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ABSTRACT

DAVID HUNTER HALE. A growth-based approach to the automatic
generation of navigation meshes. (Under the direction of DR. G. MICHAEL

YOUNGBLOOD)

Providing an understanding of space in game and simulation environments is one of

the major challenges associated with moving artificially intelligent characters through

these environments. The usage of some form of navigation mesh has become the stan-

dard method to provide a representation of the walkable space in game environments

to characters moving around in that environment. There is currently no standard-

ized best method of producing a navigation mesh. In fact, producing an optimal

navigation mesh has been shown to be an NP-Hard problem. Current approaches

are a patchwork of divergent methods all of which have issues either in the time

to create the navigation meshes (e.g., the best looking navigation meshes have tra-

ditionally been produced by hand which is time consuming), generate substandard

quality navigation meshes (e.g., many of the automatic mesh production algorithms

result in highly triangulated meshes that pose problems for character navigation),

or yield meshes that contain gaps of areas that should be included in the mesh and

are not (e.g., existing growth-based methods are unable to adapt to non-axis-aligned

geometry and as such tend to provide a poor representation of the walkable space in

complex environments).

We introduce the Planar Adaptive Space Filling Volumes (PASFV) algorithm, Vol-

umetric Adaptive Space Filling Volumes (VASFV) algorithm, and the Iterative Wave-

front Edge Expansion Cell Decomposition (Wavefront) algorithm. These algorithms



iv

provide growth-based spatial decompositions for navigation mesh generation in ei-

ther 2D (PASFV) or 3D (VASFV). These algorithms generate quick (on demand)

decompositions (Wavefront), use quad/cube base spatial structures to provide more

regular regions in the navigation mesh instead of triangles, and offer full coverage

decompositions to avoid gaps in the navigation mesh by adapting to non-axis-aligned

geometry. We have shown experimentally that the decompositions offered by PASFV

and VASFV are superior both in character navigation ability, number of regions, and

coverage in comparison to the existing and commonly used techniques of Space Fill-

ing Volumes, Hertel-Melhorn decomposition, Delaunay Triangulation, and Automatic

Path Node Generation. Finally, we show that our Wavefront algorithm retains the

superior performance of the PASFV and VASFV algorithms while providing faster

decompositions that contain fewer degenerate and near degenerate regions.

Unlike traditional navigation mesh generation techniques, the PASFV and VASFV

algorithms have a real time extension (Dynamic Adaptive Space Filling Volumes,

DASFV) which allows the navigation mesh to adapt to changes in the geometry of

the environment at runtime.

In addition, it is possible to use a navigation mesh for applications above and be-

yond character path planning and navigation. These multiple uses help to increase

the return on the investment in creating a navigation mesh for a game or simula-

tion environment. In particular, we will show how to use a navigation mesh for the

acceleration of collision detection.
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CHAPTER 1: INTRODUCTION

The representation of space and how non-player characters move through it is one

of the primary challenges faced when creating characters for games and simulations.

The characters in these multimillion dollar games and simulations who will be seen

and evaluated by potentially tens of millions of people [11], are supposed to represent

human beings. A human relies on vision to determine where they can and cannot

travel in the environment. We naturally learn how to evaluate space as walkable

or unwalkable. Unfortunately, despite the huge budgets that go into creating these

virtual characters they do not have eyes with which to see their world. Instead they

are dependent on some classification or representation of space provided to them by

the Artificial Intelligence programmer. There are many possible representations of

space that could be provided to the characters, but it is not possible to generate

an optimal one (this is an NP-Hard problem [44]). In recent years there has been

some movement towards a single type of representation based on a delineation of

space into a series of connected convex areas called a navigation mesh, but there

is still no unifying theory as to how to best generate these navigation meshes from

the raw world geometry (level, map, and world can be used interchangeably to refer

to these virtual environments). We present three growth-based methods to generate

these navigation meshes called Planar Adaptive Space Filling Volumes (PASFV),
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Volumetric Adaptive Space Filling Volumes (VASFV), and the Iterative Wavefront

Edge Expansion Cell Decomposition (Wavefront). These algorithms work by placing

unit regions into the world and then expanding these regions outward until they

encounter obstructions. These algorithms allow us to generate navigation meshes

that are of a high quality (i.e., higher order polygons, fewer degenerate regions, and

higher coverage) than existing techniques. The PASFV algorithm decomposes 2D

representations of game or simulation environments (similar to how a blueprint can

represent a building). The VASFV algorithm is similar to PASFV but consumes the

3D geometry of the game environment instead of a 2D representation of the game

environment. The Wavefront algorithm improves on the two previous techniques by

dramatically accelerating decomposition speeds. Using these algorithms we will show

that we can generate better navigation meshes than such techniques as Delaunay

Triangulation, Hertel-Mehlhorn Decompositions, and Space Filling Volumes.

There are many different types of representations available to express a virtual

world to an agent. The two primary categories of representations are sparse and dense

coverage representations. A sparse representation stores only key control points or

regions and the pathways between them. A good example of sparse representations

is a waypoint map, which is composed of some number of points chosen in the world,

which are known to be valid locations for the agent to stand (see Figure 1.1). Valid

paths between these points are then added to create a graph style representation of

where the agent can walk in the world. Unfortunately, when using sparse represen-

tations agents are not provided with any information about the world outside of the

small pieces captured in the representation. Also, waypoint-based navigation tech-
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niques tend to move from point to point and the graphs are constructed such that

there are always unobstructed paths between nodes.

Figure 1.1: A sparse representation of a simple game world using a waypointing
system. Obstructions are shown as gradient filled thick bordered areas while the
waypoints are the connected circles.

Dense coverage representations of the world work to classify all (ideal case) or

nearly all (not ideal, but common) of the space present in the world into walkable and

unwalkable areas. These higher coverage representations provide several advantages

when compared to sparse representations. Since the representation contains all of the

traversable space in the world, the agent never has to enter unknown or unclassified

areas. This is not the case for sparse representations of the world where the agent

must employ some other path finding method to traverse unclassified space if they

are allowed to traverse it at all. In addition, since a dense representation of the world

is complete, a search will always return the shortest path. This is not assured in
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the case of sparse representations (e.g., a waypoint approach could miss a critical link

sending the agent around a traversable area rather than through it). Some commonly

used examples of dense coverage spatial representations would include: Binary Space

Partitioning trees, Quad-Trees, Oct-Trees, Kd-Trees, Voronoi Diagrams, Dirichlet

Domains, or Navigation Meshes (these representations are described fully in Chapter

2).

In general, dense representations are effective due to three principles. First, they

consolidate areas of the map such that many homogeneous points on the map can be

represented as a single region and that every point in a map is represented in exactly

one region. Secondly, a good representation is able to determine which of these regions

contain any given point in linear time. Finally, the representation has some notion

of these regions being connected or passable from one to another. Together these

principles combine to allow agent path planning algorithms to locate the agent in one

region, the agent’s destination in another region, and then search for a path between

the regions in the representation rather than through the entire world. Once the

agent follows this path to the region containing the target location, or if the agent

and destination are in the same region initially, then the agent can enter some form

of localized path planning to reach their destination.

Creating the impression of realistic characters requires that they do a plausible job

of planning a path through a world from the characters’ current locations to goal

areas. This planning problem has traditionally been a well-studied area of AI and it

essentially can be reduced to an issue of search. There are many search algorithms

available, ranging from the traditional A* to more advanced or special purpose algo-
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rithms such as D* or memory limited A* [60].

However, characters do not search the entire world; instead they just search a

sparse or dense representation of the world. The quality and type of representation

can result in dramatically different levels of search performance. Deciding how to

construct this representation from the many different types available is one of the

fundamental problems for developing agents [64].

Building characters who are able to move around in 3D virtual environments in

a rational manner is especially important since these characters have become com-

monplace through the games and simulation industries. How these characters move

through and interact with the world is also important, as these actions are what the

majority of users will see and use to evaluate the quality of the character as well as

the quality of the game or simulation. Therefore, it is critical that these characters

have the best possible representation of the world in order to improve their ability to

search and path plan through it.

1.1 Navigation Meshes

Navigation meshes are generally considered to be derived from the concept of the

meadow map used in early robotics [49]. A meadow map is a complete decomposition

of all of the traversable space present in an area a robot would operate into a series

of convex polygons (see Figure 1.2). The robot can then quickly determine which of

the polygonal regions contains its target location and then search for a path between

regions. It is important to note the use of convex polygons in the creation of these

maps. By the definition of convexity [12], we know that the line connecting any two
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points that lie on or within a convex polygon is contained entirely within the polygon.

Navigation algorithms are able to exploit this property by just planning from edge

to edge of the polygon and being confident that the path is valid. This means that

characters will not have to path plan about regions that contain corners or obscured

geometry.

Figure 1.2: A simple navigation mesh for the same world shown in Figure 1.1.

Modern implementations of navigation meshes are limited primarily to agent nav-

igation in games due to problems with registration of the robots position in the real

world such that it corresponds to a location in the navigation mesh. Since navigation

meshes the transfer from robotics to simulation and games the navigation mesh has

become the dense style representation system of choice for game and simulation devel-

opers [46]. In addition, the navigation mesh spatial data structure provides benefits
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that go beyond simple navigation. As we will see, the spatial representation a good

navigation mesh provides is a useful tool to help solve several other common problems

in games.

1.2 Information Compartmentalization

One of the secondary advantages associated with the use of a navigation mesh is

the ability to restrict an agent’s knowledge of the world to the limited set of convex

regions that the agent is either currently in or adjacent to. By utilizing this refinement

called information compartmentalization, the number of objects or events the agent

needs to reason about is reduced to a fraction of the total number of objects or events

in the world. In addition, the degree of visibility of objects or events can be set per

event to allow agents to notice and react to a large explosion on the other side of the

world, but ignore a whispered conversation at relatively closer range. Unique sensor

ranges can also be assigned on a per agent basis so that perceptive agents can notice

events or objects at a greater range than less perceptive agents. Not only does using

the navigation mesh for information compartmentalization result in a reduced set of

objects to reason about, but it can also ameliorate the common complaint that the

agent knows too much about things it cannot possibly see. This kind of reasoning

reduction would not be possible if using a sparse representation of the environment.

One challenge to using a navigation mesh in this manner is that the presence of

many thin triangles in the navigation mesh reduces the capability of the navigation

mesh to compartmentalize objects into the regions of the mesh (as seen in Figure 1.3).

This occurs because in areas where fans of thin triangles come together, it is possible



8

and probable for objects to exist in many different regions at the same time as shown

by the character in Figure 1.3, which exists in multiple regions simultaneously. This

becomes worse in highly triangulated decompositions since the theoretical worst case

for the maximum number of regions an object can occupy is unbounded as shown

in Proofs 7.1 and 7.2 found in Sections 7.2 and 7.3. However, higher order polygon

decompositions tend to avoid this problem since they can represent the geometry

using fewer regions.

Figure 1.3: A navigation mesh (viewed from above) built from a triangulation algo-
rithm. Notice how the triangles all converge in the corners of the world creating areas
where a character might have difficulty localizing itself.



9

1.3 Collision Detection

The determination of the collisions between objects and between world geometry

and objects both benefit from using the navigation mesh as a spatial data structure

to filter and reduce the number of collision detection checks that need to be calcu-

lated. The first potential collision case that the navigation mesh assists with is the

determination of whether an object is in collision with the world geometry. This is

determined by solving the inverse problem (i.e., can we locate the object in question

in a free configuration space region). If we can locate the test object inside a free

configuration space region (i.e., negative space) then we know it cannot be in collision

with a configuration space obstacle (i.e., positive space). The näıve solution for this

test is to check the object in question against all of the free configuration space regions

present in the world and if it cannot be localized to any region consider it to be in

collision with the world geometry. This test can be greatly accelerated if instead of

starting in a random region each object stores its last known free configuration space

region position and the collision testing algorithm performs a breadth first search

through neighboring regions from this last known position, since objects generally do

not perform radical shifts in location from one frame to another. The second collision

detection application is really a form of information compartmentalization applied to

collision detection. Since objects generally fit inside a single region it is possible to

just check collisions between dynamic (moving or active) objects against other objects

from that same region (and neighboring regions if overlapping objects are permitted)

instead of checking each dynamic object against every other object in the world.
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1.4 Metrics

One of the open problems with the use of navigation meshes is a desperate need for a

concrete set of metrics to evaluate different decompositions and compare them against

each other. This is especially important since the generation of an optimal or minimal

set decomposition can be shown to be NP-Hard [44] and therefore we have to use

non-optimal approximations of the solution. Currently, the only commonly accepted

metrics are to look at coverage of the world to check for gaps in the navigation mesh or

to count how many regions compose the navigation mesh, which indicates how big the

search space will be for the pathfinding algorithm [63]. These two metrics while useful

are not by themselves enough to draw meaningful conclusions about how well agents

will be able to navigate throughout the world using any given navigation mesh or

how well a navigation mesh will be able to encapsulate and compartmentalize smaller

objects that are present in the world. Furthermore, since there are few good ways

to evaluate navigation meshes one of the primary benefits of automatic navigation

mesh generation (the ability to rapidly generate unique navigation meshes for a given

level) is not being fully utilized. If there were an effective automatic way to compare

navigation meshes, it would be possible to generate a multitude of navigation meshes

and choose the best one from that multitude based on optimizing the chosen metrics.

1.5 Navigation Mesh Generation

Unfortunately, there are still several challenges that need to be solved to completely

streamline the use of navigation meshes in games and simulation environments. First,

there is no standardized method to generate a navigation mesh. At present, mesh
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generation draws upon a wide variety of spatial decomposition, exploration, brute

force, and spatial triangulation algorithms each with their own advantages and draw-

backs. Some techniques generate very clean and elegant navigation meshes but take

a long time to produce a mesh. A good example of this would be a by-hand de-

composition of a level. Some techniques, such as Delaunay Triangulation, provide

good coverage but generate a low quality decomposition filled with many oblong and

irregular low order polygons. The triangular shapes can create areas where an un-

bounded number of regions can come together at a single point which allows objects

to simultaneously reside in many regions at once (as shown in Figure 1.3). This in-

terferes with the navigation mesh’s ability to compartmentalize information, or act

as an aid for collision detection (e.g., if objects exist across many regions than all of

the objects in those regions must be tested). Existing growth-based techniques such

as Space Filling Volumes (SFV) do not provide good coverage of the level. However,

it is interesting to note the such growth-based techniques do provide advantages in

terms of the very regular shapes they produce, the lower total number of regions in

the navigation mesh, and the highly axis-aligned nature of the decomposition they

produce. Path planning and path smoothing is easier if the agent can always assume

that the boundaries between regions are axis-aligned. In particular, if an approach

could be developed to better deal with the gaps in existing growth-based techniques

and more closely approximate the incident geometry in the world then approaches

such as Space Filling Volumes and the other growth-based systems would be ideal.

Given the widespread usage of navigation meshes, the lack of a widely accepted best

method for generating navigation meshes, and the myriad other potential applications
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of navigation meshes beyond agent path planning the work in this dissertation focuses

around the following central hypothesis.

The shape and extents of the unoccupied space present in a game or simulation en-

vironment can be reduced to a series of convex regions using a growth-based algorithm,

which will result in a smaller set of regions that contain fewer degenerate or near de-

generate regions than existing spatial decomposition algorithms with an average higher

order of polygon/polyhedron.

We will then evaluate this hypothesis through testing of the growth-based nav-

igation mesh generation algorithms in 2D with the Planar Adaptive Space Filling

Volumes (PASFV) algorithm, in 3D via the Volumetric Adaptive Space Filling Vol-

umes (VASFV) algorithm, and using an accelerated 2D approach via the Iterative

Wavefront Edge Expansion Cell Decomposition (Wavefront) algorithm. These tests

will be comparisons against what are currently considered high quality spatial de-

composition algorithms (Hertel-Mehlhorn Decompositions, Delauney Triangulations,

and Trapezoidal Cell Decompositions, and Automatic Path Node Generation). In

addition to using standard measures, such as coverage and number of regions, we

will evaluate the resulting navigation meshes using a set of newly generated metrics

(e.g., evaluating the minimum interior angles, navigation mesh diameter, and region

homogeneity) to determine the quality of a navigation mesh or set of navigation

meshes procedurally and rate them on their ability to assist with agent path plan-

ning and information compartmentalization. Experimentation will show considerable

improvements over existing methods of navigation mesh generation.

This dissertation begins with an overview of existing work in the construction
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of both dense and sparse spatial representations, along with an overview of some

collision detection spatial data structures. We follow this discussion of existing work

by introducing our new growth-based methodologies and approaches for generating

navigation meshes. We then introduce our metrics for the evaluation of navigation

meshes. After that we introduce our accelerated growth-based approach to rapidly

generate navigation meshes and evaluate this new method using our metrics. To

close the main body of this work we present the conclusions we have drawn from our

experimental results.



CHAPTER 2: RELATED WORK

There are currently a wide variety of decomposition algorithms in use among both

industry and academia to produce navigation meshes. These algorithms all have

advantages and disadvantages and it is hard to choose a best algorithm from them.

This lack of a clear best decomposition algorithm can be attributed both to the lack

of a concentrated analysis of the various navigation mesh generation algorithms and

the lack of metrics to conduct this evaluation as well as the fact that generating an

optimal navigation mesh is an NP-Hard problem.

This problem is NP-Hard due to the fact it is an optimization problem with an

infinite number of possible solutions (given any “complete” set S of decompositions a

new decomposition could be generated by shifting one edge from any decomposition

such that the resulting new decomposition would be distinct from S). Since it is

not possible to check each possible solution to this problem and select the one with

the fewest regions, and the problem can in fact be converted to the “Planar3SAT”

problem (one of Karp’s 21 NP-Hard problems [45]) we know that the problem is at

least NP-Hard.

Where possible, we will be using a sample environment we created to illustrate each

decomposition algorithm. In all of the examples we present the obstructed (occupied)

configuration space in grey. Regions which are decomposing the environment will be
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presented in green. The environment, shown in Figure 2.1, represents a common set

of obstructions and challenges to character navigation. The design of the obstructions

are inspired by the sample obstructions provided by Lavelle [42] in his survey of spatial

decomposition algorithms.

In addition to discussing navigation mesh generation algorithms, we will also look

at collision detection acceleration data structures which could be used to construct

structures similar to a navigation mesh.

Figure 2.1: A simple level design featuring some non-axis-aligned obstructions. Ob-
structions are filled with a grey color. The design for this level was inspired by the
sample planning problems shown by LaValle [42].

In this section we will present a brief overview of existing methods of generating

spatial data structures to assist in character path planning and navigation. These

data structures generally have unique generation methods; however, in the end they
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share a common trait in that they produce a planar decomposition of the level into

convex spaces, which can be easily stored as a graph (with regions as vertices or nodes

of the graph and adjoining regions connected by edges).

2.1 Voronoi Diagrams

Voronoi Diagrams are a form of spatial subdivision-based on dividing the world

using lines drawn through the middle of all of the open space in the world such that

every point on each line is equidistant from every closest pair of obstructions or more

formally the Voronoi Diagram is the collection of points that is equidistant from

every obstruction. This technique is based on work done by Voronoi [65, 66] though

these diagrams are sometimes credited to Dirichlet [15] and referred to as Dirichlet

Tessellations instead. There are two possible ways to use a Voronoi Diagram for agent

navigation. The first and most common is to use the Voronoi Diagram of the open

space in the world to generate a set of safe paths through the centers of all of the

open space present in the world as illustrated by Russell and Norvig [54] on page

922. The agents then navigate using these paths; However, this does not actually

produce a navigation mesh since only the paths formed from the Voronoi diagram are

known and there is a vast quantity of unclassified free configuration space. Forming

a navigation mesh from a Voronoi diagram requires that it be possible to generate a

simple polygon that is composed of all of the free space present in the world [50]. The

Voronoi diagram of this polygon produces the medial axis or skeleton as shown by

Holleman [10, 17] of all free configuration space present in the world. Each cell of this

skeleton is by the definition of a Voronoi diagram a convex region of free configuration
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space and as such the skeleton creates a navigation mesh, which can be used for agent

navigation as shown in the work by Hollerman et. al [6, 26, 37].

2.2 Dirichlet Domains

The Dirichlet Domain Decomposition for agent navigation is derived from the

Voronoi Diagram using a specific set of seed points. The free configuration space

present in the level environment is seeded with a series of control points [48]. These

points then claim all other free configuration space points which are closer to them

than any other control points. This forms what is in effect a Voronoi Diagram (Dirich-

let’s work in this area is one of the reasons he is sometimes credited instead of Voronoi

for the creation of Voronoi Diagrams) and these regions can be used as a graph for

path finding. Unfortunately, the regions are not guaranteed to be convex and a line

(path) from one point in one region to a point in a neighboring region (or even two

points inside the same region) in a straight line does not guarantee that this path

will be free from all obstructions as it would in a decomposition which produces only

convex regions.

A 3D implementation of Dirichlet Domains also exists. In this version of the

algorithm there is still a listing of predefined control points as in the 2D algorithm.

In this case the control points will claim all of free configuration space that is closer

to them than any other control point in 3D space instead of just looking at the points

existing on a flat representation of the environment. This actually exacerbates the

problem of selecting good locations for control points. For example, a control point

on a lower level might grab points on the level above it in a 3D environment if it is
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closer to them than the control points on the upper level. This control point selection

and placement problem is one of the things which prevents Dirichlet Domains from

being commonly used [48] to build navigation meshes.

2.3 Probabilistic Roadmap

This algorithm generates a sparse representation of the world for agent navigation

and planning purposes [40]. The probabilistic roadmap algorithm uses a sampling

approach to randomly select points in the world. If these selected points exist in free

space then they are added as vertices to the graph or roadmap under construction.

This selection of random points continues until it reaches a user defined number of

valid points for the roadmap. Alterations to the algorithm allow for the introduction

of predefined points [43] or biasing the random seeding algorithm to ensure more even

coverage of the open space [4, 38]. After all of the points have been selected, the next

stage of the probabilistic roadmap algorithm calls for the connecting of all points to

all other points which are visible to them such that the shortest paths are generated

first 2.2. There is a user definable upper limit to the number of connections that can

be made per node and of course it is possible to have fewer connections than this limit

due to geometric obstructions. These connections form the edges of the navigation

graph. The agent is then able to use local navigation to find the closest roadmap

point and then travel along the roadmap to the closest point to its destination.

This algorithm works in both 2D and 3D as the point lattice that composes the

navigation graph can either be established in 3D space or along some predefined

plane. However, in addition to making no assurances regarding length of the paths,



19

planning using paths generated by this algorithm expose the agent to a navigation

hazard. Consider what would happen if the agent is trying to move to enter the

roadmap from a point near but not on the map. In this case the agent will use local

navigation to enter the nearest roadmap point. However, this map node location is

not guaranteed to be accessible from the agent’s current location. Instead, the agent

might spend considerable time wandering around in a local navigation mode trying

to find an accessible location to enter the roadmap from. Problems such as the one

we outline with entering and by extension exiting the probabilistic road map prevent

it from being an optimal general solution for agent navigation.

Figure 2.2: A Probabilistic Roadmap generated from our sample level. Note that is
just one of many possible roadmaps for this level.
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2.4 Delaunay Triangulation

The Delaunay triangulation algorithm is a well known method for generating a

series of triangles from an input set of points. The Delaunay algorithm is straight-

forward—every vertex present in the world is connected to every other vertex to

generate a series of triangles such that they do not intersect any triangles already

created [13, 14]. The algorithm then attempts to reform the lines that compose

these triangles in order to ensure that the average minimum interior angle of the

resulting set of triangles is maximized. Formally, the Dealunay triangulation is the

set of triangles with the maximum minimum interior angles which connect all of

the vertices of obstructed configuration space. This algorithm generates an excellent

coverage decomposition that works well for navigation, but can create problems with

thin triangles and localizing non-point objects to a single area.

In each of the corners of the world there are many extremely thin triangles that

come together at a single point. If an agent was attempting to navigate through

this area the agent would almost certainly fall into several regions at the same time

(we assume that agent has width and length and is not just a single point). Being

in multiple regions at once makes the task of navigation much harder as the agent

cannot determine which region it is in or which region it needs to go to next with any

certainty. Solving this problem requires special logic and programming that adds to

the overhead of agent navigation. In addition, areas with multiple thin triangles in

them also reduce the ability of the navigation mesh to compartmentalize information

since the information object could also lie across multiple regions. Furthermore, it
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is possible to show that this problem of triangles coming together at a point has no

upper bound on how many triangles converge on any given point as shown in Proof

7.1 in Section 7.2.

The Delaunay triangulation algorithm can also be extended into 3D space. The

3D algorithm is similar to the 2D version since the first step is to connect all possible

vertices present in 3D to form triangular faces. Connections between vertices are valid

as long as they do not cross any already created triangular faces. Once all possible

vertices are connected there will be a series of triangular prisms present in the world.

The algorithm calls for the rotation of each face in every prism and then determining

if the rotation results in an increase in the minimum average interior angle of the

prism. Once each face has been given a chance to rotate the algorithm terminates

yielding a navigation mesh composed of triangular prisms, which are guaranteed to

have the highest possible minimum interior angle.

2.5 Other Triangulations

There are other forms of triangulation algorithms aside from the Delaunay trian-

gulations we have already discussed. However, since the biggest problem with using

triangular-based navigation meshes in games results from the presence of triangles

inside the decomposition with low minimum interior angles (e.g., the long thin trian-

gles). The focus of the Delaunay triangulation algorithm is to maximize the minimum

interior angle of the triangulations. Because the Delaunay triangulation maximizes

the minimum interior angle, any other triangulation algorithm will be inherently

worse than using the Delaunay triangulations. Other triangulation algorithms follow
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the same basic path into 3D as the Delauney triangulation.

2.6 Hertel-Mehlhorn

Navigation Mesh construction via the Hertel-Mehlhorn [36] algorithm is commonly

used to generate a listing of convex walkable areas [63] and for a time was considered

to be near optimal for this purpose. This algorithm works by connecting all of the

vertices of the world geometry that border on the walkable areas into a series of

triangles. The algorithm can also consume as input a listing of triangles generated

via some other triangulation method. Triangles have the inherent property of always

being convex, which means we have already generated our delineation of the walkable

space at this point. However, the contribution of the Hertel-Mehlhorn algorithm is

optimize this listing by combining triangles into higher order polygons. The algorithm

calls for the removal of an edge from a pair of adjacent triangles such that the resulting

shape remains convex. The removal of lines is then repeated until the algorithm is

unable to find any acceptable lines to remove. Unfortunately, this algorithm causes

certain problems for information compartmentalization. The corners of the world

geometry are almost always filled with slivers of thin triangles (even after combining).

Since these triangles are thin they are generally smaller than the objects you are trying

to place into them. This means that objects will span across multiple regions and

prevent agents from fully taking advantage of information compartmentalization with

decompositions created from this algorithm.

A Hertel-Mehlhorn decomposition is shown for our sample level in Figure 2.3. We

used the Delaunay triangulation previously discussed as the input into the Hertel-
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Figure 2.3: A Hertel-Mehlhorn decomposition of our sample level.

