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ABSTRACT 

 

PEDRAM BIGDELOU. A Numerical Study of Interfacial Instabilities in Shocked 

Materials with Surface Tension. (Under the direction of DR. PRAVEEN 

RAMAPRABHU) 

 

 

Shock-driven multi-material flows occur in several applications including shock wave 

lithotripsy, underwater explosions, droplet combustion, propeller cavitation and ejection of 

material from surfaces subject to blast loading. Such flows are highly compressible due to 

the presence of strong shocks, yet are influenced to a significant extent by surface tension 

forces at the interface separating two or more materials. In particular, surface tension can 

impact the evolution of the interface, by stabilizing hydrodynamic instabilities occurring 

at the interface. The presence of surface tension can also influence aspects of the late-time 

interface breakup process, and determine the size distribution, transport, subsequent 

breakup and phase change of droplets. The modeling of such flows requires the 

development and application of specialized numerical methods, capable of handling the 

multi-physics nature of the flow dynamics. In this work, we report on the development and 

validation of novel numerical methods for shock-driven multi-material flows with surface 

tension. The numerical methods have been implemented in IMPACT, a Computational 

Fluid Dynamics software, with a wide array of physics capabilities including compressible 

flows with multiple equations of state, surface tension, and phase change.  

IMPACT solves the Euler equations using a finite volume approach, and exploits the Roe 

Riemann solver to obtain intecell fluxes. A fifth-order WENO reconstruction for spatial 

discretization is coupled with a third-order TVD Runge-Kutta scheme for time 
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discretization. The Level Set method is implemented in IMPACT to track the interface 

between materials and to obtain interface curvature required for surface tension 

calculations. Interfacial boundary conditions are applied to the cells bordering the material 

interface using the Ghost Fluid Method (GFM). In the presence of surface tension, the 

GFM is modified to account for the pressure jump across the curved interface stemming 

from surface tension effects. The GFM and its variants have been used extensively in the 

numerical treatment of shocked, multi-material flows, but are susceptible to overheating 

errors near the interface as well as spurious numerical reflections. To address these issues, 

we have developed a novel, highly accurate variation of the GFM called the Efficient GFM 

(EGFM) which removes overheating errors at the interfaces and numerical reflections, 

resulting in numerical solutions that are in agreement with analytical solutions. When 

compared with the original GFM approach and its subsequent variants, the EGFM scheme 

proposed here is robust, and has been demonstrated in this dissertation to accurately 

simulate a wide range of Riemann problems and shock-interface problems.
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 CHAPTER 1: INTRODUCTION  

 

Shock-driven multi-phase flows are of great significance to various engineering problems, 

such as chemically reacting flows [1-3] (for example combustion [4-6]), cavitation [7], 

shock wave therapy and lithotripsy [8, 9], and material ejection [10-12]. In such flows, the 

evolution of an interface separating disparate materials is central to determining the flow 

characteristics and ultimately the performance of the engineering system. Often, surface 

tension is present at the interface and can fundamentally alter the dynamics of the 

underlying instability evolution. Such flow problems require specialized numerical 

methods capable of capturing the compressible flow properties with fidelity, while 

accurately tracking the interface evolution through the complex topological changes. In 

this dissertation, we describe the development and implementation of numerical methods 

that address the above objectives.  

Depending on the problem at hand, the material interface may be susceptible to 

hydrodynamic instabilities including the shear-driven Kelvin-Helmholtz instability (KHI), 

gravity-driven Rayleigh-Taylor instability [13, 14] (RTI), and the shock-driven Richtmyer-

Meshkov instability [15, 16] (RMI). Specific to shocked interfaces is the RMI which is 

triggered when a shock wave traverses the initially corrugated interface between materials 

of mismatched impedances. Initial perturbations at the interface will then grow under the 

influence of baroclinic vorticity deposited by the shock-interface interaction, although the 

perturbation growth rate will depend on the initial density contrast across the interface, the 

strength of the shock, and the amplitude of the perturbations [15]. RMI growth rates are 

also influenced by the physical properties of the materials involved such as the fluid 
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viscosity [17], yield strength [18], as well as surface tension [19]. Additional details 

regarding RMI are provided in Chapter 4. 

While the role of viscosity and material strength on hydrodynamic instabilities has been 

studied through modeling, simulations, and experiments, the effect of surface tension on 

RMI growth rate has received comparatively little attention. Surface tension effects on 

shocked interfaces have been studied theoretically [19], numerically [20], and 

experimentally [21]. These studies have shown that surface tension acts to stabilize 

RTI/RMI instabilities for interfaces with small perturbations [19], while governing the 

process of interface breakup at larger amplitude cases [20, 21]. When surface tension 

stabilizes instability growth at a shocked interface, the result is oscillatory behavior about 

the mean interface. The latter scenario (larger amplitudes) involving droplet breakup can 

occur when RMI is triggered by a shock wave processing a spherical droplet, while the 

resulting breakup in to smaller, detached daughter droplets is governed by surface tension. 

This is observed for example in fuel atomization in supersonic combustion ramjets [22], 

where the fuel stream is first impinged by a shock wave to form a primary atomization, 

followed by surface tension-mediated secondary atomization, eventually resulting in the 

formation of fuel droplets from elongated fuel strands [20]. Note that surface tension plays 

a more pronounced role at smaller scales, and can thus significantly impact secondary 

atomization [22, 23]. This makes experimental studies of droplet formation challenging, 

due to the prohibitive requirements placed on diagnostics necessary to resolve small-scale 

breakup. Numerical approaches offer a viable alternative to investigate fundamental 

aspects of the effect of surface tension on compressible multi-medium flows.  
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The above discussion is summarized in figure 1.1, where a schematic shows a classification 

of such problems based on the flow Mach number (𝑀𝑎 = 𝑢/𝑎) and the Weber number 

(𝑊𝑒 = 𝜌𝑢2𝑙 𝜎⁄ ), as well as common engineering applications in the regime of high 

compressibility/high surface tension. Numerical codes capable of handling surface tension 

operate in the incompressible regime, while compressible flow codes developed for high-

speed flows in gases do not typically include surface tension effects. To address this gap 

in capabilities, a new software application called IMPACT has been developed and 

described in this dissertation. IMPACT is a shock physics code with multi-medium and 

multi-phase capabilities, while surface tension is modeled using the Level Set [24, 25] (LS) 

and Ghost Fluid Methods [26] (GFM). We have developed new numerical methods that 

make IMPACT highly accurate for problems that feature sharp interfaces and 

discontinuities. These developments are reported in detail in this dissertation.  

 

Figure 1.1. Schematic of regimes of interest in multi-phase problems with surface tension 

as observed in engineering applications. 
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Specific to IMPACT is the fully compressible approach of the code toward liquids and 

solids. In the problems mentioned above, the flow behavior is compressible, so that the 

density of the materials changes in response to pressure variations, and the resulting flow 

properties are poorly understood and require the application of specialized simulation tools. 

Furthermore, surface tension in multi-phase flows has been conventionally handled by 

treating one [27] or both [28] fluids as an incompressible liquid. However, this approach 

is inadequate in describing the complex physics that can occur when a shock wave is 

present in the flow. This occurs for instance in underwater explosions [29-31], where the 

presence of detonations/shocks creates acoustic waves in the liquid that cannot be ignored. 

Similarly, when a solid surface [32-34] is subjected to shocks, explosives, or ballistic 

loading, shocks can result within the solid material. The high-strain loading can melt the 

material, causing it to ‘flow’ like a liquid, or to ‘flow with strength’ if the loading is below 

melt conditions. This can occur, for instance when a water turbine blade or a pump works 

under the cavitation condition [18] or the shell of an armored tank is under attack from 

explosive loading. When an underwater explosion occurs near a solid structure, the solid 

material usually undergoes a plastic deformation, while the liquid evolves under the 

cavitating condition [18], giving rise to a complex solid-liquid-gas flow with varying 

densities, temperatures, and material properties. These dynamics are also important to 

astrophysical applications such as supernovae explosions. In supernovae detonations, 

exploding shock waves within the stellar core drive finger-like ‘ejecta’ structures to form, 

resulting in the ejection of heavier elements through space which ‘seed’ the formation of 

future solar systems and planets. 
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IMPACT employs a novel variation of the widely-used GFM to simulate compressible 

flows with surface tension. One of the aspects of IMPACT which make it a unique 

simulation tool for such flows is the introduction of the Efficient GFM (EGFM) for the 

treatment of ‘overheating’ at material interfaces. Overheating [26, 35] is a technical term 

for spurious over- and under-shoots in the temperature and density of materials at and near 

interfaces, stemming from implementation of the GFM to capture interfacial boundary 

conditions and remains a persistent numerical issue associated with the GFM. In Chapter 

3, we will review different versions of the GFM and their approaches to addressing 

overheating. These approaches, however, are able to only alleviate [32, 36-39] overheating 

and cannot eliminate it from the numerical solution. In particular, the practical GFM [39] 

(PGFM) proposes a novel algorithm to reduce the overheating errors to a large extent, but 

still suffers from this numerical issue in different compressible multi-medium problems. 

The proposed EGFM is based on a lemma [40] (called the ‘GFM Theorem’ in this 

dissertation) and combined with the approach of the PGFM [39] to address overheating, 

results in complete elimination of overheating for compressible multi-medium flows. This 

is the central novelty of the work presented in this dissertation. 

The rest of the dissertation is organized as follows: Chapter 2 is focused on the numerical 

methods implemented in IMPACT. Chapter 3 is focused on the GFM where the 

fundamentals of the approach and the methodology are presented, followed by a discussion 

of the variants of the GFM which are based on multi-medium Riemann solvers at the 

interface. Subsequently, the EGFM is introduced along with an explanation of the 

overheating treatment proposed through the EGFM approach. Chapter 4 includes a detailed 

presentation of our validation efforts for IMPACT including 1D single- and multi-medium 
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Riemann problems and various shock-interface interactions, results from different versions 

of the GFM, demonstration of overheating removal through the EGFM implementation; 

2D problems include air bubble explosion, shock-bubble interactions, and shock-cavity 

interactions. In addition, results from several RMI cases with and without surface tension 

are presented. Finally, Chapter 5 includes a summary and conclusions of the dissertation. 
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 CHAPTER 2: NUMERICAL METHODS 

 

In this chapter, we describe the numerical methods used in IMPACT, a multi-material, 

shock physics code developed to investigate shocked multi-phase flows. IMPACT solves 

the Euler equations, while the interface boundary conditions are enforced through the 

GFM. Multiple variations of GFM are available in IMPACT, including a novel approach 

that will be discussed in Chapter 3. The use of the level set approach ensures accurate 

tracking of the material interface without recourse to explicit ‘interface surgical’ 

approaches. IMPACT also provides the capability to handle a wide range of materials with 

different equation of state (EOS) behaviors and transport properties. Advection is handled 

with a fifth order WENO method, while time-stepping is performed to third order using a 

TVD-RK approach. 

2.1 Euler equations and Riemann problem 

The governing equations for compressible flows are the Euler equations, which are given 

below in conservation form for a 1D problem: 

{
 
 

 
 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
= 0,

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑝) = 0,

𝜕(𝜌𝐸)

𝜕𝑡
+
𝜕

𝜕𝑥
[𝑢(𝜌𝐸 + 𝑝)] = 0.

                                                          (2.1) 

In vector form, these equations can be expressed as 

𝑈𝑡 + 𝐹(𝑈)𝑥 = 0                                                                                     (2.2) 

where 𝑈 and 𝐹 represent the vector of conserved variables and the vector of fluxes, 

respectively: 
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𝑈 = [

𝜌
𝜌𝑢
𝜌𝐸
] = [

𝑢1
𝑢2
𝑢3
], 𝐹(𝑈) = [

𝜌𝑢

𝜌𝑢2 + 𝑝

𝑢(𝜌𝐸 + 𝑝)
] = [

𝑓1
𝑓2
𝑓3

]. 

For flows with discontinuous initial conditions, a Riemann problem may be defined by 

applying the initial conditions 

𝑈(𝑥, 0) = {
𝑈𝐿 , 𝑥 < 𝑥0
𝑈𝑅 , 𝑥 ≥ 𝑥0

                                                                (2.3) 

to the Euler equations. In eq. (2.3), 𝑈𝐿 and 𝑈𝑅 represent the states of matter to the left and 

to the right of the initial discontinuity located at 𝑥0. In order to obtain the solution to the 

Riemann problem (denoted by 𝑅𝑃(𝑈𝐿 , 𝑈𝑅)), the Jacobian matrix 𝐴(𝑈) associated with the 

system given in eq. (2.2) must be first determined: 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑈

𝜕𝑈

𝜕𝑥
=
𝜕𝑈

𝜕𝑡
+ 𝐴(𝑈)

𝜕𝑈

𝜕𝑥
= 0.                                              (2.4) 

Here 𝐴(𝑈) is given by: 

𝐴(𝑈) =

[
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓1
𝜕𝑢3

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

𝜕𝑓2
𝜕𝑢3

𝜕𝑓3
𝜕𝑢1

𝜕𝑓3
𝜕𝑢2

𝜕𝑓3
𝜕𝑢3]

 
 
 
 
 
 

.                                                             (2.5) 

The eigenvalues of the Jacobian matrix 𝐴(𝑈) are determined as: 

𝜆1 = 𝑢 − 𝑎,          𝜆2 = 𝑢,          𝜆3 = 𝑢 + 𝑎, 

while the eigenvectors are 

𝐾(1) = [
1

𝑢 − 𝑎
𝐻 − 𝑢𝑎

],          𝐾(2) = [

1
𝑢

𝐻 −
1

2
𝑢2
],          𝐾(3) = [

1
𝑢 + 𝑎
𝐻 + 𝑢𝑎

] 

where 𝐻 = 𝐸 + 𝑝 𝜌⁄  is the enthalpy, and 𝑎 is the speed of sound given by: 
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𝑎 = √
𝛾(𝑝 + 𝑝∞)

𝜌
.                                                                               (2.6) 

The solution to the above Riemann problem will consist of three waves, each of which 

corresponds to one of the eigenvalues and is depicted in 𝑥 − 𝑡 plane as shown in figure 2.1. 

While the middle wave (𝜆2 = 𝑢) is always a contact discontinuity, the outer waves can be 

rarefactions or shocks. In the example given in figure 2.1, 𝑈∗𝐿 and 𝑈∗𝑅 are the non-trivial 

solutions obtained from the initial conditions in eq. (2.3). 

 

Figure 2.1. Example of the solution to the Riemann problem in 𝑥 − 𝑡 plane. Figure is 

based on figure 3.1 from [41]. 

 

2.2 Godunov method 

Since the Riemann problem involves discontinuities in the initial conditions and allows 

discontinuous solutions (contact surface and shock waves), solutions based on integral 

approaches such as finite volume techniques are preferred. The method of Godunov [42] 

provides such a scheme that is first order, and is applied to the cells shown in figure 2.2 as 

given below: 
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𝑈𝑖
𝑛+1 = 𝑈𝑖

𝑛 +
Δ𝑡

Δ𝑥
[𝐹

𝑖−
1
2
− 𝐹

𝑖+
1
2
].                                                        (2.7) 

In eq. (2.7), 𝑈𝑖
𝑛 (𝑈𝑖

𝑛+1) is the cell average value in cell 𝑖 at time step 𝑛 (𝑛 + 1), Δ𝑥 is the 

cell size, Δ𝑡 is the time step size derived from a CFL condition, and 𝐹
𝑖−
1

2

 and 𝐹
𝑖+
1

2

 are the 

average fluxes at the left and right boundaries of the cell 𝑖, respectively. The Godunov 

method has been implemented in IMPACT, while our implementation has been validated 

for multiple test cases. In the next section, numerical methods to calculate the cell fluxes 

are discussed. 

 

Figure 2.2. Discretized domain for the finite volume approach. Figure is based on figure 

6.1 from [41]. 

 

2.3 Roe Riemann solver 

The Roe Riemann solver [43] has been implemented in IMPACT to compute the cell fluxes 

in eq. (2.7), and was chosen due to its accuracy and robustness. The Roe solver relies on 

linearization of eq. (2.4) for the initial condition given by eq. (2.3). Thus, this method seeks 

an average state between 𝑈𝐿 and 𝑈𝑅 to linearize the Euler equations: 
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𝜕𝑈

𝜕𝑡
+ �̂�

𝜕𝑈

𝜕𝑥
= 0                                                                 (2.8) 

where the linearized Jacobian matrix is a function of the initial condition: �̂� = �̂�(𝑈𝐿 , 𝑈𝑅). 

Roe averages are then defined as follows: 

{
  
 

  
 �̂� = √𝜌𝐿𝜌𝑅 ,

�̂� =
√𝜌𝐿𝑢𝐿 +√𝜌𝑅𝑢𝑅

√𝜌𝐿 +√𝜌𝑅
,

�̂� =
√𝜌𝐿𝐻𝐿 +√𝜌𝑅𝐻𝑅

√𝜌𝐿 +√𝜌𝑅
.

                                                (2.9) 

The eigenvalues of �̂� are obtained as 

�̂�1 = �̂� − �̂�,          �̂�2 = �̂�,          �̂�3 = �̂� + �̂�,                (2.10) 

while the eigenvectors are 

�̂�(1) = [
1

�̂� − �̂�
�̂� − �̂��̂�

],          �̂�(2) = [

1
�̂�

�̂� −
1

2
�̂�2
],          �̂�(3) = [

1
�̂� + �̂�
�̂� + �̂��̂�

]              (2.11) 

where �̂� = √(𝛾 − 1) (�̂� −
1

2
�̂�2) is the average speed of sound. The corresponding Roe 

solution is shown in figure 2.3. Note that owing to the linearization, the solution contains 

only discontinuities, while rarefactions are replaced by shock-like waves. In the system 

shown in figure 2.3, the following relations hold: 

𝑈∗𝐿 = 𝑈𝐿 + �̂�1�̂�
(1),                                                          (2.12) 

𝑈∗𝑅 = 𝑈∗𝐿 + �̂�2�̂�
(2),                                                        (2.13) 

𝑈𝑅 = 𝑈∗𝑅 + �̂�3�̂�
(3)                                                          (2.14) 

where �̂�1, �̂�2, and �̂�3 are wave strengths obtained from: 
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Figure 2.3. The Riemann solution obtained from the Roe method. 

