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ABSTRACT

PEDRAM BIGDELOU. A Numerical Study of Interfacial Instabilities in Shocked
Materials with Surface Termn. (Under the direction of DR. PRAVEEN
RAMAPRABHU)

Shockdriven multimaterial flowsoccur inseveral applications including shock wave
lithotripsy, underwater explosions, droplet combustion, propeller cavitation and ejection of
material from surfacesubject to blast loading.Ugh flowsare highly compressible due to

the presence of strong shogckst are influenced to a significant extentdawyface tension
forcesatthe interface separating two or more materials. In particular, surface tension can
impact the evolution of the interface, btabiliang hydrodynamidnstabilities occurring

at the interfaceThe presence of surface tension can also influence aspects of -tivadate
interface breakup process, and determine the size distribution, trarsylosequent
breakup and phase change of droplets. The modeling of such flows requires the
development and application of specialized numerical methods, capable of handling the
multi-physics nature of the flow dynamids.this work, we report on the develment and
validation of novel numerical methods for shatrkven multrmaterial flows with surface
tension. The numerical methods have been implemented in IMPACT, a Computational
Fluid Dynamics software, with a wide array of physics capabilities incluaingpressible

flows with multiple equations of state, surface tension, and phase change.

IMPACT solves the Euler equationsinga finite volume approacland exploitshe Roe
Riemann solver to obtaiimtecell fluxes A fifth-order WENO reconstructiofor spatial

discretization is coupled with a thiatder TVD RungeKutta scheme for time
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discretization. The Level Set methodimsplementedn IMPACT to track the interface

between materials and to obtain interface curvature required for surface tension
calcuations Interfacial boundary conditions are applied to the cells bordering the material
interface usinghe Ghost Fluid Method (GFM)n the presence of surface tensitre

GFM is modified to account for the pressure jump across the curved intsréaeeing

from surface tension effextThe G=M and its variants have been used extensively in the
numerical treatment of shocked, mutiaterial flows, but are susceptible to overheating
errors near the interface as well as spurious numerical reflectioaddi@ss these issues,

we have developed a noveighly accuraterariationof the GFM called the Efficient GFM
(EGFM) which removes overheatirggrors at thanterfacesand numerical reflections,
resulting innumerical solutionghat are in agreement witmalytical solutions. When
compared with the original GFM approach and its subsequent vatf@&sGFMscheme
proposed here is robust, and has been demonstrated in this dissertation to accurately

simulate a wide range &iemann problems and shetkerface problems
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CHAPTER 1: INTRODUCTON

Shock-drivenmulti-phase flowsareof great significancéo various engineeringroblems

such aschemically reacting flowg1-3] (for examplecombustion[4-6]), cavitation[7],

shock wave therapy arithotripsy[8, 9], andmaterial ejectiof10-12]. In such flowsthe
evolution of aninterfaceseparating diparate materials is centraldetermining the flow
characteristics and ultimately the performance of the engineering sy@ftan, surface
tension is present at the interface and can fundamentally alter the dynamics of the
underlying instability evolutin. Such flow problems require specialized numerical
methodscapable of capturing the compressible flow properties with fidelity, while
accurately tracking the interface evolution through the complex topological changes. In
this dissertation, we describleetdevelopment and implementation of numerical methods

that address the above objectives.

Depending on the problem at hantthe materialinterface may be susceptible to
hydrodynamic instabilitiescluding the sheadrivenKelvin-Helmholtzinstability (KHI),
gravity-drivenRayleigh-Taylorinstability[13, 14](RTI), andthe shockdrivenRichtmyer
Meshkovinstability [15, 16] (RMI). Specific to shocketihterfacesis the RMIwhich is
triggered when a shoakavetraverses the initially corrugatestérface between materials
of mismatched impedancdsitial perturbationsat the interfacevill then grow under the
influence of baroclinic vorticity deposited by the shaaterface interaction, although the
perturbation growth rate witlependontheinitial density contrasacross the interfacthe
strength of the shock, artde amplitude ofthe perturbationg15]. RMI growth rates are

also influenced bythe physical properties of the materials involved suchhesfluid
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viscosity [17], yield strengh [18], as well & surface tensiofil9]. Additional details

regarding RMlare provided in Chapter 4.

While the role of viscosity and material strength on hydrodynamic instabilities has been
studied through modeling, simulatigred experiments, thefett of surface tension on

RMI growth rate has received comparatively little attent®uarface tension effects on
shocked interfaceshave been studied theoreticallpd9], numerically [20], and
experimentally[21]. These studiehave shown that surface tensioacts to stabilize
RTI/RMI instabilities for interfaceswith small perturbation$19], while governing the
process ofinterface breakugt larger amplitude casg20, 21] When surface tension
stabilizes instability growthtaa shocked interface, the resulbsillatory behavior about

the mean interfac& he latterscenario(larger amplitudesivolving droplet breakup can
occur when RMI is triggered by a shock wave processing a spherical droiplet the
resulting breakp in to smaller, detached daughter droplets is governsdrfgce tension.

This is observed for exampie fuel atomizationn supersonic combustion ramj¢#2],

where the fuel stream is first impinged by a shock wave to form a primary atomization,
followed bysurface tensiomediatedsecondary atomizatiomventually resultingn the
formation of fuel dropletfrom elongated fuel strangi20]. Note thatsurface tensioplays

a more pronounced role at smaller scales, and can thus significantly impact secondary
atomization[22, 23] This makes experimental studies of droplet formatballenging

due to the prohibitive requiremts placed on diagnostics necessary to resolve scelk
breakup.Numerical approachesffer a viable alternative toinvestigate fundamental

aspects of the effect stirface tensionn compressible mukmedium flows.
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The above discussion is summariretigure 1.1, where achematishows a classification

of such problems based on the flow Mach numbec( 67¢) and the Weber number
(WQ "6 §,), as well as common engineering applications in the regime of high
compressibility/high surfacemnsion Numerical codesapable of handling surface tension
operate in the incompressible regime, while compressibledtmiesdeveloped for high
speed flows in gases do not typically include surface tension effects. To address this gap
in capabilities, anew software application called IMPACT has been developed and
described in this dissertation. IMPAGS ashock physicgeode withmulti-medium and
multi-phasecapabilitieswhile surface tension is modeled usingltlesel Set[24, 25](LS)

and Ghost Fluid Metha&]26] (GFM). We have developed new numerical methods that
make IMPACT highly accurate for problems that featuisharp interfaces and

discontinuitiesThese developnmts are reported in detail in this dissertation.