Mehlhorn algorithm instead of generating a new triangulation. This results in a

simpler and cleaner navigation mesh than the original Delaunay triangulation, which

is to be expected since it has fewer regions. In addition, by reducing the number

of thin triangles in the mesh, there are far fewer total regions present than in the

original triangulation. It is also worth noting that the perfect coverage of the level

provided by the Delaunay triangulation is still maintained. These results are typical

for these two decomposition methods and show that the Hertel-Mehlhorn algorithm

produces a better decomposition than the Delaunay triangulation alone. However,

there are still several problem areas where several triangles come together at a single

vertex. We will show that these areas will always be a part of any triangulation-based

navigation mesh in Proof 7.2 in Section 7.3.
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A Hertel-Mehlhorn decomposition solution exists in 3D as long as we can acquire

a 3D triangulation of the environment to use as an input into the algorithm. We al-

ready know that the Delaunay triangulation also exists in 3D so this is not a problem.

Starting from a 3D Delaunay triangulation the 3D Hertel-Mehlhorn algorithm itera-

tively attempts to remove a face present in the triangulation such that the resulting

shape formed from the combination of the two figures which shared the removed face

remains convex. This iterative removal of faces continues until there are no faces that

can be removed without generating a concave region at which point the algorithm

terminates. The 3D navigation meshes generated through the use of this algorithm

share all of the advantages and disadvantages of the 2D version.

2.7 Render Generate

Recently, work has been conducted to create 3D navigation meshes using a rendering-

based approach called Render-Generate [2]. This approach works by iteratively ren-

dering depth maps of the world and using these maps to calculate the locations of

the floors and ceilings along with the positions of any obstacles. Using the slopes and

obstructions present in these depth maps it is possible to detect and delineate areas

the agent can stand in. By connecting adjacent standable areas a walkability map can

be generated. However, decompositions generated by this algorithm are limited to

constant cell sizes, usually the size of the agent that navigates the world (so that the

agent can stand in every cell), and no simplification is done on the resulting graph.

This tends to produce meshes in which relatively small areas have a large number

of regions. There is no pure 2D version of render generate as the algorithm requires
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height data as input to create the navigation mesh. Unfortunately, this algorithm is

currently encumbered with a patent [3] which prevents it free use and implementation

in commercial software releases.

2.8 Space Filling Volumes

Space Filling Volumes [64] (SFV) is a growth-based algorithm for generating a

navigation mesh and formed the basis of our own algorithm. The Space Filling

Volumes algorithm works by placing unit-square seeds throughout the environment

and then iteratively growing each seed outward in the direction of the normal of each

edge of the square. In the case of a collision with the world geometry all growth in

the direction of the edge which collided ceases. As a post-processing enhancement

generated regions can be combined if the resulting shape would still be convex. This

helps to simplify the resulting navigation map. This technique works well for worlds

where all of the geometry is axis-aligned, but fails on worlds with arbitrary or complex

geometry.

The results of a Space Filling Volumes decomposition are shown in Figure 2.4. As

this figure makes clear, the Space Filling Volumes algorithm does not provide a high

coverage decomposition due to the presence of gaps and otherwise inaccessible areas

inside the decomposition. For these reasons the Space Filling Volumes algorithm is

rarely used to generate navigation meshes in commercial applications. However, our

algorithm is a derivative of Space Filling Volumes and incorporates all of the base

features of SFV.

The 3D version of Space Filling Volumes is also easy to conceptualize and imple-
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Figure 2.4: Space Filling Volume decomposition of the sample level.

ment. Instead of expanding a square or rectangle in 2D the algorithm also expands

the top and bottom of each region to form a growing structure in 3D (cube or rect-

angular prism). The 3D version of the Space Filling Volumes algorithm results in the

same type of spotty navigation mesh as 2D that tends to contain gaps and otherwise

impassible holes in the mesh. In fact, since there is an additional variable added to

the seeding of initial regions (z-axis) and the space to be represented is generally

more complicated, the problems of gaps in the navigation mesh are generally worse

than in 2D.

2.9 Automatic Path Node Generation

Automatic Path Node Generation [53] is a purely 3D algorithm for navigation mesh

generation. In this algorithm, the world is tessellated into a series of triangles. This
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list of triangles is culled down to just the triangles that a character in the game

world could stand upon. At this point the algorithm finds the centeroids of each

triangle. These centeriods are transformed into rectangles by following simple space

filling volume rules we presented in the previous section. These new rectangles are

checked for collisions with world geometry and any invalid rectangles are discarded.

Next, the algorithm attempts to calculate paths between these rectangles by trying

to walk a character through the game geometry and seeing which rectangles are

accessible to each other as shown in Figure 2.5. This walk is governed by the game’s

physics and collision detection system to determine which paths are legal, which

means that the navigation mesh generated using this algorithm is only as accurate

as the simulation engine in the game. This information is used to build the final

connectivity graph, which creates a navigation mesh (or a series of connected disjoint

meshes). This approach works well for agents that just walk from point A to B,

but does not inherently handle cases where the agent can move via methods other

than walking such as jumping or climbing. This is one of the few algorithms that

was initially developed in 3D and 2D implementations are just simplifications of the

initial work.

2.10 Manual Spatial Decomposition

By-hand decomposition of virtual worlds is still used in many areas of game and

simulation design and programming. Such hand decompositions are generally done

following a heuristic (e.g., draw lines between groups of three or more vertices to create

as large of convex regions as possible) to determine precisely how the decomposition
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Figure 2.5: Automatic Path Node generation for our sample level.

should occur, which results in decompositions similar to Hertel-Mehlhorn. These hand

decompositions do provide excellent representations of world space and have both high

coverage and good navigation potential. However, this method’s biggest drawback is

the extreme time requirement (several days per environment) to properly construct a

hand decomposition and as such a better method is needed. Manual decompositions

are generally constructed in 2D to simplify the problem of building the decomposition

since a human is doing assembly instead of a computer. The 2D navigation mesh is

then extruded to form 3D structures if a 3D navigation mesh is required.

2.11 Augmented Manual Spatial Decomposition

Half Life 2 and the related Source engine games sit in an interesting middle ground

between hand generating navigation meshes and automated navigation mesh genera-
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tion systems. In Source engine games like it the navigation mesh is created by a level

designer in real time using a rendered view of the environment to place the convex

regions of the navigation mesh. After creating a given game level the designer will

load that level in a special editing mode which assists in the placement of the con-

vex regions. This arrangement is generally effective at covering the most commonly

traversed areas of a level, but does not provide any assurances of complete coverage

and relies far too much on the skills level of the person doing the decomposition.

Augmentation of manual decomposition does allow for the generation of native 3D

decompositions as the user is able to specify z-axis locations in the same manner

as the x-axis or y-axis locations. In addition, this system is generally faster than a

purely by hand decomposition since the person doing the decomposition does have

some placement and recording aides in the computer.

2.12 Volume Sweep Techniques

The developers of the game Left4Dead (built off the Source engine) felt that the

augmented manual approach which we just discussed, for the generation of navigation

meshes, left something to be desired. Instead of requiring manual decompositions

they produced an interesting algorithm for automatically decomposing a level using

a sweeping algorithm. In this algorithm the level designer places an axis-aligned-

bounding box which represents the player into a ”known good” location in the level.

Then this agent sized bounding box is shifted in one box increments in every direction.

So for example the box is moved to the north. If this location is a valid one for the box

(determined by running a collision test with the geometry) then this new location is
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added to the navigation mesh as a valid point for the agent to stand. Once a location

is established as valid, all neighboring locations are then added to list of locations to

test. In this manner the entirety of the level will eventually be tested and any valid

locations where the agent could stand will be discovered. Once this portion of the

algorithm terminates the resulting list of boxes are combined where possible such that

two boxes are combined into one region, which can then be combined again as long as

the resulting shape is still convex. This will eventually result in a navigation mesh for

any given level geometry—though it might take some time for larger or more complex

levels. This technique is often extended into 3D by projecting all 3 dimensions of the

agent’s bounding box into the world and then sweeping up and down as well as the

more traditional forward, back, left, and right. When this technique is extended to

3D it often referred to as voxelization.

This algorithm produces a result that is outwardly similar to the Space Filling

Volumes algorithm but which has a higher degree of coverage. Also, the shapes used

in the decomposition are more uniform and provide a more normalized navigation

mesh. The primary advantage of this algorithm over Space Filling Volumes is that

it does not produce large gaps or holes in the decomposition. Any un-decomposed

space will be distributed evenly around the edges of the navigation mesh.

2.13 Approximate Cell Decomposition

Approximate Cell Decomposition (a.k.a., Proximate Cell Decomposition) is orig-

inally a robotic navigation and path planning technique for moving through known

environments [39, 8]. This algorithm is similar to several other algorithms we have
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discussied bearing a resemblance to both Volume Sweep techniques and Binary Space

partitioning trees 2.17. Generating an Approximate Cell Decomposition uses a recur-

sive spatial subdividing algorithm. The world is initially split into four equal quads.

Each quad is then checked to see if it contains any configuration space obstructions.

If the quad is empty then the algorithm terminates for that quad. Otherwise, if there

is an obstruction the quad is further subdivided into a smaller set of 4 quads. This

new set of quads is then checked for obstructions and if necessary subdivided further.

The algorithm continues to break quads containing obstructions down into smaller

units until a minimum size threshold is reached at which point a quad will not be

subdivided further and that quad will be marked as impassable and discarded. The

resulting collection of passable (empty) and impassible quads are then used to con-

struct the navigation mesh. Adjacent quads can be connected to show passability

between them and the standard graph representation of a navigation mesh can be

established using this technique. The resulting navigation mesh is somewhat simi-

lar to one generated using a spatial partitioning tree, except the representation is a

planar graph instead of a tree structure, which is easier to search since adjacency

information is provided. The primary problem for this algorithms is that it does not

deal well with non-axis-aligned geometry and tends to fill diagonal areas with lots of

little boxes. In addition, since there is no combining stage in this algorithm there will

be a larger number of nodes present in the navigation mesh than algorithm such as

Hertel-Mehlhorn or even space filling volumes. Finally, there will also be small gaps

of un-decomposed space present near non-axis-aligned geometry where the minimum

size threshold for further subdivision was reached before properly describing the oc-



32

cupied space and quads were marked as impassible that contained both obstructions

and walk able areas. These impassible areas do not have a large effect on agent nav-

igation since they are generally near walls and do not cause gaps in the navigation

mesh, but it would still be nice to have a perfect coverage decomposition.

This algorithm can also be extended into 3D environments. Instead of subdividing

the world into four equal quads the 3D version of Approximate Cell Decomposition

generates a set of eight cubes per subdivision. Aside from this, the algorithm proceeds

in the same manor in 3D as in 2D with the recursive subdivision of each cube into

smaller sets of cubes until the obstructing configuration space objects are contained

in a single cell or until the cell size hits the minimum threshold for splitting into

further smaller objects. The resulting 3D navigation mesh looks remarkably similar

to the 2D version even including the small fringes of non-decomposed space against

any non-axis-aligned geometry that might be present in the world.

2.14 Vertical Cell Decomposition

The vertical (or trapezoidal decomposition) splits the free space present in a level

into a series of vertical or horizontally aligned polygons [9, 42]. It does this through

the use of a planar sweep algorithm [18, 7, 12] to identify the event points (i.e., the

vertices of obstructed configuration space) in a certain order (from lowest x coordinate

to highest). At each event point this algorithm either adds each of the points it finds

to a list of points it will create polygons from later or it pops points off the list

to create a convex trapezoid (note the trapezoid can be degenerate and therefore a

triangle). Due to the manner in which the plane sweep algorithm traverses the world
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(it is parallel to the y axis) all of the vertical free space edges of the trapezoids are

guaranteed to be parallel to each other and the y-axis. This property of vertical edges

is only true for edges that are adjacent to other free space regions—it is usually not

true for edges that are adjacent to obstructions. This algorithm can be extended to 3D

at which point it becomes a cylindrical decomposition and the planar sweep algorithm

becomes recursive. Unfortunately, this algorithm does not generate a minimal set of

regions as most of the triangles it produces could be combined with other adjacent

shapes as shown in Figure 2.6.

Figure 2.6: A Vertical Cellular Decomposition of our sample level.

2.15 NavSphere

The Navigation Sphere (navsphere) system for generating a navigation mesh is a

augmented manual generation approach used commercially to generate low overhead
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navigation meshes [52, 51]. In this approach the level designer places a series of

overlapping spheres into the game or simulation environment. Connectivity between

multiple navigation sphere regions is established when two spheres overlap. In ad-

dition, it is possible for the author(s) of the level to manual establish links between

two separate navigation spheres by the use of “navfeelers”, which are known good

paths between two separate navigation spheres. In this manner, a level designer can

establish a navigation mesh that suits their level using the minimal number of re-

gions on the navigation mesh to achieve the desired coverage level. The navsphere

system is specifically designed to provide a minimal overhead system of navigation

mesh representation. This system is low overhead because each sphere present in the

system can be represented using just an ID number, a radius, and a center point. The

“navfeelers” used by the algorithm are represented as origin and destination sphere

ID numbers and the series of control points that define the known good path. This

system is designed primarily for lower power embedded or home entertainment sys-

tems, which do not have a large memory or cpu budget. However, it is handicapped

by the fact that the initial generation of the navigation spheres in the world requires

manual placement. The navsphere algorithm is a native 3D algorithm as originally

conceived; However, it would be trivial to convert it to a 2D algorithm by dropping

the z coordinate off all of the data structures and just using circles instead of spheres.

A navsphere decomposition looks similar to the automatic pathnode generation

decomposition, but it is manually generated and instead of rectangular regions it

uses spherical regions.
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2.16 Recast Navigation

The Recast method for generating navigation meshes focuses on the use of voxeliza-

tion and then combination to generate a proper navigation mesh. Initially, Recast

calls for the complete breakdown on the environment in a series of voxels, which fully

represent the available and walkable areas of free space [20, 16]. A voxel is in this

algorithm a well defined and self contained 3D area of space (not a 3D pixel as is

commonly used in graphics). At this initial point, the algorithm does not care about

the complexity or convexity of the voxels present in the world although that will even-

tually change. After the voxelization completes then the voxels are converted into

simple 2D regions. Each region exists as a bounded plane somewhere in the world.

Note that these planes while 2D do not necessary lay flat parallel to the xy-planes and

that they can in fact be of any orientation in the world [41]. Finally, after generating

these bounded planar regions they are subdivided into walkable convex regions and

the gateways between each region are recorded to create the navigation mesh [68].

This algorithm is a native 3D algorithm and there are no pure 2D implementations.

It is important to note that this separation has a minimum size threshold, which can

result in the discarding of small areas of walkable space from around the edges of

obstructions if including those fringes would require the addition of new regions that

are below the minimum size threshold.

This algorithm results in the creation of high coverage navigation meshes with

only small areas of walkable space remaining un-decomposed. In addition, the im-

plementation for this algorithm is available for free at http://code.google.com/p/
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recastnavigation/. However, it does still have the problem of producing highly trian-

gulated final decompositions since the algorithm used to produce convex shapes from

the mid-stage planar regions is a triangulation algorithm.

2.17 Binary Space Partitioning Trees

The binary space partitioning tree is a spatial data structure developed originally by

Fuchs [24, 23] to provide a spatial ordering of objects present in at 3D environment.

The algorithm works by constructing a binary tree to recursively subdivide all of

the space present in the world without distinguishing between free and obstructed

configuration space though the use of halfplane divisors. These halfplanes are created

by selecting a face of a configuration space obstacle such that it maximizes the number

of objects in each group (i.e., if there are fire objects present in the world and the

choice is between dividing them into groupings of one and four or three and two

then it will select the three and two grouping). If the choice of a splitting plane

would bisect another configuration space object then that object is subdivided into

two new objects. Once this algorithm concludes, the leaf nodes present on the BSP-

tree are completely composed of free configuration space regions or completely full

obstructed configuration space regions. These regions can then be used for navigation

and planning by traversing up and down the tree to locate non-obstructed paths

between two arbitrarily selected points as shown by Tokuta [62]. The primary problem

with constructing navigation meshes in this manor is that the connectivity between

regions is not easy to establish. For example, two adjacent open space regions might

lie on entirely different branches of the tree and require a traverse all the way to the
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root to establish a connection between them.

Figure 2.7: The Quad Tree decomposition of the sample level. Higher level nodes of
the tree are shown as darker lines.

2.18 Quad / Oct Trees

The Quad-trees and Oct-trees are specialized forms of Binary Space Partitioning

trees [1, 55]. The Quad tree functions by splitting the world into well-defined parti-

tions; however, unlike a BSP tree the Quad tree is an order four tree and the splitting

planes are locked to be axis-aligned. The Oct tree functions the same way in that

it is limited to axis-aligned splitting planes however it splits in three dimensions and

each node has eight children areas [56, 57, 58]. Like BSP trees these methods can

be used for agent navigation since they do provide a full mapping of the free and

obstructed configuration space, but they also experience the same problems due to



38

the tree structure and optimizations of the data structure instead of a flat graph that

clearly specifies which regions are adjacent to each other. This spatial subdivision

technique is shown in Figure 2.7. This algorithm is less efficient than the normal

graph representation most navigation mesh generation algorithms produce and as

such it functions primarily as a culling and graphical algorithm [61, 19].

2.19 kd-Trees

The kd-tree is another highly specialized form of the BSP tree [1, 57, 58]. The

kd-tree is a multiple dimensional data structure initially proposed by Bentley [5] to

quickly sort and classify two or higher dimensional space. Like the Quad/Oct tree the

halfplanes used to classify and subdivide the world are also required to be axis-aligned

in the kd-tree. However, unlike the Quad/Oct tree the order of the insertion of the

splitting axis is defined in advance and must be rigorously followed. For example, a

given kd-tree with a dimensionality of three might split on the y-axis, the z-axis, and

then the x-axis. It would then continue to split in this order until the world is fully

classified. As expected, this classification system will fully decompose the world and

generally provides a balanced tree of obstructed and free configuration space. It can

be used as a navigation mesh in much the same manner as the other tree based data

structures.

2.20 Watershed Algorithm

The watershed transform [47, 25] is a image processing algorithm that can be used

to subdivide a given set of configuration space obstructions into a series of regions

and listing of the gateways between regions. It is important to note that the regions
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generated by this algorithm are not guaranteed to be convex and as a general rule

are in fact concave. The algorithm comes in both 2D and 3D versions. We will

examine the 2D version first. In a 2D watershed transformation the distance between

each point of free configuration space and the nearest configuration space obstruction

is calculated. This results in the Voronoi diagram of the freespace present in the

environment. Then this distance value is negated and used as a height value to define

a sloping surface inside the free space areas. In effect, each room of the decomposition

becomes a pit or pool shape. These pits are referred to as “catchment basins” in the

algorithm. Next the algorithm simulates filling these basins with water by creating a

small hole at the bottom of each basin and evenly sinking the entire world in a larger

body of water. As each basin floods there will be line of water climbing the sides of

the basin which represent a sweep line moving through the level. Whenever a local

maxima between to catch bases (a saddle shape) is detected using this sweep line it

is marked as a portal between two regions. In this manner the algorithm will fully

define each catchment basin as a region of the decomposition and the local maximums

as the portals between each region.

The 3D version of this transform [67] is a straightforward addition of another

parameter—the calculation of the distance equation. Instead of determining the

distance of the closest obstruction in the xy plane (assuming z is the up vector)

the 3D watershed algorithm determines the distance to the nearest obstruction in

real space. This does result in a order of magniture more difficult decomposition can

approach O(n2) runtimes. The determination of catchments and saddle points is the

same.
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While this algorithm is effective and does guarantee a complete coverage of the

area to be decomposed with a minimal number of regions, it suffers due to the lack

of convexity of the regions it generates. This means that many of the best (fastest)

algorithms for localizing objects on the navigation mesh would be unavailable since

they all require that the navigation mesh contain nothing but convex shapes.

2.21 Spatial Hashing

In addition to the tree based data-structures we discussed earlier, spatial hashing

is also commonly used to accelerate collision detection [33]. In a spatial hashing

algorithm every point in world space maps into a hash-table. However, each point

does not map to its own unique location in the hash-table. Instead, a square or

cubical section of points in world space of user definable size all map to the same

location in the hash-table. Objects that are within this space are all considered to be

inside the same bucket of the hash table (unlike a normal hash-map more than one

object has to be stored per hash location). Furthermore, large objects that overlap

the borders of one or more hash regions are considered to be in all of the hash regions

they touch. Determining which hash region an object falls into is a simple matter of

taking the x-coordinate of the object (or the corners of the object’s bounding box)

dividing it by the size of the cell and then adding that result to the product of the

y-coordinate divided by cell size times the width of the world (as shown in Equation

2.1). Once all of the objects have been placed into a bucket (at a cost of O(n) for

n objects) determining collisions becomes a matter of iterating over the map and

resolving collisions between all objects in a single bucket, since only objects within
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the same bucket are close enough to be colliding. Interestingly, there have been some

efforts to assist with AI and character planning using spatial hashing. This work has

focused on taking advantage of the knowledge of how regions border one another to

provide proximity information on objects to AI characters as they move through the

world to allow them make more realistic decisions based on available information [34].

Additionally, this work also presented the concept of using the spatial hash grid to

store information about general world conditions which might be of interest to the

agent, although later work has shown that such information is more efficiently stored

in a navigation mesh [35].

f(region) = hash(
x

cellsize
,

y

cellsize
) (2.1)



CHAPTER 3: PLANAR ADAPTIVE SPACE FILLING VOLUMES

Our approach for the generation of navigation meshes via spatial decomposition

is based off of a simple physical event. The regions we place in the world resemble

marshmallows that have been placed in the microwave. They expand dramatically

to fill the available free configuration space and then follow the contours of any ob-

structed configuration space they encounter. This form of expansion allows us to

establish high degrees of coverage even in complex worlds.

3.1 PASFV Algorithm

The Planar Adaptive Space Filling Volumes PASFV algorithm, as shown in Algo-

rithm 3.1 can be broken down into several simple steps. We have several assumptions

and invariants we must maintain in order for our algorithm to be effective. First, we

assume that all of the obstructed space regions provided as input are convex. Our

own generated regions must end every phase of growth in a convex state. Finally,

once a free area has been claimed by a region, then that region must maintain its

ownership of that area.

Our algorithm begins in a state that we refer to as the initial seeding state by

planting a grid based pattern of single unit regions across the environment to be

decomposed. If the proposed location of a region is contained within an obstructed

space area it is discarded. Our regions are initially spawned as squares with 4 sides
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given in a counterclockwise order from the northwestern point when viewed from

above. These squares are generated to be axis-aligned. After being seeded into

the world each region is iteratively provided the chance to grow. There are two

possible cases for successful growth. The simple case occurs when all obstructed space

(impassable) regions are convex and axis-aligned. The more advanced growth case

allows for non-axis-aligned convex obstructed space areas. Worlds which violate our

assumption that all of the obstructed space input regions be convex are not handled

by our algorithm at this time and will not be evaluated. However, by subdividing non-

convex geometry into convex shapes it is possible to convert any world into something

our algorithm can process.

First, we shall examine the base case for growth in the PASFV algorithm. Each

region is selected and provided the opportunity to grow once each frame. Growth

occurs in the direction of the normal to each edge in the region. We attempt to move

the entire edge a single world unit in this direction. We then take our proposed new

shape and run three collision detection tests. We want to ensure that no points from

our growing shape have intruded into another obstructed space or another region and

that no points from either of the aforementioned obstructions would be contained

within our newly expanded shape. Finally, the region performs a self check to ensure

it is still convex in its new configuration. Given that all those tests return acceptable

results, we will allow the shape to finalize itself into that new configuration. If any

of those results are unacceptable then it means that we had a collision or become

concave. Because of the axis-aligned properties in this state we know that we were

parallel to, as well as adjacent to, the shape we have collided with in our prior extents,
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which is the desired ending condition for region growth. In this case we return to our

previous shape and set a flag to never attempt to grow this region in that direction

again. We then allow every other edge in the shape to grow in the same manner.

Once each edge in a shape has been provided the chance to grow a single unit, we

proceed to the next shape. This method of growth is sufficient to deal with all cases

for axis-aligned obstructions.

Figure 3.1: The various cases present in PASFV. All growing free configuration space
regions are shown in white. Primary direction of growth is shown with an arrow. (a)
shows the basic growth case. (b) shows the complex case where growth is stopped by
encountering an edge. (c) shows the complex case where the free configuration space
region enters contour following mode. (d) shows an example of seeding to generate
new free configuration space regions.

The advanced case algorithm, as shown in Algorithm 3.1 and Algorithm 2, is more

complicated, but it is also able to deal with non-axis-aligned obstructed configura-

tion space areas. It begins by incorporating everything contained in the base case

algorithm and then expanding on it. Again we cycle through each region and provide
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each edge in that region a chance to grow. This time, however, since we cannot as-

sume that we will automatically be parallel to what we have collided with we need to

take an additional step and ensure that we follow the contour of the region we have

collided with if possible. We have three basic collision cases to consider.

Algorithm 3.1: PASFV Algorithm

void startDEACCON(List NegativeSpaceRegions) StillGrowing = true ;
/* Perform Initial Seeding to populate world with regions based on

user settings */

if NegativeSpaceRegions.isEmpty() then
seedWorld();

while StillGrowing do
StillGrowing = false ;
for NegativeSpaceRegions in World do

NegativeSpaceRegion.grow();

/* List of points that will have seeds placed in them */

List seedPoints = new List();
for Regions in World do

/* Run Find Adjacent Open Space algorithm */

seedPoints.append(Region.findOpenSpace());

/* This method will add new regions to the world */

World.addSeeds(seedPoints);
if seedPoints.isNotEmpty() then

/* Re-start growth algorithm */

World.startDEACCON(seedPoints);

/* Run combining and cleanup algorithms */

World.combineConvexShapes();
World.removeColinearPoints();
World.removeDeginerateEdges();

The first is the basic parallel line case as shown in Figure 3.1(a). We can test this

by comparing the equations of the edge we are advancing and the edge with which we

have collided. If we enter this case, we proceed in exactly the same manner as in the

case presented above since we have, in effect, shown that locally we are in the above

base case. The next case occurs when a point from the object we are colliding with
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would lie within the newly proposed bounds of our region. In this case we must stop

further growth in this direction in order to preserve the convex property. In the case

of this collision we are unfortunately forced to accept a poor proximity to the edges

of the obstructed configuration space region as shown in Figure 3.1(b). We deal with

this later by seeding.

Algorithm 3.2: PASFV Algorithm - growthMethod()

for Edges in this.Edges do
/* Get a new Edge one unit forward in the direction of the old

edge’s Normal */

newEdge = currentEdge.Advance();
if newEdge.isNotColliding() then

StillGrowing = true;
currentEdge = newEdge;

else
/* We are adjacent to a obstructed configuration space region

*/

/* Check to see if we are in advanced case */

if usingContourFollowing then
if newEdge.isSplitableCollision() then

/* Adapt to follow Edge */

/* Determine which Vertex collided */

/* Add in extra point and edge */

newEdge.splitPoint();
/* Overide direction of growth to the */

/* equation of the edge of the object */

/* it collided with */

newEdge.setGrowthDirection()

else
/* Not possible to grow in this direction */

currentEdge.canGrow = false;

The final collision case is the most interesting and occurs when one of the endpoints

of the region edge would lie within an obstructed configuration space area. We are

able to split the vertex of our region into two points. These points will follow along
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the contour of the obstacle, expanding the region and increasing the order of the

polygon in the process. We accomplish this by inserting a new edge into our polygon

of length zero at the point of collision. We then alter the direction of growth of each

of the points we inserted such that it is following the equation of the line with which it

collided. We cap growth at the extent of the edge we are following so that we do not

create additional non-axis-aligned exposed edges to deal with later, which would be

the case if we allowed modified edge growth to proceed past the edge it is following.