 

{
 
 

 
 �̂�1 =

𝑝𝑅 − 𝑝𝐿 − �̂��̂�(𝑢𝑅 − 𝑢𝐿)

2�̂�2
,

�̂�2 = 𝜌𝑅 − 𝜌𝐿 −
𝑝𝑅 − 𝑝𝐿
�̂�2

,

�̂�3 =
𝑝𝑅 − 𝑝𝐿 + �̂��̂�(𝑢𝑅 − 𝑢𝐿)

2�̂�2
.

                                              (2.15) 

The above algorithm is used to find 𝐹
𝑖+
1

2

: A Riemann problem is defined between cells ‘𝑖’ 

and ‘𝑖 + 1’ (𝑅𝑃(𝑈𝑖, 𝑈𝑖+1)). Roe averages, eigenvalues, eigenvectors, and wave strengths 

are calculated, and the intercell flux at ‘𝑖 +
1

2
’ is found using: 

𝐹
𝑖+
1
2
=
1

2
(𝐹𝐿 + 𝐹𝑅) −

1

2
[�̂�1|�̂�1|�̂�

(1) + �̂�2|�̂�2|�̂�
(2) + �̂�3|�̂�3|�̂�

(3)]                    (2.16) 

where 𝐹𝐿 = 𝐹(𝑈𝐿) and 𝐹𝑅 = 𝐹(𝑈𝑅). This procedure is applied to all intercells in the 

domain, and eq. (2.7) is then used to update the solution to the next time step. 

Finally, the rarefaction waves in the solution must be treated separately. Since the Roe 

solver linearizes the Euler equations, a linear system is solved resulting in a solution that 

can only contain shock waves (no rarefactions). It has been shown that when there exists a 

sonic rarefaction in the solution, the shock representation of the rarefaction wave is not 
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accurate and the flux has to be modified through an entropy fix. This treatment is referred 

to as the Harten-Hyman [44] entropy fix and has been used in the current work. 

2.4 Weighted Essentially Non-Oscillatory reconstruction 

We have implemented higher-order numerical schemes in IMPACT, to avoid the highly 

diffusive treatment of discontinuities observed in the Godunov method. High-order 

methods provide a more accurate solution to the Riemann problem by utilizing various 

reconstruction schemes to assign a pair of “equivalent” values to each intercell at which 

the Riemann solution (Roe solution in the current work) is to be obtained. For example, for 

the intercell ‘𝑖 +
1

2
’, 𝑅𝑃 (𝑈

𝑖+
1

2
,𝐿

𝑒𝑞
, 𝑈

𝑖+
1

2
,𝑅

𝑒𝑞
) is solved instead of 𝑅𝑃(𝑈𝑖, 𝑈𝑖+1).  

Weighted essentially non-oscillatory (WENO) [45, 46] reconstruction is a high-order 

approach for problems involving shocks and discontinuities. In the WENO approach, the 

stencils of points or cells formed to reconstruct polynomials are assigned different weights 

depending on the presence of discontinuities and sharp gradients. In this approach, the 

highest weights are allocated to smooth stencils, whereas weights for stencils with shocks 

and contact surfaces are negligible. This approach ensures a high order of accuracy 

globally. Additional details are given in [47], including a review of WENO schemes for 

convection-dominated problems. 

In the present work, a fifth-order WENO scheme, hereinafter referred as WENO5, is 

adopted for flux reconstruction. Thus, to obtain the equivalent values for the left and right 

boundaries of cell ‘𝑖’ in figure 2.4 (𝑈
𝑖−
1

2
,𝑅

𝑒𝑞
 and 𝑈

𝑖+
1

2
,𝐿

𝑒𝑞
, respectively), WENO5 requires 

information from two cells on either side of the cell and introduces three different stencils 

to reconstruct the required polynomials as follows: 
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Figure 2.4. Required cells for WENO5 reconstruction. 

 

𝑆0 = {𝑈𝑖, 𝑈𝑖+1, 𝑈𝑖+2},       𝑆1 = {𝑈𝑖−1, 𝑈𝑖 , 𝑈𝑖+1},       𝑆2 = {𝑈𝑖−2, 𝑈𝑖−1, 𝑈𝑖}. 

For each stencil, the Lagrange method of interpolation is utilized to find reconstructed 

values at the intercells ‘𝑖 +
1

2
’ and ‘𝑖 −

1

2
’, respectively: 

𝑈
𝑖+
1
2

(0)
=
1

3
𝑈𝑖 +

5

6
𝑈𝑖+1 −

1

6
𝑈𝑖+2, 

𝑈
𝑖+
1
2

(1)
= −

1

6
𝑈𝑖−1 +

5

6
𝑈𝑖 +

1

3
𝑈𝑖+1,                                                     (2.17) 

𝑈
𝑖+
1
2

(2)
=
1

3
𝑈𝑖−2 −

7

6
𝑈𝑖−1 +

11

6
𝑈𝑖, 

𝑈
𝑖−
1
2

(0)
=
11

6
𝑈𝑖 −

7

6
𝑈𝑖+1 +

1

3
𝑈𝑖+2, 

𝑈
𝑖−
1
2

(1)
=
1

3
𝑈𝑖−1 +

5

6
𝑈𝑖 −

1

6
𝑈𝑖+1,                                                          (2.18) 

𝑈
𝑖−
1
2

(2)
= −

1

6
𝑈𝑖−2 +

5

6
𝑈𝑖−1 +

1

3
𝑈𝑖. 
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For each stencil, smoothness of data is computed to determine the magnitude of weights 

that is to be assigned. Smoothness indicators are computed using 

𝛽0 =
13

12
(𝑈𝑖 − 2𝑈𝑖+1 + 𝑈𝑖+2)

2 +
1

4
(3𝑈𝑖 − 4𝑈𝑖+1 + 𝑈𝑖+2)

2, 

𝛽1 =
13

12
(𝑈𝑖−1 − 2𝑈𝑖 + 𝑈𝑖+1)

2 +
1

4
(𝑈𝑖−1 − 𝑈𝑖+1)

2,                           (2.19) 

𝛽2 =
13

12
(𝑈𝑖−2 − 2𝑈𝑖−1 + 𝑈𝑖)

2 +
1

4
(𝑈𝑖−2 − 4𝑈𝑖−1 + 3𝑈𝑖)

2. 

Subsequently, the weights for the intercells ‘𝑖 +
1

2
’ and ‘𝑖 −

1

2
’ are found using: 

𝜔𝑟 =
𝛼𝑟

𝛼0 + 𝛼1 + 𝛼2
,       �̃�𝑟 =

�̃�𝑟
�̃�0 + �̃�1 + �̃�2

,       𝑟 = 0,1,2             (2.20) 

with 𝛼𝑟 and �̃�𝑟 taken as 

𝛼𝑟 =
𝑑𝑟

(𝛽𝑟 + 10−6)2
,       �̃�𝑟 =

�̃�𝑟
(𝛽𝑟 + 10−6)2

,       𝑟 = 0,1,2              (2.21) 

and 𝑑0 = 0.3, 𝑑1 = 0.6, 𝑑2 = 0.1, �̃�0 = 0.1, �̃�1 = 0.6, �̃�2 = 0.3. Finally, the 

reconstructed values obtained in eqs. (2.17) and (2.18) are combined with the weights in 

eq. (2.20) to compute the equivalent values: 

𝑈
𝑖+
1
2
,𝐿

𝑒𝑞
= 𝜔0𝑈

𝑖+
1
2

(0)
+ 𝜔1𝑈

𝑖+
1
2

(1)
+ 𝜔2𝑈

𝑖+
1
2

(2)
,                                                   (2.22) 

𝑈
𝑖−
1
2
,𝑅

𝑒𝑞
= �̃�0𝑈

𝑖−
1
2

(0)
+ �̃�1𝑈

𝑖−
1
2

(1)
+ �̃�2𝑈

𝑖−
1
2

(2)
.                                                   (2.23)  

From the equivalent values computed for each cell, the corresponding Riemann problems 

are formed and solved. The above implementation of WENO is referred as component-

wise, since the reconstruction procedure is applied to each component of 𝑈 using the same 

approach.  

 



16 
 

 

2.5 Extension to 2D problems 

The extension of the numerical methods discussed above to 2D problems is presented in 

this section. The Euler equations for conservation of mass, momentum, and energy are 

given in 2D according to: 

{
 
 
 
 

 
 
 
 

𝜕𝜌

𝜕𝑡
+
𝜕(𝜌𝑢)

𝜕𝑥
+
𝜕(𝜌𝑣)

𝜕𝑦
= 0,

𝜕(𝜌𝑢)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢2 + 𝑝) +

𝜕

𝜕𝑦
(𝜌𝑢𝑣) = 0,

𝜕(𝜌𝑣)

𝜕𝑡
+
𝜕

𝜕𝑥
(𝜌𝑢𝑣) +

𝜕

𝜕𝑦
(𝜌𝑣2 + 𝑝) = 0,

𝜕(𝜌𝐸)

𝜕𝑡
+
𝜕

𝜕𝑥
[𝑢(𝜌𝐸 + 𝑝)] +

𝜕

𝜕𝑦
[𝑣(𝜌𝐸 + 𝑝)] = 0.

                                   (2.24) 

In vector form, the equations are given as 

𝑈𝑡 + 𝐹(𝑈)𝑥 + 𝐺(𝑈)𝑦 = 0                                                                               (2.25) 

where 𝑈, 𝐹(𝑈), and 𝐺(𝑈) represent the vector of conserved variables, and the vector of 

fluxes in the 𝑥-, and 𝑦-directions, respectively: 

𝑈 = [

𝜌
𝜌𝑢
𝜌𝑣
𝜌𝐸

] = [

𝑢1
𝑢2
𝑢3
𝑢4

],     𝐹(𝑈) = [

𝜌𝑢

𝜌𝑢2 + 𝑝
𝜌𝑢𝑣

𝑢(𝜌𝐸 + 𝑝)

] = [

𝑓1
𝑓2
𝑓3
𝑓4

],     𝐺(𝑈) = [

𝜌𝑣
𝜌𝑢𝑣

𝜌𝑣2 + 𝑝

𝑣(𝜌𝐸 + 𝑝)

] = [

𝑔1
𝑔2
𝑔3
𝑔4

]. 

To find the eigenstructure associated with the 2D Euler equations, the Jacobian matrices of 

eq. (2.25) are first determined according to 

𝜕𝑈

𝜕𝑡
+
𝜕𝐹

𝜕𝑈

𝜕𝑈

𝜕𝑥
+
𝜕𝐺

𝜕𝑈

𝜕𝑈

𝜕𝑦
=
𝜕𝑈

𝜕𝑡
+ 𝐴(𝑈)

𝜕𝑈

𝜕𝑥
+ 𝐵(𝑈)

𝜕𝑈

𝜕𝑦
= 0                      (2.26) 

where 𝐴(𝑈) is given by 
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𝐴(𝑈) =

[
 
 
 
 
 
 
 
 
𝜕𝑓1
𝜕𝑢1

𝜕𝑓1
𝜕𝑢2

𝜕𝑓1
𝜕𝑢3

𝜕𝑓1
𝜕𝑢4

𝜕𝑓2
𝜕𝑢1

𝜕𝑓2
𝜕𝑢2

𝜕𝑓2
𝜕𝑢3

𝜕𝑓2
𝜕𝑢4

𝜕𝑓3
𝜕𝑢1

𝜕𝑓3
𝜕𝑢2

𝜕𝑓3
𝜕𝑢3

𝜕𝑓3
𝜕𝑢4

𝜕𝑓4
𝜕𝑢1

𝜕𝑓4
𝜕𝑢2

𝜕𝑓4
𝜕𝑢3

𝜕𝑓4
𝜕𝑢4]

 
 
 
 
 
 
 
 

                                                                (2.27) 

with eigenvalues and eigenvectors given by 

𝜆1 = 𝑢 − 𝑎,          𝜆2 = 𝜆3 = 𝑢,          𝜆4 = 𝑢 + 𝑎, 

𝐾(1) = [

1
𝑢 − 𝑎
𝑣

𝐻 − 𝑢𝑎

],          𝐾(2) =

[
 
 
 
 

1
𝑢
𝑣

1

2
(𝑢2 + 𝑣2)]

 
 
 
 

,          𝐾(3) = [

0
0
1
𝑣

],          𝐾(4) = [

1
𝑢 + 𝑎
𝑣

𝐻 + 𝑢𝑎

], 

while 𝐵(𝑈) is given by 

𝐵(𝑈) =

[
 
 
 
 
 
 
 
 
𝜕𝑔1
𝜕𝑢1

𝜕𝑔1
𝜕𝑢2

𝜕𝑔1
𝜕𝑢3

𝜕𝑔1
𝜕𝑢4

𝜕𝑔2
𝜕𝑢1

𝜕𝑔2
𝜕𝑢2

𝜕𝑔2
𝜕𝑢3

𝜕𝑔2
𝜕𝑢4

𝜕𝑔3
𝜕𝑢1

𝜕𝑔3
𝜕𝑢2

𝜕𝑔3
𝜕𝑢3

𝜕𝑔3
𝜕𝑢4

𝜕𝑔4
𝜕𝑢1

𝜕𝑔4
𝜕𝑢2

𝜕𝑔4
𝜕𝑢3

𝜕𝑔4
𝜕𝑢4]

 
 
 
 
 
 
 
 

                                                                (2.28) 

with eigenvalues and eigenvectors given by 

𝜆1 = 𝑣 − 𝑎,          𝜆2 = 𝜆3 = 𝑣,          𝜆4 = 𝑣 + 𝑎, 

𝐾(1) = [

1
𝑢

𝑣 − 𝑎
𝐻 − 𝑣𝑎

],          𝐾(2) =

[
 
 
 
 

1
𝑢
𝑣

1

2
(𝑢2 + 𝑣2)]

 
 
 
 

,          𝐾(3) = [

0
1
0
𝑢

],          𝐾(4) = [

1
𝑢

𝑣 + 𝑎
𝐻 + 𝑣𝑎

]. 

The extension of the Godunov method to 2D problems is straightforward and given by 
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𝑈𝑖,𝑗
𝑛+1 = 𝑈𝑖,𝑗

𝑛 +
Δ𝑡

Δ𝑥
[𝐹

𝑖−
1
2
,𝑗
− 𝐹

𝑖+
1
2
,𝑗
] +

Δ𝑡

Δ𝑦
[𝐺

𝑖,𝑗−
1
2
− 𝐺

𝑖,𝑗+
1
2
]                          (2.29) 

where fluxes are as depicted in figure 2.5. 

 

Figure 2.5. Fluxes on the boundaries of cell ‘(𝑖, 𝑗)’. 
 

Similar to the 1D case, a Riemann problem can be defined along each direction, and solved 

at each intercell to obtain fluxes. For example, for fluxes in the 𝑥 direction (𝐹
𝑖+
1

2
,𝑗

), the 

corresponding Riemann problem is 

{
 

 
𝑈𝑡 + 𝐹(𝑈)𝑥 = 0,

𝑈(𝑥, 0) = {

𝑈𝑖,𝑗
𝑛 , 𝑥 < 𝑥

𝑖+
1
2

𝑈𝑖+1,𝑗
𝑛 , 𝑥 ≥ 𝑥

𝑖+
1
2

,
                                                         (2.30) 

and for fluxes in the 𝑦 direction (𝐺
𝑖,𝑗+

1

2

), the Riemann problem is 
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{
 
 

 
 𝑈𝑡 + 𝐺(𝑈)𝑦 = 0,

𝑈(𝑦, 0) = {

𝑈𝑖,𝑗
𝑛 , 𝑦 < 𝑦

𝑗+
1
2

𝑈𝑖,𝑗+1
𝑛 , 𝑦 ≥ 𝑦

𝑗+
1
2

,
                                                         (2.31) 

The Riemann problems given in eqs. (2.30) and (2.31) are solved using an extension of the 

Roe solver [43] presented for the 1D case. To find 𝐹
𝑖+

1

2
,𝑗

, the eigenvalues and eigenvectors 

associated with �̂� and the wave strengths are calculated as follows: 

�̂�1 = �̂� − �̂�,          �̂�2 = �̂�3 = �̂�,          �̂�4 = �̂� + �̂�,                (2.32) 

�̂�(1) = [

1
�̂� − �̂�
𝑣

�̂� − �̂��̂�

] , �̂�(2) =

[
 
 
 
 

1
�̂�
𝑣

1

2
(�̂�2 + 𝑣2)]

 
 
 
 

, �̂�(3) = [

0
0
1
𝑣

] , �̂�(4) = [

1
�̂� + �̂�
𝑣

�̂� + �̂��̂�

],               (2.33) 

{
  
 

  
 �̂�1 =

𝑝𝑅 − 𝑝𝐿 − �̂��̂�(𝑢𝑅 − 𝑢𝐿)

2�̂�2
,

�̂�2 = 𝜌𝑅 − 𝜌𝐿 −
𝑝𝑅 − 𝑝𝐿
�̂�2

,

�̂�3 = �̂�(𝑣𝑅 − 𝑣𝐿),

�̂�4 =
𝑝𝑅 − 𝑝𝐿 + �̂��̂�(𝑢𝑅 − 𝑢𝐿)

