Ramesh, Ajith
Modeling the Creep behavior of Torsional Springs
1 online resource (146 pages) : PDF
2009
University of North Carolina at Charlotte
ABSTRACTAJITH RAMESH: Modeling the creep behavior of torsional springs This dissertation presents a detailed model of the `overall' behavior of Torsional springs. Torsional springs (also called `Clock' springs) are a kind of spiral springs which are supposed to provide a certain torque when wound-up to a certain rotation. However, it is observed that the moments that are developed relax when the springs are kept loaded over long periods of time. The research presented here is an attempt to investigate this behavior by identifying the role played by the various influencing parameters. The dissertation focuses on the development of a detailed component-level finite element model to investigate the instantaneous moment-rotation response as well as the long-term (time-dependant) structural response of a torsional spring. Torsional springs belong to a class of planar spiral springs that are commonly made out of Elgiloy - an alloy of Cobalt, Chromium, Nickel, and Iron. Elgiloy has very high yield strength, and is commonly used as a spring material in analog clocks. In addition, the research also aims at developing a better understanding of the dependence of the response of the spring on the different design parameters that define its geometry and material properties. Frictional contact, large deformations, and nonlinear material behavior (plasticity and creep) are among the major challenges that need to be resolved in order to obtain a thorough understanding of the problem. The modeling effort also focuses on understanding the experimentally-observed hysteresis associated with a cyclic moment versus rotation response, as well as the development of simple analytical models which can approximately describe the structural response of a typical torsional spring.
doctoral dissertations
Mechanical engineering
Ph.D.
AbaqusClock SpringsCreepRelaxation ResponseTorque-Rotation ResponseTorsional Springs
Mechanical Engineering
Bose, KingshukLawton, Kevin
Boyajian, DavidChen, Shen-En
Thesis (Ph.D.)--University of North Carolina at Charlotte, 2009.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). For additional information, see http://rightsstatements.org/page/InC/1.0/.
Copyright is held by the author unless otherwise indicated.
Ramesh_uncc_0694D_10029