
ANOMALY DETECTION FOR MANUFACTURING APPLICATIONS USING
CONVOLUTIONAL AUTOENCODERS

by

Nourelislam Zouar

A thesis submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Master of Science in

Computer Science

Charlotte

2021

 Approved by:

Dr. Min Shin

Dr. Stephen Welch

Dr. Chen Chen

 ii

©2021
Nourelislam Zouar

ALL RIGHTS RESERVED

 iii

ABSTRACT

NOURELISLAM ZOUAR. ANOMALY DETECTION FOR MANUFACTURING
APPLICATIONS USING CONVOLUTIONAL AUTOENCODERS. (Under the

direction of DR. MIN SHIN)

 Anomaly Detection in manufacturing environments is increasingly gaining

popularity among companies and researchers. Computer based visual inspection systems

are at the core of this interest. In the last few years, computer vision has made immense

advancement thanks to deep learning. More specifically, unsupervised learning has proven

its strength in this area, mainly due to its ability to deal with all kinds of anomalies and this

is due to the philosophy used in this type of machine learning.

 This research work was motivated by the availability of what is arguably the most

comprehensive public anomaly detection dataset, the MVTec dataset [1]. We implemented

a pipeline that starts by preprocessing different categories of the MVTec dataset and ends

by calculating the prediction accuracies and the inference times. This pipeline includes a

convolutional autoencoder. We started by implementing a CAE that follows the description

provided by [1]. Then, we have run many experiments using different CAE architectures

found in recently published papers.

 In order to evaluate the performance of all the experimented CAEs, we used a brute

force logic to find the best threshold. We used several portions of the calculated accuracies

to find the best threshold. These portions were made using different percentages of the

calculated accuracies, ranging from 70% to 100%.

 iv

DEDICATION

 I dedicate my dissertation work to my beloved mother Nacera Guettaf who has

always supported me and to my father Hocine Zouar who never saw this adventure.

 I dedicate this work to my sisters Amina and Amel, and to my brothers Mohamed

and Hichem.

 I also dedicate my dissertation to all my elementary, middle school, high school,

and university professors who made of me what I am today.

 v

ACKNOWLEDGEMENTS

 I thank my committee members, Dr. Min Shin, Dr. Stephen Welch, and Dr. Chen

Chen. I also want to thank Dr. Zachary Wartell for his continuous support and assistance.

 Special thanks goes to the AMIDEAST-Fulbright scholarship team.

 vi

TABLE OF CONTENTS

LIST OF TABLES ... viii

LIST OF FIGURES .. ix

CHAPTER 1: INTRODUCTION .. 1

Thesis Statement ... 2

CHAPTER 2: BACKGROUND ... 3

2.1 Unsupervised Learning ... 3

2.2 Convolutional Autoencoder .. 4

2.3 Anomaly Detection ... 7

CHAPTER 3: RELATED WORK .. 9

CHAPTER 4: METHODOLOGY .. 14

4.1 Building the L2 convolutional autoencoder pipeline .. 14

4.1.1 Training dataset .. 16

4.1.2 Test dataset ... 17

4.1.3 L2 CAE .. 19

4.1.4 Reconstruction ... 21

4.1.5 Calculating distances ... 24

4.1.6 Thresholding .. 28

4.1.7 Speed of the CAE ... 29

4.2 Experimenting other architectures .. 29

4.2.1 Oh and Yun 2018 ... 30

 vii

4.2.2 Chow et al. 2020 .. 30

4.2.3 Gong et al. 2019 ... 33

CHAPTER 5: RESULTS & FUTURE WORK ... 35

5.1 Future work ... 35

REFERENCES .. 37

APPENDIX A: RESULTS USING 100% OF THE ACCURACIES 40

APPENDIX B: RESULTS USING 90% OF THE ACCURACIES 41

APPENDIX C: RESULTS USING 80% OF THE ACCURACIES 42

 viii

LIST OF TABLES

Table 1: Statistical recap of the MVTec dataset. .. 9

Table 2: Accuracies obtained for object categories. ... 11

Table 3: Accuracies obtained for texture categories. .. 12

Table 4: L2 CAE architecture [18]. ... 20

Table 5: Samples of L2-distances. .. 26

Table 6: Grid results of experimenting different picking best threshold logics. 29

Table 7: [27] CAE architecture. .. 31

Table 8: [28] CAE architecture - Encoder. ... 32

Table 9: [28] CAE architecture - Decoder. ... 33

Table 10: [29] CAE architecture - Decoder. ... 34

Table 11: Results of the evaluated CAEs. For each experimented method, and for each

category, good products and defective products accuracies are calculated along with the

inference time which was measured in milliseconds. The method with the highest mean of

the two accuracies is highlighted in boldface for each category. 36

 ix

LIST OF FIGURES

Figure 1: Convolving technique. ... 5

Figure 2: A simplistic representation of an autoencoder. ... 6

Figure 3: MVTec example images of all five textures. .. 10

Figure 4: MVTec example images of all ten objects. ... 10

Figure 5: Pipeline of the MVTec L2 CAE. ... 15

Figure 6: Process of building the training dataset. .. 16

Figure 7: Making patches without overlap. .. 17

Figure 8: Making patches with overlap. ... 18

Figure 9: Building the test dataset using striding. ... 19

Figure 10: An example of a non-overlapping pixel and overlapping pixel. 22

Figure 11: Illustration of the dividing factors idea. .. 23

Figure 12: Samples of some reconstructions. ... 24

Figure 13: Euclidean distance formula. .. 25

Figure 14: L2 distance between two images formula. .. 25

Figure 15: A sample of a successful distinction between good and defective. 27

Figure 16: A sample of an unsuccessful distinction between good and defective. 27

 1

CHAPTER 1: INTRODUCTION

 Manufacturers are increasingly adopting advanced digital technologies, leading to

more intelligent manufacturing processes [2]. Smart manufacturing involves the

integration of various sensors, computing platforms, communication technologies, and

data intensive modelling in the production process [3]. An example of this integration is

the application of the Internet of Things (IoT) technologies in manufacturing, commonly

known as Industrial IoT or IIoT [4]. Many manufacturers are investing in modern digital

technologies such as IoT to gain competitive advantage. This union of manufacturing and

advanced technologies benefit manufacturers in many ways, including managing complex

systems, improving production performance, and gaining competitive advantages in the

international market [5].

 Product defects are an inevitable part of modern manufacturing processes [6].

Detecting issues early in production allows manufacturers to deliver higher quality

products, reduce waste, and save cost. Clearly, manufacturers always seek to improve

quality in order to increase profits, “there is no better cost to eliminate than the cost of poor

quality” [7].

 Driven by recent success of deep learning in computer vision since the introduction

of AlexNet in 2012 [8], automated anomaly detection is increasingly gaining interest in the

scientific community. Deep learning made it easy to solve many problems, such as:

classification and segmentation, high accuracies have been obtained in various domains

[9]. The high performance of deep learning does come at a cost - deep learning often

requires large amounts of data and significant computational power, due to the volume of

computation required [10]. For example, for image classification tasks, some practitioners

 2

recommend 1000 examples of each class or more. However, this number can go down

substantially if a pre-trained model is used [11].

Thesis Statement

 In academic environments, researchers and scientists tend to share datasets for the

sake of advancing the overall field. Many outstanding accomplishments made in computer

vision were enabled by the introduction of large datasets. For example, stellar

achievements were made in image classification thanks to MNIST [12], CIFAR10 [13],

and ImageNet [14]. Unlike image classification, unsupervised anomaly detection lacks

large public real-world datasets. Further, freely accessible comprehensive datasets are very

rare in the manufacturing world, primarily due to the competitive nature of manufacturers

[15].