2�̂�2
,

                                              (2.34) 

where �̂� = √(𝛾 − 1) (�̂� −
1

2
(�̂�2 + 𝑣2)) is the speed of sound, and the indices ‘𝐿’ and ‘𝑅’ 

refer to the cells ‘(𝑖, 𝑗)’ and ‘(𝑖 + 1, 𝑗)’, respectively. The Roe flux is then computed using 

𝐹
𝑖+
1
2
,𝑗
=
1

2
(𝐹𝐿 + 𝐹𝑅) −

1

2
[�̂�1|�̂�1|�̂�

(1) + �̂�2|�̂�2|�̂�
(2) + �̂�3|�̂�3|�̂�

(3) + �̂�4|�̂�4|�̂�
(4)].   (2.35) 

To find 𝐺
𝑖,𝑗+

1

2

, the eigenvalues and eigenvectors associated with �̂� and the wave strengths 

are calculated as follows: 

�̂�1 = 𝑣 − �̂�,          �̂�2 = �̂�3 = 𝑣,          �̂�4 = 𝑣 + �̂�,                (2.36) 
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�̂�(1) = [

1
�̂�

𝑣 − �̂�
�̂� − 𝑣�̂�

] , �̂�(2) =

[
 
 
 
 

1
�̂�
𝑣

1

2
(�̂�2 + 𝑣2)]

 
 
 
 

, �̂�(3) = [

0
1
0
�̂�

] , �̂�(4) = [

1
�̂�

𝑣 + �̂�
�̂� + 𝑣�̂�

],               (2.37) 

{
  
 

  
 �̂�1 =

𝑝𝑅 − 𝑝𝐿 − �̂��̂�(𝑣𝑅 − 𝑣𝐿)

2�̂�2
,

�̂�2 = 𝜌𝑅 − 𝜌𝐿 −
𝑝𝑅 − 𝑝𝐿
�̂�2

,

�̂�3 = �̂�(𝑢𝑅 − 𝑢𝐿),

�̂�4 =
𝑝𝑅 − 𝑝𝐿 + �̂��̂�(𝑣𝑅 − 𝑣𝐿)

2�̂�2
,

                                              (2.38) 

where the indices ‘𝐿’ and ‘𝑅’ refer to the cells ‘(𝑖, 𝑗)’ and ‘(𝑖, 𝑗 + 1)’, respectively. The 

flux is then computed according to 

𝐺
𝑖,𝑗+

1
2
=
1

2
(𝐺𝐿 + 𝐺𝑅) −

1

2
[�̂�1|�̂�1|�̂�

(1) + �̂�2|�̂�2|�̂�
(2) + �̂�3|�̂�3|�̂�

(3) + �̂�4|�̂�4|�̂�
(4)].  (2.39) 

Note that should the solutions of Riemann problems in eqs. (2.30) and (2.31) contain sonic 

rarefactions, the Harten-Hyman [44] entropy fix must be applied to obtain the correct flux 

values. 

The WENO5 implementation given in §2.4 avoids stencils with sharp gradients by 

designating the lower weights to them, while maintaining fifth-order accuracy globally. 

The simplest extension of the WENO5 method to 2D problems involves implementing the 

scheme using a direction-by-direction approach. However, it was shown in [48] that this 

approach yields fifth-order accuracy only for linear problems, while for nonlinear problems 

(such as the Euler equations), it results in a second-order-accurate solution. In the current 

work, the direction by direction approach is used, while an extension to higher-order 

accuracy [48] is planned. 
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2.6 Level set method 

In IMPACT, the interface motion is described using the LS approach introduced in Chapter 

1. The motion of an interface is represented by a LS function, and is modeled using 

𝜕𝜙

𝜕𝑡
+ 𝑢

𝜕𝜙

𝜕𝑥
+ 𝑣

𝜕𝜙

𝜕𝑦
= 0.                                                                       (2.40) 

Note that the LS function should be chosen such that it produces an accurate description of 

the interface between two media. For instance, if the interface is a circle with center 

(𝑥0, 𝑦0) and radius 𝑅, a possible choice for the LS function will be: 

𝜙(𝑥, 𝑦) = (𝑥 − 𝑥0)
2 + (𝑦 − 𝑦0)

2 − 𝑅2. 

However, LS functions that satisfy the property |∇𝜙| = 1 (referred as signed-distance 

functions [25]) have been shown [49] to produce interface behavior with high accuracy.  

As the interface evolves, the signed-distance property of the LS function must be enforced 

at every time step. This step is called reinitialization (introduced by Sussman et al. [49]), 

and is enforced by numerically solving the equation below: 

𝜕𝜙

𝜕𝜏
+ 𝑆(𝜙0)(|∇𝜙| − 1) = 0.                                                           (2.41) 

In eq. (2.41), 𝜏 is a time-like variable, and 𝑆(𝜙0) is the sign function defined by: 

𝑆(𝜙0) =
𝜙0

√𝜙0
2 + (Δ𝑥)2

                                                                  (2.42) 

with 𝜙0(𝑥, 𝑦) being the LS function before reinitialization. Note that when eq. (2.41) is 

solved to steady state, 𝜙 approaches a signed distance function. Reinitialization leads to 

more accurate determination of the unit normal vectors and curvature of the interface that 

are in turn computed using: 
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�̂� =
∇𝜙

|∇𝜙|
                                                                            (2.43) 

and 

𝜅 = ∇ . �̂�    .                                                                         (2.44) 

Determining the interface curvature to high order is required to accurately compute surface 

tension effects on the interface. Equations (2.40) and (2.41) belong to the Hamilton-Jacobi 

category and are solved using high-order upwinding schemes. Following [26, 50], WENO5 

is used to compute left- and right-sided spatial derivatives of 𝜙. Equation (2.40) is solved 

in a band of cells around the interface following the approach in [51]. 

Note that applying the WENO5 method of [50] to the solution of eq. (2.41) gives solutions 

that are only second-order accurate at best resulting in noisy interface curvatures [50, 52, 

53]. An alternative is the higher-order method proposed in [54], which yields second-order 

accuracy in solving eq. (2.41), resulting in more accurate interface locations compared to 

[50]. This method is also capable of handling situations in which the  𝜙0 function is steep 

or shallow (i.e. |∇𝜙0| is very different from unity), without the need for complex 

modifications to the sign function (eq. (2.42)) as carried out by [51]. In the current work, 

however, the numerical method of [53] is used, which is an extension of [54] such that all 

the benefits of [54] are retained, while resulting in fourth-order accuracy for eq. (2.41) and 

curvature calculations that are second-order accurate. Similar to eq. (2.40), eq. (2.41) is 

also solved in a band of cells around the interface, following [51]. 
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2.7 Time discretization 

Time advancement is implemented in IMPACT to a high order of accuracy using the total 

variation diminishing (TVD) Runge-Kutta [55] (RK) scheme. We use a third-order TVD-

RK method for solving eqs. (2.7), (2.29), (2.40), and (2.41), where the solution is advanced 

over three sub-steps per time step. Writing the governing equations in general form, we 

obtain 

𝑑Θ

𝑑Τ
= 𝐿(Θ)                                                                                        (2.45) 

where Θ may be the vector of conserved variables (𝑈 in eqs. (2.7) and (2.29)) or the LS 

function (𝜙 in eqs. (2.40) and (2.41)), Τ may denote real (𝑡) or fictitious (𝜏) time, and 𝐿 is 

the appropriate spatial discretization from the numerical methods for each of the equations. 

The third-order TVD-RK implementation for eq. (2.45) is written as [55] 

Θ(1) = Θ𝑛 + ΔΤ𝐿(Θ𝑛), 

Θ(2) =
3

4
Θ𝑛 +

1

4
Θ(1) +

1

4
ΔΤ𝐿(Θ(1)),                                         (2.46) 

Θ𝑛+1 =
1

3
Θ𝑛 +

2

3
Θ(2) +

2

3
ΔΤ𝐿(Θ(2)) 

where Θ(1), Θ(2), and Θ𝑛+1 are the solutions after the first, second, and final sub steps, 

respectively. 
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CHAPTER 3: THE GHOST FLUID METHOD 

 

 

3.1 Introduction 

The Ghost Fluid Method (GFM) was originally developed by Fedkiw et al. [26] to model 

contact discontinuities in inviscid, compressible, multi-material flows. The GFM is based 

on applying physically accurate interfacial boundary conditions at the material interface 

between different fluids. Consider two fluids (A and B) separated by an interface that is 

moving as shown in figure 3.1. Fluids A and B may be distinguished by an LS function, 

where 𝜙 ≤ 0 corresponds to Fluid A, 𝜙 > 0 indicates Fluid B, and the 𝜙 = 0 level set 

identifies the interface. In the GFM approach, the effect of Fluid B on Fluid A is modeled 

through appropriately chosen boundary conditions enforced at the interface by replacing 

Fluid B with a ‘ghost fluid’. Similarly, Fluid A can be replaced with a ghost fluid, and in 

conjunction with interface boundary conditions represents the effect of Fluid A on B. This 

is shown in figures 3.1 and 3.2. 
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Figure 3.1. The GFM approach to treating Fluids A and B separated by an interface. (a) 

Actual domain, (b) interfacial boundary condition applied to Fluid A, (c) interfacial 

boundary condition applied to Fluid B. 

 

 

Figure 3.2. Applying interfacial boundary condition using (a) Ghost Fluid A, and (b) 

Ghost Fluid B. 

 

The efficacy of the GFM approach therefore lies in accurately applying the interfacial 

boundary conditions between the real fluids in each case using their ‘ghost’ counterparts. 

In [25], the authors show that Rankine-Hugoniot jump conditions, i.e. flux conservation, 
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when applied across the interface yield interfacial conditions that ensure the continuity of 

pressure and normal velocity. In [26], the authors define the ghost fluids based on the 

interfacial flux conservation discussed above. They propose using the pressure and velocity 

of Fluid B (Fluid A) for Ghost Fluid A (Ghost Fluid B), while the density of Ghost Fluid 

A (Ghost Fluid B) comes directly from Fluid A (Fluid B) through constant extrapolation. 

In numerical calculations, however, the ghost fluids are defined over a band of cells on 

either side of the interface for reasons of computational expediency. Fedkiw et al. [26] 

suggest using a band of 3 to 5 ghost cells depending on the computational stencil required 

to implement a specific numerical scheme and interface displacement. Once the ghost cells 

are populated, the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B) can 

each be updated independently with their corresponding EOS using standard single-

medium numerical schemes, without requiring specific treatments for the interface or the 

need for cut cells. Often, the GFM is coupled with the LS approach [25-27], where the LS 

function is updated by solving eq. (2.40) to determine the new location of the interface. 

The above approach results in a sharp representation of the interface, which is a central 

feature of the GFM, when compared with other interface approaches including the VOF 

method [56], mass fraction methods [57], and gamma-based models [57, 58] all of which 

diffuse the interface over multiple cells, giving rise to ‘numerical mixing’ between the two 

fluids. This property of the GFM makes it suitable for simulations of multi-material 

problems involving interfacial phenomena such as problems with interfacial instabilities, 

surface tension effects, and evaporation.  

Figure 3.3 shows an example where results from the GFM are compared to exact solution 

as well as results from a diffusive approach [58]. As seen in the figure, the density profile 
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from the GFM is sharp at the interface. However, the numerical solution from the GFM is 

slightly different from the analytical values near the interface following shock passage. 

This behavior of the GFM solution is termed overheating [35], and occurs when a shock 

wave interacts with an initially sharp interface. It has been shown [39] that overheating 

results from numerical inaccuracies that stem from applying single-medium numerical 

schemes to the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B). Since 

these schemes are naturally associated with diffusion, they give rise to overheating. In the 

next section, overheating will be discussed in greater detail along with a proposed novel 

approach to address the issue.  

 

Figure 3.3. Sharp representation of the interface with the GFM approach. Overheating is 

observed near the interface. 

 

Figure 3.4 (based on figure 1 from [26]) depicts the methodology adopted for the 

population of the ghost cells for 1D problems using the GFM framework. Ghost Fluid A is 
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defined by copying node by node, the corresponding pressures and velocities from Fluid 

B, while the density is obtained from constant extrapolation from Fluid A. Ghost Fluid B 

is defined in a similar manner. A similar approach is used in multi-dimensional problems, 

where the pressure and velocity values for the ghost cells are copied directly from the real 

fluids, while densities are extrapolated using the following equation: 

𝜕𝜌

𝜕𝜏
± �̂� . ∇𝜌 = 0  .                                                                            (3.1) 

Eq. (3.1) is used with +(−) for Ghost Fluid A (B), while the interface normal vector �̂� is 

defined using the function 𝜙 through eq. (2.43). Note that the unit normal vector is taken 

to point from Fluid A (𝜙 ≤ 0) towards Fluid B (𝜙 > 0).   

 

Figure 3.4. Definition of Ghost Fluid A using density extrapolation from Fluid A, and the 

velocity and pressure values from Fluid B. Figure is based on figure 1 from [26]. 

 

The GFM approach is thus easy to implement, and avoids the difficulties associated with 

implementing cut cells or the use of complicated mixture rules [58, 59]. As a result of these 

properties, the GFM has been widely used in different problems in science and engineering. 
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Fedkiw et al. [60] used the GFM for modeling deflagration and detonation discontinuities; 

Liu et al. [61] utilized the GFM approach to capture the boundary conditions for the 

variable coefficient Poisson equation; Kang et al. [28] exploited the methods in [61] to 

propose a boundary condition capturing model for multi-phase incompressible flows; 

Caiden et al. [27] applied the GFM to two-phase flows including separate regions for 

compressible and incompressible fluids (also, see [62] for a monolithic coupling of 

incompressible flow to compressible flow as opposed to the partitioned coupling of [27]); 

Nguyen et al. [63] simulated incompressible flames using the GFM; Gibou et al. [64] used 

the GFM for the multi-phase incompressible Navier-Stokes equations with phase change 

(also, see [65]); Fedkiw [66] introduced the coupling of an Eulerian fluid calculation to a 

Lagrangian solid calculation using the GFM. An interested reader may also refer to [25] 

for additional details of the applications mentioned above. Finally, additional discussions 

of applications of the GFM are given in various papers, including GFM for front tracking 

methods for simulating compressible multi-phase flows [67-69], crystallization [70, 71], 

atomization [72], and other recent applications [52]. 

Modifications to the GFM have been proposed to accommodate two-phase flows, including 

flows where one fluid is significantly stiffer than the other (see for instance [27], [66], and 

[25]). Koren et al. [73] introduced a variation of the GFM to address pressure oscillations 

near the interface in two-fluid flows with arbitrarily large density ratios. Arienti et al. [74] 

proposed a modified version termed the ghost-fluid Eulerian Lagrangian (GLE) method to 

couple Eulerian compressible flow with a Lagrangian solver for fluid-solid interactions 

(authors of [75] describe the procedure to define ghost values in the explicit coupling of 

fluids with solids). Nguyen et al. [76] introduced a fully conservative version of the GFM 
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that applied to the inviscid reactive Euler equations. The above discussion is but a short list 

of the modifications to the GFM and its applications. In the next section, we discuss a 

separate class of the GFM defined using multi-medium Riemann problems (MMRPs) at 

the interface, which has been shown [36, 40] to be more robust and accurate than the 

original GFM (OGFM) approach. 

3.2 Ghost Fluid Methods based on multi-medium Riemann solvers 

Using multi-medium Riemann solvers at the interface to couple fluids governed by 

different equations of state has been shown to result in high-quality numerical solutions at 

or near the interface ([77], [78]). To extend this idea to the GFM, Liu et al. [36] proposed 

a modified GFM (MGFM), where approximate Riemann solvers were used to obtain more 

accurate values for the ghost cells with lower conservation errors (also, see [38, 79, 80] for 

a discussion of the applications of the MGFM, and [40] for a description of the accuracy 

and conservation errors associated with GFMs for MMRPs). Liu et al. [18] further 

developed the MGFM idea to simulate compressible fluids coupled to deformable 

structures in the presence of cavitation in fluids. Also, Hu and Khoo [37] proposed a 

numerical method called I-GFM, where the ghost values were obtained by real and ghost 

interactions (see [69] for the application of the I-GFM in primary breakup of a liquid jet 

and [81] for a proposed modified I-GFM). Wang et al. [38] proposed a real GFM (RGFM) 

approach to extend the capabilities of the MGFM and suggested a novel algorithm for the 

advection of the LS function. Xu et al. [39] proposed the so-called practical GFM (PGFM) 

for compressible multi-medium flows. Sambasivan and Udaykumar [32] implemented the 

RGFM approach to apply isobaric fix and to populate ghost cells in multi-dimensions, by 

using normal vectors obtained from LS functions to construct MMRPs in the normal 
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direction to the interface. In [82], the authors provided an extension of the approach of [32] 

by coupling with local mesh refinement and for shock-induced vaporization of droplets 

[83]. 

The GFM framework is summarized in the GFM theorem, which was introduced in [40] 

as a lemma and states that a two-fluid Riemann problem can be split into two component 

single-fluid Riemann problems (or “GFM Riemann problems” as labelled by [40]). Figures 

3.5 and 3.6 show the two-fluid Riemann problem (𝑅𝑃(𝑈𝐿 , 𝑈𝑅)) with the solution, and the 

GFM Riemann problems (𝑅𝑃(𝑈𝐿 , 𝑈∗𝐿) and 𝑅𝑃(𝑈∗𝑅 , 𝑈𝑅)), respectively. Each GFM 

Riemann problem has a real and a ghost state, where the real state is obtained directly from 

the original two-fluid Riemann problem (𝑈𝐿 or 𝑈𝑅), and the ghost state from its solution 

(𝑈∗𝐿 or 𝑈∗𝑅). From the GFM theorem, the superposition of the real-fluid solutions to the 

component GFM Riemann problems (figure 3.6) correspond to the solution of the original 

two-fluid Riemann problem (figure 3.5). 