Once we have overwritten the direction of growth for the contact points and limited

their extent, we can return to following the base case and the region will grow to

follow the obstructions as shown in Figure 3.1(c).

By following this method we are able to fit a region to non axis-aligned shapes

such that the boundaries with other regions will be axis-aligned. Once every region

reports that it is unable to continue growth we can proceed to the next step of the

algorithm.

The above growth methods alone do not ensure a complete coverage of potential

free space, but we employ a second component of the PASFV algorithm as shown

in Algorithm 3.3 to improve our results. We call the second component seeding and

it works by locating areas adjacent to our regions that have not been claim by a

region of free space as shown in Figure 3.1(d). We determine where to seed on an

edge by determining which parts are in contact with obstructions. Once we locate

every obstruction in contact with a given edge we can find each section of free space

adjacent to that edge. A seed region is then placed into the midpoint of each of these

free space areas. This seeding process will result in a high degree of coverage for the
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world. Once every edge has had a chance to seed we will re-enter the growth phase

if there were any seeds generated. This allows our new regions the chance to fill any

empty space and improve our decomposition. This is especially effective in collision

cases where we were forced to stop growth due to collisions such as that in Figure

3.1(b). We continue to perform this cycle of grow and seed until we have filled in all

reachable free configuration space and we do not place any new seeds.

Finally, we run a cleanup and combining algorithm on our set of regions. We first go

through and check for any regions that can be merged into one single convex region.

After merging all allowable regions we remove any degenerate zero length edges or

colinear points to provide as clean an output as possible.

Algorithm 3.3: Locate points to add as seeds in open space

List findOpenSpace();
/* Locate possible seeding locations */

for Edges of Region do
/* Determine all objects that intersect this edge */

/* Determine midpoints of all free areas between */

/* intersections. Compose a list of these points */

return Edge.getOpenAdjacent();

3.2 PASFV Experimental Evaluation

The PASFV algorithm was tested and evaluated using five maps from a popular

Quake 3 modification, Urban Terror (www.urbanterror.net). These maps were ran-

domly chosen to cover a wide variety of environment types, ranging from one map

that is the interior of a building to another map that shows wide open spaces with

general building geometry.

We will be discussing PASFV in reference to one of the environments, called
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“Lakes” as shown in Figure 3.2 (A/B - Second from Left). We performed a se-

ries of decompositions on this level using three different decomposition methods. The

first decomposition was performed with the Hertel-Mehlhorn (HM) algorithm [36].

Figure 3.2 (C) shows the final HM decomposition. This method produced 42 regions

after combining on the 2D ground plane.

Next, the fully automated technique of Space-Filling Volumes (SFV) as discussed

previously was utilized to decompose the same environment. A sufficiently dense uni-

form seeding to allow near coverage was used, however it did experience connectivity

and coverage issues. These issues are inherent to the SFV algorithm and were not

caused by our implementation. The decomposition is shown in Figure 3.2 (D). This

method produced 28 regions on the 2D ground plane after running a simplification

algorithm that combined regions where possible.

Finally, PASFV was used to decompose the same environment. Figure 3.2 (E)

shows the final decomposition. This method produced 73 regions after combining on

the 2D ground plane.

After the free configuration space was decomposed, an analysis program was run

that builds the navigation map between the centers of each region and the midpoints of

common gateways (shared edges between regions). The navigation map for PASFV

and the other decomposition methods for the “Lakes” map are presented in Figure

3.2 (F-H).

Fifteen decompositions across 5 different maps were used for agent navigation com-

parison tests. A simple agent using A* search [32] was used to plan a path from the

start location to the goal location using the centroids of the connecting gateways
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Table 3.1: Comparative Agent Performance on Decompositions Across Multiple Lev-
els. * indicates statistical significance with p-value of less than .05.

Algorithm Avg Distance Avg Turns Coverage
HM 497.4 5.2 100%
SFV 505.3 3.97* 90%

PASFV 442.7* 4.12* 100%

between regions and the centroids of the regions for navigation. This form of nav-

igation map construction provides a base line for agent path planning. The actual

path a character would travel would be constructed from this navigation map using

smoothing algorithms to provide a more natural looking path. An equivalence table

was constructed to determine which map regions correspond to each other between

different decomposition methods. Regions are considered to be equivalent to each

other if their centers and extents are roughly the same. Eight paths of approximately

the same length between randomly selected regions were then created, and the dis-

tances to travel those paths were calculated using the A* agent. This provides us

with a total of 40 unique paths for each of the 3 decompositions. These results are

then compared across all maps using a repeated measures F-Test design over the three

different types of decomposition, which are shown in Table 3.1.

The results show that there is a statistically significant reduction (p-value < .05)

in overall path distance using PASFV. This is due to the less angular shapes that

are produced compared to the more triangular decompositions of HM, and the higher

coverage percentage over SFV. The number of sharp (greater than 90 degree) turns an

agent has to make to complete each path was also tracked and evaluated. The paths

generated by PASFV contained statistically significantly (p-value < .05) fewer turns
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than HM. These turns can cause delays in agent navigation and require additional

path planning and consideration in order to compute a natural looking path even

with smoothing algorithms. While PASFV did not have fewer turns than SFV, in

general SFV is a poor choice with which to build navigation maps. In this example

SFV was given a large advantage in that all chosen paths were fully accessible to it.

Normally, there will be areas of the map that cannot be reached using SFV. Overall,

performance for world traversal by an agent was improved over HM and SFV due to

the shorter paths and fewer turns.

The analysis of the runtimes and completeness of PASFV are presented in Section

4.4.
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Figure 3.2: Images of the basic worlds (A) with each column representing a separate
and unique world, the geometry we decomposed (B), the Hertel-Mehlhorn decompo-
sition (C), Space Filling Volumes (D), PASFV decompositions (E), and finally the
last 3 rows show the connected navigation graph generated by each decomposition
algorithm (F is Hertel-Mehlhorn, G is Space Filling Volumes, and H is PASFV).



CHAPTER 4: VOLUMETRIC ADAPTIVE SPACE FILLING VOLUMES

We next present an improved solution for decompositions of 3D environments that

does not require the world to be simplified into 2D planes and instead performs a

3D decomposition, which subdivides the open space present in the world into a series

of 3D regions. We provide a new method inspired by the Planar Adaptive Space

Filling Volumes (PASFV) algorithm to allow spatial decompositions to operate on 3D

geometry. Since we are drawing on PASFV for this algorithm many of the positive

features that PASFV decompositions contain such as convex high order polygons,

high average minimum interior angles across all regions, good object containment,

information compartmentalization, very high to perfect coverage of the level geometry,

and a low number of total regions are also present in our 3D decompositions. In

addition, we can decompose levels with multiple ground planes or complex geometry,

which is not represented well in 2D. We accomplish this by transforming PASFV from

a 2D algorithm that grows a series of quads into a 3D algorithm that grows a series

of cubes. Each cube, like the quads the preceded them, can morph into higher order

polyhedrons to better adapt to world geometry. In addition, we altered the manner

in which additional regions are added to the world via seeding in order to allow a

more natural and usable fit to the affordances provided by the geometry.
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4.1 VASFV Algorithm

Volumetric Adaptive Space Filling Volumes (VASFV), as shown in Algorithm 4.1

can be explained via several simple steps similar to the ones used in ASFV. There are

several input constraints and invariants that must be followed to ensure the success

of the decomposition. First, we assume that all of the obstructed configuration space

areas provided as input are convex. If the input regions are not natively convex they

can be subdivided into convex regions. Secondly, our own generated regions must end

every phase of growth in a convex state. Finally, once a free area has been claimed

by a region, then that region must maintain its ownership of that area. These are the

same constraints present in the 2D version of the PASFV algorithm

VASFV begins in a state that we refer to as the initial seeding state by planting a

grid based pattern of single unit regions across the environment to be decomposed.

If the proposed location of a region is contained within an obstructed configuration

space area it is discarded. This grid extends upward into the z plane as well. After

placement, the seeds are allowed to fall in the direction of gravity until they hit

either the ground or an obstruction at which point they stop. If this falling results

in multiple seeds landing in the same place then duplicates are removed. Our regions

are initially spawned as cubes with six faces given in a clockwise order from the

closest vertex to the origin point and then the top and bottom faces. These cubes

are generated to be axis-aligned. After being seeded into the world each region is

iteratively provided the chance to grow. There are two possible cases for successful

growth. The simple case occurs when all obstructed configuration space (impassable)
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areas are axis-aligned. The more advanced growth case allows for non-axis-aligned

convex areas to be present among the obstructed configuration space areas.

Figure 4.1: Here we see the possible growth cases for VASFV.

First, we shall examine the base case for growth in our algorithm. Each region is

iteratively selected and provided the opportunity to grow once each pass. Growth
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occurs in the direction of the normal to each face of the region. We attempt to

move the entire face in a single unit in this direction. We then take our proposed

new region and run three collision detection tests on it. We want to ensure that no

points from our growing region have intruded into a obstructed configuration space

or another region and that no points from either of the aforementioned obstructions

would be contained within our newly expanded region. Finally, the region performs

a self check to ensure it is still convex in its new extents. Given that all those tests

return acceptable results, we will allow the region to finalize itself into that new

configuration. If any of those conditions are unacceptable then it means that we had

a collision. If the world is axis-aligned when we reach this collision state we know

that we were parallel to, as well as adjacent to, the shape we have collided with in our

prior extents, which is the desired ending condition for region growth. In this case we

return to our previous extents and set a flag to never attempt to grow that face again.

We then allow every other face in the shape to grow in the same manner. Once each

face of a shape has been provided the chance to grow a single unit, we proceed to the

next shape as seen in Figure 4.1(a). This method of growth is sufficient to deal with

all cases for axis-aligned obstructed configuration space areas.

The advanced case algorithm is considerably more complicated, but it is also able

to deal with a greater variety of potential obstructed configuration space areas. It

begins by incorporating everything contained in the base case algorithm and then

expanding on it. Again we cycle through each region and provide each face in a

region a chance to grow. This time, however, since we cannot use the properties of

the axis-aligned world to assume we are parallel to the object we have collided with
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Algorithm 4.1: VASFV

void startVASFV(List NegativeSpaceRegions) StillGrowing = true ;
/* Populate the world with the initial user defined seeds */

if NegativeSpaceRegions.isEmpty() then
seedWorld();

while StillGrowing do
StillGrowing = false ;
for NegativeSpaceRegion in World do

for Face in NegativeSpaceRegion do
/* Translate the Face one unit forward in the direction of

the face’s normal */

Face.Translate(Face.Normal);
if Face.isNotColliding() then

StillGrowing = true ;
else

/* See if it possible to deal with the collision by

increasing the order of the polyhedron */

if Face.isSplitable() then
/* Determine which vertex(s). Insert a face at the

vertex(s) that is being split. */

Face.SplitPoint();
/* Lock the newly created vertex(s) to plane they

intersected */

Face.ConstrainPoint();
/* Further growth is possible with the newly split

vertex */

StillGrowing = true ;

else
/* The collision cannot be handled by splitting stop

growth */

Face.Translate(−1 * Face.Normal);
Face.canGrow = false;

List seedPoints = new List ;
seedPoints.Append(World.Seed());
if not NegativeSpaceRegions.isEmpty() then

/* Restart growth algorithm */

World.startASFV3D(seedPoints);

/* Run clean up algorithms */

World.combineConvexShapes();
World.removeColinearPoints();
World.RemoveDegenerateFaces();
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we will need to take some additional steps to ensure we arrive at a good coverage

decomposition. We have three advanced collision cases to consider, which case we use

is determined by the number of the points in the growing face that have collided with

a obstructed configuration space area. Finally, there is a fourth case that arises when

a vertex from an obstructed configuration space object intersects a free configuration

space region.

The first advanced collision case occurs when three or more vertices on the face

of a region intersect a single face of a configuration space obstruction in the same

growth step. We know due to the properties of the world that we encountered a

plane which we are parallel since three or more points on the growing face would lay

on it. In this case, despite the fact the entire world is not axis-aligned, the two faces

we are currently considering are in fact axis-aligned and we can fall back into the

basic collision case in which we stop growing.

The collision case resulting from one vertex of a obstructed configuration space

object intersecting the growing region is actually the simplest of all collision cases.

In this case, the face that intersected the object steps back to its last non-colliding

location and then ceases further growth in that direction. It might seem strange

that when a obstructed configuration space region is encountered in this manner that

the algorithm stops trying to decompose in that direction, but there is not a way to

achieve a better approximation of the colliding object without violating one of our

two invariants as shown in Figure 4.1(b). The gaps in the decomposition resulting

from this case will be filled in via seeding as we will discuss momentarily.

The final two cases for collisions with world geometry both involve inserting an
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additional face into the expanding region to closely adapt to the obstructed configu-

ration space object it encountered. The first case occurs when a single vertex from

a growing free configuration space region intersects with a configuration space ob-

struction. In this case, the vertex and each edge leading to it is split into a new face

composed of three new vertexes. The normal of this face is set to the negation of the

normal of the obstructed configuration space face it collided with, and three points

are defined to lay directly on the obstructed configuration space face. From this point

forward the new points are restricted to only lay on the plane of the face they inter-

sected. This means that when the other faces of the free configuration space regions

grow they will pull this new face out across the obstruction it intersected. These new

points are restricted from growing beyond the plane to prevent more non-axis-aligned

geometry from being exposed to the world. The results of this decomposition are

shown in Figure 4.1(c).

The next case occurs when two points simultaneously intersect the same face of a

configuration space obstruction. In this case a new face needs to be inserted into the

growing region in order to better approximate the configuration space obstruction.

Both of the intersecting points are split in this case resulting in four new points which

will form a new quad shaped face increasing the order of the growing polyhedron. Due

to the properties of a convex polyhedron if exactly two vertexes intersect another

another shape then the entire edge between these points also intersects that shape,

which means that we are in effect splitting that edge to become a new face. This new

face is once again created using the negation of the normal of the face it intersected

as its normal and made coplanar with the face it intersected. These new points are
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locked such that they can only move around on the face that they intersected for the

same reason as in the previous case. This case is illustrated in Figure 4.1(d). This

case will allow near complete decomposition of the free space in close proximity of

obstructed configuration space without violating any of the underlaying assumptions

of the algorithm.

The above growth techniques will do a good job of decomposing the world, but do

not in and of themselves assure a complete decomposition. As in traditional PASFV

we employ a seeding algorithm to allow free space that might have been missed

initially a chance to decompose as outlined in Algorithm 4.2. Once all of the regions

initially placed into the world have been grown to their maximum extents given the

algorithms above the seeding algorithm is initialized. Each face of every region is

given the chance to produce a seed in the world. The seeding method we use is to

locate each distinct pocket of free space adjacent to a face and place a seed in it. It

is extremely important for the quality of the decomposition that these seeds are then

allowed to fall according to the world gravity model stopping only when they hit an

obstruction (either an area of obstructed configuration space, or a previously place

region).

This gravity-based model of seeding produces a much cleaner and more usable

decomposition. Consider the two examples given in Figure 4.2 which shows possible

methods of seeding a staircase from a free configuration space region at the bottom

of the stairs. In the case shown in Figure 4.2(b) gravity is not applied to the seeding

and the initial seed grows out and slots into a stair midway up the stair case and then

grows upward. Additional seeds are then placed above and below this first region
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Figure 4.2: An illustration of VASFV seeding its way up a stair case. In each timestep
a new seed is placed and then allowed to grow as much as possible. Obstructed
configuration space regions are shown in grey, free configuration space regions are
shown in white and marked with a negative sign. The world is viewed from the side
and extends towards and away from the viewer. (a) Shows the results of seeding a
world using gravity to modify the seeds locations. (b) Shows the results of seeding a
world without applying a gravity model to place seeds.



62

until the entire stair case is decomposed. In the decomposition shown in Figure

4.2(a) seeds are affected by gravity. In this case a seed is generated from the first free

configuration space region and then allowed to fall to the floor of the stair directly

adjacent to it. This seed then grows to fill this single stair and all of the space above

it. After growing, this new region will generated another seed that fills another stair

completely. This cycle will continue until the stair case is completely decomposed. By

comparing the two generated decompositions for the stair case it is obvious that the

decomposition with gravity generates a more usable decomposition as it is possible

for agents to stand in a single region on a stair. This is not possible for most of the

stairs in the non-gravity based seeding algorithm as many of the regions on the stairs

do not properly represent how a character would traverse a set of stairs.

Aside from the addition of gravity, the seeding system present in VASFV is identical

to the 2D version and allow the algorithm to achieve complete decompositions of free

space. This seeding system is especially effective in the case discussed above where

an obstruction intersects the face of a free space region. After the seeding algorithm

has concluded, the main growth algorithm is called again on the newly placed seeds

providing them with a chance to grow. This cycle of seeding and growing continues

until no new seeds are placed in the world at which point the world is fully decomposed

(assuming at least one seed was placed in each disjoint area of un-configured space)

and the algorithm terminates.
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Algorithm 4.2: Locate points to add as seeds in open space

List Seed() List seedPoints = new List;
for FreeSpaceRegion in World do

for Face in FreeSpaceRegion do
/* Generate a List of potential seed points. */

List possibleSeeds = Face.GenerateSeeds();
for seedPoint in possibleSeeds do

while seedPoint.isInOpenSpace() do
/* Move the seedPoint until it hits something */

seedPoint.translate(GRAV DIR)

/* Return the point to open space */

seedPoint.translate(-GRAV DIR)
seedPoints.extend(possibleSeeds)

seedPoints.removeDuplicates() return seedPoints

4.2 VASFV Evaluation

We evaluated the VASFV algorithm by comparing it with two 3D spatial decom-

position algorithms: Extruded Space Filling Volumes (ESFV) and Automatic Path

Node Generation (APNG). For our testing environment we wanted a game world fea-

ture that would be a stumbling block for most 2D based decomposition algorithms.

Hence, we chose a staircase with a non-axis-aligned ramp leading up to it as our test

environment. There are three main reasons for this. First, a set of stairs contains

many walkable steps, each of which is set at a unique height above the ground, so

even without any other geometry a staircase is difficult to decompose. Algorithms

dependent on projecting each ground plane level into 2D and generating a separate

decomposition for each level must project each step into 2D which is time consuming

and results in many different decompositions, or the stair case decomposition will

have to be performed by hand and linked into the different levels of the environment

it connects as a special case. Secondly, while there are multiple possible decomposi-
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tions for this test case, some forms of decompositions are dramatically better than

others for use in agent navigation as shown above (Figure 4.2). Third, due to the

number of regions present in more complex decompositions, it is hard to visualize the

decomposition, so we felt a simple, but difficult test case would best illustrate the

capabilities of VASFV. The three algorithms generated the decompositions seen in

Figure 4.3.

Table 4.1: Comparison of Multiple Spatial Decomposition Algorithms.
Algorithm Number of Regions Coverage

ESFV 5 70%
Path Node 12 90%

VASFV 5 100%

The generated decompositions for each of the three algorithms were compared in

terms of how many regions were produced and the coverage (i.e., the percentage of

the empty space in the world contained in the decomposition). These results are

summarized in Table 4.1. VASFV outperforms both ESFV and APNG in terms of

coverage, and is the only decomposition algorithm to provide complete coverage of the

world. Having a high coverage decomposition is important for tasks such as pathfind-

ing, information compartmentalization, or collision detection. This is because, as

the coverage percentage drops, gaps and un-walkable areas form in the navigation

mesh, which dramatically reduces its usefulness. Results also indicate that VASFV

is comparable with SFV when it comes to producing the fewest regions. This is an

important consideration as fewer regions means a reduced search space for path find-

ing algorithms or other graph search algorithms. Overall, when both coverage and

number of regions are taken into account VASFV produces the best decomposition
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Figure 4.3: A comparison of multiple decomposition methods when building a nav-
igation mesh for a stair case. (a) Extruded Space Filling Volumes. (b) Automatic
Path Node Generation. (c) VASFV.
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for the test case presented here.

4.3 PASFV and VASFV Completeness and Special Cases

The PASFV and VASFV algorithms are both complete algorithms in that they

always generate a spatial decomposition if such a decomposition would exist. The

decomposition might not exist due to one of several reasons that are caused by invalid

input data. First, the input geometry has to be either convex closed polygons, or it

has to be concave closed polygons that are made convex via subdivision. Both the

PASFV and VASFV algorithms make extensive use of the point in convex polyhedron

algorithm to perform collision detection checks while growing. If the geometry that

describes the obstructed configuration spaces is not convex then these checks will fail

with unpredictable results.

Secondly, either the normals or the winding order of the input geometry must be

uniform and consistent across all obstructions. PASFV and VASFV depend on the

normals of the obstructions (or the winding order that is used to create normal data

if the normals are not provided) to define the areas of space occupied by the obstruc-

tions. If the normals contain inconsistent or incorrect data this is effectively the same

as if there were concave regions in the input dataset and a violation of this assumption

will result in the generation of incorrect or degenerate spatial decompositions.

The final potential failure case occurs when executing PASFV or VASFV if there

are disjoint areas of the environment that do not receive region seeds or if no region

seeds are generated at all. This occurs due to improperly defined grid based seeding.

Effectively, the seeding grid misses all or some of the disjoint areas of the environment
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and those areas of un-configured space never have initial regions added to them. If a

region is added to an area of un-configured space and the boundaries of that space are

correctly defined then that growing region is assured of fully decomposing the area

of un-configured free space it inhabits—either through its own growth, or the growth

of regions it generates via seeding.

While the algorithms are complete there are still some special cases of valid in-

put geometry that will cause PASFV and VASFV to generate poor quality spatial

decompositions though these decompositions will still be valid decompositions (non-

degenerate). Such cases occur when the input geometry contains curves that have

been approximated through the use of many short line segments to form the required

convex obstructions. We know from Proof 4.2 in Section 4.5 that a convex region

defined in free space can only be adjacent to a single edge or face of a given ob-

struction, each of the many short lines that would be used to approximate the curve

or spherical obstruction will require their own region to represent the adjacent free

configuration space next to them. This means that there will be a huge number of

regions required to represent such curved obstructions unless the curves are highly

simplified. However, this region explosion will occur with other full coverage spatial

decomposition algorithms as well since there are no algorithms to combine the space

adjacent to curved objects into fewer convex regions.

4.4 PASFV and VASFV Empirical Runtime Analysis

Initially, consider the case of a region that is placed into an entirely empty bounded

environment. This empty environment contains some amount of free space described
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as xfree. As the region expands, it will consume this free space until none is left

at which point the PASFV or VASFV algorithm will terminate. Now consider the

amount of xfree that is consumed by the single growing region R on each growth

step. Initially before it grows, R consumes one unit of free space. On the next

growth step, R expands outwards in every direction. In the planar case (PASFV)

this results in R consuming 9 units of xfree. R will consume 25 units of xfree on the

next growth step. This cycle will repeat with R consuming ever increasing amounts

of xfree on every growth step. When plotted we see that this rate of growth of

claimed area is exponential. An exponential reduction in the size of the problem

that remains to be considered means that this decomposition technique will produce

in the ideal case a fractional power relationship between xfree and the number of

regions consuming xfree—O(nr), where n is xfree, and r is between zero and one, and

a function dependent on the number of regions decomposing the world. This ideal

case does assume that each of the regions is able to grow outward in all four directions

at once. This exponential rate of reduction in the amount of work that the algorithm

still needs to perform will remain as long as any two adjacent edges of the region are

still growing.

Now consider what happens to xfree if only one edge (or two non-adjacent edges) is

growing. In this case, the amount of work that is done each growth step remains the

same and xfree decreases by a linear amount. This linear reduction in xfree means

that in the worst case of a single edge of a single region growing that the PASFV

and VASFV algorithm run in linear time, O(n) where n is xfree. We do not need to

consider the case where no edges are growing as the region will either seed additional
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regions with one or more growing edges or the algorithm will terminate.

Figure 4.4: A comparison showing the results of seeding and growing regions in a
world composed of one increasing complexity polygon obstruction. The obstruction
is shown in gray.

Now that we have examined a single region growing in an empty environment

consider the case of a simple triangle obstruction placed into the quad-bounded world

environment (simpler obstructions such as a single point or line are degenerate and

not decomposed) as shown in Figure 4.4(a). In this case, we know from Proof 4.2 in

Section 4.5 that we will require at least one region seed (Rn) per obstruction edge

to fully describe the world. In the worst case, we know from the above examination

that the PASFV algorithm would run in linear time as there will be at least one edge

of Rn growing at any given time until the algorithm terminates. We also know that

since only one edge of each growing region can be in collision (follows from Proof

4.2 in Section 4.5) the other three edges of each region in Rn can grow outward and

expand until they hit either the boundaries of the world or another growing region.

While this rate of growth holds we will see a runtime approximating that of O(nr),

where n is xfree, and r is between zero and one, and a function dependent on the

number of regions decomposing the world, as shown above. Since we know nothing
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about the world, we cannot say where the collisions between regions will occur that

means that for this simple case all we know is that the runtime will be between

linear and fractional power. We also know that as we increase the complexity of the

obstruction present in the environment that by Proof 4.2 in Section 4.5 we will be

adding additional regions to Rn (as shown in Figure 4.4(b-c)) and that the runtime

will remain consistent as it is bounded by the same growth limitations no matter

how many edges are present. Increasing the complexity of the obstruction (or adding

more obstructions) does not affect the runtime of the PASFV or VASFV algorithm.

Instead, runtime is determined by the amount of free space present in the world.

However, doubling the size of the environment would increase the required runtime.

4.5 Minimal Number of Regions to Cover Environment - Upper Bound

Theorem 4.1 : The minimum number of regions in a free configuration space decom-

position generated by the PASFV and VASFV algorithms is the number of exposed

obstruction edges, where exposed obstruction edges are obstructed configuration space

adjacent to negative space.

Proof 4.1 : Since obstructed configuration space is assumed to be broken down into

convex polygons before it is given as an input to our algorithms, we assume that all

exposed obstruction edges lie on convex polygons. Given these constraints, we can

restate our theorem as the following lemma:

Lemma 4.2 : Each exposed edge of a convex obstructed space polygon P must be

“covered” by a single unique convex region in a free configuration space decomposi-

tion.
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Proof 4.2 : We note that by “covered” we mean that the edge must be contained in

and adjacent to a single convex region in the free configuration space decomposition.

