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ABSTRACT 

 

 

MICHAEL UWAKWE.  Minimizing Task-Specific Uncertainty in CMM-Based 

Freeform Optics Metrology.  (Under the direction of DR. CHRISTOPHER EVANS) 

 

 

Measurements of surface form involve a comparison between the form of the test 

surface and a reference. In coordinate measuring machine (CMM) measurements, this 

reference is the machine geometry. The measurement results typically show a height map 

representation of the test surface but these contain machine error contributions. This 

research demonstrates and applies an in-situ self-calibration technique, Shift-Rotation, to 

CMM-based freeform optics metrology. This technique minimizes task-specific 

uncertainty by separating machine error contributions from test surface measurements.  

Simulations were used to demonstrate the error separation of freeform 

measurements into components of the test surface and machine error contributions. 

Simulations also estimated uncertainties associated with applying the Shift-Rotation 

technique; these were Monte Carlo simulations that evaluated standard uncertainty 

contributions from potential sources inherent in the shift- and rotation-measurement 

process. 

The Shift-Rotation technique was experimentally validated by measuring a 

freeform surface on a Zeiss F-25 micro-CMM and a Mahr MarSurf LD 260 surface profiler. 

Error separations of these measurement results led to best estimates of the freeform surface, 

without machine error contributions. Zernike coefficients of these best estimates from the 

tactile machines were compared to those from optical measurements of the same freeform 

surface. The optical measurements were from a Zygo Verifire Fizeau interferometer and a 

Zygo NexView Scanning White Light interferometer. 
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CHAPTER 1: INTRODUCTION 

1.1 Freeform Surfaces 

Conventional optical elements usually have surfaces that are rotationally 

symmetric, often planar, spherical, or aspheric. These surfaces have axes of rotational 

symmetry and can be conveniently designed, fabricated, and measured to within tight 

tolerances. On the other hand, freeform optical surfaces have no axis of rotational 

symmetry on or outside the surface and can be designed to have any shape [1-4]. Wills 

(2017) defines a freeform optical surface as “one that lacks translational or rotational 

symmetry”. In the same paper [5], a freeform surface was mathematically defined as “an 

optical surface whose surface function requires two variables – angle and radius, for 

example, or x and y - rather than one”; and went on to state that the definition of a freeform 

might depend on whom you talk to.  

This lack of rotational symmetry gives freeform surfaces a design flexibility which 

makes them more complicated than their conventional counterparts, but offers several 

advantages including an improvement in optical quality, and a reduction in size, weight 

and number of required components [1, 4]. Freeform surfaces were used to improve the 

optical quality of the Polaroid SX-70 folding Single Lens Reflex camera in 1972 [6]. In 

that camera, a freeform surface corrected for field tilt, power, and astigmatic errors while 

a second freeform corrected for coma and spherical aberration. 
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Another example of a freeform surface was an invention in 1926 that superimposed 

two or more cylindrical lenses to obtain the effect of a spherical lens, a cylindrical lens, or 

a combination of spherical and cylindrical lenses with a variable focal power. These 

superimposed cylindrical lenses were movable longitudinally with respect to one another 

and had regularly increasing refractive indices across their lengths [7]. Over two decades 

later, in 1949, another freeform lens of gradually varying focal power was invented to 

correct for distortion [8]. One surface of the lens had a progressively changing curvature 

of involute form, along the medial plane of the lens. Almost two decades after this 

invention, the surface was mathematically described by Luis Alvarez and presented as a 

two-element variable-power spherical lens which is now known as an Alvarez lens [9]. The 

lens assembly is composed of two thin lens elements arranged in tandem, with at least one 

of the lens elements movable in a direction transverse to the optical axis. Multiple design 

forms requiring variable-focus optics have incorporated the Alvarez lens [10-12]. Smilie, 

et al. [13] designed a diamond micro-milled germanium Alvarez lens pair and characterized 

its optical performance in the mid-infrared. A more recent application of the Alvarez lens 

extended its application from lenses to arbitrary optical devices like tunable gratings and 

spiral phase plates [14].  

For functional or aesthetic reasons, these freeform surfaces play an increasing 

number of roles in industries such as aerospace, automotive, optics, and medicine [2, 3, 15-

17]. This growing demand drives the need to improve the design, manufacture, and 

performance of the freeform surfaces. These freeform surfaces include freeform optics and 

freeform mechanical components (like gear teeth, turbine blades, car bodies, compressor 

scrolls) and these improvements are closely connected to the metrology (the scientific 
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study of measurements) of the freeform surfaces. Metrology of freeform surfaces plays a 

vital role because it enhances quality control and process troubleshooting in the design and 

fabrication stages, but the complexity of freeform surfaces introduces some difficulty to 

the metrology. 

1.2 Freeform Surface Metrology 

Optical surfaces comprise a superposition of high-, mid-, and low-spatial frequency 

components referred to as roughness, waviness, and form error, respectively. Surface 

metrology includes the measurement of these spatial frequency classifications but this 

project focuses on form error, rather than mid-spatial frequencies and roughness. Form 

error measurements of optical surfaces typically involve measurements of flat, spherical, 

aspheric, or freeform surfaces, and there are different instruments and techniques for 

making these measurements. Some of these techniques are discussed below. Most of them 

are well suited to measuring flat and spherical optics, and in many cases, can be extended 

to the measurement of aspheric surfaces but the difficulty increases as one moves onto 

freeform surfaces.  

A measurement of an optical flat or spherical surface can be obtained after it is 

matched to the accurate surface of a reference flat or a correspondingly opposite spherical 

reference surface, respectively. Newton interferometers use this arrangement of two 

surfaces in contact, illuminated by a short coherence length light source. The thickness of 

the air gap between the surfaces is usually a few wavelengths of light, and by observing its 

non-uniformity, interpretations of the surface under test can be obtained [18]. 

Aspherical surfaces can also be measured by contacting a reference spherical 

surface with the asphere of nearly the same radius of curvature, then counting the fringes, 
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provided the pattern is centered [19]. One difficulty in applying this technique to the 

measurement of freeform surfaces arises from the lack of symmetry on freeform surfaces, 

which results in decentered fringe patterns. Other potential problems with this test include 

the availability of the reference surface and its quality, which affects the accuracy of the 

measurement. Even though calibration techniques like 3-plate test for flat surfaces, 3-

position test for spherical surfaces [20], and shift-rotation test for plane and spherical 

surfaces [21], exist to separate the measurements into system errors and test piece errors, 

the accuracy could still be limited by the reference surface as well as the calibration 

procedure [22]. 

Fizeau and other types of interferometric tests also involve a comparison between 

the surface under test and a reference surface, but with air gap thicknesses much larger than 

in the case of the Newton interferometer. These interferometric measurements of aspheric 

and freeform surfaces are also not as simple as in the case of flat and spherical surfaces. 

Interferometric null tests can also be used to measure aspheric surfaces [23]. These 

use transmissive null optical elements to counteract the asphericity of the test surface and 

produce a fringe-free (or “null”) field when the aspheric surface meets specification. One 

drawback is the production of the appropriate transmissive null corrector plate can be as 

challenging as the fabrication of the actual aspheric test surface [24]. Alternatively, null 

correction can be achieved using a computer-generated hologram (CGH) [25]. CGH nulls 

are diffractive optics written by e-beam or laser lithography and yield fringe-free 

interferograms. They are often simpler to align, can be designed for off-axis segments, and 

do not become more difficult to produce as more aspheric terms are added. On the other 
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hand, CGH nulls can produce spurious diffraction orders which should be separated to 

prevent ghost fringes [26]. 

Non-null tests also exist for testing aspheric surfaces; these include tests like 

Foucault, Ronchi or Hartmann tests that mathematically calculate the surface deformation 

with respect to the closest sphere [18]. These processes are generally time-consuming and 

the accuracy of the results are frequently not high enough if the aspheric deformation is 

strong. Some other techniques for measuring aspheric surfaces include wavefront stitching 

techniques [27-30], two-wavelength holography [31], phase shifting interferometry [32], 

contact and optical profilometry [33-41]. 