 

Figure 3.5. Two-fluid Riemann problem and its solution. 
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In contrast to the OGFM [26] approach, where flux conservation at the interface is the basis 

for defining ghost fluids, MMRP-based GFMs rely on the solution of the MMRP at the 

interface to populate the ghost cells. These GFMs result in more accurate solutions for 

problems with strong shocks and high-density ratios [36, 38].  

 

 

Figure 3.6. GFM Riemann problems and their solutions for (a) Fluid A, and (b) Fluid B. 
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3.3 The Efficient Ghost Fluid Method and overheating treatment 

In § 3.1, the GFM method was introduced along with a discussion of the advantages of the 

approach. A central feature of such methods is the ability to resolve a sharp interface, by 

removing unphysical diffusion at or near such interfaces. However, the GFM and its 

variants can still result in some diffusion on both sides of the interface. This phenomenon, 

as discussed in § 3.1, is termed overheating, and has been shown [4] to result from 

numerical inaccuracies that stem from applying single-medium numerical schemes to 

(Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B). In this section, we propose an 

improvement to the GFM approach that addresses overheating, resulting in highly accurate 

solutions near the interface.  

First, a brief review of approaches to address overheating in the GFM is provided here. In 

[26], the authors proposed to extrapolate entropy instead of density (as shown in figure 3.7 

(based on figure 1 from [26])), since entropy contains less overheating errors [35]. The 

extrapolated entropy can then be used to obtain density values at the ghost points to form 

the vector of conserved variables. In addition, these authors suggested an isentropic fix 

(shown in figure 3.8 (based on figure 2 from [26])) where rather than extrapolating the 

entropy of the cells next to the interface, the entropy value is obtained by extrapolating 

from cells further afield. For example, in figure 3.8 where the interface is between cells ‘𝑖’ 

and ‘𝑖 + 1’, the entropy of cell ‘𝑖 − 1’ is used to fix the entropy of cell ‘𝑖’ and to populate 

the ghost cells. For multi-dimensional problems, the corresponding correction is applied in 

the interface normal direction [26], by extrapolating entropies from points 1.5𝛥𝑥 away 

from the interface. 
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Figure 3.7. Using entropy to define ghost fluids. Figure is based on figure 1 from [26]. 

 

 

Figure 3.8. Isentropic fix. Figure is based on figure 2 from [26]. 
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In versions of the GFM [36, 38, 39] which rely on the solution to MMRPs at the interface, 

it has been shown that using the cell values from ‘𝑖 − 1’ and ‘𝑖 + 2’ as initial conditions 

for the MMRP resulted in an improvement in reducing overheating (when compared with 

the choice of using data from ‘𝑖’ and ‘𝑖 + 1’). In [36], the entropy values of the real cells 

next to the interface were fixed by the solution to the MMRP, which showed further 

improvement in the overheating error. In the RGFM approach [38], real cells next to the 

interface were corrected for density, velocity, and pressure values, rather than for entropy. 

This resulted in more accurate imposition of boundary conditions at the interface, resulting 

in improved behavior in shock impedance matching problems [36] by reducing the 

amplitude of the erroneous numerical wavelets reflecting off the interface. 

Note that in the GFM approach, the description of the entropy field is closely related to 

overheating. Since entropy (or density) of fluids cannot pass through the interface, and is 

instead transported by the linearly degenerate field, the entropy jump across the interface 

should remain sharp without diffusion. However, numerical inaccuracies associated with 

single-medium solvers give rise to the diffusion of entropy near the interface, thus causing 

overheating. In isentropic fix, the entropy of the cells next to the interface are obtained 

from cells further afield which are less afflicted by the numerical diffusion. 

As an alternative to the approach outlined in figure 3.8, the isentropic fix can also be 

implemented using more sophisticated methods such as those outlined in the PGFM [39] 

approach where the isentropic relation is applied between a reference cell located far from 

the interface and the cell next to the interface. This approach is depicted in figure 3.9 (based 

on figure 10 from [39]), which shows the reference values of entropy (density) can be used 
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to fix these variables at points near the interface. By comparing the pressures, one decides 

to use either isentropic or shock relation for density: 

𝜌𝑗 =

{
 
 

 
 

𝜌𝑟 (
𝑝𝑗 + 𝑝∞𝐿

𝑝𝑟 + 𝑝∞𝐿
)

1
𝛾𝐿
, 𝑝𝑗 ≤ 𝑝𝑟  (𝑟𝑎𝑟𝑒)

𝜌𝑟 [
(𝛾𝐿 − 1)(𝑝𝑟 + 𝑝∞𝐿) + (𝛾𝐿 + 1)(𝑝𝑗 + 𝑝∞𝐿)

(𝛾𝐿 − 1)(𝑝𝑗 + 𝑝∞𝐿) + (𝛾𝐿 + 1)(𝑝𝑟 + 𝑝∞𝐿)
] , 𝑝𝑗 > 𝑝𝑟  (𝑠ℎ𝑜𝑐𝑘)

      (3.2) 

where 𝑗 denotes the points where the density fix is to be applied. 

 

Figure 3.9. Isentropic fix and population of ghost cells in the PGFM. Figure is based on 

figure 10 from [39]. 

 

Unfortunately, the methods discussed above, while reducing overheating errors, are not 

able to completely eliminate them. Since overheating stems from numerical inaccuracies 

associated with single-medium solvers, coupling an isentropic fix with such solvers will 

still result in diffusion (albeit to a smaller extent) near the interface. 

We observe the key to eliminating overheating is that the isentropic fix (or any similar 

numerical remedy) must be applied after the solution from the single-medium solver is 
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obtained. A GFM version can be constructed from this insight, and we propose such an 

approach be termed the Efficient Ghost Fluid Method or EGFM.  

The EGFM approach: The GFM Theorem, (§ 3.2), states that a two-fluid Riemann 

problem can be split into two different GFM Riemann problems. We show that this theorem 

can be exploited to establish the EGFM approach, modifying the numerical solution near 

the interface to eliminate overheating errors. Considering the two-fluid Riemann problem 

in figure 3.5, note that in the immediate aftermath of the removal of the diaphragm between 

Fluids A and B, two new values (U*L and U*R) emerge in the solution. As depicted in figure 

3.10, the fluids then start to interact with these new values, i.e. in Fluid A, U*L and UL form 

a leftward rarefaction wave and in Fluid B, U*R and UR form a rightward shock wave. The 

jump between Fluids A and B, however, moves by the linearly degenerate field which is 

the interface velocity. The above process occurs in the exact same manner in figure 3.6: 

U*L emerges in figure 3.6(a) and interacts with UL to form the rarefaction wave, while U*R 

emerges in figure 3.6(b) and interacts with UR to form the shock wave. 



 
 

 

38 

 

Figure 3.10. The solution status immediately after removing the diaphragm between 

Fluids A and B. 

 

Based on the above discussion regarding figure 3.6, we now describe the EGFM approach 

to address the overheating errors. In figure 3.11(a), the Riemann problem 𝑅𝑃(𝑈𝐿 , 𝑈∗𝐿) is 

solved numerically over one time step ∆𝑡 using a single-medium solver with EOSA. Note 

that this changes the value of some cells near the initial interface marked by red symbols. 
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Figure 3.11. The EGFM implementation for (a) Fluid A, and (b) Fluid B. 

 

Thus, the red symbols show the solution affected by the numerical diffusion from applying 

the single-medium solver. The EGFM approach fixes these values in two steps (the fixed 

values are shown in green): (1) The value of the cell next to the new interface (at 𝑡 = ∆𝑡) 

is changed to U*L, which is the exact solution immediately following the removal of the 

diaphragm (see figure 3.10); (2) Similar to [39], the isentropic relation is then applied 

between the cell next to the new interface and the cells away from it. Note that in this 
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second step, the isentropic relation is applied not only to densities (as in [39]), but also to 

velocities. These relations are as follows: 

𝜌 = 𝜌∗𝐿 (
𝑝 + 𝑝∞𝐿
𝑝∗𝐿 + 𝑝∞𝐿

)

1
𝛾𝐿
                                                                          (3.3) 

𝑢 = 𝑢∗ +
2

𝛾𝐿 − 1
(𝑎∗𝐿 − 𝑎)                                                                    (3.4) 

We found that applying just the density fix (as suggested in [39]) was insufficient in 

addressing overheating, without the accompanying velocity fix. The above steps are 

depicted with the labels (1) and (2) in figure 3.11(a). 

The corresponding fix applied to Fluid B is shown in figure 3.11(b), where the Riemann 

problem 𝑅𝑃(𝑈∗𝑅 , 𝑈𝑅) is solved numerically for one time step with EOSB. Similar to figure 

3.11(a), the red symbols are associated with the numerical inaccuracies. As before, the fix 

(shown as red → green) is applied in two steps: (1) The value of the cell next to the new 

interface (at 𝑡 = ∆𝑡) is changed to U*R, which is the exact solution immediately following 

the removal of the diaphragm; (2) Similar to [39], the shock relation is then applied between 

the cell next to the new interface and the cells further from it. Again, this is implemented 

for both density and velocity using: 

𝜌 = 𝜌∗𝑅 [
(𝛾𝑅 − 1)(𝑝∗𝑅 + 𝑝∞𝑅) + (𝛾𝑅 + 1)(𝑝 + 𝑝∞𝑅)

(𝛾𝑅 − 1)(𝑝 + 𝑝∞𝑅) + (𝛾𝑅 + 1)(𝑝∗𝑅 + 𝑝∞𝑅)
]                                 (3.5) 

𝑢 = 𝑢∗ + 𝑎 (
𝜌

𝜌∗𝑅
− 1)√

𝛾𝑅 + 1

2𝛾𝑅

(𝑝∗𝑅 + 𝑝∞𝑅)

(𝑝 + 𝑝∞𝑅)
+
𝛾𝑅 − 1

2𝛾𝑅
                                  (3.6) 
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A few observations are in order: 

1. While step (1) of the fix is implemented only for a single point, step (2) may be applied 

to one or more points. Choosing a wider stencil for step (2) was found to improve the 

solution, and we have used a stencil of 10 points for our simulations. 

2. Figure 3.11 shows the EGFM applied in conjunction with the forward Euler method for 

time discretization. For multi-step approaches such as the TVD-RK method, the EGFM 

corrections must be implemented over each sub step, i.e. the level set is first advanced for 

the sub step, followed by application of the corrections using the above protocol. 

3. Figure 3.11 depicts a case with a rarefaction and a shock wave to the left and right sides 

of the interface, and in step (2), the isentropic or the shock relation would be applied 

accordingly. In practice, the wave types are not available a priori and will have to be 

determined from the pressure values. 

4. Equations (3.3) and (3.4) correspond to a left rarefaction. For a left shock, the following 

relations are applied in step (2): 

𝜌 = 𝜌∗𝐿 [
(𝛾𝐿 − 1)(𝑝∗𝐿 + 𝑝∞𝐿) + (𝛾𝐿 + 1)(𝑝 + 𝑝∞𝐿)

(𝛾𝐿 − 1)(𝑝 + 𝑝∞𝐿) + (𝛾𝐿 + 1)(𝑝∗𝐿 + 𝑝∞𝐿)
]                              (3.7) 

𝑢 = 𝑢∗ − 𝑎 (
𝜌

𝜌∗𝐿
− 1)√

𝛾𝐿 + 1

2𝛾𝐿

𝑝∗𝐿 + 𝑝∞𝐿
𝑝 + 𝑝∞𝐿

+
𝛾𝐿 − 1

2𝛾𝐿
                                  (3.8) 

Similarly, for a right rarefaction, the following equations apply: 

𝜌 = 𝜌∗𝑅 (
𝑝 + 𝑝∞𝑅
𝑝∗𝑅 + 𝑝∞𝑅

)

1
𝛾𝑅
                                                                                   (3.9) 

𝑢 = 𝑢∗ +
2

𝛾𝑅 − 1
(𝑎 − 𝑎∗𝑅)                                                                              (3.10) 
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5. If the Riemann problem shown in figure 3.5 represents a shock wave, i.e. EOSA = EOSB 

and UL and UR are the post- and pre-shock values of the shock, respectively, the above 

method cannot remove the numerical inaccuracies and will result in a diffuse shock. 

Consequently, the EGFM implementation must be modified to be compatible with 

problems involving shock waves (including single shock and shock-interface interactions). 

This is described in the next section. 

We conclude this section by summarizing all the steps involved in advancing the solution 

by one time step using the EGFM algorithm: 

1. Assuming the interface is located between cells 𝑖 and 𝑖 + 1, solve the MMRP 

𝑅𝑃(𝑈𝑖, 𝑈𝑖+1) to obtain U*L and U*R (ρ*L, ρ*R, u*, p*L, p*R). 

2. Use U*L to define Ghost Fluid A at cells 𝑖 + 1, 𝑖 + 2, 𝑖 + 3, etc. 

3. Use U*R to define Ghost Fluid B at cells 𝑖, 𝑖 − 1, 𝑖 − 2, etc. 

4. Apply an appropriate reconstruction, e.g. WENO to (Fluid A+Ghost Fluid A) and (Fluid 

B+Ghost Fluid B) separately. 

5. Find fluxes and advance the solution for (Fluid A+Ghost Fluid A) and (Fluid B+Ghost 

Fluid B) separately over a sub step of a multi-step time integration method (e.g. TVD-RK). 

6. Using u*, advance the level set over the same sub step. 

7. Fix the value of the cell next to the new interface and located in Fluid A to U*L and the 

value of the cell next to the new interface and located in Fluid B to U*R. 

8. Apply either the isentropic or the shock relation between the cells next to the new 

interface and the cells further from it to fix densities and velocities. 

9. Form the actual domain according to the fixed Fluid A and Fluid B. 

Note that the novelty of the EGFM lies in steps 7 and 8. 
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3.4 Application of the Efficient Ghost Fluid Method to shock-interface interactions 

A framework for applying the EGFM to shock-interface interactions is presented in this 

section. Consider the problem configuration in figure 7 in which a shock is located at 𝑥𝑆0 

and a material interface is at 𝑥0. Osher and Fedkiw [25] suggested using two separate LS 

fields (for the shock and the interface) to ensure the shock front and the interface remain 

sharp. The approach presented in this section in which the EGFM is extended achieves the 

same objective, while requiring the use of only one LS field to track the interface.  

To implement the EGFM for shock-interface problems, care must be taken to ensure the 

incident shock remains sharp as it impinges on the interface. Initially sharp shock fronts 

that have diffused numerically in time are not compatible with the EGFM approach in that 

such shocks already contain numerical errors. In the following, we discuss an 

implementation of the EGFM in which the shock is maintained as a sharp front.  

In figure 3.12, the initial boundary between US and UL, i.e. post- and pre-shock states, 

moves to the right with shock speed given by the Rankine-Hugoniot jump conditions: 

𝑆 =
𝜌𝑆𝑢𝑆 − 𝜌𝐿𝑢𝐿
𝜌𝑆 − 𝜌𝐿

                                                                                    (3.11) 

The diffuse shock is fixed by first computing the location of the shock according to 𝑥𝑆1 =

𝑥𝑆0 + 𝑆∆𝑡, where ∆𝑡 is obtained from the CFL condition. If a cell center is located behind 

(in front of) 𝑥𝑆1, its value is changed to the post-shock US (pre-shock UL) value. Our 

numerical simulations show that fixing only two cells on either side of the shock is 

sufficient to completely remove diffusion. The explained fix holds for shocks traveling in 

the negative 𝑥-direction as well. 
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Figure 3.12. Shock-interface interaction on a 1D computational domain. 

 

We thus propose computing sharp shock-interface interactions using the following 

approach: If 𝑥𝑆1 < 𝑥0 − 0.5𝛥𝑥, the above shock treatment must be applied. However, if 

𝑥0 − 0.5𝛥𝑥 ≤ 𝑥𝑆1 (the shock has reached the interface), only the two cells behind the shock 

are fixed, followed by applying the EGFM for the rest of the simulation. Note that for this 

condition, the EGFM will handle 𝑅𝑃(𝑈𝑆, 𝑈𝑅). For shock-interface interactions with a 

leftward shock impacting the interface from the right, the above procedure is changed by 

comparing 𝑥𝑆1 with 𝑥0 + 0.5𝛥𝑥, while the EGFM solves 𝑅𝑃(𝑈𝐿 , 𝑈𝑆). 

3.5 Modeling surface tension at fluid interfaces using the Ghost Fluid Method 

In this work, we use the GFM approach for simulating surface tension effects in 

compressible two-phase flow problems. In the GFM framework, surface tension is added 

to the interface through modifying the interfacial boundary conditions to account for the 

pressure jump induced by surface tension. This can be carried out by utilizing the OGFM 

approach (see for example [27]) or by adding surface tension to pressure terms in multi-
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medium Riemann solvers in MMRP-based GFMs (see [84] for instance). Both approaches 

are implemented in IMPACT.  

In addition to the OGFM, the MMRP-based GFM of Sambasivan and UdayKumar [32] is 

implemented in IMPACT. As discussed in § 3.2, this approach is broadly similar to the 

RGFM [38] implementation, but constructs the MMRP at the interface using normal 

vectors and bilinear interpolations. This approach results in a more accurate Riemann 

problem at the interface, since the MMRP is solved in the interface normal direction. 

Moreover, the algorithm of [32] reduces overheating errors by taking for the left and right 

states of the MMRP, cell values that are 1.5∆𝑥 away from the interface. An interested 

reader is referred to [82] and [83]. 

