
 

A NUMERICAL STUDY OF INTERFACIAL INSTABILITIES IN SHOCKED 

MATERIALS WITH SURFACE TENSION 

 

 

 

by 

 

Pedram Bigdelou 

 

 

 

 

A dissertation submitted to the faculty of 

The University of North Carolina at Charlotte 

in partial fulfillment of the requirements 

for the degree of Doctor of Philosophy in 

Mechanical Engineering 

 

Charlotte 

 

2020 

 

 

 

 

 

 

 

Approved by: 

        

        

______________________________ 

Dr. Praveen Ramaprabhu 

        

        

______________________________ 

Dr. Harish Cherukuri 

        

        

______________________________ 

Dr. Shaozhong Deng 

 

        

______________________________ 

Dr. Yuri Godin 

  



ii  

 

© 2020 

Pedram Bigdelou 

ALL RIGHTS RESERVED



iii  

 

ABSTRACT 

 

PEDRAM BIGDELOU. A Numerical Study of Interfacial Instabilities in Shocked 

Materials with Surface Tension. (Under the direction of DR. PRAVEEN 

RAMAPRABHU) 

 

 

Shock-driven multi-material flows occur in several applications including shock wave 

lithotripsy, underwater explosions, droplet combustion, propeller cavitation and ejection of 

material from surfaces subject to blast loading. Such flows are highly compressible due to 

the presence of strong shocks, yet are influenced to a significant extent by surface tension 

forces at the interface separating two or more materials. In particular, surface tension can 

impact the evolution of the interface, by stabilizing hydrodynamic instabilities occurring 

at the interface. The presence of surface tension can also influence aspects of the late-time 

interface breakup process, and determine the size distribution, transport, subsequent 

breakup and phase change of droplets. The modeling of such flows requires the 

development and application of specialized numerical methods, capable of handling the 

multi-physics nature of the flow dynamics. In this work, we report on the development and 

validation of novel numerical methods for shock-driven multi-material flows with surface 

tension. The numerical methods have been implemented in IMPACT, a Computational 

Fluid Dynamics software, with a wide array of physics capabilities including compressible 

flows with multiple equations of state, surface tension, and phase change.  

IMPACT solves the Euler equations using a finite volume approach, and exploits the Roe 

Riemann solver to obtain intecell fluxes. A fifth -order WENO reconstruction for spatial 

discretization is coupled with a third-order TVD Runge-Kutta scheme for time 
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discretization. The Level Set method is implemented in IMPACT to track the interface 

between materials and to obtain interface curvature required for surface tension 

calculations. Interfacial boundary conditions are applied to the cells bordering the material 

interface using the Ghost Fluid Method (GFM). In the presence of surface tension, the 

GFM is modified to account for the pressure jump across the curved interface stemming 

from surface tension effects. The GFM and its variants have been used extensively in the 

numerical treatment of shocked, multi-material flows, but are susceptible to overheating 

errors near the interface as well as spurious numerical reflections. To address these issues, 

we have developed a novel, highly accurate variation of the GFM called the Efficient GFM 

(EGFM) which removes overheating errors at the interfaces and numerical reflections, 

resulting in numerical solutions that are in agreement with analytical solutions. When 

compared with the original GFM approach and its subsequent variants, the EGFM scheme 

proposed here is robust, and has been demonstrated in this dissertation to accurately 

simulate a wide range of Riemann problems and shock-interface problems.
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 CHAPTER 1: INTRODUCTION  

 

Shock-driven multi-phase flows are of great significance to various engineering problems, 

such as chemically reacting flows [1-3] (for example combustion [4-6]), cavitation [7], 

shock wave therapy and lithotripsy [8, 9], and material ejection [10-12]. In such flows, the 

evolution of an interface separating disparate materials is central to determining the flow 

characteristics and ultimately the performance of the engineering system. Often, surface 

tension is present at the interface and can fundamentally alter the dynamics of the 

underlying instability evolution. Such flow problems require specialized numerical 

methods capable of capturing the compressible flow properties with fidelity, while 

accurately tracking the interface evolution through the complex topological changes. In 

this dissertation, we describe the development and implementation of numerical methods 

that address the above objectives.  

Depending on the problem at hand, the material interface may be susceptible to 

hydrodynamic instabilities including the shear-driven Kelvin-Helmholtz instability (KHI), 

gravity-driven Rayleigh-Taylor instability [13, 14] (RTI), and the shock-driven Richtmyer-

Meshkov instability [15, 16] (RMI). Specific to shocked interfaces is the RMI which is 

triggered when a shock wave traverses the initially corrugated interface between materials 

of mismatched impedances. Initial perturbations at the interface will then grow under the 

influence of baroclinic vorticity deposited by the shock-interface interaction, although the 

perturbation growth rate will depend on the initial density contrast across the interface, the 

strength of the shock, and the amplitude of the perturbations [15]. RMI growth rates are 

also influenced by the physical properties of the materials involved such as the fluid 
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viscosity [17], yield strength [18], as well as surface tension [19]. Additional details 

regarding RMI are provided in Chapter 4. 

While the role of viscosity and material strength on hydrodynamic instabilities has been 

studied through modeling, simulations, and experiments, the effect of surface tension on 

RMI growth rate has received comparatively little attention. Surface tension effects on 

shocked interfaces have been studied theoretically [19], numerically [20], and 

experimentally [21]. These studies have shown that surface tension acts to stabilize 

RTI/RMI instabilities for interfaces with small perturbations [19], while governing the 

process of interface breakup at larger amplitude cases [20, 21]. When surface tension 

stabilizes instability growth at a shocked interface, the result is oscillatory behavior about 

the mean interface. The latter scenario (larger amplitudes) involving droplet breakup can 

occur when RMI is triggered by a shock wave processing a spherical droplet, while the 

resulting breakup in to smaller, detached daughter droplets is governed by surface tension. 

This is observed for example in fuel atomization in supersonic combustion ramjets [22], 

where the fuel stream is first impinged by a shock wave to form a primary atomization, 

followed by surface tension-mediated secondary atomization, eventually resulting in the 

formation of fuel droplets from elongated fuel strands [20]. Note that surface tension plays 

a more pronounced role at smaller scales, and can thus significantly impact secondary 

atomization [22, 23]. This makes experimental studies of droplet formation challenging, 

due to the prohibitive requirements placed on diagnostics necessary to resolve small-scale 

breakup. Numerical approaches offer a viable alternative to investigate fundamental 

aspects of the effect of surface tension on compressible multi-medium flows.  
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The above discussion is summarized in figure 1.1, where a schematic shows a classification 

of such problems based on the flow Mach number (ὓὥ όȾὥ) and the Weber number 

(ὡὩ ”όὰ„ϳ ), as well as common engineering applications in the regime of high 

compressibility/high surface tension. Numerical codes capable of handling surface tension 

operate in the incompressible regime, while compressible flow codes developed for high-

speed flows in gases do not typically include surface tension effects. To address this gap 

in capabilities, a new software application called IMPACT has been developed and 

described in this dissertation. IMPACT is a shock physics code with multi-medium and 

multi-phase capabilities, while surface tension is modeled using the Level Set [24, 25] (LS) 

and Ghost Fluid Methods [26] (GFM). We have developed new numerical methods that 

make IMPACT highly accurate for problems that feature sharp interfaces and 

discontinuities. These developments are reported in detail in this dissertation.  

 

Figure 1.1. Schematic of regimes of interest in multi-phase problems with surface tension 

as observed in engineering applications. 
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Specific to IMPACT is the fully compressible approach of the code toward liquids and 

solids. In the problems mentioned above, the flow behavior is compressible, so that the 

density of the materials changes in response to pressure variations, and the resulting flow 

properties are poorly understood and require the application of specialized simulation tools. 

Furthermore, surface tension in multi-phase flows has been conventionally handled by 

treating one [27] or both [28] fluids as an incompressible liquid. However, this approach 

is inadequate in describing the complex physics that can occur when a shock wave is 

present in the flow. This occurs for instance in underwater explosions [29-31], where the 

presence of detonations/shocks creates acoustic waves in the liquid that cannot be ignored. 