The techniques discussed above for measuring aspheric and freeform surfaces can 

broadly be classified into direct and indirect comparisons [15]. The direct comparisons 

involve measuring the deviations between a freeform surface and a master template. The 

indirect comparisons do not require master templates but involve comparing measured 

coordinate points to some reference coordinate points and, implicitly, the quality of the 

reference coordinate system of the metrology system. This method is based on coordinate 

measurements and is an approximation technique which represents a continuous profile as 

discrete surface coordinate points. A measurement of a freeform surface or profile, in this 

discretized form, can be represented in a Cartesian or polar coordinate system. The 

difference between this coordinate measurement and a reference coordinate model, then 

represents the geometrical errors in the freeform surface [42], subject to alignment of the 

model and the measurement data. The reference coordinate model, which represents the 

nominal geometry of a freeform surface, is typically defined by a Computer-Aided 
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Drawing (CAD) model or a prescription based on a mathematical description of the desired 

surface.  

In the indirect comparison method, the most frequently used instruments to measure 

freeform surface coordinates are coordinate measuring machines (CMM) and 

profilometers [2, 3, 15, 43, 44]. These instruments are more flexible and have higher 

measuring speeds than conventional mechanical gauging methods but much slower than 

full aperture interferometry. They can measure thousands of points across complex 

freeform surfaces including surface features with high slopes. 

In profilometer or CMM measurements of freeform surface coordinates, it is 

essential to measure a sufficient number of points optimally distributed across the surface. 

These points can be measured by a point-mode strategy where each data point is obtained 

after contact is made between the instrument’s probe and the surface, or by a scanning-

mode strategy where multiple data points are acquired as the probe scans across profiles 

on the surface. The difference between these measured points and a reference model, 

represents the geometrical errors in the freeform. The reference model is typically the exact 

shape or nominal surface topography of the freeform part, but the measured surface 

coordinates are usually not. This exact surface, or “true value” of the surface coordinates, 

cannot be known but the closeness of the measured coordinates to the “true” coordinates 

largely depends on the geometry, operation and condition of the instrument and its probing 

system. Precision surface measurements estimate the gap between measured surface 

coordinates and the “true” values of the surface coordinates, and this entails estimations of 

the errors within the machine. This leads to the need for calibrations of CMMs. 
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In addition to the uncertainties that arise from random noise in the instruments [45], 

the uncertainty associated with profilometer or CMM measurements largely depends on 

the magnitudes of the error sources within the instrument and these error sources can be 

classified as being geometric or computational [46]. Geometric errors are errors in the 

measured position of points on the surface and are determined by several factors including 

the accuracy of the components of the CMM, the environmental conditions around and 

within the CMM, the probing strategies, and the material characteristics of the workpiece. 

The computational errors are errors in estimations of the dimensions and form deviations 

of the workpiece and are determined by the CMM’s software and its precision, as well as 

the number and relative distribution of measured points across the surface. The magnitudes 

of these CMM errors can be determined from CMM calibrations.  

1.3 Motivation 

Metrologists investigate CMMs by carrying out calibrations [47]. These CMM 

calibrations are tasks or tests carried out to determine the magnitudes of all kinematic error 

sources (twenty-one kinematic error sources for a 3-axis machine) in the machine, and are 

often referred to as error mapping of the CMM. There are many calibration methods 

available for evaluating these machine errors [48-52], after which software compensations 

or error corrections may be carried out to reduce measurement uncertainties. However, 

these machine errors obtained from direct calibration methods, estimate the machine’s 

errors at the time of calibration, at a point density determined by the time needed to do the 

calibration, and at an uncertainty appropriate to the general use case of the instrument. 

During freeform optical surface measurements, the machine errors could be different from 
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those observed while measuring calibrated artifacts; the direct calibrations give machine 

error maps that are not specific to the measurement tasks. 

In this research, task-specific measurement uncertainty is minimized by applying 

an in-situ self-calibration technique, known as Shift-Rotation, to freeform surface 

measurements. Shift-Rotation is an absolute testing procedure developed in interferometric 

optical surface metrology to separate measurement results into system errors and test piece 

errors [20, 21, 53-64]. This calibration method requires rotational and translational 

measurements and relies on the decomposition of surface departures into rotationally 

varying (RV) and rotationally invariant (RI) components.  

The “rotation” portion of the Shift-Rotation technique used in this research is an N-

rotation technique used to obtain the RV components of the test surface and reference. It 

involves measurements of the test surface at N systematically chosen positions (where N = 

2, 3, 4,…) spaced at 360/N degree intervals; the average of these measurements reduces to 

zero all RV components of the test surface except those of order kNθ, where k is an integer 

[65]. There are also a body of techniques that use incommensurate angles and Fourier 

techniques to obtain the rotationally varying components. Repeating the N-rotation test at 

incommensurate angles provides information on errors of angular order kNθ, but this 

approach requires the errors could be fit to a polynomial in R and θ, although no fitting is 

done [65]. 

The “shift” portion of the Shift-Rotation technique involves measurements of the 

test surface before and after a lateral shift by a known translation distance. A difference 

between the initial and sheared measurement data leads to the RI components of the test 

surface and reference errors. The literature shows a variety of ways the shift technique has 
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been used to obtain the RI components. Song, et al. [55] obtained the RI components by 

making two translational measurements with different translations in the x and y directions. 

In a different study [57], the RI component of the test surface was derived from the finite-

difference equation of the RI component of the reference surface, after displacing the 

shifted measurement data back to the original coordinate and canceling out the test surface 

components. Kuhn [66] solved for the RI component of the test part from a system of linear 

equations that included the difference between the sheared and initial test part 

measurements; this difference canceled the measurement system bias and left behind an 

estimate of the derivative of the test surface.  

This research applies this Shift-Rotation calibration technique, which was 

developed in interferometry, to CMM measurements of freeform surfaces. The machine 

errors separated by this self-calibration technique are not generic machine errors obtained 

from measurements of calibrated artifacts but are specific to the measurement task at hand. 

These task-specific machine errors can be obtained anywhere within the machine’s 

measurement volume. Therefore, with the Shift-Rotation self-calibration, it is unnecessary 

to directly measure the CMM errors, which include the parametric errors (21 D. o. F for a 

3-axis machine). These errors can be obtained on a task-specific basis from a 

predetermined sequence of rotated and translated freeform part measurements. Also, since 

this self-calibration method requires stability only over the measurement cycle time, effects 

of machine drifts are reduced to the timescale of the measurement rather than the interval 

between machine calibrations. 
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1.4 Layout of the Dissertation 

In Chapter 2, simulations and equations describe and demonstrate the Shift-

Rotation error separation process.  They detail how surface deviations from measurements 

of freeform surfaces can be separated into components of the freeform surface, and 

components which arise from the CMM errors. Also with the aid of simulations, Chapter 

3 evaluates task-specific uncertainties associated with applying the Shift-Rotation 

technique to the measurements of freeform surfaces. The uncertainty evaluations are 

carried out by using Monte Carlo simulations to evaluate uncertainty contributions from 

various sources.  

The Shift-Rotation technique is primarily applicable to the separation of surface 

form errors, and not mid-spatial frequencies or roughness; Chapter 4 investigates the 

technique’s error separations of some mid-spatial frequencies. It shows the complete or 

partial error separations of mid-spatial frequencies, and how mid-spatial frequency errors 

affect the separation of form errors. Chapter 5 then demonstrates the error separation 

process, applied to actual freeform surface measurements.  Rotational and translational 

measurements of a freeform surface were carried out on a Zeiss CMM and a Mahr surface 

profiler. These measurement results were decomposed into RV and RI components of the 

freeform surface, as well as RV and RI components of the machine error contributions. 

Estimates of the freeform surface, without machine error contributions, were then deduced 

and compared. 



 

CHAPTER 2: SIMULATIONS OF THE SHIFT-ROTATION TECHNIQUE 

All measurements of surface form involve a comparison between the form of the 

surface under test, and a reference. In coordinate measuring machine (CMM) 

measurements, this reference is the machine geometry. The measurement results typically 

show a height map representation of the test surface, but also contain error contributions 

from the machine. This Chapter demonstrates simulations of an in-situ self-calibration 

technique, Shift-Rotation, which minimizes task-specific uncertainty in freeform 

measurements by separating machine errors from part surface measurements. The 

discussion here does not differentiate between a classical Cartesian CMM (such as the F-

25) or a multi-axis profilometer, such as the Mahr LD-260 with added Y- and/or theta axes 

as used in this work. 