u
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Figure 1.1. Schematic of regimes of interest in rittase problems with surface tension
as observed in engineering applications.
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Specific to IMPACT is the fully compressible approach of the code toWguas and

solids. In the problems mentioned abothe flow behavior is compressible, so that the

density of theamateriak changes in response to pressure variatiandthe resulting flow

properties are poorly understood and require the applicatgpeocfalized simulation tools.
Furthermore surface tension in muiphase flows has beeronventionallyhandled by

treating ong27] or both[28] fluids as an incompressible liquid. However, thpproach

is inadequate in describing the complex physics that can occur when a shock wave is
present in the flow. This occurs for instance in underwater explog&éril], where the

presence of detonations/shocksates acoustic waves in the liquid that cannot be ignored.
Similarly, when a solid surfaci82-34] is subjected tshocks,explosives, or ballistic

loading, shocks can result within the solid material. The-Higiin loading cammelt the
material, causing it to o0flowbé I|ike a | iqu
melt conditions. This can occur, for instance whemater turbine blader a pumpworks

under the cavitation conditigii8] or the shell of an armored tank is under attack from
explosive loadingWhen an underwater explosion occurs neavlia structure, the solid

material usually undergoes a plastic deformatwwhijle the liquid evolves under the

cavitating condition[18], giving rise to a complex sohljuid-gas flow withvarying

densities, temperatures, and material properfibese dynamics are also important to
astrophysical applications such sspernovae explosions. In supernovae detonsii

exploding shock waves within the stellar core drive fiiger k e 6 ej ect a® st r uc
resulting in the ejection of heavier elements thiosigace whicld s e thedodmation of

future solar systems and pés
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IMPACT employsa novel variation bthe widelyusedGFM to simulate compressible
flows with surface tensionOne of the aspects of IMPACT which make it a unique
simulation tool for such flows is the introduction of the Efficient GFM (EGFM)tlher
treat ment of 0 ov eerfdtes.Overheatinfi6, as]is anexttnieat térra |
for spurious overand undeishoots irnthetemperature and density of materials at and near
interfaces, stemming from implementation of the GFM to capture interfaoundary
conditions andemains gersistenhumericalissue associated withe GFM. InChapter
3, we will review different versions of the GFM and their approaches to addressing
overheating. These approaches, howererable to onlglleviate[32, 36:39] overheating
and cannot eliminate it from the numerical solution. In particular, the practical [GHM
(PGFM) proposes a novel algorithmreduce the overheating errors to a large extent, but
still suffers from this numericassuein different compressible muithedium problems.
The proposedEGFM is basedon a lemmal40] (called the6 GFM Theor embd
dissertation) andombined withthe approach of the PGF[39] to address overheating,
results in complete elimination of overheatfibgcompressible mukmedium fows. This

is the central novelty of #work presented in thidissertation.

The rest othedissertations organized as followhapter 2 is focused on the numerical
methods implemented in IMPACT.Chapter 3is focused onthe GFM where the
fundamentalsf the approach arttiemethodologyarepresented, followed bgdiscussion
of the variants of the GFMwvhich arebased ommulti-medium Riemann solvers at the
interface. Subsequently, the EGFM is introdu@dng with an explanation of the
overheating treatentproposed through tHteGFMapproachChapte# includes a detailed

presentation of our validation efforts for IMPACT includib single and multtmedium
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Riemann problems and various shaeterface interactios) results from different versions
of the GFM, demonstration of overheating removal through the EGFM implementation
2D problemsinclude air bubble explosion, shodkubble interactiosy and shocicavity
interactiors. In addition,resultsfrom severaRMI cases with and without surface tension

arepresentedFinally, Chapter5 includes a summary armmnclusions of the dissertation



CHAPTER 2:NUMERICAL METHODS

In this chapter, we descrilibe numerical methods uséad IMPACT, a multimaterial,

shock physics code developed to investigate stibokdti-phase flows. IMPACT solves

the Euler equations, while the interface boundary conditions are enforced through the
GFM. Multiple variations of GFM are available in IMPACT, including a novel approach
that will be discussed in Chapter 3. The use oflé¢vel set approach ensures accurate
tracking of t he mat eri al i nterface withot
approaches. IMPACT also provides the capability to handle a wide range of materials with
differentequation of staté€EOS behaviors ad transport properties. Advection is handled
with a fifth order WENO method, while tiragtepping is performed to third order using a
TVD-RK approach.

2.1 Euler equations and Riemann problem

The governing equations for compressible flows are the Euletieqsiawhich are given

below in conservation forrfor a 1D problem

] — mh
Uy ro 1T w
rre v, -
P To 7o N m ®
i N O .
N —. 07 0n T8

In vectorform, these equations can be expressed as
Y OYY m cg
where"Y and "Orepresentthe vector of conserved variables and the vector of fluxes

respectively
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For flows with discontinuous initial conditiona Riemann problem may be defined by

applying the initial conditions

Y ofmt o )

to the Euler equations. In eq. (2.3¥,and"Y represent the states of matter to the left and
to the right of the initial discontinuity located @t. In order to obtain the solutidio the
Riemann problenidenoedby 'Y 0"YRY ), theJacobian matri® “Y associated with the

system given in eq. (2.2) must be first determined:
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The égenvalues of the Jacobian matix'Y aredetermined as
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while theeigenvectors are
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whereO 'O 1)) " is the enthalpyandis the speed of sourgivenby:
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The solutionto the aboveRiemann problenwill consist ofthree waveseach of which
corresponds to one of the eigenvalaed is depicteth  Oplaneas shown in figure 2.1.
While the middle wavé_  0) is always a contact discontinuity, theterwaves can be
rarefactiors or shocls. In the eample given irfigure 2.1,"¥ and™¥ are the nostrivial

solutions obtained from the initial condit®im eq. (2.3).

Figure 2.1Example of the solution to tHRiemannproblemin @ oplane.Figureis
based oriigure 3.1 from[41].
2.2 Godunov method
Since the Riemann problem involves discontinuities in the initial conditions and allows
discortinuous solutions (contact surface and shock waves), solutions based on integral
approaches such as finite volume techniques are preferred. The method of Gd@linov
provides such a scheme that is first order, and is applied to the cells showmar2f@as

given below:



10

Y Y 30 "O "O 8
30 - - X

Ineq. (2.7)Y (Y )isthe cell average value in c&httime stept (¢ p), 3wis the

cell size,30is the time step sizeéerivedfrom a CFL condition and™O _and™O _are the

average fluxes at the left and riglwundariesof the cell"QrespectivelyThe Godunov
method has been implemented in IMPACT, while ooplementation has been validated
for multiple test casesn the next section, numerical methodscédculate the ceflluxes

are discussed.

U

oo o oo -—— x
1 2 i-1 i it2 M-1 M

Figure2.2 Discretized domaifor the finite volume approackigureis based orfigure
6.1 from[41].
2.3 Roe Riemann solver
The Roe Riemann solvgt3] has been implemented in IMPACT to cortgthe cell fluxes
in eqg. (2.7), and was chosen due to its accuracy and robustness. The Roe solver relies on
linearization of eq. (2.4pr the initial condition given by eq. (2.3). Thus, this method seeks

an average state betweahand™Y to linearize the Euler equations:
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Y 1Y
o 2T &

where the linearized Jacobian matsyaifunction of the initial conditiod 0 "YhY .

Roe averages are thdafined as follows:

o ”_ " h

: "o o

I’ ° 9 :

\ o c&

N4 ., .

I'ro S

[JJ ” ”

The égenvalues ob areobtained as

_ 6 ¢h _ oh _ o «dh P T

while theeigenvectors are

. P 6 . P

0 0 W h 0 o h 0 0 W ¢ p
0 ow O Eé 0 6w

where® [ p O -6 istheaveragespeed of soundlhe correspondindroe

solution is shown in figure 2.Blote thatowing to the linearization, the solution contains
only discontinuitieswhile rarefactions are replaced by shdie waves.In the system

shown in figure 2.3, the following relations hold:

Y Y | 0 h P C
Y %Y |0 h P o
Y Y |0 P T

wherg ,| ,and are wave strengfobtained from:
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Figure 23. TheRiemann solutiorobtained fromthe Roe method
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Theabovealgorithm is usedo find"O _: A Riemann problem is defined hetenc e |'@ s 0
an® pd(YOYRY ). Roe averages, eigenvalues, eigenvectmd wave strengths

are calculatedandtheintercellf | u X2 &t i & using un d

0

"O 0 | _ 0 | _ 0 | _ U P o

P
C
where’O "O°Y and’O "O°Y . This procedte is applied to all intercells in the
domain, and eq. (2.7) is then used to update the solution to the next time step.