Similarly, when a solid surface [32-34] is subjected to shocks, explosives, or ballistic 

loading, shocks can result within the solid material. The high-strain loading can melt the 

material, causing it to óflowô like a liquid, or to óflow with strengthô if the loading is below 

melt conditions. This can occur, for instance when a water turbine blade or a pump works 

under the cavitation condition [18] or the shell of an armored tank is under attack from 

explosive loading. When an underwater explosion occurs near a solid structure, the solid 

material usually undergoes a plastic deformation, while the liquid evolves under the 

cavitating condition [18], giving rise to a complex solid-liquid-gas flow with varying 

densities, temperatures, and material properties. These dynamics are also important to 

astrophysical applications such as supernovae explosions. In supernovae detonations, 

exploding shock waves within the stellar core drive finger-like óejectaô structures to form, 

resulting in the ejection of heavier elements through space which óseedô the formation of 

future solar systems and planets. 
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IMPACT employs a novel variation of the widely-used GFM to simulate compressible 

flows with surface tension. One of the aspects of IMPACT which make it a unique 

simulation tool for such flows is the introduction of the Efficient GFM (EGFM) for the 

treatment of óoverheatingô at material interfaces. Overheating [26, 35] is a technical term 

for spurious over- and under-shoots in the temperature and density of materials at and near 

interfaces, stemming from implementation of the GFM to capture interfacial boundary 

conditions and remains a persistent numerical issue associated with the GFM. In Chapter 

3, we will review different versions of the GFM and their approaches to addressing 

overheating. These approaches, however, are able to only alleviate [32, 36-39] overheating 

and cannot eliminate it from the numerical solution. In particular, the practical GFM [39] 

(PGFM) proposes a novel algorithm to reduce the overheating errors to a large extent, but 

still suffers from this numerical issue in different compressible multi-medium problems. 

The proposed EGFM is based on a lemma [40] (called the óGFM Theoremô in this 

dissertation) and combined with the approach of the PGFM [39] to address overheating, 

results in complete elimination of overheating for compressible multi-medium flows. This 

is the central novelty of the work presented in this dissertation. 

The rest of the dissertation is organized as follows: Chapter 2 is focused on the numerical 

methods implemented in IMPACT. Chapter 3 is focused on the GFM where the 

fundamentals of the approach and the methodology are presented, followed by a discussion 

of the variants of the GFM which are based on multi-medium Riemann solvers at the 

interface. Subsequently, the EGFM is introduced along with an explanation of the 

overheating treatment proposed through the EGFM approach. Chapter 4 includes a detailed 

presentation of our validation efforts for IMPACT including 1D single- and multi-medium 
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Riemann problems and various shock-interface interactions, results from different versions 

of the GFM, demonstration of overheating removal through the EGFM implementation; 

2D problems include air bubble explosion, shock-bubble interactions, and shock-cavity 

interactions. In addition, results from several RMI cases with and without surface tension 

are presented. Finally, Chapter 5 includes a summary and conclusions of the dissertation. 
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 CHAPTER 2: NUMERICAL METHODS 

 

In this chapter, we describe the numerical methods used in IMPACT, a multi-material, 

shock physics code developed to investigate shocked multi-phase flows. IMPACT solves 

the Euler equations, while the interface boundary conditions are enforced through the 

GFM. Multiple variations of GFM are available in IMPACT, including a novel approach 

that will be discussed in Chapter 3. The use of the level set approach ensures accurate 

tracking of the material interface without recourse to explicit óinterface surgicalô 

approaches. IMPACT also provides the capability to handle a wide range of materials with 

different equation of state (EOS) behaviors and transport properties. Advection is handled 

with a fifth order WENO method, while time-stepping is performed to third order using a 

TVD-RK approach. 

2.1 Euler equations and Riemann problem 

The governing equations for compressible flows are the Euler equations, which are given 

below in conservation form for a 1D problem: 
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In vector form, these equations can be expressed as 

Ὗ ὊὟ π                                                                                     ςȢς 

where Ὗ and Ὂ represent the vector of conserved variables and the vector of fluxes, 

respectively: 
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For flows with discontinuous initial conditions, a Riemann problem may be defined by 

applying the initial conditions 

Ὗὼȟπ
Ὗȟ ὼ ὼ
Ὗȟ ὼ ὼ

                                                                ςȢσ 

to the Euler equations. In eq. (2.3), Ὗ and Ὗ  represent the states of matter to the left and 

to the right of the initial discontinuity located at ὼ. In order to obtain the solution to the 

Riemann problem (denoted by ὙὖὟȟὟ ), the Jacobian matrix ὃὟ  associated with the 

system given in eq. (2.2) must be first determined: 

‬Ὗ

‬ὸ

‬Ὂ

‬Ὗ

‬Ὗ

‬ὼ

‬Ὗ

‬ὸ
ὃὟ

‬Ὗ

‬ὼ
πȢ                                              ςȢτ 

Here ὃὟ  is given by: 

ὃὟ

ụ
Ụ
Ụ
Ụ
Ụ
Ụ
ợ
‬Ὢ

‬ό

‬Ὢ

‬ό

‬Ὢ

‬ό
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‬ό
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‬ό
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ủ
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Ȣ                                                             ςȢυ 

The eigenvalues of the Jacobian matrix ὃὟ  are determined as: 

‗ ό ὥȟ          ‗ όȟ          ‗ ό ὥȟ 

while the eigenvectors are 

ὑ
ρ
ό ὥ
Ὄ όὥ

ȟ          ὑ

ρ
ό

Ὄ
ρ

ς
ό
ȟ          ὑ

ρ
ό ὥ
Ὄ όὥ

 

where Ὄ Ὁ ὴ”ϳ  is the enthalpy, and ὥ is the speed of sound given by: 
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ὥ
‎ὴ ὴ

”
Ȣ                                                                               ςȢφ 

The solution to the above Riemann problem will  consist of three waves, each of which 

corresponds to one of the eigenvalues and is depicted in ὼ ὸ plane as shown in figure 2.1. 

While the middle wave (‗ ό) is always a contact discontinuity, the outer waves can be 

rarefactions or shocks. In the example given in figure 2.1, Ὗz  and Ὗz  are the non-trivial 

solutions obtained from the initial conditions in eq. (2.3). 

 

Figure 2.1. Example of the solution to the Riemann problem in ὼ ὸ plane. Figure is 

based on figure 3.1 from [41]. 

 

2.2 Godunov method 

Since the Riemann problem involves discontinuities in the initial conditions and allows 

discontinuous solutions (contact surface and shock waves), solutions based on integral 

approaches such as finite volume techniques are preferred. The method of Godunov [42] 

provides such a scheme that is first order, and is applied to the cells shown in figure 2.2 as 

given below: 
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Ὗ Ὗ
ɝὸ

ɝὼ
Ὂ Ὂ Ȣ                                                        ςȢχ 

In eq. (2.7), Ὗ  (Ὗ ) is the cell average value in cell Ὥ at time step ὲ (ὲ ρ), ɝὼ is the 

cell size, ɝὸ is the time step size derived from a CFL condition, and Ὂ  and Ὂ  are the 

average fluxes at the left and right boundaries of the cell Ὥ, respectively. The Godunov 

method has been implemented in IMPACT, while our implementation has been validated 

for multiple test cases. In the next section, numerical methods to calculate the cell fluxes 

are discussed. 

 

Figure 2.2. Discretized domain for the finite volume approach. Figure is based on figure 

6.1 from [41]. 

 

2.3 Roe Riemann solver 

The Roe Riemann solver [43] has been implemented in IMPACT to compute the cell fluxes 

in eq. (2.7), and was chosen due to its accuracy and robustness. The Roe solver relies on 

linearization of eq. (2.4) for the initial condition given by eq. (2.3). Thus, this method seeks 

an average state between Ὗ and Ὗ  to linearize the Euler equations: 
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‬Ὗ

‬ὸ
ὃ
‬Ὗ

‬ὼ
π                                                                 ςȢψ 

where the linearized Jacobian matrix is a function of the initial condition: ὃ ὃὟȟὟ . 

Roe averages are then defined as follows: 
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                                                ςȢω 

The eigenvalues of ὃ are obtained as 

‗ ό ὥȟ          ‗ όȟ          ‗ ό ὥȟ                ςȢρπ 

while the eigenvectors are 

ὑ
ρ
ό ὥ
Ὄ όὥ

ȟ          ὑ

ρ
ό

Ὄ
ρ

ς
ό
ȟ          ὑ

ρ
ό ὥ
Ὄ όὥ

             ςȢρρ 

where ὥ ‎ ρ Ὄ ό  is the average speed of sound. The corresponding Roe 

solution is shown in figure 2.3. Note that owing to the linearization, the solution contains 

only discontinuities, while rarefactions are replaced by shock-like waves. In the system 

shown in figure 2.3, the following relations hold: 

Ὗz Ὗ ‌ὑ ȟ                                                          ςȢρς 

Ὗz Ὗz ‌ὑ ȟ                                                        ςȢρσ 

Ὗ Ὗz ‌ὑ                                                           ςȢρτ 

where ‌, ‌, and ‌ are wave strengths obtained from: 
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Figure 2.3. The Riemann solution obtained from the Roe method. 