 A notable exception to this trend is [1], which consisted of two major contributions.

First, the introduction of what is arguably the most complete public anomaly detection

dataset, the MVTec Anomaly Detection dataset. The availability of such a dataset to the

public opened a number of opportunities. Secondly, setting a baseline to which researchers

can compare themselves to. This baseline comprises results obtained by running a series of

experiments on the newly introduced dataset, including techniques such as AnoGAN, CNN

Feature Dictionary, and Autoencoders.

 Using the MVTec dataset, the goal of our research is to present a deep learning

model that is capable of yielding competitive results relative to [1]. More precisely, we

conduct a series of experiments on the MVTec dataset using various Convolutional

Autoencoder architectures.

 3

CHAPTER 2: BACKGROUND

2.1 Unsupervised Learning

 Machine Learning (ML) is a branch of artificial intelligence that focuses on

algorithms capable of learning from data. Traditionally, programmers write code that

captures the programmer’s understanding of the task at hand. In ML based approaches, the

algorithm does note exclusively rely on the programmer’s knowledge to obtain a specific

outcome. Instead, the programmer writes multiple components of his learning algorithm,

such as the model architecture which is responsible for containing the knowledge learnt,

however much of the knowledge gained is not explicitly programmed, it is learned from

data.

 Numerous machine learning approaches exist including: supervised learning,

unsupervised learning, or semi-supervised learning. The present work is focused on

autoencoders, which are a type of unsupervised machine learning algorithms.

 In supervised learning, the model is guided towards learning a specific pattern using

data labelled by humans. In contrast, unsupervised learning leverages “raw” unlabeled

data, consequently, the learning model must discover patterns from data alone [16].

Clustering is a canonical example of unsupervised learning. For example, say we have a

dataset of persons that consists only of two pieces of information: age and weight. More

specifically, the data is a set of tuples such as (65, 160), and the gender of these persons is

not given. Given sufficient data, a clustering algorithm will discover the hidden pattern and

learn the relation that links age and weight to gender. Using the trained model, we will be

able to predict the gender of a person only based on his age and weight. Unsupervised

learning is also used by autoencoders. The last-mentioned are a type of deep learning

 4

algorithms that outputs a reconstruction of their input. This idea of exactly reconstructing

the input has multiple applications, such as: denoising images and anomaly detection.

 The idea of leveraging autoencoders for anomaly detection is based on a key feature

of autoencoders which is the ability to reconstruct their input. More precisely, the

autoencoder is trained using good products images exclusively. Once trained, the model is

supposed to always output a good product image. So, if the input is an image of a good

product, then the input and its reconstruction should be very similar. In contrast, if the input

is an image of a defective product, the reconstructed image which is an image of a good

product should be very different from the input. By measuring the similarity between an

input image and its reconstruction anomalies are detected.

2.2 Convolutional Autoencoder

 Convolutional neural networks (CNNs) are a type of artificial neural network

(ANN) broadly used in analyzing images. Like other ANNs, a CNN is a set of layers of

artificial neurons that can be trained to detect patterns in images, these patterns range from

simple features like edges, shapes, or textures, to complex features composed of many

layers of simpler features such as faces, eyes, or specific objects. What distinguishes CNNs

from ANNs is the use of convolution instead of general matrix multiplication [17]. The

convolution operation consists of applying filters to images, a filter for each pattern at each

layer. In fact, the deeper we dive into a CNN the more sophisticated patterns our CNN is

capable of detecting. A filter is a relatively small matrix of learnable parameters called

weights. In a convolutional layer a filter is slid over the image and a dot product is

computed between the filter itself with the corresponding pixels of the image each time,

the result of this convolutional layer is a new matrix of the dot products. This sliding

 5

operation is referred to as convolving. Hence, a convolutional autoencoder is nothing more

than an autoencoder that involves convolutional layers.

Figure 1: Convolving technique.1

 Autoencoders are a family of algorithms that fall under the unsupervised learning.

These algorithms are meant for dimensionality reduction, the result of this reduction is a

representation or an encoding. An autoencoder consists of two parts: an encoder and a

decoder. The former is a set of neural network layers, the deeper you go into an encoder

the smaller the size of the layer, the last and smallest layer in the encoder is called the

bottleneck or the latent space. In the decoder, the shallower you get the greater the size of

the layer.

1 https://towardsdatascience.com/intuitively-understanding-convolutions-for-deep-
learning-1f6f42faee1

 6

Figure 2: A simplistic representation of an autoencoder.2

Autoencoders are characterized by many features such as:

• Data-specific, this means that an autoencoder only works on the data that was

trained on. If for example, we trained an autoencoder by using images of bottles,

the resulting trained model won’t be useful for anything else but images of bottles.

• Although known by outputting their inputs, autoencoders are lossy. Having an

output image that looks exactly like the input one is not guaranteed when using

autoencoders. Even though these models attempt to reconstruct their input,

autoencoders will always output a degraded version of the input.

• As unsupervised models, autoencoders do not need labeled data. Regardless of the

preprocessing of the images before inputting them into the autoencoder, nothing

else is needed, no labels are required.

Multiple types of autoencoders exist, among them:

• Denoising Autoencoder: When an autoencoder has more nodes in the hidden layer

than the input layer, it risks learning the “Identity Function” or “Null Function”

2 https://towardsdatascience.com/autoencoders-introduction-and-implementation-
3f40483b0a85

 7

meaning that the output equals the input which makes the autoencoder completely

worthless. To solve this problem, a corrupted (noised) copy of the input is made.

Then, this copy will be passed to the autoencoder.

• Vanilla Autoencoder: This is the simplest form of an autoencoder, it consists only

of three layers: input, hidden, and output. Obviously, the hidden layer is smaller

than the input and output layers, and the input and output layers are of the same

size.

• Undercomplete Autoencoder: If an autoencoder has a big latent space, it will most

likely perform copying meaning that the autoencoder is not extracting any

information, no learning is done. In contrast, an autoencoder with a small hidden

layer compared to the input and output layers is called an undercomplete

autoencoder.

• Convolutional Autoencoder: Known by its efficiency, convolution has repeatedly

proven its strength when it comes to extracting meaningful information from an

image. Meanwhile, the compressing performed by the autoencoders causes massive

loss in information. Automatically, using convolution in autoencoders has become

a reality. In a CAE, the encoding part is done by applying the convolution operation.

Contrarily, deconvolution is used while decoding. In our research we particularly

gave special attention to this type of autoencoders.

2.3 Anomaly Detection

 Usually, data can be divided into groups based on a similarity criteria. Oftentimes,

this division creates outliers. An anomaly is a data that is different from the bulk of the

data. Depending on the field, this deviation is usually considered negative, it can be: bank

 8

fraud, errors in a text, medical problems or a structural defect. Most of the time, anomalies

are not accepted in the industry.

 Anomaly detection is the process of identifying novelties in an established pattern.

So, for an anomaly to be detected, first we need to establish a model, we have to answer

the following question: what is normal? For instance, imagine we have a group of vehicles:

nine cars and a motorcycle. Eight out of the nine cars are red and the remaining one is blue,

the motorcycle is red too. If we decide that the normal is being a car, then the motorcycle

will be considered as an anomaly. On the other hand, if we decide that the anomalous

vehicle is the one that has a different color than the rest of vehicles, then the blue car will

be considered as an outlier.

 In manufacturing, defining the norm is not a hard task. Factories are built to produce

good products, so by nature good products are the norm and any defective product is

considered an anomaly.