Finally, the rarefaction waves in the solution must be treated separately. Since the Roe
solver linearizes the Euler equations, a lireatemis solved resulting in aolutionthat

can onlycontain shock waves (no rarefacshrit has been shown that when there exists a

sonic rarefaction in the solution, the shock representation of the rarefaction wave is not
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accurate and the flux has be modified through an entropy fix. Thisatmenis referred
to as theHarterHyman[44] entropy fix and has been used in the currenkwor
2.4 Weighted Essentially NorOscillatory reconstruction
We have implemented higherder numerical schemes in IMPACT, to avoid the highly
diffusive treatment of discontinuities observed in Bedunov method. Higobrder
methods provide aore accurate solution the Riemann problerby utilizing various
reconstruction schemes to assign a pair of
the Riemann solution (R@®lutionin the current work) is to be obtaindtbr example,dr
t he i fAQ @Yo &l

gy Y Qﬁ is solved instead o¥ 0"YRY

Weighted essentially newoscillatory (WENO)[45, 46] reconstruction is a higbrder
approach for problems involving shocks and discontinuities. In the WENO approach, the
stencils of points or cells formed to reconstruct polynomials are assigned different weights
depending orthe presence of discontinuities and sharp gradients. In this approach, the
highest weights are allocated to smooth stencils, whereas weights for stencils with shocks
and contact surfaces are negligible. This approach ensures a high order of accuracy
globaly. Additional details are given i#7], including a review of WENO schemes for
convectiondominated problems.

In the present work, a fiftorder WENO scheme, hereinafter referred as WENOYS5, is
adopted for flix reconstruction. Thus, to obtain the equivalent values for the left and right

boundar i s iorf fCiTég_lg raraanYZ_ﬁ., fespéctively), WENOS5 requires

information from two cells on either side of the cell and introduces three different stencils

to reconstruct the required polynomials as follows:
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Figure2.4. Requiredcellsfor WENOS5reconstruction.

Y YAY AY h Y Y AYRY h Y Y AY AY.
For each stencilthe Lagrange method of interpolatian utilized to find reconstruet

valuesatthei nt e ric-®| la'® d@raspectively
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For each stencil, smoothness of data is computed to determine the magnitude of weights
that is to be assigneBmoothness indicatoese computed using

~.

p O,

Y Y Y P oY 1Y Y h
PG T
p O-’?‘ T it p it it ™~
L ¥ Y Y Y Y h W
o ¢ G . P
O. . . ~ ~ ~
P Y Y Y P Y TY oY 8
PG T

Subsequetly,t he wei ght s Qo6 &@dd oanrteesifgoeulnids o

| ~ | ~

1 —— N ] ————h i T7ipkt c® T
with| and taken as

| 0 ho| 0 h i riplt &
[ pm i pn C8 P

and Q ™, Q ™ Q ™ Q ™ Q mdp Q 1. Finally, the
reconstructed values obtained in egs. (2&®) (2.18) are combined with the weights in

ed. (2.20) to computine equivalent values:

Y TY 1Y 1 Y h C& ¢
Y _ 1Y 1% 17 8 & o

Fromthe equivalent valuesomputedor eachcell, the correspondindgriemann problems
areformed and solvedThe aboveimplementationof WENO isreferred asomponent
wise,sincethe reconstruction procedure is applied to each componéviusihg the same

approach
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2.5 Extension to 2D problems
The extension of the numerical methods discusdedeto 2D problens is presentedn
this section.The Euler equationgor conservation ofnass, momentn, and energyare
given in 2D according to:

| N B NV .

] —
To Tw T w m
|:u ” (') .
'y T . T—"’o N T— 00 mh
To T w T w
R » o & 1
k1T 01, 00 L "0 mh
T T e Too
F " O 1T N T , .
¥ 1o 'I'_(bo O n ; (bU O n T8
In vector form the equations are given as
Y OYY O 9w cg v

where™, "0"Y, and"O"Y representhe vector of conserved variablesdthe vector of

fluxes in thewy, andwxdirectiors, respectively

” (') ” c') nQ l‘) “Q

N ” é é . o ” (r) h "Q . . ” c') L‘) “Q
Y ” l‘) é h O Y ” é D “Q h O Y ” D r‘.] "Q .

” ‘O é C') ” !O r‘.] nQ D ” 'O I)] “Q

To find the eigenstructurssociated witkthe 2D Euler equationtheJacobian maites of
eg. (2.25) ardirst determined according to

TYTPYTOYLY Y Y
TorT ol voiod To’ 1ol @ e

whered Y is given by
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TQ 1TQ 1Q 1Q,
o— - - —1]
ITI o To To To 1
MmMQ 1°Q 1°Q 17°0n
o Mo 16 16 t1on

oY :T' 0 1Q 1 1 ,‘Q.:. & X
— - — —1'l
ITI 0 To To To 1
dQ 1Q 1TQ T,
a6 16 16 16U
with eigenvaluesindeigenvectors given by
_ 6 ¢h _ _ 6h _ o h
p I g 11 Tt p
o O o 3 Lo
0 ° YR o o 0 h 0 Th o °© “h
v Ip , i P U
0 6® @ 6 0 y 0 O 60
while 6 7Y is given by
TQ T7Q 1T7Q 17Q,
g 1]
ITI 6 16 16 16 1l
mQ 1°Q 17Q 17°Qpn
v o Mo 16 16 ton
oY :TI 010 1 T .‘Ql,l g Y
} 11
ITI 6 16 To 160 1
HQ 1T°Q 17Q 1°Qp,
g6 1o 16 10U
with eigenvaluesind eigenvectors given by
_ 0 ¢h _ _ oh _ O ¢h
P v g ] TT p
. 3 O o 3 .
0 O R 0 0 Hh o0 PR o 9.8
0 |0 - T U
O LW Ty O U % o O LW

Theextension of th&odunw methodto 2D problems is straightforward and given by
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where fluxes arasdepicted in figure.5.
y
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Figure 25. Fluxes on theée@boundari es

Similar to the 1D case, a Riemann problean bedefinedalong each directiomnd solved

at each intercell to obtain fluxeSor examfe, for fluxes in thewdirection("O _;.), the

corresponding Riemann problem is

o Y OY mh

Yih o 0 W
N N1 > q8f Tt
lurYdﬂ *y ﬁﬁ b o _h

and for fluxes in theddirection("O; ), the Riemann problem is

of
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Y "O%Y mh
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w

TheRiemann problemgivenin egs. (2.30) and (2.31) are solved usingextension of the

Roe solvef43] presented fothe 1D case. To fin® _, the eigenvalues and eigenvectors

associated witld and the wavstrengths are calculated as follows:

_ 6 ¢h _ _ 6h _ o «ah ® ¢
p ~ (’F)) Il TT P
e O § } e
0 ° \ © ho 11 ) n ho 0 \ @ h C® o
U Ip ] P U ,
0 ow & 6 U 1y 0 0 0w
o n n f;oo o .
l:l’ Cw,
oo
. W C® T
LY | "0 0 h
U'p n n "wd6 o .
wherew f p O -6 U0 isthespeedofsound and t bée aYadid es

refer t 0@ hedpe@®I, s r @ s.dreBRdefluxigthey computedsing
| — I I | _ 0 8 ca&vu

To find"Q, _, the eigenvalues areigenvectors associated withand the wave strengths

are calculated as follows:

_ L ¢ _ _ bvh _ 0 ¢h ¢® @
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p ~ g ] T p
. . 1 - . 0 .
0 ° W i 0 ~hD Py 2 h C® X
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where thi® iavdirokefserd t@H t 0 p®|, | s edpecti vel

flux is then compugdaccording to

| 0 | 0 | 0 | _ 0 8¢ w
Note that should the solutisof Riemann problemiin egs. (2.30) ah(2.31)contain sonic
rarefactiors, the HarteAHyman([44] entropy fix must be applied tbtain thecorrect flux
values.