Suppose not. We now consider two distinct exposed edges A and B, of the convex

obstructed space polygon P . By contradiction, there exists a free configuration space

decomposition with one convex region R adjacent to both of these exposed edges A

and B. Then, since R is adjacent to both A and B, it must be adjacent to a point

a1 on A and a non-endpoint b1 on B. The line segment (a1,b1) is not contained on

a boundary of P because if it were, then A and B would not be distinct exposed

boundaries of P . Since a1 is on A and adjacent to region R, it is contained in both

polygon P and region R. Since b1 is on B and adjacent to region R, it is contained in

both polygon P and region R. Since all free configuration space regions are convex,

region R must be convex. Polygon P is assumed to be convex. By the definition of

convexity, we can draw a line connecting any two points in R, and that line must be

fully contained within R, and likewise for polygon P . Consider the line (a1,b1). Since

polygon P is convex, this line is fully contained within polygon P . However, since

region R is also convex, (a1,b1) is also fully contained within region R. However, since

(a1,b1) is not a boundary of polygon P , it cannot be contained within both polygon

P and region R.

QED : Therefore, each exposed edge of P must be adjacent to a single, unique free

configuration space decomposition region.



CHAPTER 5: DYNAMIC UPDATES TO NAVIGATION MESHES

All the methods of generating free configuration space decompositions we have

discussed so far have one rather disappointing thing in common, the end product

of each tends to be very static. This is unfortunate as there is a tendency towards

more interaction with the world in modern games and a desire for more realistic

reactions from the environment in simulations. In several recent game releases it

has been possible to dynamically alter the world in response to the players actions.

For example, in the recent title from Electronic Arts Battlefield: Bad Company it

is possible for the player to demolish walls in structures and dramatically alter the

passable areas of the game environment. The title Fracture from Lucas Arts carries

this concept of a deformable world further as it allows the player to dynamically

alter the terrain of the game environment. Obviously, if the player is given the total

freedom to alter the world it will be impossible to predict the state of the world at

any given point in the game and the existing solution of having a pre-built spatial

decomposition or set of way points for every possible world state cannot hope to

adapt to this level of variability. In response, there is a need to upgrade and expand

spatial decomposition techniques in order to deal with this random alteration of the

world.

We propose a solution for this problem that involves an extension of the existing
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algorithm Planar Adaptive Space Filling Volumes in order to allow it to dynamically

rebuild and relink damaged areas, such that even with dramatic changes to the world

the decomposition is still valid. This extension comes in two distinct parts. The

first part allows for creation of free configuration space in areas that were formerly

configuration space obstructions (i.e., the removal of obstructed configuration space

areas). Imagine a helicopter takes off leaving an empty field, this field can now be

walked through freely and the decomposition will need to be updated to reflect this.

The second extension allows for addition of configuration space obstructions into areas

that were formerly walkable. For example, imagine a building collapsing into a plaza

area. This will render the plaza partially or completely unnavigable and obviously

requires a change to the navigation map for the environment. Both of these extensions

are natural progressions from the core concepts of the PASFV algorithm which are:

providing a fast effective way of generating a world decomposition, providing a high

coverage decomposition, yielding good quality decompositions for navigation, and

providing decompositions based around quads or higher order polygons rather than

triangles allowing for better information compartmentalization.

This extension to the general form of Adaptive Space Filling Volumes is provided

by two algorithms that allow for the addition of free configuration space into existing

configuration space obstructions or the addition of configuration space obstructions

into existing free configuration space. We refer to the enhanced version of PASFV as

Dynamic Adaptive Space Filling Volumes (DASFV) algorithm.
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Figure 5.1: A time step progression of the addition of obstructed configuration space.
The free configuration space is shown in light grey. Obstructed areas are shown in
dark grey. The obstructed configuration space that is added to the world is shown
with a gradient and it has the dotted outline. The second time step shows the removal
of affected free configuration space regions and the addition of seeds to grow new free
configuration space regions. The final time step shows the repaired decomposition.

5.1 Adding Obstructed Configuration Space

Let us first examine the case where the building collapses into the plaza. First,

the free configuration space regions that used to compose the plaza need to be re-

moved. These are found by performing a series of intersection tests on the existing

free configuration space regions and the newly added obstruction. Since all of the
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Algorithm 5.1: Place Configuration Space Obstacle

/* We will assume that the area was fully decomposed */

HandleObstructedAddition(List oldNegatives, List oldPositives, newPositives);
/* Locate all areas that need to be removed */

for NegativeSpaces neg in oldNegatives do
/* Run intersection check against each new region */

for PositiveSpaces pos in newPositives do
if neg.intersects(pos) then

neg.remove();
if connectivityKnown is true then

/* set adjacent regions to seed */

neg.setNeighborsSeeding(true) /* otherwise do nothing */

if connectivityKnown is false then
neg.ResetSeeding();

/* All conflicting regions will have been removed */

/* Assume the implementation of ASFV contains */

/* a method to start seeding */

ASFV .seed();
/* Also assume that the ASFV implementation */

/* contains a method to grow placed seeds */

ASFV .run();
/* Once the ASFV algorithm concludes the decomposition */

/* will be complete again */

free configuration space regions are convex and the newly added configuration space

obstructions are required to be convex, the intersection test between them can be

performed very quickly with a point in convex polygon algorithm [59]. Once a list

of free configuration space regions to be removed has been established, the algorithm

will branch into two directions depending on what information is available. If con-

nectivity information is available between regions then the neighbors of the regions

to be removed should be reset so that they will attempt to seed as per the PASFV al-

gorithm. If connectivity information is not available then all free configuration space

regions not being removed should be reset to seed again. At this point the PASFV

algorithm will be started at the seeding stage of the algorithm. PASFV will run until



76

the newly vacated area is fully decomposed at which point it will stop as per the

original algorithm. Sample code is provided for this case in Algorithm 5.1 and an

illustration of this algorithm in action is provided in Figure 5.1.

Figure 5.2: A time step progression of the addition of free configuration space. The
free configuration spaces are shown in light grey. Configuration space obstructions
are shown in dark grey. The obstructed configuration space to be removed is marked
in a gradient. In the second time step the targeted obstruction in configuration space
has been removed along with its neighboring free configuration space regions. In the
third time step a seed has been added to the decomposition. In the final time step
the decomposition has been fully repaired.
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5.2 Adding Free Configuration Space

The addition of free configuration space regions works similarly to the addition of

obstructed configuration space regions. To continue the example of the helicopter

taking off from a field we need to quickly determine how to divide up the field it

vacates for navigation. First, the listing of all of the obstructed configuration space

regions to be removed is compiled. Once this has been compiled the algorithm will

again branch depending on whether or not connectivity information is available. If

connectivity information is known between regions then the neighbors of the affected

obstructed configuration space areas can easily be located. Otherwise the neighbors

have to be located algorithmically. This is accomplished by taking the affected ob-

structed configuration space areas and increasing their size by 0.1 percent, and then

determining what free configuration space regions they intersect. Since the decom-

posed regions perfectly border against the obstructions this small size increase to a

obstructed configuration space area will force it to intersect all their neighboring free

configuration space regions. Once the targeted obstructed configuration space areas

and neighboring free configuration space regions have been identified they can then

be removed. Seeds are then placed at the former centroids of the removed obstructed

configuration space regions to provide a starting point for the re-initialization of the

PASFV algorithm. Again, once PASFV completes the newly exposed free space will

be fully decomposed into high order convex polygons. The presentation of this algo-

rithm can be seen in Algorithm 5.2. An illustration of this algorithm running can be

seen in Figure 5.2
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Algorithm 5.2: Adding free configuration space to existing obstructed configu-
ration space regions

/* We will assume that the area was fully decomposed */

/* removePositive(List oldNegatives, List oldPositives, List toRemove)

*/

/* Locate all areas that need to be removed */

for PositiveSpaces oldPos in oldPositives do
/* Run a simple equality check to find regions to remove */

for PositiveSpaces posRemove in newPositives do
if oldPos.equals(posRemove) then

/* Found a region to remove locate its neighbors */

/* Assume we possess a function */

/* to find neighbors of a given region */

List neighbors = oldPos.getNeighbors() for NegativeSpace neighbor in
neighbors do

/* Remove the negative space neighbor */

neighbor.remove()

oldPos.remove()

/* All conflicting regions have been removed */

/* Assume the implementation of ASFV contains a */

/* method to start seeding */

ASFV .seed() /* Also assume the ASFV implementation contains a */

/* method to grow placed seeds */

ASFV .run() /* Once the ASFV algorithm concludes the */

/* decomposition will be finished */

In the case of the removal of a obstructed configuration space area it may seem

strange and counter intuitive to remove the free configuration space regions adjacent

to it when they do not appear to be directly affected by the removal, but there are

several reasons for doing so. The primary reason for removing neighboring free config-

uration space regions is related to the concept of information compartmentalization,

so let us take a moment to consider how the shape of regions affects this quality.

As long as we are just using these decompositions for agent navigation from point-

to-point along some kind of connectivity graph and the decomposition completely

covers the free space and is well connected, the ability of the decomposition to com-
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partmentalize information is not of great importance to the agent. However, when we

move beyond using the decompositions for just navigation we encounter issues with

triangle-based decompositions such as those generated using the Hertel-Mehlhorn al-

gorithm [36] or Delaunay triangulations [13]. Decompositions of environments can

be used for the encoding and storage of relevant spatial details for the game or sim-

ulation. For example, objects and events can be localized to regions. This means

that the agent moving around the world can reduce the amount of things it needs to

reason about to those objects in its region and perhaps neighboring regions. Local-

ized dynamic object collision detection can also vastly reduce the amount of collision

tests per frame by only considering possible collision cases for objects that occupy the

agent’s region or neighboring regions. It is in situations like these that the triangular

decomposition methods begin to have problems. There is no limit to the number of

triangles that can come together at a point (see Proof 7.1 in Section 7.2) so any given

triangle could have a huge number of potential neighbors. Furthermore, since trian-

gles by their nature tend to be long and skinny in these decompositions it is harder

to say that objects can be contained in only one or two regions. Reasonably sized

dynamic objects in a game might span the narrow edges of many triangles or even

worse might sit at the convergence point of dozens of triangles. This high overlap

potential can drastically reduce potential computational savings of using decomposi-

tions of the world to reduce and localize the number of expensive computations that

must be performed.

By its very nature the PASFV algorithm can only produce free configuration space

regions that intersect each other in two ways. The first intersection type occurs when
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axis-aligned parallel edges meet each other, in this case there can only be at most

two regions involved in the collision. The other possibility occurs when the right

angle corners of three or four growing regions meet at a single point. This in effect

limits the number of regions meeting at a single point to four, which is obviously far

lower than the unbounded worst case for triangular decomposition methods. As such,

PASFV-based decompositions tend to lend themselves more towards applications be-

yond navigation which depend on good information compartmentalization. However,

in order to ensure this is the case when we remove obstructed configuration space

areas we need to ensure that we do not expose non-axis-aligned edges of any free

configuration space regions. Doing so would potentially introduce all of the problems

associated with allowing for the possible intersection of more than four regions at a

single traversable point. This is the primary reason that our algorithm calls for the

removal of neighboring free configuration space regions when a obstructed configura-

tion space area is removed. Also, since information compartmentalization tends to

work better on larger regions it benefits us to clear out any neighboring regions to

ensure that we get the largest regions possible. The problems that could be caused by

just removing obstructed configuration space areas and not their free configuration

space neighbors can be seen in Figure 5.3. Despite starting from the same initial con-

figuration, the decomposition of the world in Figure 5.3 is clearly worse than Figure

5.2 since it contains five malformed regions rather than two axis-aligned regions.

After the decomposition of the world has been adapted to fit the changes in the

world’s underlying geometry the connectivity graph between regions can be quickly

rebuilt. Instead of completely rebuilding the connectivity graph a shortcut using only



81

Figure 5.3: This timestep illustration shows the undesired effects of adding free con-
figuration space to a obstructed configuration space area without removing the neigh-
boring free configuration space regions as called for in the Dynamic Adaptive Space
Filling Volumes algorithm.

two steps is available. The first step is to remove any links that are invalidated by the

removal of free configuration space regions. Then it is a matter of iterating through

each of the new regions that were created during the decomposition repair phase and

determine which regions border it to rebuild the connectivity graph between each
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region.

5.3 DASFV Navigation Mesh Evaluation

A pair of experiments were conducted to examine the two primary aspects of dy-

namically altering the world after a decomposition has been generated, those aspects

being the addition of free configuration space, and the addition of obstructed con-

figuration areas. Both experiments were conducted on the same computer using

the DEACCON (Decomposition of Environments for Automated Creation of Convex

Navigation-Meshes) tool which implements the DASFV algorithm on a 2.13Ghz/2GB

RAM computer.

The first experiment consisted of examining the effects of adding obstructions to

existing areas of free configuration space. This is the “building collapsing into the

plaza” example from above. This experiment was conducted on ten random maps

each with increasing amounts of geometric complexity, which represent other build-

ings that are present in the world. The performance of dynamically repairing the

decomposition using our new extensions to Planar Adaptive Space Filling Volumes

is compared to the time it takes to completely rebuild the decomposition in order to

adapt to changes. As can be seen in Figure 5.4 using our dynamic extension to gener-

ate new decompositions for altered environments is considerably faster compared to

rebuilding the entire decomposition even as the complexity of the world in which the

algorithm operates increases. These results are in accordance with our expectations

that rebuilding a smaller area of the decomposition is faster than rebuilding the entire

decomposition.
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Figure 5.4: This graph shows a comparison between the time costs to repair a decom-
position vs rebuilding the entire decomposition when configuration space obstructions
are added to the world as the complexity of the world is increased.

The second experiment consisted of examining the effects of adding free configura-

tion space to existing obstructed configuration space areas, in effect removing those

areas, and then decomposing the newly created free space. Our helicopter taking

off example would be represented by this experiment. Again, we compared the time

cost to decompose just the affected areas to the cost of rebuilding the entire decom-

position against a backdrop of increasing geometric complexity. The results of this

experiment as shown in Figure 5.5 does show that it is better to rework just the

affected area than the entire decomposition. However, there are some cases for very

simple worlds containing only one or two regions where the repair takes as long or

longer than rebuilding the entire decomposition. A close examination of the worlds in
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question yields an explanation of why this phenomenon occurs. Recall the addition

of free configuration space algorithm calls for the removal of all neighboring areas of

decomposed free configuration space in addition to the directly affected obstructed

configuration space area. This means for very simple worlds it is possible all or most

of the free configuration space regions in the world are removed along with the tar-

geted configuration space obstruction. This results in the repair algorithm having

to run intersection tests on every region in the world before discarding all of them.

These intersection tests will take longer than just discarding everything to start with.

However, such simple worlds occur so infrequently that is always desirable to perform

a repair rather than a reconstruction.

Figure 5.5: This graph shows a comparison between the time costs to repair a de-
composition vs rebuilding the entire decomposition when free configuration space is
added to the world as the complexity of the world is increased.



CHAPTER 6: METRICS

Navigation meshes are being used in more and more games and simulations. For

example, Fallout 3 by Bethesda (geck.bethsoft.com/index.php/NavMesh Generation)

and Neverwinter Nights 2 by Obsidian (www.obsidianentertainment.com) both incor-

porate navigation meshes rather than waypoints as past games by these developers

did. The shift towards navigation meshes brings up the question—which of the many

different mesh generation algorithms should be used for a given 3D world? In addi-

tion, as more and more automated tools for building these decompositions come into

use, which can produce numerous unique decompositions from the same obstructed

configuration space areas, there needs to be a way of ordering the resulting navi-

gation meshes and choosing the best ones. Unfortunately, there are no commonly

available metrics (except for simple metrics such as coverage or number of regions)

to provide a game designer with a clear indication of which decomposition algorithm

would produce the best set of connected regions for any given set of world geometry or

prioritized navigation mesh characteristics. This is especially important as producing

an optimal decomposition for a given map can be shown to be NP-Hard [44].

We address this problem by presenting a set of metrics with which to evaluate

navigation meshes and then provide a clear ordering of the navigation meshes based

on desired characteristics of the designer or developer. Many of these metrics can be
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calculated and evaluated automatically, and can be used to select among the many

navigation mesh generation options.

This chapter presents a collection of metrics with which to evaluate the navigation

meshes generated from world decompositions. All these metrics are designed to work

on 2D representations of 3D worlds; However, in the future they could be extended

to deal with full volumetric 3D decompositions. These metrics should be used to

compare multiple variant decompositions of the same world geometry.

In addition to describing each of the 12 metrics listed below, we provide an example

of how each one performs by running the metric using three sample decompositions

of the world shown in Figure 6.1(b). The first decomposition Figure 6.1(c) was

created using the standard SFV algorithm and provides an example of why SFV is

not the best algorithm to use when decomposing non-axis-aligned worlds. The second

decomposition shown in Figure 6.1(d) was created using the Hertel-Mehlhorn (HM)

algorithm, while the third decomposition shown in Figure 6.1(e) was generated using

the PASFV algorithm.

6.1 Number of Regions

The first metric to consider is a simple examination of the number of regions

present. This can tell us some interesting things about the quality of the decomposi-

tion that we are looking at. In most cases, when evaluating a pair of decompositions,

the lower this number is the better since the decomposition will be smaller and easier

to search.

Looking at the output of this metric seen in Table 6.1 on our sample world, we see
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Figure 6.1: Different decompositions of free configuration space from the Twin Lakes
level in Silicon Ice’s Quake 3 Total Conversion Mod: Urban Terror as seen from a top
view in (a) with base obstructed configuration space geometry in (b). A Space-Filling
Volume (SFV) decomposition is shown in (c), a Hertel-Mehlhorn (HM) in (d), and
an Planar Adaptive Space-Filling Volumes (PASFV) in (e), the randomly generated
starting and ending points to illustrate flow through the level are shown in (f)
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Table 6.1: The Number of Regions Metric for each of the decomposition algorithms.
Algorithm SFV PASFV HM

Number of Regions 31 35 41

SFV produced the lowest number of regions, which would indicate that they produced

the simplest navigation mesh. Unfortunately, this low number of regions is due to

the fact that the SFV algorithm did not fully decompose the world. We are therefore

more interested in the evaluation between the other two metrics; in this case PASFV

produced considerably fewer regions to fully decompose the world than HM.

If the navigation mesh is being used in a graph-based search, then a lower number

of regions would indicate fewer nodes in the graph, which will assist with calculations

whose run times are determined by the number of nodes present in the graph. A

good example of this type of calculation would be A* path planning. Fewer nodes on

the graph yield fewer locations that the algorithm has to search when generating a

path. There are few interesting exceptions to this rule of lower is better. It is possible

for areas of empty space to have special rules or conditions attached to them—even

if there is not a clear geometric divider to split up the empty space in the world.

For example, a basketball court is composed entirely of empty space, but the regions

of the court itself have meaning (i.e., baskets are worth different amounts of points

depending how close the player is to the goal when they shoot). It would be possible

to represent an entire basketball court as one region and then the rest of the stadium

as another series of regions. It would probably make more sense to have multiple

regions on the court and encode information on how they affect play into the regions

to provide agents using this decomposition a better understanding of game rules. Such



89

a representation dividing the areas of a court into many regions would most likely

be generated by hand, but these metrics we present still apply to hand generated

decompositions. In this specific example, the decomposition with more regions would

be more useful.

6.2 Coverage Percentage

The percentage of free space covered by the decomposition of the map is another

interesting simple metric to utilize. This metric should always be maximized to

be at or near 100 percent. Coverage percentage is one of the differences that sets

the complete decomposition methods (PASFV, HM, Delaunay) apart from the other

algorithms that yield difficult to use or inefficient navigation meshes (SFV). The

good decomposition methods will theoretically yield 100 percent coverage for any

map; however, depending on the implementation, coverage might be a percentage

point or two less than 100 percent, but these near perfect coverage decompositions

are still usable.

This metric takes the summation of the area of each of the regions and then divides

that value by the total empty area of the world that is being decomposed as seen in

Equation 6.1 to generate this percentage.

TotalAreaOfFreeSpaceRegions

TotalFreeSpaceArea
= CoveragePercentage (6.1)

As we can see in the results from the coverage metric shown in Table 6.2, PASFV

and HM both produce high coverage decompositions that fully define the unconfig-

ured areas of the world. SFV produces a decomposition that is past the boundary
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Table 6.2: The Percentage of Decomposition metric presented for each of the decom-
position algorithms evaluated.

Algorithm PASFV ASFV HM
Coverage 75% 100% 100%

into unusably low coverage, which means that in most cases it would be discarded;

however, we will continue to evaluate it in this work for the sake of completeness.

This metric has a straight forward application as decompositions with a coverage

of under 95 percent should be discarded. This is due to the fact that low coverage

decompositions will have holes in the navigation mesh that make agent navigation

difficult, and they will produce noticeable spaces and dead areas that cannot be

entered if the navigation mesh is being utilized for collision detection with the world.

Decompositions that are above this cut off point will work for most purposes and the

other metrics presented here should be used to choose between them.

6.3 Distribution of Area Sizes

The area covered by each region gives us an idea of the general size of the regions. It

is possible to determine the average amount of space the agents and dynamic objects

being used in a world will consume. By looking at the distribution of available space

in each region it is possible to develop an understanding for how well objects can

be placed into any given region. We are able to visualize the area of the regions

by providing a histogram with the x-axis showing various groups of region sizes and

the y axis showing the number of regions that fall into each grouping. The shape of

this distribution provides us with considerable information to use when comparing
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multiple decompositions. If there are many regions that are smaller than the average

size of objects that are supposed to be placed into the regions, then there are going

to be issues with objects lying across multiple regions. Because objects in multiple

regions have to be tested against every other object in each region they inhabit this

reduces the efficiency gains provided by information compartmentalization.

To calculate this metric two things are required: first the area of every region must

be known and secondly, the area of the object or agent that is being compared against

must be determined. This second value, α, is critical for the generation of groups for

the histogram. It typically represents the mean area taken up by dynamic objects

that move between regions. The groups are created via the functions in Equations

6.2–6.3. This function allows the user to determine the size of the groups by setting

∆ and the maximum number of groups the graph generates. This function has three

stopping conditions. One for the case for values less than α (Equation 6.2). The

second exit condition provides the critical first group values (Equation 6.3). Finally,

the third exit condition produces the remaining categories up to the maximum the

user requested (Equation 6.3). Groups 3–m will start just larger than the maximum

of the previous group (e..g., if α = 1 and δ = 1, group 1 is [0,1), group 2 is [1], group

3 is (1,2], group 4 is (2,3], and so forth).
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S : SamplePopulation (6.2)

α : ThresholdAreaForComparison

n = {1 to m} ,m = MaxNumberOfCategories− 2

δ = GroupSizeMultiplier

s ∈ S ∧ s < α→< [0, α) (6.3)

∈ S ∧ s ≥ α ∧ s ≤ αδ → [α, αδ] (6.4)

∈ S ∧ s > αδ → (αnδ, α (n+ 1) δ]

Table 6.3: The averages and standard deviations generated from the Distribution of
Area Sizes metric.

Algorithm SFV PASFV HM
Average 11.489 10.60 8.848

Standard Dev. 9.35 13.24 9.53

In our example decompositions, we see some interesting results for region size

distribution. For the purposes of our analysis we are comparing these regions against

a dynamic size object of one square unit. It turns out that three of the regions

generated by both the PASFV and the HM algorithm are smaller than the target
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Figure 6.2: The results of our Distribution of Area Sizes metric. The x-axis gives the
various size categories that each region fell into. We used a single square unit as our
average agent/object size for this analysis. The y-axis indicates how many regions
exist that fit into each size category.

object size of one unit which shows that these three regions are not very useful. Both

HM and PASFV also produced a number of regions in which our test object would

barely fit, which could also cause problems for information compartmentalization.

Surprisingly, the simple SFV algorithm did the best on this test with no unusable

regions and few borderline regions. This is partially explained by the fact that the

SFV algorithm did not attempt to fill in the small areas between the obstructed

configuration space areas—doing so would have resulted in the formation of more

and smaller areas. In this case, SFV was actually assisted by its low coverage. When

looking at the averages of the areas of the regions produced by this metric as shown

in Table 6.3, the SFV and PASFV decompositions have similar values, which means
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that discounting a few small regions, PASFV does end up being almost as good at this

metric as SFV, with the added advantage of providing a 100 percent decomposition

of the world.

When comparing multiple decompositions of a world using this algorithm, the best

decompositions will be ones that have few or no regions that have an area smaller

than the average size of the objects the game engine would like to place into them. In

addition, it is better if the regions are several times the size of the objects that will be

placed in them, as this allows for multiple objects in each region and provides some

room to maneuver the objects around in a region without colliding. Decompositions

performing well on this metric will show distributions with a large number of large

regions and a low standard deviation so that regions are generally the same size as

each other. We realize that comparing the simple areas of the regions and the areas of

the objects to be placed in them does not absolutely guarantee that the objects will

fit in the region due to the potential for widely differing shapes, but we will further

expand on the issues of placing objects into regions in a later metric.

6.4 Graph Degree Distribution

By conducting a graph complexity analysis on the connectivity of the different

regions that make up the decomposition, we can gain understanding of how well the

navigation mesh would work for its original purpose of navigation. The number of low

connectivity (0-1 neighbors) regions is interesting and can tell us something about

the underlying geometry we are modeling. If a level has been fully decomposed,

which we will know from running previous metrics, then a region with only one
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connection represents a dead-end in the level geometry. As an example, suppose the

level designer does not want there to be too many dead end branches that the player

or AI could wander into. It is possible to compare multiple good decompositions of

different underlying level geometries to each other by using the distribution of this

graph and use this metric to select a level geometry that has fewer side passages. If

the developer did in fact want many branching dead ends, say for a game built around

a maze, then it would be possible to use this metric to pick a level design that contains

many low connectivity paths. This is one of the few metrics that provides meaningful

comparisons between decompositions of different sets of underlying geometry.

We create this distribution by iterating through each of the convex regions present

in our mesh and then recording the number of adjacent regions. Adjacency is deter-

mined by whether or not two regions share a common edge of a user defined length

threshold. We then use this adjacency data to create a graph of connectivity by plot-

ting the adjacency information as follows. The x axis shows the possible number of

connections. The y axis gives the number of regions having that many connections.

For example, the values (3 , 5) would indicate that five regions contain exactly three

connections to neighboring regions.

Table 6.4: The averages and standard deviations generated from the Graph Degree
Distribution metric.

Algorithm SFV PASFV HM
Average 2.96 3.43 2.488

Standard Dev. 1.179 1.53 0.588

As we can see in the data shown in Figure 6.3 and Table 6.4 from our example
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Figure 6.3: The results of our Graph Degree Distribution metric. The x-axis gives
the number of connections to adjacent regions. The y-axis shows how many regions
possess exactly that many connections to a neighboring region. Note: 0 is a possible
x value but was omitted in this chart due to no instances of it occurring in the data

decompositions, the HM generates an extremely high number of regions that only have

two connections, indicating most of the paths through the HM algorithm generated

decomposition are very linear. The SFV volume shows slightly better branching,

with a few regions with four or more connections, but it also shows a problem dead

end region which only has one connection. This dead end connection is especially

problematic since we know that the world we are decomposing does not have any dead-

ends. This anomaly is caused by the low coverage of SFV algorithm creating gaps and

empty areas in the navigation mesh. Looking at this data, the best decomposition

in terms of connectivity is the PASFV, which contains more than twice as many

connections of size four or higher and one that contains nine neighboring regions
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indicating that there are many possible paths for agents to move around the world.