Figure 3.13 (based on figure 2 from [32]) demonstrates the above approach applied to 

Fluids A and B separated by a sharp interface. In the figure, Point P is located next to the 

interface, �̂� is the normal vector at P, point I is on the interface (𝜙 = 0), while points A 

and B are located in Fluids A and B respectively, each at a distance 1.5∆𝑥 from the 𝜙 = 0 

surface. From the value of 𝜙 at P, the location of I is obtained using (𝑥𝐼 , 𝑦𝐼) = (𝑥𝑃, 𝑦𝑃) −

𝜙𝑃�̂�. Similarly, the coordinates of A and B are found from (𝑥𝐼 , 𝑦𝐼) using (𝑥𝐴, 𝑦𝐴) =

(𝑥𝐼 , 𝑦𝐼) − (1.5Δ𝑥)�̂� and (𝑥𝐵, 𝑦𝐵) = (𝑥𝐼 , 𝑦𝐼) + (1.5Δ𝑥)�̂�, respectively. 
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Figure 3.13. The method of [32] to formulate the MMRP at the interface. Figure is based 

on figure 2 from [32]. 

 

Thus, the density, normal velocity 𝑉𝑁, tangential velocity 𝑉𝑇, and pressure at points A and 

B can be obtained from the surrounding four cell centers using bilinear interpolation. Then 

the multi-medium Riemann problem 𝑅𝑃(𝑈𝐿 , 𝑈𝑅) can be defined using (𝜌𝐴, 𝑉𝑁𝐴, 𝑝𝐴) and 

(𝜌𝐵, 𝑉𝑁𝐵, 𝑝𝐵) as the left and right states respectively. We follow the approach of [32], and 

use the exact Riemann solver to solve 𝑅𝑃(𝑈𝐿 , 𝑈𝑅), so that accuracy is maintained and 

strong shock-interface interactions are captured with fidelity. The solution U*L and U*R 

(ρ*L, ρ*R, u*, p*L, p*R) to 𝑅𝑃(𝑈𝐿 , 𝑈𝑅) is utilized to apply an isobaric fix to point P by setting 

(𝜌𝑃, 𝑉𝑁𝑃, 𝑝𝑃) = (𝜌∗𝐿 , 𝑢∗, 𝑝∗𝐿) [32, 38], while the tangential velocity 𝑉𝑇𝑃 remains 

unchanged. Once this algorithm has been conducted for all cells in Fluid A which are 

located next to the interface, eq. (3.1) is used with a ‘+’ sign to extrapolate 
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(𝜌𝑃, 𝑉𝑁𝑃, 𝑉𝑇𝑃, 𝑝𝑃) to the other side of the interface to populate Ghost Fluid A. The isobaric 

fix is repeated for Fluid B, which for a sample point P is given by: (𝜌𝑃, 𝑉𝑁𝑃, 𝑝𝑃) =

(𝜌∗𝑅 , 𝑢∗, 𝑝∗𝑅), while the tangential velocity 𝑉𝑇𝑃 remains unchanged again.  As before, once 

this algorithm has been applied to cells in Fluid B located next to the interface, eq. (3.1) is 

used with a ‘−’ sign to extrapolate (𝜌𝑃, 𝑉𝑁𝑃, 𝑉𝑇𝑃, 𝑝𝑃) to the other side of the interface to 

populate Ghost Fluid B. Note that we have used two different pressures 𝑝∗𝐿 and 𝑝∗𝑅 in the 

solution of the MMRP, to account for surface tension effects according to [𝑝] = 𝑝∗𝑅 −

𝑝∗𝐿 = 𝜎𝜅 , where [𝑝] is the pressure jump across the interface, 𝜎 is the surface tension 

coefficient, and 𝜅 is the interface curvature computed from eq. (2.44).  

Exact multi-medium Riemann solver with surface tension:  

Detailed descriptions of exact multi-medium Riemann solvers are given in [32, 40, 83-85], 

while multi-medium Riemann solvers adapted to account for surface tension effects are 

presented in [84, 86]. In IMPACT, we follow [32] where pressure is solved using the 

equation below: 

𝑓𝐿(𝑝,𝑾𝐿) + 𝑓𝑅(𝑝,𝑾𝑅) + 𝑢𝑅 − 𝑢𝐿 = 0 ,                                                           (3.12) 

where 𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) and 𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) are the left and right states of the MMRP, 

respectively, and functions 𝑓𝐿 and 𝑓𝑅 are defined as follows: 

𝑓𝐿(𝑝,𝑾𝐿) =

{
 
 
 
 

 
 
 
 

(𝑝∗𝐿 − 𝑝𝐿)√

2
(𝛾𝐴 + 1)𝜌𝐿

𝑝∗𝐿 + 𝑝∞𝐴 +
𝛾𝐴 − 1
𝛾𝐴 + 1

(𝑝𝐿 + 𝑝∞𝐴)
              (𝑠ℎ𝑜𝑐𝑘)

2

𝛾𝐴 − 1
√
𝛾𝐴(𝑝𝐿 + 𝑝∞𝐴)

𝜌𝐿
[(
𝑝∗𝐿 + 𝑝∞𝐴
𝑝𝐿 + 𝑝∞𝐴

)

𝛾𝐴−1
2𝛾𝐴

− 1]       (𝑟𝑎𝑟𝑒)

          (3.13) 
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𝑓𝑅(𝑝,𝑾𝑅) =

{
 
 
 
 

 
 
 
 

(𝑝∗𝑅 − 𝑝𝑅)√

2
(𝛾𝐵 + 1)𝜌𝑅

𝑝∗𝑅 + 𝑝∞𝐵 +
𝛾𝐵 − 1
𝛾𝐵 + 1

(𝑝𝑅 + 𝑝∞𝐵)
           (𝑠ℎ𝑜𝑐𝑘)

2

𝛾𝐵 − 1
√
𝛾𝐵(𝑝𝑅 + 𝑝∞𝐵)

𝜌𝑅
[(
𝑝∗𝑅 + 𝑝∞𝐵
𝑝𝑅 + 𝑝∞𝐵

)

𝛾𝐵−1
2𝛾𝐵

− 1]      (𝑟𝑎𝑟𝑒)

          (3.14) 

In eqs. (3.13) – (3.14), the relations for shock and rarefaction are selected based on the 

pressures (see [32] for details). We use the Newton-Raphson method to solve eq. (3.12) for 

either 𝑝∗𝐿 or 𝑝∗𝑅, and impose the condition 𝑝∗𝑅 − 𝑝∗𝐿 = 𝜎𝜅. Then, eqs. (3.3)-(3.10) are 

used to find 𝜌∗𝐿, 𝜌∗𝑅, and 𝑢∗. 

At the end of this chapter, we summarize the numerical capabilities of IMPACT in table 

3.1 showing the major numerical methods used for the flow solver, the LS function, and 

the interface coupling. We have referred to the equation(s) required to be solved in each 

module along with the numerical methods used and the references in the literature. 
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Table 3.1. A summary of the numerical capabilities of IMPACT. 

Module Equation Method References 

Flux calculator (2.16) Roe solver [41] [43]  

EOS (2.6) Stiff gas - 

Cell reconstruction (2.22) (2.23) WENO5 [45] [46] 

LS equation (2.40) WENO5 [26] [50] [51] 

Reinitialization (2.41) WENO5 [26] [50] [51] [53] 

Extrapolation (3.1) 1st-order ENO [26] [87] 

Time discretization (2.45) (2.46) TVD-RK3 [55] 

Interface coupling - OGFM RGFM 

EGFM 

[26] [27] [32] [38] 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

This chapter describes simulations performed to validate the numerical methods in 

IMPACT, and is organized as follows: In § 4.1, 1D single- and multi-medium Riemann 

problems and various shock-interface interaction simulations are summarized; 2D 

problems are presented and discussed in § 4.2; in § 4.3, results from IMPACT simulations 

of the shock-driven RMI are presented with corresponding analyses; finally, the ability of 

IMPACT to simulate flow problems in which surface tension effects are significant is 

demonstrated in § 4.4 including RMI with surface tension. All test problems in this chapter 

are summarized in table 4.1. 

4.1 1D test cases 

In this section, we solve various 1D Riemann problems analytically as well as numerically 

with IMPACT using OGFM, RGFM, and EGFM. Unless mentioned otherwise, the 

simulations were performed in a computational domain of length unity with 200 cells and 

𝐶𝐹𝐿 = 0.2. In order to highlight the capabilities of the EGFM, we include the numerical 

results from EGFM step (1) for the first two tests (4.1.1 and 4.1.2) as well.  

4.1.1. Sod shock tube problem [41, 88]: This problem is initialized in a domain filled with 

air (𝛾 = 1.4) with a discontinuity at 𝑥0 = 0.5, and the following initial conditions: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1,0,1), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (0.125,0,0.1). 
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Table 4.1. 1D and 2D problems used to validate IMPACT. 

 Problem Section Reference 

 Sod shock tube 4.1.1 [41, 88] 

 Shock impedance matching 4.1.2 [36, 38, 39] 

 Shock tube with strong pressure jump 1 4.1.3 [41] 

 Shock tube with strong pressure jump 2 4.1.4 [41] 

 Collision of two strong shocks 4.1.5 [41] 

 Multi-component shock tube problem 1 4.1.6 [89] 

1D Multi-component shock tube problem 2 4.1.7 [36] 

 Multi-component shock tube problem 3 4.1.8 [36, 38] 

 Strong shock impacting on a gas-gas interface 

(heavy → light) 

4.1.9 [26] 

 Strong shock impacting on a gas-gas interface 

(light → heavy) 

4.1.10 [26] 

 Strong shock impacting on a gas-water interface 

(heavy → light) 

4.1.11 [58] 

 Sod shock tube problem with prescribed 

pressure jump 

4.4.1 [84] 

    

    

 Underwater explosion of an air bubble 4.2.1 [58] 

 Strong shock impacting on an air cavity 

(heavy → light) 

4.2.2 [90] 

 Shock-bubble interaction 

(light → heavy) 

4.2.3 - 

2D Richtmyer-Meshkov Instability 4.3 - 

 Oscillating drop 4.4.2 [31, 86] 

 Shock-bubble interaction under surface tension 

effects (light → heavy) 

4.4.3 - 

 Richtmyer-Meshkov instability under the effect 

of surface tension 

4.4.4 - 
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The solution to the problem consists of a left rarefaction, a contact discontinuity, and a 

right shock, and is shown for 𝑡 = 0.25 in figure 4.1. In this figure, we have implemented 

only step (1) of the fix in the EGFM. 

As seen in figure 4.1, the OGFM, RGFM, and EGFM step (1) work equally accurately to 

capture the wave structure of the solution. For a closer comparison of the three methods 

near the contact discontinuity, we have plotted in figure 4.2 the density distributions over 

a narrow band of cells next to the middle wave. This figure shows that the EGFM step (1) 

gives the exact values for the cells immediately to the left and to the right of the wave, 

while the OGFM and RGFM are susceptible to overheating. For cells away from the 

interface, all three methods result in numerical inaccuracies. 
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Figure 4.1. (a) Density, (b) velocity, and (c) pressure profiles for the Sod shock tube 

problem. 
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Figure 4.2. (a) Density distribution near the contact discontinuity. Density values on the 

(b) left and (c) right sides of the wave. The density values of the two cells immediately 

next to the contact wave show the agreement of the results from the EGFM step (1) with 

the exact solution. 
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RGFM underpredict the analytical values of density and pressure (undershoots), and 

overpredict the velocity values (overshoots). In contrast, the EGFM (step (1)) captures the 

analytical solution with accuracy. This demonstrates the EGFM approach in which the 

numerical solution is rectified according to the local behavior of the corresponding 

analytical solution, provides the most accurate solution for the Sod shock tube problem.  

 

Figure 4.3. (a) Density, (b) velocity, and (c) pressure distributions across the rarefaction 

corner. The EGFM (step (1)) rectifies the incorrect troughs associated with the OGFM as 

well as the mild overshoots and undershoots associated with the RGFM. 

0.4

0.42

0.44

0.46

0.48

0.5

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)

RGFM

OGFM
Exact

D
e

n
s
it

y

x

(a)

0.805

0.84

0.875

0.91

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)
RGFM
OGFM
Exact

V
e
lo

c
it

y

x

(b)

0.28

0.2975

0.315

0.3325

0.35

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)

RGFM

OGFM
Exact

P
re

s
s

u
re

x

(c)



 
 

 

56 

In figures 4.1-4.3, we demonstrated that by applying step (1) of the EGFM, an improved 

numerical solution can be obtained to the Sod shock tube problem, compared to the OGFM 

and RGFM. However, density values at the cells away from the contact wave in figure 4.2 

contain numerical inaccuracies, and require the application of step (2) to be corrected. In 

figures 4.4 and 4.5, the EGFM was applied in its entirety, resulting in solutions that are in 

excellent agreement with the analytical solution for each of the reported quantities.  

 

Figure 4.4. Density profile for problem 4.1.1. The EGFM has been applied in its entirety. 
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Figure 4.5 (a) Density values near the contact discontinuity. Density values on the (b) left 

and (c) right sides of the wave. The EGFM completely removes overheating from the 

numerical solution. 
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4.1.2. Shock impedance matching problem [36, 38, 39]: In this specifically designed 

Riemann problem, the solution comprises a shock wave to the right of the original 

discontinuity, while no wave forms on the left. The domain is filled with two gases (𝛾𝐿 =

1.667 and 𝛾𝑅 = 1.2) with a discontinuity at 𝑥0 = 0.2, and the following initial condition: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (3.174819866,9.434397965,100), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (1,0,1). 

The solution obtained at 𝑡 = 0.06 is shown in figure 4.6, where the problem was solved 

using OGFM, RGFM and step (1) of the fix in the EGFM. 
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Figure 4.6. (a) Density, (b) velocity, and (c) pressure distributions in the shock 

impedance matching problem. The inability of the OGFM and RGFM to apply the correct 

boundary condition at the interface results in the spurious reflection. 
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since they apply approximate boundary conditions at the interface. The EGFM solution, 

however, exactly matches the analytical values, as the EGFM applies the exact interfacial 

boundary conditions following the GFM theorem in figures 3.6 and 3.10. Earlier efforts to 

simulate this problem include the MGFM [36], RGFM [38], and PGFM [39] approaches. 

In these earlier studies, the erroneous reflections observed in figure 4.6 were not completely 

removed, but mitigated in some instances. 

Similarly, figure 4.8 shows the solution detail across the interface and demonstrates results 

from step (1) of the EGFM is in excellent agreement with the analytical solution for the 

cells immediately next to the interface, while the OGFM and RGFM suffer from 

overheating. In figure 4.8(a), the interface location computed using the RGFM is displaced 

one mesh cell away from the exact location. This stems from the approximate 

implementation in RGFM of the interfacial boundary conditions, giving rise to an 

approximate interface velocity advecting the LS function, and hence the slightly incorrect 

location of the interface. Note that although the RGFM (as well as the MGFM [36] and 

PGFM [39] approaches) is based on obtaining multi-medium Riemann solutions at the 

interface, the MMRP defined at the interface is based on the cell values already 

contaminated with overheating. The EGFM, however, fixes the cell values next to the 

interface (see figure 3.11), so that the initial condition for the MMRP is exact for the next 

time step/sub step. These issues are exacerbated for problems containing strong shocks 

(high pressure ratios), and are discussed later in this chapter. 

To completely remove overheating and improve the global accuracy of the solution, step 

(2) of the EGFM was applied to the solution as well, and the results are plotted in figures 
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4.9 and 4.10. When the correction from step (2) is included, the EGFM solution matches 

exactly the analytical solution for all 𝑥.  

 

Figure 4.7. (a) Density, (b) velocity, and (c) pressure distributions highlighting the 

unphysical reflection wave in the shock impedance matching problem. The EGFM (step 

(1)) completely removes this reflection. 
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Figure 4.8. (a) Density distribution near the interface. Density values on the (b) left and 

(c) right of the interface. The density values of the two cells immediately next to the 

interface show the results from the EGFM step (1) in excellent agreement with the exact 

solution. 
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Figure 4.9. Density distributions for problem 4.1.2 where the EGFM has been 

implemented in its entirety. 
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Figure 4.10. (a) Density distribution near the interface. Density values on the (b) left and 

(c) right of the interface. The EGFM removes overheating from the numerical values. 
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domain is filled with air (𝛾 = 1.4) with an initial discontinuity located at 𝑥0 = 0.5 with the 

following initial condition: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1,0,1000), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (1,0,0.01). 

The solution to this problem contains a left rarefaction and a right shock, and is shown for 

𝑡 = 0.012 in figure 4.11. Owing to the large magnitude of the initial pressure jump, the 

OGFM cannot resolve this problem, and the simulation breaks down following a few time 

steps. As pointed out by [36], this behavior of the OGFM results from inadequacy of the 

Rankine-Hugoniot jump conditions [25] to define the ghost fluids, which produces 

inaccurate solutions, especially for problems involving strong shocks, or high density 

ratios, or large disparities in the stiffness of the materials. Both the RGFM and EGFM, 

however, are able to provide solutions in agreement with the analytical solutions. Similar 

to the earlier test cases, the EGFM results in more accurate solution values, particularly 

near the contact discontinuity and around the corners of the rarefaction. Figure 4.12 is a 

detail of the density values near the interface from the EGFM and RGFM approaches and 

shows that in contrast to the RGFM, the EGFM is in very good agreement with the 

analytical values. 
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Figure 4.11. (a) Density, (b) velocity, and (c) pressure distributions in problem 4.1.3. The 

OGFM is unable to resolve the wave structure associated with the strong pressure jump. 
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Figure 4.12. (a) Density values near the contact wave for problem 4.1.3. Density values 

on the (b) left and (c) right sides of the wave. The EGFM results completely match the 

exact solution. 
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discontinuity located at the center (𝑥0 = 0.5). The complete initial condition data is given 

by: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1,0,0.01), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (1,0,100). 