The WENOS5 implementatiomgiven in 82.4avoids stencils with sharp @dients by
designating thdower weights to themwhile maintaiing fifth-order accuracglobally.
The simplesextensiorof the WENO5method ta@2D problemsnvolves implementing the
scheme using directionby-direction approach. However \itasshownin [48] that this
approactyieldsfifth-order accuracy only for linear problemsyile for nonlinear problems
(such aghe Euler equations it results in a secordrderaccurate solution. In the current

work, the direction by direction approach is usedhile an extension to higherder

accuracyf48] is planned



21
2.6 Level set method
In IMPACT, the interface motion is described using the LS apprnoadduced in Chapter
1. The motio of an interfacés represented by a LS functioandis modeledusing

T %0 ,1 %0 .1 %o
o oT_cb UT_o() T8 g m

Note thathelLS function should be chosen such that it prodanesccurate description of
the interface between two media. For instance, if the interface is a wiittlecenter

w o and radiusy, a possiblehoicefor the LS functiorwill be:

%o G W W W Y 8

However, LSfunctiors that satisfy thepropertydt%g p (referred as signedistance
functions[25]) have been showjd9] to produce interface behavior with high accuracy
As the interface evolves, the sigrdidtance property of the LS fation must be enforced
at every timestep.This stepis called reinitializatior(introduced by Sussman et p9]),

and isenforcedby numerically solving thequation below

T %O"o 9
T Y% %8 p ™ c8 p

In eq. (2.41)t is atime-like variable,and™Y %o is the sign function defined by:
. %60
Y %o —_— Q8 C

%o 30

with %o ofto being the LS function before reinitialization. Note thdteneq. (2.41) is
solved to steady stat#oapproaches signed distance function. Reinitialization leads to
more accurateletermination of thenit normal vectors and curvature of the interfeus

are in turn computed using
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N %o

%8 8 o
and
I ng& 8 8t

Determining the interface curvature to high order is required to accurately compute surface
tension effects on the interfadequationg2.40) and (2.41pelong to the Hamiltodacobi
categoryandare solved usingigh-orderupwinding schemes$ollowing[26, 50} WENGS

is usedio compute leftand rightsided spatial derivatives &b Equation(2.40)is solved

in a band of cells around the interfdofowing the approach ifb1].

Note that applyinghe WENO5 method d60] to the solution of eq. (2.41) gives solutions
that are only secondrder accurate at best resulting in noisy interface curvabibe$2,

53]. An alternatives thehigherordermethod proposed i®4], whichyieldssecondorder
accuracy in solving eg. (2.41), resnt in more accurate interface locations compared to
[50]. This method is also capable of handling situations in whicHéghéunction issteep

or shallow {e. 91%0S is very different from unity), without the need forcomplex
modifications to the sign funon (eq. (2.42)) as carried out f1]. In the current work
howeverthe numerical method ¢53] is usedwhich is an extension ¢54] such thagll

the benefits of54] are retainedwhile resuling in fourth-order accuracfor eq. (2.41) and
curvature calculations that asecondorder accurateSimilar toeq. (2.40), eq. (2.41) is

alsosolved in a band of celEound the interface, following1].
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2.7 Time discretization

Time advancement is implemented in IMPACT to a high order of accuracy usitajahe
variation diminishing (TVD) Rung&utta[55] (RK) schemeWe usea thirdorder TVD
RK method for solving egs. (2.7), (2.29), (2.40), and (2uhgre thesolution isadvanced

overthree sb-steps per time stepVriting the governing equations general formwe

obtain
% 0g & v

whereg may bethe vector of conserved variabl€¥if egs. (27) and (2.29)) or the LS
function @.in eqgs. (2.40) and (2.41)),maydenote reald) or fictitious () time, and) is
the appropriate spatial discretization from the numerical methods for each of the equations.

The thirdorder TVD-RK implementatiorfor eq. (2.45) is written g85]

o P p .. .
g 9 79 ;H)g h g8 o
P ¢ ..
g ;9 59 oﬂ)g

whereg ,g , andg are the solutiosafter the first, second, and final sub step

respectively.
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CHAPTER 3:THE GHOST FLUID METHOD

3.1 Introduction

The Ghost Fluid Method (GFM) was originally developed bykiecet al.[26] to model
contact discontinuities in inviscid, compressible, moléterial flows. The GFM is based

on gplying physically accurate interfacial boundary conditions at the material interface
between different fluids. Consider two fluids (A and B) separated by an interface that is
moving as shown in figure 3.1. Fluids A and B may be distinguished by an L&ofuync
where%o T corresponds to Fluid A Tt indicates Fluid B, and th#o. Tt level set
identifies the interfacdn the GFM approach, the effect of Fluid B on FluidsAnodeled
through appropriately chosen boundary conditions enforced at the intbyfaeplacing
Fluid B with a édghost fl uido. Similarly,
conjunction with interface boundary conditions represents the effect of Fluid A on B. This

is shownin figures 3.1 and 3.2.
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(a)

Fluid A Fluid B

(b) (c)

Fluid A Fluid B

Figure3.1 The GFMapproach to treating Fluids A andsBparated by an interfade)
Actual domain, (b) interfacial boundary condition applied to Fluid A, (c) interfacial
boundary condition applied to Fluid B.

(a)

Fluid A Fluid B

Figure 3.2. Applying interfacial boundary condition usiay Ghost Fluid A, and (b)
Ghost Fluid B.
The efficacy of the GFM approach therefore lies in accurately applying the interfacial
boundary conditions between the real fluid

In [25], the authors show that Rankikkeigoniot jump conditions, i.e. flux conservation,
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when applied aoss the interface yield interfacial conditions that ensure the continuity of
pressureand normal velocity In [26], the authors define the ghost fluids based on the
interfacial flux conservation discussed above. They propose using the pressure and velocity
of Fluid B (Fluid A) for Ghost Fluid A (Ghost Fluid Byvhile the density of Ghost Fluid
A (Ghost Fluid B) comes dirdg from Fluid A (Fluid B)throughconstant extrapolation
In numerical calculations, however, the ghost fluids are defined over a band of cells on
either side of the interface for reasons of computational expediency. Fedkiwj24]al.
suggest using a band of 3 to 5 ghost cells depending on the computational stencil required
to implement a specific numerical scheme amerface displacemernce the ghost cells
are populated, the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B) can
each be updated independently with their corresponding EOS using standard single
medium numerical schemes, without requiripgdafic treatments for the interface or the
need for cut cells. Often, the GFM is coupled with the LS appri@&ch7], where the LS
function is updated by solving eq. (2.40)determine the new location of thdarface
The above approach results islarp representatioof the interface, which is a central
feature of the GFM, when compared with other interface approaches includi@Ehe
method[56], mass fraction methodS7], and gammdbasednodels[57, 58]all of which
di ffuse the interface over multiple cell s,
fluids. This property of the GFM makes it suitable for simulations of rmudiierial
problems involving interfacial phenomena such as problems with interfiasiabilities,
surface tension effects, and evaporation.
Figure 3.3 shows an example where results from the GFM are compared to exact solution

as well as results from a diffusive approfe8]. As seen in the figure, the densitpfile
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from the GFM is sharp at the interfa¢éowever, the numerical solution from the GFM is
slightly different from the analytical values near the interface following shock passage.
This behavior of the GFM solution is termed overheaf8%j, and occurs when a shock
wave interacts with an initially sharp interface. It has been sH8@jnthat overheating
results from numerical inaccuracies that stem from applying smgium numerical
schemes to the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost FluiGiBge
these schemes are naturally associated with diffusion, tkieyige to overheating. In the
next section, overheating will be discussed in greater detail along with a proposed novel

approach to address the issue.

