-1)*ones(size(BRlevel{k,1}(1,:),1)···
,1) ,...
log(BRlevel{k,1}(1,:)),...
'o',...
'MarkerEdgeColor', [0,0,0],...
'MarkerFaceColor' , [0,0,0],...
'MarkerSize',4,'DisplayName','none')
levelTrack = 1:size(plevel,1);
end
str = cell(1,size(levelTrack,2));
for ii = 1:length(levelTrack)
str{ii} = sprintf('%1.Of',levelTrack(ii));
end
xticks(levelTrack)
xticklabels(str)
ylabel('ln(BR)')
xlabel('Tree Level')
legend('Threshold')
if saveImage
binFileName = ['BR_',}\operatorname{char(filename)];
pngfile = strcat(binFileName,'.png');
saveas(gcf,pngfile)

```

346 347 348 349
```

    figfile = strcat(binFileName,'.fig');
    saveas(gcf,figfile)
    end
figure('Name','tree branching')
subplot(2,1,1)
histogram(sample)
ylabel('Number of Data Points','Interpreter','...
latex')
subplot(2,1,2)
hold on
% branching level track markers
for k = 1:size(plevel,1)-1
plot(sample(plevel{k,1}{1,1}(:, 1)),···
(size(plevel,1)-k)*...
ones(size(plevel{k,1}{1, 1}(:,1),1),1)···
,...
'o',...
'MarkerEdgeColor' ,[0.6,0.6,0.6],...
'MarkerFaceColor' ,[0.6,0.6,0.6],...
'MarkerSize',5)
levelTrack = 0:size(plevel,1)-1;
end
% final partition markers
plot(sample(plevel{end,1}{1,1}(:, 1)),···
zeros(size(plevel{end,1}{1, 1}(:, 1),1),1)...
'o',...
'MarkerEdgeColor ', [1,0,0],...
'MarkerFaceColor', [1,0,0],...
'MarkerSize ',5)
plot(sample(pList),...
zeros(length(pList),1),...
'o',...
'MarkerEdgeColor ', [1,0,0],...
'MarkerFaceColor' , [1,0,0],...
'MarkerSize',5)
% boundries of sample markers
plot(sample(pdiff{1,1}(:, 1)),...
(size(plevel,1)-1)*...
ones(size(pdiff{1,1}(:, 1), 1),1),···
'o',...
'MarkerEdgeColor', [0,0,0],...

```
```

390
391
392
393
394
395
396
397
398
399
400
4 0 1
402
403
4 0 4
405
4 0 6
4 0 7
408
4 0 9
4 1 0
421 end

```
```

    'MarkerFaceColor' ,[0.6,0.6,0.6],...
    ```
 'MarkerFaceColor' ,[0.6,0.6,0.6],...
 'MarkerSize',8)
 'MarkerSize',8)
 % new partion markers
 % new partion markers
 for k = 2:size(pdiff,1)
 for k = 2:size(pdiff,1)
 plot(sample(pdiff{k,1}(:,1)),...
 plot(sample(pdiff{k,1}(:,1)),...
 (size(plevel,1)-k)*...
 (size(plevel,1)-k)*...
 ones(size(pdiff{k,1}(:,1),1),1),...
 ones(size(pdiff{k,1}(:,1),1),1),...
 'o',...
 'o',...
 'MarkerEdgeColor ' , [0,0,0],...
 'MarkerEdgeColor ' , [0,0,0],...
 'MarkerFaceColor' , [0,0,0],...
 'MarkerFaceColor' , [0,0,0],...
 'MarkerSize',8)
 'MarkerSize',8)
 end
 end
 str = cell(1,size(levelTrack,2));
 str = cell(1,size(levelTrack,2));
 for ii = 1:length(levelTrack)
 for ii = 1:length(levelTrack)
 str{ii} = sprintf('%1.0f',levelTrack(end...
 str{ii} = sprintf('%1.0f',levelTrack(end...
 +1-ii));
 +1-ii));
 end
 end
 yticks(levelTrack)
 yticks(levelTrack)
 yticklabels(str)
 yticklabels(str)
 xlabel('x Range','Interpreter','latex')
 xlabel('x Range','Interpreter','latex')
 ylabel('Tree Level','Interpreter','latex')
 ylabel('Tree Level','Interpreter','latex')
 if saveImage
 if saveImage
 binFileName = ['Tree_',char(filename)];
 binFileName = ['Tree_',char(filename)];
 pngfile = strcat(binFileName,'.png');
 pngfile = strcat(binFileName,'.png');
 saveas(gcf,pngfile)
 saveas(gcf,pngfile)
 figfile = strcat(binFileName,'.fig');
 figfile = strcat(binFileName,'.fig');
 saveas(gcf,figfile)
 saveas(gcf,figfile)
 end
 end
 end
 end
 end
```

        end
    ```

\section*{C.1.2 getRatio.m code}
```

1 function r = getRatio(sample,window)
2 sample = sort(sample);
3n = length(sample);
4dx = zeros(1,n-1);
5dx(1:n-1) = sample(2:n) - sample(1:n-1);
6 dx = sort(dx');
7 dxmin = mean(dx(1:window));
8 dxmax = mean(dx(end-window:end));
9 r = dxmax/dxmin;

```
```

1 0 ~ e n d

```

\section*{C.1.3 brProduct.m code}
```

function BR = brProduct(b,r,p,n)
BR = (b^p (1)*r^p(2))/n^p (3);
end

```
C.1.4 minimizeBRgold.m code
```

function [dxbr1,brL,brR,partition] = minimizeBRgold(sample...
,window,p,binmin)
% function definition
br = QbrProduct;
% sample size
sample = sort(sample);
Ns = length(sample);
% left and right search boundaries
bLeft = 1 + binmin;
bRight = Ns - binmin;
% golden ratio
goldenR = (1+sqrt(5))/2;
% distance from patition to evaluate dxBR
jiggle = 1;
dxbr = [];
% initial partion
partition = ceil(Ns/2);
while bRight-bLeft > 2
% update boundries
bLeft1 = partition ;
bRight1 = Ns - partition ;
% calculate R-ratio for given partition
rRight1 = getRation(sample(partition:end),window);
rLeft1 = getRation(sample(1:partition),window);
% calculate dxBR for partition location (center dxBR)
dxbrC = abs(br(bLeft1,rLeft1,p,Ns)-br(bRight1,rRight1,···
p,Ns));
% -----------
% define new partition to the left of center
leftPar = partition - jiggle;
bLeft2 = leftPar;
bRight2 = Ns - leftPar ;
rRight2 = getRation(sample(leftPar:end),window);

```
```

rLeft2 = getRation(sample(1: leftPar),window);
% calculate dxBR for leftPar location (left dxBR)
dxbrL = abs(br(bLeft2,rLeft2,p,Ns)-br(bRight2,rRight 2,···
p,Ns));
% -----------
% define new partition to the right of center
rightPar = partition + jiggle;
bLeft3 = rightPar;
bRight3 = Ns - rightPar ;
rRight3 = getRation(sample(rightPar:end),window);
rLeft3 = getRation(sample(1:rightPar),window);
% calculate dxBR for leftPar location (rightPar dxBR)
dxbrR = abs(br(bLeft3,rLeft3,p,Ns)-br(bRight3,rRight3,···
p,Ns));
% -----------
% calculate differences of dxBR for L,R,C
dxCR = dxbrC - dxbrR;
dxCL = dxbrC - dxbrL;
dxLR = dxbrL - dxbrR;
% dxbrR is smallest
if dxCR \geq 0 \&\& dxLR > 0
bLeft = leftPar;
%---
if bRight-bLeft < 2
% matrix to track useful variables
dxbr = horzcat(dxbr,[dxbrC;bLeft1;rLeft1;...
bRight1;rRight1]);
else
% matrix to track useful variables
dxbr = horzcat(dxbr,[dxbrR;bLeft3;rLeft 3;...
bRight3;rRight3]);
% use golden ratio to define new partion
partition = round((bLeft+bRight*goldenR)/(1+...
goldenR));
disp('Shrink --->')
end
end
% dxbrL is smallest
if dxCL \geq 0 \&\& dxLR < 0
bRight = rightPar;
%---
if bRight-bLeft < 2
% matrix to track useful variables
dxbr = horzcat(dxbr, [dxbrC;bLeft1;rLeft1;...
bRight1;rRight1]);
else
% matrix to track useful variables

```
```

7 3

```
```

                        dxbr = horzcat(dxbr,[dxbrL;bLeft2;rLeft2;...
    ```
 dxbr = horzcat(dxbr,[dxbrL;bLeft2;rLeft2;...
 bRight2;rRight2]);
 bRight2;rRight2]);
 % use golden ratio to define new partion
 % use golden ratio to define new partion
 partition = round((bLeft*goldenR+bRight)/(1+...
 partition = round((bLeft*goldenR+bRight)/(1+...
 goldenR));
 goldenR));
 % disp('<--- Shrink')
 % disp('<--- Shrink')
 end
 end
 end
 end
 % dxbrC is smallest: solution found
 % dxbrC is smallest: solution found
 if dxCL < O && dxCR < 0
 if dxCL < O && dxCR < 0
 dxbrFinal = dxbrC;
 dxbrFinal = dxbrC;
 dxbr = horzcat(dxbr, [dxbrC;bLeft1;rLeft1;bRight1;...
 dxbr = horzcat(dxbr, [dxbrC;bLeft1;rLeft1;bRight1;...
 rRight1]);
 rRight1]);
 break
 break
 end
 end
end
end
% disp(' ')
% disp(' ')
% disp('Program Results ...
% disp('Program Results ...
 === ')
 === ')
dxbr = dxbr';
dxbr = dxbr';
% dxbrDisplay1 = [dxbr (:, 1), dxbr(:, 2)];
% dxbrDisplay1 = [dxbr (:, 1), dxbr(:, 2)];
dxbr1 = dxbr(end,1);
dxbr1 = dxbr(end,1);
bL1 = partition;
bL1 = partition;
% dxbr(end,2), dxbr(end,3)
% dxbr(end,2), dxbr(end,3)
9% dxbr(end,4), dxbr(end,5)
9% dxbr(end,4), dxbr(end,5)
94% brL = br(bLeft1,rLeft1,p,Ns);
94% brL = br(bLeft1,rLeft1,p,Ns);
95% brR = br(bRight1,rRight1,p,Ns);
95% brR = br(bRight1,rRight1,p,Ns);
96 brL = br(dxbr (end,2), dxbr (end,3), p,Ns);
96 brL = br(dxbr (end,2), dxbr (end,3), p,Ns);
97 brR = br (dxbr (end,4), dxbr (end,5), p,Ns);
97 brR = br (dxbr (end,4), dxbr (end,5), p,Ns);
98 partition = dxbr(end,2);
98 partition = dxbr(end,2);
99 end
```


## C.1.5 minimizeBRrand.m code

```
function [dxbr1,brL,brR,partition,rtreeFlag] = ...
 minimizeBRrand(sample,window, p, binmin)
% function definition
br = @brProduct;
% sample size
sample = sort(sample);
Ns = length(sample);
bLeft = 1 + binmin;
bRight = Ns - binmin;
jiggle = 1;
dxbr = [];
```