 

ừ
Ử
Ừ

Ử
ứ‌

ὴ ὴ ”ὥό ό

ςὥ
ȟ

‌ ” ”
ὴ ὴ

ὥ
ȟ

‌
ὴ ὴ ”ὥό ό

ςὥ
Ȣ

                                              ςȢρυ 

The above algorithm is used to find Ὂ : A Riemann problem is defined between cells óὭô 

and óὭ ρô (ὙὖὟȟὟ ). Roe averages, eigenvalues, eigenvectors, and wave strengths 

are calculated, and the intercell flux at óὭ ô is found using: 

Ὂ
ρ

ς
Ὂ Ὂ

ρ

ς
‌ ‗ὑ ‌ ‗ὑ ‌ ‗ὑ                     ςȢρφ 

where Ὂ ὊὟ  and Ὂ ὊὟ . This procedure is applied to all intercells in the 

domain, and eq. (2.7) is then used to update the solution to the next time step. 

Finally, the rarefaction waves in the solution must be treated separately. Since the Roe 

solver linearizes the Euler equations, a linear system is solved resulting in a solution that 

can only contain shock waves (no rarefactions). It has been shown that when there exists a 

sonic rarefaction in the solution, the shock representation of the rarefaction wave is not 
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accurate and the flux has to be modified through an entropy fix. This treatment is referred 

to as the Harten-Hyman [44] entropy fix and has been used in the current work. 

2.4 Weighted Essentially Non-Oscillatory reconstruction 

We have implemented higher-order numerical schemes in IMPACT, to avoid the highly 

diffusive treatment of discontinuities observed in the Godunov method. High-order 

methods provide a more accurate solution to the Riemann problem by utilizing various 

reconstruction schemes to assign a pair of ñequivalentò values to each intercell at which 

the Riemann solution (Roe solution in the current work) is to be obtained. For example, for 

the intercell óὭ ô, ὙὖὟ
ȟ
ȟὟ

ȟ
 is solved instead of ὙὖὟȟὟ .  

Weighted essentially non-oscillatory (WENO) [45, 46] reconstruction is a high-order 

approach for problems involving shocks and discontinuities. In the WENO approach, the 

stencils of points or cells formed to reconstruct polynomials are assigned different weights 

depending on the presence of discontinuities and sharp gradients. In this approach, the 

highest weights are allocated to smooth stencils, whereas weights for stencils with shocks 

and contact surfaces are negligible. This approach ensures a high order of accuracy 

globally. Additional details are given in [47], including a review of WENO schemes for 

convection-dominated problems. 

In the present work, a fifth-order WENO scheme, hereinafter referred as WENO5, is 

adopted for flux reconstruction. Thus, to obtain the equivalent values for the left and right 

boundaries of cell óὭô in figure 2.4 (Ὗ
ȟ

 and Ὗ
ȟ

, respectively), WENO5 requires 

information from two cells on either side of the cell and introduces three different stencils 

to reconstruct the required polynomials as follows: 



14 
 

 

 

Figure 2.4. Required cells for WENO5 reconstruction. 

 

Ὓ ὟȟὟ ȟὟ ȟ       Ὓ Ὗ ȟὟȟὟ ȟ       Ὓ Ὗ ȟὟ ȟὟ . 

For each stencil, the Lagrange method of interpolation is utilized to find reconstructed 

values at the intercells óὭ ô and óὭ ô, respectively: 
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For each stencil, smoothness of data is computed to determine the magnitude of weights 

that is to be assigned. Smoothness indicators are computed using 

‍
ρσ

ρς
Ὗ ςὟ Ὗ

ρ

τ
σὟ τὟ Ὗ ȟ 

‍
ρσ

ρς
Ὗ ςὟ Ὗ

ρ

τ
Ὗ Ὗ ȟ                           ςȢρω 

‍
ρσ

ρς
Ὗ ςὟ Ὗ

ρ

τ
Ὗ τὟ σὟ Ȣ 

Subsequently, the weights for the intercells óὭ ô and óὭ ô are found using: 

‫
‌

‌ ‌ ‌
ȟ       ‫

‌

‌ ‌ ‌
ȟ       ὶ πȟρȟς             ςȢςπ 

with ‌ and ‌ taken as 

‌
Ὠ

‍ ρπ
ȟ       ‌

Ὠ

‍ ρπ
ȟ       ὶ πȟρȟς              ςȢςρ 

and Ὠ πȢσ, Ὠ πȢφ, Ὠ πȢρ, Ὠ πȢρ, Ὠ πȢφ, Ὠ πȢσ. Finally, the 

reconstructed values obtained in eqs. (2.17) and (2.18) are combined with the weights in 

eq. (2.20) to compute the equivalent values: 

Ὗ
ȟ
‫Ὗ ‫Ὗ ‫Ὗ ȟ                                                   ςȢςς 

Ὗ
ȟ
‫Ὗ ‫Ὗ ‫Ὗ Ȣ                                                   ςȢςσ  

From the equivalent values computed for each cell, the corresponding Riemann problems 

are formed and solved. The above implementation of WENO is referred as component-

wise, since the reconstruction procedure is applied to each component of Ὗ using the same 

approach.  
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2.5 Extension to 2D problems 

The extension of the numerical methods discussed above to 2D problems is presented in 

this section. The Euler equations for conservation of mass, momentum, and energy are 

given in 2D according to: 

ừ
Ử
Ử
Ử
Ừ

Ử
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Ử
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‬ὸ

‬
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ό”Ὁ ὴ

‬

‬ώ
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                                   ςȢςτ 

In vector form, the equations are given as 

Ὗ ὊὟ ὋὟ π                                                                               ςȢςυ 

where Ὗ, ὊὟ , and ὋὟ  represent the vector of conserved variables, and the vector of 

fluxes in the ὼ-, and ώ-directions, respectively: 

Ὗ

”
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Ὣ

. 

To find the eigenstructure associated with the 2D Euler equations, the Jacobian matrices of 

eq. (2.25) are first determined according to 

‬Ὗ
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‬Ὗ

‬ὼ

‬Ὃ
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‬ώ
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‬ώ
π                      ςȢςφ 

where ὃὟ  is given by 
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with eigenvalues and eigenvectors given by 

‗ ό ὥȟ          ‗  ‗ όȟ          ‗ ό ὥȟ 
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while ὄὟ  is given by 
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with eigenvalues and eigenvectors given by 
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The extension of the Godunov method to 2D problems is straightforward and given by 
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ȟ
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ȟ

Ὃ
ȟ
                          ςȢςω 

where fluxes are as depicted in figure 2.5. 

 

Figure 2.5. Fluxes on the boundaries of cell óὭȟὮô. 
 

Similar to the 1D case, a Riemann problem can be defined along each direction, and solved 

at each intercell to obtain fluxes. For example, for fluxes in the ὼ direction (Ὂ
ȟ
), the 

corresponding Riemann problem is 

ừ
Ừ

ứ
Ὗ ὊὟ πȟ

Ὗὼȟπ

Ὗȟȟ ὼ ὼ

Ὗ ȟȟ ὼ ὼ
ȟ
                                                         ςȢσπ 

and for fluxes in the ώ direction (Ὃ
ȟ

), the Riemann problem is 
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The Riemann problems given in eqs. (2.30) and (2.31) are solved using an extension of the 

Roe solver [43] presented for the 1D case. To find Ὂ
ȟ
, the eigenvalues and eigenvectors 

associated with ὃ and the wave strengths are calculated as follows: 

‗ ό ὥȟ          ‗ ‗ όȟ          ‗ ό ὥȟ                ςȢσς 

ὑ

ρ
ό ὥ
ὺ

Ὄ όὥ

ȟὑ

ụ
Ụ
Ụ
Ụ
ợ

ρ
ό
ὺ

ρ

ς
ό ὺ Ứ

ủ
ủ
ủ
Ủ

ȟὑ

π
π
ρ
ὺ

ȟὑ

ρ
ό ὥ
ὺ

Ὄ όὥ

ȟ               ςȢσσ 

ừ
ỬỬ
Ừ

ỬỬ
ứ‌

ὴ ὴ ”ὥό ό

ςὥ
ȟ

‌ ” ”
ὴ ὴ

ὥ
ȟ

‌ ”ὺ ὺ ȟ

‌
ὴ ὴ ”ὥό ό

ςὥ
ȟ

                                              ςȢστ 

where ὥ ‎ ρ Ὄ ό ὺ  is the speed of sound, and the indices óὒô and óὙô 

refer to the cells óὭȟὮô and óὭ ρȟὮô, respectively. The Roe flux is then computed using 