1 ~
Exact
Diffusive [58]
L GFM [26]
0.8
- 0.6
= i
[72]
c
a
04
0.2 |
0 ] - ] 1
0 0.2 0.4 0.6 0.8 1

Figure 3.3. Sharp representation of the interface with the GFM appfoaetheating is
observed nedhe interface.

Figure 3.4 (based onfigure 1 from [26]) depicts the methodology adopted for the

population of the ghsi cells for 1D problems using the GFM framework. Ghost Fluid A is
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defined by copying node by ngdbe corresponding pressures and velocities from Fluid
B, while the density is obtained from constant extrapolation from Fluid A. Ghost Fluid B
is defined ina similar manner. A similar approach is used in riltiensional problems,
where the pressure and velocity values for the ghost cells are copied directly from the real
fluids, while densities are extrapolated using the following equation:

|
Tt v 8 38 od

Eq. (3.1) is used with for Ghost Fluid A (B), while the interface normal vectois
defined using the functio¥.through eq. (2.43). Notdatthe unit normal vector is taken

to point from Fluid A %o 1) towards Fluid B%o. T1).

Fluid B
: ° ° ° °
|
 plu

Fluid A |
|
p |

" Ghost Fluid A

Figure3.4. Definition of Ghost Fluid Ausing density extrapolation from Fluid A, and the
velocity and pressure values from Fluidmgureis based orfigure 1from[26].

The GFM approach is thus easy to implement, and avoids the difficulties associated with

implementing cut cedl or the use of complicated mixture rulg8, 59] As a result of these

properties, the GFM has been widely used in different problems in science and engineering.
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Fedkiw et al[60] used the GFM fomodelingdeflagration and detonation discontinuities
Liu et al. [61] utilized the GFMapproachto captue the boundary conditiarfor the
variable coefficient Poisson equatjdfang et al.[28] exploited the methods if61] to
propose a boundary condition capturing model for npliase incompressible flows
Caidenet al.[27] applied the GFM to twghase flows including separategions for
compressible and incompressilflaids (also, se€g[62] for a monolithic coupling of
incompressible flw to compressible flow as opposed to the partitioned couplif@j7d¥;
Nguyen et al[63] simulated incompressible flames using the GBWbou et al[64] used
the GFM for the multiphase incompressible Nawistokes equations with phase change
(also, se¢65]); Fedkiw[66] introduced the coupling of an Eulerian fluid calculation to a
Lagrangian solid calculation using the GFM. iterested reader mafsorefer to[25]
for additionaldetails of tke applications mentioned abownally, additional discussions
of applications of the GFMre given in various papers, including GFM fiamt tracking
methods for simulating compressible mygtiase flowqd67-69], crystallization[70, 71]
atomization[72], andotherrecent applicationgb2].
Modifications to th&GFM have been proposed to accommodatephase flavs, including
flows whereone fluidis significantlystiffer than the othegisee for instancg7], [66], and
[25]). Koren et al[73] introduced a varigon of the GFM to address pressure oscillations
near the interface in twiuid flows with arbitrarily large density ratioérienti et al.[74]
proposed anodifiedversiontermed theghostfluid Eulerian Lagrangian (GLEnethodto
couple Eulerian compressible flow withLagrangian solver for fluigdolid interactions
(authors of(75] describe the procedure to defiglkost values in the explicit coupling of

fluids with solids) Nguyen et al[76] introduced a fully conservative version of the GFM
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that applied to theaviscid reactive Euler equatioriBhe above discussion is but a short list
of the modifications to the GFM and its ajgpkions. In the next section, we discuss a
separate class of the GFM defined using makdium Riemann problems (MMRPSs) at
the interfacewhich hasbeen showri36, 40]to be more robust and accurate than the
original GFM (OGFM) approach.

3.2 Ghost Fluid Methods based on mukimedium Riemann solvers

Using multtmedium Riemann solvers at the interface to couple fluids governed by
different equations of state has been shown to result induiglity numerical soluties at

or near the interfacd{7], [78]). To exend this idea to the GFMLiu et al.[36] proposed
amodified GFM (MGFM) where approximate Riemann solversre used to obtain more
accurate values for thighostcells with lower consent®mn errors(also, se¢38, 79, 80Jfor

a discussion of thapplications othe MGFM, and[40] for a description of theccuracy

and conservation ermrasseiated with GFMs for MMRPs). Liu et al. [18] further
developed the MGFM idea to simulate compressible flidapled to deformable
structures in the presence of cavitation in fluids. Also, Hu and K&@pproposed a
numerical method called®GFM, where the ghost valuggere obtainedby realandghost
interactions (see[69] for the application of the-GFM in primary breakup of a liquid jet
and[81] for aproposed modifiedGFM). Wang et al[38] proposed a real GFM (RGFM)
approach to extend the capabilities of the MGFM and suggested a novel algorithm for the
advection of the LS function.Xet al.[39] proposed the soalled practical GFM (PGFM)

for compressible mukmedium flows. Sambasivan and Udaykuj&#] implemented the
RGFM approach tapply isobaric fixandto populate ghost cells in muitiimensions, by

using normal vectors obtained from LS functions to construct MMRPs in the normal
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direction to the interface. [82], the authors provided an extension of the approé32]
by coupling with local mesh refinement and for showkuced vaporization of droplets
[83].

The GFM framework is summarized in t&¢M theaem, which was introduced if40]

as a lemma and states thatwvofluid Riemann problem can be split into twomponent
singlefluid Riemann problemé o GFMfRiemann problengs labglledby [40]). Figures
3.5 and 3.6 show the twituid Riemann problenfY 0°YRY ) with the solutionand the
GFM Riemann problemsY0"YRY and 'YO™Y¥ AY ), respectively.Each GFM
Riemann problem has a real and a ghost state, where the res shdggnedlirectly from
the originaltwo-fluid Riemann problen{’Y or "Y), and the ghost state from its solution
(Y or™Y¢ ). From the GFM theorem, the superposition of the-fieé solutions to the
component GFM Riemann problems (fig 3.6) correspond to the solutiontbk original

two-fluid Riemann problem (figre 3.5).