 9

CHAPTER 3: RELATED WORK

 [1] presents two major contributions, the introduction of a new dataset and setting

baseline results for many state-of-the-art unsupervised anomaly detection algorithms.

 The MVTec dataset comprises 5354 high-resolution images, 3629 of them are for

training and validation purposes, the remaining 1725 images are for testing. While the

training dataset consists of only defect-free images, the testing dataset contains both:

flawless images and images with several types of defects. The MVTec dataset covers 15

categories, five of them are for texture images: regular (carpet, grid) and random (leather,

tile, wood), and the remaining ten categories are for different objects like: bottle, cable,

and hazelnut. Additionally, 73 distinct defect types are present in the testing dataset,

namely, scratches, dents, cracks, etc. Table 1 presents a statistical recap of the MVTec

dataset.

 Category # Train # Test
(good)

Test
(defective)

Image side
length

Textures

Carpet
Grid
Leather
Tile
Wood

280
264
245
230
247

28
21
32
33
19

89
57
92
84
60

1024
1024
1024
840
1024

Objects

Bottle
Cable
Capsule
Hazelnut
Metal Nut
Pill
Screw
Toothbrush
Transistor
Zipper

209
224
219
391
220
267
320
60
213
240

20
58
23
40
22
26
41
12
60
32

63
92
109
70
93
141
119
30
40
119

900
1024
1000
1024
700
800
1024
1024
1024
1024

 Total 3629 467 1258 -

Table 1: Statistical recap of the MVTec dataset.

 10

Figure 3: MVTec example images of all five textures.

Figure 4: MVTec example images of all ten objects.

 11

 [1] includes baseline results for six state-of-the-art methods: Convolutional

Autoencoder (L2), Convolutional Autoencoder (SSIM), AnoGAN, CNN Feature

Dictionary, Texture Inspection, and Variational Model. Tables 2 and 3 present the results

obtained. For each dataset category, the first row represents the ratio of correctly classified

samples of anomaly-free images, and the second row represents the ratio of correctly

classified samples of anomalous images. The method that has the highest mean of these

two values is highlighted in bold.

Category AE
(SSIM) AE (L2) AnoGAN

CNN
Feature

Dictionary

Texture
Inspection

Variational
Model

Bottle

 0.85 0.70 0.95 1.00 - 1.00
0.90 0.89 0.43 0.06 - 0.13

Cable

0.74 0.93 0.98 0.97 - -
0.48 0.18 0.07 0.24 - -

Capsule

0.78 1.00 0.96 0.78 - 1.00
0.43 0.24 0.20 0.03 - 0.03

Hazelnut

1.00 0.93 0.83 0.90 - -
0.07 0.84 0.16 0.07 - -

Metal Nut

1.00 0.68 0.86 0.55 - 0.32
0.08 0.77 0.13 0.74 - 0.83

Pill 0.92 1.00 1.00 0.85 - 1.00
0.28 0.23 0.24 0.06 - 0.13

Screw 0.95 0.98 0.41 0.73 - 1.00
0.06 0.39 0.28 0.13 - 0.10

Toothbrush 0.75 1.00 1.00 1.00 - 1.00
0.73 0.97 0.13 0.03 - 0.60

Transistor 1.00 0.97 0.98 1.00 - -
0.03 0.45 0.35 0.15 - -

Zipper 1.00 0.97 0.78 0.78 - -
0.60 0.63 0.40 0.29 - -

Table 2: Accuracies obtained for object categories.

 12

Category AE
(SSIM) AE (L2) AnoGAN

CNN
Feature

Dictionary

Texture
Inspection

Variational
Model

Carpet

0.43 0.57 0.82 0.89 0.57 -
0.90 0.42 0.16 0.36 0.61 -

Grid

0.38 0.57 0.90 0.57 1.00 -
1.00 0.98 0.12 0.33 0.05 -

Leather

0.00 0.06 0.91 0.63 0.00 -
0.92 0.82 0.12 0.71 0.99 -

Tile

1.00 1.00 0.97 0.97 1.00 -
0.04 0.54 0.05 0.44 0.43 -

Wood

0.84 1.00 0.89 0.79 0.42 -
0.82 0.47 0.47 0.88 1.00 -

Table 3: Accuracies obtained for texture categories.

 In a similar work [18], Bergmann and his collaborators addressed anomaly

detection in manufacturing environments, focusing on defect segmentation.

 [18] claims that most of the convolutional autoencoders used in this field suffer

from serious problems and that this is primarily due to the use of per-pixel reconstruction

error based on a lp-distance. According to [18], whenever the reconstruction includes slight

localization inaccuracies around edges, this approach leads to large residuals. Additionally,

it fails to reveal defective regions that have been visually altered when intensity values stay

roughly consistent.

 To address these issues, they propose a new approach for calculating the error when

reconstructing the image. Instead of using a per-pixel error measurement such as l2-

distance, they propose an alternative error measure, using regions (a set of pixels) to

calculate the error in place of using one pixel. This approach is commonly known as

structural similarity (SSIM) metric [19].

 In order to evaluate the newly introduced approach, [18] uses two real-world

industrial inspection datasets. A woven fabric textures dataset built by them and the

 13

NanoTWICE dataset of nanofibrous materials [20]. The woven fabric dataset used consists

of 100 defect-free images per texture for training and validation and 50 images for testing,

while the NanoTWICE dataset consists of 5 defect-free images used for training and

validation along with 40 defective images for evaluation.

 An alternative approach that is increasingly gaining popularity in unsupervised

anomaly detection is using Generative Adversarial Networks (GANs). Even though both

autoencoders and GANs have the same number of components, an encoder and decoder

for the autoencoder, and a generator and a discriminator for the GAN, the philosophy

followed is different. Autoencoders learn more about "how can I memorize this particular

set of images with the greatest accuracy/efficiency" which is different from GANs which

are more about "how can I make an image look real in general". One more difference is

that unlike GANs which use two loss metrics, autoencoders use only one loss metric.

 In [21], to detect anomalies such as retinal fluid, Schlegl trained a GAN on optical

coherence tomography images of the retina. Specifically, this detection is accomplished by

searching for a latent sample that minimizes the per-pixel l2-reconstruction error as well

as a discriminator loss. This approach requires a large number of optimization steps to find

a good latent sample which makes it very slow. Consequently, it is more suitable for

applications that are not time-sensitive. For a faster inference, Zenati [22] proposed to use

bidirectional GANs [23] to add the missing encoder network. However, since GANs are

prone to run into mode collapse, having all modes of the distribution of defect-free images

captured by the model is not guaranteed. Moreover, GAN training is more difficult than

training an autoencoder and this is due to the fact that the loss function of the adversarial

training typically cannot be trained to convergence [24].

 14

CHAPTER 4: METHODOLOGY

Our work consists of two major steps:

1. Implementing the L2 convolutional autoencoder pipeline as described in [1] - [18].

2. Experimenting new architectures using this pipeline.

4.1 Building the L2 convolutional autoencoder pipeline

 Following the approach described in [1] - [18], evaluating the L2 CAE consists of

several steps, starting from the raw data (the MVTec dataset), and ending with

computing accuracies. These steps are:

1. Making the training and testing datasets by preprocessing the MVTec dataset

2. Training the model using a proposed CAE architecture

3. Reconstruction of the output of the CAE

4. Measuring the distance between the input image and its reconstruction

5. Thresholding the distances in order to calculate the accuracies

 Figure 5 illustrates all the steps of the pipeline. In a nutshell, first, the MVTec

dataset is preprocessed to make: training, validation, testing datasets. The L2 CAE is then

trained using the training and validation datasets. Predictions are then made by the trained

L2 CAE using the test dataset. Using the output of the autoencoder, we reconstruct the

image as a whole. Next, distances between the input images and their reconstructions are

calculated. Finally, thresholds are found, and accuracies are calculated.