Examining this distribution tells us quite a lot about how well-connected the regions

are that make up our navigation mesh. Obviously, regions that have no connections

to other regions are worthless, as they are not accessible for use in agent navigation

(note some games may intentionally create such areas similar to pit traps to force the

user to respawn in that case the presence of zero connection regions is to be expected).

These unconnected regions are a problem with the simpler decomposition algorithms

such as the standard SFV algorithm. Such unconnected regions should be treated

as red flags that indicate a decomposition should be immediately discarded. Ideally,

regions would be well-connected with three or more neighboring regions in order to

provide multiple alternate paths between regions and to avoid choke points and dead

ends. Good decompositions on this metric will have strong right skew on the graph

of connectivity.

6.5 Region Homogeneity Analysis

One of the common problems with decompositions occurs when the algorithm gen-

erates oblong shapes. For example, imagine a rectangle that is the length of the world

but only one or two units wide. This rectangle would do well on all of the previously

presented metrics that look at individual regions since it would have a large area size

(due to its extent in one direction). It should theoretically be able to contain many

objects, and its minimum interior angle will be 90 degrees, which is perfect for a quad-

based polygon. Unfortunately, this rectangle would be almost useless for information

compartmentalization since it is too narrow to successfully contain anything but the
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smallest of objects. Our Homogeneity Analysis is designed to detect such regions.

This analysis works by first gathering some basic information about each region

of the decomposition. Each point in a region is examined and then the minimum

and maximum x and y values are recorded. These are then used to determine the

width and height of the region. Since these regions are required to be convex by the

algorithms that generate them, we know via the definition of convexity that the lines

that connect these maximum and minimum points will lie entirely within the region.

We can consider these values to be a good indication of the maximum extents of the

region. Now that we know the height and the width of the region, we can derive the

number that we are really interested in—a ratio between the width and height of a

region.

This ratio between length and width is slightly more difficult to calculate than one

might expect. The larger of the two values (width or height) is divided by the smaller

of the two. If the width is larger, then the resulting value is reduced by one to center

the final number on zero. If the height is larger, then after dividing the height by

the width, the resulting number is multiplied by a negative one, and one is added

to the result again to center the results of this comparison at zero. Values below

zero would indicate that the region is taller than it is wide, with values above zero

indicating that the width of the region dominates the height. Values of zero would

indicate that the object has the same width and height and forms either a square

or a normal shaped triangle (right triangle), therefore values approaching zero are

considered ideal. These values are then averaged and a box and whisker plot of the

combined values for all of the regions is generated.
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Figure 6.4: The results of our Region Homogeneity Analysis metric. The ratio between
width and height is graphed via a box plot to produce this metric. Standard deviations
are shown via the inner boxes; the average is shown as the middle line. The outer
lines show the outer quartiles of the data. Outliers are marked via circles. Extreme
outliers are marked via a asterisk.

This data provides us an interesting look at the homogeneity of the sample decom-

positions. As we can clearly see in Figure 6.4, the HM-based decomposition has major

problems with outliers due to the large very wide and thin triangles that compose

the top and bottom of its decomposition. Due to the lack of extreme outliers and

the more balanced standard deviations we can say that the PASFV decomposition

is the most homogeneous. Based on the results of this metric, SFV does generate

a highly homogeneous decomposition, which is no surprise given its initial seeding
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with squares. For applications desirous of homogeneity and using purely axis-aligned

bounding geometry SFV would probably be a good fit, but for better coverage and

connectivity, PASFV would be better.

By looking at the shape of the box and whisker plot of the ratio between the length

and width of regions, it is possible to get an immediate feel for how homogeneous the

regions are. If the average of the data is approximately 0 and the standard deviation

is low, then the regions are compact and approximate squares or right triangles—

both of which are very good at compartmentalization of information. If there exist

outliers or the standard deviation is large, then some of the shapes present in the

decomposition are strongly elongated in one direction. This leads to regions that

cannot fully contain objects and problems with information compartmentalization.

6.6 Common Vertex Distribution

The next metric helps to visualize how many potential trouble areas there will

be for information compartmentalization. It works by looking at the locations of

vertices relative to each other and then generates a histogram showing vertices that

are duplicated among multiple regions.

By examining every vertex present in a decomposition, it is possible to find and

graph how many other vertices share a single location. To find the base data for

this graph, iterate through each vertex in the decomposition and check to see if it is

equivalent to any other vertex (within some small margin of error). Record how many

vertices share their locations with other vertices. This information is then graphed

in the following manner. The x-axis indicates the clusterings of vertices at one point
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in space. The y-axis indicates how many times each of those clusterings occurred.

For example, an x of 1 and y of 15 would indicate that there are 15 points that are

uniquely located, and an x of 4 and a y of 8 would indicate that there are 8 points

that share common locations in space with 3 other points.

Figure 6.5: The results of our Common Vertex Distribution metric. The numbers
of co-located vertices are given on the x axis. The actual number of times this
combination of vertices occurred is given on the y axis.

Table 6.5: The averages and standard deviations generated from the Common Vertex
Distribution metric.

Algorithm SFV PASFV HM
Average 1.338 1.64 3.05

Standard Dev. .477 .48 1.42

In the histogram showing the results of the Common Vertex Distribution shown

in Figure 6.5 and the means presented in Table 6.5, we can clearly see that the

HM algorithm has considerably more locations that are shared with multiple other
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vertices. In one instance the HM algorithm placed 9 vertices into a single location

which will almost certainly be a problem area. In this case the PASFV algorithm is

the clear favorite over HM and again wins out over SFV despite having to use smaller

regions to attain higher coverage.

Decompositions that contain high numbers of locations where multiple points come

together are a problem waiting to happen. These locations where many regions all

share a common vertex are the problem areas for information compartmentalization.

One of the issues experienced by triangle-based decompositions is that they tend to

have more clusters made up of a larger number of vertices due to the ability of many

triangles to converge onto a single point. One of the nice features provided by quad-

based decompositions is that only 4 rectangular shapes can come together at a single

free configuration space point. Ideally, the distribution graphs generated with this

metric will show peaks in the low 1-4 range and have few higher categories. Due to

collinearity of adjacent regions, good decompositions will have a high peak at x = 2.

6.7 Minimum Angle Distribution

By examining the distribution of minimum interior angles present in each region

of a decomposition, we are able to see if there are any small corners that agents will

not be able to enter without crossing into other regions. Regions with small interior

angles have been known for a long time to present problems for information compart-

mentalization [13]. One of advantages provided by using the Delaunay triangulation

algorithm is that it will attempt to maximize this metric. Unfortunately, despite at-

tempting to maximize this metric, Delaunay is limited in how much it can accomplish
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due to its triangular base shape.

Calculation of this metric is straightforward: to do so, first iterate through every

region in a decomposition and find the minimum interior angle of that region. Add all

of the minimum angles to a list of angles. Then generate a series of numeric groups

in the range (0,90] to drop the angles into. The best size of groups to use is entirely

up to the user, but we have found 10 degree increments to be insightful. Then plot

the data for minimum angles from the above list onto a histogram using the group

size determined earlier for readability.

Figure 6.6: The results of our Minimum Angle Distribution metric. This histogram
shows the distribution of the minimum interior angles of regions for different decom-
position methods. The x-axis shows minimum angles using a group size of 10 degrees
for viewing clarity. The y-axis lists how many angles of each decomposition type fell
into that group.

The results of this metric, which are presented in Figure 6.6 and Table 6.6 , show

us clearly that the HM decomposition of this world is not the best possible decom-
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Table 6.6: The averages and standard deviations generated from the Minimum Angle
Distribution metric.

Algorithm SFV PASFV HM
Average 90 86.47 34.864

Standard Dev. 0 11.77 23.99

position. HM produced an abundance of very tiny interior angles, which means, it is

filled with highly acute triangles. This will wreak havoc upon information compart-

mentalization. Once again SFV and PASFV were very close in this metric, which is

no surprise given they use quads as their basic geometry. If SFV had fully decom-

posed the world, then it would be the best algorithm to use based on this metric,

but, because it did not, PASFV is the preferred decomposition technique.

Using this metric is very straightforward: a distribution that has fewer outliers and

has larger minimum angles is going to do a better job of information compartmen-

talization, and in previous work, decompositions with fewer small sharp corners have

been shown to generate faster agent navigation paths with fewer sharp turns that

require additional path smoothing [30]. For triangle-based decompositions, minimum

angles of 60 degrees would be ideal as that would indicate all of the triangles are equi-

lateral, while angles greater than 30 degrees are sufficient for most purposes. Higher

order polygon decompositions generally will yield minimum angles of 45 degrees or

above with an ideal minimum value of 90 degrees. In all cases, decompositions with

one or more regions containing minimum angles of less than 10 degrees indicate that

there exists very acute triangular shapes that are going to cause problems for agent

navigation and dramatically reduce the ability of the decomposition to compartmen-
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talize information.

6.8 Object Placement Distribution

The most complicated metric presented here is an exact analysis of each region’s

ability to contain various user-defined sized bounding boxes or bounding spheres.

Unfortunately, to exactly determine how many of a given shape it would be possible

to fit into a convex polygon we would have to solve a variation of the Trunk Packing

problem (could also be considered a cutting stock problem) which is NP-Hard [21].

This means that we have to use an approximation to generate the data for this metric.

The approximation generates close results that tend to underestimate, which in this

case is better than an overestimation, since we need to be able to say with confidence

that any given region can contain at least that many of the user-defined object. Our

estimation works by laying a tight grid of objects over a region and then counting the

number of bounding objects contained entirely within each of the regions. Any of the

methods for approximating a solution to the trunk packing problem would work here

as long as they err on the side of underestimates and the same estimation method is

applied to every decomposition included in a comparison.

After determining how many of the user-defined bounding objects can be placed

into each of the regions in the decomposition, this result can be graphed. Again, this

data is best expressed in a distribution with the axes laid out as follows. The x axis

will indicate the possible number of bounding objects that a region could contain

from 0 to some user defined maximum value. The y axis will show how many times

each of the possible conditions listed on the x axis occurred. For example, a result of
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(4,7) would indicate that there exists somewhere in the decomposition seven regions

that by our approximation of the solution for trunk packing could contain 4 of the

user defined volumes.

Figure 6.7: The results of our Object Placement Distribution metric. This histogram
shows the distribution of the maximum amount of bounding spheres that can be
placed in each of the regions generated by different decomposition methods. The x
axis again gives groups showing how many objects could be placed in a region. The y
axis shows how many regions had a maximum capacity of no more than the amount
listed for the group.

Table 6.7: The averages and standard deviations generated from the Object Placement
Distribution metric.

Algorithm SFV PASFV HM
Average 13.68 10.06 8.79

Standard Dev. 6.36 6.69 6.88

The experimental data in Figure 6.7 and Table 6.7 shows that the PASFV decom-

position can contain objects better than the HM-generated decomposition. Again,
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the SFV does yield good object containment numbers, but the PASFV is still a bet-

ter choice, since that algorithm offers good information compartmentalization and

complete coverage of free space.

Despite being a complex metric to calculate, the interpretation and application of

this metric is actually very straightforward. If there are any regions that cannot be

assured of at least containing a single bounding object, then there will be a problem

for information compartmentalization and calculation reduction, since objects within

that region are certain to be in other regions as well (i.e., existing in multiple regions

simultaneously). Other problem areas are indicated by the presence of regions that

can only hold a low number of objects, since those would cause problems if multiple

objects attempted to move past one another. For these reasons, decompositions that

minimize the number of regions that can only hold a few of the user-defined bounding

objects are considered to be superior.

6.9 Decomposition Efficiency

After determining how effective the generated regions in a decomposition are at

storing objects we move on to considering how efficient the decomposition is over-

all. Each environment that is being decomposed has a certain number of obstructed

configuration space edges that define it, for example an empty environment is com-

posed of the four edges that make up the bounds of the environment. The addition

of configuration space obstacles to the environment will increase the number of ob-

struction edges present in the world. This number alone tells us how complex the

world is and allows us to rate worlds according to their complexity. By combining
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the number of obstruction edges in the world with the number of free configuration

space region edges present in a final decomposition we can assign a numeric value to

how the efficiently the level was decomposed. This number represents how many free

configuration space regions it took to decompose a world of any given difficulty.

To calculate this value the total number of the edges of obstructions in the occupied

configuration space in the world is divided by the total number of free configuration

space region edges in the decomposition. This will yield a number between zero and

one. Values close to or at one indicate that one free configuration space edge is suf-

ficient to decompose one edge of obstructed configuration space. Values approaching

zero indicate that many free configuration space regions are required to properly de-

compose a single edge of obstructed configuration space. In this case a value of one

would be ideal while lower values indicate that a less efficient decomposition. The

results of running this metric on our sample level and the three decompositions of it

are shown in Table 6.8.

Table 6.8: The efficiency with which each algorithm decomposed the world on a scale
of zero to one.

Algorithm SFV PASFV HM
Efficiency .40 .373 .378

The evaluation of this metric results in some interesting results. None of the de-

compositions presented here were highly efficient when decomposing this level. The

SFV algorithm as usual generated a inflated score on this metric. As often happens

in complex worlds the SFV decomposition has very low coverage. Since the world

is not fully decomposed there are not as many free configuration space region edges
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present in present in the SFV decomposition, and that there are many edges of ob-

structed configuration space that have not been fully decomposed. This means that

it will score well when dividing the high number of edges present a complex world by

the artificially low number edges in the decomposition. Excluding the SFV decom-

position since its score is deceptively high, we see that the HM decomposition scored

the next highest followed closely by the PASFV decomposition. It is not surprising

that the HM decomposition performed well on this metric since the HM algorithm

works by generating triangles from the vertices of the obstructed configuration space

and it would follow that every edge of obstructed configuration space is incorporated

into a single region of free configuration space. The growth based algorithms can

make no such assurances as it can take several free configuration spaces regions to

fully cover an edge of obstructed configuration space as can be seen in the included

PASFV decomposition in several places.

The Decomposition Efficiency Metric is particularly useful for several reasons.

First, it serves as a logical check against the number of regions metric by provid-

ing some information about how hard the level is to decompose. If a decomposition

has many regions and a low efficiency score than a better decomposition can almost

certainly be generated. On the other hand if a decomposition contains many free

configuration space regions but the efficiency score approaches one then the decom-

position is acceptable and the level itself is just complicated. This metric is also

excellent to use as a threshold when attempting to generate high quality decomposi-

tions. It is very easy to evaluate so it can be quickly and automatically calculated and

multiple decompositions can be generated until a large sample pool has been created



110

that meets the efficiency threshold. At this point the other metrics can be used to

determine the best decomposition from this pool.

6.10 Navigation Mesh Diameter

The following three metrics are borrowed from graph theory and can be applied to

navigation meshes with some slight adaptation. The first metric to originate in graph

theory is the concept of the diameter of a graph. The diameter of a graph is measured

as the greatest distance between any two vertices present on a graph. By calculating

this figure we can determine the maximum search depth of most path finding algo-

rithms for a decomposition as well as the compactness of the graph representation of

the navigation mesh.

The first step to calculating this metric is to convert the navigation mesh to a

graph representation: regions become vertices on the graph and the common edges or

gateways between regions become the edges of the graph. Since this metric focuses on

the abstract representation of the graph we do not need to worry about weighting the

edges to represent geometric distances between vertices. Once the navigation mesh

is converted to a graph representation find the shortest path from each node to every

other node in the graph. From this collection of paths the longest shortest path is

selected to generate the Diameter of the graph. If the graph has one or more disjoint

vertices then the Navigation Mesh Diameter is considered to be infinite since no path

exists to one or more nodes.

The lowest graph diameter indicates the most compact graph with the smallest

search space so the lowest scoring decomposition is the best performer on this metric.
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Table 6.9: The diameter of each of the navigation meshes.

Algorithm SFV PASFV HM
Diameter 11 9 13

In this case that is the PASFV decomposition. SFV loses points due to low coverage in

this metric since it is missing some of the edges which allow for shorter paths that are

present in the complete PASFV decomposition. HM performs the worst in this case

because the corners in this particular decomposition are filled with many small regions

which makes the path from corner to corner longer than in a decomposition that fills

each corner with a single polygon. HM will not always decompose a environment

in this manner, but these collections of thin triangles in the corners are a common

feature in HM decompositions.

The Navigation Mesh Diameter metric is like the Coverage metric a good tool to

use for detecting and removing subpar decompositions from consideration in a final

pool of similar possible decompositions after the other metrics have already been

evaluated. Poor decompositions due to low connectivity or disjoint regions will have

a very high or infinite Navigation Mesh Diameter which allows for the quick red

flagging and removal of low quality decompositions. In addition, this metric can

also be used as a threshold when generating a list of potential decompositions before

submitting potential decompositions to a more computationally expensive metric.

6.11 Navigation Mesh Bottleneck Detection

The next metric looks at a navigation mesh’s ability to move objects through the

navigation mesh. This metric is best applied in world designs where there is a clear
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starting point in the world and another clear exit point somewhere else in the world.

In figure 6.1(f) our sample level has been annotated with randomly chosen starting

and ending locations to show this metric. The results of this metric trace the route

from the start point to the ending point and then calculate the the most constricted

connection between regions present along this path. This constriction indicates the

maximum capacity to move objects or agents along this path before running into

crowding and congestion issues and provides an upper limit for the size of objects

that can follow this path.

The calculation of this metric is easier than calculating the maximum flow on a

graph, which this metric is derived from, as we are primarily interested in only the

path that connects the goal and destination region. This path should be calculated by

that same navigation algorithm that will eventually be used in the game or simulation

world. Once this algorithm has calculated the path of the decomposition it becomes

a simple matter to travel down the path towards the goal and record the width of

each region to region connection that the path moves through. The smallest of these

recorded values is the potential bottleneck for this path and the width of it is returned

for comparison to other decompositions.

Table 6.10: The width of the narrowest pass between the goal region and destination.

Algorithm SFV PASFV HM
Bottleneck Width 1.40 .7 1.6

When evaluating this metric the goal is to select the decomposition on which pri-

mary object flow path (start to end) has the widest possible bottleneck area. For
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this set of decompositions that is the HM decomposition. It is interesting to see that

the PASFV algorithm which normally performs well on these metrics is so far behind

the others, but if the decomposition in question is examined we see that the shortest

path from start to goal passes through the highly constricted center area of the map

between the two buildings, which explains this anomaly. On the SFV decomposition

this narrow center area was not decomposed which changed the optimal path to be

longer but somewhat wider path, while the HM algorithm decomposed the center in

a manner that produced a wider passage.

The primary information provided by this metric is the evaluation of the suitability

of each different navigation mesh to handle the primary traffic flow of the level.

Decompositions with a higher rating on this metric will result in less milling around

of agents or path finding errors. For this reason alone the metric is worth using, but

it is capable of doing more. Instead of just calculating the bottleneck potential for

the path from the start to the goal it is possible to calculate the bottleneck potential

for the path between every possible pair of regions. This information can then be

encoded into the navigation mesh under consideration and later used to do bottleneck

avoidance path planning. This metric can generate information which can be used to

improve the underlying navigation mesh in addition to evaluating it.

6.12 Navigation Mesh Maximum Total Flow

This metric is superficially similar to and derived from the previous metric, but tells

us more about the ability of the decomposition to handle large crowd movements from

a start point to a goal point. Unlike the previous algorithm which just determined
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the narrowest bottleneck when moving down the primary path between two points

in a level this metric finds the total movement capacity between two points using

all possible paths. This allows for the generation of decompositions, which maximize

the total ability of the navigation mesh to move a crowd from the start to the goal

positions by multiple paths.

As expected the calculation of this metric is considerably harder than calculating

the narrowest bottleneck on a single path. Both this metric and the previous one

start off the same way first the biggest bottleneck on the best path between the start

and goal point is located. At this point the connection the bottleneck occurs at on

the optimal route is marked as broken and edge that it represents is removed from

the graph model of the navigation mesh. Furthermore every other region on this path

has a bottleneck penalty applied to it equal to the bottleneck we just removed. This

penalty represents the fact that the regions on this path have already committed to

carrying a certain amount of traffic into the first bottleneck and cannot commit their

full capacity for any other paths. Now the metric will attempt to locate additional

paths from the start position to the goal point and continue doing so until it cannot

find any more paths. Each time it successfully locates a path it remove the narrowest

connection between regions and again applies that connection width as a penalty to

all other regions on the path. If the cumulative penalties on a connection are greater

the connection is wide then that connection is considered broken as well. Eventually

every path from the start to the end position will be fully committed to carrying as

much traffic as possible and all of the bottleneck connections will have been plotted.

At this point the Maximum Total Flow can be calculated, this value is the summation
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of the width of the narrowest connection on every path we previously generated minus

any penalties that might have been applied to that path. A simplified example of this

showing two paths and the locations of bottlenecks on them is shown in Figure 6.8.

This simple example would yield a result of 14.8. The full result set of this metric

when performed on the three decompositions we are evaluating using the same start

and end point as in Figure 6.1(f) is presented in Table 6.11

Figure 6.8: A simple level is show with both starting and goal points marked. The two
unique paths to the goal are shown as p1 and p2. Both p1 and p2 would contribute
in the generation of Maximum Total Flow metric despite p2 not being optimal.

In this case when alternative paths are open for consideration to avoid tight bot-

tlenecks both PASFV and HM show considerable improvement. SFV does not see as

much of an improvement, which is primarily due to the navigation mesh it generated
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Table 6.11: The efficiency with which each decomposition could move agents through
the environment.

Algorithm SFV PASFV HM
Bottleneck Width 3.3 6.7 25.5

not being complete. In this metric HM is the clear winner, which is expected from

examining the decomposition we are evaluating as HM produced regions with long

adjacent edges.

The primary purpose of this metric is to look at how well any given navigation

mesh can move agents and objects along all lines of travel in a level. Computing

the metric is somewhat computationally complex and expensive but once done the

information can again be placed into the navigation mesh for use later when agents

are moving around the navigation mesh. This metric is especially important in games

or simulations which involve moving large quantities or crowds through an area. For

example, when simulating the evacuation of a building picking a decomposition with

fewer artificial bottlenecks due to the configuration of the decomposition is important.

This metric is something of an advanced metric and is not designed to be ran on every

generated decomposition. It is a prime example of why some of the previous metrics

are recommended as thresholds with which to generate a reduced pool of potential

final decompositions. Using thresholds in this manner reduces the number of times

more computationally intensive metrics such as this one need to be executed.
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6.13 Metrics Evaluation

Once all of the metrics have been calculated, it is possible to do a final comparison

and evaluation of the different navigation meshes under consideration. A good first

step in evaluating the combined results of these metrics is to determine if there are any

outliers that allow one of the possible decompositions to be excluded from considera-

tion. For this comparison, Space Filling Volumes performed so poorly in the coverage

metric (see Metric 2 discussion) it will be excluded from further consideration. The

other two algorithms were competitive on each of the remaining metrics, which means

we can analyze the results focusing on the two remaining decompositions. The second

logical step in evaluating the suite of metrics is to assign a general point rating to

each of the decompositions. The remaining two algorithms have been awarded points

as follows: the outright winner of each metric is assigned one point, and if two algo-

rithms tie or produce very similar results each of the tied decomposition techniques

are assigned .5 points. Other schemes for assigning relative performance within each

metric could also be used. The results of this comparison is shown in Table 6.12

Table 6.12: The number of metrics that each algorithm produced the best result in.
Ties award .5 points to each of the tied decomposition algorithms.

Algorithm PASFV HM
Average 8.5 3.5

Upon evaluating the results of this comparison among the high coverage metrics

the PASFV decomposition performs better in these metrics than HM decomposition

having outperformed HM on more than twice as many individual metrics. This
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comparison assumes that metrics should be equally weighted. This equal weighting

works well if there is a clear distinction between the results like the ones evaluated in

this work, but if the results are more evenly divided (e.g., 6 vs 4 points) or if there

is a tie then we need to move onto the third step in evaluating the results of these

metrics. In the third evaluation step, we consider what the metrics measure and what

advantages provided by the navigation mesh (e.g., information compartmentalization

or collision detection assistance) are implemented in the program that will utilize the

navigation mesh (see Table 6.12 for a summary of each algorithm). For example, the

metrics related to the ability of each region in the navigation mesh to be used for

information compartmentalization or collision detection can be ignored or delegated

to secondary status if the target application is just going to use the navigation mesh

for navigation. After discounting metrics which have features that are not considered

important for this particular application, another table can be generated from the

remaining metrics using the above scoring method. This table should show which

decomposition is the better of the ones in comparison. If after excluding inapplicable

metrics and regenerating the table there still is not a better decomposition then it is

safe to conclude that the decompositions being evaluated are roughly equal and any

of them can be selected.

By providing users of navigation meshes with a series of metrics with which to

evaluate these meshes, it becomes possible to choose the best generated mesh from

a collection of possibilities. These metrics will also serve to enhance the ability of

automatic mesh generation tools to produce high quality meshes since there are now

fitness functions these tools can work towards and compare against. It possible to
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automatically generate a very large set of potential navigation meshes using several

mesh generation algorithms. Then this potentially large set of meshes can then be

sorted based upon quality as determined by these metrics. Low quality navigation

meshes can be quickly discarded while higher quality meshes continue to be processed.

Eventually, through a combination of these metrics the best quality navigation meshes

can be selected and then presented to a human to evaluate who can use the additional

information provided by these metrics (i.e., the histograms and graphs) to select

a final navigation mesh from this smaller set of top quality meshes. In addition,

each of these metrics could be extended with minor changes to work with full 3D

decompositions, instead of just 2D representations of 3D worlds or stacked levels. In

conclusion, enhanced mesh quality should lead to better character navigation, better

information compartmentalization, and improved collision detection with the world

providing better and more organized information to character AI for motion planning

and reasoning in interactive games.



CHAPTER 7: EVENT-BASED SPATIAL DECOMPOSITIONS

To this point we have presented 2D (PASFV) and 3D (VASFV) growth-based

spatial decomposition algorithms that are inspired by Space Filling Volumes. We

have also presented an extension to enable these algorithms to adapt to dynamic

environments. However, PASFV and VASFV still consume many processor cycles

performing collision tests and validity checks as the free configuration space regions

grow through empty space. Most of the time when a region is expanding via PASFV or

VASFV it looks something like this: ”Grow a unit. Did I hit anything? No, continue

growing” repeated over and over again. Overall, there are very few interesting events

that occur as these regions grow and it would be better if we could somehow calculate

where the most interesting locations will be and then grow directly to them.

We propose a system by which these interesting event points can be located in

advance and are used to inform the growth system such that every growth step each

region takes will have a potentially interesting result. This algorithm, which we call

the Iterative Wavefront Edge Expansion Cell Decomposition (Wavefront) technique

(see Algorithm 7.1 is composed of five major parts (seeding, sorting edges, locating

potential events, growth, and collision resolution) and is built on top of an exist-

ing PASFV or VASFV implementation. To begin with we have to alter one of the

invariants we proposed and utilized for the PASFV and VASFV algorithms. The
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invariant in question previously stated that all of the growing regions we will place

must continually be convex. In the Wavefront algorithm we change this to state that

all existing regions must be in a convex state before growing any other regions. This

allows regions to be temporarily concave while growing as long as they return to a

convex state before they finish their growth. We retain the invariant that states that

once a region has claimed an area that it must continue to occupy that area.