Ὂ
ȟ

ρ

ς
Ὂ Ὂ

ρ

ς
‌ ‗ὑ ‌ ‗ὑ ‌ ‗ὑ ‌ ‗ὑ Ȣ   ςȢσυ 

To find Ὃ
ȟ

, the eigenvalues and eigenvectors associated with ὄ and the wave strengths 

are calculated as follows: 

‗ ὺ ὥȟ          ‗ ‗ ὺȟ          ‗ ὺ ὥȟ                ςȢσφ 
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where the indices óὒô and óὙô refer to the cells óὭȟὮô and óὭȟὮ ρô, respectively. The 

flux is then computed according to 

Ὃ
ȟ

ρ

ς
Ὃ Ὃ

ρ

ς
‌ ‗ὑ ‌ ‗ὑ ‌ ‗ὑ ‌ ‗ὑ Ȣ  ςȢσω 

Note that should the solutions of Riemann problems in eqs. (2.30) and (2.31) contain sonic 

rarefactions, the Harten-Hyman [44] entropy fix must be applied to obtain the correct flux 

values. 

The WENO5 implementation given in §2.4 avoids stencils with sharp gradients by 

designating the lower weights to them, while maintaining fifth -order accuracy globally. 

The simplest extension of the WENO5 method to 2D problems involves implementing the 

scheme using a direction-by-direction approach. However, it was shown in [48] that this 

approach yields fifth -order accuracy only for linear problems, while for nonlinear problems 

(such as the Euler equations), it results in a second-order-accurate solution. In the current 

work, the direction by direction approach is used, while an extension to higher-order 

accuracy [48] is planned. 
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2.6 Level set method 

In IMPACT, the interface motion is described using the LS approach introduced in Chapter 

1. The motion of an interface is represented by a LS function, and is modeled using 

‬‰

‬ὸ
ό
‬‰

‬ὼ
ὺ
‬‰

‬ώ
πȢ                                                                       ςȢτπ 

Note that the LS function should be chosen such that it produces an accurate description of 

the interface between two media. For instance, if the interface is a circle with center 

ὼȟώ  and radius Ὑ, a possible choice for the LS function will  be: 

‰ὼȟώ ὼ ὼ ώ ώ ὙȢ 

However, LS functions that satisfy the property ȿɳ‰ȿ ρ (referred as signed-distance 

functions [25]) have been shown [49] to produce interface behavior with high accuracy.  

As the interface evolves, the signed-distance property of the LS function must be enforced 

at every time step. This step is called reinitialization (introduced by Sussman et al. [49]), 

and is enforced by numerically solving the equation below: 

‬‰

‬†
Ὓ‰ ȿɳ‰ȿ ρ πȢ                                                           ςȢτρ 

In eq. (2.41), † is a time-like variable, and Ὓ‰  is the sign function defined by: 

Ὓ‰
‰

‰ ɝὼ

                                                                  ςȢτς 

with ‰ ὼȟώ being the LS function before reinitialization. Note that when eq. (2.41) is 

solved to steady state, ‰ approaches a signed distance function. Reinitialization leads to 

more accurate determination of the unit normal vectors and curvature of the interface that 

are in turn computed using: 
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ὔ
‰ɳ

ȿɳ‰ȿ
                                                                            ςȢτσ 

and 

‖  ɳȢὔ    Ȣ                                                                         ςȢττ 

Determining the interface curvature to high order is required to accurately compute surface 

tension effects on the interface. Equations (2.40) and (2.41) belong to the Hamilton-Jacobi 

category and are solved using high-order upwinding schemes. Following [26, 50], WENO5 

is used to compute left- and right-sided spatial derivatives of ‰. Equation (2.40) is solved 

in a band of cells around the interface following the approach in [51]. 

Note that applying the WENO5 method of [50] to the solution of eq. (2.41) gives solutions 

that are only second-order accurate at best resulting in noisy interface curvatures [50, 52, 

53]. An alternative is the higher-order method proposed in [54], which yields second-order 

accuracy in solving eq. (2.41), resulting in more accurate interface locations compared to 

[50]. This method is also capable of handling situations in which the  ‰  function is steep 

or shallow (i.e. ȿɳ‰ȿ is very different from unity), without the need for complex 

modifications to the sign function (eq. (2.42)) as carried out by [51]. In the current work, 

however, the numerical method of [53] is used, which is an extension of [54] such that all 

the benefits of [54] are retained, while resulting in fourth-order accuracy for eq. (2.41) and 

curvature calculations that are second-order accurate. Similar to eq. (2.40), eq. (2.41) is 

also solved in a band of cells around the interface, following [51]. 
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2.7 Time discretization 

Time advancement is implemented in IMPACT to a high order of accuracy using the total 

variation diminishing (TVD) Runge-Kutta [55] (RK) scheme. We use a third-order TVD-

RK method for solving eqs. (2.7), (2.29), (2.40), and (2.41), where the solution is advanced 

over three sub-steps per time step. Writing the governing equations in general form, we 

obtain 

Ὠɡ

Ὠɬ
ὒɡ                                                                                        ςȢτυ 

where ɡ may be the vector of conserved variables (Ὗ in eqs. (2.7) and (2.29)) or the LS 

function (‰ in eqs. (2.40) and (2.41)), ɬ may denote real (ὸ) or fictitious (†) time, and ὒ is 

the appropriate spatial discretization from the numerical methods for each of the equations. 

The third-order TVD-RK implementation for eq. (2.45) is written as [55] 

ɡ ɡ ɝɬὒɡ , 

ɡ
σ

τ
ɡ

ρ

τ
ɡ

ρ

τ
ɝɬὒɡ ȟ                                         ςȢτφ 

ɡ
ρ

σ
ɡ

ς

σ
ɡ

ς

σ
ɝɬὒɡ  

where ɡ , ɡ , and ɡ  are the solutions after the first, second, and final sub steps, 

respectively. 
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CHAPTER 3: THE GHOST FLUID METHOD 

 

 

3.1 Introduction 

The Ghost Fluid Method (GFM) was originally developed by Fedkiw et al. [26] to model 

contact discontinuities in inviscid, compressible, multi-material flows. The GFM is based 

on applying physically accurate interfacial boundary conditions at the material interface 

between different fluids. Consider two fluids (A and B) separated by an interface that is 

moving as shown in figure 3.1. Fluids A and B may be distinguished by an LS function, 

where ‰ π corresponds to Fluid A, ‰ π indicates Fluid B, and the ‰ π level set 

identifies the interface. In the GFM approach, the effect of Fluid B on Fluid A is modeled 

through appropriately chosen boundary conditions enforced at the interface by replacing 

Fluid B with a óghost fluidô. Similarly, Fluid A can be replaced with a ghost fluid, and in 

conjunction with interface boundary conditions represents the effect of Fluid A on B. This 

is shown in figures 3.1 and 3.2. 
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Figure 3.1. The GFM approach to treating Fluids A and B separated by an interface. (a) 

Actual domain, (b) interfacial boundary condition applied to Fluid A, (c) interfacial 

boundary condition applied to Fluid B. 

 

 

Figure 3.2. Applying interfacial boundary condition using (a) Ghost Fluid A, and (b) 

Ghost Fluid B. 

 

The efficacy of the GFM approach therefore lies in accurately applying the interfacial 

boundary conditions between the real fluids in each case using their óghostô counterparts. 

In [25], the authors show that Rankine-Hugoniot jump conditions, i.e. flux conservation, 
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when applied across the interface yield interfacial conditions that ensure the continuity of 

pressure and normal velocity. In [26], the authors define the ghost fluids based on the 

interfacial flux conservation discussed above. They propose using the pressure and velocity 

of Fluid B (Fluid A) for Ghost Fluid A (Ghost Fluid B), while the density of Ghost Fluid 

A (Ghost Fluid B) comes directly from Fluid A (Fluid B) through constant extrapolation. 

In numerical calculations, however, the ghost fluids are defined over a band of cells on 

either side of the interface for reasons of computational expediency. Fedkiw et al. [26] 

suggest using a band of 3 to 5 ghost cells depending on the computational stencil required 

to implement a specific numerical scheme and interface displacement. Once the ghost cells 

are populated, the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B) can 

each be updated independently with their corresponding EOS using standard single-

medium numerical schemes, without requiring specific treatments for the interface or the 

need for cut cells. Often, the GFM is coupled with the LS approach [25-27], where the LS 

function is updated by solving eq. (2.40) to determine the new location of the interface. 