 15

Figure 5: Pipeline of the MVTec L2 CAE.

 16

In the following sections we will explain every step of the pipeline in detail.

4.1.1 Training dataset

 Since the input layer of the autoencoder is significantly smaller than the images in

the original dataset, the training dataset is formed by sampling patches. Given that the that

MVTec dataset images are mostly of size 1024 by 1024, the preprocessing phase consists

of:

• Resizing the images to 256 by 256

• Randomly cropping these resized images resulting in patches of 128 by 128

 Knowing that for each category of the MVTec dataset (carpet, bottle, etc.) a

model is to be trained, 10000 patches are made per category.

Figure 6: Process of building the training dataset.

 17

4.1.2 Test dataset

 The process of making the test dataset is different from the one of making the

training dataset. In this step we don’t randomly crop an image to make patches, instead, we

make patches in a way to keep all the pixels of the input image.

First of all, we take the input image and we resize it to 256 by 256. Then, we stride on it a

window of 128 by 128 (the size of the patch) horizontally saving each time the window

values as a patch. We iterate this process by moving the window vertically by the same

stride until we cover the entire image.

 If no overlap is tolerated, we will get 4 patches where each patch will have 2 edges

that are from the middle of the image as illustrated by Figure 7.

Figure 7: Making patches without overlap.

 18

 In computer vision, it is known that edges of images (the edges of the 4 patches in

our case) are not considerably taken into account when doing many calculations. Usually,

deep neural networks give different results on the edge regions of an image compared to

the center of an image. Since the preprocessing step involves breaking larger images into

patches, the edges of these patches may be critical for many images, as the edge of a patch

may fall in the center of an image where an anomaly is present. For this reason, [1] chose

to follow another approach, using a smaller striding step compared to the size of the patch.

By doing this we are incorporating the central edges more efficiently in our future

calculations, more precisely, the reconstruction step.

 Using the resized images to 256 by 256, and aiming for patches of size 128 by 128,

[1] chose to use a striding of 30 pixels, figure 8 illustrates this idea. This choice obviously

means that padding is needed. To complete a patch when the striding arrives at the edge of

the image, we will use the last encountered pixel as a gap-filler, figure 9 illustrates this.

Figure 8: Making patches with overlap.

 19

Figure 9: Building the test dataset using striding.

 Each category of the MVTec dataset, like: hazelnut wood, etc., has a “raw” test

subdataset. The latter comprises several images which are preprocessed to make the test

dataset on which we evaluate the trained model. Using the recommended 30 pixels striding,

each image gives 81 patches. While building the test dataset, we took into consideration

the reconstruction step which requires knowing the order of patches. Each patch has a line

number and a column number.

4.1.3 L2 CAE

 We built the L2 CAE architecture following the explanation provided in [1] - [18]

which consists of two parts: the encoder and the decoder, both have 9 convolutional and

deconvolutional layers respectively, the dimension of the latent space is 100. Table 4 gives

an overview of this architecture. Each model is trained for 200 epochs using the ADAM

[25] optimizer with an initial learning rate of 2 × 10−4 and a weight decay set to 10-5. Leaky

rectified linear units (ReLUs) with slope 0.2 are applied as activation functions after each

layer except for the output layers of both the encoder and the decoder, in which linear

activation functions are used.

 20

 Layer Output Size
Parameters

Kernel

Stride Padding

Encoder

Input 128x128x1

Conv1 64x64x32 4x4 2 1

Conv2 32x32x32 4x4 2 1

Conv3 32x32x32 3x3 1 1

Conv4 16x16x64 4x4 2 1

Conv5 16x16x64 3x3 1 1

Conv6 8x8x128 4x4 2 1

Conv7 8x8x64 3x3 1 1

Conv8 8x8x32 3x3 1 0

Conv9 1x1x100 8x8 1 1

Decoder

Deconv1 8x8x32 3x3 8 1

Deconv2 8x8x64 3x3 1 1

Deconv3 8x8x128 4x4 1 1

Deconv4 16x16x64 3x3 2 1

Deconv5 16x16x64 4x4 1 1

Deconv6 32x32x32 3x3 2 1

Deconv7 32x32x32 4x4 1 1

Deconv8 64x64x32 4x4 2 1

Deconv9 128x128x1 4x4 2 1

Table 4: L2 CAE architecture [18].

 21

 For the training, L2-distance is used as a loss function, hence the name L2 CAE.

This choice is made for the simplicity and computational speed of this per-pixel measure.

4.1.4 Reconstruction

 Once all the patches of an image, from the built test dataset, have been passed

through the trained model, a reconstruction is to be done. The goal is to rebuild the full

output image, the size of the latter is 256 by 256.

 The test dataset was made with keeping as much information of the image as

possible in mind, hence, overlapping of patches was done. As a result of this choice, the

reconstruction has to take into account this overlapping.

 To reconstruct the entire output image, for each patch, two distinct cases are to be

taken into consideration:

1. If the pixel of the patch is not an overlapping pixel, we simply copy its value

into the full output image being built.

2. If the pixel is an overlapping pixel, we calculate the average between this pixel

and the corresponding overlapping pixels of all the adjacent patches. Then we

copy its value to the full output image being built.

Figure 10 illustrates the places of these pixels: non overlapping and overlapping pixels.

 22

Figure 10: An example of a non-overlapping pixel and overlapping pixel.

 The second reconstruction operation seems a little bit tricky because for each

overlapping pixel we calculate the average of all the overlapping pixels from all patches

that share this specific pixel. This operation happens for every single overlapping pixel. To

make this happen, instead of uncomfortably using a set of nested loops, we opted for using

another approach. We:

• First, build the full output image by copying values from all patches, summing

the values of all the overlapping pixels whenever needed.

• In parallel, build an abstract matrix of the same size as the final output image

(256 by 256) that contains the dividing factors by which each overlapping pixel

will be divided by. For example, if a pixel of the output image is the sum of two

• pixels of two different patches, then, the corresponding value of the abstract

matrix should be 2.

 23

• Finally, calculate the average of the overlapping pixels using both matrices. We

divide the built full output image by the abstract matrix of dividing factors.

 To illustrate this idea, figure 11 presents a simple example of adding two patches

that have two overlapping pixels in common: the most right two pixels of patch 1 and the

most left two pixels of patch 2. Matrix 1 represents the merge of patch 1 and patch 2, the

values of the non-overlapping pixels are copied without change from patch 1 and patch 2,

and the values of the overlapping pixels are the sum of the overlapping pixels. Matrix

2 represents the calculated dividing factors, ones are due to the fact that these are non-

overlapping pixels, the value corresponding to the two overlapping pixels is 2, and this is

due to the number of patches sharing these pixels. Finally, the final full image output is

built by dividing values of matrix 1 by the values of matrix 2.

Figure 11: Illustration of the dividing factors idea.

 24

 Some of the reconstructions were good and some of them were not that good. Figure

12 shows some of the reconstructions.

Figure 12: Samples of some reconstructions.

4.1.5 Calculating distances

 Now that we have successfully reconstructed the full output image, the next step is

to calculate the distance between the input and output images. The shorter the distance

between the two images the more similar they are. [1] used a per-pixel measure, the

Euclidean distance measure, which is also known as L2-distance. The Euclidean distance

is the shortest distance between two points in a space called the Euclidean space. This

 25

metric is commonly used to measure the similarity between two data points and used in

various fields such as geometry, data mining, deep learning and others. [26]

In geometry, say we have two points P1 and P2, (x1, y1) and (x2, y2) are their coordinates

respectively. The Euclidean distance between P1 and P2 is calculated following a specific

formula. Figure 13 presents this formula.