```
rtreeFlag = false;
while bRight-bLeft > 2
 partition = round((bRight-bLeft)*rand) + bLeft;
 disp('--')
 disp(['partition: ', num2str(partition)])
 disp('--')
 % -----------
 bLeft1 = partition ;
 bRight1 = Ns - partition ;
 rRight1 = getRation(sample(partition:end),window);
 rLeft1 = getRation(sample(1:partition),window);
 disp(['bLeft1: ', num2str(bLeft1)])
 disp(['rLeft1: ',num2str(rLeft1)])
 disp(['bRight1: ', num2str(bRight1)])
 disp(['rRight1: ',num2str(rRight1)])
 dxbrC = abs(br(bLeft1,rLeft1,p,Ns)-br(bRight1,rRight1,\ldots
 p,Ns));
 disp(' ')
 disp(['dxbrC: ',num2str(dxbrC)])
 % -----------
 Lpar = partition - jiggle;
 bLeft2 = Lpar;
 bRight2 = Ns - Lpar ;
 rRight2 = getRation(sample(Lpar:end),window);
 rLeft2 = getRation(sample(1:Lpar),window);
 dxbrL = abs(br(bLeft2,rLeft2,p,Ns)-br(bRight2,rRight2,\ldots
 p,Ns));
 disp(['dxbrL: ',num2str(dxbrL)])
 % -----------
 Rpar = partition + jiggle;
 bLeft3 = Rpar;
 bRight3 = Ns - Rpar ;
 rRight3 = getRation(sample(Rpar:end),window);
 rLeft3 = getRation(sample(1:Rpar),window);
 dxbrR = abs(br(bLeft3,rLeft3,p,Ns)-br(bRight3,rRight3,\ldots
 p,Ns));
 disp(['dxbrR: ',num2str(dxbrR)])
 disp(' ')
 % -----------
 dxCR = dxbrC - dxbrR;
 dxCL = dxbrC - dxbrL;
 dxLR = dxbrL - dxbrR;
 disp(['old bLeft: ', num2str(bLeft)])
 disp(['old bRight: ', num2str(bRight)])
 disp('--------')
 if dxCR \geq 0 && dxLR > 0
 bLeft = Lpar;
```

```
56 %---
57 if bRight-bLeft < 2
 % disp('Shrink --->')
 end
 end
 if dxCL \geq 0 && dxLR < 0
 bRight = Rpar;
 %---
 if bRight-bLeft < 2
 dxbr = horzcat(dxbr,[dxbrC;bLeft1;rLeft1;...
 bRight1;rRight1]);
 else
 dxbr = horzcat(dxbr,[dxbrL;bLeft 2;rLeft2;...
 bRight2;rRight2]);
 disp('<--- Shrink')
 end
 end
 if dxCL < 0 && dxCR < 0
 bRight = Rpar;
 dxbrFinal = dxbrC;
 dxbr = horzcat(dxbr,[dxbrC;bLeft1;rLeft1;bRight1;...
 rRight1]);
 % disp(['Solution: ', num2str(dxbrC)])
 break
 end
81% disp(['new bLeft: ', num2str(bLeft)])
82 % disp(['new bRight: ', num2str(bRight)])
83 end
84
85 % disp(' ')
86 % disp('Program Results ...
 ==='1)
87 dxbr = dxbr';
88% dxbrDisplay1 = [dxbr (:, 1), dxbr (:, 2)];
89 dxbr1 = dxbr(end,1);
90 bL1 = partition;
91 % dxbr (end, 2), dxbr (end, 3)
92% dxbr (end,4), dxbr(end,5)
93% brL = br(bLeft1,rLeft1,p,Ns);
94% brR = br(bRight1,rRight1,p,Ns);
95 brL = br(dxbr(end,2),dxbr(end,3),p,Ns);
96 brR = br (dxbr(end,4), dxbr(end,5),p,Ns);
```

```
97 partition = dxbr(end,2);
98 end
```


## C.1.6 minimizeBRdiff.m code

```
1 function [dxbr,dxbrTrack,brL,brR,partition,rtreeFlag] = ...
2 minimizeBRdiff(sample,window,p,binmin,saveImage,...
 filename,j)
% function definition
br = @brProduct;
Ns = length(sample);
sample = sort(sample);
step = 1;
dxbrTrack = [];
rLTrack = [];
rRTrack = [];
bRTrack = [];
bLTrack = [];
brLTrack = [];
brRTrack = [];
BRleft = [];
BRright = [];
trig = -1;
rtreeFlag = false;
while trig < 0
% bL = bL + binmin + step;
 bL = binmin + step;
 bR = Ns - step - binmin;
 if bR < binmin + 2
 break;
 rtreeFlag = true;
 end
 rL = getRation(sample(1:bL),window);
 rR = getRation(sample(bL:end),window);
 rLTrack = [rLTrack, rL];
 rRTrack = [rRTrack,rR];
 dxbr = abs(br(bL,rL,p,Ns)-br(bR,rR,p,Ns));
 BRleft = [BRleft,br(bL,rL,p,Ns)];
 BRright = [BRright,br(bR,rR,p,Ns)];
 brLTrack = [brLTrack, br(bL,rL,p,Ns)];
 brRTrack = [brRTrack, br(bR,rR,p,Ns)];
 bLTrack = [bLTrack, bL];
 bRTrack = [bRTrack,bR];
 dxbrTrack = [dxbrTrack,dxbr];
```

```
39 % will end loop once solution is found
40% if step > 3 && dxbr > dxbrTrack(step-1) &&...
41% dxbr > dxbrTrack(step-2) &&...
 dxbr > dxbrTrack(step-3)
 final = dxbrTrack(step-2);
 break
 end
 step = step + 1;
 disp(['step: ', num2str(step)])
 disp('-------------')
 pause
end
if j == 1
 figure('Name','BRleft and BRright')
 subplot(2,2,[1,2])
 hold on
 plot(1:length(BRright),BRright,'--','Color...
 ',[0.5,0.5,0.5])
 plot(1:length(BRleft),BRleft,'--k')
 plot(1:length(dxbrTrack),dxbrTrack,'-k')
 ylabel('$\Delta \xi_0 = \xi_0 - \xi_1$','Interpreter...
 ','latex')
 xlabel('$n_{partition}$','Interpreter','latex')
 xlim([0,Ns])
 subplot(2,2,3)
 hold on
 plot(1: length(rLTrack),rLTrack,'-k')
 plot(1:length(rRTrack),rRTrack,'Color' , [0.5,0.5,0.5])
 ylabel('R','Interpreter','latex')
 xlabel('$n_{partition}$','Interpreter','latex')
 xlim([0,Ns])
 subplot(2,2,4)
 hold on
 plot(1:length(bRTrack),bRTrack,'Color', [0.5,0.5,0.5])
 plot(1: length(bLTrack),bLTrack,'-k')
 ylabel('B','Interpreter','latex')
 xlabel('$n_{partition}$','Interpreter','latex')
 xlim([0,Ns])
 if saveImage
 binFileName = [num2str(Ns),'_BRacrossSample_',char...
 (filename)];
 pngfile = strcat(binFileName,'.png');
 saveas(gcf,pngfile)
 figfile = strcat(binFileName,'.fig');
```

```
83 saveas(gcf,figfile)
 end
end
[dxbr,bL]= min(dxbrTrack);
brL = brLTrack(bL);
brR = brRTrack(bL);
partition = bLTrack(bL);
dxbrTrack = dxbrTrack';
end
```

C.1.7 samplesVector.m

```
1 function [sampleVec] = ...
2 samplesVector(minSamplesExp,maxSamplesExp,dataTypeflag...
 ,step)
3
4% to be function inputs
5%-------------
6%step = 1; %<---- can be changed to skip number of samples...
 created
%minSamplesExp;
8%maxSamplesExp;
9 %dataTypeflag = true; %<--- true/false integer powers of ...
 2/real powers of 2
% Define a vector of samples to generate
%------------
exponents = minSamplesExp:step:maxSamplesExp;
sampleVec = zeros(1,length(exponents));
if dataTypeflag
 % Generates vector of samples from integer power 2
 sampleVec(1:length(exponents)) = 2.^exponents(1:length...
 (exponents));
else
 % Generates vector of samples from real power 2
 for i = 1:length(exponents)
 n = minSamplesExp + i + rand;
 sampleVec(i) = floor(2^n);
 end
end
end
```


## C. 2 Sample Generation

C.2.1 randomSampleCreationDriver.m code

```
 1 %-------------
 2 % This script is design to generate univariant data ...
 samples for a list of
3% standard probability distributions. Multiple trials can ...
 be created for
 % any range of sample sizes for each distribution. Samples...
 can be created
5% over a range of sizes for integer powers of two either ...
 for every integer
 % power in the range or by skipping integer powers based ...
 on a step
 % variable.The samples can be created using interger ...
 powers of two or using
 % real number powers of two. An actual probabilty ...
 distribution data file
 % can be created for later reference as well as plotted to...
 aid in finding
10% appropriate distribution parameters. PNG files may be ...
 saved of the actual
 % distrbution plots.
 %--------------
 clc;clear all; close all;tic
 % class assignment
 actual = distributions;
 % User Options
 % Script switching board \\\\\\\\
 generateRandomData = false; %<- true/false ...
 generate random data
19
20 generateActData =
 generate actual
21
 ActDistPlot =
 actual
23
dataTypeflag =
 powers of
25
26 savePNG =
 png of plots
```

```
% on/off
% random data generation parameters \\\\\\
maxSamplesExp = 10; %<---- maximum exponent to...
 generate samples
minSamplesExp = 10; %<---- minimum exponent to...
 generate samples
 actual.precision =
 digits for
 ntrials =
 generate heuristics
 step =
 random samples to
36
 actual.lowerLimit =
 actual.upperLimit =
 % PROBABILITY DISTRIBUTION LIST \
 % Total set
 %
 distributionVector = ["Beta-a0p5-b1p5","Beta-a2-b0p5",\ldots
 "Beta-a0p5-b0p5","Bimodal-Normal", "BirnbaumSaunders...
 ",...
 "BirnbaumSaunders-Stable"," Burr","Exponential",...
 "Extreme-Value", "Gamma", "Generalized-Extreme - Value...
 ",...
 "Generalized-Pareto"," HalfNormal","Normal ", . . .
 "Square-periodic","Stable","Stable2","Stable3",...
 "tLocationScale","Uniform","Uniform-Mix", "Weibull " , . .
 "Chisquare"," InverseGaussian","Trimodal - Normal"];
 %}
 %\\\\\\\\\\
 % Main Loop for probability distribution data generation ...
 and vizualization
 for j = 1:length(distributionVector)
 % Define plot vector for distributions from 0-1
 if distributionVector(j) == "Beta-a0p5-b1p5" ||...
 distributionVector(j) == "Beta-a2-b0p5" ||...
 distributionVector (j) == "Beta-a0p5-b0p5" ...
 ||...
 distributionVector(j) == "Mix-Beta-Stable-1"
 actual.lowerLimit = 0;
 actual.upperLimit = 1;
 % vector used to create/plot actual distribution
 actual.x = linspace(actual.lowerLimit,actual....
 upperLimit,1000);
63 else
```