As the name implies, the Shift-Rotation technique comprises two parts: “Shift” and 

“Rotation”. The “Rotation” portion of the Shift-Rotation technique, stems from an N-

rotation method used to solve for rotationally varying (RV) components of a part. These 

RV components are extracted after averaging the measurement data acquired after multiple 

predetermined rotations of the part. The “Shift” portion of the technique stems from a 

lateral shear method that requires part measurements before and after the part has been 

laterally shifted by a known translation distance. This portion solves for the rotationally 

invariant (RI) surface components. The “Shift” and the “Rotation” are techniques that have 

been in use in interferometry for testing optical surfaces [21, 57, 67, 68] and the ideas are 

here, extended to measurements from CMMs and tactile profilers.  
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Some potential uncertainty sources are associated with this error separation 

technique, and these uncertainties can be expressed as maps that show the spatial 

distribution of the uncertainty within the aperture. Task-specific uncertainty analyses, 

using Monte Carlo, will be used in Chapter 3 to evaluate these uncertainty contributions. 

  Simulations of the Shift-Rotation technique were carried out in MATLAB to 

demonstrate the calibration process as well as to provide a software platform for the error 

separation of form measurements. In these simulations, freeform surfaces were generated 

on grids with aperture diameters of 1001 pixels by using combinations of Zernike 

polynomials. Decomposition of freeform surfaces into Zernike polynomials was 

n m Zernike function Common name 

0 0 1 Piston 

1 1 𝜌 cos 𝜃 Tilt x 

1 -1 𝜌 sin 𝜃 Tilt y 

2 0 2𝜌2 − 1 Defocus 

2 2 𝜌2 cos 2𝜃 Astigmatism x 

2 -2 𝜌2 sin 2𝜃 Astigmatism y 

3 1 (3𝜌3 − 2𝜌) cos 𝜃 Primary x coma 

3 -1 (3𝜌3 − 2𝜌) sin 𝜃 Primary y coma 

3 3 𝜌3 cos 3𝜃 Trefoil x 

3 -3 𝜌3 sin 3𝜃 Trefoil y 

4 0 6𝜌4 − 6𝜌2 + 1 Primary spherical 

4 2 (4𝜌4 − 3𝜌2) cos 2𝜃 Secondary astigmatism x 

4 -2 (4𝜌4 − 3𝜌2) sin 2𝜃 Secondary astigmatism y 

4 4 𝜌4 cos 4𝜃 Tetrafoil x 

4 -4 𝜌4 sin 4𝜃 Tetrafoil y 

TABLE 2.1 Zernike terms, up to the 4th order. 
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appropriate because the Zernike coefficients are easily determined and represent 

combinations of primary (Seidel) and higher-order aberrations observed on optical surfaces 

[69]. In this Chapter, four Zernike terms were used while up to fifteen Zernike terms are 

used in Chapter 5. The lowest order Zernikes were chosen in these Shift-Rotation 

simulations but the method can be applied to higher orders. The fitting in Chapter 5 is 

limited to 4th order given the relatively sparse measurement data. The Zernike ordering 

scheme used in this work is based on Noll’s concept [70], and Table 2.1 lists the fifteen 

Zernike terms [18, 71, 72] used in Chapter 5. 

The simulated surfaces were considered as comprising rotationally varying (RV) 

and rotationally invariant (RI) components of the test part and machine errors. These 

components were represented as PRV, PRI, MRV, and MRI respectively. The Shift-Rotation 

calibration technique was then used to decompose the simulated surface measurements into 

four output height maps: Output PRV, Output PRI, Output MRV, and Output MRI. From these 

separated components, a combination of the separated part components, Output PRV and 

Output PRI, was used to represent a measurement of the part without the machine’s error 

contributions. 

The first step in the simulations involved generating a freeform height map from 

known inputs (part and machine error components). If, for example, “MP” depicts this 

height map, it can be expressed as shown in Equation 2.1.  

 

 𝑀𝑃 = 𝑃𝑅𝑉 + 𝑃𝑅𝐼 + 𝑀𝑅𝑉 + 𝑀𝑅𝐼 (2.1) 
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Zernike primary x coma was used to represent PRV (the RV component of the test 

surface), Zernike primary spherical aberration (SA3) represented PRI (the RI component of 

the test surface), Zernike primary astigmatism x represented MRV (the RV component of 

the machine errors), and Zernike defocus represented MRI (the RI component of the 

machine errors). The maps of these input components are shown in Figure 2.1. 

These input components were then superposed to generate the freeform height map 

shown in Figure 2.2. Since the freeform part was generated with known inputs, after the 

Shift-Rotation technique was used to decompose the freeform into four output components, 

(a) (b) 

(c) (d) 

FIGURE 2.1 Zernike aberration representations of the simulated test surface 

components and machine errors. (a) Primary coma represents PRV. (b) Primary 

spherical represents PRI. (c) Primary astigmatism represents MRV. (d) Defocus 

represents MRI. 
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the separated output components were compared to the known inputs to demonstrate the 

separation technique. 

Figure 2.2 represents a measurement of a freeform part with a 100.1-mm-diameter 

circular aperture (10 pixels were used to represent a 1-mm length). This simulated 

measurement result depicts the freeform surface and also includes errors from the 

measuring machine. This simulated surface was deliberately generated with large form 

deviations and the amplitudes of the simulated machine errors were also deliberately large.  

 To separate the components in the above height map, the “Rotation” portion of the 

Shift-Rotation technique was used to solve for the RV components of the part and machine, 

while the “Shift” portion solved for the RI components. The following sections show how 

simulated measurement results, obtained after multiple part rotations and translations, can 

be used to obtain the RV and RI components of the part and machine. 

2.1 Separation of the Rotationally Varying Components 

The N-rotation is used to solve for the RV components of the part. This N-rotation 

technique has been in use in interferometry (the first publication containing proof was in 

1996) and has the advantage of being noise tolerant and computationally simple [65]. Here, 

measurements of the part are made after the part is rotated (about the optical axis) to N 

FIGURE 2.2 A simulated measurement of a freeform surface containing the part, as 

well as error contributions from the machine. 
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positions, separated by 360°/N. The average of these measurements would then contain 

none of the RV components of the part, except those with angular orders that are harmonics 

of 360°/N [65]. The number of rotations required would be higher than the highest angular 

order expected to be of significant amplitude on the part. Since these simulated height maps 

were generated with a highest Zernike angular order of 2θ, three rotations were sufficient 

to solve for the RV components. However, in these simulations, the part was rotated to 4 

positions separated by 90° and this shows numerically that sub-harmonics are properly 

separated. Simulated measurements at the four rotated positions of the part are shown in 

(a) 

 
(b) 

 

(c) 

 

(d) 

 
FIGURE 2.3 Simulated measurements after rotations of the freeform part.  

(a) Measurement at an initial position and orientation of the freeform part.  

(b) Measurement after rotating the part 90 degrees from the initial orientation.  

(c) Measurement after rotating the part 180 degrees from the initial orientation.  

(d) Measurement after rotating the part 270 degrees from the initial orientation. 
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Figure 2.3. The average of the four height maps in Figure 2.3, would then be a height map 

without the RV components of the part. If this average is denoted by MeanP(rot), it can be 

expressed as shown in Equation 2.2, and Figure 2.4. 

 𝑀𝑒𝑎𝑛𝑃(𝑟𝑜𝑡) = 𝑃𝑅𝐼 +  𝑀𝑅𝑉 + 𝑀𝑅𝐼 (2.2) 

The RV component of the part, dropped out by the averaging process, can be 

obtained by the subtracting in Equation 2.2 from Equation 2.1 (or subtracting the map in 

Figure 2.4 from that in Figure 2.2); and the resulting map is shown in Figure 2.5. 

The map in Figure 2.5, ‘Output PRV’, represents the first of the four desired 

separated components (as listed in Equation 2.1) and is stored for later use. The next surface 

FIGURE 2.4 An average of the four rotated part measurements. 