The above approach results in a sharp representation of the interface, which is a central 

feature of the GFM, when compared with other interface approaches including the VOF 

method [56], mass fraction methods [57], and gamma-based models [57, 58] all of which 

diffuse the interface over multiple cells, giving rise to ónumerical mixingô between the two 

fluids. This property of the GFM makes it suitable for simulations of multi-material 

problems involving interfacial phenomena such as problems with interfacial instabilities, 

surface tension effects, and evaporation.  

Figure 3.3 shows an example where results from the GFM are compared to exact solution 

as well as results from a diffusive approach [58]. As seen in the figure, the density profile 
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from the GFM is sharp at the interface. However, the numerical solution from the GFM is 

slightly different from the analytical values near the interface following shock passage. 

This behavior of the GFM solution is termed overheating [35], and occurs when a shock 

wave interacts with an initially sharp interface. It has been shown [39] that overheating 

results from numerical inaccuracies that stem from applying single-medium numerical 

schemes to the fluid pairs (Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B). Since 

these schemes are naturally associated with diffusion, they give rise to overheating. In the 

next section, overheating will be discussed in greater detail along with a proposed novel 

approach to address the issue.  

 

Figure 3.3. Sharp representation of the interface with the GFM approach. Overheating is 

observed near the interface. 

 

Figure 3.4 (based on figure 1 from [26]) depicts the methodology adopted for the 

population of the ghost cells for 1D problems using the GFM framework. Ghost Fluid A is 
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defined by copying node by node, the corresponding pressures and velocities from Fluid 

B, while the density is obtained from constant extrapolation from Fluid A. Ghost Fluid B 

is defined in a similar manner. A similar approach is used in multi-dimensional problems, 

where the pressure and velocity values for the ghost cells are copied directly from the real 

fluids, while densities are extrapolated using the following equation: 

‬”

‬†
ὔ Ȣɳ” π  Ȣ                                                                            σȢρ 

Eq. (3.1) is used with  for Ghost Fluid A (B), while the interface normal vector ὔ is 

defined using the function ‰ through eq. (2.43). Note that the unit normal vector is taken 

to point from Fluid A (‰ π) towards Fluid B (‰ π).   

 

Figure 3.4. Definition of Ghost Fluid A using density extrapolation from Fluid A, and the 

velocity and pressure values from Fluid B. Figure is based on figure 1 from [26]. 

 

The GFM approach is thus easy to implement, and avoids the difficulties associated with 

implementing cut cells or the use of complicated mixture rules [58, 59]. As a result of these 

properties, the GFM has been widely used in different problems in science and engineering. 
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Fedkiw et al. [60] used the GFM for modeling deflagration and detonation discontinuities; 

Liu et al. [61] utilized the GFM approach to capture the boundary conditions for the 

variable coefficient Poisson equation; Kang et al. [28] exploited the methods in [61] to 

propose a boundary condition capturing model for multi-phase incompressible flows; 

Caiden et al. [27] applied the GFM to two-phase flows including separate regions for 

compressible and incompressible fluids (also, see [62] for a monolithic coupling of 

incompressible flow to compressible flow as opposed to the partitioned coupling of [27]); 

Nguyen et al. [63] simulated incompressible flames using the GFM; Gibou et al. [64] used 

the GFM for the multi-phase incompressible Navier-Stokes equations with phase change 

(also, see [65]); Fedkiw [66] introduced the coupling of an Eulerian fluid calculation to a 

Lagrangian solid calculation using the GFM. An interested reader may also refer to [25] 

for additional details of the applications mentioned above. Finally, additional discussions 

of applications of the GFM are given in various papers, including GFM for front tracking 

methods for simulating compressible multi-phase flows [67-69], crystallization [70, 71], 

atomization [72], and other recent applications [52]. 

Modifications to the GFM have been proposed to accommodate two-phase flows, including 

flows where one fluid is significantly stiffer than the other (see for instance [27], [66], and 

[25]). Koren et al. [73] introduced a variation of the GFM to address pressure oscillations 

near the interface in two-fluid flows with arbitrarily large density ratios. Arienti et al. [74] 

proposed a modified version termed the ghost-fluid Eulerian Lagrangian (GLE) method to 

couple Eulerian compressible flow with a Lagrangian solver for fluid-solid interactions 

(authors of [75] describe the procedure to define ghost values in the explicit coupling of 

fluids with solids). Nguyen et al. [76] introduced a fully conservative version of the GFM 
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that applied to the inviscid reactive Euler equations. The above discussion is but a short list 

of the modifications to the GFM and its applications. In the next section, we discuss a 

separate class of the GFM defined using multi-medium Riemann problems (MMRPs) at 

the interface, which has been shown [36, 40] to be more robust and accurate than the 

original GFM (OGFM) approach. 

3.2 Ghost Fluid Methods based on multi-medium Riemann solvers 

Using multi-medium Riemann solvers at the interface to couple fluids governed by 

different equations of state has been shown to result in high-quality numerical solutions at 

or near the interface ([77], [78]). To extend this idea to the GFM, Liu et al. [36] proposed 

a modified GFM (MGFM), where approximate Riemann solvers were used to obtain more 

accurate values for the ghost cells with lower conservation errors (also, see [38, 79, 80] for 

a discussion of the applications of the MGFM, and [40] for a description of the accuracy 

and conservation errors associated with GFMs for MMRPs). Liu et al. [18] further 

developed the MGFM idea to simulate compressible fluids coupled to deformable 

structures in the presence of cavitation in fluids. Also, Hu and Khoo [37] proposed a 

numerical method called I-GFM, where the ghost values were obtained by real and ghost 

interactions (see [69] for the application of the I-GFM in primary breakup of a liquid jet 

and [81] for a proposed modified I-GFM). Wang et al. [38] proposed a real GFM (RGFM) 

approach to extend the capabilities of the MGFM and suggested a novel algorithm for the 

advection of the LS function. Xu et al. [39] proposed the so-called practical GFM (PGFM) 

for compressible multi-medium flows. Sambasivan and Udaykumar [32] implemented the 

RGFM approach to apply isobaric fix and to populate ghost cells in multi-dimensions, by 

using normal vectors obtained from LS functions to construct MMRPs in the normal 
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direction to the interface. In [82], the authors provided an extension of the approach of [32] 

by coupling with local mesh refinement and for shock-induced vaporization of droplets 

[83]. 

The GFM framework is summarized in the GFM theorem, which was introduced in [40] 

as a lemma and states that a two-fluid Riemann problem can be split into two component 

single-fluid Riemann problems (or ñGFM Riemann problemsò as labelled by [40]). Figures 

3.5 and 3.6 show the two-fluid Riemann problem (ὙὖὟȟὟ ) with the solution, and the 

GFM Riemann problems (ὙὖὟȟὟz  and ὙὖὟz ȟὟ ), respectively. Each GFM 

Riemann problem has a real and a ghost state, where the real state is obtained directly from 

the original two-fluid Riemann problem (Ὗ or Ὗ ), and the ghost state from its solution 

(Ὗz  or Ὗz ). From the GFM theorem, the superposition of the real-fluid solutions to the 

component GFM Riemann problems (figure 3.6) correspond to the solution of the original 

two-fluid Riemann problem (figure 3.5). 

 

Figure 3.5. Two-fluid Riemann problem and its solution. 

 



 
 

 

32 

In contrast to the OGFM [26] approach, where flux conservation at the interface is the basis 

for defining ghost fluids, MMRP-based GFMs rely on the solution of the MMRP at the 

interface to populate the ghost cells. These GFMs result in more accurate solutions for 

problems with strong shocks and high-density ratios [36, 38].  

 

 

Figure 3.6. GFM Riemann problems and their solutions for (a) Fluid A, and (b) Fluid B. 
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3.3 The Efficient Ghost Fluid Method and overheating treatment 

In § 3.1, the GFM method was introduced along with a discussion of the advantages of the 

approach. A central feature of such methods is the ability to resolve a sharp interface, by 

removing unphysical diffusion at or near such interfaces. However, the GFM and its 

variants can still result in some diffusion on both sides of the interface. This phenomenon, 

as discussed in § 3.1, is termed overheating, and has been shown [4] to result from 

numerical inaccuracies that stem from applying single-medium numerical schemes to 

(Fluid A+Ghost Fluid A) and (Fluid B+Ghost Fluid B). In this section, we propose an 

improvement to the GFM approach that addresses overheating, resulting in highly accurate 

solutions near the interface.  