```
 % Define plot vector for distribution from ...
```

    % Define plot vector for distribution from ...
        lowerLimit-upperLimit
        lowerLimit-upperLimit
        actual.lowerLimit = 0;
        actual.lowerLimit = 0;
        actual.upperLimit = 10;
        actual.upperLimit = 10;
        % vector used to create/plot actual distribution
        % vector used to create/plot actual distribution
        actual.x = linspace(actual.lowerLimit,actual....
        actual.x = linspace(actual.lowerLimit,actual....
        upperLimit,1000);
        upperLimit,1000);
    end
    end
    % Current distribution name
    % Current distribution name
    actual.distributionName = distributionVector(j);
    actual.distributionName = distributionVector(j);
    % file name for actual distribution. "A_" puts at the ...
    % file name for actual distribution. "A_" puts at the ...
        top of the folder
        top of the folder
    % for convenience
    % for convenience
    actual.fileName = ...
    actual.fileName = ...
        sprintf(['A_', char(actual.distributionName),'_Act...
        sprintf(['A_', char(actual.distributionName),'_Act...
            ']);
            ']);
    % Create actual distribution data and folders
    % Create actual distribution data and folders
    if generateActData
    if generateActData
        actual.randomVSactual = "actual";
        actual.randomVSactual = "actual";
        actual = actual.distributionsChoices();
        actual = actual.distributionsChoices();
    end
    end
    % creat random object
    % creat random object
    random = actual;
    random = actual;
    % generate multiple trials for a given distribution ...
    % generate multiple trials for a given distribution ...
        and sample size
        and sample size
    for i = 1:ntrials
    for i = 1:ntrials
        % Create vector of samples
        % Create vector of samples
        sampleVec = samplesVector(minSamplesExp,...
        sampleVec = samplesVector(minSamplesExp,...
            maxSamplesExp,dataTypeflag,step);
            maxSamplesExp,dataTypeflag,step);
        for k = 1:length(sampleVec)
        for k = 1:length(sampleVec)
            % size of sample to generate
            % size of sample to generate
            random.Ns = sampleVec(k);
            random.Ns = sampleVec(k);
                % Create fun.fileName for each distribtuion
                % Create fun.fileName for each distribtuion
                random.fileName = sprintf(['D_',...
                random.fileName = sprintf(['D_',...
                    char(actual.distributionName),...
                    char(actual.distributionName),...
                    '_T_','%d', '_S_','%d'],i, random.Ns);
                    '_T_','%d', '_S_','%d'],i, random.Ns);
                % Generate random data for each distribution ...
                % Generate random data for each distribution ...
                    of varying sizes
                    of varying sizes
                if generateRandomData
                if generateRandomData
                    random.randomVSactual = "random";
                    random.randomVSactual = "random";
                    random.distributionsChoices();
                    random.distributionsChoices();
                end
                end
        end
        end
    end
    end
    % Act dist plots
    % Act dist plots
    if generateActData
    if generateActData
        if ActDistPlot
    ```
 if ActDistPlot
```

```
105
106
107
108
109
110
1 1 1
1 1 2
113
114
115
116
117
118
1 1 9
120
121
122
123
124
125
126
127
128 end
129 toc
```

```
 figure('Name','Standard Distributions')
```

    figure('Name','Standard Distributions')
    % Plot Actual PDF for each distribution
    % Plot Actual PDF for each distribution
    plot(actual.x,actual.pdfCurve,'-k')
    plot(actual.x,actual.pdfCurve,'-k')
    ylabel('$f(x)$','Interpreter','latex')
    ylabel('$f(x)$','Interpreter','latex')
    xlabel('x','Interpreter','latex')
    xlabel('x','Interpreter','latex')
        title(char(actual.distributionName),'...
        title(char(actual.distributionName),'...
            Interpreter','latex')
            Interpreter','latex')
        if max(actual.pdfCurve) > 1
        if max(actual.pdfCurve) > 1
            ylim([0,5])
            ylim([0,5])
        else
        else
            ylim([0,1])
            ylim([0,1])
        end
        end
        xlim([actual.lowerLimit,actual.upperLimit])
        xlim([actual.lowerLimit,actual.upperLimit])
        if savePNG
        if savePNG
            figureName = ['Act_D_',...
            figureName = ['Act_D_',...
                        char(actual.distributionName),...
                        char(actual.distributionName),...
                    'S_',int2str(actual.Ns)];
                    'S_',int2str(actual.Ns)];
            pngfile = strcat(char(figureName),'.png');
            pngfile = strcat(char(figureName),'.png');
            saveas(gcf,pngfile)
            saveas(gcf,pngfile)
            figfile = strcat(char(figureName),'.fig');
            figfile = strcat(char(figureName),'.fig');
            saveas(gcf,figfile)
            saveas(gcf,figfile)
        end
        end
        end
        end
    end
    ```
 end
```

C.2.2 distributions.m

```
classdef distributions
 properties
 x
 Ns
 fileName
 pdfCurve
 precision = 15;
 lowerLimit = 0;
 upperLimit = 10;
 distributionName
 distInfo
 randomVSactual = "actual"
 end
 methods
 function obj = distributionsChoices(obj)
 debug = true;
```

```
17
18
19
20
21
22
23
24
25
26
27
28
29
30
55
```

```
switch obj.distributionName
```

switch obj.distributionName
case 'Beta-a0p5-b1p5'
case 'Beta-a0p5-b1p5'
% Beta1 Case Statement
% Beta1 Case Statement
% First shape obj
% First shape obj
a = 0.5;
a = 0.5;
% Second shape obj
% Second shape obj
b = 1.5;
b = 1.5;
% PDF Curve \
% PDF Curve \
obj.distInfo = makedist('Beta','a',a,'...
obj.distInfo = makedist('Beta','a',a,'...
b',b);
b',b);
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
;
;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,···
rndData = random(obj.distInfo,1,···
obj.Ns);
obj.Ns);
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
data = vertcat(obj.x,obj.pdfCurve)...
;
;
end
end
case 'Beta-a2-b0p5'
case 'Beta-a2-b0p5'
% Beta2 Case Statement
% Beta2 Case Statement
% First shape obj
% First shape obj
a = 2;
a = 2;
% Second shape obj
% Second shape obj
b = 0.5;
b = 0.5;
% PDF Curve \
% PDF Curve \
obj.distInfo = makedist('Beta','a',a,'...
obj.distInfo = makedist('Beta','a',a,'...
b',b);
b',b);
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
;
;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,···
rndData = random(obj.distInfo,1,···
obj.Ns);
obj.Ns);
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
data = vertcat(obj.x,obj.pdfCurve)...
;
;
end
end
case 'Beta-a0p5-b0p5'
case 'Beta-a0p5-b0p5'
% Beta3 Case Statement
% Beta3 Case Statement
% First shape obj
% First shape obj
a = 0.5;
a = 0.5;
% Second shape obj
% Second shape obj
b = 0.5;

```
 b = 0.5;
```

```
 % PDF Curve \
 obj.distInfo = makedist('Beta','a',a,'...
 b',b);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'Bimodal-Normal'
 % Normal Case Statement
 % mixture weights
 p1 = 0.65;
 p2 = 1 - p1;
 p = [p1,p 2];
 % Mean
 Mu1 = 2;
 Mu2 = 6;
 % Standard deviation
 Sigma1 = 0.8;
 Sigma2 = 0.3;
 % PDF Curve \
 % Distribution 1
 distributionLabel1 = 'Normal';
 distInfo1 = makedist(distributionLabel...
 1,...
 'Mu', Mu1, 'Sigma', Sigma1);
 pdfCurve1 = pdf(distInfo1,obj.x);
 % Distribution 2
 distInfo2 = makedist(distributionLabel...
 1,...
 'Mu', Mu2, 'Sigma', Sigma2);
 pdfCurve2 = pdf(distInfo2,obj.x);
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
 pdfCurve2;
 data = vertcat(obj.x,obj.pdfCurve);
 %\
 % generate random sample or actual pdf
if obj.randomVSactual == "random"
 % mixture string array flag for ...
 mixSampling()
```

```
 mixtureType = "two";
 % generate n vector for mixture ...
 samplings
 n = mixSampling(obj.Ns,p,...
 mixtureType);
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
);
 rndData2 = random(distInfo2,1,n(2)...
);
 rndData = [rndData1,rndData2];
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
 % CREATE DISTRIBUTION OBJECT ...

% mixture string array flag for ...
 mixSampling()
 mixtureType = "two";
 % generate m vector for mixture ...
 samplings
 m = mixSampling(10000,p,mixtureType);
 % generate random sample to create ...
 distribution
 % object
 actData1 = random(distInfo1,1,m(1));
 actData2 = random(distInfo2,1,m(2));
 actData = [actData1,actData2];
 % generate numerical cdf: f=cdf, s=x-...
 coordinates
 [f,s] = ecdf(actData);
 f = f(1:2:end);
 s = s(1:2:end);
 % generate distribution object
 obj.distInfo = ...
 makedist('PiecewiseLinear','x',s,'...
 Fx',f);
 % create cdf/pdf from distribution ...
 object.
 % for debugging and vizualization.
 if debug
 if obj.randomVSactual == "actual"
 xMix = linspace(obj.lowerLimit...
 ,...
 obj.upperLimit,1000);
 CDF = cdf(obj.distInfo,xMix);
```

129

```
 % numerically differentiate
 PDF = zeros(1,size(CDF(1:end...
 -1),2));
 for i = 2:size(CDF,2)-1
 dx1 = (xMix(i+1) -xMix(i-1) ...
);
 PDF(i) = (CDF(i+1) - CDF(...
 i-1))/dx 1;
 end
 % smooth pdf data
 smoo1 = smooth(xMix(1:end-1),...
 PDF,0.03);
 % plot cdf,pdf,smoothed-pdf
 figure('Name',['Debug: ',...
 char(obj.distributionName)...
])
 subplot(2,1,1)
 hold on
 plot(xMix,CDF,'-m')
 plot(xMix(1:end-1),PDF,'-r')
 plot(xMix(1:end-1),smoo1,'-b')
 ylabel('$f(x) or F(x)$','...
 Interpreter','latex')
 xlabel('x','Interpreter','...
 latex')
 legend('cdf','pdf','smoothed-...
 pdf')
 % plot histogram for random ...
 sample
 subplot(2,1,2)
 histogram(random(obj.distInfo...
 ,1000,1),...
 'Normalization','...
 probability')
 % Binomial Case Statement
 % Porbability of success for each ...
```

            end
        end
    \%-------
    case 'Binomial'
\% Number of trials
$\mathrm{n}=2000$;
trial
$\mathrm{p}=0.2$;
\% PDF Curve \}
obj.distInfo $=\ldots$

```
 makedist(obj.distributionName,'n',...
 n,'p',p);
 obj.pdfCurve = binopdf(obj.x,n,p);
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = binornd(obj.Ns,p);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'BirnbaumSaunders'
 % BirnbaumSaunders Case Statement
 % Scale parameter
 Beta = 1.5;
 % Shape parameter
 Gamma = 0.5;
 % PDF Curve \
 obj.distInfo = makedist(obj....
 distributionName,...
 'Beta',Beta,'Gamma', Gamma);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'BirnbaumSaunders-Stable'
 % BirnbaumSaunders Case Statement
 % mixture weights
 p1 = 0.35;
 p2 = 1 - p1;
 p = [p1,p 2];
 % BirnbaumSaunders distribution ...

 % Scale parameter
 Beta = 1.5;
 % Shape parameter
 Gamma = 0.5;
 % Stable distribution -----
 % First shape parameter
 Alpha1 = 0.5;
```

```
% Second shape parameter: - 1 meta s ...
 1
Beta1 = 0.05;
% Scale parameter
Gam1 = 1;
% Location parameter
Delta1 = 7;
% PDF Curve \
% BirnbaumSaunders distribution
distributionLabel1 = 'BirnbaumSaunders...
 ';
distInfo1 = makedist(distributionLabel...
 1,\ldots.
 'Beta',Beta,'Gamma',Gamma);
pdfCurve1 = pdf(distInfo1,obj.x);
% Stable distribution
distributionLabel2 = 'Stable';
distInfo2 = makedist(distributionLabel...
 2,...
 'Alpha', Alpha1,'Beta', Beta1,...
 'Gam', Gam1, 'Delta', Delta1);
pdfCurve2 = pdf(distInfo2, obj.x);
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
 pdfCurve2;
data = vertcat(obj.x,obj.pdfCurve);
%\
% generate random sample or actual pdf
if obj.randomVSactual == "random"
 % mixture string array flag for ...
 mixSampling()
 mixtureType = "two";
 % generate n vector for mixture ...
 samplings
 n = mixSampling(obj.Ns,p,\ldots
 mixtureType);
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
);
 rndData2 = random(distInfo 2,1,n(2)\ldots
);
 rndData = [rndData1,rndData2];
elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
end
```

\% CREATE DISTRIBUTION OBJECT ...