FIGURE 2.5 The separated rotationally varying component of the freeform part. 
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component to be solved is the RV component of the machine’s errors. No additional 

measurement is required to solve for this, as it can be deduced from Equation 2.2.  

If the RV components of the part were completely separated and expressed in the 

Output PRV map, any residual RV component in Equation 2.2 (and Figure 2.4) must be 

from the machine’s error contribution. This machine RV component can be obtained by 

applying the same rotation and averaging process, used to solve for the RV component of 

the part, on the height map in Figure 2.4. The maps obtained after rotating ‘MeanP(rot)’ to 

four positions, separated by 90°, are shown in Figure 2.6. Alternatively, the RV component 

of the machine can be obtained by rotating the raw rotated measurements (in Figure 2.3) 

to the same orientation, and averaging. 

FIGURE 2.6 Simulated measurements depicting rotations of the machine’s RV 

errors. 
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The RV components of the machine errors rotate with the rotations in Figure 2.6. 

These rotated RV components are not noticeable in the above figure because their 

amplitudes are small, compared to the amplitudes of the RI part. Nonetheless, an average 

of the four height maps drops out these RV error components and the resulting average can 

be expressed as shown in Equation 2.3 and Figure 2.7.   

 𝑀𝑒𝑎𝑛𝑀(𝑟𝑜𝑡) = 𝑀𝑅𝐼 + 𝑃𝑅𝐼 (2.3) 

The RV machine error component dropped out by the averaging process, can be 

obtained by the subtracting Equation 2.3 from Equation 2.2; the resulting map from this 

subtraction is shown in Figure 2.8. 

 𝑀𝑅𝑉 = 𝑀𝑒𝑎𝑛𝑃(𝑟𝑜𝑡) − 𝑀𝑒𝑎𝑛𝑀(𝑟𝑜𝑡) (2.4) 

FIGURE 2.7 Average of the height maps that depict machine rotations. This average 

drops out the rotationally varying components of the machine errors. 

 



20 

This height map, ‘Output MRV’, represents the second of the four desired separated 

components and should be stored for later use. Since the RV components of the part and 

machine errors have been separated, the resulting ‘MeanM(rot)’ height map in Figure 2.7 

should contain only RI components of the freeform part and the machine’s errors. These 

RI components can be obtained from the ‘Shift’ portion of the Shift-Rotation technique, as 

shown in the next section. 

2.2 Separation of the Rotationally Invariant Components 

The ‘Shift’ section of the Shift-Rotation technique is used to separate the RI 

components of the part and machine errors. At least, two measurements are required. 

Measurements of the part are required before and after the part has been laterally shifted 

by a known translation distance, Δ, with respect to the machine. If an additional translated 

measurement is required, it could be made after a further translation of the part. Certain 

situations give rise to the need for this additional translated part measurement, and these 

situations will be mentioned after solving for the RI components from only two 

measurements. The benefits of this additional measurement will also be demonstrated.  

FIGURE 2.8 The separated rotationally varying component of the machine’s errors. 
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To begin, we will illustrate the scenario requiring only two measurements; here, the 

translation distance should be small, compared to the aperture size, limited by signal to 

noise considerations. For example, Figure 2.9 (left) shows a simulated measurement of the 

part in an initial position, and after the part was translated 2 mm to the left, its simulated 

measurement was as depicted in Figure 2.9 (right). 

If the measurement of the part in the initial position is expressed as shown in 

Equation 2.5, where the superscripts, ‘0’, indicate an initial position, then, the measurement 

after a lateral shift of the part can be expressed as shown in Equation 2.6. The superscripts, 

Δ, indicate the translated components. 

 𝑀𝑃0 = 𝑃0
𝑅𝑉 + 𝑃0

𝑅𝐼 +  𝑀0
𝑅𝑉

+ 𝑀0
𝑅𝐼 (1.5) 

 𝑀𝑃Δ =  𝑃Δ
𝑅𝑉 + 𝑃Δ

𝑅𝐼 +  𝑀0
𝑅𝑉 + 𝑀0

𝑅𝐼 (2.6) 

Equation 2.6 indicates that the measurement of the translated part, MPΔ, should be 

made in the same region of the machine’s measuring volume as the initial measurement, 

MP0. In other words, MPΔ should feature a translated part under test without a ‘translation’ 

of the machine’s error contributions. Since the RV components of the part and machine 

have already been obtained, these can be subtracted (in their respective orientations) from 

FIGURE 2.9 Simulated measurement of the part in an initial position (left). Simulated 

measurement after the part was shifted 2 mm to the left (right). 
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MP0 and MPΔ. Then, a difference between the resulting maps would drop out the RI 

machine errors and leave behind the slope of the part (Equation 2.7) evaluated at the 

separation and in the direction Δ. The height map representation of this slope is shown in 

Figure 2.10. 

 𝑀𝑃Δ −  𝑀𝑃0 − (𝑃Δ
𝑅𝑉

− 𝑃0
𝑅𝑉) =  𝑃Δ

𝑅𝐼 − 𝑃0
𝑅𝐼 (2.7) 

The goal of the following steps is to obtain the RI component of the part from the 

slope map in Figure 2.10. If a profile, g, is extracted from the part center to the edge in the 

– Δ direction, each point in g would be a height difference between two points (a distance 

Δ apart) in the desired radial profile, f. The relationship between profiles f and g can be 

expressed as a system of linear equations: g = H*f, where g is an m x 1 column vector, f is 

an n x 1 column vector, and H is an m x n design matrix to be built [66].  

This design matrix can be explained with an example, where column elements g1 

to g5 represent an extracted profile from a slope map after a 1-pixel lateral translation. This 

column vector can be expressed as shown in Equations 2.8a – 2.8e. 

 𝑔1 = 𝑓1 − 𝑓2 (2.8a) 

 𝑔2 = 𝑓2 − 𝑓1 (2.8b) 

 𝑔3 = 𝑓3 − 𝑓2 (2.8c) 

FIGURE 2.10 The slope of the freeform part, evaluated after a 2-mm lateral 

translation. 
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 𝑔4 = 𝑓4 − 𝑓3 (2.8d) 

 𝑔5 = 𝑓5 − 𝑓4 (2.8e) 

 

This can be further expressed in matrix form as shown in Table 2.2. 

 

 

Elements g1 to g5 represent profile points extracted from the slope obtained from 

measurement data, and f is the radial profile to be solved for. If the design matrix, H, is a 

square matrix with dimension m = n, the profile, f, can be solved from Equations 2.9. 

 𝒈 = 𝑯𝒇 (2.9a) 

 𝑯−𝟏𝒈 =  𝑯−𝟏𝑯𝒇 (2.9b) 

 𝒇 =  𝑯−𝟏𝒈 (2.9c) 

If the design matrix, H, is non-square, with m ≠ n, the solution of the profile, f, can 

then be obtained via Equations 2.10. 

 𝒈 = 𝑯𝒇 (2.10a) 

 𝑯𝑻𝒈 =  𝑯𝑻𝑯𝒇 (2.10b) 

 (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒈 =  (𝑯𝑻𝑯)−𝟏𝑯𝑻𝑯𝒇 (2.10c) 

g     H    f 

g1  1 -1 0 0 0  f1 

g2  -1 1 0 0 0  f2 

g3 = 0 -1 1 0 0 * f3 

g4  0 0 -1 1 0  f4 

g5  0 0 0 -1 1  f5 

TABLE 2.2 Linear system relationship between the slope profile (g) and the desired 

radial profile (f). 
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 𝒇 =  (𝑯𝑻𝑯)−𝟏𝑯𝑻𝒈 (2.10d) 

H-1 and HT represent the inverse and transpose of H, respectively, while HTH is an 

n x n square matrix. Regardless of which of the above (Equations 2.9 or 2.10) applies, 

neither can directly be used to solve for the radial profile, f, if the design matrix (H) is 

singular (non-invertible). At this juncture, a possible way forward involves searching for a 

suitable approximate solution of the linear equation, g = H*f, by way of a pseudo-inverse 

of the singular matrix H (or HTH). Another approach involves searching for ways to make 

the H (or HTH) matrix become non-singular. Both approaches are discussed in the next 

section. 