The solution thus consists of a left shock and a right rarefaction, and is shown for 𝑡 =

0.035 in figure 4.13. Both the OGFM and RGFM lead to inaccurate solutions near the 

contact discontinuity and the rarefaction corner (see [36] and [40] where similar behavior 

has been reported for these versions of the GFM). In contrast, when the EGFM approach 

is applied, highly accurate numerical solutions are obtained. In particular, both the OGFM 

and RGFM approaches give rise to significant overshoots and undershoots for this 

demanding problem. In the appendix, an error and convergence analysis are performed for 

this problem, comparing the errors from the OGFM, RGFM, and EGFM. The details of the 

density field near the contact wave and the rarefaction corner are depicted in figures 4.14 

and 4.15 respectively. In figure 4.14, the OGFM and RGFM approaches miscalculate the 

location of the contact wave by two and one cells respectively. As discussed in problem 

4.1.2, this behavior results from the approximations in capturing the interfacial boundary 

conditions. In the OGFM implementation, as pointed out in [26], the conservation of mass, 

momentum, and energy is relaxed at the contact discontinuity, giving rise to first-order 

convergence for the location of the wave. This could lead to incorrect values for the 

interface location, particularly for problems with strong shocks. In contrast, the EGFM 

predicts the correct contact wave location, as seen in figure 4.14. 



 
 

 

69 

 

Figure 4.13. (a) Density, (b) velocity, and (c) pressure distributions in problem 4.1.4. The 

results from the OGFM and RGFM exhibit noticeable errors. 
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Figure 4.14. (a) Density values near the contact wave in problem 4.1.4. Density values on 

the (b) left and (c) right sides of the wave. The EGFM results agree with the exact 

solution for both the density values and the location of the wave. 
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Figure 4.15. Density values near the rarefaction corner in problem 4.1.4. The EGFM 

resolves the corner correctly. 
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oscillations in pressures and velocities from the OGFM and RGFM, while the EGFM 

removes these oscillations completely near the interface (figure 4.17). 

 

Figure 4.16. (a) Density, (b) velocity, and (c) pressure distributions for problem 4.1.5. 

The numerical results exhibit oscillations between the left and right shock waves. 
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Figure 4.17. (a) Density, (d) velocity, and (e) pressure values near the interface. Density 

values on the (b) left and (c) right sides of the interface. The EGFM eliminates 

overheating as well as spurious oscillations in velocities and pressures. 
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4.1.6. Multi-component shock tube problem 1 [89]: This is an MMRP where a diaphragm 

separates two gases (𝛾𝐿 = 1.6 and 𝛾𝑅 = 1.4) in the domain. The initial discontinuity is 

located at the center (𝑥0 = 0.5) of the shock tube and separates regions with a pressure 

ratio of 2500:1. The initial data may be summarized as 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1,0,500), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (1,0,0.2). 

The solution [89] includes a left rarefaction and a right shock as shown for 𝑡 = 0.01 in 

figure 4.18. Note that to obtain results using the OGFM, the CFL value must be reduced to 

≤ 0.04, indicating the inefficiency of this approach for this MMRP. Furthermore, figures 

4.18 and 4.19 show the results from the EGFM are of higher accuracy, while the OGFM 

and RGFM results contain strong overheating and unphysical numerical reflections near 

the rarefaction. Note the OGFM erroneously places the interface location by more than 

three cells from its actual location (figure 4.19). See the discussion of problem 4.1.4 for 

the details of such behavior. 
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Figure 4.18. (a) Density, (b) velocity, and (c) pressure distributions for the multi-

component shock tube problem. 
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Figure 4.19. (a) Density values near the interface for problem 4.1.6. Density values on the 

(b) left and (c) right sides of the interface. The OGFM and RGFM results display 

overheating errors, while the OGFM also miscomputes the interface location.  

 

4.1.7. Multi-component shock tube problem 2 [36]: In this MMRP, the domain contains 

two gases (𝛾𝐿 = 1.6667 and 𝛾𝑅 = 1.4) separated by a diaphragm at 𝑥0 = 0.2 and the 

following initial data: 

0

1

2

3

4

5

6

7

8

0.61 0.62 0.63 0.64 0.65 0.66

EGFM
RGFM

OGFM
Exact

D
e

n
s

it
y

x

(a)

0.58

0.6

0.62

0.64

0.66

0.68

0.7

0.61 0.615 0.62 0.625 0.63 0.635

D
e

n
s
it

y

x

(b)

5

5.2

5.4

5.6

5.8

6

0.635 0.64 0.645 0.65 0.655 0.66

D
e

n
s
it

y

x

(c)



 
 

 

77 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (3.85563056,8.562900568,100), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (0.1,0,1). 

Removal of the diaphragm leads to a solution comprising a left rarefaction and a right 

shock, as shown in figure 4.20 for 𝑡 = 0.04. As observed in the figure, the EGFM removes 

the numerical errors imposed by the OGFM and RGFM near the interface and the 

rarefaction. Figure 4.21 shows a detailed plot of the density profile near the interface, where 

the outcomes of the three GFM versions are compared. 
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Figure 4.20. (a) Density, (b) velocity, and (c) pressure distributions for the MMRP in 

problem 4.1.7. The OGFM and RGFM exhibit strong overheating in the density profiles. 
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Figure 4.21. (a) Density values near the interface. Density values on the (b) left and (c) 

right sides of the wave. The EGFM removes overheating and computes the correct 

location of the interface. 

 

4.1.8. Multi-component shock tube problem 3 [36, 38]: In this MMRP, the shock tube 

domain is filled with high pressure air (𝛾𝐿 = 1.4) and liquid water with the stiff gas EOS 

0

0.5

1

1.5

2

0.72 0.73 0.74 0.75 0.76

EGFM

RGFM

OGFM

Exact

D
e

n
s
it

y

x

(a)

1.5

1.55

1.6

1.65

1.7

1.75

1.8

0.72 0.725 0.73 0.735 0.74

D
e

n
s

it
y

x

(b)

0.46

0.465

0.47

0.475

0.48

0.485

0.49

0.74 0.745 0.75 0.755 0.76

D
e

n
s
it

y

x

(c)



 
 

 

80 

parameters 𝛾𝑅 = 7.15 and 𝑝∞𝑅 = 3309. A diaphragm located at 𝑥0 = 0.5 separates the 

two fluids, and the simulations are initialized with the following initial data: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (0.00596521,911.8821,1000), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (1,0,1). 

The solution results in two shock waves with an interface located in between. Results are 

shown as density, velocity and pressure plots for 𝑡 = 0.0007 in figure 4.22. In this multi-

medium problem, the solution by the OGFM breaks down after a few time steps [36] (see 

the discussion in problem 4.1.3), while the RGFM exhibits overheating and places the 

interface one cell away from its actual location. Once again, the EGFM results in exact 

values near the interface shown in detail in figure 4.23. Both the RGFM and EGFM, 

nonetheless, show small oscillations near the shock waves. This problem highlights the 

significance and superiority of MMRP-based GFM approaches over the OGFM in handling 

problems involving dramatically different stiffnesses. 
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Figure 4.22. (a) Density, (b) velocity, and (c) pressure distributions for the gas-water 

shock tube in problem 4.1.8. 
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Figure 4.23. (a) Density values near the interface. Density values on the (b) left and (c) 

right sides of the interface. The OGFM solution breaks down after a few time steps, while 

the EGFM provides the exact values and interface location. 

 

4.1.9. Strong shock impacting on a gas-gas interface (heavy → light) [26]. A gas-gas 

interface is processed by a strong shock, in a domain of length 1 𝑚. (the corresponding 2D 

problem with a perturbed interface would lead to the development of the Richtmyer-

0

0.2

0.4

0.6

0.8

1

1.2

0.5 0.51 0.52 0.53 0.54 0.55

EGFM

RGFM

Exact

D
e

n
s
it

y

x

(a)

0.0198

0.0199

0.02

0.0201

0.0202

0.0203

0.0204

0.0205

0.5 0.505 0.51 0.515 0.52 0.525

D
e

n
s

it
y

x

(b)

1.14

1.145

1.15

1.155

1.16

1.165

0.525 0.53 0.535 0.54 0.545 0.55

D
e

n
s

it
y

x

(c)



 
 

 

83 

Meshkov instability). A right-traveling shock wave is initialized at 𝑥𝑆0 = 0.05 𝑚, while 

the interface is initially positioned at 𝑥0 = 0.5 𝑚 and separates two gases (𝛾𝐿 = 1.4 and 

𝛾𝑅 = 1.67). The complete initial conditions are given below 

𝑾𝑆 = (𝜌𝑆, 𝑢𝑆 , 𝑝𝑆) = (4.3333 𝑘𝑔 𝑚3⁄ , 1037.7647 𝑚 𝑠⁄ , 1.5 × 106 𝑃𝑎), 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1 𝑘𝑔 𝑚3⁄ , 0 𝑚 𝑠⁄ , 105 𝑃𝑎), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (0.1379 𝑘𝑔 𝑚3⁄ , 0 𝑚 𝑠⁄ , 105 𝑃𝑎) 

where we have used the subscripts as in figure 3.12. Since this is a ‘heavy-to-light’ case, 

the solution will consist of a rarefaction reflecting from the interface and a shock wave 

transmitted into the light gas. This wave structure is seen in figure 4.24 where the solutions 

by the OGFM, RGFM, and EGFM are compared to the analytical values at 𝑡 = 0.0005 𝑠. 

In figure 4.24, we observe that both the OGFM and RGFM exhibit a trough around 𝑥 =

0.2 𝑚. As pointed out by Fedkiw et al. [26], this artifact stems from defining the shock as 

a perfectly sharp discontinuity in the initial condition. In spite of this, we notice that the 

EGFM provides the correct density, velocity, and pressure values near this feature, as 

depicted in detail in figure 4.25. This is expected since the EGFM explicitly removes the 

numerical errors (§ 3.4) imposed by shock capturing schemes that seek to resolve the 

shock. Furthermore, it is observed that the interface obtained from EGFM is free of 

overheating, in contrast to the results from the OGFM and RGFM schemes. This is 

highlighted clearly in the detailed plot shown in figure 4.26. 
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Figure 4.24. (a) Density, (b) velocity, and (c) pressure profiles in a heavy-to-light case. 

The EGFM eliminates the overheating and the numerical errors stemming from the shock 

capturing schemes. 
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Figure 4.25. (a) Density, (b) velocity, and (c) pressure values near the numerical 

oscillation observed in the OGFM and RGFM schemes. The shock treatment carried out 

in the EGFM approach removes numerical errors imposed by shock capturing schemes. 
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Figure 4.26. (a) Density profile near the interface for problem 4.1.9. Density values on 

the (b) left and (c) right sides of the interface. The EGFM captures the density values and 

the interface location accurately. 
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𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (3.1538 𝑘𝑔 𝑚3⁄ , 0 𝑚 𝑠⁄ , 105 𝑃𝑎), 

while the properties of the left gas are unchanged.  Since the shock travels from the light 

gas to the heavy, both transmitted and reflected waves are shocks, while the interface will 

travel to the right. The expected wave structure is shown in figure 4.27 where the results 

from the OGFM, RGFM, and EGFM are compared to the exact solution at 𝑡 = 0.0007 𝑠. 

Once again, we observe that the shock treatment in the EGFM approach (§ 3.4) removes 

the numerical artifacts observed in the other approaches at 𝑥 ~ 0.3 𝑚. In addition, 

overheating has been eliminated by the EGFM solution, when compared with the numerical 

values obtained from OGFM and RGFM (see figure 4.28). 
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Figure 4.27. (a) Density, (b) velocity, and (c) pressure in a light-to-heavy case. The 

EGFM removes overheating and the numerical oscillation near 𝑥 = 0.3 𝑚. 
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Figure 4.28. (a) Density profile near the interface. Density values on the (b) left and (c) 

right sides of the interface. The EGFM values match the exact solution, while the OGFM 

and RGFM exhibit overheating. 
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initialized at 𝑥𝑆0 = 0.6 in the region of the shock tube containing water and traverses the 

interface. The complete initial data for this problem is: 

𝑾𝐿 = (𝜌𝐿 , 𝑢𝐿 , 𝑝𝐿) = (1,0,1), 

𝑾𝑅 = (𝜌𝑅 , 𝑢𝑅 , 𝑝𝑅) = (5,0,1), 

𝑾𝑆 = (𝜌𝑆, 𝑢𝑆 , 𝑝𝑆) = (7.093,−0.7288,10) 

where 𝑾𝑆 represents the post-shock state. Since this is a heavy-to-light case, a rarefaction 

is reflected back in to the water, while a shock is transmitted into the air. Figure 4.29 shows 

this general solution structure from the analytical solution, as well as a comparison between 

the OGFM, RGFM, and EGFM approaches at 𝑡 = 0.2. All the simulations shown in figure 

4.29 were performed with a mesh of 250 cells and 𝐶𝐹𝐿 = 0.2. 

The introduction of the initial shock wave as a perfectly sharp discontinuity in the water 

leads to the formation of two blips in the solution propagating throughout the domain in 

time. However, these features (located at  𝑥~0.4 and 𝑥~0.95 at the end of the simulation), 

are removed by the shock treatment in the EGFM approach (§ 3.4). In addition, the EGFM 

eliminates overheating near the interface, as shown in detail in figure 4.30.  
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Figure 4.29. (a) Density, (b) velocity, and (c) pressure distributions for a shock impacting 

on a gas-water interface. The blips at 𝑥 = 0.4 and 𝑥 = 0.95 are removed owing to the 

shock treatment of the EGFM approach. The EGFM eliminates overheating as well.  
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Figure 4.30. (a) Density profile near the interface for problem 4.1.11. Density values on 

the (b) left and (c) right sides of the interface. The EGFM eliminates overheating and the 

numerical oscillation near the interface.  
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4.2 2D test cases 

In this section, we present 2D test problems, where the different versions of the GFM were 

evaluated for their capabilities and robustness. 

4.2.1. Underwater explosion of an air bubble [58]. An initially stationary, high pressure 

air bubble explodes in a domain filled with stationary water. The computational domain is 

square with dimensions 1 × 1, while the air bubble is a circle of radius 0.2 located at the 

center of the square. The initial condition for the air (𝛾𝑎 = 1.4) and water (𝛾𝑤 = 5.5 and 

𝑝∞𝑤 = 1.505) regions were specified as follows: 

𝑾𝑎 = (𝜌𝑎, 𝑝𝑎) = (1.241,2.753), 

𝑾𝑤 = (𝜌𝑤, 𝑝𝑤) = (0.991,3.059 × 10
−4). 

The solution contains a rarefaction wave propagating toward the center of the circle, and 

an outward-propagating shock wave. The solution is obtained at 𝑡 = 0.058 using the 

OGFM with 100×100 cells and 𝐶𝐹𝐿 = 0.3 is shown in figures 4.31 and 4.32. The density 

contours in figure 4.31 highlight the presence of a rarefaction, interface, and shock. While 

the shock wave is slightly diffused, the interface remains sharp indicating negligible 

diffusion owing to the sharp interface approach of the GFM. This is better seen in figure 

4.32 where the solution has been plotted for 𝑦 = 0.5 and at 𝑡 = 0.058 and shows good 

agreement between the results from IMPACT and those from LeVeque et al. [91] where 

the solution was obtained using 1D multi-component model for Riemann problem with 

source terms to account for radial symmetry.  
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Figure 4.31. (a) Density and (b) pressure contours from the underwater explosion 

problem. The solution contains an inward-propagating rarefaction and outward-

propagating interface and shock. The interface remains sharp owing to the 

implementation of the GFM.  
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Figure 4.32. (a) Density and (b) pressure distributions along a cross section (𝑦 = 0.5) of 

the domain. Interface and wave locations have been properly captured by IMPACT, and 

show good agreement with the results from LeVeque et al. [91]. 
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4.2.2. Strong shock impacting an air cavity [90] (heavy → light): In this problem, a strong 

shock in water travels to the right and impacts a circular air cavity. The computational 

domain is a rectangular box of dimensions 13.8 𝑚𝑚 × 12 𝑚𝑚 filled with water, in which 

the air cavity of radius 3 𝑚𝑚 is centered at (6 𝑚𝑚, 6 𝑚𝑚). The shock is initially located 

at 𝑥 = 1.8 𝑚𝑚 and divides the water into post- and pre-shock states. The initial condition 

of the air (𝛾𝑎 = 1.4) and water (𝛾𝑤 = 4.4 and 𝑝∞𝑤 = 6 × 10
8 𝑃𝑎) are as follows: 

𝑾𝑤,𝑝𝑜𝑠𝑡 = (𝜌, 𝑢, 𝑣, 𝑃)𝑤,𝑝𝑜𝑠𝑡 = (1323.6478 𝑘𝑔 𝑚3⁄ ,  681.577871 𝑚 𝑠⁄ ,  0,  1.9 𝐺𝑃𝑎), 

𝑾𝑤,𝑝𝑟𝑒 = (𝜌, 𝑢, 𝑣, 𝑃)𝑤,𝑝𝑟𝑒 = (1000 𝑘𝑔 𝑚3⁄ ,  0,  0,  105 𝑃𝑎), 

𝑾𝑎 = (𝜌, 𝑢, 𝑣, 𝑃)𝑎 = (1 𝑘𝑔 𝑚3⁄ ,  0,  0,  105 𝑃𝑎). 

The computational domain consists of 230 and 200 cells in the 𝑥 and 𝑦 directions 

respectively, and the simulations were performed with 𝐶𝐹𝐿 = 0.4 to a final time of 𝑡 =

3.05 𝜇𝑠. The boundary conditions on the left and right boundaries are outflow, whereas the 

bottom and top boundaries are periodic. Due to the high strength of the shock and dramatic 

density contrast across the gas-water interface, the OGFM is unable to resolve this problem, 

and the simulation breaks down after a few time steps. We have used the modified version 

[27, 66] of the GFM here to obtain the solution shown in figures 4.33 and 4.34. 
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Figure 4.33. Density plots at different times in the shock-cavity interaction. The 

interaction results in a penetration of a water jet inside the cavity. 