```

% mixture string array flag for ...
 mixSampling()
mixtureType = "two";
% generate m vector for mixture ...
 samplings
m = mixSampling(10000,p,mixtureType);
% generate random sample to create ...
 distribution
```

\% object
actData1 = random(distInfo1,1,m(1));
actData2 = random(distInfo2,1,m(2));
actData $=$ [actData1, actData2];
$\%$ generate numerical cdf: f=cdf, $s=x-\ldots$
coordinates
$[f, s]=$ ecdf(actData);
$\mathrm{f}=\mathrm{f}(1: 2$ :end);
$s=s(1: 2: e n d) ;$
\% generate distribution object
obj.distInfo = ...
makedist ('PiecewiseLinear', 'x', s, '..
Fx',f);
\% create cdf/pdf from distribution ...
object.
\% for debugging and vizualization.
if debug
if obj.randomVSactual == "actual"
xMix = linspace (obj. lowerLimit...
, ...
obj. upperLimit, 1000) ;
CDF = cdf(obj.distInfo, xMix);
\% numerically differentiate
PDF $=$ zeros (1, size (CDF (1:end...
-1) , 2) ) ;
for $i=2: s i z e(C D F, 2)-1$
$\mathrm{dx} 1=(x \operatorname{Mix}(i+1)-x \operatorname{Mix}(i-1) \ldots$
) ;
$\operatorname{PDF}(i)=(\operatorname{CDF}(i+1)-\operatorname{CDF}(\ldots$
i-1) )/dx 1 ;
end
\% smooth pdf data
smoo1 $=$ smooth (xMix (1:end-1), ..
PDF, 0.03);
\% plot cdf,pdf, smoothed-pdf
figure('Name', ['Debug: ',...

```
 char(obj.distributionName)...
])
 subplot(2,1,1)
 hold on
 plot(xMix,CDF,'-m')
 plot(xMix(1:end-1),PDF,'-r')
 plot(xMix (1:end-1),smoo1,'-b')
 ylabel('$f(x) or F(x)$','...
 Interpreter','latex')
 xlabel('x','Interpreter','...
 latex')
 legend('cdf','pdf','smoothed-...
 pdf')
 % plot histogram for random ...
 sample
 subplot(2,1,2)
 histogram(random(obj.distInfo...
 ,1000,1),...
 'Normalization','...
 probability')
 end
 end
 %-------
case 'Burr'
 % Burr Case Statement
 % Scale parameter
 Alpha = 1;
 % Shape parameter one
 c = 2;
 % Shape parameter one two
 k = 2;
 % PDF Curve \
 obj.distInfo = makedist(obj....
 distributionName,...
 'Alpha',Alpha,'c',c,'k',k);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'Chisquare'
```

308
309
310
311
312
313
314
315
316
317

```
 % Chisquare Case Statement
```

    % Chisquare Case Statement
    % Degrees of freedom
    % Degrees of freedom
    Nu = 4;
    Nu = 4;
    % PDF Curve \
    % PDF Curve \
    obj.pdfCurve = chi2pdf(obj.x,Nu);
    obj.pdfCurve = chi2pdf(obj.x,Nu);
    %\
    %\
    % generate random sample or actual pdf
    % generate random sample or actual pdf
    if obj.randomVSactual == "random"
    if obj.randomVSactual == "random"
        rndData = chi2rnd(Nu,1,obj.Ns);
        rndData = chi2rnd(Nu,1,obj.Ns);
    elseif obj.randomVSactual == "actual"
    elseif obj.randomVSactual == "actual"
        data = vertcat(obj.x,obj.pdfCurve)...
        data = vertcat(obj.x,obj.pdfCurve)...
            ;
            ;
    end
    end
    case 'Exponential'
case 'Exponential'
% Exponential Case Statement
% Exponential Case Statement
% Mean
% Mean
Mu = 1;
Mu = 1;
% PDF Curve \
% PDF Curve \
obj.distInfo = makedist(obj....
obj.distInfo = makedist(obj....
distributionName,'Mu',Mu);
distributionName,'Mu',Mu);
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
;
;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,···
rndData = random(obj.distInfo,1,···
obj.Ns);
obj.Ns);
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
data = vertcat(obj.x,obj.pdfCurve)...
;
;
end
end
case 'Extreme-Value'
case 'Extreme-Value'
% Extreme Value Case Statement
% Extreme Value Case Statement
% Location parameter
% Location parameter
Mu = 1;
Mu = 1;
% Scale parameter
% Scale parameter
Sigma = 2;
Sigma = 2;
% PDF Curve \
% PDF Curve \
distributionLabel = 'Extreme Value';
distributionLabel = 'Extreme Value';
obj.distInfo = makedist(...
obj.distInfo = makedist(...
distributionLabel,...
distributionLabel,...
'Mu',Mu, 'Sigma', Sigma);
'Mu',Mu, 'Sigma', Sigma);
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
obj.pdfCurve = pdf(obj.distInfo,obj.x)...
;
;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"

```
 if obj.randomVSactual == "random"
```

```
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
 case 'Gamma'
 % Gamma Case Statement
 % Shape parameter
 a = 2;
 % Scale parameter
 b = 2;
 % PDF Curve \
 obj.distInfo = ...
 makedist(obj.distributionName,'a',...
 a,'b',b);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'Generalized-Extreme-Value'
 % Generalized Extreme Value Value ...
 Statement
 % Shape parameter
 k = 1;
 % Scale parameter
 Sigma = 2;
 % Location parameter
 Mu = 2;
 % PDF Curve \
 distributionLabel = 'Generalized ...
 Extreme Value';
 obj.distInfo = makedist(...
 distributionLabel,...
 'k',k, 'Sigma', Sigma,'Mu',Mu);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
```

```
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
 case 'Generalized-Pareto'
 % Generalized Pareto Value Value Case ...
 Statement
 % Tail MemTracker (shape) parameter
 k = 2;
 % Scale parameter
 Sigma = 1;
 % Threshold (location) parameter
 theta = 0;
 % PDF Curve \
 distributionLabel = 'Generalized ...
 Pareto';
 obj.distInfo = makedist(...
 distributionLabel,...
 'k',k, 'Sigma', Sigma,'Theta', ...
 theta);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 % Mu parameter is not recognized
 %\
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 end
case 'HalfNormal'
 % Half Normal Value Case Statement
 % Location parameter
 Mu = 0;
 % Scale parameter
 Sigma = 1;
 % PDF Curve \
 obj.distInfo = makedist(obj....
 distributionName,...
 'Mu', Mu, 'Sigma', Sigma);
 obj.pdfCurve = pdf(obj....
 distributionName,obj.x);
 %\
```

```
4 2 1
```

    % generate random sample or actual pdf
    ```
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 ;
 end
 end
case 'InverseGaussian'
case 'InverseGaussian'
 % Inverse Gaussian Case Statement
 % Inverse Gaussian Case Statement
 % Scale parameter
 % Scale parameter
 Mu = 1;
 Mu = 1;
 % Shape parameter
 % Shape parameter
 Lambda = 1;
 Lambda = 1;
 % PDF Curve \
 % PDF Curve \
 obj.distInfo = makedist(obj....
 obj.distInfo = makedist(obj....
 distributionName,...
 distributionName,...
 'mu', Mu, 'lambda', Lambda);
 'mu', Mu, 'lambda', Lambda);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 ;
 %\
 %\
 % generate random sample or actual pdf
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 ;
 end
 end
case 'Normal'
case 'Normal'
 % Normal Case Statement
 % Normal Case Statement
 % Mean
 % Mean
 Mu = 5;
 Mu = 5;
 % Standard deviation
 % Standard deviation
 Sigma = 1;
 Sigma = 1;
 % PDF Curve \
 % PDF Curve \
 obj.distInfo = makedist(obj....
 obj.distInfo = makedist(obj....
 distributionName ,...
 distributionName ,...
 'Mu', Mu, 'Sigma', Sigma);
 'Mu', Mu, 'Sigma', Sigma);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 ;
 %\
 %\
 % generate random sample or actual pdf
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 obj.Ns);
 elseif obj.randomVSactual == "actual"
```

    elseif obj.randomVSactual == "actual"
    ```
```

        data = vertcat(obj.x,obj.pdfCurve)...
                        ;
    end
    case 'Normal-Contaminated'
    % Normal Case Statement
    % mixture weights
    p1 = 0.5;
    p2 = 1 - p1;
    p = [p1,p 2];
    % Mean
    Mu1 = 5;
    Mu2 = 5;
    % Standard deviation
    Sigma1 = 2;
    Sigma2 = 0.25;
    % PDF Curve \
    % Distribution 1
    distributionLabel1 = 'Normal';
    distInfo1 = makedist(distributionLabel...
    ```
 1, ..
 'Mu', Mu1, 'Sigma', Sigma1);
 pdfCurve1 = pdf(distInfo1,obj.x);
 \% Distribution 2
 distInfo2 \(=\) makedist (distributionLabel...
 1, ...
 'Mu', Mu2, 'Sigma', Sigma2);
 pdfCurve2 \(=\) pdf(distInfo2,obj. \(x\));
 \% Mixture PDF Curve
 obj.pdfCurve \(=p(1) * p d f C u r v e 1+p(2) * \ldots\)
 pdfCurve2;
 data \(=\) vertcat (obj. \(x, o b j . p d f C u r v e) ;\)
 \% \}
 \% generate random sample or actual pdf
 if obj.randomVSactual == "random"
 \% mixture string array flag for ...
 mixSampling()
 mixtureType = "two";
 \% generate \(n\) vector for mixture ...
 samplings
 \(\mathrm{n}=\operatorname{mixSampling}(\mathrm{obj} . \mathrm{Ns}, \mathrm{p}, \ldots\)
 mixtureType) ;
 \% generate random sample
 rndData1 \(=\) random(distInfo1, \(1, n(1) \ldots\)
) ;
 rndData \(2=\) random(distInfo \(2,1, n(2) \ldots\)
) ;
 rndData \(=[r n d D a t a 1, r n d D a t a 2]\);
```

elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
;
end
% CREATE DISTRIBUTION OBJECT ...
-----------
% mixture string array flag for ...
mixSampling()
mixtureType = "two";
% generate m vector for mixture ...
samplings
m = mixSampling(10000,p,mixtureType);
% generate random sample to create ...
distribution
% object
actData1 = random(distInfo1,1,m(1));
actData2 = random(distInfo2,1,m(2));
actData = [actData1,actData2];
% generate numerical cdf: f=cdf, s=x-···
coordinates
[f,s] = ecdf(actData);
f = f(1:2:end);
s = s(1:2 :end);
% generate distribution object
obj.distInfo = ...
makedist('PiecewiseLinear','x',s,'...
Fx',f);
% create cdf/pdf from distribution ...
object.
% for debugging and vizualization.
if debug
if obj.randomVSactual == "actual"
xMix = linspace(obj.lowerLimit...

```
 , ...
 obj. upperLimit, 1000) ;
 CDF \(=c d f(o b j . d i s t I n f o, x M i x) ;\)
 \% numerically differentiate
 PDF = zeros (1, size (CDF (1:end...
 -1) , 2)) ;
 for \(i=2: s i z e(C D F, 2)-1\)
 \(\mathrm{dx} 1=(x \operatorname{Mix}(i+1)-x \operatorname{Mix}(i-1) \ldots\)
) ;
 \(\operatorname{PDF}(i)=(\operatorname{CDF}(i+1)-\operatorname{CDF}(\ldots\)
 i-1))/dx 1 ;
 end
 \% smooth pdf data
```

    smoo1 = smooth(xMix(1:end-1),...
    PDF,0.03);
    % plot cdf,pdf,smoothed-pdf
    figure('Name',['Debug: ',...
                char(obj.distributionName)...
                ])
            subplot(2,1,1)
            hold on
            plot(xMix,CDF,'-m')
            plot(xMix(1:end-1),PDF,'-r')
            plot(xMix(1:end-1),smoo1,'-b')
            ylabel('$f(x) or F(x)$','...
        Interpreter','latex')
        xlabel('x','Interpreter','...
            latex')
            legend('cdf','pdf','smoothed-...
                pdf ')
            % plot histogram for random ...
                sample
            subplot(2,1,2)
            histogram(random(obj.distInfo...
                ,1000,1),...
                'Normalization','...
                    probability')
            end
    end
    %-------
    case 'Square-periodic'
% Uniform Case Statement
% mixture weights
p1 = 1/6;
p2 = 1/6;
p3 = 1/6;
p4 = 1/6;
p5 = 1/6;
p6 = 1 - p1 - p2 - p3 - p4- p5 ;
p = [p1,p2,p3,p4,p5,p6];
% Lower bound
Lower1 = 1;
Lower2 = 2.5;
Lower3 = 4;
Lower4 = 5.5;
Lower5 = 7;
Lower6 = 8.5;
% Upper Bound
Upper1 = 2;
Upper2 = 3.5;

```
```