Previously, we would use either grid-based or obstruction influenced seeding as

discussed in Appendix 8.2 to place a large number of unit sized quad (or cube in

3D) regions into the world. These regions would then iteratively be given the chance

to grow and expand outward in the direction of the normal of each edge (or face in

3D—we will use edge for simplicity here since they are both effectively boundaries for

occupied space). When using the Wavefront algorithm on our initial entry into the

seeding phase we generate a list of potential seed points using the same methods. We

then randomly select one of these seed points to use as our initial region. The other

potential seed points will be retained for later seeding passes but will only be used if

they are still in areas of unoccupied configuration space that are as yet unclaimed by

any regions. If on later passes through the seeding phase this list is empty, we will

attempt to refill it by looking for areas of unclaimed un-configured space adjacent

to the regions we have placed, as in the PASFV and VASFV algorithms. If this list

remains empty after that point then the Wavefront algorithm will terminate.

After a seed region has been generated we will proceed to the edge classification

phase of the Wavefront algorithm. These next two phases are the most computa-

tionally intensive steps of this algorithm, and we only wish to perform them on valid
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regions that we know are going to grow. Therefore, we only grow one region at a time

and we discard region seeds that are covered by earlier growth. This classification

phase has no equivalent step in the versions of the PASFV and VASFV algorithms we

presented earlier. During this phase we iterate through each of the edges of obstructed

configuration space present in the world as well as any edges present in regions that we

have already placed into the environment. We discard any edges whose normal faces

away from the target seed point of the region as these edges are back facing and they

cannot interact with the region. These edges are then sorted into categories based

their relative spatial position when compared to the target seed location (+x, -x, +y,

-y, +z, -z). Edges that span multiple categories are placed in the first applicable one

depending on the evaluation order used in the implementation of the algorithm. Our

implementation uses the following ordering +y, -y, +x,-x, +z, and -z. Any ordering

will work as long as it is consistently followed.

Figure 7.1: The two simple cases for event based spatial decompositions. Case (a) on
the left shows growth towards a parallel element. Case (b) on the right right shows
the discovery of an intruding vertex.

Once the edges have been sorted, we locate any interesting event points. Our

region will have an edge that is perpendicular to each of the sorting classifications
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and whose normal matches the sorting classification (we will refer to this as the

classification edge). By comparing the slope of each of our sorted obstruction edges

to the appropriate classification edge we can determine in advance how the growing

region would interact with the obstruction. This can be visualized by thinking of

a radial half-plane sweep drawn from the initial seed point and then rotated in 90

degree arcs along each edge as shown in Figures 7.1 and 7.2. This sweep line will

report the orientation of the edges it finds as well as the closest point on the edge to

the initial seed point. The interactions between these edges of occupied space and

the edge of the region we just placed can be reduced down to a series of cases, which

happen to be identical to the cases present in the PASFV and VASFV algorithms.

Figure 7.2: Two more complex cases for the Wavefront decomposition. In both cases
the Wavefront sweep has discovered splitting events.

The first of these cases occurs if the tested edge is found to be parallel to the

classification edge. This is the simple base case that we saw earlier in PASFV and

VASFV algorithms as shown in Figure 7.1a. In this case, we will wish to move the
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classification edge such that it is adjacent and co-planar to the target edge. We

accomplish this by calculating the closest point on the edge to the initial seed point

of the region we are evaluating. We then log this point and the distance from it to the

region’s initial seed point as an event. Incidentally, since all of our placed regions only

expose axis-aligned edges and our growing regions also only expose axis-aligned edges

any events involving other regions of un-configured space will fall into this category.

A slightly more complicated case occurs when the edge is examined and found to

be sloping inward towards the classification edge as shown in Figure 7.1b. In this

case, we will only be able to grow such that the closest vertex of that edge lies on the

classification edge without changing the slope of the classification edge. We cannot

change this slope as this would result in previously claimed areas of unoccupied space

being relinquished, which would violate one of our invariants. When the resulting

growth for this case is examined it is revealed to correlate to the single vertex inter-

section case from PASFV and VASFV. This case is resolved by storing the location

of the closest vertex on the edge under evaluation along with the distance to that

vertex from the initial seed point of the region.

Finally, we come to the most complicated case, which might result in the potential

addition of new edges to the growing region. In this case, the closest obstruction edge

is sloping away from the midpoint of the classification edge, and it would be possible

to move the classification edge such that one of its vertices could intersect the edge

under consideration as shown in Figure 7.2. This equates to the potential splitting

cases in PASFV and VASFV. In order to calculate where this split should occur the

closest point on the edge under evaluation to the initial seed point of the region is
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found. This point is then stored as an event point again along with the distance

between this point and initial seed point of the region. Additionally, we wish to store

the two end points of the edge under consideration (assuming the closest point was not

an end point) so that we will be able to increase the order of this region such that it

adds a new edge that is adjacent to the entire length of the edge under consideration.

However, instead of calculating the distance between each of these end points and

the initial seed point we will treat them as if they are only slightly further away from

the initial point than the point we are using to split. As we will see, the events will

be processed based on the distance from the initial seed point of the growing region,

and by altering the distance of these two end points we will ensure that region tries

to fully encompass all of the space that is adjacent to the edge it splits on.

At this point we have a collection of potential events for our new region to grow

towards; however, we need to do two things before we can begin growing. First, if

the edges of the world are defined as some boundary conditions rather than actual

occupied configuration space then events will need to be inserted to allow each region

to grow outward to the edges of the world. Then this list will need to be sorted

based on the distance between each event and the initial seed point of the region.

This will allow us to process closer events first as we are more likely to reach them

as further events are oftentimes unreachable due to the presence of more immediate

obstructions.

With the completed event list for this region we are able to proceed to the growth

phase of the Wavefront algorithm as shown in Algorithm 7.2. First, the growth rates

of all of the edges of the region are reset to zero. Then, the first (closest) unprocessed
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growth event is selected and removed from the list of potential growth events. Then

the distances that the edges of the region would have to move such that they reach

this growth event are calculated. This is done by calculating the distance between the

current location of the two (three in 3D) closest edges and the target growth location.

This result is then broken down into its components (x, y, z) and if these values are

positive they are set as growth rates for the edge or edges that have a normal that

points toward the target growth event. Growth then proceeds as normal in PASFV

and VASFV algorithms with one additional exception. Instead of growing each edge

iteratively and then checking for any collisions or invalid growth conditions, all of

the edges must be allowed to grow then a single set of checks for collisions or invalid

growth states can be executed. This happens because there are splitting events that

may result in invalid configurations if only half of the event (i.e., one rather than two

edges are allowed to grow) is executed.

Algorithm 7.1: Wavefront.Grow()

List targetSeeds;
/* Generate a list of potential seed points and start the algorithm

*/

while worldModel.GenerateSeeds(targetSeeds) do
while targetSeeds.notEmpty do

if worldModel.isEmptySpace(targetSeeds.front()) then
Region newRegion(targetSeeds.front());
/* Pass the new region a list of edges to classify. See

7.2 */

newRegion.growE(worldModel.getEdges());
worldModel.regionList.push(newRegion);

else
targetSeeds.pop();

Once the region has finished growing any collisions with other regions or occupied
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configuration space objects must be resolved. Any vertices of the growing region that

collided with an obstruction must be split, and the region must be converted to a

higher order polygon. At this point either the PASFV or VASFV algorithm should

be used to adjudicate the growth and handle any changes that this region requires.

Since growth events are calculated in isolation with no consideration for other regions

or potential obstructions it is possible that a collision will occur and that the region

will have to retreat from a potential growth event. If this happens then the edge

involved in the collision should cease further attempts to grow. The algorithm will

then select another event to grow to, repeating this process until there are no more

growth events or all of its edges have ceased attempting to grow due to collisions.

Algorithm 7.2: Region.growE()

List targetEvents;
/* Sort the edges in the world and classify them */

classifyEdges( targetEvents);
targetEvents.sort();
/* Generate a list of potential event points and start growing

towards them */

while targetEvents.isNotEmpty) do
zeroGrowthRates();
/* This method selects the first event and calculates how this

region would need to grow to reach it. */

updateCurrentEvent(targetEvents);
grow();

After this region has finished growing, additional regions will be placed as per the

seeding discussion earlier. If the algorithm enters the seeding phase, and is unable

to place any new regions it terminates. This results in a collection of regions that

is ready to serve as a navigation mesh. Additionally, if desired this collection of

regions can be cleaned up by combining adjacent regions such that the result would
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still be convex. However, this combining is less necessary than in PASFV or VASFV

due to the fact that the obstruction-based seeding algorithm will attempt fill each

unoccupied area of the environment with a single region, and only add additional

regions if they are required.

7.1 Wavefront Evaluation

Over the course of two experiments we have evaluated our Wavefront expansion

spatial decomposition algorithm against several commonly used existing spatial de-

composition approaches. We initially conducted an evaluation between the Wavefront

algorithm and Trapezoidal Cellular Decomposition algorithm. We evaluated these two

decomposition algorithms in a manner similar to that used for PASFV. We also ver-

ified that both decompositions covered the entire environment. For this experiment

we randomly generated a series of obstructions and placed these obstructions into an

environment in random positions. We evaluated these two decomposition techniques

across five randomly generated environments—a sample of these are shown with the

associated decompositions in Figure 7.3.

Table 7.1: This table presents the results when evaluating the Wavefront algorithm
against Trapizoidal Cellular decomposition.

Algorithm Number of Regions
Wavefront 22.4

Trapizoidal 31.4

The results of this comparison are presented in Table 7.1. We expected the Wave-

front expansion algorithm to generate a decomposition providing full coverage and

using few regions. This proved to be the case as the Trapezoidal decomposition re-
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Figure 7.3: A comparison of a Trapezoidal Cellular decomposition (top) and a Wave-
front decomposition (bottom) algorithm.

quired statistically significantly more regions to attain complete coverage (p-value

less than .05) across our sample environments. This effect is caused by two factors.

First, the direction of a Trapezoidal decomposition must be selected in advance (ver-

tical or horizontal) and this direction must be consistently followed throughout the

decomposition. However, some of the regions present in the environment (or any

complex environment) would be better decomposed by one direction or the other.
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This provides an advantage to the Wavefront algorithm as it can decompose around

obstructed configuration space without any such pre-existing limitations. Secondly,

the Wavefront algorithm produces few regions that would benefit from a cleanup and

combining step post-decomposition (joining multiple convex regions into one larger,

but still convex region), conversely the regions produced by one of the four base cases

of the trapezoidal cellular decomposition algorithm would almost always benefit from

such a step. This step is not part of the Trapezoidal decomposition algorithm and

as such was not included in our evaluation. The successes in this preliminary exper-

iment lead us to continue with the development of the Wavefront algorithm as well

as encouraging us to finish the development of our metrics suite.

To complete our evaluation of the Wavefront spatial decomposition technique we

compared it to a pair of commonly used navigation mesh generation techniques. First,

we evaluated this technique against Delaunay triangulations as they often serve as

the basis of more advanced spatial decomposition techniques, and produce good de-

compositions on their own. Additionally, one of our proposed metrics (Distribution

of Average Minimum Interior Angles) is maximized in a Delaunay triangulation and

as such this means the algorithm should perform well on this metric. Secondly, we

are taking our generated Delaunay triangulations and using them to form Hertel-

Mehlhorn decompositions. As we discussed earlier these decompositions are com-

monly used both in games and simulations and as such serve as a standard with

which to evaluate against—as much as anything does due to the lack of a generally

accepted best practice method for producing navigation meshes. For this evaluation,

we continued to use a series of randomly generated levels. The style of these levels like
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those in Section 2 is inspired by the sample environments presented by Lavelle [42].

We expanded our test to use 10 such levels. Two of the base levels and all three of

the decompositions generated from them are presented in Figure 7.4 for comparison.

Figure 7.4: Two randomly generated environments (top), the Delaunay triangula-
tions for said environments (second row), the Hertel-Mehlhorn Decompositions for
the environments (third row) and the Wavefront decompositions (bottom).

For this set of comparisons we have deployed most of our available metrics suite
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only leaving out three inapplicable metrics. We initially inspected each decomposition

to ensure that it provided a full coverage representation of the environment. We then

evaluated the number of regions present in each type of decomposition. We calculate

and present the average size of regions present in each of the different decomposition

techniques, along with how “efficient” they are at decomposing the environment.

The quality of the navigation mesh in general is evaluated by considering the average

degree (connectivity) of regions present in the navigation mesh and the diameter of the

generated navigation mesh. Finally, we examine the navigation meshes ability to store

information and contain agents by evaluating the average minimum angle present

in the environment (to detect slivers or other degenerate geometry), the average

number of vertices shared between different regions, and the homogeneity of shape

of the regions. Since we lack any associated game play data with which to base the

general direction of travel through the levels on, we did not run either of the flow rate

metric evaluations, and since we do not have active agents in the environment we did

not consider the maximal object placement metric. The results of these metrics are

presented in Table 7.2. Statistically significant (p-value of less than .05) results are

marked with a *.

Our comparisons of different spatial decomposition techniques have yielded several

interesting results. As expected both decomposition techniques that utilize higher

order polygons yield fewer regions in the resulting navigation meshes than the tech-

nique that is restricted to triangles. Interestingly, the Hertel-Mehlhorn algorithm

produced on average one fewer region per map—though this result is well within the

standard deviation of the number of regions produced by the Wavefront technique.
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Table 7.2: The final comparision results for event-based growth.
Metric Delaunay Hertel Wavefront

Number of Regions 31 16.8* 17.8*
Coverage 100 100 100

Region Average Size 26233.08 49212.03* 41020.92*
Average Graph Degree 2.96 2.48 3.13*

Region Homogeneity .477 .564 .2573
Common Vertices 3.43 1.985 .59*

Average Minimum Angle 19.683 69.39 83.59*
Decomposition Efficiency 4.04 2.78* 3.78

Graph Diameter 8.2 5.7 5.7

As follows from the previous metric both the Wavefront and the Hertel-Mehlhorn

decompositions generate navigation meshes with larger region sizes than a Delaunay

triangulation due to the fact that they both achieve complete coverage with fewer

total regions. When we consider the results of the graph degree connectivity analysis

we see one of the benefits of using the Wavefront algorithm over the others, as on

average it produces a navigation mesh that is almost three standard deviations more

interconnected than those produced by competing algorithms. The average of the

minimum interior angles across the different navigation meshes also produces an sur-

prising result. One would expect that since the Delaunay triangulation optimizes on

this metric and that that Hertel-Mehlhorn decomposition builds on this triangulation

that both would excel at this metric. However, that is not the case as the Wavefront

algorithm performs statistically significantly better on this metric than the other two

algorithms (p-value < .05). The Wavefront algorithm performs slightly below average

in terms of the efficiency of the spatial decomposition metric. Given the performance

poor reletive performance of the Wavefront algorithm in this comparison we would

suspect that altering with a different seeding pattern the Wavefront algorithm might
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produce a better decompositions—examination of the generated decompositions re-

veals is the case. Additionally, we show in our common vertex distribution metric

that the Wavefront algorithm generates decompositions with fewer regions converging

to single points unlike Delaunay triangulations or Hertel-Mehlhorn decompositions,

which in the worst case can be shown to be infinitely bad in this metric (Proofs

7.1 and 7.2 in Section 7.2 and Section 7.3). Finally, in terms of graph diameter both

the Wavefront and Hertel-Mehlhorn algorithms outperformed the triangulation-based

approach, though again this is to be expected since they use fewer and higher order

polygons.

Overall, the Wavefront algorithm performs well on several key metrics (Minimum

Interior Angle, Common Vertices, and Homogeneity) that measure the quality of use

of the decomposition in terms of AI path planning and information compartmentaliza-

tion. Across all other metrics it is competitive with the Hertel Mehlhorn algorithms

and considerably better than a Delaunay triangulation.

7.2 Convergence of Free Configuration Space in a Delaunay triangulation

Theorem 7.1 : There is no upper bound on the maximum number of convex regions

which can come together at a single point in a Delaunay triangulation.

Proof 7.1 : Suppose not. Then there exists an n so that there is no Delaunay

triangulation of any environment that has more than n convex regions that intersect

at a point. We will now construct an environment where every Delaunay triangulation

has n convex regions that intersect at the point a. We begin with the environment

given in Figure 7.5(a), where the free configuration space is already decomposed into
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a Delaunay triangulation, with three convex regions intersecting at point a.

Figure 7.5: Simple level decomposed via Delaunay triangulation. The obstruction
present in the level is shown in gray. We then see in (b) a alteration to the level to
make it slightly more complex. Lines added by the Delaunay triangulation algorithm
are shown in green

Now we construct a new environment by removing pq and adding two new edges,

pp1 and p1q where point p1 is further from a than points p and q. Figure 7.5(b) shows

this new environment and its Delaunay triangulation.

We inductively repeat this process on pp1 and p1q, creating new points p2 (half

distance between the subdivided line and point on the triangle furthest from point a)

between p and p1, and q2 between p1 and q that are further from a than p, p1, and q.

Figure 7.5(c) shows the singular Delaunay triangulation for this level. Each iteration

of this process creates two new triangles in the Delaunay triangulation as shown in

Figure 7.5. We repeat this process n
2

+ 1 times. Every Delaunay triangulation of

this environment will have n + 1 triangles intersecting at point a. Since n was the

upper bound on the number of convex regions intersecting at a point for any Delaunay

triangulation, this is a contradiction, and there is no upper bound on the number of

convex regions intersecting at a point in a Delaunay triangulation.
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7.3 Convergence of Free Space in a Hertel-Mehlhorn Decomposition

Theorem 7.2 : There is no upper bound on the maximum number of convex regions

which can come together at a single point in a Hertel-Melhorn Decomposition.

Proof 7.2 : This theorem proceeds in the same manner as the previous proof for

Delaunay triangulations. It begins with the same supposition that if the worst case

for this algorithm is bounded then we can can construct a counter example. We

show in Figure 7.6(a-c) what happens when we start with a simple n-sided convex

polygon and then add edges such that the polygon begins to approximate a circle.

Consider what happens as the order of the polygon is increased by subdividing and

pulling out one of the edges that faces towards the point a. We know that since a

triangle can only be adjacent to one edge of a convex obstruction, and we are adding

more edges we have to add regions of free configuration space. Regions cannot be

combined into convex polygons because we are constructing the new edges so that

such a combination would result in a concave region. We can repeat this subdivision

an infinite number of times and each subdivision will result in one more triangle

intruding more into free configuration space.

We then must show that no matter how the additional edges are distributed around

the obstruction that the vertices of the world bounds will continue to deteriorate by

connecting additional triangles to them. By the Pigeonhole principle, if there are n

pigeons and k holes then there exists a hole with at least ceiling(n
k
) pigeons. Using

this principle consider the p edges from the interior shape connecting to four vertices

on the outer edge of the environment since every triangle added to the decomposition



137

Figure 7.6: The results of subdividing a initial triangular obstruction (shown in grey)
into a shape that more closely approximates a circle.

must anchor to the outside edge. No matter what decomposition we have, there

exists a vertex on the boundary with ceiling(p
4
) edges adjacent to it. Let us say n

was our upper bound on the number of regions that could be adjacent to a vertex.

Set p = 4n + 1 then the ceiling of (p/4) is ceiling(4n + 1/4) = ceiling(n + 1/4) =

n+ 1. Therefore, the vertex has n+ 1 + 1 regions adjacent to it. This contradicts our

original assumption.

QED - Any theoretical worst case upper bound on the number of regions an agent

can occupy in a Hertel-Mehlhorn Decomposition can always be made worse by sub-

dividing obstructions into a higher order polygon therefore there is no upper bound

on the worst case.

7.4 Characterization of Spatial Decompositions

Overall, the decomposition algorithms that we present in this document share many

common features. They all are capable of consuming arbitrary geometry with minimal

refinement and generating spatial decompositions. In particular, the algorithms that
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we present have no problems with axis-aligned geometry or other standard numeric

edge cases, and do not require any mathematical adjustment to ensure that points

in the input data do not lie on the same vertical or horizontal line. Trapezoidal de-

compositions experience problems with input data containing perfectly axis-aligned

edges due to more than one point laying on the sweep line the algorithm utilizes at the

same time. The decompositions generated by the PASFV, VASFV, and Wavefront

algorithms are not unique to the environment (as a Delaunay triangulation would be)

and like the Hertel-Mehlhorn algorithm many such decompositions can be generated

from any set of obstructions. Unfortunately, the algorithms presented here like any

convex spatial decomposition algorithms do not perform well when executed on geom-

etry containing curves or spherical objects that have been approximated via a large

number of short line segments. This occurs due to the fact that each of the short line

segments that compose the approximation of the curve or sphere will require its own

region to fully decompose the space next to it. These regions cannot be combined and

this results in a large number of small regions in the final decomposition. However,

these small regions would be present in any spatial decomposition that requires the

output be convex as there is no way to combine them without having a free config-

uration space region that borders two edges of the same convex obstruction, which

means one of the region must be concave. Finally, the quality of the decomposition

is influenced by the quality of the input geometry. If there are many small rooms,

restricted corridors, or triangular shaped rooms than there will be similar features

present in the navigation mesh for that geometry.



CHAPTER 8: CONCLUSIONS

Throughout this work we have focused on generating better representations of space

in games using navigation meshes. Such representations establish and augment the

perceptions of virtual characters in game and simulation environments. Oftentimes,

all that characters know about the areas in which they operate comes from the rep-

resentations provided to them. Using a navigation mesh representation provides an

advantage over reasoning about the raw space present in the world or just considering

the obstructed areas. This representation presents a smaller search space, which can

improve the speed of path finding queries. Without these representations, the task

of moving characters through virtual environments in reasonable manners becomes

much harder, as the characters have a much larger search and planning space to

consider.

8.1 Summary of Results

We have focused on the development of 2D and 3D growth-based spatial decom-

position algorithms in order to generate high quality navigation meshes. In general,

navigation meshes have become the representation of choice for game and simula-

tion characters [46]. We have evaluated the navigation meshes that our algorithm

generates against many of the most popular competing navigation mesh generation

techniques (e.g., Hertel-Mehlhorn Decompositions, Delaunay Triangulations, Clas-
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sical Space Filling Volumes, Trapezoidal Cellular Decompositions, and Path-Node

Generation) in game and simulation environments and in all cases they show sta-

tistically significantly superior results. Our algorithms have in general fewer regions

overall, produce a smaller navigation graph, generate higher degrees of coverage, and

produce fewer degenerate or near-degenerate regions. Our mesh generation techniques

present a high enough computational efficiency that they can be executed at run time

to allow navigation meshes to be dynamically altered by runtime changes to the en-

vironment [27]. We presented a series of 12 metrics that allow us to evaluate the

quality of generated navigation meshes in a manner that was previously impossible,

and to extend our understanding of what makes a good navigation mesh. Finally,

our new Iterative Wavefront Edge Expansion Cell Decomposition (Wavefront) algo-

rithm is capable of generating spatial decompositions that are superior to existing

and popular techniques for the creation of navigation meshes. In combination this

work addresses our core hypothesis statement:

The shape and extents of the unoccupied space present in a game or simulation en-

vironment can be reduced to a series of convex regions using a growth-based algorithm,

which will result in a smaller set of regions that contain fewer degenerate or near de-

generate regions than existing spatial decomposition algorithms with an average higher

order of polygon/polyhedron.

In order to prove this hypothesis, we have developed and evaluated three growth-

based spatial decomposition algorithms. Through a series of experiments and proofs

with these algorithms we show:
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• That across multiple different environments our growth-based decomposition

algorithms generate a set of convex regions that completely cover the environ-

ments.

• That through five test environments and numerous path length evaluations

plotted on decompositions generated by the PASFV algorithm produces shorter

paths with fewer sharp turns than Hertel-Mehlhorn decompositions and classical

Space Filling Volumes[30].

• That it is possible to decompose 3D environments with the VASFV algorithm

such that the resulting navigation mesh has fewer regions and higher coverage

than other 3D decomposition algorithms[28].

• That using our event-based Wavefront algorithm it is possible generate spatial

decompositions that are equal or better than Hertel-Mehlhorn and Delaunay

triangulation generated decompositions in terms of number of regions and cov-

erage.

• That based on our metrics suite the decompositions generated by the PASFV,

VASFV, and Wavefront algorithms across multiple environments have a higher

interior minimum angle, high degrees of homogeneity, fewer shared vertices

between regions, and a higher degree of connectivity between regions than de-

compositions generated by existing commonly used algorithms—this results in

navigation meshes with fewer degenerate or near degenerate regions.

Our results on the evaluation of the growth-based spatial decomposition algorithms
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that we developed prove our hypothesis statement. Utilizing these results and our

hypothesis statement we can identify the four primary contributions of this body of

work:

• The PASFV algorithm and the work we did to compare it to the Hertel-

Mehlhorn algorithm and the Space Filling Volumes algorithm.

• The VASFV algorithm and the comparison we performed with it against the

3D Space Filling Volumes algorithm and the Path Node Generation algorithm.

• The metrics suite we proposed and evaluated that allow for better understanding

of spatial decompositions.

• The Wavefront algorithm which allows for rapid spatial decompositions with-

out wasted growth steps and the comparisons we ran on it against Delaunay

triangulations, Trapizoidal Cellular decompositions, and Hertel-Mehlhorn de-

compositions.

In addition to our primary contributions, we have developed other algorithms and

extensions that can be used in conjunction with our growth-based decomposition

methods. Using our techniques, characters can be dropped into an unknown environ-

ment and can then construct navigation meshes for themselves or their teams as they

explore their environment (see Appendix A)[31]. This exploration capability opens

navigation meshes to previously closed domains involving procedurally expanding or

on demand generated environments. We show that agents equipped with this algo-

rithm will eventually generate a complete navigation mesh for their environment.
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We also produced a pair of adversarial agent algorithms that enable an agent to

use the navigation mesh to pro-actively plan modifications to the environment as

shown in Appendix B. With these algorithms, agents are able to destructively modify

their environments to either aid in the defense of a given area or find shorter paths

through previously obstructed areas [29]. We evaluate several teams of agents running

these enhanced algorithms in Capture the Flag scenarios and show that agents with

a greater ability to dynamically alter their environments perform better than agents

lacking one or both of the modification abilities.

Next, we have developed techniques that allow us to improve spatial decomposi-

tions by: varying the rate of decomposition in our growth-based algorithms, selecting

possible seeding locations based on the obstructions present in the environment, and

biasing the spatial decomposition based on the textures or terrain types present in

the environment as shown in Appendix C.

Finally, we have shown a new application for the navigation meshes we produced by

applying them to the problem of collision detection as shown in Appendix D. We have

developed extensions that allow a navigation mesh to function as a collision detection

acceleration data structure. With the extensions we show that the navigation provides

superior collision detection acceleration than popular specialized data structures.