First, a brief review of approaches to address overheating in the GFM is provided here. In 

[26], the authors proposed to extrapolate entropy instead of density (as shown in figure 3.7 

(based on figure 1 from [26])), since entropy contains less overheating errors [35]. The 

extrapolated entropy can then be used to obtain density values at the ghost points to form 

the vector of conserved variables. In addition, these authors suggested an isentropic fix 

(shown in figure 3.8 (based on figure 2 from [26])) where rather than extrapolating the 

entropy of the cells next to the interface, the entropy value is obtained by extrapolating 

from cells further afield. For example, in figure 3.8 where the interface is between cells óὭô 

and óὭ ρô, the entropy of cell óὭ ρô is used to fix the entropy of cell óὭô and to populate 

the ghost cells. For multi-dimensional problems, the corresponding correction is applied in 

the interface normal direction [26], by extrapolating entropies from points ρȢυῳὼ away 

from the interface. 
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Figure 3.7. Using entropy to define ghost fluids. Figure is based on figure 1 from [26]. 

 

 

Figure 3.8. Isentropic fix. Figure is based on figure 2 from [26]. 
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In versions of the GFM [36, 38, 39] which rely on the solution to MMRPs at the interface, 

it has been shown that using the cell values from óὭ ρô and óὭ ςô as initial conditions 

for the MMRP resulted in an improvement in reducing overheating (when compared with 

the choice of using data from óὭô and óὭ ρô). In [36], the entropy values of the real cells 

next to the interface were fixed by the solution to the MMRP, which showed further 

improvement in the overheating error. In the RGFM approach [38], real cells next to the 

interface were corrected for density, velocity, and pressure values, rather than for entropy. 

This resulted in more accurate imposition of boundary conditions at the interface, resulting 

in improved behavior in shock impedance matching problems [36] by reducing the 

amplitude of the erroneous numerical wavelets reflecting off the interface. 

Note that in the GFM approach, the description of the entropy field is closely related to 

overheating. Since entropy (or density) of fluids cannot pass through the interface, and is 

instead transported by the linearly degenerate field, the entropy jump across the interface 

should remain sharp without diffusion. However, numerical inaccuracies associated with 

single-medium solvers give rise to the diffusion of entropy near the interface, thus causing 

overheating. In isentropic fix, the entropy of the cells next to the interface are obtained 

from cells further afield which are less afflicted by the numerical diffusion. 

As an alternative to the approach outlined in figure 3.8, the isentropic fix can also be 

implemented using more sophisticated methods such as those outlined in the PGFM [39] 

approach where the isentropic relation is applied between a reference cell located far from 

the interface and the cell next to the interface. This approach is depicted in figure 3.9 (based 

on figure 10 from [39]), which shows the reference values of entropy (density) can be used 
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to fix these variables at points near the interface. By comparing the pressures, one decides 

to use either isentropic or shock relation for density: 

”
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ὴ ὴ
ȟ ὴ ὴ  ὶὥὶὩ
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‎ ρ ὴ ὴ ‎ ρ ὴ ὴ
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ȟ ὴ ὴ  ίὬέὧὯ

      σȢς 

where Ὦ denotes the points where the density fix is to be applied. 

 

Figure 3.9. Isentropic fix and population of ghost cells in the PGFM. Figure is based on 

figure 10 from [39]. 

 

Unfortunately, the methods discussed above, while reducing overheating errors, are not 

able to completely eliminate them. Since overheating stems from numerical inaccuracies 

associated with single-medium solvers, coupling an isentropic fix with such solvers will 

still result in diffusion (albeit to a smaller extent) near the interface. 

We observe the key to eliminating overheating is that the isentropic fix (or any similar 

numerical remedy) must be applied after the solution from the single-medium solver is 



 
 

 

37 

obtained. A GFM version can be constructed from this insight, and we propose such an 

approach be termed the Efficient Ghost Fluid Method or EGFM.  

The EGFM approach: The GFM Theorem, (§ 3.2), states that a two-fluid Riemann 

problem can be split into two different GFM Riemann problems. We show that this theorem 

can be exploited to establish the EGFM approach, modifying the numerical solution near 

the interface to eliminate overheating errors. Considering the two-fluid Riemann problem 

in figure 3.5, note that in the immediate aftermath of the removal of the diaphragm between 

Fluids A and B, two new values (U*L  and U*R) emerge in the solution. As depicted in figure 

3.10, the fluids then start to interact with these new values, i.e. in Fluid A, U*L  and UL form 

a leftward rarefaction wave and in Fluid B, U*R and UR form a rightward shock wave. The 

jump between Fluids A and B, however, moves by the linearly degenerate field which is 

the interface velocity. The above process occurs in the exact same manner in figure 3.6: 

U*L  emerges in figure 3.6(a) and interacts with UL to form the rarefaction wave, while U*R 

emerges in figure 3.6(b) and interacts with UR to form the shock wave. 
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Figure 3.10. The solution status immediately after removing the diaphragm between 

Fluids A and B. 

 

Based on the above discussion regarding figure 3.6, we now describe the EGFM approach 

to address the overheating errors. In figure 3.11(a), the Riemann problem ὙὖὟȟὟz  is 

solved numerically over one time step Ўὸ using a single-medium solver with EOSA. Note 

that this changes the value of some cells near the initial interface marked by red symbols. 
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Figure 3.11. The EGFM implementation for (a) Fluid A, and (b) Fluid B. 

 

Thus, the red symbols show the solution affected by the numerical diffusion from applying 

the single-medium solver. The EGFM approach fixes these values in two steps (the fixed 

values are shown in green): (1) The value of the cell next to the new interface (at ὸ Ўὸ) 

is changed to U*L , which is the exact solution immediately following the removal of the 

diaphragm (see figure 3.10); (2) Similar to [39], the isentropic relation is then applied 

between the cell next to the new interface and the cells away from it. Note that in this 
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second step, the isentropic relation is applied not only to densities (as in [39]), but also to 

velocities. These relations are as follows: 

” ”z
ὴ ὴ

ὴz ὴ
                                                                          σȢσ 

ό όz
ς

‎ ρ
ὥz ὥ                                                                    σȢτ 

We found that applying just the density fix (as suggested in [39]) was insufficient in 

addressing overheating, without the accompanying velocity fix. The above steps are 

depicted with the labels (1) and (2) in figure 3.11(a). 

The corresponding fix applied to Fluid B is shown in figure 3.11(b), where the Riemann 

problem ὙὖὟz ȟὟ  is solved numerically for one time step with EOSB. Similar to figure 

3.11(a), the red symbols are associated with the numerical inaccuracies. As before, the fix 

(shown as red Ą green) is applied in two steps: (1) The value of the cell next to the new 

interface (at ὸ Ўὸ) is changed to U*R, which is the exact solution immediately following 

the removal of the diaphragm; (2) Similar to [39], the shock relation is then applied between 

the cell next to the new interface and the cells further from it. Again, this is implemented 

for both density and velocity using: 
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A few observations are in order: 

1. While step (1) of the fix is implemented only for a single point, step (2) may be applied 

to one or more points. Choosing a wider stencil for step (2) was found to improve the 

solution, and we have used a stencil of 10 points for our simulations. 

2. Figure 3.11 shows the EGFM applied in conjunction with the forward Euler method for 

time discretization. For multi-step approaches such as the TVD-RK method, the EGFM 

corrections must be implemented over each sub step, i.e. the level set is first advanced for 

the sub step, followed by application of the corrections using the above protocol. 

3. Figure 3.11 depicts a case with a rarefaction and a shock wave to the left and right sides 

of the interface, and in step (2), the isentropic or the shock relation would be applied 

accordingly. In practice, the wave types are not available a priori and will have to be 

determined from the pressure values. 

4. Equations (3.3) and (3.4) correspond to a left rarefaction. For a left shock, the following 

relations are applied in step (2): 

” ”z
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Similarly, for a right rarefaction, the following equations apply: 
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5. If the Riemann problem shown in figure 3.5 represents a shock wave, i.e. EOSA = EOSB 

and UL and UR are the post- and pre-shock values of the shock, respectively, the above 

method cannot remove the numerical inaccuracies and will result in a diffuse shock. 

Consequently, the EGFM implementation must be modified to be compatible with 

problems involving shock waves (including single shock and shock-interface interactions). 

This is described in the next section. 