 

Since the shock-interface interaction is from heavy to light (At < 0), a rarefaction reflecting 

back in to the water is observed along with a transmitted shock into the air cavity. The 
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rarefaction wave is strong and visible in figure 4.33, while the transmitted shock is weak. 

We have plotted in figure 4.34 the line contours of density, so that the weak shock can be 

visualized. As before, we observe that the interface remains free of diffusion due to the 

GFM implementation.  

The incident shock is initially planar, but is refracted by the air bubble and assumes an 

oblique shape near the interface. Furthermore, from figure 4.34, the speed of the incident 

shock is higher than the transmitted shock, and is due to the higher stiffness of water 

compared with air. The results presented in this problem are in good qualitative agreement 

with [90], and further underscores the capabilities of IMPACT in capturing flow features 

occurring under extreme conditions associated with strong shock waves and large density 

ratios. 
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Figure 4.34. Density contours at (a) 𝑡 = 2.2 𝜇𝑠, (b) 2.6 𝜇𝑠, and (c) 2.85 𝜇𝑠 for problem 

4.2.2. Due to the higher stiffness of water, shock velocities are higher in that medium, 

compared with the speed of the transmitted shock in the air cavity. 

 

4.2.3. Shock-bubble interaction (light → heavy): A left-traveling shock wave is initialized 

in air and impacts a circular bubble containing R22. The domain is a rectangle of 

dimensions 267 𝑚𝑚 × 89 𝑚𝑚 which contains an R22 bubble of radius 25 𝑚𝑚 centered 

at (178 𝑚𝑚, 44.5 𝑚𝑚), while the shock is initially at 𝑥 = 203 𝑚𝑚. The initial conditions 

for the air (𝛾𝑎 = 1.4) and R22 (𝛾𝑅22 = 1.249) are given below: 

𝑾𝑎,𝑝𝑟𝑒 = (𝜌, 𝑢, 𝑣, 𝑃)𝑎,𝑝𝑟𝑒 = (1.4 𝑘𝑔 𝑚3⁄ , 0,  0, 105 𝑃𝑎), 
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𝑾𝑎,𝑝𝑜𝑠𝑡 = (𝜌, 𝑢, 𝑣, 𝑃)𝑎,𝑝𝑜𝑠𝑡 = (1.927 𝑘𝑔 𝑚3⁄ ,  − 114.42 𝑚 𝑠⁄ ,  0,  1.57 × 105 𝑃𝑎), 

𝑾𝑅22 = (𝜌, 𝑢, 𝑣, 𝑃)𝑅22 = (4.415 𝑘𝑔 𝑚3⁄ ,  0,  0,  105 𝑃𝑎). 

The simulations were performed with 1200×400 cells in the 𝑥 and 𝑦 directions respectively 

(𝐶𝐹𝐿 = 0.4), and to a final time of 𝑡 = 820 𝜇𝑠. The boundary conditions on the left and 

right boundaries were defined as outflow, while the bottom and top boundaries were 

defined as periodic surfaces. The density contours shown in figure 4.35 were obtained 

using the OGFM approach in IMPACT. 
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Figure 4.35. The evolution of the interface in shock-bubble interaction. (a) 𝑡 = 55 𝜇𝑠, (b) 

190 𝜇𝑠, (c) 250 𝜇𝑠, (d) 420 𝜇𝑠, and (e) 820 𝜇𝑠. The passage of the shock wave results in 

a formation of the RMI at the interface. 
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The shock processes the R22 bubble in a light-to-heavy interaction, so that the initial 

interaction of the shock and the interface (𝑡 = 55 𝜇𝑠 in figure 4.35) results in a shock 

refraction leading to a reflected shock back into the air and a transmitted shock into the 

R22 bubble. The compression of the R22 bubble by the transmitted shock is also visible in 

figure 4.35, and results from the increased density and pressure in its post-shocked state. 

By 𝑡 = 190 𝜇𝑠, the transmitted shock has reached the apex of the R22 bubble, and the 

subsequent passage of the shock from the heavy (R22) to light (air) medium results in a 

reflected rarefaction wave back in to the bubble, and a transmitted shock wave into the air. 

This wave pattern is observed in the solution at 𝑡 = 250 𝜇𝑠.  

The interaction of the shock wave with a misaligned density interface in the form of the 

R22 bubble, leads to the development of RMI due to the deposition of baroclinic vorticity 

at the site of the shock-interface interaction. The early ‘seeds’ of instability formation can 

be observed in figure 4.35, at the poles of the bubble (𝑡 = 190 𝜇𝑠) followed by growth and 

elongation of the bubble. Note that the poles represent the sites of maximum initial 

misalignment between the pressure gradient represented by the shock and the density 

gradient between the bubble and shocked air, and are hence the locations of maximum 

deposited baroclinic vorticity. Instability growth rates at these sites would thus be 

maximum. The evolution of the interface to later times (𝑡 = 420 𝜇𝑠 and 𝑡 = 820 𝜇𝑠) 

demonstrates the effect of the deposited vortical structures on the interface where the 

‘wings’ of the elongated bubble tend to roll up toward the centerline of the domain (𝑦 =

44.5 𝑚𝑚). The shock bubble problem investigated here demonstrates the robustness of the 

numerical methods implemented in IMPACT, in handling interfacial instabilities such as 
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RMI. In the next section, we study the RMI quantitatively and compare the results obtained 

from IMPACT with analytical models. 

4.3 Richtmyer-Meshkov Instability 

The single-mode RMI is investigated in this section using IMPACT. The problem setup is 

shown in figure 4.36, and involves a rectangular domain of dimensions 𝐿𝑥 × 𝐿𝑦 with an 

interface represented by 𝑥 = 𝑥0 + ℎ0
− cos(2𝜋𝑦 𝜆⁄ ) where 𝑥0 is the location of the 

unperturbed interface, ℎ0
− is the amplitude of the sinusoidal perturbation before shock 

impact, and 𝜆 is the perturbation wavelength.  

 

Figure 4.36. Problem setup for the RMI simulations. The interface between Fluids A and 

B is defined as a single-mode perturbation represented by a cosine wave. 

 

In figure 4.36, the domain is occupied by Fluids A and B where Fluid A supports a planar 

shock wave traveling toward the interface with speed 𝑆. The density contrast between the 

two fluids is characterized by the pre-shock Atwood number 𝐴𝑡− = (𝜌𝐵 − 𝜌𝐴) (𝜌𝐵 + 𝜌𝐴)⁄  

where 𝐴𝑡− < 0 indicates a heavy-to-light (or slow/fast) interaction and vice versa. The 
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amplitude of the perturbation is scaled by the wavenumber to define the nondimensional 

parameter 𝑘ℎ0
− where 𝑘 = 2𝜋 𝜆⁄  is the perturbation wavenumber. The shock Mach number 

is defined as 𝑀𝑎𝑆 = 𝑆 𝑎𝐴⁄  , where 𝑎𝐴 is the speed of sound in fluid A in its unshocked 

state. 

The IMPACT simulations reported in this section were performed with air and SF6 as the 

two fluids separated by the initial interface, and are labeled as Fluid A (𝛾𝐴 = 1.4) and Fluid 

B (𝛾𝐵 = 1.093) respectively. We use 𝜌𝐴 = 0.5 𝑘𝑔 𝑚3⁄  and 𝜌𝐵 = 2.5 𝑘𝑔 𝑚3⁄  to obtain 

𝐴𝑡− =
2

3
. The initial interface perturbation is characterized by the pre-shock amplitude 

ℎ0
− = 0.056 𝑚, and the perturbation wavelength 𝜆 = 1 𝑚 so that 𝑘ℎ0

− = 0.35. A planar 

shock with  𝑀𝑎𝑆 = 1.2 is initially located at 𝑥𝑆0 = 0.4 𝑚, while the interface is positioned 

at 𝑥0 = 0.5 𝑚. The initial condition for the problem is detailed below: 

𝑾𝐴,𝑝𝑜𝑠𝑡 = (𝜌, 𝑢, 𝑣, 𝑃)𝐴,𝑝𝑜𝑠𝑡 = (0.67 𝑘𝑔 𝑚3⁄ ,  161.68 𝑚 𝑠⁄ ,  0,  1.5 × 105 𝑃𝑎), 

𝑾𝐴,𝑝𝑟𝑒 = (𝜌, 𝑢, 𝑣, 𝑃)𝐴,𝑝𝑟𝑒 = (0.5 𝑘𝑔 𝑚3⁄ ,  0,  0,  105 𝑃𝑎), 

𝑾𝐵 = (𝜌, 𝑢, 𝑣, 𝑃)𝐵 = (2.5 𝑘𝑔 𝑚3⁄ ,  0,  0,  105 𝑃𝑎). 

The simulation domain had dimensions 𝐿𝑥 = 12 𝑚 and 𝐿𝑦 = 1 𝑚, with a mesh distribution 

of 1200 and 100 cells in the 𝑥 and 𝑦 directions respectively. The RMI simulations were 

performed with 𝐶𝐹𝐿 = 0.3, and run to a final time of 𝑡 = 0.077866 𝑠. The left and right 

boundaries were treated as outflow surfaces to allow for the egress of waves without 

acoustic feedback in to the domain, while the top and bottom boundaries were defined 

using periodic boundary conditions. We use the GFM approach of Sambasivan and 

UdayKumar [32] to obtain the solution. 
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Upon passage of the shock through the interface, the interface is accelerated to a velocity 

∆𝑣 and is compressed to a post-shock amplitude ℎ0
+ with a compression factor 𝜒 = ℎ0

+ ℎ0
−⁄ . 

Under the influence of the deposited baroclinic vorticity, the perturbation amplitude grows 

in time with a growth rate 𝑑ℎ 𝑑𝑡⁄ . In table 4.2, we compare the results from IMPACT with 

those predictions from the Rankine-Hugoniot relations applied to the RM situation [92, 

93], and with analytical models for the RM linear growth rate [15, 16]. Table 4.2 shows 

excellent agreement between model predictions and measured quantities from the 

IMPACT simulation during the linear stage of RMI growth. 

Table 4.2. A comparison of the results from theoretical models and IMPACT. 

parameter Theory IMPACT 

∆𝑣 (𝑚/𝑠) 106.58 ([92], [93]) 107.22 

𝐴𝑡+ 0.696 ([92], [93]) 0.697 

ℎ0
+ (𝑚) 0.0464 ([16]) 0.0466 

𝜒 0.832 ([16]) 0.836 

𝑑ℎ 𝑑𝑡⁄ ≡ 𝑉𝑅𝑀 (𝑚/𝑠) 21.605 ([15]) 21.870 

 

We also validate IMPACT by comparing predictions of the interface evolution during the 

nonlinear phase of RMI with models based on potential flow theory. In figure 4.37, we plot 

density and LS contours at different nondimensional times 𝑘𝑉0𝑡, where 𝑉0 is the initial 

growth rate that accounts for finite-amplitude effects and is given by 𝑉0 =

𝑉𝑅𝑀 [1 + (𝑘ℎ0
− 3⁄ )4 3⁄ ]⁄  [94]. As seen in the figure, as the perturbation waveform enters 
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the nonlinear phase 𝑘𝑉0𝑡 ≳ 1, a distinct spike (penetration of heavier fluid to lighter fluid) 

and bubble (penetration of lighter fluid to heavier fluid) are visible. Figure 4.38 is a plot of 

bubble and spike amplitudes versus time, where the amplitudes have been normalized by 

the post-shock initial amplitude ℎ0
+. Since the density ratio employed in this problem >>1, 

spike and bubble growth is asymmetric as observed in figure 4.38 with spikes outpacing 

bubble growth [95-97]. The bubble and spike amplitudes in figure 4.38 are computed with 

reference to the location of an unperturbed interface (dashed line in figure 4.37), which 

was obtained from corresponding 1D simulations. For late-time growth and mixing in the 

RMI, see [97, 98]. 

     

      

Figure 4.37. Density and LS contours in the RM problem. Interface evolution has been 

plotted for: 𝑘𝑉0𝑡 = 0, 1, 2, 5, 10 (from left to right). The spike and bubble are labeled. 

The location of the unperturbed interface is indicated by the dashed line. 
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Figure 4.38. Time evolution of spike and bubble amplitudes from 2D simulations using 

IMPACT.  

 

In figure 4.39 we plot the time evolution of the bubble and spike growth rates from our 

simulations (𝑉𝑠𝑝 = 𝑑ℎ𝑠𝑝 𝑑𝑡⁄  and 𝑉𝑏𝑢 = 𝑑ℎ𝑏𝑢 𝑑𝑡⁄ ), and compare the results with the 

nonlinear analytical model of [94]. As seen in this figure, the simulation results for bubble 

and spike growth rates are in excellent agreement with [94].  
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Figure 4.39. Time evolution of spike and bubble velocities. Results from IMPACT are 

compared with the nonlinear model of [94]. 

  

4.4 Surface tension effects on interface evolution 

In §3.5, we discussed the implementation of surface tension using the GFM by modifying 

the interfacial boundary conditions [27], or by manipulating the exact or approximate 

Riemann solver for MMRP-based GFMs. In this section, we summarize results from both 

approaches and compare our outcomes with the analytical models in the literature for 

standard test cases. 

4.4.1. Sod shock tube problem with prescribed pressure jump [84]: The problem statement 

is similar to § 4.1.1, but with a specified pressure jump ∆𝑝 = 0.2 applied to the initial 

discontinuity. Thus, this 1D case serves to validate the modifications to the GFM or the 
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multi-medium Riemann solver, implemented to handle the pressure jump associated with 

surface tension, without the complicating effects of interface topology encountered in 

multi-dimensional problems. The simulations were performed with a mesh of 200 cells and 

𝐶𝐹𝐿 = 0.2 to a final time of 𝑡 = 0.25 to match the parameters used for problem 4.1.1.  

The effect of including surface tension in the Sod shock tube problem is first discussed by 

plotting the evolution of the contact discontinuity in the exact solutions in figure 4.40. As 

shown in the pressure profile, the exact multi-medium Riemann solver (discussed in §3.5) 

retains the prescribed pressure jump to the end of the simulation, with 𝑝∗𝐿 = 0.43, while 

𝑝∗𝑅 = 0.23. Plots of the density (figure 4.40(a)) and velocity profiles (figure 4.40(b)) 

reveal higher interface velocity and shock speed in the absence of surface tension. 
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Figure 4.40. Exact solution of the Sod shock tube problem with and without pressure 

jump at the contact discontinuity. (a) Density, (b) velocity, and (c) pressure profiles at 

𝑡 = 0.25. 

 

Figures 4.41 (a) – (c) show the distributions of density, velocity, and pressure at 𝑡 = 0.25, 

from the different versions of the GFM implemented in IMPACT. Results from the 

linearized Riemann solver (LRS) [84] obtained by linearization of the MMRP at the 

interface are also included in the figures. The LRS is a powerful alternative to eqs. (3.12)-
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(3.14) in obtaining a solution to the MMRP, since it eliminates the high computational 

costs associated with exact solvers [41]. However, the LRS can result in inaccurate values 

for strong shock-interface interactions or for problems with high density ratios across the 

interface [84] [84]. As seen in figure 4.41, all versions of the GFM implemented in 

IMPACT successfully capture the flow behavior resulting from the prescribed pressure 

jump ∆𝑝 = 0.2 at the contact discontinuity. Furthermore, the numerical predictions for the 

wave speeds are in very good agreement with the results from the exact solvers and serves 

to validate the surface tension implementation in IMPACT through the GFM. 
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Figure 4.41. (a) Density, (b) velocity, and (c) pressure distributions for problem 4.4.1. 

The prescribed pressure jump ∆𝑝 = 0.2 is applied to the contact discontinuity, and solved 

using different versions of the GFM. 

 

In figure 4.42, we plot details of the density and pressure profiles near the interface. The 

EGFM removes overheating from the interface, while all other versions of the GFM exhibit 

overheating errors in both the density and pressure solutions. This demonstrates the 

capabilities of the EGFM in simulating shock-interface problems with surface tension.  
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Figure 4.42. (a) Density profile near the interface. Density values to the (b) left and (c) 

right of the interface. The EGFM values are in excellent agreement with the exact solver. 
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Figure 4.42 (continued). (d) Pressure profile near the interface. Pressure values to the (e) 

left and (f) right of the interface. The EGFM values are in excellent agreement with the 

exact solver. 

 

4.4.2. Oscillating drop [31, 86]. This is a standard test problem for evaluating surface 

tension effects on the evolution of interfaces. A square domain of dimensions 4 × 4 is filled 

with air (𝛾𝑎 = 1.4) and with a water (𝛾𝑤 = 4 and 𝑝∞𝑤 = 1) droplet at the center of the 

domain. The gas-water contact is a closed elliptical interface represented by: 
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(
𝑥 − 2

𝑎
)
2

+ (
𝑦 − 2

𝑏
)
2

= 1 

where 𝑎 = 1.25 and 𝑏 = 0.8. The fluids are initially at rest with the following densities 

and pressures: 

𝑾𝑎 = (𝜌𝑎, 𝑝𝑎) = (1, 1), 

𝑾𝑤 = (𝜌𝑤, 𝑝𝑤) = (5, 1). 

Note that since 𝑎 > 𝑏, the interface curvature at the left and right poles of the drop is 

initially greater than at the top and bottom poles, resulting in a surface tension-regulated 

oscillation of the drop in time. The resulting period of oscillation is given by analytical 

relations [99] as follows: 

𝑇 = 2𝜋√
(𝜌𝑎 + 𝜌𝑤)𝑟3

6𝜎
                                                                         (4.1) 

where 𝑟 is the equivalent circular radius and is equal to √𝑎𝑏, and 𝜎 is the surface tension 

coefficient. In our simulations, we use 𝜎 = 0.72 resulting in a period 𝑇 = 7.4. The 

IMPACT simulations were performed using a mesh with 100 cells in each direction, while 

setting 𝐶𝐹𝐿 = 0.4. The modified version of the GFM [27, 66] was invoked to apply the 

boundary conditions at the interface including the pressure jump due to surface tension. 