570
571
572
573
574
575
576
577
578
579
580
581

```
Upper3 = 5;
```

Upper3 = 5;
Upper4 = 6.5;
Upper4 = 6.5;
Upper5 = 8;
Upper5 = 8;
Upper6 = 9.5;
Upper6 = 9.5;
% PDF Curve \
% PDF Curve \
distributionLabel1 = 'Uniform';
distributionLabel1 = 'Uniform';
% Distribution 1
% Distribution 1
distInfo1 = makedist(distributionLabel...
distInfo1 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower1, 'Upper', Upper1);
'Lower', Lower1, 'Upper', Upper1);
pdfCurve1 = pdf(distInfo1,obj.x);
pdfCurve1 = pdf(distInfo1,obj.x);
% Distribution 2
% Distribution 2
distInfo2 = makedist(distributionLabel...
distInfo2 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower2, 'Upper', Upper 2);
'Lower', Lower2, 'Upper', Upper 2);
pdfCurve2 = pdf(distInfo2,obj.x);
pdfCurve2 = pdf(distInfo2,obj.x);
% Distribution 3
% Distribution 3
distInfo3 = makedist(distributionLabel...
distInfo3 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower3, 'Upper', Upper3);
'Lower', Lower3, 'Upper', Upper3);
pdfCurve3 = pdf(distInfo3,obj.x);
pdfCurve3 = pdf(distInfo3,obj.x);
% Distribution 4
% Distribution 4
distInfo4 = makedist(distributionLabel...
distInfo4 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower4, 'Upper', Upper4);
'Lower', Lower4, 'Upper', Upper4);
pdfCurve4 = pdf(distInfo4,obj.x);
pdfCurve4 = pdf(distInfo4,obj.x);
% Distribution 5
% Distribution 5
distInfo5 = makedist(distributionLabel...
distInfo5 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower5, 'Upper', Upper5);
'Lower', Lower5, 'Upper', Upper5);
pdfCurve5 = pdf(distInfo5,obj.x);
pdfCurve5 = pdf(distInfo5,obj.x);
% Distribution 6
% Distribution 6
distInfo6 = makedist(distributionLabel...
distInfo6 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower6, 'Upper', Upper6);
'Lower', Lower6, 'Upper', Upper6);
pdfCurve6 = pdf(distInfo6,obj.x);
pdfCurve6 = pdf(distInfo6,obj.x);
% Mixture PDF Curve
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
pdfCurve2 +...
pdfCurve2 +...
p(3)*pdfCurve3 + p(4)*pdfCurve4 ...
p(3)*pdfCurve3 + p(4)*pdfCurve4 ...
+...
+...
p(5)*pdfCurve5 + p(6)*pdfCurve6;
p(5)*pdfCurve5 + p(6)*pdfCurve6;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
% mixture string array flag for ...
% mixture string array flag for ...
mixSampling()

```
 mixSampling()
```

608

```
 mixtureType = "six";
 % generate n vector for mixture ...
 samplings
 n = mixSampling(obj.Ns,p,\ldots
 mixtureType);
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
);
 rndData2 = random(distInfo 2,1,n(2) ..
);
 rndData3 = random(distInfo 3,1,n(3)\ldots
);
 rndData4 = random(distInfo4,1,n(4)...
);
 rndData5 = random(distInfo5,1,n(5)\ldots
);
 rndData6 = random(distInfo6,1,n(6)\ldots
);
 rndData = [rndData1,rndData2,...
 rndData3,...
 rndData4,rndData5,rndData6];
elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
```

        ;
    end
\% CREATE DISTRIBUTION OBJECT ...
-----------
\% mixture string array flag for ...
mixSampling()
mixtureType = "six";
\% generate m vector for mixture ...
samplings
$m=\operatorname{mixSampling}(10000, p$, mixtureType) ;
$\%$ generate random sample to create...
distribution
\% object
actData1 = random(distInfo1,1,m(1));
actData $2=r a n d o m(d i s t I n f o 2,1, m(2))$;
actData3 $=$ random (distInfo3, 1, m(3));
actData $4=$ random (distInfo4, 1,m(4));
actData5 = random(distInfo5,1,m(5));
actData6 = random(distInfo6,1,m(6));
actData $=$ [actData1, actData2, actData...
3, ..
actData4, actData5, actData6];
\% generate numerical cdf: f=cdf, $s=x-\ldots$
coordinates

639
640
641
642

```
[f,s] = ecdf(actData);
f = f(1:2:end);
s = s(1:2 :end);
% generate distribution object
obj.distInfo = ...
 makedist('PiecewiseLinear','x',s,'...
 Fx',f);
% create cdf/pdf from distribution ...
 object.
% for debugging and vizualization.
if debug
 if obj.randomVSactual == "actual"
 xMix = linspace(obj.lowerLimit...
 , ...
 obj.upperLimit,1000);
 CDF = cdf(obj.distInfo,xMix);
 % numerically differentiate
 PDF = zeros(1,size(CDF(1:end...
 -1),2));
 for i = 2:size(CDF,2)-1
 dx1 = (xMix(i+1)-xMix(i-1) ...
);
 PDF(i) = (CDF (i+1) - CDF(\ldots
 i-1))/dx1;
 end
 % smooth pdf data
 smoo1 = smooth(xMix(1:end-1),...
 PDF,0.03);
 % plot cdf,pdf,smoothed-pdf
 figure('Name',['Debug: ',...
 char(obj.distributionName)...
])
 subplot(2,1,1)
 hold on
 plot(xMix,CDF,'-m')
 plot(xMix(1:end-1),PDF,'-r')
 plot(xMix(1:end-1),smoo1,'-b')
 ylabel('$f(x) or F(x)$','...
 Interpreter','latex')
 xlabel('x','Interpreter','...
 latex')
 legend('cdf','pdf','smoothed-...
 pdf ')
 % plot histogram for random ...
 sample
 subplot(2,1,2)
```

            mistogram(random(obj.distInfo...
                                probability')
            end
        end
    %}
    %-------
    case 'Stable'
% Stable Case Statement
% First shape parameter
Alpha = 0.5;
%{
Alpha = 0.4;
Alpha = 0.35
Alpha = 0.5 %<---- use to start
Alpha = 0.2; %<---- very hard to ...
estimate
%}
% Second shape parameter: - 1 \leq Beta \leq ...
1
Beta = 0.05;
%{
Beta = 0.9;
Beta = 1;
Beta = .05;
Beta = .05;
%}
% Scale parameter
Gam = 1;
% Location parameter
Delta = 4;
% PDF Curve \
obj.distInfo = makedist(obj....
distributionName,...
'Alpha', Alpha,'Beta', Beta,...
'Gam', Gam, 'Delta', Delta);
obj.pdfCurve = pdf(obj.distInfo, obj.x...
);
%\
% generate random sample or actual pdf
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,···
obj.Ns);
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...

```
 ;
```

712
713
7 1 4
715
716
7 1 7
718
719
720
7 2 1
722
723
724
725
7 2 6
727
728
729
7 3 0
7 3 1
7 3 2
7 3 3
734
735
736
7 3 7

```
 end
```

    end
    case 'Stable1'
case 'Stable1'
% Stable Case Statement
% Stable Case Statement
% First shape parameter
% First shape parameter
Alpha = 0.2;
Alpha = 0.2;
%{
%{
Alpha = 0.4;
Alpha = 0.4;
Alpha = 0.35
Alpha = 0.35
Alpha = 0.5 %<---- use to start
Alpha = 0.5 %<---- use to start
Alpha = 0.2; %<---- very hard to ...
Alpha = 0.2; %<---- very hard to ...
estimate
estimate
%}
%}
% Second shape parameter: - 1 S Beta \leq ...
% Second shape parameter: - 1 S Beta \leq ...
1
1
Beta = 0.05;
Beta = 0.05;
%{
%{
Beta = 0.9;
Beta = 0.9;
Beta = 1;
Beta = 1;
Beta = .05;
Beta = .05;
Beta = .05;
Beta = .05;
%}
%}
% Scale parameter
% Scale parameter
Gam = 1;
Gam = 1;
% Location parameter
% Location parameter
Delta = 4;
Delta = 4;
% PDF Curve \
% PDF Curve \
distributionLabel = 'Stable';
distributionLabel = 'Stable';
obj.distInfo = makedist(...
obj.distInfo = makedist(...
distributionLabel,...
distributionLabel,...
'Alpha', Alpha,'Beta', Beta,...
'Alpha', Alpha,'Beta', Beta,...
'Gam', Gam, 'Delta', Delta);
'Gam', Gam, 'Delta', Delta);
obj.pdfCurve = pdf(obj.distInfo, obj.x...
obj.pdfCurve = pdf(obj.distInfo, obj.x...
) ;
) ;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,···
rndData = random(obj.distInfo,1,···
obj.Ns);
obj.Ns);
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
data = vertcat(obj.x,obj.pdfCurve)...
;
;
end
end
case 'Stable2'
case 'Stable2'
% mixture model for 2 stable ...
% mixture model for 2 stable ...
distributions
distributions
% mixture weights
% mixture weights
p1 = 0.25;

```
 p1 = 0.25;
```

```
752
753
754
755
756
757
758
759
760
7 6 1
762
763
764
765
766
767
768
769
```

p2 = 1 - p1;

```
p2 = 1 - p1;
p = [p1,p 2];
p = [p1,p 2];
% First shape parameter
% First shape parameter
Alpha1 = 0.5;
Alpha1 = 0.5;
Alpha2 = 0.5;
Alpha2 = 0.5;
% Second shape parameter: - 1 \leq Beta \leq ...
% Second shape parameter: - 1 \leq Beta \leq ...
 1
 1
Beta1 = 0.05;
Beta1 = 0.05;
Beta2 = 0.05;
Beta2 = 0.05;
% Scale parameter
% Scale parameter
Gam1 = 1;
Gam1 = 1;
Gam2 = 1;
Gam2 = 1;
% Location parameter
% Location parameter
Delta1 = 2;
Delta1 = 2;
Delta2 = 5;
Delta2 = 5;
% PDF Curve \
% PDF Curve \
distributionLabel = 'Stable';
distributionLabel = 'Stable';
% stable 1
% stable 1
distInfo1 = makedist(distributionLabel...
distInfo1 = makedist(distributionLabel...
 , ...
 , ...
 'Alpha', Alpha1,'Beta', Beta1,...
 'Alpha', Alpha1,'Beta', Beta1,...
 'Gam', Gam1, 'Delta', Delta1);
 'Gam', Gam1, 'Delta', Delta1);
pdfCurve1 = pdf(distInfo1, obj.x);
pdfCurve1 = pdf(distInfo1, obj.x);
% stable 2
% stable 2
distInfo2 = makedist(distributionLabel...
distInfo2 = makedist(distributionLabel...
 ...
 ...
 'Alpha', Alpha2,'Beta', Beta2,...
 'Alpha', Alpha2,'Beta', Beta2,...
 'Gam', Gam2, 'Delta', Delta2);
 'Gam', Gam2, 'Delta', Delta2);
pdfCurve2 = pdf(distInfo2, obj.x);
pdfCurve2 = pdf(distInfo2, obj.x);
% Mixture PDF Curve
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
obj.pdfCurve = p(1)*pdfCurve1 + p(2)*...
 pdfCurve2;
 pdfCurve2;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
 % mixture string array flag for ...
 % mixture string array flag for ...
 mixSampling()
 mixSampling()
 mixtureType = "two";
 mixtureType = "two";
 % generate n vector for mixture ...
 % generate n vector for mixture ...
 samplings
 samplings
 n = mixSampling(obj.Ns,p,\ldots
 n = mixSampling(obj.Ns,p,\ldots
 mixtureType);
 mixtureType);
 % generate random sample
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
 rndData1 = random(distInfo1,1,n(1)...
);
);
 rndData2 = random(distInfo 2,1,n(2)\ldots
 rndData2 = random(distInfo 2,1,n(2)\ldots
);
```