2.2.1 A Way around the Singularity of the Design Matrix 

The design matrix, H, is singular (non-invertible) because its determinant, |𝑯|, is 

zero; a matrix whose determinant is zero is said to be singular [73, 74]. A singular matrix 

has no inverse because if an inverse exists when H is singular, then, |𝑯−1| × |𝑯| =

|𝑯−1| × 0 = 0, and |𝑯−1| × |𝑯| = |𝑯−1𝑯| = |𝑰| = 1, and this results in a contradiction 

[73]. Furthermore, the adjoint method for calculating the inverse of a square matrix is 

shown in Equation 2.11, where it shows how zero-determinant results in a singularity [73-

77]. 

 
𝑯−𝟏 =

𝑎𝑑𝑗 𝑯

|𝑯|
 

(2.11) 

This singularity can also be explained by the presence of linear dependencies or 

relationships between the rows or columns of the H matrix. In other words, if any column 

(or row) in a matrix is repeated, or if any column (or row) is a multiple of another column 

(or row), the matrix becomes singular [74-76]. This H matrix singularity makes it 
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challenging to obtain a direct solution of column vector f, from Equation 2.9c (or Equation 

2.10d).  

One approach that could be used to solve Equation 2.9c, involves calculating a 

generalized inverse or pseudo-inverse of H (or HTH), and this leads to a pseudo-solution 

of the column vector f [75, 78]. One method of obtaining a pseudo-inverse is the Moore-

Penrose generalized inverse [75, 77, 79, 80]; this decomposes the H matrix into a product 

of matrices, whose dimensions are related to the rank, r, of the H matrix. This rank, r, of 

the H matrix is the size of the largest square sub-matrix of H which is non-singular. If H 

is m x m and non-singular, it is said to be full-rank with a rank equal to m [73, 77]. With 

the Moore-Penrose pseudo-inverse decomposition, if H is m x n with a rank r > 0, then 

there exists m x r and n x r matrices P and Q respectively, such that  

 𝑷𝑻𝑷 = 𝑸𝑇𝑸 = 𝑰𝑟 (2.12a) 

 𝑯 = 𝑷𝜟𝑸𝑻 (2.12b) 

where Δ is an r x r diagonal matrix with positive diagonal elements [75, 81, 82]. 

The right-hand side of Equation 2.12b is a singular value decomposition of H, from which 

the Moore-Penrose pseudo-inverse can be obtained and expressed as:  

 𝑯+ = 𝑸𝜟−1𝑷𝑇 (2.13) 

This Moore-Penrose pseudo-inverse could then be used to obtain a pseudo-solution 

of the column vector f. The Moore-Penrose inverse explained above, is one of several 

generalized inverses which could be used to obtain the pseudo-inverse of a singular matrix. 

Other factorization methods could be used to produce pseudo-inverses, but these are not 

suited for singular matrices. They decompose the singular matrix into a product of lower-

dimensioned matrices, and some examples of these include QR factorization, Cholesky 
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factorization, and LU factorization. The QR factorization decomposes a matrix into the 

form: H = QR, where Q is a unitary matrix and R is an upper triangular matrix [77, 83]. 

The Cholesky factorization decomposes a symmetric matrix into the form: H = BBT, where 

B is a real lower triangular matrix [83], while the LU factorization decomposes a matrix 

into the form: H = LU, where L is a lower triangular matrix and U is an upper triangular 

matrix [83, 84]. From any of these factorizations, a pseudo-inverse might be obtained, but 

since they are not designed for singular matrices, results can vary widely between methods. 

Alternatively, a different approach can be used to solve Equation 2.9c. This 

alternative approach does not seek a pseudo-inverse solution, instead, it focuses on 

converting the singular H matrix into a non-singular (invertible) matrix. In the first place, 

if the H matrix was invertible, the unique solution of vector f would be obtainable. Via this 

alternative approach, if the H matrix is made invertible, and is well-behaved, there would 

also be one unique solution of vector f. However, this unique solution would most likely 

approximate the exact solution and the approximation depends on how the H matrix is 

made invertible.  

This approach to solving the singularity, deals with perturbing the linear 

dependencies between the rows and columns of the matrix, and offsetting the symmetry 

within the singular matrix in such a way that the singular matrix becomes a well-behaved 

non-singular matrix. Elementary operations like permuting the rows or columns, adding a 

multiple of one row or column to another, or multiplying the elements of a row or column 

by a non-zero constant, change neither the determinant nor rank of the singular matrix, and 

hence, do not make the matrix invertible [73, 75, 77]. The required perturbation can be 

achieved by adding a small amount of non-symmetric noise to the singular matrix to offset 
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its symmetry. This converts the singular H matrix into a matrix whose set of vectors have 

no zero-valued linear combination relationship (except the trivial one with all the 

coefficients equal to zero). This conversion makes the columns and rows linearly 

independent, and hence, non-singular [73].  

Instead of the linear system in Equation 2.9a, the modified-matrix is represented as 

shown in Equation 2.14, where matrix E represents the noise added to the singular matrix, 

H. 

 𝒈 = (𝑯 + 𝑬)𝒇 (2.14) 

The modified-matrix (H + E) would have a full rank and a unique real-inverse but has a 

limitation that depends on the elements in E, their design, and their relationship with the 

elements in H. For example, when a noise of 1 × 10-12 was added to the 1’s in the H matrix, 

it was sufficient to make the matrix invertible. The output solution of the vector f, obtained 

after this perturbation, was approximately equal to the ideal vector f input to the simulation. 

The following example compares the solution from the inverse of a noise-modified singular 

matrix to that from a pseudo-inverse of the singular matrix.  

Simulations were used to compare a modified-matrix solution to a pseudo-inverse 

solution. An ideal radial profile f was extracted from the known rotationally invariant 

surface in Figure 2.1(b). From the slope height map in Figure 2.10 (obtained after a part 

translation distance of Δ = 2 mm), a g profile was extracted (from the part center to the 

edge in the – Δ direction). After generating the required design matrix H which was 

singular, the Moore-Penrose pseudo-inverse method was used to obtain a pseudo-inverse 

H+ from which the pseudo-solution of column vector f was obtained. Also, a modified H 
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matrix (noise of 1×10-12 added to the diagonal of H) was used to obtain a solution of column 

vector f. Both solutions are compared to the ideal radial profile in Figure 2.11.  

Figure 2.11 shows the input radial profile, a profile obtained from a Moore-Penrose 

pseudo-inverse, and a profile from a noise-modified H matrix. Subtracting the ideal radial 

profile from both solutions yielded the residuals shown in Figure 2.12. These show the 

modified matrix solution having lower peak-valley deviations than the pseudo-inverse.  

(a) 

 

(b) 

 

(c) 

 

FIGURE 2.11 Comparison between a pseudo-inverse RI solution and the solution 

from a noise-modified design matrix. (a) The input radial profile used as a bench-mark 

for the comparison. (b) Output profile from a pseudo-inverse solution. (c) Output 

profile from a noise-modified design matrix solution. 
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It should also be noted that the amplitudes of the residuals shown in Figure 2.12 

change proportionally with respect to the translation distance. At a small translation 

distance of 100 µm, both approaches agreed with the ideal solution; their residual rms 

differences were 1.65 nm. The residuals from both approaches increase with increase in 

translation distance; but the residual errors from the pseudo-inverse were consistently 

larger than those from the noise-modified inverse. For example, at a large translation 

distance of 5.5 mm, the residual rms difference from the pseudo-inverse was 0.31 mm 

while that from the noise-modified inverse was 0.06 mm. 

Since these comparisons demonstrate that the modified design matrix leads to 

output RI components which are closer to the input RI components than those from a 

pseudo-inverse, the modified design matrix was used to obtain the outputs of the RI part 

and machine error components, in this chapter. Now that an approach to solving the 

singularity of the design matrix has been selected, the next section returns to the separation 

of the RI components of the machine and part. 

 

 

 

 

 

 

FIGURE 2.12 Difference between a Moore-Penrose output and the ideal profile (left). 

Difference between a noise-modified design matrix output and the ideal profile (right). 
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2.3 Separation of the Rotationally Invariant Components continued 

 From the slope map in Figure 2.10, a profile, g, was extracted from the translated 

part center to the edge in the –Δ direction. Each point in g represents a height difference 

between two points (a distance Δ apart) in the desired radial profile, f, and can be expressed 

as g = Hf. The modified design matrix, H, was then used to solve for the radial profile f, 

and this profile was graphed as shown in Figure 2.13. 