We conclude this section by summarizing all the steps involved in advancing the solution 

by one time step using the EGFM algorithm: 

1. Assuming the interface is located between cells Ὥ and Ὥ ρ, solve the MMRP 

ὙὖὟȟὟ  to obtain U*L  and U*R (ɟ*L, ɟ*R, u*, p*L , p*R). 

2. Use U*L  to define Ghost Fluid A at cells Ὥ ρ, Ὥ ς, Ὥ σ, etc. 

3. Use U*R to define Ghost Fluid B at cells Ὥ, Ὥ ρ, Ὥ ς, etc. 

4. Apply an appropriate reconstruction, e.g. WENO to (Fluid A+Ghost Fluid A) and (Fluid 

B+Ghost Fluid B) separately. 

5. Find fluxes and advance the solution for (Fluid A+Ghost Fluid A) and (Fluid B+Ghost 

Fluid B) separately over a sub step of a multi-step time integration method (e.g. TVD-RK). 

6. Using u*, advance the level set over the same sub step. 

7. Fix the value of the cell next to the new interface and located in Fluid A to U*L  and the 

value of the cell next to the new interface and located in Fluid B to U*R. 

8. Apply either the isentropic or the shock relation between the cells next to the new 

interface and the cells further from it to fix densities and velocities. 

9. Form the actual domain according to the fixed Fluid A and Fluid B. 

Note that the novelty of the EGFM lies in steps 7 and 8. 
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3.4 Application of the Efficient Ghost Fluid Method to shock-interface interactions 

A framework for applying the EGFM to shock-interface interactions is presented in this 

section. Consider the problem configuration in figure 7 in which a shock is located at ὼ  

and a material interface is at ὼ. Osher and Fedkiw [25] suggested using two separate LS 

fields (for the shock and the interface) to ensure the shock front and the interface remain 

sharp. The approach presented in this section in which the EGFM is extended achieves the 

same objective, while requiring the use of only one LS field to track the interface.  

To implement the EGFM for shock-interface problems, care must be taken to ensure the 

incident shock remains sharp as it impinges on the interface. Initially sharp shock fronts 

that have diffused numerically in time are not compatible with the EGFM approach in that 

such shocks already contain numerical errors. In the following, we discuss an 

implementation of the EGFM in which the shock is maintained as a sharp front.  

In figure 3.12, the initial boundary between US and UL, i.e. post- and pre-shock states, 

moves to the right with shock speed given by the Rankine-Hugoniot jump conditions: 

Ὓ
”ό ”ό

” ”
                                                                                    σȢρρ 

The diffuse shock is fixed by first computing the location of the shock according to ὼ

ὼ ὛЎὸȟ where Ўὸ is obtained from the CFL condition. If a cell center is located behind 

(in front of) ὼ , its value is changed to the post-shock US (pre-shock UL) value. Our 

numerical simulations show that fixing only two cells on either side of the shock is 

sufficient to completely remove diffusion. The explained fix holds for shocks traveling in 

the negative ὼ-direction as well. 
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Figure 3.12. Shock-interface interaction on a 1D computational domain. 

 

We thus propose computing sharp shock-interface interactions using the following 

approach: If ὼ ὼ πȢυῳὼ, the above shock treatment must be applied. However, if 

ὼ πȢυῳὼ ὼ  (the shock has reached the interface), only the two cells behind the shock 

are fixed, followed by applying the EGFM for the rest of the simulation. Note that for this 

condition, the EGFM will handle ὙὖὟȟὟ . For shock-interface interactions with a 

leftward shock impacting the interface from the right, the above procedure is changed by 

comparing ὼ  with ὼ πȢυῳὼ, while the EGFM solves ὙὖὟȟὟ . 

3.5 Modeling surface tension at fluid interfaces using the Ghost Fluid Method 

In this work, we use the GFM approach for simulating surface tension effects in 

compressible two-phase flow problems. In the GFM framework, surface tension is added 

to the interface through modifying the interfacial boundary conditions to account for the 

pressure jump induced by surface tension. This can be carried out by utilizing the OGFM 

approach (see for example [27]) or by adding surface tension to pressure terms in multi-
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medium Riemann solvers in MMRP-based GFMs (see [84] for instance). Both approaches 

are implemented in IMPACT.  

In addition to the OGFM, the MMRP-based GFM of Sambasivan and UdayKumar [32] is 

implemented in IMPACT. As discussed in § 3.2, this approach is broadly similar to the 

RGFM [38] implementation, but constructs the MMRP at the interface using normal 

vectors and bilinear interpolations. This approach results in a more accurate Riemann 

problem at the interface, since the MMRP is solved in the interface normal direction. 

Moreover, the algorithm of [32] reduces overheating errors by taking for the left and right 

states of the MMRP, cell values that are ρȢυЎὼ away from the interface. An interested 

reader is referred to [82] and [83]. 

Figure 3.13 (based on figure 2 from [32]) demonstrates the above approach applied to 

Fluids A and B separated by a sharp interface. In the figure, Point P is located next to the 

interface, ὔ is the normal vector at P, point I is on the interface (‰ π), while points A 

and B are located in Fluids A and B respectively, each at a distance ρȢυЎὼ from the ‰ π 

surface. From the value of ‰ at P, the location of I is obtained using ὼȟώ ὼȟώ

‰ὔ. Similarly, the coordinates of A and B are found from ὼȟώ  using ὼȟώ

ὼȟώ ρȢυɝὼὔ and ὼȟώ ὼȟώ ρȢυɝὼὔ, respectively. 
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Figure 3.13. The method of [32] to formulate the MMRP at the interface. Figure is based 

on figure 2 from [32]. 

 

Thus, the density, normal velocity ὠ , tangential velocity ὠ, and pressure at points A and 

B can be obtained from the surrounding four cell centers using bilinear interpolation. Then 

the multi-medium Riemann problem ὙὖὟȟὟ  can be defined using ”ȟὠ ȟὴ  and 

”ȟὠ ȟὴ  as the left and right states respectively. We follow the approach of [32], and 

use the exact Riemann solver to solve ὙὖὟȟὟ , so that accuracy is maintained and 

strong shock-interface interactions are captured with fidelity. The solution U*L  and U*R 

(ɟ*L, ɟ*R, u*, p*L , p*R) to ὙὖὟȟὟ  is utilized to apply an isobaric fix to point P by setting 

”ȟὠ ȟὴ ”z ȟόzȟὴz  [32, 38], while the tangential velocity ὠ  remains 

unchanged. Once this algorithm has been conducted for all cells in Fluid A which are 

located next to the interface, eq. (3.1) is used with a óô sign to extrapolate 



 
 

 

47 

”ȟὠ ȟὠ ȟὴ  to the other side of the interface to populate Ghost Fluid A. The isobaric 

fix is repeated for Fluid B, which for a sample point P is given by: ”ȟὠ ȟὴ

”z ȟόzȟὴz , while the tangential velocity ὠ  remains unchanged again.  As before, once 

this algorithm has been applied to cells in Fluid B located next to the interface, eq. (3.1) is 

used with a óô sign to extrapolate ”ȟὠ ȟὠ ȟὴ  to the other side of the interface to 

populate Ghost Fluid B. Note that we have used two different pressures ὴz  and ὴz  in the 

solution of the MMRP, to account for surface tension effects according to ὴ ὴz

ὴz „‖ , where ὴ is the pressure jump across the interface, „ is the surface tension 

coefficient, and ‖ is the interface curvature computed from eq. (2.44).  

Exact multi-medium Riemann solver with surface tension:  

Detailed descriptions of exact multi-medium Riemann solvers are given in [32, 40, 83-85], 

while multi-medium Riemann solvers adapted to account for surface tension effects are 

presented in [84, 86]. In IMPACT, we follow [32] where pressure is solved using the 

equation below: 

Ὢὴȟ╦ Ὢ ὴȟ╦ ό ό π ȟ                                                           σȢρς 

where ╦ ”ȟόȟὴ  and ╦ ”ȟόȟὴ  are the left and right states of the MMRP, 

respectively, and functions Ὢ and Ὢ are defined as follows: 

Ὢὴȟ╦
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              ίὬέὧὯ
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          σȢρσ 
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Ὢ ὴȟ╦
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           ίὬέὧὯ
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          σȢρτ 

In eqs. (3.13) ï (3.14), the relations for shock and rarefaction are selected based on the 

pressures (see [32] for details). We use the Newton-Raphson method to solve eq. (3.12) for 

either ὴz  or ὴz , and impose the condition ὴz ὴz „‖. Then, eqs. (3.3)-(3.10) are 

used to find ”z , ”z , and όz. 