EOS, EOS; EOS, EOS,
j §LLU] A u® A
UL UL i
v*L
U
Ug Uy
> X > X
Xy X

Figure 35. Two-fluid Riemann problem and its solution.
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In contrast to the OGFN26] approach, where flux conservation at the interface is the basis
for defining ghost fluids, MMRMased GFMs rely on the solution of the MMRP at the
interface to populate the ghost cells. These GFMs result in more accurate solutions for

problems with strong shocks and hidénsity ratio§36, 38]

(@) EOS, EOS,
(U] (0
U rF UL U A
U*L
» X » X
Xy X
(b) EOS, EOS,
U™ , LUCIN
U.x Usg
Ug Uy
» X » X
Xy X

Figure 36. GFM Riemann problems and their solutions for (a) Fluid A, and (b) Fluid B.
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3.3 The Efficient Ghost Fluid Method and overheating treement
In § 3.1, the GFM method was introduced along with a discussion of the advantages of the
approach. A central feature of such methods is the ability to resolve a sharp interface, by
removing unphysical diffusion air near such interfaces. Howevehe GFM and its
variants can still result in some diffusion on both sides of the interface. This phengmenon
as discussed i8 3.1, is termed overheating, and has been shown [4] to result from
numerical inaccuracies that stem from applying shmgéglium numecal schemes to
(Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B). In this section, we propose an
improvement to the GFM approach that addresses overheating, resulting in highly accurate
solutions near the interface.
First, a brief review of approach&saddress overheating in the GFM is provided here. In
[26], the authors propoddo extrapolate entropy steadof density (asshownin figure 3.7
(based orfigure 1 from [26])), sinceentropy contains less overheating erf@Ss]. The
extrapolated entropganthenbe used to obtain densiyluesat the ghost points to form
the vector of conserved variables. In additiirese authos suggestd an isentropic fix
(shown in figure3.8 (based orfigure 2 from [26])) whererather than extrapolating the
entropy of the cells next to the interface, the entropy value is obtained by extrapolating
from cells further afield. For example, intige 3.8 where the interface is between céi@®
andéQ pgt he entr®@ppp 06 aekd o efll@x atnlde t ®n tproe
the ghost cells. For multdimensional problems, the corresponding correction is applied in
the interface normal directiof26], by extrapolating entropies from poim®w caway

from the interface.
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Figure 3.7. Using entropy to define ghost fluiBigureis based orfigure 1 from[26].
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Figure 3.8. Isentropic fixrigureis based orfigure 2 from [26].
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In versions of the GFNB6, 38, 39which rely on the solution teMRPsat the interface,
it has been shown t hadQ pousai@Qndg oOtalse i meltli av alcu
for the MMRPresulted in an improvement in reducing overheating (when compared with
t he choice ofQ uas®@ ¢og)o.[86) tma entrpy \walmesod the real cells
next to the interface were fixed by the solution to MRP, which showed further
improvement in the overheating error. In the RGFM appr¢a8]y real cells next to the
interface were corrected for density, velocity, and pressure values, rather than for entropy.
This resulted in more accurate imposition of boundary conditions at the interface, resulting
in improved behavior in shock impedance matching problg6$ by reducing the
amplitude of the erroneomsimericalwaveles reflecting off the interface.
Note that in the GFM approach, the dgsion of the entropy field is closely related to
overheating. Since entropy (or density) of fluids cannot pass through the interface, and is
instead transported by the linearly degenerate field, the entropy jump across the interface
should remain sharpitkout diffusion. However, numerical inaccuracies associated with
singlemedium solvers give rise to the diffusion of entropy near the interface, thus causing
overheatingln isentropic fix the entropy of theells next to the interfacare obtained
from cells further afieldwhich are less afflicted by thrumericaldiffusion.
As an alternative to the approach outlined in figBr& the isentropic fix can also be
implemented using more sophisticated methods such as those outlined in thd33GFM
approachwherethe isentropic relation is applied between a reference cell located far from
the interface and the cell next to the interface. This approach is depicted ir3fRfinzsed

onfigure 10 fron{39]), which shows the reference values of entropy (density) can be used
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to fix these variables at points near the interf8gecomparing the pressures, one decides

to useeither isentropic or shock relation for density

where’Qlenotes the points where the density fix is to be applied.

Fluid A

Fluid B
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: ° ® ® ®
|
|
: p| pi-l p|2 p|3
|
|

(P, P,)

v & e | /4//’

i-2 i-1 i Ghost Fluid A

Figure 3.9. Isentropic fix and population of ghost cells in the PGFM. Figbaesed on
figure 10from [39].
Unfortunately, the methods discussed above, while reducing overheating errors, are not
able to completely eliminatthem Since overheating stems from numerical inaccuracies
associated with sglemedium solvers, coupling an isentropic fix with such solvers will
still result in diffusion (albeit to a smaller extent) near the interface
We observethe key to eliminating overheating tisat the isentropic fix (or any similar

numerical remedy) ma$e appliedafter the solution from the singlmedium solver is
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obtained. A GFM version can be constructed from ithégght, and we propose such an
approach be termed tlficient Ghost Fluid Method cEGFM.

The EGFM approach: The GFM Theorem, (8 3.2)states that a twélluid Riemann

problem can be split into two different GFM Riemann probléfifesshow thatitistheorem

can be exploited to establish the EGFM approach, modifying the numerical solution near
the interface to eliminate overheating err@snsidering the twdluid Riemann problem

in figure3.5, notethat in theimmediate aftermath of the removal of the diaphragm between
Fluids A and Btwo new values (W and Ur) emerge in the solutioAsdepicted iffigure

3.10 the fluids then start toteract withthese new values.e. in Fluid A, UL and U form

a lefwardrarefaction wave and in Fluid B&Jand W form a rightvardshock wave. The

jump between Fluids A and B, however, moves by the linearly degenerate field which is
the interface velaty. The above process occurs in the exact same manneuie 3i@.

U« emerges in figur8.6(a) and interacts with Lo form the rarefaction wave, while#J

emerges in figur8.6(b) and interacts with &ito form the shock wave.
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Figure 3.10The soldion status immediately after removing the diaphragm between
Fluids A and B
Based on the above discussregarding figire 3.6, we now describe the EGFM approach
to address the overheating errdrsfigure 3.11(a), the Riemann probletd 0YRY s
solved numerically over one time st¥épusing a singlenedium solver with EOS Note

that this changes the value of some cells near the initial interface marked by red symbols.
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Figure 3.11The EGFM implementation for (&Juid A, and (b) Fluid B

Thus, the red symbols show the solution affectethbyhnumericatliffusion from applying

the singlemedium solverThe EGFM approach fixes these values in two steps (the fixed
values are shown in green): (1) The value of thenestt to the new interface (at Y0)

is changed to W, which is the exact solution immediately following the removal of the
diaphragm (see fige 3.10; (2) Similar to[39], the isentropic relation is then applied

between the cell next to the new interface and the cells away from it. Note that in this
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second step, the isentropic relation is applied not only to densities[@})inbut also to

velocities. These relations are as follows:

., . hon =

2 oD
M- n

6 6, —m @ o8

We foundthat applying just the density fix (as suggested3@]) was insufficient in

addressing overheating, without the accompanying velocity fix. The above steps are

depicted with the labeld) and (2) in figire3.11(a).
The corresponding fix applied to Fluid B is shown irufig3.11(b), where the Riemann

problemY 0¥ RY is solved numerically for one time step with EQSimilar to figure

3.11(a), the red symbols are associated with the numerical inaccuracies. As before, the fix