Figure 13: Euclidean distance formula.

 Since we are calculating the L2-distance between two images which are basically

matrices, the L2-distance between image X and its reconstruction R is calculated following

the formula presented in figure 14. Where X (r, c) denotes the intensity value of image X

at the pixel (r, c), and h an w represents height and width of the image.

Figure 14: L2 distance between two images formula.

 The L2-distance was calculated for each image of each category of the MVTec test

dataset, table 5 represents some of these distances.

 [1] calculated two accuracies for each category. For example, Carpet has two

accuracies: the accuracy of the trained model successfully predicting good carpets, and the

accuracy of the trained model successfully predicting defective models.

 26

 Driven by the way accuracies are calculated in [1], the reconstruction step produces

two csv files for each category, one for good products and one for defective ones.

Category Data Kind L2-Distance

Carpet
Good 275290348.0

Defective 255828067.0

Grid
Good 756916593.0

Defective 1107697629.0

Wood
Good 1176286551.0

Defective 1125998755.0

Table 5: Samples of L2-distances.

 In this step, reconstruction, and after making the csv files, we made whisker plots.

The goal is to see if we can distinguish good products from defective ones based on the

calculated distances for each category. Figures 15 and 16 represent two samples of a

successful and an unsuccessful distinction between good and defective products

respectively.

 27

Figure 15: A sample of a successful distinction between good and defective.

Figure 16: A sample of an unsuccessful distinction between good and defective.

 28

4.1.6 Thresholding

 After successfully calculating the distances between the input and output images

for each category of the MVTec dataset, the next step consists of calculating the accuracies.

To do this, we have to find a threshold for each category based on which we can decide

what is successfully predicted from what is not.

 Knowing that each category of the MVTec dataset has two sets of data: good and

defective, [1] has exclusively used the calculated distances of the good products to find a

threshold. The latter is then used on both good and defective sets of data to calculate

accuracies.

 In order to calculate the thresholds, we opted for the brute force approach. We tried

all distances of the good products as thresholds. Then, we picked the best threshold that

maximizes the accuracy of the good products. Finally, to calculate the defective products

accuracy, we used this threshold on the defective products. Like this we found the two

targeted accuracies: good and defective products accuracies.

Picking the ‘best’ threshold was the subject of some experimenting. After calculating all

accuracies based on all tested thresholds, to define the best we tried the following logics,

the best threshold was chosen using:

1. 100% of the calculated accuracies.

2. 90% of the calculated accuracies.

3. 80% of the calculated accuracies.

4. 70% of the calculated accuracies.

 Table 6 represents results of different logics experimented to choose the best

accuracy. By comparing the found accuracies using different logics with the ones of [1],

 29

we found that using 100% of the calculated accuracies to find the best threshold was too

biased to good products, we had to lower this value to 70% which we think is the best logic

for picking the threshold.

Grid

Good Defective

100% 1.00 0.04

90% 0.91 0.54

80% 0.81 0.65

70% 0.71 0.74

Table 6: Grid results of experimenting different picking best threshold logics.

4.1.7 Speed of the CAE

 In this work, we have also calculated the time needed by all CAEs we experimented

to make predictions for each category of the MVTec test dataset. To do this, we calculated

the average time taken to make a prediction for one image for each category, this was done

in the most accurate way. We avoided including the loading time of images which can be

affected by the read/write speed of the SSD, we have just used the prediction time.

4.2 Experimenting other architectures

 Now that we have built the whole CAE pipeline, from the raw MVTec dataset to

the accuracies, the next step is to experiment with other CAEs. To do so, we have done an

academic review on recently published papers about CAEs, some of the papers shared

 30

code, others shared only their CAE architecture. We finished by experimenting with three

different architectures of three published papers.

4.2.1 Oh and Yun 2018

 [27] focused on detecting anomalies based on abnormal sounds in special cases of

manufacturing. More precisely, industrial environments that require constant verifying and

monitoring of a machine. They proposed an autoencoder architecture that is based on the

quality of the reconstruction to identify the anomaly. They evaluated their model using

Surface-Mounted Device (SMD) machine sound. They claim achieving state-of-the-art

performance for anomaly detection. Table 6 summarizes the architecture we used to run

our experiment which is based on their proposed architecture. We made changes on the

input and output layers to make them 128 by 128, some changes had to be done on the

striding too.

4.2.2 Chow et al. 2020

 [28] presents a research work that was on detecting defects on concrete structures.

Chow et al. implemented a convolutional autoencoder using defect-free images to do that.

The dataset used to evaluate their model is made by them and remains confidential.

 31

 Layer Output Size Parameters

Kernel

Stride Padding

Encoder

Input 128x128x1

Conv1 64x64x64 5x5 2 1

Conv2 32x32x64 5x5 2 1

Conv3 16x16x96 5x5 2 1

Conv4 8x8x96 5x5 2 1

Conv5 4x4x128 5x5 2 1

Conv6 2x2x128 4x4 2 1

Conv7 1x1x160 4x4 2 1

Conv8 1x1x160 4x4 2 1

Conv9 1x1x192 3x3 2 1

Conv10 1x1x192 3x3 2 1

Decoder

Deconv1 2x2x192 3x3 2 1

Deconv2 4x4x160 3x3 2 1

Deconv3 8x8x160 4x4 2 1

Deconv4 16x16x128 4x4 2 1

Deconv5 32x32x128 4x4 2 1

Deconv6 64x64x96 5x5 2 1

Deconv7 128x128x64 5x5 2 1

Deconv8 128x128x32 5x5 1 1

Deconv9 128x128x32 5x5 1 1

Deconv10 128x128x1 5x5 1 1

Table 7: [27] CAE architecture.

 32

Tables 8 and 9 represent the architecture used to run our experiment which is based on

[28] architecture.

 Layer Output Size Parameters

Kernel

Stride Padding

Encoder

Input 128x128x1

Conv1 128x128x16

3x3 1 1

Conv2 128x128x16

3x3 1 1

MaxPooling

1 64x64x16

2x2 2 0

Conv3 64x64x32

3x3 1 1

Conv4 64x64x32

3x3 1 1

MaxPooling

32x32x32

2x2 2 0

Conv5 32x32x64

3x3 1 1

Conv6 32x32x64

3x3 1 1

MaxPooling

16x16x64

2x2 2 0

Conv7 16x16x128

3x3 1 1

Conv8 16x16x128

3x3 1 1

MaxPooling

Conv7

8x8x128

2x2 2 0

Conv9 8x8x256

3x3 1 1

Conv10 8x8x256

3x3 1 1

MaxPooling

4x4x256

2x2 2 0

Conv11 4x4x512

3x3 1 1

Conv12 4x4x512

3x3 1 1

Flatten

8192

Dense

100

Dense

50

Table 8: [28] CAE architecture - Encoder.

 33

 Layer Output Size Parameters

Kernel

Stride Padding

Decoder

Dense 100

Reshape

1x1x100

Deconv1

2x2x512

3x3 2 1

Conv13

2x2x512

3x3

2 1

Conv14

2x2x512

3x3 2 1

Deconv2

4x4x256

3x3 2 1

Conv15

4x4x256

3x3

2 1

Conv16

4x4x256

3x3 2 1

Deconv3

16x16x128

3x3 2 1

Conv17

16x16x128

3x3

2 1

Conv18

16x16x128

3x3 2 1

Deconv4

32x32x64

3x3 2 1

Conv19

Conv7

32x32x64

3x3

2 1

Conv20

32x32x64

3x3 2 1

Deconv5

128x128x1

3x3 2 1

Conv21

128x128x1

3x3

2 1

Conv22 128x128x1

3x3 2 1

Table 9: [28] CAE architecture - Decoder.