The RI component of the test surface can then be obtained by generating a surface 

from the solved radial profile in Figure 2.13. The pixel-data on the left end of this profile 

becomes the center of the desired RI component of the part. This generated RI component 

of the part is shown in Figure 2.14 and represents the third of the four desired output 

components.  

FIGURE 2.13 Radial profile of the rotationally invariant freeform surface. 

FIGURE 2.14 The rotationally invariant component of the freeform part. 
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The fourth separated component, the RI component of the machine’s error, can then 

be obtained by subtracting the three previously solved components from any measurement 

of the part, for example, that shown in Figure 2.2. This fourth output component is shown 

in Figure 2.15. 

2.4 Part Measurement without Machine Error Contributions 

At this point, the simulated freeform surface in Figure 2.2 has been separated into 

four components: Output PRV, Output MRV, Output PRI, and Output MRI, as summarized in 

Figure 2.16. The sum of the decomposed components of the test part, Output PRV + Output 

PRI, should represent a measurement of the freeform surface without the error contributions 

from the machine.  

FIGURE 2.15 The rotationally invariant component of the machine errors. 
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This sum is shown in Figure 2.17 and represents a part measurement with a 

minimized uncertainty because the RV and RI machine error contributions have been 

removed. The task-specific machine error contributions can then be obtained by the sum 

= + 

+ 

+ 

FIGURE 2.16 Separation of the simulated freeform surface into its four constituent 

components. 

FIGURE 2.17 A simulated measurement of the freeform surface, without the RV and 

RI machine errors. 
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of the separated RV and RI machine errors, or by subtracting the solution in Figure 2.17 

from the input part in Figure 2.2. This machine error contribution is shown in Figure 2.18.   

2.5 A More Robust Rotationally Invariant Solution 

In solving for the above RI components, only one lateral translation was used. If 

only one translation is to be used, the translation distance should be small, compared to the 

aperture size, limited by signal to noise considerations. In the above example, a translation 

distance of 2 mm was used (the part had an aperture-diameter of 100.1 mm).  If a large 

translation distance is used, or if the solved radial profile (Figure 2.13) is not a continuous 

curve, two or three lateral translations of the part might be necessary to solve for the RI 

components. In this case, the linear system described in Table 2.2 would become a 

combination obtained from the multiple lateral translations. 

FIGURE 2.18 The simulated task-specific machine error contributions. 
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For example, if a 20-mm translation was used instead of the 2-mm translation 

distance previously used, the before and after-simulated shear measurements would be as 

represented in Figure 2.19. 

 After subtracting the RV component of the part (which was previously separated) 

from the height maps in Figure 2.19, the resulting slope of the part evaluated at this 20-mm 

separation and in the direction Δ, would be obtained as shown in Figure 2.20.  

 From this illustration with a translation distance of 20 mm, the radial profile, f, 

solved from a profile, g (extracted from the slope of the part), is shown in Figure 2.21 (left). 

This solved profile appears segmented, with segments having a period of the translation 

distance. The height map generated from this profile is shown in Figure 2.21 (right).  

FIGURE 2.19 Simulated measurement of the part in an initial position (left). 

Simulated measurement after the part was shifted 20 mm to the left (right). 

FIGURE 2.20 Slope of the part, evaluated after a 20-mm lateral translation. 
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 This segmentation that appears in the radial profile, obtained after employing a 

large translation of the part, modifies the radial profile from its ideal form. A radial profile, 

closer to the ideal, can be obtained by incorporating measurements after additional 

translations of the part. When simulated part measurements were made after part 

translations of 20 mm, 23 mm, and 25 mm, their combined extracted g profiles, along with 

their combined design matrices, were used to solve for the radial profile of the part. This 

radial profile, with its generated height map, is shown in Figure 2.22. This shows an 

improvement in the solved RI component of the part can be obtained from multiple 

translations of the part (different translation distances), instead of just one large translation. 

FIGURE 2.21 Radial profile of the part, obtained after a large translation distance of 

20 mm (left). The RI component of the part, generated from this profile (right). 

FIGURE 2.22 Improved radial profile of the part, obtained from simulated part 

measurements after 20 mm, 23 mm and 25 mm translations (left). The RI component of 

the part, generated from this profile (right). 
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The rms of the Output PRI height map obtained here, matches that obtained when a small 

translation distance of 2 mm was used. 

A comparison was made between the Output PRI solution obtained after the initial 

2-mm translation distance, and that obtained from the combination of multiple translation 

distances of 20-mm, 23-mm, and 25-mm. Both RI solutions were subtracted from the part 

RI input to the system and are shown in Figure 2.23. Figure 2.23 (left) shows the residual 

after a 2-mm part-translation while Figure 2.23 (middle) shows the residual after the 

multiple part-translations of 20-mm, 23-mm, and 25-mm. The difference between the RI 

solutions from the single and multiple translations is shown in Figure 2.23 (right). 

The comparison shows that besides a reduction in the translation distance, a 

combination from shear-measurements of the part at multiple translation distances can 

yield an improvement in the solution of its RI components.  

 

 

 

FIGURE 2.23 Input minus output RI part components, after a 2-mm translation of the 

part (left). Input minus output RI part components, after multiple part-translations of 

20-mm, 23-mm, and 25-mm (middle). A difference between the output PRI solutions 

from single and multiple part-translations (left). 
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2.6 Influence of Random Machine Z-axis Errors on the Error Separation Process 

 So far in Chapter 2, the simulated machine errors have all been systematic. These 

systematic errors are functions of position in the x- and y- axes, and were assumed to have 

unique amplitudes with respect to position within the measuring volume. This chapter 

investigates a possible scenario that could arise when the previous assumption does not 

hold. Here, the machine’s systematic errors were simulated not just as functions of position 

in the x- and y- axes, but also to have random components in the z-direction. In these 

simulations, the +z-axis points out of the page. The influence of these random z-axis errors 

on the error separation process were investigated by comparing separated RV and RI output 

components to the respective input components. 

 The influence of machine errors that change systematically in the z-direction were 

not simulated. If these are present in a measuring machine, the machine errors would be 

different between rotated freeform part measurements. Nonetheless, the Shift-Rotation 

would separate these errors as rotationally varying machine error components.  

 The random z-axis machine errors were simulated to be components of the 

systematic errors and the effects of four sets of these random errors were investigated. The 

four sets contained uniformly-distributed random z-axis errors (that change on every 

rotation) with maximum amplitudes of 10%, 1%, 0.1%, and 0.01% deviations from the 

nominal systematic errors, on a pixel-by-pixel basis. Results from the 10% deviations are 

shown below while results from the 1%, 0.1%, and 0.01% deviations are in Appendix B; 

their summary is in Chapter 2.6.2. 

 

 



38 

2.6.1 Influence of 10% Random Machine Z-axis Errors 

Figure 2.24 (left) shows a simulated systematic machine error, without random 

errors in the z-axis. After the addition of a random z-axis error with a maximum amplitude 

of 10% deviation from the nominal, the resulting machine error is plotted in Figure 2.24 

(right). An effect of the added random error can be noticed by the change in the rms of the 

height maps. 

To evaluate the effects of the added random errors on the error separation process, 

the Shift-Rotation error separations were carried out on the simulated surface with the 

systematic and random errors shown in Figure 2.24 (right). After Shift-Rotation error 

separations (4 rotations in the N-Rotation technique, and a 200 µm part translation in the 

Shift-technique) of the part that included the random machine errors, the separated output 

components were compared to the input components, as shown in Figure 2.25. The 

comparison between the output and input RV components shows that even with the added 

10% random machine errors, the N-Rotation technique correctly separated the RV 

components of the part and machine. The rms of the Output PRV height map equals that of 

FIGURE 2.24 Simulated systematic machine errors (left). The machine’s systematic 

errors with a random component in the z-direction; the random errors have a maximum 

amplitude of 10% the nominal systematic error. (right). 

+z 

 

+x 

 

+y 
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the Input PRV, while the rms of the Output MRV height map differed from the Input MRV by 

5%. 