Outflow boundary conditions were applied on all four boundaries, while the simulations 

were run to a final time of 𝑡 = 9.44. Following [86], the period of oscillation is deduced in 

the IMPACT simulations from the global kinetic energy defined as 
1

2
∬𝜌(𝑢2 + 𝑣2) 𝑑𝑥 𝑑𝑦 
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in figure 4.43. In figure 4.44, density contours from the simulations are plotted at intervals 

of 𝑇 8⁄ . 

 

Figure 4.43. Global kinetic energy vs. time. The drop’s period of oscillations from 

IMPACT is 7.6. 

 

From figure 4.43, the global kinetic energy oscillates in accordance with the droplet shape 

(see figure 4.44). Furthermore, the global kinetic energy peaks decrease in time owing to 

numerical dissipation in the simulations [31, 86]. The time period of oscillation estimated 

from the global k.e. oscillations in figure 4.43 is 𝑇𝐼𝑀𝑃𝐴𝐶𝑇 = 7.6, and within 2.7% of eq. 

(4.1).  
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Figure 4.44. Interface evolution in the oscillating drop problem: (a) 𝑡 = 0, (b) 𝑡 = 𝑇 8⁄ , 

(c) 𝑡 = 𝑇 4⁄ , (d) 𝑡 = 3𝑇 8⁄ . 
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Figure 4.44 (continued). Interface evolution in the oscillating drop problem: (e) 𝑡 = 𝑇 2⁄ , 

(f) 𝑡 = 5𝑇 8⁄ , (g) 𝑡 = 3𝑇 4⁄ , (h) 𝑡 = 7𝑇 8⁄ . 
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Figure 4.44 (continued). Interface evolution in the oscillating drop problem: (i) 𝑡 = 𝑇, (j) 

𝑡 = 9𝑇 8⁄ , (k) 𝑡 = 5𝑇 4⁄ . 

 

Figure 4.44 demonstrates the evolution of the interface through density contours at 

different times. At 𝑡 = 0, the simulation is initialized with a horizontal ellipse, ensuring 

surface tension forces are at their maximum(minimum) at the horizontal (vertical) poles 

owing to the highest (lowest) curvature at those points. This results in a larger pressure 

jump across the interface at the horizontal poles, that restores the ellipse to a circular form 

by 𝑡 = 𝑇 4⁄ . At this time, surface tension forces are uniformly distributed around the circle, 
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while the kinetic energy is at its highest leading the drop to be stretched in the vertical 

direction. By 𝑡 = 𝑇 2⁄ , the drop achieves a vertical ellipse with the maximum curvature at 

the north and south poles, forcing the ellipse to return to its circular shape by 𝑡 = 3𝑇 4⁄  

and eventually to the initial horizontal ellipse by 𝑡 = 𝑇. This test problem demonstrates the 

robustness of the implemented LS capability to accurately capture the interface shape and 

the curvature to a high-order for surface tension calculations.  

4.4.3. Shock-bubble interaction (light → heavy) under surface tension effects. The problem 

definition is similar to § 4.2.3, but with surface tension imposed at the interface through 

modifying the boundary conditions in the OGFM. Simulations were performed with 𝜎 =

100 𝑁 𝑚⁄  and 𝜎 = 300 𝑁 𝑚⁄ , and the results compared with problem 4.2.3 in figure 4.45. 

Under the effect of surface tension, both the primary (RM) and secondary (Kelvin-

Helmholtz) instabilities at the density interface are significantly damped. As a result, when 

surface tension is included, the shocked bubble exhibits oscillatory behavior about a mean 

shape. Note that for 𝜎 = 300 𝑁 𝑚⁄ , the bubble undergoes significantly less deformation, 

maintaining its circular shape. 
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Figure 4.45. Shock-bubble interaction at 𝑡 = 190 𝜇𝑠 with and without surface tension: (a) 

𝜎 = 0, (b) 𝜎 = 100 𝑁 𝑚⁄ , (c) 𝜎 = 300 𝑁 𝑚⁄ . Surface tension suppresses instabilities at 

the interface and results in smooth wave fronts. 

 

 

 



 
 

 

122 

 

Figure 4.45 (continued). Shock-bubble interaction at 𝑡 = 250 𝜇𝑠 with and without 

surface tension: (d) 𝜎 = 0, (e) 𝜎 = 100 𝑁 𝑚⁄ , (f) 𝜎 = 300 𝑁 𝑚⁄ . Surface tension 

suppresses instabilities at the interface and results in smooth wave fronts. 
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Figure 4.45 (continued). Shock-bubble interaction at 𝑡 = 420 𝜇𝑠 with and without 

surface tension: (g) 𝜎 = 0, (h) 𝜎 = 100 𝑁 𝑚⁄ , (i) 𝜎 = 300 𝑁 𝑚⁄ . Surface tension 

suppresses instabilities at the interface and results in smooth wave fronts. 
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Figure 4.45 (continued). Shock-bubble interaction at 𝑡 = 820 𝜇𝑠 with and without 

surface tension: (j) 𝜎 = 0, (k) 𝜎 = 100 𝑁 𝑚⁄ , (l) 𝜎 = 300 𝑁 𝑚⁄ . Surface tension 

suppresses instabilities at the interface and results in smooth wave fronts. 
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As the shape of the shocked bubble is modified by surface tension, the appearance of 

reflected and transmitted waves are also affected. In figure 4.45, when 𝜎 = 0 the wave 

fronts contain fine-scale features that correspond to undulations in the bubble shape. As 

the surface tension is increased (𝜎 = 100 𝑁 𝑚⁄  - 300 𝑁 𝑚⁄ ), the bubble shape becomes 

less corrugated, while the reflected and transmitted waves also appear smoother.  

4.4.4. Richtmyer-Meshkov instability under the effect of surface tension. The problem 

configuration follows §4.3, with surface tension effects included at the interface. Surface 

tension is handled numerically using the GFM approach of [32] described in §3.5, 

combined with the exact multi-medium Riemann solver given in eqs. (3.12)-(3.14). In this 

section, the effect of surface tension on the linear growth of RMI is described using results 

from IMPACT simulations. In the linear regime, surface tension stabilizes RMI as 

predicted by the model of [19], and results in an oscillatory behavior of the interface about 

its mean (unperturbed) position.  

The analytical model by Mikaelian [19] applies to a single-mode RMI, and predicts the 

time dependence of the amplitude of a perturbed interface with imposed surface tension: 

ℎ(𝑡)

ℎ0
+ = 𝑐𝑜𝑠 𝜔𝑡 +

∆𝑣𝑘𝐴𝑡+

𝜔
𝑠𝑖𝑛 𝜔𝑡 .                                                          (4.2) 

In eq. (4.2), 𝜔 is the angular frequency of surface tension-driven oscillations and given by 

𝜔 = √
𝑘3𝜎

𝜌𝐴
+ + 𝜌𝐵

+                                                                                             (4.3) 

where 𝜌𝐴
+ and 𝜌𝐵

+ are the post-shock values of densities on either side of the interface (see 

figure 4.36). From eq. (4.2), the maximum perturbation amplitude [19] is obtained as: 
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ℎ𝑚𝑎𝑥 = ℎ0
+√1 + (

𝑘𝐴𝑡+∆𝑣

𝜔
)
2

.                                                                 (4.4) 

Using equations (4.3) – (4.4), a lower limit for the surface tension can be estimated so that 

𝑘ℎ𝑚𝑎𝑥 ≤ 1 in our simulations, thereby ensuring the perturbation amplitudes in the 

IMPACT simulations stayed within the linear regime. Using 𝜌𝐴
+ =  0.737 𝑘𝑔 𝑚3⁄  and 

𝜌𝐵
+ =  4.109 𝑘𝑔 𝑚3⁄  from §4.3, and the post-shock values from table 4.2, we estimate for 

the parameters of the problem, the RMI will remain in the linear regime for 𝜎 ≳ 𝜎𝑐𝑟𝑖𝑡 =

 400 𝑁 𝑚⁄ . Thus, for 𝜎 ≳ 𝜎𝑐𝑟𝑖𝑡 results from the IMPACT simulations can be compared 

with the model equations (4.2)-(4.4). 

The evolution of the interface for 𝜎 = 400 𝑁 𝑚⁄  is shown in figure 4.46, and exhibits an 

oscillatory behavior in contrast to § 4.3. The corresponding amplitude evolution (peak-to-

peak) is shown in figure 4.47. Following an initial compression of the pre-shock amplitude 

ℎ0
− to ℎ0

+ visible in figure 4.47, an oscillatory behavior is established. The period of 

oscillation, and peak amplitudes are in good agreement with eqs. (4.3)-(4.4). However, a 

gradual decay in the maximum amplitude is observed and attributed to numerical diffusion. 

When the mesh resolution is doubled to 200 cells/, the loss in amplitude is mitigated as 

observed in figure 4.47.  
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Figure 4.46. Density and LS contours for the RM problem with surface tension 𝜎 =
400 𝑁 𝑚⁄ . Interface evolution has been plotted for times corresponding to: ℎ(𝑡) =

ℎ0
−, ℎ𝑚𝑎𝑥 , 0, −ℎ𝑚𝑎𝑥 , 0, ℎ𝑚𝑎𝑥 , 0 (from left to right). In contrast to §4.3, the RMI growth is 

stabilized, and the amplitude oscillates under the effect of surface tension. 
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Figure 4.47. The plot of amplitude versus time for problem 4.4.4 with 𝜎 = 400 𝑁 𝑚⁄ .  

 

The above simulations were repeated for a range of values of the surface tension, and the 

results are reported in figure 4.48. In particular, as the surface tension coefficient is 

increased systematically (𝜎 = 1145, 2035, 3180, and 4579 𝑁 𝑚⁄ ), lower peak saturation 

amplitudes and shorter periods of oscillation are observed. Once again, some attenuation 

of the peak amplitude ℎ𝑚𝑎𝑥 is observed due to numerical dissipation, and mitigated at 

higher mesh resolutions. In figure 4.49, the period of oscillation and the peak saturation 

amplitudes from the IMPACT simulations are compared with the analytical model of [19]. 

The simulation results are in close agreement with the model of [19] over a wide range of 

surface tension coefficients.  
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Figure 4.48. Time evolution of the RMI perturbation amplitude corresponding to 

different values of surface tension.  
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Figure 4.49. A comparison of the oscillation period and maximum amplitudes obtained 

from IMPACT simulations with the analytical model of Mikaelian [19].  
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CHAPTER 5: SUMMARY AND CONCLUSIONS 

 

 

In this dissertation, we presented novel numerical methods developed to simulate complex 

multi-phase flows with interfaces, shock-interface interactions, interfacial instabilities, and 

transport properties such as surface tension. In particular, a modification of the widely used 

Ghost Fluid Method has been proposed to address overheating numerical errors that have 

been associated with the class of GFM approaches. The proposed algorithm is referred as 

the Efficient Ghost Fluid Method (EGFM), and is based on the GFM theorem by applying 

isentropic/shock relations to the cells near the interface. The EGFM was further extended 

to handle shock-interface interactions where both the shock and the interface were treated 

sharply. The EGFM has been implemented in a new shock physics Eulerian code, 

IMPACT, that was developed as part of this dissertation.  

IMPACT solves the fully compressible Navier-Stokes/Euler equations and is capable of 

handling a wide range of physics including surface tension effects, shocks, multiple 

equations of state and phase change. These capabilities can be applied in the simulation of 

a broad range of engineering problems such as atomization of liquids and fuels, droplet 

combustion, cavitation in pumps and turbines, shock wave therapy, and material ejection. 

IMPACT employs highly accurate, robust, and cutting-edge numerical techniques: The 

Roe solver [41, 43] is used along with Harten-Hyman [44] entropy fix to solve Riemann 

problems at cell boundaries and determine intercell fluxes. A fifth-order WENO scheme 

[46, 47, 55] is used for spatial discretization and coupled with a TVD-RK [55] third-order 

time stepping. Interface tracking is accomplished using the LS method, in which interface 

normals and curvatures are calculated to high-order accuracy [53] resulting in precise 
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computations of surface tension forces at the interface without recourse to so-called 

interface surgical approaches. In addition to the EGFM approach proposed here, IMPACT 

also provides users with the option of choosing from OGFM, PGFM and RGFM 

approaches, and multiple equations of state including gamma-law, stiff gas etc.  

The EGFM approach was demonstrated to consistently remove overheating errors in 

several standard and demanding 1D problems. The 1D problems included various single- 

as well as multi-component Riemann problems, such as shock tube problems, shock 

impedance matching problems, and problems with colliding shock waves, and various 

shock-interface interactions such as light-to-heavy, heavy-to-light, gas-gas and gas-water 

interactions. The simulations demonstrated highly accurate results from the EGFM in 

comparison with the OGFM and RGFM, where overheating and spurious numerical 

reflections were completely eliminated in all cases. The numerical methods in IMPACT 

were also validated for 2D problems including underwater explosion of an air bubble, a 

strong shock impacting on an air cavity, shock-bubble interaction, and RMI (an extension 

of the EGFM to 2D and corresponding implementation in the 2D version of IMPACT is 

planned).  

The RMI 2D test problem demonstrated the capabilities of IMPACT to simulate shock-

driven interfacial instabilities. The results from IMPACT indicate excellent agreement with 

analytical models for linear [15] and nonlinear [94] growth rates. The implementation of 

the level set method, surface tension effects, and multi-medium Riemann solvers were 

validated with multiple test problems in 2D. These included a shock tube problem with a 

prescribed pressure jump (as would be applied by surface tension on a curved interface), 

where the performance of different GFMs in applying the pressure jump interfacial 
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boundary condition was examined. The results from IMPACT, and the EGFM in particular 

showed very good agreement with the results from [84]. Among the different versions of 

the GFM, we found the EGFM performed the best in maintaining the density and pressure 

jumps across the contact discontinuity.  

The surface tension implementation in IMPACT was also validated with 2D oscillating 

drop test problem, shock-bubble interaction with surface tension and single-mode RMI 

with surface tension. In contrast to classical RMI, analytical models [19] predict the linear 

stage of RMI growth rate is stabilized under surface tension effects. Simulations were 

carefully designed to ensure interface perturbation amplitude remained in the linear regime 

(𝑘ℎ(𝑡) ≤ 1), by determining from the model of [19] the required surface tension 𝜎 

threshold. Under such conditions, the IMPACT simulations demonstrated an oscillatory 

behavior for the RMI interface amplitude, with the period of oscillations (𝑇) and peak 

amplitude (ℎ𝑚𝑎𝑥) in agreement with the model of [19].  

In this work, a novel numerical method, the EGFM has been developed to simulate shock-

physics problems with surface tension. The proposed approach has been evaluated for 

several 1D problems, and has been shown to completely remove overheating errors. The 

applicability of this approach to 2D problems is a question of research that will be 

addressed in future works. These innovations have been implemented in a 2D shock 

physics code, IMPACT. With this framework, additional physics can be implemented in 

IMPACT, including evaporation, viscosity, material strength, vacuum, chemical reaction, 

etc. Similarly, numerical capabilities such as adaptive mesh refinement (AMR), local mesh 

refinement (LMR), WENO class B [48] methods, parallelization through Message Passing 

Interface (MPI) are being implemented. 
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APPENDIX: ERROR AND CONVERGENCE ANALYSIS 

 

In this appendix, an error and convergence analysis are performed for the EGFM based on 

the shock tube in problem 4.1.4. The L1 error norm (𝐿1 = ∑ |𝑓(𝑥𝑖) − 𝑓𝑖| 𝑀⁄
𝑀
𝑖=1 ) is 

computed globally for the OGFM, RGFM and EGFM results. Tables A1, A2, and A3 

summarize the convergence of the global L1 error norm and the corresponding orders of 

convergence based on the density, velocity, and pressure fields. Note that the same 

numerical methods were used for all of the simulations in tables A1-A3. As shown in the 

tables, the L1 error norm is consistently smaller for the EGFM, indicating the EGFM 

results in more accurate solutions locally (near interfaces) and globally. However, we 

observe the EGFM does not enhance the order of convergence, and all of the versions used 

are approximately first order (this behavior is also likely influenced/dominated by other 

aspects of the numerical discretization). 

 

Table A1. The density L1 norm error and the order of convergence for different GFMs. 

          OGFM          RGFM EGFM 

dx Error Order Error Order Error Order 

1/100 0.23378  0.14732  0.10440  

1/200 0.12939 0.85 0.10627 0.47 0.05761 0.86 

1/400 0.07728 0.74 0.04114 1.37 0.02991 0.95 

1/800 0.03181 1.28 0.02780 0.57 0.01574 0.93 

1/1600 0.01492 1.09 0.01133 1.30 0.00864 0.87 
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Table A2. The velocity L1 norm error and the order of convergence for different GFMs. 

          OGFM          RGFM EGFM 

dx Error Order Error Order Error Order 

1/100 0.24295  0.26763  0.20513  

1/200 0.13878 0.81 0.13739 0.96 0.10822 0.92 

1/400 0.06865 1.02 0.07019 0.97 0.05522 0.97 

1/800 0.03590 0.94 0.03600 0.96 0.02865 0.95 

1/1600 0.01698 1.08 0.01898 0.92 0.01529 0.91 

 

 

Table A3. The pressure L1 norm error and the order of convergence for different GFMs. 

          OGFM          RGFM EGFM 

dx Error Order Error Order Error Order 

1/100 1.94546  1.82989  1.42746  

1/200 1.09953 0.82 0.94046 0.96 0.74962 0.93 

1/400 0.54318 1.02 0.48031 0.97 0.38211 0.97 

1/800 0.28247 0.94 0.24680 0.96 0.19909 0.94 

1/1600 0.13403 1.08 0.13061 0.92 0.10665 0.90 

 

 

 

 