4.2.3 Gong et al. 2019

 In [29], Gong and his collaborators claim that sometimes autoencoders “generalize”

and reconstruct the anomalies which they are not supposed to do. To mitigate this problem,

they propose to improve the quality of the autoencoder by using a memory module. They

call their proposed model: memory-augmented autoencoder, or MemAE. This memory

module is responsible for retaining a memory of the defect-free images during the training

phase. In the test phase, this memory module is fixed, no more changes are to be made to

 34

this module. The reconstruction of the test dataset images is made using this memory

module which makes it tend to be closer to the defect-free images. Table 10 represents the

autoencoder architecture used to run our experiment which is inspired by [29].

 Layer Output Size Parameters

Kernel

Stride Padding

Encoder

Input 128x128x1

Conv1 64x64x64 5x5 2 1

Conv2 32x32x64 5x5 2 1

Conv3 16x16x96 5x5 2 1

Conv4 8x8x96 5x5 2 1

Decoder

Deconv1 2x2x192 3x3 2 1

Deconv2 4x4x160 3x3 2 1

Deconv3 8x8x160 4x4 2 1

Deconv4 16x16x128 4x4 2 1

Table 10: [29] CAE architecture - Decoder.

 35

CHAPTER 5: RESULTS & FUTURE WORK

 In this chapter we will present the results of our experiments. After experimenting

several logics of picking the best threshold, we concluded that picking the best threshold

using 70% of the calculated accuracies is the best logic. Table 11 represents the accuracies

calculated for each experimented CAE along with the inference time taken to predict a

single image. The winning accuracy is highlighted, this is decided after calculating the

average of the two accuracies, good and defective accuracies, for each experiment. More

results using the remaining logics can be found in the appendices.

5.1 Future work

 In this research work, we implemented a pipeline that allowed us to conduct a series

of experiments. A future work to our work could be summarized in the following points:

• Experimenting other CAE architectures.

• Trying other distance metrics in place of the L2-distance such as structural

similarity (SSIM) metric [19].

• Extend the pipeline to do segmentation and this could be done by calculating

residual maps.

• Experiment other approaches in place of CAEs such as AnoGANs.

 36

Category Bergman et al
2019 –

implementation

Oh and Yun
2018

Chow et al.
2020

Gong et al.
2019

Bergman et
al 2019 -

paper

Carpet
Good Accuracy 0.71 0.71 0.71 0.71 0.57
Defect Accuracy 0.14 0.11 0.09 0.25 0.42
Inference Speed (ms) 2.152 2.718 3.360 2.086 -

Grid

Good Accuracy 0.71 0.71 0.71 0.71 0.57
Defect Accuracy 0.74 0.98 0.81 0.70 0.98
Inference Speed (ms) 2.138 2.717 3.336 2.088 -

Leather

Good Accuracy 0.72 0.72 0.72 0.72 0.06
Defect Accuracy 0.15 0.15 0.26 0.15 0.82
Inference Speed (ms) 2.132 2.689 3.356 2.197 -

Tile

Good Accuracy 0.70 0.70 0.73 0.70 1.00
Defect Accuracy 0.23 0.15 0.18 0.73 0.54
Inference Speed (ms) 2.119 3.383 3.351 2.077 -

Wood

Good Accuracy 0.68 0.68 0.68 0.68 1.00
Defect Accuracy 0.82 0.85 0.62 0.95 0.47
Inference Speed (ms) 2.128 3.375 3.351 2.059 -

Bottle

Good Accuracy 0.70 0.70 0.70 0.70 0.70
Defect Accuracy 0.51 0.24 0.29 0.59 0.89
Inference Speed (ms) 2.155 3.372 3.536 2.155 -

Cable

Good Accuracy 0.72 0.67 0.71 0.71 0.93
Defect Accuracy 0.46 0.35 0.26 0.32 0.18
Inference Speed (ms) 2.114 3.258 3.522 2.114 -

Capsule

Good Accuracy 0.70 0.70 0.70 0.70 1.00
Defect Accuracy 0.58 0.51 0.51 0.55 0.24
Inference Speed (ms) 2.122 3.329 3.523 2.122 -

Hazelnut

Good Accuracy 0.70 0.70 0.70 0.70 0.93
Defect Accuracy 0.86 0.31 0.69 0.80 0.84
Inference Speed (ms) 2.102 3.218 3.420 2.102 -

Metal Nut

Good Accuracy 0.70 0.73 0.73 0.73 0.68
Defect Accuracy 0.03 0.02 0.03 0.05 0.77
Inference Speed (ms) 2.107 3.193 3.462 2.107 -

Pill

Good Accuracy 0.69 0.69 0.69 0.69 1.00
Defect Accuracy 0.38 0.35 0.58 0.51 0.23
Inference Speed (ms) 2.093 3.421 3.035 2.107 -

Screw

Good Accuracy 0.71 1.00 0.71 0.71 0.98
Defect Accuracy 1.00 0.72 0.00 1.00 0.39
Inference Speed (ms) 2.064 3.393 3.390 2.109 -

Toothbrush

Good Accuracy 0.75 0.75 0.75 0.75 1.00
Defect Accuracy 0.00 0.03 0.17 0.00 0.97
Inference Speed (ms) 2.151 3.427 3.436 2.161 -

Transistor

Good Accuracy 0.70 0.72 0.73 0.72 0.97
Defect Accuracy 0.33 0.55 0.53 0.53 0.45
Inference Speed (ms) 2.077 3.403 3.366 2.093 -

Zipper

Good Accuracy 0.72 0.72 0.72 0.72 0.97
Defect Accuracy 0.16 0.29 0.21 0.24 0.63
Inference Speed (ms) 2.069 3.376 3.287 2.058 -

Table 11: Results of the evaluated CAEs. For each experimented method, and for each
category, good products and defective products accuracies are calculated along with the
inference time which was measured in milliseconds. The method with the highest mean

of the two accuracies is highlighted in boldface for each category.

 37

REFERENCES

[1] P. Bergmann, F. Michael, D. Sattlegger and C. Steger, "MVTec AD — A

Comprehensive Real-World Dataset for Unsupervised Anomaly Detection," in
CVPR, Long Beach, 2019.

[2]
A. G. Frank, L. S. Dalenogare and N. F. Ayala, "Industry 4.0 technologies:
implementation patterns in manufacturing companies," International Journal of
Production Economics, 2019.

[3] A. Kusiak, "Smart manufacturing," International Journal of Production Research,
2018.

[4] K. -D. Thoben, S. Wiesner and T. Wuest, "“Industrie 4.0” and smart
manufacturing-a review of research issues and application examples," 2016.

[5] H. Yang, S. Kumara, S. T. Bukkapatnam and F. Tsung, "The internet of things for
smart manufacturing: A review," IISE Transactions, 2019.

[6] B. Giri and S. Sharma, "Optimizing a closed-loop supply chain with manufacturing
defectsand quality dependent return rate," Journal of Manufacturing Systems, 2014.

[7] J. Piatt, "industryweek.com," 7 October 2014. [Online]. Available:
https://www.industryweek.com/operations/quality/article/22008165/five-steps-to-
improved-manufacturing-quality.

[8] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," 2012.