(shown as red, green) is applied in two steps: (1) The value of thermeit to the new
interface(atd  Y0) is changed to &, which is the exact solution immediately following

the removal of the diaphragm; (2) Similaf38], the shock relation is thepplied between

the cell next to the new interface and the cells further from it. Again, this is implemented

for both density and velocity using:
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A few observations are in order:
1. While step (Lof the fix is implemented only for a single point, step (2) may be applied
to one or more points. Choosing a wider stencil for step (2) was found to improve the
solution, and we have used a stencil of 10 points for our simulations.
2. Figure3.11shows he EGFM applied in conjunction with the forward Euler method for
time discretization. For muistep approaches such as the TRR method, the EGFM
corrections must be implemented over each sub step, i.e. the level set is first advanced for
the sub steppollowed by application of the corrections using the above protocol.
3. Figure3.11depicts a case with a rarefaction and a shock wave to the left and right sides
of the interfaceand n step (2), the isentropic or the shock relation would be applied
accodingly. In practice, the wave types are not available a priori and will have to be
determined from the pressure values
4. Equations(3.3)and (34) correspond to a left rarefaction. For a left shock, the following

relations are applied in step (2):

e [ p N N
e AN PN N &
, " I L O -
0 0. W —
”z p cr n n cr GEﬂJ
Similarly, for a right rarefaction, the following equations apply:
Ty ‘ﬂ r]‘ od
N N
0 O S O Q oP T
z r p
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5. If the Riemann problem shown in fige 3.5 represents a shock wave, i.e. BGEOS:
and U and Lk are the postand preshack values of the shock, respectively, the above
method cannot remove the numerical inaccuraamswill result in a diffuse shock.
Consequently, the EGFM implementationust be modified to beompatible with
problems involving shock waves (including simghock and shoekterface interactions).
This isdescribedn the next section.
We conclude this section by summarizing all the steps involved in advancing the solution
by one timestep using the EGFM algorithm:
1. Assuming the interface is located betwecells Qand “Q p, solve the MMRP
'YOTYRY  to obtain UL and Ur ( 4, *RJW, PL, PR).
2. Use UL to define Ghost Fluid A atcell® p,"Q ¢,"Q g, etc.
3. Use Uk to define Ghost Fluid B at cell@Q p, " Q ¢, etc.
4. Apply an appopriate reconstruction, e.g. WENO to (Fluid A+Ghost Fluid A) and (Fluid
B+Ghost Fluid B) separately.
5. Find fluxes and advance the solution for (Fluid A+Ghost Fluid A) and (Fluid B+Ghost
Fluid B) separatelpvera sub step of a mulsitep time integratiomethod €.9.TVD-RK).
6. Using u, advance the level set over the same sub step.
7. Fix the value of the cell next to the new interface and located in Fluid A tand the
value of the cell next to the new interface and located in Fluid Bro U
8. Apply either the isentropic or the shock relation between the cells next to the new
interface and the cells further from it to fix densities and velocities.
9. Form the actual domain according to the fixed Fluid A and Fluid B.

Note that the novelty of the B®M lies in steps 7 and 8.
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3.4 Application of the Efficient Ghost Fluid Methodto shockinterface interactions
A framework for applying the EGFM to shoakterface interactions is presented in this
section. Consider the problem configuration in figure Wimch a shock is located at
and a material interface is @t. Osher and Fedkij25] suggestd using two separatieS
fields (for the shock and the interface) to ensure the shock front and the interface remain
sharp. The approach presented in this section in which the EGFM is extended achieves the
same objectivewhile requiring the use of only o field to track the interface.
To implement the EGFM for shoghterface problems, care must be taken to ensure the
incident shock remains sharp as it impinges on the interface. Initially sharp shock fronts
that hae diffused numerically in time are not compatible with the EGFM approach in that
such shocks already contain numerical errors. In the following, we discuss an
implementation of the EGFM in which the shock is maintained as a sharp front.
In figure 3.12 the initial boundary betweendnd U, i.e. post and preshock states,

moves to the right with shock speed given by the RarKungoniot jump conditions:

Y = op p

The diffuse shock is fixed by first computing the location of the shock according to

w "WdwhereYois obtained from the CFL condition. If a cell center is located behind
(in front of) @ , its value is changed to the pa$iock & (pre-shock U) value. Our
numerical simulations show that fixing only two cells on either side of the shock is
sufficient to completely remove diffusion. The explained fix holds for shocks traveling in

the negativendirection as well.
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Figure 3.12Shockinterface interaction on a 1D computational domain.

We thus propose computing sharp shotkrface interactiom using the following
approach: Ifw W T @the above shock treatment must be applied. However, if
w TWww  (theshockhasreached the interface), only the two cells behind the shock
are fixed, followed by applying the EGFMrfthe rest of the simulation. Note that for this
condition, the EGFM will handlé¥ 0"YRY . For shockinterface interactions with a
leftward shock impacting the interface from the right, the above procedure is changed by
comparingw with®  T@®w @while the EGFM solve¥ 0°YHY .

3.5Modeling surface tension at fluid interfaces using the Ghost Fluid Method

In this work, we use the GFM approach for simulating surface tension effects
compressible twqphase flow problesi In the GFM framework, surface tension is added

to the interface through modifying the interfacial boundary conditions to account for the
pressure jump induced by surface tension. This can be carried out by utilizing the OGFM

approach (see for exam[27]) or by adding surface tension to pressure terms in multi
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medium Riemann solvers in MMRBased GFMs (sg@4] for instance)Both approaches
are implemented itM PACT.

In addition to the OGFMthe MMRRbased GFM of Sambasivan and UdayKuifd& is
implementedn IMPACT. As discussed i8 3.2, this approach is broadly siari to the
RGFM [38] implementation, but constructs the MMRP at the interface using normal
vectors and bilinear interpolations. Thispapach results in a more accurate Riemann
problem at the interface, since tMMRP is solvedin the interfacenormal direction.
Moreover, the algorithm dB2] reduces overheating errors by taking for the left and right
states of the MMRP, cell values that @®Yw away from the interface. An interested
reader is referred §@2] and[83].

Figure 3.13 (based oiigure 2 from [32]) demonstrates the above approach applied to
Fluids A and B separated by a sharp interfacéhe figure,Point P is located next to the
interface,U is the normal vector at P, point | is on the interf&ée (1), while points A

and B are located in Fluids A and B respectively, edauistancep®Yowfromthe%o Tt
surface From the value o%oat P, the location of | is obtained using o o ho

%o 0 . Similarly, the coordinates of A and B are found frotaftd using @ hd

o p®3w U and & ho oo p®3w U, respectively.
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Figure 3.13. The metldoof [32] to formulatethe MMRP at the interfac&igureis based
onfigure2 from[32].
Thus, the density, normal velocity , tangential velocityo , and pressurat points A and
B can be obtained from the surrounding four cell centsirsgy bilinear interpolation. Then
the multtmedium Riemann problefiY 0YAY can be defined using h i and
" o M as the left and right states respectively. We follow the approg@2Jpfand
use the exact Riemann solver to sov® YRY , so that accuracy is maintained and
strong shocknterface interactions are captured with fidelithe solutionU-. and Ur
(4, RJU, pL, pr)1OYOTYRY is utilized to apply an isobaric fix to point P by setting
" o M ", .M. [32, 38] while the tangential velocityy remains
unchanged. Once this algorithm has been conducted for all cells in Fluid A which are

located next tot h e interface, eq. O( 3s.ilg)n itso uesxetdr
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" h Fo ) to the other side of the interface to populate Ghost Fluid A. The isobaric
fix is repeated for Fluid B, whiclior a sample point P is given by’ ho )

", .M. , while the tangential velocity remains unchanged again. As before, once
this algorithm has been applied to cells in Fluid B located next to the interface, eq. (3.1) is
used wdtBi gnobate” hxhorh ptothe other side of the interface to
populate Ghost Fluid B. Note that we have used two different presgurasdr). in the
solution of the MMRP, to account for surface tension effects according to ).

N: . I, where 1} is the pressure jump across the interfacés the surface tension
coefficient, andl is the interface curvature computed from eq. (2.44).

Exact multi-medium Riemann solverwith surface tension:

Detailed descrippns of exact multmedium Riemann solvers are giverj32, 40, 8385],

while mult-medium Riemann solvers adapted to account for surface tension effects are
presented irf84, 86] In IMPACT, we follow [32] where pressure is solved using the
equation below:

QifE  QifE 6 6 mh o

wheresr " b ) andg " 1 I are the left and right states of the MMRP,

respective}, and functionsQand™Q are defined as follows:

'y C
I ) %
cpNe N : pp ‘ ('@ wQ
T n_10 L p i Ol Q
[ p n n
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In eqgs. (3.13) (3.14), the relations for shock and rarefaction are selected based on the
pressures (s€82] for details). We use the Newtddaphson method to solve eq. (3.12) for
eitherr), orn. , and impose the conditio. 1. , Il Then, gs. (3.3)(3.10) are

used to find'. ,”. , ando..