        );
    ```

790
```

    rndData = [rndData1,rndData2];
    elseif obj.randomVSactual == "actual"
        data = vertcat(obj.x,obj.pdfCurve)...
        ;
    end
    % CREATE DISTRIBUTION OBJECT ...
        -----------
    % mixture string array flag for ...
        mixSampling()
    mixtureType = "two";
    % generate m vector for mixture ...
        samplings
    m = mixSampling(10000,p,mixtureType);
    % generate random sample to create ...
        distribution
    % object
    actData1 = random(distInfo1,1,m(1));
    actData2 = random(distInfo2,1,m(2));
    actData = [actData1,actData2];
    % generate numerical cdf: f=cdf, s=x-\ldots
        coordinates
    [f,s] = ecdf(actData);
    f = f(1:2:end);
    s = s(1:2 :end);
    % generate distribution object
    obj.distInfo = ...
        makedist('PiecewiseLinear','x',s,'...
        Fx',f);
    % create cdf/pdf from distribution ...
        object.
    % for debugging and vizualization.
    if debug
        if obj.randomVSactual == "actual"
        xMix = linspace(obj.lowerLimit...
            , ...
                obj.upperLimit,1000);
            CDF = cdf(obj.distInfo,xMix);
            % numerically differentiate
            PDF = zeros(1,size(CDF(1:end...
                -1),2));
            for i = 2:size(CDF,2)-1
                dx1 = (xMix(i+1)-xMix(i-1) ...
                    );
                PDF(i) = (CDF (i+1) - CDF(...
                    i-1))/dx 1;
            end
            % smooth pdf data
    ```
```

    smoo1 = smooth(xMix(1:end-1),...
    PDF,0.03);
    % plot cdf,pdf,smoothed-pdf
    figure('Name',['Debug: ',...
                                    char(obj.distributionName)...
                                    ])
            subplot(2,1,1)
            hold on
            plot(xMix,CDF,'-m')
            plot(xMix(1:end-1),PDF,'-r')
            plot(xMix(1:end-1),smoo1,'-b')
            ylabel('$f(x) or F(x)$','...
        Interpreter','latex')
            xlabel('x','Interpreter','...
            latex')
            legend('cdf','pdf','smoothed-...
                pdf')
            % plot histogram for random ...
                sample
            subplot(2,1,2)
            histogram(random(obj.distInfo...
                        ,1000,1),...
                                    'Normalization','...
                                    probability')
            end
        end
    %-------
    case 'Stable3'
% mixture model for 3 stable ...
distributions
% mixture weights
p1 = 0.25;
p2 = 0.5;
p3 = 1 - p1 - p2;
p = [p1,p2,p3];
% Stable distributions ----
% First shape parameter
Alpha1 = 0.5;
Alpha2 = 0.5;
Alpha3 = 0.5;
% Second shape parameter: - 1 meta \leq ...
1
Beta1 = 0.05;
Beta2 = 0.05;
Beta3 = 0.05;
% Scale parameter
Gam1 = 1;

```
```

862
863
864
865
866
867
868
869

```
Gam2 = 1;
```

Gam2 = 1;
Gam3 = 1;
Gam3 = 1;
% Location parameter
% Location parameter
Delta1 = 2;
Delta1 = 2;
Delta2 = 5;
Delta2 = 5;
Delta3 = 8;
Delta3 = 8;
% PDF Curve \
% PDF Curve \
distributionLabel = 'Stable';
distributionLabel = 'Stable';
% stable 1
% stable 1
distInfo1 = makedist(distributionLabel...
distInfo1 = makedist(distributionLabel...
, ...
, ...
'Alpha', Alpha1,'Beta', Beta1,...
'Alpha', Alpha1,'Beta', Beta1,...
'Gam', Gam1, 'Delta', Delta1);
'Gam', Gam1, 'Delta', Delta1);
pdfCurve1 = pdf(distInfo1,obj.x);
pdfCurve1 = pdf(distInfo1,obj.x);
% stable 2
% stable 2
distInfo2 = makedist(distributionLabel...
distInfo2 = makedist(distributionLabel...
, . .
, . .
'Alpha', Alpha2,'Beta', Beta2,...
'Alpha', Alpha2,'Beta', Beta2,...
'Gam', Gam2, 'Delta', Delta2);
'Gam', Gam2, 'Delta', Delta2);
pdfCurve2 = pdf(distInfo2,obj.x);
pdfCurve2 = pdf(distInfo2,obj.x);
% stable 3
% stable 3
distInfo3 = makedist(distributionLabel...
distInfo3 = makedist(distributionLabel...
'Alpha', Alpha3,'Beta', Beta3,...
'Alpha', Alpha3,'Beta', Beta3,...
'Gam', Gam3, 'Delta', Delta3);
'Gam', Gam3, 'Delta', Delta3);
pdfCurve3 = pdf(distInfo3,obj.x);
pdfCurve3 = pdf(distInfo3,obj.x);
% Mixture PDF Curve
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 +...
obj.pdfCurve = p(1)*pdfCurve1 +...
p(2)*pdfCurve2 + p(3)*pdfCurve3;
p(2)*pdfCurve2 + p(3)*pdfCurve3;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
% mixture string array flag for ...
% mixture string array flag for ...
mixSampling()
mixSampling()
mixtureType = "three";
mixtureType = "three";
% generate n vector for mixture ...
% generate n vector for mixture ...
samplings
samplings
n = mixSampling(obj.Ns,p,···
n = mixSampling(obj.Ns,p,···
mixtureType);
mixtureType);
% generate random sample
% generate random sample
rndData1 = random(distInfo1,1,n(1)...
rndData1 = random(distInfo1,1,n(1)...
);
);
rndData2 = random(distInfo 2,1,n(2) ..
rndData2 = random(distInfo 2,1,n(2) ..
);
);
rndData3 = random(distInfo 3,1,n(3)···
rndData3 = random(distInfo 3,1,n(3)···
) ;

```
) ;
```

        rndData \(=\) [rndData1, rndData \(2, \ldots\)
        rndData3];
    elseif obj.randomVSactual == "actual"
        data \(=\) vertcat(obj.x,obj.pdfCurve)...
        ;
    end
    \% CREATE DISTRIBUTION OBJECT ...
        -----------
    \% mixture string array flag for ...
        mixSampling()
    mixtureType = "three";
    \% generate m vector for mixture ...
        samplings
    \(m=\operatorname{mixSampling}(10000, p, m i x t u r e T y p e) ;\)
    \% generate random sample to create...
        distribution
    \% object
    actData1 = random(distInfo1,1,m(1));
    actData2 = random(distInfo2, 1,m(2));
    actData3 = random (distInfo3,1,m(3));
    actData \(=\) [actData1, actData2, actData...
        3] ;
    \% generate numerical cdf: f=cdf, \(s=x-\ldots\)
        coordinates
    [f,s] = ecdf(actData);
    \(\mathrm{f}=\mathrm{f}(1: 2\) :end);
    \(s=s(1: 2:\) end);
    \% generate distribution object
    obj.distInfo = ...
        makedist ('PiecewiseLinear', 'x',s,'..
            Fx',f);
    \% create cdf/pdf from distribution ...
        object.
    \% for debugging and vizualization.
    if debug
        if obj.randomVSactual == "actual"
            \(x M i x=\) linspace (obj.lowerLimit...
                , . .
                    obj. upperLimit, 1000) ;
            \(C D F=c d f(o b j . d i s t I n f o, x M i x) ;\)
            \% numerically differentiate
            PDF = zeros (1, size (CDF (1:end...
            -1) , 2) ) ;
            for i \(=2:\) size (CDF, 2) -1
                    \(d x 1=(x M i x(i+1)-x M i x(i-1) \ldots\)
                ) ;
    ```
 PDF(i) = (CDF (i+1) - CDF(...
 i-1))/dx 1;
 end
 % smooth pdf data
 smoo1 = smooth(xMix(1:end-1),...
 PDF,0.03);
 % plot cdf,pdf,smoothed-pdf
 figure('Name',['Debug: ',...
 char(obj.distributionName)...
])
 subplot(2,1,1)
 hold on
 plot(xMix,CDF,'-m')
 plot(xMix(1:end-1),PDF,'-r')
 plot(xMix(1:end-1),smoo1,'-b')
 ylabel('$f(x) or F(x)$','...
 Interpreter','latex')
 xlabel('x','Interpreter','...
 latex')
 legend('cdf','pdf','smoothed-...
 pdf ')
 % plot histogram for random ...
 sample
 subplot(2,1,2)
 histogram(random(obj.distInfo...
 ,1000,1),...
 'Normalization','...
 probability')
 end
 end
 %-------
case 'Trimodal-Normal'
 % Normal Case Statement
 % mixture weights
 p1 = 0.33;
 p2 = 0.33;
 p3 = 1 - p1 - p2;
 p = [p1,p2,p3];
 % Mean
 Mu1 = 4;
 Mu2 = 5;
 Mu3 = 6;
 % Standard deviation
 Sigma1 = 0.5;
 Sigma2 = 0.25;
 Sigma3 = 0.5;
 % PDF Curve \
```

```
970
971
972
```

% Distribution 1

```
% Distribution 1
distributionLabel1 = 'Normal';
distributionLabel1 = 'Normal';
distInfo1 = makedist(distributionLabel...
distInfo1 = makedist(distributionLabel...
 1,...
 1,...
 'Mu', Mu1, 'Sigma', Sigma1);
 'Mu', Mu1, 'Sigma', Sigma1);
pdfCurve1 = pdf(distInfo1,obj.x);
pdfCurve1 = pdf(distInfo1,obj.x);
% Distribution 2
% Distribution 2
distInfo2 = makedist(distributionLabel...
distInfo2 = makedist(distributionLabel...
 1,...
 1,...
 'Mu', Mu2, 'Sigma', Sigma2);
 'Mu', Mu2, 'Sigma', Sigma2);
pdfCurve2 = pdf(distInfo2,obj.x);
pdfCurve2 = pdf(distInfo2,obj.x);
% Distribution 3
% Distribution 3
distInfo3 = makedist(distributionLabel...
distInfo3 = makedist(distributionLabel...
 1,...
 1,...
 'Mu', Mu3, 'Sigma', Sigma3);
 'Mu', Mu3, 'Sigma', Sigma3);
pdfCurve3 = pdf(distInfo3,obj.x);
pdfCurve3 = pdf(distInfo3,obj.x);
% Mixture PDF Curve
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 +...
obj.pdfCurve = p(1)*pdfCurve1 +...
 p(2)*pdfCurve2 + p(3)*pdfCurve3;
 p(2)*pdfCurve2 + p(3)*pdfCurve3;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
 % mixture string array flag for ...
 % mixture string array flag for ...
 mixSampling()
 mixSampling()
 mixtureType = "three";
 mixtureType = "three";
 % generate n vector for mixture ...
 % generate n vector for mixture ...
 samplings
 samplings
 n = mixSampling(obj.Ns,p,\ldots
 n = mixSampling(obj.Ns,p,\ldots
 mixtureType);
 mixtureType);
 % generate random sample
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
 rndData1 = random(distInfo1,1,n(1)...
);
);
 rndData2 = random(distInfo 2,1,n(2) ..
 rndData2 = random(distInfo 2,1,n(2) ..
);
);
 rndData3 = random(distInfo3,1,n(3)\ldots
 rndData3 = random(distInfo3,1,n(3)\ldots
);
);
 rndData = [rndData1,rndData2,...
 rndData = [rndData1,rndData2,...
 rndData3];
 rndData3];
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 ;
end
end
% CREATE DISTRIBUTION OBJECT ...
% CREATE DISTRIBUTION OBJECT ...