8.2 Future Work

We plan to extend the work presented here in several ways. First, we would like

to evaluate some of the tradeoffs that are caused by using a texture aware spatial

decomposition to create a navigation mesh. Such navigation meshes will contain more
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regions than ones generated without considering the textures or types of terrain being

traversed. This will increase the amount of time required to search the navigation

mesh, but alleviates the need to consider the local terrain the agent would be moving

through (i.e., agents driving cars do not have to worry about remaining on the road

instead they just use the “road” subset of the navigation mesh). It will be interesting

to see if such a tradeoff improves path finding speeds, or if it merely reduces the burden

on the agent creator since much of the path validation is done through the advanced

navigation mesh. Secondly, we believe it should be possible to implement a form

of portal culling in a navigation mesh (in particular, a collision enabled navigation

mesh as it already contains all of the world objects) such that based on the cameras

position in the navigation mesh it would be possible to quickly determine, which

objects need to be rendered. The collision detection extensions we have presented

and the work done by Heckel[35] shows some of the potential for a navigation mesh

to influence and control the amount of information that must be considered by an

agent. We believe this information compartmentalization can be taken much further.

In particular, we feel that the perceptions of the agent could be quickly calculated

using the navigation mesh in a manner similar to the portal culling we just mentioned.

This should produce agents that act more on what they see and know about instead

of omnipotent agents who are aware of everything happening in the world. Finally,

we plan to look beyond convex region breakdowns of the environment. Our current

research is focused on ways to decompose an environment into a series of convex

regions, but we plan to examine the possibility of introducing limited concavity into

select regions. Such limited concavity would allow full coverage decompositions of



145

near degenerate environments (e.g., those containing parameterized curves or other

surfaces with a high number of edges or faces) with far fewer regions than we currently

require.
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APPENDIX A: USING AGENTS TO DISCOVER NAVIGATION MESHES

There are some problems with using a navigation mesh in a virtual environment. In

order to generate the navigation mesh the configuration of the obstructions present in

the world must be known in advance. This will cause a problem if the target virtual

environment is being procedurally generated at game initialization or even worse if the

world is being procedurally expanded as players or agents move outside the existing

world bounds. In addition, when agents are provided with a full navigation mesh at

the initiation of a game or simulation it gives them full knowledge of the environment.

This makes sense if the agent is moving through an area they would logically have

traversed before (e.g., a guard in a building would be familiar with the building), but

does not make sense for agents that should be ignorant of the areas they are entering

(e.g., a rescue worker entering a building they have never been in before). Such extra

knowledge can cause the agents to behave in ways a person would not behave and

this reduces the believability of the agent.

These problems have prevented the use of navigation meshes in situations where

the layout of the virtual world was unknown or unknowable prior to guide agents

moving through the world. We will present an algorithm that provides a solution

to these problems and allows for the dynamic construction of a navigation mesh

based on information gathered by agents in the world. We do this without sacrificing

the benefits a navigation mesh provides to agents. At the same time agents are

moving around through the world building and updating the navigation mesh they

are querying and planning based on their current understanding of the navigation
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mesh. We accomplish this by using the Dynamic Adaptive Space Filling Volumes

(DASFV) algorithm combined with sensors that are integrated into each agent to

detect incorrect classifications of space in the navigation mesh versus the actual world

geometry.

This section presents the Navigation-Mesh Automated Discovery (NMAD) algo-

rithm, which allows agents to discover the navigation mesh for a game level while

traversing the level. This algorithm works by making an initial assumption that the

world is empty and generating an appropriate navigation mesh for this empty world.

As one or more agents move through the world, each agent will detect and report

any obstructing geometry (objects) they encounter. If this newly discovered geome-

try is not present in the navigation mesh then the Dynamic Adaptive Space Filling

Volumes (DASFV) algorithm will update the navigation mesh. As these agents move

through the world discovering geometry, the current decomposition (a decomposition

is a breakdown of obstructed and open space in the game world in a navigation mesh)

will eventually converge on the ideal decomposition.

Navigation-Mesh Automated Discovery is an extension of the DASFV algorithm to

represent the limited knowledge each agent or group of agents’ posses about their local

environment. The NMAD algorithm as shown in Algorithm A.1 begins by initializing

an empty navigation mesh composed of a single region that covers all possible un-

configured (walkable) spaces present in the world. It also incorrectly classifies all of

the configured (obstructed) space areas present in the world as un-configured space.

While this navigation mesh is inaccurate, it is the most accurate navigation mesh

possible given no additional knowledge about the world. The accuracy of the naviga-
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Algorithm A.2: The NMAD algorithm loop

/* The NMAD algorithm is generally called from inside the agent

class, and is assumed to have access to all of the agent local

variables */

/* Check to see if any new obstructions are within range of the

agent */

List FoundPositiveSpace;
for NewPosSpace in World do

if Agent.CanSee(NewPosSpace) then
FoundPositiveSpace.add(NewPosSpace);

if FoundPositiveSpace.size() != 0 then
/* We found new positive space areas */

for NewPosSpace in PositiiveSpaceList do
/* Insert the positive space into the navmesh */

NavigationMesh.insert(NewPosSpace);

/* Regrow the affected areas with DASFV */

NavigationMesh.regrow();
/* Rebuild the connectivity */

NavigationMesh.reconnect();

else
/* Clean up the navmesh instead */

NavigationMesh.cleanup();

tion mesh will improve with the addition of obstructed space locations discovered by

the agents.

Once the initial (one region) navigation mesh has been constructed, the agents

present in the world can use it for navigation as shown in Figure A.1(a) and A.1(b).

Each agent present in the world is modeled as having a individually defined detection

range to notice obstructions. As these agents move through the world, they will

encounter obstructions as shown in Figure A.1(c).

When a new obstruction enters the detection range of an agent then one of two

things will happen depending on how the world is represented. If the obstructions

were constructed in a monolithic manner, (e.g., one obstruction represents an entire
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Figure A.1: This collection of images shows a sample agent traversal and discovery
of obstructed space. In image (a) we see the actual state of the world. The agent
is present in the lower left corner and there is a single positive space obstruction
(shaded gray) in the upper right. (b) shows the initial view of the world as the agent
perceives the world through the navigation mesh. The agent’s detection area is shown
as the (green) circle. Since no obstructions have been discovered, the navigation
mesh is a single region covering the entire world (blue). (c) shows the agent moving
and discovering a obstruction. At this point the obstruction will be added to the
navigation mesh. (d) shows the status of the navigation mesh after the addition of
the obstruction discovered in (c).

building) then the obstruction will need to be sliced into smaller components. We do

this slicing because the detection range of an agent is representative of the agent’s

ability to see the world, and it does not make sense that by seeing one corner of a

building the agent would become aware of the entire extent of that building. This

can either be done in advance by creating preset splits in the object or at runtime

by carving off sections of an obstruction via polygonal subdivision. However, if the

obstructions are not constructed in a monolithic manner and instead are created from

smaller building blocks then the blocks can be directly consumed by NMAD without

subdivision. For dynamically generated worlds the obstructions list will be derived
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from the components used to create the world and can be subdivided based on how

they would be rendered.

Once an obstruction has been identified then DASFV is used to insert the obstruc-

tion into the existing navigation mesh with the minimal possible disruption to the

navigation mesh as shown in Figure A.1(d). DASFV works by first locating areas

of un-configured space that intersects the area of the obstruction we are adding and

then removing them. The obstruction is then inserted into the navigation mesh. The

un-configured space regions adjacent to the ones that were removed are then allowed

to reseed the world with more regions to fill the newly vacated areas. These newly

placed regions then grow as much as possible and can generate more regions if needed

to ensure that all of the newly vacated space is fully decomposed.

The algorithm then waits for another obstruction to be detected. Even if all of the

obstructions present in the world have been detected, the algorithm can continue to

run, at which point it becomes a form of localized DASFV as only changes in the

world geometry that pass within the agents detection area will be reflected on the

navigation mesh. This means that every agent on the map is not instantly aware of

a new door being created in a wall or a passageway being closed off by rubble.

Finally, we have made three improvements to the base NMAD algorithm. First,

when no changes are detected in the world the navigation mesh quality can be im-

proved by combining adjacent regions when the resulting new region would be still be

convex. Doing this results in a smaller, more compact navigation mesh while amortiz-

ing the cost of these improvements across multiple agent update cycles. This reduces

the search space present in the navigation mesh and thereby speeds up queries. Sec-
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ondly, more than one agent can feed information into the NMAD algorithm. It is

possible for many agents to simultaneously search for obstructions rather than one,

and by exploring the world with multiple agents it is possible to converge on a perfect

decomposition faster. Finally, two or more separate navigation meshes can be main-

tained along with separate groups of agents who query and update just their own

navigation mesh. This produces the effect of creating two or more teams of agents

each with their own unique understanding and view of the game environment.

We performed a series of evaluations to asses whether the NMAD algorithm cor-

rectly built a navigation mesh based on an agents observations of the surrounding

configuration space obstructions. To perform these evaluations we constructed a

sandbox test environment. This environment consisted of 7225 meters square (85m

* 85m) of open space that the agent could traverse. This is roughly the size of two

football fields placed side by side for comparison. This world was then randomly

populated with obstructions. The obstructions were composed of three different sizes

of cubes (1 meter, 2 meter, 5 meter). The cube placement was restricted such that

two cubes cannot overlap each other. An agent was then placed into the world. This

agent had a detection radius of 10 meters for obstructions. The test agent moved at

a rate of 1.25 meters per second. At this speed traversing the level along an edge

would take would take 68 seconds.

The agent randomly chose destinations in what it believed to be unoccupied space

somewhere in the level. Navigation to these randomly selected points was controlled

by two distinct methods. The first local navigation method was used when both

the target location and the agent were located in the same region of the navigation
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mesh. In this case, the agent will move in the direction of the destination at a normal

walking pace. The second form of navigation occurs when the target point location

and the agent are in different regions of the navigation mesh. In this case, the agent

searches the navigation mesh to locate a path from its current location to the goal

region. This path is then stored and the agent will move through the centers of the

shared edges between connected regions on this path. When the agent is in the same

region as its target and it enters local navigation mode. It is worth mentioning that

for simplicity of implementation the agent uses a breadth first search to find a path

rather than a more complicated best first search algorithm.

Our agent implemented the NMAD algorithm presented in this dissertation to

update the navigation mesh as it moved through the world. We performed 10 passes

through this world where we measured the error present in the navigation mesh in

the form of incorrectly classified regions. One of these passes through the world is

illustrated in Figure D.2. We assumed that all of the free configuration space and

discovered configuration space obstructions would be correctly decomposed because

the basic algorithm underpinning NMAD generates near perfect coverage (except

for completely disconnected regions which will not be represented in the navigation

mesh) spatial decompositions to use as navigation meshes. Recall that initially, and

until it learns otherwise, the NMAD algorithm considers all unknown space to be free

configuration space. This means that the only incorrectly classified regions would be

obstructed configuration space areas that the agent has not yet discovered. Initially,

since the agent starts with no knowledge of its surroundings all of the geometry

in the world was incorrectly classified giving our algorithm a one hundred percent
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Figure A.2: This collection of images was taken during one of the test runs of the
algorithm. The agent is the small gray figure in the middle of the green circle. The
green circle represents the range of the agent’s ability to detect errors in its naviga-
tion mesh. The randomly colored areas in the figure are regions of the navigation
mesh. The obstructions are visible as boxes sitting above the decomposition. Image
(a) shows the initial state of the algorithm. In this image the navigation mesh (blue)
assumes that the entire world is walkable and can be represented as a single region.
In Image (b) the wandering agent has encountered the first configuration space ob-
struction. Image (c) shows NMAD as it is the process of building new regions for the
navigation mesh. The grid texture is free configuration space that has not yet been
claimed by any decomposition. Normally this section of the algorithm would run al-
most instantly, but the it was intentionally slowed down to capture this image. Image
(d) shows the final navigation mesh after all of the configuration space obstructions
have been discovered and correctly classified.

misclassification rate at time zero. We then measured the misclassification percentage

at ten second intervals while the agent wandered the world on each of the 10 passes
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we performed.

Figure A.3: A graph showing the convergence of incorrectly classified configuration
space obstructions to zero over time averaged across 10 random walks through the
world by an agent. The y-axis gives the error as a percentage of incorrectly classified
configuration space in the world while the x-axis shows the traversal time. The bars
on the graph provide the standard deviation across the multiple agent traversals; the
standard deviation is rather large because the random nature of the agents movement
can quickly discover all the obstructions in the configuration space or this process can
proceed very slowly.

The results of this experiment are presented in Figure A.3. The incorrect classifi-

cation quantity converged on zero taking on average 225 seconds.

After conducting ten walks through the same world using a random walking agent,

we then implemented an agent who performs a spiral pattern search from the center

of the world outward. This agent running the NMAD algorithm was then allowed

to traverse five randomly generated worlds. These worlds contained between six and

twelve randomly placed and sized obstructions. In addition, the agent’s speed was
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increased to 3.6 meters per second in order to reduce the time required to run this

experiment. The graph shown in Figure A.4 shows the results of this experiment. The

agents spiral pattern was designed such that the entire world would pass through the

agent’s visibility radius so if NMAD is working correctly all space in the world will be

correctly classified. From this graph, we see that NMAD will discover and correctly

classify all of the space in the world within 90 seconds.

Figure A.4: A graph showing the convergence of incorrectly classified space to zero
over 5 spiral searches through randomly generated worlds. The percentage of mis-
classified configuration space obstructions present in the world is shown on the y-axis
while the x-axis shows the agents travel time in seconds.

The primary purpose of these two experiments is to show that the NMAD does

correctly classify all of the space present in a game world. In both the random pathing

and the random world generation experiments the misclassification in the navigation

mesh eventually reached zero. By converging to zero error across many different
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traversals of the world, we show that the algorithm does consistently and reliably

classify all of the space in the game world.
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APPENDIX B: INTEGRATING MESH ALTERATION INTO PLANNING

Our previous work with dynamic navigation mesh alteration has focused on allowing

virtual characters to adapt to changes in the environment initiated by the player.

We now present an algorithm that allows these characters to initiate changes to the

environment. The Adversarial Navigation Mesh Alteration (ANMA) algorithm con-

tains two component algorithms. The first subcomponent (attacker) of the ANMA

algorithm slots into most heuristic-based path finding algorithms to improve agent

navigation via the conversion of obstructed configuration space into additional free

configuration space regions when it would benefit the agent. The second subcom-

ponent (defender) is a higher level extension to the agent’s reasoning ability that

highlights and suggests regions in a navigation mesh or navigation graph representa-

tion, which it would be advantageous to the agent to remove. This removal is designed

to reduce the number of potential approaches to a position the agent is supposed to

defend. These algorithms work best, and in the case of the defender subcomponent

require, an adversarial context for the agents to fully utilize them in planning.

B.1 Path Planning Through Obstructed Configuration Space

The first part of the ANMA algorithm (attacker) attempts to answer the question

of “When should an agent plan to use its ability to destroy obstructed configuration

space to assist with path planning?” To answer this question the ANMA algorithm

provides a simple extension to popular path planning algorithms such as A* or D*

which allows them to consider the effects of altering the navigation space represen-

tation when determining the optimal path the agent should take to reach his goal.
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Doing so allows the agent to create new paths which can be shorter than paths entirely

in existing free configuration space regions.

Consider the example of a building that the agent wants to enter, which the agent

is standing next to. The area around the building is fully described in the agent’s

navigational representation, so it is rather trivial to plan a path around the building

to the door and then enter it. However, consider what would happen if the building is

rather large and the agent is on the other side of the building from the only door. In

that case, the agent would take considerably longer to enter the building. However,

what if the agent did not have to go around the building, but had some capability

to create its own doorway in the building near where it currently is (e.g., a sledge

hammer to take out a wall, a brick to break a window, or an explosive charge to put a

bigger hole in the building). Now the question becomes whether it would be faster to

walk around the building to an existing door or to install a new door (this is also what

tends to limit this algorithm to adversarial games or simulations since non-adversarial

contexts tend to frown on impromptu doorway installations via explosives).

Our algorithm to accomplish this task of path planning through obstructed con-

figuration space can be included as a few extra function calls in most existing search

algorithms as shown in Algorithm 11 in the context of A* search (for a good survey

of search techniques see [54]). When a search algorithm is evaluating a potential path

to a goal, it calculates the benefits of moving to any given region using a heuristic.

This heuristic generates an approximation of how far a potential move would leave

the agent from its destination, and when added to a stored value indicating the cost

to get to that potential location, allows an agent to rank potential paths through the



165

Algorithm B.1: The ANMA algorithm looking for potential obstructed config-
uration space regions to convert to free configuration space during a search. The
example is in the context of a node expansion in an A* search.

// Sorted List of Regions to consider

List OpenList;
// List of Regions that have already been considered for path

planning

List ClosedList;
// Check of the first node in the open list

FirstNode in OpenList;
for Neighbor of FirstNode do

if Neighbor.isPositiveSpace then
// Calculate the cost to convert this node to free

configuration space

float CostToConvert = Neighbor.findConversionCost();
// Generate normal heuristic costs to traverse this node

Neighbor.f = FirstNode.f + Neighbor.findH();
Neighbor.f += CostToConvert;
OpenList.append(Neighbor);

else
// The node is free configuration space treat it normally

environment. This system works very well for movement through free configuration

space, and it makes sense to extend it to movement through obstructed configura-

tion space. There are two parts to this extension: the first is calculating the raw

cost of moving through the obstructed configuration space region as if it were free

configuration space—this can be done using the same calculation as for free configu-

ration space. The second, harder part comes from calculating the cost of converting

an obstructed configuration space region into free configuration space. This is where

having a navigation mesh spatial representation (or some other representation with a

listing of obstructed configuration space) is very useful. Using this representation, the

size and composition of the target obstructed configuration space region can quickly
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be determined. These factors combined with the agent’s ability to manipulate ob-

structed configuration space (agents with explosives can perform faster manipulations

than agents with wrecking bars) can be used to generate a cost to convert any given

region of obstructed configuration space. This cost of conversion is then added to the

cost of movement through the obstructed configuration space region, and this total

value can then be used in the path planning algorithm like a normal free configuration

space region.

B.2 Planning for the Obstruction of Free Configuration Space

The second, defensive half of the ANMA algorithm deals with a slightly higher

level problem, which occurs less often. This portion of the algorithm answers the

question “How can an agent tasked with defending an area from other agents or

players alter his local environment to restrict the number of potential access points?”

Our approach to this problem uses conventional search algorithms on the world space

representation to locate potential entry ways into the area the agent is in charge

of defending, and then prioritizing the order in which these free configuration space

regions should be converted into obstructed configuration space regions through the

introduction of obstructions.

Consider the example of a building which an agent has been assigned to defend

from other agents and players. In particular, there is a single room on the second

floor of the building which the agent must defend at all costs. By examining the

navigation representation of the environment, the agent can determine the list of

entry ways into the area they need to defend, in this case, let us say there is a ladder
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connecting to a second floor window from outside, the obvious front door entrance

to the building, and finally a hole some impatient person blew in a wall instead of

coming in the front door. Now the agent needs to determine, which of these potential

enemy attack routes they should close off first (patching the hole in the wall, locking

the front door, or hiding the ladder leading to the second floor entry).

Algorithm B.2: This is the defensive half of the ANMA algorithm, which de-
termines the most important free configuration space nodes to seal to protect an
area.
// Initially the algorithm starts with its 3 requirements

Region regionToDefend;
Region attackerOrigin;
List PossibleRegions;
// We will also assume we have path finding algorithms on hand

PossibleRegions = findPath.(regionToDefend, attackerOrigin);
// Validate the target region is in the assigned guard area

repeat
// Select the most connected region using distance from agent as

a tie breaker

DestroyRegion = PossibleRegions.getHighestDegree();

until !DestroyRegion.isInArea();

In order to the use the defensive sub-algorithm of ANMA, we first require three

pieces of information. First, we need to know the extents of the area the guard

should remain in. Secondly, we need to know which direction the other agents or

players we will be defending against will be approaching from. Finally, we need

to know the main point we are supposed to be protecting. Using this information,

we are able to determine which sections of the navigation representation it would

make the most sense to alter and invalidate to prevent or delay the enemy moving

through them. These requirements are also what limit the defensive portion of the

algorithm to adversarial situations. While the attacker portion of ANMA can be used
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to create non-adversarial path planning agents (albeit ones who have little respect for

the condition of the world as they move through it) it is unlikely a non-adversarial

scenario could supply the three requirements to implement defensive-ANMA in an

agent. The defensive sub-algorithm works by calculating the optimal path(s) from

the location the agent is supposed to defend to the areas the enemy is expected

to advance from using a search algorithm as shown in Algorithm 12. It then finds

the free configuration space region along this path(s) with the lowest degree in the

navigation graph representation of world space (the free configuration space region

with fewest neighboring regions). If two or more regions have equal degree then the

closer one to the defender is selected. Additionally, this search for a target region

is restricted to the areas of the world where the agent is supposed to be guarding.

This is to ensure that our defensive agent does not go running off to try and block

the exits of the enemy base and in fact stays inside the area he is supposed to be

defending. After locating this target region, the agent will move to it and attempt to

use its ability to alter the world geometry to block passage from this node towards

the enemy approaches by introducing new obstructed configuration space areas. A

final restriction on the possible target regions for the agent to alter is that the agent

needs to have the ability to introduce sufficient configuration space obstacles to block

off an area. This can be determined in advance by comparing the data on the free

configuration space region stored in the spatial representation of the world to the

agent’s ability to manipulate free configuration space regions (e.g., does the agent

have concrete barriers it can deploy to block roads, plywood it can nail up to block

doorways or windows, or just some rope it can string across a path). The agent then
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repeats this process of finding a low degree free configuration space region on the

approach to the area it is supposed to guard and sealing the area off until there are

no open approaches or it runs out of blocking materials, at which point it can fall

back to its non-ANMA behavior.

B.3 ANMA Evaluation

We performed a series of experiments using our agents running the Adversarial Nav-

igation Mesh Alteration (ANMA) algorithm to determine their effectiveness against

more traditional forms of agent behavior. To do this evaluation in an adversarial

context, we decided to use the Capture The Flag (CTF) game type with two teams

of agents. Our implementation of the CTF game was as follows: A CTF game is

played on a field containing some randomly distributed quantity of open space which

players can move around in, as well as obstructions which block line of sight and

movement. This space is broken down into two evenly distributed halves, with each

team having “control” of one half. Additionally, each team possesses a base inside

the area they control that contains a flag. Each team was composed of 10 agents. Of

these 10 agents half of them were assigned to attempt to capture the enemy’s flag.

The other half of the team was tasked with defending their own flag. A flag capture

occurred if an agent picked up the other team’s flag. If an agent entered the same

free configuration space area as an opposing agent on the side of the field the other

team controlled, then they were captured. Captured agents were removed from the

game and after a short delay returned to a random location on their own side of the

playing field. Games were concluded after a single capture was scored. In order to
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prevent stalemates, agents were required to move from one area to another each turn

if possible.

Instead of spending time implementing a fully fledged graphical CTF game to test

our agents in, we designed and built an agent test bed to simulate CTF games that

allows us to perform agent testing and comparison very quickly. In this simulator,

we use a representation of the world instead of an actual world model; this allowed

us to rapidly and procedurally generate many random worlds. In this representation,

free configuration space regions are represented as nodes. The gateways between free

configuration space regions are represented in this simulator as edges between the

nodes. In this manner the simulator represents and maintains the navigation graph

of the playing field in question without having to worry about perfectly updating the

underlying navigation mesh. Additionally, obstructions present in the configuration

space between any two given areas of free configuration space were also maintained

and represented in the simulation. These configuration space obstructions were rep-

resented as inactive links, which are not traversable to agents. Using this simulator,

we are able to procedurally construct random levels to evaluate our agents in. Our

procedural world generation algorithm works as follows. First, eighty to one hundred

free configuration space regions are seeded randomly in the world with a bias to en-

sure that they are not clumped too closely together. Then all of the neighboring free

configuration space regions are determined using a simple distance metric. After this

determination, neighboring regions are randomly determined to be either connected

one to another with a gateway, or adjacent but obstructed one from another by con-

figuration space obstructions. The results of this determination are then stored as
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links for the simulation. Finally, the two bases are selected, one for each team from

the available pool of free configuration space regions, such that the base is within the

back 10 percent of each team’s territory (remember that each team is considered to

be in control of half the map) and the chosen base has at least three adjacent free

configuration space regions connected to it via gateways to help ensure it is accessible.

This simulated representation allowed us to evaluate our proposed agent design on a

larger number of worlds than would have been possible if we were using a full fledged

CTF game engine. In particular, we were able to evaluate our agents on 180 unique

test levels. One of the test levels generated by our tool is shown in Figure B.1.

Figure B.1: This image shows one of the procedurally generated levels used in our
simulated CTF game. Free Configuration Space areas the agent can occupy are shown
as black squares, active gateways are shown in green, blocked gateways are shown in
red, and the bases with each team’s flags are shown as circles.

We evaluated two types of environmentally manipulative agents as well as one non-

manipulative adaptive agent. The first type (the Builder) is able to employ the path

planning through configuration space obstruction algorithm to create new gateways

and regions in order to facilitate quicker movement through the environment. How-
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ever, the Builder is unable to generate new configuration space obstructions to close

off potential routes through the level. The second type of environmentally manipula-

tive agent we call the Universal agent. This agent is capable of both planning paths

through and removing configuration space obstructions and dynamically placing new

configuration space obstructions into the world. This allows the Universal agent to

close off potential access routes to its flag and set up choke points on approaches to

the territory it is defending. We did not evaluate agents who were able to destroy

connections between nodes but not build them, due to the fact that these agents trap

themselves in their base. The final agent type we tested was designed to be highly

adaptable to changes in a dynamic game world. This agent was coded to use D* for

path planning [60] through the world representation so that it could take advantage of

changes to the underlying navigation graph produced by the more advanced agents,

or adapt as best it could to obstacles thrown in it’s path by the world manipulative

agents which can destroy pathways.

All of the evaluated agents had the same basic behavior patterns depending on

the role of the agent. The defending agents regardless of type patrolled their side of

the map and attempted to move into and capture enemies they observed in adjacent

regions. Additionally, agents of the Universal type used their ability to place con-

figuration space objects in the world to barricade off gateways between regions such

that in whatever region they are in, the most optimal path back to their own flag will

be sealed. Adding this simple logic to take advantage of placing configuration space

obstructions yields a set of agents that automatically build mazes and choke points

of narrow or obstructed corridors that approach their flag. Conversely, the attackers
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all were rather single minded in that they took the best available path to the goal.

However, both of the advanced agents (Builder and Universal) will construct paths

which allow them to cut holes in configuration space obstructions or build bridges

over empty areas if such a detour would result in a more optimal path to the other

team’s flag.

We set up test scenarios featuring all possible unique parings of these agents (Uni-

versal vs. Adaptive, Universal vs. Builder, and Builder vs Adaptive). Each pairing of

agents played sixty matches on our CTF simulator. The results of these matches are

given in Table B.1 shown below. After 30 of the 60 matches, we switched the side of

the map each team was on. We also included the results of running each agent type

against itself an additional 60 times as a logical check to verify the integrity of the

simulation and show that neither side has a positional advantage, since if the same

type of agents compose both teams then the win/loss ratio should be approximately

even.