At the end of this chapter, we summarize the numerical capabilities of IMPACT in table
3.1showing the major numerical methods used for the flow solver, the LS function, and
the interface capling. We have referred to the equation(s) required to be solved in each

module along with the numerical methods used and the references in the literature
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Table 3.1. A summary dhenumerical capabilities of IMPACT.

Module Equation Method References

Flux calculator (2.16) Roe solver [41][43]

EOS (2.6) Stiff gas -

Cell reconstruction (2.22) (2.23) WENO5 [45] [46]

LS equation (2.40) WENO5 [26] [50] [51]
Reinitialization (2.41) WENO5 [26] [50] [51] [53]
Extrapolation (3.1) 1storderENO [26] [87]

Time discretization (2.45) (2.46) TVD-RK3 [55]

Interface coupligp - OGFM RGFM  [26] [27] [32] [38]

EGFM
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CHAPTER 4:RESULTS AND DISCUSSDN

This chapter describes simulations performed to validate the numerical methods in
IMPACT, and is organized as follows: In § 4.1, 1D singlad multimedium Riemann
problems and various shoakterface interaction simuli@ns are summarized; 2D
problems are presented and discussed in 8§ 4.2; in 8§ 4.3, results from IMPACT simulations
of the shocldriven RMI are presented with corresponding analyses; finally, the ability of
IMPACT to simulate flow problems in which surfacension effects are significant is
demonstrated in § 4.4 including RMI with surface tension. All test problems in this chapter

are summarized in table 4.1.
4.1 1D test cases

In this section, we solve various 1D Riemann problems analytically as well ascaliper
with IMPACT using OGFM, RGFM, and EGFM. Unless mentioned otherwise, the
simulations were performead a computational domain of length unity wiB®0 cells and

0 "0O0 m&. In order to highlight the capabilities of the EGFM, we include the numerical

results from EGFM step (1) for the first two testsl(land4.1.2 as well.

4.1.1. Sod shock tube problé#d, 88]: This problem is initializedh a domairfilled with

air ( p&) with a discontinuity atb 1@, and the following initial conditions:

"M php,
"R 8
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Table 4.1. 1D and 2D problems used to validate IMPACT.

Problem Section Reference
Sod shock tube 41.1 [41, 88]
Shock impedance matching 4.1.2 [36, 38, 39]
Shock tube with strong pressure jump 1 4.1.3 [41]
Shock tube with strong pressure jump 2 4.1.4 [41]
Collision of two strong shocks 4.1.5 [41]
Multi-component shak tube problent 4.1.6 [89]

1D Multi-component stck tube problem 2 4.1.7 [36]
Multi-component shodkibe problem 3 4.1.8 [36, 38]
Strong shock impacting on a gagas interface  4.1.9 [26]
(heavy l 1 ght)
Strong shock impacting on a ggas interfae 4.1.10 [26]
(l'ight heavy)
Strong shock impacting on a gester interface 4.1.11 [58]
(heavy l i ght)
Sod shock tube problem with prescribed 44.1 [84]
pressure jump
Underwater explosion of an air bubble 4.2.1 [58]
Strong shock impacting on an air cavity 4.2.2 [90]
(heavy l i ght)
Shockbubble interaction 4.2.3 -
(light Y heavy

2D RichtmyerMeshkov Instability 4.3 -
Oscillating drop 4.4.2 [31, 86]

Shockbubble interaction under surface tensior 4.4.3

effects ljght Y heavy

RichtmyefMeshkov instability under theffect
of surface tension

4.4.4
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The solution to the problem consists of a left rarefaction, a contact discontinuity, and a
right shock, and is shown far & un figure 4.1. In this figure, we have implemented

only step (1) of the fix in the EGFM.

As seen in figure 4.1, the OGFM, RGFM, and EGFM step (1) work equally accurately to
capture the wave structure of the solution. For a closer comparison of the three methods
near the contact discontinuity, we have plotted in figure 4.2 the density disinbotier

a narrow band of cells next to the middle wave. This figure shows that the EGFM step (1)
gives the exact values for the cells immediately to the left and to the right of the wave,
while the OGFM and RGFM are susceptible to overheating. For celly &om the

interface, all three methods result in numerical inaccuracies.
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Figure 4.1. (a) Density, (b) velocity, and (c) pressure profiles for the Sod shock tube
problem.
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Figure 4.2. (a) Density distribution near the contact discontinuity. Densiigvah the
(b) left and (c) right sides of the wave. The density values of the two cells immediately
next to the contact wave show the agreement of the results from the EGFM step (1) with

the exact solution.

We also compare the accuracy with which the¢hmethods capture the corners of the

rarefaction by plotting in figure 4.3 (a), (b), and (c) the density, velocity, and pressure

distributions across the corner locatedvat 1@ .@As seen in figure 4.3, the OGFM and
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RGFM underpredict the analytical vakl of density and pressure (undershodsy
overpredict the velocity values (overshoots). In contrast, the EGFM (step (1)) captures the
analytical solution with accuracy. This demonstrates the EGFM approach in which the
numerical solution is rectified aording to the local behavior of the corresponding

analytical solution, provides the most accurate solution for the Sod shock tube problem.
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Figure 4.3. (a) Density, (b) velocity, and (c) pressure distributions across the rarefaction
corner. The EGFM (sp (1)) rectifies the incorrect troughs associated with the OGFM as
well as the mild overshoots and undershoots associated with the RGFM.
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In figures 4.14.3, we demonstrated that by applying step (1) of the EGFM, an improved
numerical solution can be oltaid to the Sod shock tube problem, compared to the OGFM
and RGFMHowever density values at the cells away from the contact wave in figure 4.2
contain numerical inaccuracies, and reqtie application ostep (2) to be corrected. In

figures 4.4 and 4.3he EGFM was applied in its entirety, resulting in solutions that are in

excellent agreement with the analytical solution for each of the reported quantities.

1.2

OGFM
RGFM
EGFM

Density

Figure 4.4. Density profile for problethl.1 The EGFM has been applied in its entirety.
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Figure 4.5 (a) Density values near the contact discontinuity. Density values on the (b) left
and (c) right sides of the wave. The EGFM completely removes overheating from the
numerical solution.
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4.1.2. Shock impedance matching probl@®, 38, 39} In this specifically designed
Riemann problem, the solution comprises a shock wave to the right of the original
discontinuity, while no wave forms on the |IeFhedomain is filled with two gases (

P @ and’ p&) with a discontinuity ato @&, and the following initial condition:

T "M opXTYpuBHePOo wpadiu
F U RmM  phip s
The solution obtained @ 18t @is shown in figure 4.6, where tlpgoblem was solved

using OGFM, RGFM and step (1) of the fix in the EGFM.
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Figure 4.6. (a) Density, (b) velocity, and (c) pressure distributions in the shock
impedance matching problem. The inability of the OGFM and RGFM to apply the correct
boundary conition at the interface results in the spurious reflection.
As seen in figure 4.6, even a partial implementation of the EGFM ($fepompletely
eliminates the unphysical reflecting wave to the left of the interface. This is shown in detail

in figure 4.7 where the density, velocity, and pressure are plottedforr@ig . Note

thatthe OGFM and RGFM solutions contain numerical errors and spurious reflections,