% mixture string array flag for ...
% mixture string array flag for ...
 mixSampling()
 mixSampling()
mixtureType = "three";
```

mixtureType = "three";

```

1004

1005
1006

1007
1008
1009
1010
1011

1012

1013
1014
1015
1016
1017
1018

1019

1020
1021
1022
\% generate m vector for mixture ... samplings
\(m=\operatorname{mixSampling}(10000, p\), mixtureType) ;
\% generate random sample to create ... distribution
\% object
actData1 = random(distInfo1,1,m(1));
actData \(2=\) random(distInfo \(2,1, m(2)\));
actData3 \(=\) random (distInfo3,1,m(3));
actData \(=\) [actData1, actData2, actData... 3];
\% generate numerical cdf: f=cdf, \(s=x-\ldots\) coordinates
\([f, s]=\operatorname{ecdf}(a c t D a t a)\);
\(\mathrm{f}=\mathrm{f}(1: 2:\) end);
\(s=s(1: 2: e n d)\);
\% generate distribution object obj.distInfo = ... makedist ('PiecewiseLinear', 'x', s,'.. Fx',f);
\% create cdf/pdf from distribution ... object.
\% for debugging and vizualization. if debug if obj.randomVSactual == "actual" xMix = linspace (obj. lowerLimit... , . .
obj. upperLimit, 1000) ;
CDF = cdf(obj.distInfo, xMix) ;
\% numerically differentiate PDF = zeros (1, size (CDF (1:end... -1) , 2)) ;
for \(i=2: s i z e(C D F, 2)-1\)
\(\mathrm{dx} 1=(x \operatorname{Mix}(i+1)-x \operatorname{Mix}(i-1) \ldots\)
) ;
\(\operatorname{PDF}(i)=(\operatorname{CDF}(i+1)-\operatorname{CDF}(\ldots\) i-1))/dx 1 ;
end
\% smooth pdf data smoo1 \(=\) smooth (xMix (1: end-1), .. PDF, 0.03) ;
\% plot cdf,pdf, smoothed-pdf figure('Name', ['Debug: ',... char (obj.distributionName)...])
subplot (2, 1, 1) hold on
```

1 0 3 9
1040
1 0 4 1
1042
1043
1 0 4 4
1045
1046
1047
1048
1 0 4 9
1050
1051
1052
1053
1054
1055
1056
1057
1058
1059
1060
1061
1062
1063
1064
1 0 6 5
1 0 6 6

```
plot(xMix,CDF,'-m')
```

plot(xMix,CDF,'-m')
plot(xMix (1:end-1), PDF,' -r')
plot(xMix (1:end-1), PDF,' -r')
plot(xMix(1:end-1),smoo1,'-b')
plot(xMix(1:end-1),smoo1,'-b')
ylabel('$f(x) or F(x)$','...
ylabel('$f(x) or F(x)$','...
Interpreter','latex')
Interpreter','latex')
xlabel('x','Interpreter','...
xlabel('x','Interpreter','...
latex')
latex')
legend('cdf','pdf','smoothed -...
legend('cdf','pdf','smoothed -...
pdf ')
pdf ')
% plot histogram for random ...
% plot histogram for random ...
sample
sample
subplot(2,1,2)
subplot(2,1,2)
histogram(random(obj.distInfo...
histogram(random(obj.distInfo...
,1000,1),...
,1000,1),...
'Normalization','...
'Normalization','...
probability')
probability')
end
end
end
end
%-------
%-------
case 'tLocationScale'
case 'tLocationScale'
% t-Location Scale Case Statement
% t-Location Scale Case Statement
% Location parameter
% Location parameter
Mu = 4;
Mu = 4;
% Scale parameter
% Scale parameter
Sigma = .05;
Sigma = .05;
% Shape parameter
% Shape parameter
Nu = 1;
Nu = 1;
% Location parameter
% Location parameter
% Delta = 3;
% Delta = 3;
% PDF Curve \
% PDF Curve \
obj.distInfo = makedist(obj....
obj.distInfo = makedist(obj....
distributionName,...
distributionName,...
'Mu', Mu, 'Sigma', Sigma, 'Nu', Nu...
'Mu', Mu, 'Sigma', Sigma, 'Nu', Nu...
);
);
obj.pdfCurve = pdf(obj.distInfo, obj.x...
obj.pdfCurve = pdf(obj.distInfo, obj.x...
);
);
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
rndData = random(obj.distInfo,1,...
rndData = random(obj.distInfo,1,...
obj.Ns);
obj.Ns);
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
data = vertcat(obj.x,obj.pdfCurve)...
data = vertcat(obj.x,obj.pdfCurve)...
;
;
end
end
case 'Uniform'

```
case 'Uniform'
```

```
1075
1076
1077
1078
1079
1080
1 0 8 1
1082
1083
1084
1085
1086
1087
1088
1 0 8 9
1090
1 0 9 1
1092
1093
1094
1095
1096
1097
1098
1099
1 1 0 0
1 1 0 1
1102
1 1 0 3
1104
1105
1106
1107
1108
1 1 0 9
1 1 1 0
1 1 1 1
1112
1 1 1 3
1114
1 1 1 5
```

```
 % Uniform Case Statement
```

    % Uniform Case Statement
    % Lower bound
    % Lower bound
    Lower = 4;
    Lower = 4;
    % Upper Bound
    % Upper Bound
    Upper = 8;
    Upper = 8;
    % PDF Curve \
    % PDF Curve \
    obj.distInfo = makedist(obj....
    obj.distInfo = makedist(obj....
        distributionName,...
        distributionName,...
            'Lower', Lower, 'Upper', Upper);
            'Lower', Lower, 'Upper', Upper);
    obj.pdfCurve = pdf(obj.distInfo,obj.x)...
    obj.pdfCurve = pdf(obj.distInfo,obj.x)...
        ;
        ;
    %\
    %\
    % generate random sample or actual pdf
    % generate random sample or actual pdf
    if obj.randomVSactual == "random"
    if obj.randomVSactual == "random"
        rndData = random(obj.distInfo,1,\ldots
        rndData = random(obj.distInfo,1,\ldots
            obj.Ns);
            obj.Ns);
    elseif obj.randomVSactual == "actual"
    elseif obj.randomVSactual == "actual"
        data = vertcat(obj.x,obj.pdfCurve)...
        data = vertcat(obj.x,obj.pdfCurve)...
            ;
            ;
    end
    end
    case 'Uniform-Mix'
case 'Uniform-Mix'
% Uniform Case Statement
% Uniform Case Statement
% mixture weights
% mixture weights
p1 = 0.1;
p1 = 0.1;
p2 = 0.6;
p2 = 0.6;
p3 = 1 - p1 - p2;
p3 = 1 - p1 - p2;
p = [p1,p2,p3];
p = [p1,p2,p3];
% Lower bound
% Lower bound
Lower1 = 1;
Lower1 = 1;
Lower2 = 3.5;
Lower2 = 3.5;
Lower3 = 7;
Lower3 = 7;
% Upper Bound
% Upper Bound
Upper1 = 2;
Upper1 = 2;
Upper2 = 5.5;
Upper2 = 5.5;
Upper3 = 9;
Upper3 = 9;
% PDF Curve \
% PDF Curve \
% Distribution 1
% Distribution 1
distributionLabel1 = 'Uniform';
distributionLabel1 = 'Uniform';
distInfo1 = makedist(distributionLabel...
distInfo1 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower1, 'Upper', Upper 1);
'Lower', Lower1, 'Upper', Upper 1);
pdfCurve1 = pdf(distInfo1,obj.x);
pdfCurve1 = pdf(distInfo1,obj.x);
% Distribution 2
% Distribution 2
distInfo2 = makedist(distributionLabel...
distInfo2 = makedist(distributionLabel...
1,...
1,...
'Lower', Lower2, 'Upper', Upper 2);
'Lower', Lower2, 'Upper', Upper 2);
pdfCurve2 = pdf(distInfo2,obj.x);

```
 pdfCurve2 = pdf(distInfo2,obj.x);
```

```
1116
1 1 1 7
1118
1119
1120
1121
1122
1 1 2 3
1124
1125
1126
1127
```

% Distribution 3

```
% Distribution 3
distInfo3 = makedist(distributionLabel...
distInfo3 = makedist(distributionLabel...
 1,...
 1,...
 'Lower', Lower3, 'Upper', Upper3);
 'Lower', Lower3, 'Upper', Upper3);
pdfCurve3 = pdf(distInfo3,obj.x);
pdfCurve3 = pdf(distInfo3,obj.x);
% Mixture PDF Curve
% Mixture PDF Curve
obj.pdfCurve = p(1)*pdfCurve1 +...
obj.pdfCurve = p(1)*pdfCurve1 +...
 p(2)*pdfCurve2 + p(3)*pdfCurve3;
 p(2)*pdfCurve2 + p(3)*pdfCurve3;
%\
%\
% generate random sample or actual pdf
% generate random sample or actual pdf
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
 % mixture string array flag for ...
 % mixture string array flag for ...
 mixSampling()
 mixSampling()
 mixtureType = "three";
 mixtureType = "three";
 % generate n vector for mixture ...
 % generate n vector for mixture ...
 samplings
 samplings
 n = mixSampling(obj.Ns,p,...
 n = mixSampling(obj.Ns,p,...
 mixtureType);
 mixtureType);
 % generate random sample
 % generate random sample
 rndData1 = random(distInfo1,1,n(1)...
 rndData1 = random(distInfo1,1,n(1)...
);
);
 rndData2 = random(distInfo2,1,n(2)...
 rndData2 = random(distInfo2,1,n(2)...
);
);
 rndData3 = random(distInfo3,1,n(3)...
 rndData3 = random(distInfo3,1,n(3)...
);
);
 rndData = [rndData1,rndData2,...
 rndData = [rndData1,rndData2,...
 rndData3];
 rndData3];
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 ;
end
end
% CREATE DISTRIBUTION OBJECT ...
% CREATE DISTRIBUTION OBJECT ...