[9] A. Voulodimos, N. Doulamis, A. Doulamis and E. Protopapadakis, "Deep Learning
for Computer Vision: A Brief Review," Computational Intelligence and
Neuroscience, 2018.

[10] N. Koleva, "blog.dataiku.com," 1 May 2020. [Online]. Available:
https://blog.dataiku.com/when-and-when-not-to-use-deep-learning.

[11] T. Mitsa, "towardsdatascience.com," 22 April 2019. [Online]. Available:
https://towardsdatascience.com/how-do-you-know-you-have-enough-training-data-
ad9b1fd679ee.

[12] Y. Lecun, Y. Bengio and P. Haffner, "Gradient-Based Learning Applied to
Document Recognition," Proceedings of the IEEE, 1998.

 38

[13] A. Krizhevsky, "Learning Multiple Layers of Features from Tiny Images," 2009.

[14] A. Krizhevsky, I. Sutskever and G. E. Hinton, "ImageNet Classification with Deep
Convolutional Neural Networks," 2012.

[15] J. Emge, "buddyloans.com," 8 April 2018. [Online]. Available:
https://www.buddyloans.com/news/business/competitive-nature-business-change-
go-bust-113471/.

[16] "guru99.com," [Online]. Available: https://www.guru99.com/unsupervised-
machine-learning.html.

[17] "deeplearningbook.org," [Online]. Available:
https://www.deeplearningbook.org/contents/convnets.html.

[18] P. Bergmann, S. Löwe, M. Fauser, D. Sattlegger and C. Steger, "Improving
Unsupervised Defect Segmentation by Applying Structural Similarity to
Autoencoders," in Computer Vision and Pattern Recognition, Long Beach, 2019.

[19] Z. Wang, A. C. Bovik, H. R. Sheikh and E. P. Simoncelli, "Image Quality
Assessment: From Error Visibility to Structural Similarity," IEEE TRANSACTIONS
ON IMAGE PROCESSING, 2004.

[20] D. Carrera, F. Manganini, G. Boracchi and E. Lanzarone, "Defect Detection in
SEM Images of Nanofibrous Materials," IEEE TRANSACTIONS ON INDUSTRIAL
INFORMATICS, 2017.

[21] T. Schlegl, P. Seeböck, S. M. Waldstein, U. Schmidt-Erfurth and G. Langs,
"Unsupervised Anomaly Detection with Generative Adversarial Networks to Guide
Marker Discovery," in Computer Vision and Pattern Recognition, Honolulu, 2017.

[22] H. Zenati, C.-S. Foo, B. Lecouat, G. Manek and V. R. Chandrasekhar,
"EFFICIENT GAN-BASED ANOMALY DETECTION," in ICDM, Singapore,
2018.

[23] J. Donahue, P. Krähenbühl and T. Darrell, "Adversarial Feature Learning," in ICLR,
Toulon, 2017.

[24] M. Arjovsky and L. Bottou, "Towards Principled Methods for Training Generative
Adversarial Networks," in ICLR, Toulon, 2017.

[25] D. P. Kingma and J. L. Ba, "ADAM: A METHOD FOR STOCHASTIC
OPTIMIZATION," in ICLR, San Diego, 2015.

 39

[26] "iq.opengenus.org," [Online]. Available: https://iq.opengenus.org/euclidean-
distance/.

[27] D. Y. Oh and I. D. Yun, "Residual Error Based Anomaly Detection Using Auto-
Encoder in SMD Machine Sound," Sensors, 2018.

[28] J. Chow, Z. Su, J. Wu, P. Tan, X. Mao and Y. Wang, "Anomaly detection of defects
on concrete structures with the convolutional autoencoder," ELSEVIER, 2020.

[29] D. Gong, L. Liu, V. Le, B. Saha, M. R. Mansour, S. Venkatesh and A. v. d. Hengel,
"Memorizing Normality to Detect Anomaly: Memory-augmented Deep
Autoencoder for Unsupervised Anomaly Detection," in ICCV, Seoul, 2019.

 40

APPENDIX A: RESULTS USING 100% OF THE ACCURACIES

Category Bergman et al
2019 –

implementation

Oh and Yun
2018

Chow et al.
2020

Gong et al.
2019

Bergman et
al 2019 -

paper

Carpet
Good Accuracy 1.00 1.00 1.00 1.00 0.57
Defect Accuracy 0.00 0.00 0.00 0.00 0.42
Inference Speed (ms) 2.152 2.718 3.360 2.086 -

Grid

Good Accuracy 1.00 1.00 1.00 1.00 0.57
Defect Accuracy 0.04 0.33 0.26 0.04 0.98
Inference Speed (ms) 2.138 2.717 3.336 2.088 -

Leather

Good Accuracy 1.00 1.00 1.00 1.00 0.06
Defect Accuracy 0.02 0.02 0.07 0.03 0.82
Inference Speed (ms) 2.132 2.689 3.356 2.197 -

Tile

Good Accuracy 1.00 1.00 1.00 1.00 1.00
Defect Accuracy 0.07 0.01 0.01 0.54 0.54
Inference Speed (ms) 2.119 3.383 3.351 2.077 -

Wood

Good Accuracy 1.00 1.00 1.00 1.00 1.00
Defect Accuracy 0.48 0.35 0.23 0.58 0.47
Inference Speed (ms) 2.128 3.375 3.351 2.059 -

Bottle

Good Accuracy 1.00 1.00 1.00 1.00 0.70
Defect Accuracy 0.32 0.03 0.03 0.21 0.89
Inference Speed (ms) 2.155 3.372 3.536 2.155 -

Cable

Good Accuracy 1.00 1.00 1.00 1.00 0.93
Defect Accuracy 0.05 0.02 0.05 0.00 0.18
Inference Speed (ms) 2.114 3.258 3.522 2.114 -

Capsule

Good Accuracy 1.00 1.00 1.00 1.00 1.00
Defect Accuracy 0.00 0.00 0.00 0.00 0.24
Inference Speed (ms) 2.122 3.329 3.523 2.122 -

Hazelnut

Good Accuracy 1.00 1.00 1.00 1.00 0.93
Defect Accuracy 0.51 0.03 0.36 0.37 0.84
Inference Speed (ms) 2.102 3.218 3.420 2.102 -

Metal Nut

Good Accuracy 1.00 1.00 1.00 1.00 0.68
Defect Accuracy 0.00 0.00 0.00 0.01 0.77
Inference Speed (ms) 2.107 3.193 3.462 2.107 -

Pill

Good Accuracy 1.00 1.00 1.00 1.00 1.00
Defect Accuracy 0.09 0.05 0.28 0.43 0.23
Inference Speed (ms) 2.093 3.421 3.035 2.107 -

Screw

Good Accuracy 1.00 1.00 1.00 1.00 0.98
Defect Accuracy 1.00 1.00 1.00 1.00 0.39
Inference Speed (ms) 2.064 3.393 3.390 2.109 -

Toothbrush

Good Accuracy 1.00 1.00 1.00 1.00 1.00
Defect Accuracy 0.00 0.00 0.03 0.00 0.97
Inference Speed (ms) 2.151 3.427 3.436 2.161 -

Transistor

Good Accuracy 1.00 1.00 1.00 1.00 0.97
Defect Accuracy 0.15 0.33 0.05 0.05 0.45
Inference Speed (ms) 2.077 3.403 3.366 2.093 -

Zipper

Good Accuracy 1.00 1.00 1.00 1.00 0.97
Defect Accuracy 0.03 0.02 0.02 0.03 0.63
Inference Speed (ms) 2.069 3.376 3.287 2.058 -

Table 12: Results of the evaluated CAEs using 100% of the calculated accuracies to find

the best threshold.