At the end of this chapter, we summarize the numerical capabilities of IMPACT in table 

3.1 showing the major numerical methods used for the flow solver, the LS function, and 

the interface coupling. We have referred to the equation(s) required to be solved in each 

module along with the numerical methods used and the references in the literature. 
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Table 3.1. A summary of the numerical capabilities of IMPACT. 

Module Equation Method References 

Flux calculator (2.16) Roe solver [41] [43]  

EOS (2.6) Stiff gas - 

Cell reconstruction (2.22) (2.23) WENO5 [45] [46] 

LS equation (2.40) WENO5 [26] [50] [51] 

Reinitialization (2.41) WENO5 [26] [50] [51] [53] 

Extrapolation (3.1) 1st-order ENO [26] [87] 

Time discretization (2.45) (2.46) TVD-RK3 [55] 

Interface coupling - OGFM RGFM 

EGFM 

[26] [27] [32] [38] 
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CHAPTER 4: RESULTS AND DISCUSSION 

 

This chapter describes simulations performed to validate the numerical methods in 

IMPACT, and is organized as follows: In § 4.1, 1D single- and multi-medium Riemann 

problems and various shock-interface interaction simulations are summarized; 2D 

problems are presented and discussed in § 4.2; in § 4.3, results from IMPACT simulations 

of the shock-driven RMI are presented with corresponding analyses; finally, the ability of 

IMPACT to simulate flow problems in which surface tension effects are significant is 

demonstrated in § 4.4 including RMI with surface tension. All test problems in this chapter 

are summarized in table 4.1. 

4.1 1D test cases 

In this section, we solve various 1D Riemann problems analytically as well as numerically 

with IMPACT using OGFM, RGFM, and EGFM. Unless mentioned otherwise, the 

simulations were performed in a computational domain of length unity with 200 cells and 

ὅὊὒπȢς. In order to highlight the capabilities of the EGFM, we include the numerical 

results from EGFM step (1) for the first two tests (4.1.1 and 4.1.2) as well.  

4.1.1. Sod shock tube problem [41, 88]: This problem is initialized in a domain filled with 

air (‎ ρȢτ) with a discontinuity at ὼ πȢυ, and the following initial conditions: 

╦ ”ȟόȟὴ ρȟπȟρ, 

╦ ”ȟόȟὴ πȢρςυȟπȟπȢρȢ 
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Table 4.1. 1D and 2D problems used to validate IMPACT. 

 Problem Section Reference 

 Sod shock tube 4.1.1 [41, 88] 

 Shock impedance matching 4.1.2 [36, 38, 39] 

 Shock tube with strong pressure jump 1 4.1.3 [41] 

 Shock tube with strong pressure jump 2 4.1.4 [41] 

 Collision of two strong shocks 4.1.5 [41] 

 Multi-component shock tube problem 1 4.1.6 [89] 

1D Multi-component shock tube problem 2 4.1.7 [36] 

 Multi-component shock tube problem 3 4.1.8 [36, 38] 

 Strong shock impacting on a gas-gas interface 

(heavy Ÿ light) 

4.1.9 [26] 

 Strong shock impacting on a gas-gas interface 

(light Ÿ heavy) 

4.1.10 [26] 

 Strong shock impacting on a gas-water interface 

(heavy Ÿ light) 

4.1.11 [58] 

 Sod shock tube problem with prescribed 

pressure jump 

4.4.1 [84] 

    

    

 Underwater explosion of an air bubble 4.2.1 [58] 

 Strong shock impacting on an air cavity 

(heavy Ÿ light) 

4.2.2 [90] 

 Shock-bubble interaction 

(light Ÿ heavy) 

4.2.3 - 

2D Richtmyer-Meshkov Instability 4.3 - 

 Oscillating drop 4.4.2 [31, 86] 

 Shock-bubble interaction under surface tension 

effects (light Ÿ heavy) 

4.4.3 - 

 Richtmyer-Meshkov instability under the effect 

of surface tension 

4.4.4 - 
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The solution to the problem consists of a left rarefaction, a contact discontinuity, and a 

right shock, and is shown for ὸ πȢςυ in figure 4.1. In this figure, we have implemented 

only step (1) of the fix in the EGFM. 

As seen in figure 4.1, the OGFM, RGFM, and EGFM step (1) work equally accurately to 

capture the wave structure of the solution. For a closer comparison of the three methods 

near the contact discontinuity, we have plotted in figure 4.2 the density distributions over 

a narrow band of cells next to the middle wave. This figure shows that the EGFM step (1) 

gives the exact values for the cells immediately to the left and to the right of the wave, 

while the OGFM and RGFM are susceptible to overheating. For cells away from the 

interface, all three methods result in numerical inaccuracies. 
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Figure 4.1. (a) Density, (b) velocity, and (c) pressure profiles for the Sod shock tube 

problem. 
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Figure 4.2. (a) Density distribution near the contact discontinuity. Density values on the 

(b) left and (c) right sides of the wave. The density values of the two cells immediately 

next to the contact wave show the agreement of the results from the EGFM step (1) with 

the exact solution. 

 

We also compare the accuracy with which the three methods capture the corners of the 

rarefaction by plotting in figure 4.3 (a), (b), and (c) the density, velocity, and pressure 

distributions across the corner located at ὼ πȢτψς. As seen in figure 4.3, the OGFM and 
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RGFM underpredict the analytical values of density and pressure (undershoots), and 

overpredict the velocity values (overshoots). In contrast, the EGFM (step (1)) captures the 

analytical solution with accuracy. This demonstrates the EGFM approach in which the 

numerical solution is rectified according to the local behavior of the corresponding 

analytical solution, provides the most accurate solution for the Sod shock tube problem.  

 

Figure 4.3. (a) Density, (b) velocity, and (c) pressure distributions across the rarefaction 

corner. The EGFM (step (1)) rectifies the incorrect troughs associated with the OGFM as 

well as the mild overshoots and undershoots associated with the RGFM. 

0.4

0.42

0.44

0.46

0.48

0.5

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)

RGFM

OGFM
Exact

D
e

n
s
it

y

x

(a)

0.805

0.84

0.875

0.91

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)
RGFM
OGFM
Exact

V
e
lo

c
it

y

x

(b)

0.28

0.2975

0.315

0.3325

0.35

0.455 0.4725 0.49 0.5075 0.525

EGFM step (1)

RGFM

OGFM
Exact

P
re

s
s

u
re

x

(c)



 
 

 

56 

In figures 4.1-4.3, we demonstrated that by applying step (1) of the EGFM, an improved 

numerical solution can be obtained to the Sod shock tube problem, compared to the OGFM 

and RGFM. However, density values at the cells away from the contact wave in figure 4.2 

contain numerical inaccuracies, and require the application of step (2) to be corrected. In 

figures 4.4 and 4.5, the EGFM was applied in its entirety, resulting in solutions that are in 

excellent agreement with the analytical solution for each of the reported quantities.  

 

Figure 4.4. Density profile for problem 4.1.1. The EGFM has been applied in its entirety. 
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Figure 4.5 (a) Density values near the contact discontinuity. Density values on the (b) left 

and (c) right sides of the wave. The EGFM completely removes overheating from the 

numerical solution. 
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4.1.2. Shock impedance matching problem [36, 38, 39]: In this specifically designed 

Riemann problem, the solution comprises a shock wave to the right of the original 

discontinuity, while no wave forms on the left. The domain is filled with two gases (‎

ρȢφφχ and ‎ ρȢς) with a discontinuity at ὼ πȢς, and the following initial condition: 

╦ ”ȟόȟὴ σȢρχτψρωψφφȟωȢτστσωχωφυȟρππȟ 

╦ ”ȟόȟὴ ρȟπȟρȢ 

The solution obtained at ὸ πȢπφ is shown in figure 4.6, where the problem was solved 

using OGFM, RGFM and step (1) of the fix in the EGFM. 
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Figure 4.6. (a) Density, (b) velocity, and (c) pressure distributions in the shock 

impedance matching problem. The inability of the OGFM and RGFM to apply the correct 

boundary condition at the interface results in the spurious reflection. 

 

As seen in figure 4.6, even a partial implementation of the EGFM (step (1)) completely 

eliminates the unphysical reflecting wave to the left of the interface. This is shown in detail 

in figure 4.7, where the density, velocity, and pressure are plotted for ὼɴ πȢσȟπȢτ. Note 

that the OGFM and RGFM solutions contain numerical errors and spurious reflections, 