% mixture string array flag for ...
% mixture string array flag for ...
 mixSampling()
 mixSampling()
mixtureType = "three";
mixtureType = "three";
% generate m vector for mixture ...
% generate m vector for mixture ...
 samplings
 samplings
m = mixSampling(10000,p,mixtureType);
m = mixSampling(10000,p,mixtureType);
% generate random sample to create ...
% generate random sample to create ...
 distribution
 distribution
% object
% object
actData1 = random(distInfo1,1,m(1));
actData1 = random(distInfo1,1,m(1));
actData2 = random(distInfo2,1,m(2));
actData2 = random(distInfo2,1,m(2));
actData3 = random(distInfo3,1,m(3));
actData3 = random(distInfo3,1,m(3));
actData = [actData1,actData2,actData...
actData = [actData1,actData2,actData...
 3];
```

    3];
    ```

1149

1150
1151
1152
1153
1154
1155

1156
\% generate numerical cdf: f=cdf, \(s=x-\ldots\) coordinates
[f,s] = ecdf(actData);
\(f=f(1: 2:\) end);
\(s=s(1: 2: e n d) ;\)
\% generate distribution object
obj.distInfo = ... makedist ('PiecewiseLinear', 'x', s,'.. Fx',f);
\% create cdf/pdf from distribution ... object.
\% for debugging and vizualization.
if debug
if obj.randomVSactual == "actual" xMix = linspace (obj.lowerLimit...
, . .
obj. upperLimit, 1000) ; CDF = cdf(obj.distInfo, xMix); \% numerically differentiate PDF = zeros (1, size (CDF (1:end... -1) , 2)) ; for \(i=2: s i z e(C D F, 2)-1\) \(\mathrm{dx} 1=(x \operatorname{Mix}(i+1)-x \operatorname{Mix}(i-1) \ldots\)) ;
\(\operatorname{PDF}(i)=(C D F(i+1)-\operatorname{CDF}(\ldots\) i-1))/dx 1 ;
end \% smooth pdf data smoo1 = smooth (xMix (1:end-1),.. PDF, 0.03);
\% plot cdf,pdf, smoothed-pdf figure('Name', ['Debug: ',...
char (obj.distributionName)...
])
subplot (2, 1, 1)
hold on
plot (xMix, CDF, '-m') plot (xMix (1:end-1), PDF, ' - r') plot (xMix (1:end-1), smoo1, ' - b') ylabel ('\$f(x) or \(F(x) \${ }^{\prime}, ' \ldots\)

Interpreter','latex')
xlabel ('x', 'Interpreter','...
latex')
legend ('cdf','pdf','smoothed-...
pdf ')
\% plot histogram for random ... sample
```

1183

```
```

                subplot(2,1,2)
    ```
 subplot(2,1,2)
 histogram(random(obj.distInfo...
 histogram(random(obj.distInfo...
 ,1000,1),...
 ,1000,1),...
 'Normalization','...
 'Normalization','...
 probability')
 probability')
 end
 end
 end
 end
 %-------
 %-------
 case 'Weibull'
 case 'Weibull'
 % Weibull Case Statement
 % Weibull Case Statement
 % Scale parameter
 % Scale parameter
 a = 1;
 a = 1;
 % Shape parameter
 % Shape parameter
 b = 2;
 b = 2;
 % PDF Curve \
 % PDF Curve \
 obj.distInfo = ...
 obj.distInfo = ...
 makedist(obj.distributionName,'a',...
 makedist(obj.distributionName,'a',...
 a, 'b', b);
 a, 'b', b);
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 obj.pdfCurve = pdf(obj.distInfo,obj.x)...
 ;
 ;
 %\
 %\
 % generate random sample or actual pdf
 % generate random sample or actual pdf
 if obj.randomVSactual == "random"
 if obj.randomVSactual == "random"
 rndData = random(obj.distInfo,1,\ldots
 rndData = random(obj.distInfo,1,\ldots
 obj.Ns);
 obj.Ns);
 elseif obj.randomVSactual == "actual"
 elseif obj.randomVSactual == "actual"
 data = vertcat(obj.x,obj.pdfCurve)...
 data = vertcat(obj.x,obj.pdfCurve)...
 ;
 ;
 end
 end
 otherwise
 otherwise
 % Warning Statement
 % Warning Statement
 warning('No distribution was picked')
 warning('No distribution was picked')
end
end
% Create data file
% Create data file
if obj.randomVSactual == "random"
if obj.randomVSactual == "random"
 dataCreation(rndData,obj.fileName,obj....
 dataCreation(rndData,obj.fileName,obj....
 precision,1)
 precision,1)
elseif obj.randomVSactual == "actual"
elseif obj.randomVSactual == "actual"
 dataCreation(data,obj.fileName,obj....
 dataCreation(data,obj.fileName,obj....
 precision,1)
 precision,1)
end
end
% Create folder for distribution data \\\
% Create folder for distribution data \\\
% Define folder name
% Define folder name
folderName = sprintf(['D_', char(obj....
folderName = sprintf(['D_', char(obj....
 distributionName)]);
 distributionName)]);
% If folder already exist don't make it again
% If folder already exist don't make it again
if exist(folderName,'dir') == 0
```

if exist(folderName,'dir') == 0

```
```

1221
1222
1223
1224
1225
1226
1227
1228
1229
1230

```
```

        mkdir(char(folderName))
    ```
 mkdir(char(folderName))
 end
 end
 %\\\\\\\\\
 %\\\\\\\\\
 % Move datafile to folder
 % Move datafile to folder
 if exist([char(obj.fileName),'.txt'],'file') ...
 if exist([char(obj.fileName),'.txt'],'file') ...
 == 2
 == 2
 movefile([char(obj.fileName),'.txt'] ,char...
 movefile([char(obj.fileName),'.txt'] ,char...
 (folderName));
 (folderName));
 end
 end
 end
 end
 end
 end
end
```

end

```

\section*{C.2.3 mixSampling.m}
```

function n = mixSampling(N,p,mixtureType)
% Probability Distribution Data Generation function
% Created By: Zach D. Merino a MS candidate
% Updated: 3/22/19
%-------------
% This function generates the size of the sample to be ...
taken from each
7% individual distrbution in a mixture distribution. This ...
method uses
% random sampling from a binomial distribution. This ...
method can easily be
9% generalized to any size mixture, but for practial use ...
the option to
0% created a mixture from 2-5 has been included.
%-------------
2% n = vector of subsamples for each distribution in the ...
mixture
% N = sample size to take from total mixture distribution
14% p = vector of probability weights for each distribution ...
in the mixture
switch mixtureType
case "two"
% get random sample from binomial distribution
n1 = binornd(N,p(1));
% find sample points for last distribution in the ...
mixture
n2 = N - n1;

```
15
```

2 3

```
```

    % save number of samples to take from each ...
    ```
 % save number of samples to take from each ...
 distribution
 distribution
 n = [n1,n2];
 n = [n1,n2];
case "three"
case "three"
 % get random sample from binomial distribution
 % get random sample from binomial distribution
 n1 = binornd(N,p(1));
 n1 = binornd(N,p(1));
 % get random sample from binomial distribution ...
 % get random sample from binomial distribution ...
 with conditional
 with conditional
 % probabilies
 % probabilies
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)));
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)));
 % find sample points for last distribution in the ...
 % find sample points for last distribution in the ...
 mixture
 mixture
 n3 = N - n1 - n2;
 n3 = N - n1 - n2;
 % save number of samples to take from each ...
 % save number of samples to take from each ...
 distribution
 distribution
 n = [n1,n2,n3];
 n = [n1,n2,n3];
case "four"
case "four"
 % get random sample from binomial distribution
 % get random sample from binomial distribution
 n1 = binornd(N,p(1));
 n1 = binornd(N,p(1));
 % get random sample from binomial distribution ...
 % get random sample from binomial distribution ...
 with conditional
 with conditional
 % probabilies
 % probabilies
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)));
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)));
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)));
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)));
 % find sample points for last distribution in the ...
 % find sample points for last distribution in the ...
 mixture
 mixture
 n4 = N - n1 - n2 - n3;
 n4 = N - n1 - n2 - n3;
 % save number of samples to take from each ...
 % save number of samples to take from each ...
 distribution
 distribution
 n = [n1,n2,n3,n4];
 n = [n1,n2,n3,n4];
case "five"
case "five"
 % get random sample from binomial distribution
 % get random sample from binomial distribution
 n1 = binornd(N,p(1));
 n1 = binornd(N,p(1));
 % get random sample from binomial distribution ...
 % get random sample from binomial distribution ...
 with conditional
 with conditional
 % probabilies
 % probabilies
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)+p(5)));
 n2 = binornd(N-n1,p(2)/(p(2)+p(3)+p(4)+p(5)));
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)));
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)));
 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)));
 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)));
 % find sample points for last distribution in the ...
 % find sample points for last distribution in the ...
 mixture
```

        mixture
    ```
```

6 1

```
```

        n5 = N - n1 - n2 - n3 - n4;
    ```
 n5 = N - n1 - n2 - n3 - n4;
 % save number of samples to take from each ...
 % save number of samples to take from each ...
 distribution
 distribution
 n = [n1, n2, n 3, n4, n 5];
 n = [n1, n2, n 3, n4, n 5];
 case "six"
 case "six"
 % get random sample from binomial distribution
 % get random sample from binomial distribution
 n1 = binornd(N,p(1));
 n1 = binornd(N,p(1));
 % get random sample from binomial distribution ...
 % get random sample from binomial distribution ...
 with conditional
 with conditional
 % probabilies
 % probabilies
 n2 = binornd(N-n1,p(2)/(p(2) +p(3)+p(4)+p(5)+p(6)))\ldots
 n2 = binornd(N-n1,p(2)/(p(2) +p(3)+p(4)+p(5)+p(6)))\ldots
 ;
 ;
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)+p(6)));
 n3 = binornd(N-n1-n2,p(3)/(p(3)+p(4)+p(5)+p(6)));
 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)+p(6)));
 n4 = binornd(N-n1-n2-n3,p(4)/(p(4)+p(5)+p(6)));
 n5 = binornd(N-n1-n2-n3-n4,p(5)/(p(5)+p(6)));
 n5 = binornd(N-n1-n2-n3-n4,p(5)/(p(5)+p(6)));
 % find sample points for last distribution in the ...
 % find sample points for last distribution in the ...
 mixture
 mixture
 n6 = N - n1 - n2 - n3 - n4 - n5;
 n6 = N - n1 - n2 - n3 - n4 - n5;
 % save number of samples to take from each ...
 % save number of samples to take from each ...
 distribution
 distribution
 n = [n1,n2,n3,n4,n5,n6];
 n = [n1,n2,n3,n4,n5,n6];
 end
```

    end
    ```

\section*{C.2.4 dataCreation.m}
```

function dataCreation(data,fileName, percision, dimIndex)
% Probability Distribution Data Generation function
% Created By: Zach D. Merino a MS candidate
% Updated: 8/3/18
%--------------
% Comments with no leading space are for diagnostic ...
purposes.
% The function creates a collimated data.txt file with a ...
specific precision
% from the data and fileName variables.
%-------------
% Initialize column spacing
num_column = '\r\n';
% Loop for text file set up
% dimIndex can vary depending on data format
for i = 1:size(data,dimIndex)
num_column = ['%.', num2str(percision),'g ' num_column...
];

```
```

16 end
7% Define full file name and type
18 full_name = [fileName ,'.txt'];
19% Generate txt with double precision error output
20 [file_id, msg] = fopen(full_name,'w');
21 if file_id < 0
22 warning(['errorID: ', file_id])
23 warning(['errorMSG:', msg])
24 end
25 fprintf(file_id, num_column, data);
26 fclose(file_id);
27 end

```
```