 41

APPENDIX B: RESULTS USING 90% OF THE ACCURACIES

Category Bergman et al
2019 –

implementation

Oh and Yun
2018

Chow et al.
2020

Gong et al.
2019

Bergman et
al 2019 -

paper

Carpet
Good Accuracy 0.93 0.93 0.91 0.93 0.57
Defect Accuracy 0.00 0.00 0.21 0.00 0.42
Inference Speed (ms) 2.152 2.718 3.360 2.086 -

Grid

Good Accuracy 0.91 0.91 0.91 0.91 0.57
Defect Accuracy 0.54 0.86 0.54 0.01 0.98
Inference Speed (ms) 2.138 2.717 3.336 2.088 -

Leather

Good Accuracy 0.91 0.91 0.91 0.91 0.06
Defect Accuracy 0.07 0.10 0.09 0.10 0.82
Inference Speed (ms) 2.132 2.689 3.356 2.197 -

Tile

Good Accuracy 0.91 0.91 0.91 0.91 1.00
Defect Accuracy 0.16 0.04 0.01 0.62 0.54
Inference Speed (ms) 2.119 3.383 3.351 2.077 -

Wood

Good Accuracy 0.95 0.90 0.90 0.90 1.00
Defect Accuracy 0.50 0.35 0.25 0.65 0.47
Inference Speed (ms) 2.128 3.375 3.351 2.059 -

Bottle

Good Accuracy 0.90 0.90 0.90 0.90 0.70
Defect Accuracy 0.41 0.01 0.11 0.22 0.89
Inference Speed (ms) 2.155 3.372 3.536 2.155 -

Cable

Good Accuracy 0.91 0.91 1.00 0.91 0.93
Defect Accuracy 0.21 0.11 0.05 0.16 0.18
Inference Speed (ms) 2.114 3.258 3.522 2.114 -

Capsule

Good Accuracy 0.91 0.91 0.91 0.91 1.00
Defect Accuracy 0.04 0.01 0.01 0.11 0.24
Inference Speed (ms) 2.122 3.329 3.523 2.122 -

Hazelnut

Good Accuracy 0.90 0.93 0.90 0.93 0.93
Defect Accuracy 0.70 0.19 0.51 0.64 0.84
Inference Speed (ms) 2.102 3.218 3.420 2.102 -

Metal Nut

Good Accuracy 0.91 0.91 0.91 0.91 0.68
Defect Accuracy 0.00 0.01 0.01 0.01 0.77
Inference Speed (ms) 2.107 3.193 3.462 2.107 -

Pill

Good Accuracy 0.92 0.92 0.92 0.92 1.00
Defect Accuracy 0.13 0.21 0.31 0.47 0.23
Inference Speed (ms) 2.093 3.421 3.035 2.107 -

Screw

Good Accuracy 0.90 0.90 0.90 0.90 0.98
Defect Accuracy 1.00 1.00 1.00 1.00 0.39
Inference Speed (ms) 2.064 3.393 3.390 2.109 -

Toothbrush

Good Accuracy 0.92 0.92 0.92 0.92 1.00
Defect Accuracy 0.00 0.03 0.10 0.00 0.97
Inference Speed (ms) 2.151 3.427 3.436 2.161 -

Transistor

Good Accuracy 0.92 0.92 0.92 0.92 0.97
Defect Accuracy 0.23 0.40 0.08 0.10 0.45
Inference Speed (ms) 2.077 3.403 3.366 2.093 -

Zipper

Good Accuracy 0.91 0.91 0.91 0.91 0.97
Defect Accuracy 0.05 0.23 0.05 0.13 0.63
Inference Speed (ms) 2.069 3.376 3.287 2.058 -

Table 13: Results of the evaluated CAEs using 90% of the calculated accuracies to find

the best threshold.

 42

APPENDIX C: RESULTS USING 80% OF THE ACCURACIES

Category Bergman et al
2019 –

implementation

Oh and Yun
2018

Chow et al.
2020

Gong et al.
2019

Bergman et
al 2019 -

paper

Carpet
Good Accuracy 0.82 0.82 0.82 0.82 0.57
Defect Accuracy 0.07 0.00 0.07 0.06 0.42
Inference Speed (ms) 2.152 2.718 3.360 2.086 -

Grid

Good Accuracy 0.81 0.81 0.81 0.81 0.57
Defect Accuracy 0.65 0.98 0.66 0.56 0.98
Inference Speed (ms) 2.138 2.717 3.336 2.088 -

Leather

Good Accuracy 0.81 0.81 0.81 0.81 0.06
Defect Accuracy 0.11 0.11 0.22 0.14 0.82
Inference Speed (ms) 2.132 2.689 3.356 2.197 -

Tile

Good Accuracy 0.82 0.82 0.82 0.82 1.00
Defect Accuracy 0.21 0.08 0.08 0.66 0.54
Inference Speed (ms) 2.119 3.383 3.351 2.077 -

Wood

Good Accuracy 0.84 0.79 0.79 0.79 1.00
Defect Accuracy 0.63 0.52 0.40 0.70 0.47
Inference Speed (ms) 2.128 3.375 3.351 2.059 -

Bottle

Good Accuracy 0.80 0.80 0.80 0.80 0.70
Defect Accuracy 0.44 0.24 0.20 0.56 0.89
Inference Speed (ms) 2.155 3.372 3.536 2.155 -

Cable

Good Accuracy 0.81 0.81 0.81 0.81 0.93
Defect Accuracy 0.30 0.22 0.25 0.26 0.18
Inference Speed (ms) 2.114 3.258 3.522 2.114 -

Capsule

Good Accuracy 0.83 0.83 0.83 0.83 1.00
Defect Accuracy 0.46 0.48 0.43 0.18 0.24
Inference Speed (ms) 2.122 3.329 3.523 2.122 -

Hazelnut

Good Accuracy 0.80 0.83 0.80 0.80 0.93
Defect Accuracy 0.81 0.26 0.67 0.77 0.84
Inference Speed (ms) 2.102 3.218 3.420 2.102 -

Metal Nut

Good Accuracy 0.82 0.82 0.82 0.82 0.68
Defect Accuracy 0.02 0.01 0.02 0.01 0.77
Inference Speed (ms) 2.107 3.193 3.462 2.107 -

Pill

Good Accuracy 0.81 0.81 0.81 0.81 1.00
Defect Accuracy 0.29 0.27 0.43 0.48 0.23
Inference Speed (ms) 2.093 3.421 3.035 2.107 -

Screw

Good Accuracy 0.81 0.81 0.81 0.81 0.98
Defect Accuracy 1.00 1.00 1.00 1.00 0.39
Inference Speed (ms) 2.064 3.393 3.390 2.109 -

Toothbrush

Good Accuracy 0.83 0.83 0.83 0.83 1.00
Defect Accuracy 0.00 0.03 0.13 0.00 0.97
Inference Speed (ms) 2.151 3.427 3.436 2.161 -

Transistor

Good Accuracy 0.80 0.82 0.82 0.82 0.97
Defect Accuracy 0.30 0.50 0.33 0.30 0.45
Inference Speed (ms) 2.077 3.403 3.366 2.093 -

Zipper

Good Accuracy 0.81 0.81 0.81 0.81 0.97
Defect Accuracy 0.11 0.28 0.19 0.21 0.63
Inference Speed (ms) 2.069 3.376 3.287 2.058 -

Table 14: Results of the evaluated CAEs using 80% of the calculated accuracies to find

the best threshold.