On the other hand, more significant changes were observed between the output and 

input RI components. After the addition of 10% random machine errors, the Shift technique 

incorrectly solved for the RI components of the part and machine. There was a 60% rms 

deviation between the Output and Input PRI height maps, and a 900% rms deviation 

between the Output and Input MRI height maps. Naturally, these large deviations in the RI 

components, got transferred to the estimate of the part (without machine error 

contributions). The rms of this part estimate differed from its corresponding input by 40%. 

The differences between these output- and input-separated components can be seen 

as height maps, after subtracting the inputs in Figure 2.25 (left) from the outputs in Figure 

2.25 (right). These difference height maps, which result from the addition of 10% random 

machine z-axis errors, are shown in Figure 2.26. Comparing the rms values (or the peak-

to-valleys) of the RV differences, to those of the RI differences, shows that the addition of 

the 10% random machine z-axis errors, had negligible effect on the separation of the RV 

components but had a significant effect on the separation of the RI components. The 

summary in Chapter 2.6.2 explains why. 
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Output components after the addition of 

10% random machine errors 

 

Input components 

 

FIGURE 2.25 Input components to the Shift-Rotation technique (left). Output 

components obtained after the addition of random z-axis machine errors with 

maximum amplitudes of 10% deviation from the nominal (right).  
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Difference between output and input best estimates 

of the part 

Differences between rotationally invariant components 

Differences between rotationally varying components 

Differences between output and input surface components, after the addition of 10% 

random machine z-axis errors 

 

FIGURE 2.26 Differences between output and input surface components, after the 

addition of 10% random machine z-axis errors. 
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2.6.2 Summary of the Influences of Random Machine Errors  

 Random machine z-axis errors with maximum amplitudes of 10%, 1%, 0.1%, and 

0.01% the nominal systematic machine errors, were added to simulated measurements of 

the part (results from the 1%, 0.1%, and 0.01% deviations are in Appendix B). The effects 

of these added errors on the Shift-Rotation error separation process were observed by 

comparing the error-separation outputs, to their corresponding inputs. The rms deviations 

between the output components and their corresponding inputs are summarized as 

percentages in Table 2.3 and graphed in Figure 2.27. 

 

 

 

 

 

 
Maximum random errors added to the machine 

+10% +1% +0.1% +0.01% 

RMS 

deviations 

(%) 

Output – 

Input PRV 
0.5007 0.0509 0.0057 0.0006 

Output – 

Input MRV 
5.4630 0.6614 0.3920 0.3920 

Output – 

Input PRI 
115.44 6.3892 0.3824 0.0649 

Output – 

Input MRI 
897.33 49.091 2.9274 0.4850 

TABLE 2.10 Effects of added random z-axis machine errors on separated surface 

components. 
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 The blue and black lines in Figure 2.27 represent the deviations between input and 

output RV components, while the red and green represent deviations between input and 

output RI components. The figure shows that random z-axis machine errors have a greater 

impact on the separation of RI components than on RV components because the N-Rotation 

averaging is noise-tolerant, but the Shift-technique is noise-sensitive as explained below.  

In all four cases (maximum machine errors of 10%, 1%, 0.1%, and 0.01% nominal), 

the N-Rotation technique correctly solved for the RV components of the part; the solutions 

of the Output PRV were insensitive to random z-axis errors in the machine. Also, the N-

Rotation technique had no trouble solving for the RV components of the machine errors. 

In the four cases, the separated Output MRV maps changed slightly, because of the RV 

components of the added random machine errors. These reiterate that the N-Rotation 

technique is very tolerant to noise.  

On the other hand, in the presence of large random machine errors, the Shift 

technique had trouble solving for the RI component of the part. Reduction in the amplitudes 

of the simulated random machine z-axis errors led to improved error separations from the 

Shift-Technique. This points to the Shift-technique’s sensitivity to noise. This noise-

FIGURE 2.27 Effects of added random z-axis machine errors on separated surface 

components. 
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sensitivity of the Shift-technique arises because, in calculating the slope of the part, the 

equations (and the design matrix) assume that all machine errors have been cancelled out, 

leaving behind the slope of the part, a difference between part radial profiles, only. For 

example, in the Shift-technique, if two measurements of a part, before and after a lateral 

translation of the part, are 𝑀𝑃0and 𝑀𝑃Δ, respectively, they can be represented as: 

 

 𝑀𝑃0 = 𝑃0
𝑅𝑉 + 𝑃0

𝑅𝐼 +  𝑀0
𝑅𝑉

+ 𝑀0
𝑅𝐼 (2.15) 

 𝑀𝑃Δ =  𝑃Δ
𝑅𝑉 + 𝑃Δ

𝑅𝐼 +  𝑀0
𝑅𝑉 + 𝑀0

𝑅𝐼 (2.16) 

MP0 represents a measurement of the part in an initial position, while MPΔ 

represents a measurement after translating the part by a distance, Δ. A difference between 

these two measurement results, Equations 2.15 and 2.16, gives the slope of the part as 

shown in Equation 2.17. 

 

 𝑀𝑃Δ − 𝑀𝑃0 − (𝑃Δ
𝑅𝑉

− 𝑃0
𝑅𝑉) =  𝑃Δ

𝑅𝐼 − 𝑃0
𝑅𝐼 (2.17) 

 

Equation 2.17 (and subsequently, the design matrix) expects all machine errors to 

cancel out after the subtractions. The introduction of random z-axis machine errors 

unbalances this equation and explains why the Shift technique is very sensitive to random 

noise. Considering this, it is advisable to filter out measurement noise before applying 

Shift-Rotation error separations. 

2.7 Summary 

Simulations were used to describe an in-situ self-calibration technique, Shift-

Rotation, which minimizes task-specific uncertainty in freeform measurements by 

separating machine error contributions from part surface measurements. The simulated 
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surface measurements were decomposed into four output height maps: rotationally varying 

(RV) component of the part, rotationally invariant (RI) component of the part, RV and RI 

components of the machine errors. From these separations, a combination of the separated 

part components represented a simulated measurement of the part without machine error 

contributions. The task-specific machine error contributions were then obtained by the sum 

of the separated machine error components. 

Simulations were also used to investigate the influence of random machine z-axis 

errors on the error separation process. The influence of machine errors that change 

systematically in the z-direction were not simulated. If these are present in a measuring 

machine, the machine errors would be different between rotated freeform part 

measurements. Nonetheless, the Shift-Rotation would separate these errors as rotationally 

varying machine error components. The simulations showed random z-axis machine errors 

have a greater impact on the separation of RI components than on RV components, 

indicating the N-Rotation averaging is noise-tolerant while the Shift-technique is noise-

sensitive.



 

CHAPTER 3: MONTE CARLO UNCERTAINTY ESTIMATIONS 

This chapter evaluates task-specific uncertainties associated with applying the 

Shift-Rotation technique to measurements of freeform surfaces. Several methods exist to 

estimate the uncertainty in CMM measurements and Wilhelm et al. [85] divided these 

methods into six categories: sensitivity analysis, expert judgement, experimental method 

using calibrated objects, computer simulation, statistical estimations from measurement 

history, and hybrid methods. Computer simulations were used in this project to evaluate 

task-specific uncertainties. 

The simulation methods that estimate task specific uncertainty begin with some 

model of the machine and measurement process. These methods include the “Virtual 

CMM” (VCMM) [86-88], “Virtual Instrument” [89], “Simulation by Constraints” [90], the 

“Expert CMM” [91], and Monte Carlo simulation [92]. The VCMM performs a point-by-

point simulation of measurements, emulating the measurement strategy and physical 

behavior of the CMM with the dominating uncertainty contributions. The results from 

simulated measurements, with and without the uncertainty influences, are compared to 

yield the measurement uncertainty specific for each measurand. These uncertainty 

influences consist of known systematic influences, unknown systematic influences, and 

random influences, which are assessed either by measurements or by estimations. The 

simulations take these effects into account by performing each virtual measurement several 

times [86]. 
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Simulation by constraints is a generalization of the VCMM that simulates CMMs 

by generating all possible sets of parametric errors within known constraints. The Expert 

CMM is a modified version of a VCMM that computes the uncertainty of individual point 

coordinates and propagates this uncertainty through the part program to obtain the final 

uncertainty of the measurand [86]. 

