Ray, Elijah
A Random Hierarchical Laplacian
1 online resource (71 pages) : PDF
2013
University of North Carolina at Charlotte
The Hierarchical Laplacian, proposed in Dyson's theory of one-dimensional ferromagnetic phase transitions, has a discrete spectrum with each isolated eigenvalue having infinite multiplicity. As a result, the integrated density of states is piecewise constant and the density of states is a sum of point-masses located on its spectrum. To correct these "defects," we modify the Hierarchical Laplacian by allowing its deterministic coefficients to instead vary randomly, but without changing the eigenfunctions. The resulting spectrum is deterministic but the eigenvalues are now random with finite multiplicity and we obtain an absolutely continuous density of states. Examining the eigenvalue statistics near an individual point of the spectrum, we find that, locally, the spectrum is approximately a Poisson point process.
doctoral dissertations
Mathematics
Ph.D.
Density of StatesEigenvalue StatisticsHierarchical LaplacianHierarchical LatticeHierarchical Random WalkPoisson Statistics
Applied Mathematics
Molchanov, Stanislav
Vainberg, BorisGodin, YuriCherukuri, Harish
Thesis (Ph.D.)--University of North Carolina at Charlotte, 2013.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). For additional information, see http://rightsstatements.org/page/InC/1.0/.
Copyright is held by the author unless otherwise indicated.
Ray_uncc_0694D_10549
http://hdl.handle.net/20.500.13093/etd:1667