Table B.1: Comparing the performance of different types of agents on randomly
generated CTF levels (showing wins to loses). Matches vs. the agents own type are
provided to verify the integrity of simulation.

vs Adaptive Builder Ultimate
Adaptive 31 to 29 - -
Builder 34 to 26 30 to 30 -

Ultimate 44 to 16 35 to 25 28 to 32

When examining our results, we see that our hypothesis is verified that agents that

can manipulate the environment do perform better in CTF games than basic adaptive

agents. Looking through the data, we see that Builder agents win matches against

Adaptive agents at a rate of 1.33 to 1. This is a slight performance improvement,
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and it can be explained by the fact that the only advantage that the Builder agents

possess is that they have a shorter path to the opposing team’s flag. However, this

advantage is somewhat transitory, as the new paths the builder agents create can

then be utilized by the simple adaptive agent to attack the Builder agent’s own flag.

The more advanced Universal agent performs even better against the straight adap-

tive agent, winning games at a rate of 2.75 to 1. This is in line with expected per-

formance, as the Universal agent design should dominate a purely adaptive agent.

However, the possibility does exist that Adaptive agents would be able to capture the

flag the Universal agents are guarding before the Universal agents can seal off all of

the approaches to it. This is seen in the occasional Adaptive agent’s victories. But

most of the time, the Universal agents are successful in blocking all approaches to

their base (e.g. Figure B.2). The Universal agent also fares well when compared to

the Builder agent, with a win ratio of 1.4 to 1. These agents are more evenly matched,

but the Universal agent gains a slight edge since the Builder agent has to stop and

open passageways through blocked paths before traversing them to attack the Uni-

versal agent’s flag each time they attack. Conversely, when attacking the Builder

agent’s flag after the first wave of agents goes in, the Universal agents will not have

to open or reopen any passageways, since there are no agents creating blockages or

obstructions on that side of the map.
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Figure B.2: This image shows one of our procedurally generated levels after two teams
of Universal agents have obstructed many of the potential gateways between regions,
notice all of the red inactive links in the image.

APPENDIX C: NAVIGATION MESH EXTENSIONS

Having seen the trade-offs between accuracy and speed we must make when adjust-

ing the size of the growth increment in PASFV and VASFV, we are prompted to ask

the question, “Is it possible to rapidly decompose large environments with high pre-

cision accuracy?”. In particular, consider the urban environment pictured in Figure

C.1. This environment is many square kilometers in size, but contains considerable

detail. The features such as sidewalks and walking paths require sub-meter accuracy

for proper representation. In our traditional decomposition approach based on the

scale of the world, one meter equals one unit in the world. This world and other

large scale high detail environments prompted exposure of decomposition rate as a

user definable parameter. However, if using a decomposition rate of .001 meter per

growth step it would take approximately two months to decompose this environment

using a modern computer. This obviously conflicts with our goal of providing an
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algorithm that can be used to rapidly respond to changes in the level geometry.

Figure C.1: A sample city generated using the UrbanPad software from Gamr7. This
city contains high levels of detail and covers a large area.

In order to address this problem we have developed the Dynamic Rate decomposi-

tion algorithm that allows the decomposition to alter its rate of growth in real time

based on the obstructions it encounters. The key feature of this algorithm is that

the user must set a target decomposition rate and a decomposition resolution. These

numbers are constrained in that it must be possible to multiply the decomposition

resolution by some power of two to yield the target decomposition rate. Initially, when

running a variable growth-rate decomposition, the regions in the world will grow at

the specified target decomposition rate. If a collision occurs with either geometry or

another growing region, instead of retreating and stopping all growth in that direction

or sub-dividing the region into a higher order polygon, the growing region will retreat

and reduce the rate of growth in the target direction by half. This will allow it grow
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closer to the obstruction. Each edge will continue this policy of attempting to grow

and then retreating and halving their growth rates until the growth rate is reduced

to the predefined decomposition resolution. Once that occurs then further growth in

that direction either halts or the region is subdivided as called for in the PASFV or

VASFV algorithms. Using Dynamic Rate decompositions allows large environments

such as those generated by UrbanPad (www.gamr7.com) to be rapidly decomposed

in minutes rather than days.

Obstruction Informed Seeding

Traditionally, the PASFV and VASFV algorithms have used some form of gird

based seeding in order to determine the initial placement of regions into unoccupied

configuration space. This results in an even distribution of regions, but generally over-

saturates the target areas and requires a clean-up stage that will combine adjacent

regions if the resulting shape would still be convex. Additionally, most PASFV and

VASFV algorithms also support some kind of human controlled or on demand seeding,

which may generate decompositions that require less cleanup time, but these hand

designed decompositions require additional time to construct compared to purely

automated approaches. It should be possible to automatically generate a better seed

distribution then using a pure grid or random approach. Generating an optimal seed

set to minimize the number of regions present in the world would require solving an

NP-Hard problem. Instead, we can take advantage of one of the properties of the

convex occupied configuration space to build a set of possible seeding locations.

Consider the Proof 2 in Section 4.5 where we show that two or more of the edges
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comprising a convex occupied area of configuration space cannot be covered by the

same convex region of unoccupied space. This means that for every obstruction edge

present in the world we will, in theory, require one region of unoccupied space to

describe it. In practice, this is not always the case as a region of unoccupied space

can cover exposed edges of two or more separate regions of occupied configuration

space. Additionally, depending on how the edges of the growing regions in PASFV

and VASFV converge on each other it is possible to generate voids in the decompo-

sition that must be filled by seeding out from the unoccupied configuration regions.

However, though this proof does not provide us with an optimal set of seeding loca-

tions it does give us a good starting point. Given a distribution of seeds such that

every edge of occupied space has a growing region placed adjacent to it we will ensure

that the final decomposition does not have any areas without well defined regions.

Furthermore, unlike grid based seeding methods this approach will ensure that there

are no disjoint regions that would potentially be skipped as can happen when using

the traditional grid and reseed approaches used in PASFV and VASFV.

Texture Biased Spatial Decompositions

Consider the navigation meshes our decomposition algorithms have generated so

far. All of the navigation meshes have treated all un-configured space as the same.

This means that a navigation mesh for an urban environment centered around a single

building with traversable roads, sidewalks, and grass (as shown in Figure C.2) would

treat all of these different surfaces as the same in terms of walkability. Furthermore,

regions of the navigation mesh might well cross over multiple different terrain types
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as long as they are all within the specified tolerance for difference in height for the

spatial decomposition as shown in Figure C.3. This could result in problems for

agents attempting to utilize this navigation mesh. For example, an agent driving a

car though this hypothetical mesh would not know if they were on the road, the grass,

or even the sidewalk based on the navigation mesh. Furthermore, paths generated

using this navigation mesh might not actually be traversable depending on how the

agent is supposed to traverse the environment (e.g., the path might contain only grass

or sidewalk regions, which are not generally traversable if the agent is driving a car).

Figure C.2: A simple game environment containing multiple terrain types

Typically in game environments, different types of terrain have different textures.

Since we are generating decompositions to assist with agent path planning it makes

sense to group terrain textures according to the different traversal methods agents

might utilize. The easiest way to accomplish this is to run the spatial decomposition

multiple times altering what is and is not considered to be an occupied configuration



180

space area and appending the resulting regions to the same navigation mesh. We

rely on the user to generate a list of which textures correspond to any given traversal

methods. So for instance the asphalt, road, and highway textures might all designate

areas where the agent can “drive” while the sidewalk and grass textures indicate areas

the agent can “walk”.

Figure C.3: A non-texture biased decomposition of the above environment

To implement Texture Aware Spatial Decompositions we first insert fake obstruc-

tions that are projected up from all of the ground plane(s) in the environment. Each

of these fake obstructions is tagged with the texture of the ground plane they are ex-

truded from. Then all of the fake obstructions associated with a user defined traversal

method are toggled off to be traversable again. The PASFV or VASFV algorithm is

then executed on the world in its current state (in our example images we use the

PASFV algorithm). All of the regions of un-configured space generated in this cycle

of the decomposition algorithm are tagged with the texture set that is defined by
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the current traverse method. After the decomposition algorithm finishes execution,

another set of these fake obstructions is toggled off and the decomposition algorithm

is ran again. Again regions that are generated in this second execution are tagged

with the set of traverse textures that were just toggled to be walkable. This cycle

repeats as shown in Algorithm C.4 until there are no further traversal methods to

be considered and all of the un-configured space in the environment has been decom-

posed into regions. To utilize the navigation mesh generated by this process gateways

are defined exist between regions of the same traverse types. Connections between

regions which have different traverse types are referred to as boundaries and can have

special traverse types (e.g., a bicyclist might be able traverse both the road and the

sidewalk, but might have to “hop” to move between the two types). Such special

traverse methods on boundaries must be provided by the end user.

Figure C.4: A texture biased decomposition of the above environment

There are two special considerations that must be dealt with when conducting a



182

Texture Aware Spatial Decomposition. First, it is possible that there are certain

terrains or texture types that might be present in one or more traverse types (e.g.,

the crosswalk would be present both in the drive and walk traverse types). This

can be accomplished within the original algorithm by considering such textures to

be distinct from their texture traverse groups (so there would be texture traverse

groupings of drive, walk, and both drive and walk). Like the original texture groupings

and traverse classifications these special considerations must be provided by the end

user. Secondly, to extend this algorithm into three dimensions it is necessary to make

a few changes. Instead of using the concept of fake obstructions we take advantage

of the gravity based seeding that we use in VASFV and the fact that all of the seeds

are resting on some terrain or other. We can use this fact to immediately tag the

seeds with a unique texture as we place them. Since the seeds are in contact with a

terrain piece with a specific texture we limit the growth of the region such that its

entire base is associated with that texture. This means that a character standing (or

riding) through that region of the navigation mesh is assured to be in a consistent

type of traversable terrain.
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APPENDIX D: COLLISION DETECTION VIA NAVIGATION MESHES

In recent years there has been a movement in the games and simulation industry to

create more physically accurate and photo realistic environments. This movement is

constrained by the limitations of current consumer hardware, in order to overcome

one of these limits spatial acceleration algorithms have been introduced to speed up

the processing of potential collisions in the game or simulation environment. These

acceleration algorithms create data structures that provide a sorting or compartmen-

talization of the objects present in the environment. With this compartmentalization,

it is possible to reduce the number of collision tests performed each frame from an

n-squared problem to a more manageable one. Even considering advances in graphi-

cal and processing power, it is still widely believed that acceleration algorithms will

always be required [1].

The primary purpose of a spatial data structure is the compartmentalization of

information and space for the acceleration of intersection tests between objects in the

game world. Game objects can generally be divided into two groups: static objects

that remain in place during the entire runtime of the application (e.g., buildings or

other large immovable objects), and dynamic objects that can move through the envi-

ronment (e.g., the player, artificially intelligent characters, and interact-able objects).

Using a spatial data structure these objects can be sorted into well defined groupings

based on their coordinate location in the game environment. This sorting is gener-

ally hierarchical in nature, which results in many of the commonly used spatial data

structures having some form of tree structure (e.g., kd-trees, Binary Space Partition-
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ing Trees, Quad-Trees, and Oct-trees). Sorting is accomplished by partitioning the

world into smaller and smaller chunks of space until some minimum size threshold is

reached. Objects present in a chunk of space are then stored on the leaf nodes of this

tree structure. This allows for faster collision and intersection tests because objects

can only collide with other objects if they both reside in the same or neighboring leaf

nodes on the tree.

Most games also maintain a navigation mesh to provide connectivity data for agent

path planning [46]. The presence of these two spatial data structures, since they have

internal similarities (both subdivide space into well-defined regions and allow for

fast lookups of locations), raises the question is it possible to eliminate one of these

structures and use one for both agent navigation and the acceleration of collision

tests? If we consider using the tree based spatial subdivision data structures for

agent navigation, we immediately encounter two problems. First, the walkable areas

are not clearly delineated by the tree structures. Instead, the tree primarily stores

the obstructions in the world instead. It might be possible to work around this

problem by using the non-leaf nodes as regions to path plan over and using local path

planning to avoid the known obstacles in the leaf nodes. This still leaves the second

and larger problem; namely, how do we determine if two or more regions are adjacent

to each other since the tree structure does not store connectivity information between

regions? This problem is illustrated in Figure D.1 which shows a navigation mesh

and kd-tree for a simple level. In the navigation mesh if two regions are adjacent

then they share a common edge in the simulation world. This does not apply to the

kd-tree as for example the leaf nodes D and E both come of the same subnode but
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they might well be from completely different sides of the level, while the nodes E and

A which are on completely different sides of the tree might well share a common edge

in the simulation environment. Applying the extensive modifications to tree based

structures required to address these problems results in the generation of a new spatial

data structure that, effectively, is a navigation mesh. Now that we understand why

it would be challenging to use a spatial data structure for agent navigation we can

ask how difficult it is to use a navigation mesh for collision detection?

It is possible to use a navigation mesh for collision detection without any dramatic

alterations to the structure of the navigation mesh. We expect that the performance

of the navigation mesh when accelerating collision detection is comparable to that

of existing spatial data structures such as spatial hashing. We accomplish this by

providing algorithms to perform the four primary functions of a spatial datastructure

(insert, remove, update, and find collidable objects) for the navigation mesh. Finally,

we will show experimentally that with real collision checks in a sample level environ-

ment, the navigation mesh provides superior performance at isolating small groups

of objects that might potentially be colliding.

Extending a navigation mesh to support the compartmentalization of objects for

the acceleration of collision detection is a straightforward process. It requires that

four additional functions be added over and above the path planning ones that already

exist. First, there needs to be a way to add objects to the navigation mesh so that

when queried each region of the mesh can report its contained objects. Secondly,

objects need to be removed from the mesh if they are no longer present in a particular

region. Third, there needs to be some function to move an object from one set of
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Figure D.1: Two possible breakdowns for a simple level. The first is a navigation
mesh. Obstructions are drawn in solid black while the regions of the navigation mesh
are shown as dotted lines. In the navigation mesh adjacent regions are guaranteed
to share a common edge in the simulation environment. The second image shows a
sample kd-tree with the nodes of the tree labeled along with the level associated with
this tree. The x and y values in the non-leaf nodes of the tree indicate which axis is
being used for splitting to build the kd-tree.
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collision regions into another to reflect the fact that the dynamic objects in the world

are capable of movement. Finally, and most importantly, there needs to be a function

which can return groupings of objects which might be in collision with each other with

the minimum amount of overhead. In the following sections we will examine both the

costs of these functions as well provide detail on the implementation.

D.1 Insertion of Objects

Inserting objects into the navigation mesh proceeds in a manner much like conven-

tional spatial data structures. If we assume that all dynamic objects start in valid

locations in the world then insertion just involves traversing the list of unoccupied

space regions that compose the navigation mesh until the region which encompasses

the objects location is located as shown in Algorithm D.1. Unlike in traditional spatial

data structures no special case is required in the insertion step to handle objects lay-

ing across the boundary of multiple regions. This is instead handled during collision

detection by checking neighboring regions as well as the one the object is primarily

believed to occupy. If we cannot assume that all of the starting positions for objects

in the world are in fact located in empty space, then verifying the reliability of the

placement is simple. If the object we are considering is not found in a unoccupied

space region and assuming our navigation mesh fully describes the world then the

object must lie in an occupied space area and its placement is therefore invalid. This

process can be accelerated for objects about which something is known in advance.

For example, if a character removes an object from their pocket and drops it, then a

new object has entered the world and collision checks will need to be performed on it.
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Instead of searching the entire navigation mesh, it is possible to pass on the region

the creator of the object resides in and then performs a breadth first search until the

object is located. Many game and simulation objects are spawned from objects whose

position is already known (i.e., projectiles or player constructions) so it is worthwhile

to consider this when adding objects to the navigation mesh. The runtimes of this al-

gorithm are shown in Table D.1. This algorithm is the only one of the four presented

here that often approaches the worst case runtime. This happens because inserting

an object into a navigation mesh is random and might require checking every region

in the navigation mesh until the correct region is located.

Algorithm D.1: NavMesh.addObject(ObjectToAdd)

targetRegion;
/* Iterate through each of the unoccupied space regions present in

the world until one is found that can contain the object. */

if ObjectToAdd.hasGuessedLocation() then
targetRegion = NavMesh.doBreadthFirstSearch(ObjectToAdd);

for UnoccupiedSpace in NavMesh do
if UnoccupiedSpace.contains(ObjectToAdd) then

targetRegion = UnoccupiedSpace;
break;

if targetRegion == Null then
/* The object location is not in open space */

targetRegion.addObject(ObjectToAdd);

Table D.1: Various algorithms to manipulate objects in a navigation mesh. n is the
number of regions in the navigation mesh.

Algorithm Worst Case Best Case
Insert n 1

Removal 1 1
Update n 1

Find Potential Collisions n 1
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D.2 Removal of Objects

The removal of objects from the navigation mesh proceeds in a similar manner

except that it takes advantage of the fact that the object already knows which node

it has been assigned to. The object simply looks up which region it is contained in

and then tells that region to delete the object from the list of colliable objects it

maintains. This method results in deletion being a constant time operation and is

given in Algorithm D.2.

Algorithm D.2: NavMesh.removeObject(ObjectToRemove)

/* Call the remove function of the region the object is contained

within. */

targetRegion = ObjectToRemove.currentRegion;
targetRegion.remove(ObjectToRemove);

D.3 Updating Object Positions

Updating the locations of objects on the navigation mesh is one of the more complex

operations required to enable navigation meshes for collision detection. This is also

one of the functions where the advantages of this algorithm over tree-based data

structures become clear. A standard tree-based data structure performs updates by

traversing up the tree from the objects current location until it finds an area that could

contain the object, at which point the algorithm travels down the tree structure until

it locates the smallest area that could contain the object. In many cases this results in

reduced performance as simply moving from one region to a neighboring region might

require searching all the way up to the root of the tree and then traversing all the way

down another branch. Our update functions for navigation meshes takes advantage of
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the tendency for objects to not move that far on a frame-to-frame basis. This implies

that each object is still in the same collision region it previously occupied and that

region should be checked first and then neighboring regions should examined if the

first region no longer contains the object. We accomplish this by performing a breath

first search based on the last known position of the object as shown in Algorithm

D.3. Because navigation mesh regions generally only have four or five neighbors this

approach performs extremely well as can be seen in the algorithm runtimes shown in

Table D.1. The worst case of n can only occur in degenerate or very small navigation

meshes where every region on the mesh is connected to every other region, or when

an object leaves unoccupied space.

Algorithm D.3: NavMesh.updateObject()

/* Iterate through each of the unoccupied space regions present in

the world until one is found that can contain the object. */

for Object in NavMesh do
if Object.currentRegion != Object.oldRegion then

/* Find the new region of the object given its old region as

hint to start a breadth first search from. */

Object.findNewRegion(Object.oldRegion);

D.4 Find Collidable Objects

Selecting the objects that might possibly be in collision with any given object is a

two step process. First, all of the objects that occupy the same region as the given

target object are added to the list of potential collision objects. This will account for

most of the potential collisions for any given object and it also dramatically reduces

the number of collision tests, which must be conducted since the objects in one region

are excluding extreme cases, fewer than the number of potential collision objects in
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the world. The second step is to deal with the possibility that an object might

extend over more than one region. Normally this is dealt with by subdividing the

object into multiple parts and then tracking and recombining each part as needed

based on the movement of the object. This is computationally expensive and a bit

painful to implement, so our algorithm takes a slightly different approach. Instead

of subdividing objects, we treat objects as only existing in a single region at a time

and pull in the contents of the neighboring regions when it is time to do collision

checks as shown in Algorithm D.4 and described in Table D.1. This works well for

navigation mesh generation techniques that can limit the number of neighbors any

given region has. Once we have defined the potential set of objects the target object

might be in conflict with, it is a simple matter to run a series of collision checks to

determine if there actually are any collisions. The worst case for this algorithm n is

another condition that generally will not occur often as it again requires that every

region share a common edge with every other region, which means the navigation

mesh is degenerate over very small.

Algorithm D.4: NavMesh.findCollisions(Object)

/* Determine which objects are inside the same region and therefore

potentially colliding */

List PossibleCollisions;
region = NavMesh.getRegion(Object.curRegion);
PossibleCollisions.add(region.getCurrentObjects);
List NeighborRegions;
NeighborRegions.add(NavMesh.getNeighbor(Region);
for Region in NeighborRegions do

PossibleCollisions.add(region.getCurrentObjects);

return PossibleCollisions;
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D.5 Navigation Meshes Collision Detection Evaluation

We performed an experiment to validate the performance of our collision detection

extensions for navigation meshes. In this experiment, we evaluated kd-trees, collision-

extended navigation meshes, spatial hashing, and un-accelerated collision detection

on a pair of sample levels. The first is a Capture The Flag (CTF) environment shown

in Figure D.2(a) which contains a pair of bases and some obstructions between the

two bases to provide cover for players moving from one base to the other. Both

environments are composed of simple geometry combined to form structures that

are more complex. There are 171 individual static objects present in this level plus

the ground plane upon which all objects rest. We also tested out algorithms on

a cityscape representation containing an enterable building as well as other non-

enterable buildings and the street and alleyways between them. This level contains

51 individual static objects. We generated navigation meshes for both levels as shown

in Figure D.2(a) and Figure D.2(b) using the PASFV algorithm, which our previous

work has show to have excellent potential for collision detection due to the low number

of regions it produces. The kd-trees for both levels were generated dynamically based

on the initial positions of the collidable objects and as such differed for each test of

the application and are therefore not pictured. The kd-tree in this experiment was

set to have a maximum depth of five which resulted in a tree with 32 regions. This

is as close as it is possible to get to the same number of regions (25) as are present

in the navigation mesh for both of the environments. Additionally, this is the also

approximately the same number of grid cells present in our spatial hash (30).
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Figure D.2: We see the two levels (a and b) which we used to test our implementation
of navigation meshes as collision detection acceleration data structures. The Capture
the Flag (CTF) level is shown in (a) while the cityscape level is shown in (b). The
navigation mesh regions are the various colored sections on the ground in the images.

We tested the ability of the navigation mesh to serve as a collision detection accel-

erator in two separate stages. First, we examined the ability of the navigation mesh

to resolve collisions between dynamic objects. In this test we randomly placed a num-
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ber of objects (200,400,600,800,1000,1500, 2000, 3000,4000,5000) into the world and

then timed how long it took to resolve the potential collisions between these objects

using a kd-tree, navigation mesh,spatial hashing, and a brute force all pairs collision

check. We repeated this test using each set of randomly placed objects 300 times.

The results of this experiment for each level are shown in Figure D.3 (CTF Level)

and Figure D.4 (Cityscape Level). All times shown in the graph to detect potential

collisions are given in milliseconds. In all cases the standard deviations of the results

were less than 1 millisecond and as such error bars are not shown.

Figure D.3: The average times in milliseconds to calculate dynamic-dynamic object
collisions using different algorithms in the CTF Level. In all cases the Navigation
Mesh is statistically significantly faster in detecting collisions than the kd-tree and
the Brute-Force approach.

In all cases the the navigation mesh provided a statistically significant improve-

ment over both the kd-tree and the brute force approach (p-value less than .01, n
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Figure D.4: The average times in milliseconds to calculate dynamic-dynamic object
collisions using different algorithms in the Cityscape Level. In all cases the Navigation
Mesh is statistically significantly faster in detecting collisions than the kd-tree and
the Brute-Force approach.

=300). As we can see from the data presented in the figures, the navigation mesh

provides an excellent compartmentalization of objects into smaller groups to accel-

erate dynamic object to dynamic object collision detection. It is interesting to note

that the performance of the navigation mesh on the city level is somewhat worse than

in the CTF level. This occurs due to the large open area present in the navigation

mesh in front of the enterable building in the city level. Open areas like this in a

navigation mesh would tend to degrade its ability to accelerate collision checks. If

there is a random distribution of objects, it is likely a larger region will contain more

objects than a smaller region. Since calculating potential collisions between objects,

which are all in the same region of the kd-tree or navigation mesh is an n-squared
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operation having such large regions represents a potential time sink. In addition, the

performance of the kd-tree with small groupings of objects seems to be worse than

the brute force method but this is due to the extra expense of creating and main-

taining a data structure versus näıvely testing all possible pairs for small groups of

objects and is not unexpected. The performance of the spatial hashing algorithm is

effectively constant over all of these trials, which is also to be expected since it is a

bounded more by the size of the hashmap than the number of objects. Despite not

being a constant time algorithm the navigation mesh actually performed better than

the spatial hash map until there were more than three thousand dynamic objects in

the world. This crossover effect is due to the fact that the spatial-hash has a fixed

update cost since it is a constant time algorithm. On the other hand the navigation

mesh has a very low upkeep cost and a collision resolution time that slowly rises as

the number of objects increase. This results in performance lines that cross once the

increasing collision resolution costs of the navigation mesh pass the upkeep cost of

the hashmap.

Our second experiment examined the ability of the navigation mesh to quickly

detect potential collisions between static objects in the world (the buildings composing

the level) and the dynamic objects moving through, and interacting with the level.

Again, we repeatedly populated the world with various numbers of objects (200,

400, 600, 800, 1000, 1500, 2000, and 4000), but this time instead of testing possible

collisions within these groups we looked for collisions with the world geometry, which

remained fixed during each of these tests. Each of the tests for the various increasing

numbers of objects was repeated 300 times for each collision acceleration technique,
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and average time to resolve collisions and standard deviations were generated. In all

cases the standard deviations of the results were less than 1 milliseconds and as such

error bars are not shown.

Figure D.5: The average times in milliseconds to calculate dynamic-static object
collisions using different algorithms in the CTF Level.

In this set of experiments, the navigation mesh produces excellent results taking

less than one msec to compute the set of possible collisions between dynamic objects

and static geometry as shown in Figure D.5 and D.6. This is not unexpected as if

we can locate an object in a region of free space then we can be assured that the

object is not colliding with any static objects. In fact, the test to determine if an

object is located in free space, can be ran in nearly constant time if we have access to

the last known region the object was located in. This follows from the concept that

objects do not move much from frame to frame and that by checking the last known
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Figure D.6: The average times in milliseconds to calculate dynamic-static object
collisions using different algorithms in the Cityscape Level.

region for the object and any neighboring regions we will almost certainly be able to

confirm the object resides in one of those regions and from that we can infer that it

is not colliding with any static objects. In the particular set of potential collisions

we examined here, the navigation mesh performs statistically significantly faster than

other methods of collision detection acceleration across all groupings of objects (p <

.01 n = 300). The results in this case were consistent across both test levels.

By combining each pair of graphs we can determine the total time to resolve all

possible collisions in a given environment. The results presented here for static and

dynamic collision tests can be added together to generate an overall collision test

time for all of the algorithms presented here, except for the results of the spatial-

hash. The spatial-hash is a special case since the majority of the time cost for it is



199

an upkeep cost and the full amount of the upkeep is present in both graphs. Instead

the total collision cost for the spatial hash is roughly equivalent to either of the two

components graphs we presented.

We used the number of dynamic and static objects present in commonly used

game environments in order to select the appropriate numbers of objects to use in

our collision detection tests. Based on data from the Unreal Engine 3 by Epic Games

[22] it is recommended that game environments have no more than 300-1000 objects in

order to give reasonable performance on current systems. Within this object limit the

navigation mesh outperforms all other algorithms. The upper limit of 5000 objects

was selected to match the upper limit on objects supported by the Unreal Engine

3. At this upper limit spatial hashing is slightly faster than a navigation mesh for

collision testing but the difference is small (3-4 milliseconds) and using spatial hashing

would require two separate data structures since the spatial-hash cannot be used for

agent path planning.