The uncertainty evaluations in this project were carried out using Monte Carlo, a 

computer simulation method that can evaluate uncertainty contributions from various 

sources. The Monte Carlo simulation also began with some model of the machine and 

measurement process and the uncertainty evaluations were grouped into three main stages: 

formulation, propagation, and summarizing [93].  

The formulation stage defined an output quantity to be measured, referred to as the 

measurand. In these simulations, the simulated measurement height map of the part, after 

removal of the machine’s error contributions, was the measurand. From this height map, 

additional measurands can also be extracted, for example, amplitude representations of the 

surface like rms, skew, kurtosis, and PVr [94], or spatial parameter such as autocorrelation 

length. Within the formulation stage, input quantities also need to be defined. These inputs 

are the quantities upon which the measurand depends. The input quantities used in this 

Monte Carlo simulation are some of the potential uncertainty sources associated with the 

Shift-Rotation error separation process. The uncertainties from these sources can be 

expressed as maps that show the spatial distribution of the uncertainty within the aperture, 

and some of these uncertainty sources are listed in Table 3.1. 
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The Monte Carlo simulation is performed by building a model that generates many 

possible outcomes which could arise from the variations of input parameters. The 

measurement model defines the relationship between these input parameters and the 

measurand. Here, the measurement model relating the input quantities to the measurand is 

the Shift-Rotation process described in Chapter 2. This model was incorporated into the 

Monte Carlo simulation in a way that generated many possible outcomes which could arise 

from the distributions of input parameters. These distributions are governed by random 

selections within preassigned probability density functions (PDF). A PDF, f(x), is the first 

differential coefficient of a distribution function, F(x), with respect to x (where this 

differential exists). This can be written as 𝑓(𝑥) =
d(𝐹(𝑥))

d𝑥
⁄  . For a given random 

variable, X, the area between two points in the range, xL and xU, under the probability 

density curve, is equal to the probability that an as yet unrealized random number of X will 

Uncertainty sources Measurand 
Output 

uncertainty 

Rotation angles 

A surface parameter 

evaluated by using the 

height map, Output 

PRV + Output PRI. 

Task-specific 

uncertainty map 

Translation distance 

Moving axis of rotation 

CMM parametric errors 

Electronic noise, Z-axis 

noise, and vibrations 

TABLE 3.1 Potential sources of uncertainty associated with the Shift-Rotation 

process. 
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lie between the points xL and xU [95, 96]. These PDFs, for example, Gaussian or uniform 

distributions, are assigned to the inputs based on a priori knowledge of their characteristics 

[93]. Since the inputs are represented as PDFs, the Monte Carlo process reports the 

measurand with a joint PDF which depends on the PDFs of the input quantities, and on the 

measurement model.  

This PDF report of the measurand, constitutes the propagation stage of the 

uncertainty evaluation. Here, the input PDFs propagate through the model to yield a joint 

PDF of the output quantity. This propagation process from the inputs, through the model, 

to the outputs, can be represented as shown in Figure 3.1 [93]. 

 

The summary stage of the uncertainty evaluation involves obtaining an expectation 

of the measurand, as well as its uncertainty (reported with an appropriate coverage factor), 

from the joint PDF. In Chapter sections 3.1 – 3.4, different input parameters from Table 

Measurement model Output quantities Input quantities 

FIGURE 3.1 Propagation of uncertainty, through the measurement model, to the 

output. 
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3.1 were used, separately, as inputs to the Monte Carlo. Each input parameter led to a 

standard uncertainty and from a combination of these standard uncertainties, a combined 

standard uncertainty was obtained under the assumption that no correlation existed between 

the standard uncertainties. Table 3.1 lists the potential uncertainty sources and the 

following sections show the Monte Carlo generation of standard uncertainty maps from 

these sources. 

3.1 Uncertainty from the Rotation Angles 

In this section, the Monte Carlo simulation will be illustrated by an example where 

the rotation angle is used as the input parameter. In the rotation technique discussed in 

Chapter 2.1, it was assumed that each rotation angle was an exact integer multiple of 90°. 

This led to a height map representation of the freeform surface without the machine’s error 

contributions (Figure 2.17), and this height map was further represented by an amplitude 

parametric surface specification (rms = 5.7003 mm). In using the Monte Carlo, instead of 

assuming we have perfect rotation angles, we presume that each rotation angle can fall 

anywhere within some distribution.  

For example, the flowchart in Figure 3.2 shows the Monte Carlo simulation process 

when the rotation angle is used as the input parameter; and shows uniform distributions 

with upper and lower limits of ± 0.05° used around each nominal rotation angle. Uniform 

distributions were chosen to represent the rotation angle (random distribution) because 

each point within the rotation angle’s range had an equal probability. The upper and lower 

limits of ± 0.05° were chosen for convenience to show the effect, not to indicate the likely 

consequence on the specific measurements discussed in later chapters. 
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The flowchart in Figure 3.2 shows the Monte Carlo simulation process when the 

rotation angle was used as the input parameter. In one forward loop, four random rotation 

angles were selected (one from each of the uniform distributions). Instead of using the 

nominal rotation angles, these four random angles were used as the input rotation angles in 

the Monte Carlo’s Shift-Rotation process. This then resulted in one output height map 

representation of the part (Output PRV + Output PRI), and any amplitude parametric 

description (for example, rms, PVr, roughness average, etc.). 

After running the Monte Carlo loop many times, such that each trial had random 

angles from the input distributions, an array of possible outcomes of the freeform surface 

measurement was obtained. The average of the height maps in this array, when compared 

Mathematical model Output parameters Input parameters 

(°) 
0 0.05 -0.05 

(°) 
90 90.05 89.95 

(°) 
180 180.05 179.95 

(°) 
270 270.05 269.95 

1000 

freeform 

surface 

height maps 
Freeform 

surface 
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Output PRV + 

Output PRI 
Probability density function 

rms, PVr, … 
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Repeated 
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FIGURE 3.2 A flowchart of the Monte Carlo process, with rotation angle as the 

input parameter. 
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with the best estimate part in Figure 2.17, gave an estimate of how well the Monte Carlo 

converged, while the standard deviation across the array led to a standard uncertainty. The 

standard uncertainty, u, was calculated from [97]: 

 𝑢 =
𝑠

√𝑛
     , (3.1) 

where n was the number of possible outcomes in the array, and s was the standard deviation 

across the array of possible outcomes, expressed as: 

 

𝑠 = √
∑ (𝑥𝑖 − �̅�)2𝑛

𝑖=1

(𝑛 − 1)
 

(3.2) 

After this process was applied to the simulated height maps from the previous 

sections, the Monte Carlo converged to the height map shown in Figure 3.3 (left). Since 

the best estimate part measurement shown in Figure 2.17, reports an rms of 5.7003 mm, 

Figure 3.3 (left) shows the Monte Carlo converged to approximately one part in 50,000. 

The standard uncertainty in the best estimate of the output part, because of an uncertainty 

in the rotation angle, is shown as the map in Figure 3.3 (right). This uncertainty is a map, 

FIGURE 3.3 The convergence of the Monte Carlo to the freeform part height map 

(left). The uncertainty in the best estimate measurement, because of an uncertainty in 

the rotation angles (right). 



53 

the same size and data density as the measurand, and shows the spatial distribution of the 

uncertainty in the measurand because of uncertainty in the rotation angles.  

The amplitude parametric representation of the possible measurement outcomes in 

the array, was expressed as the probability distribution in Figure 3.4. 

The uncertainty map shown in Figure 3.3 (right), was obtained from an uncertainty 

in the rotation angles, only. The next section estimates uncertainty contributions from of a 

moving axis of rotation.  

3.2 Uncertainty from a Moving Axis of Rotation 

 In separating the RV component of the part, multiple measurements of the part were 

made after the part was rotated about an optical axis. Ideally, this rotation axis should be 

constrained against translations in the plane perpendicular to the axis of rotation. However, 

if the rotation axis of the part is not aligned to that of the rotary stage, the rotations of the 

part might not be about a fixed point. This section estimates uncertainty contributions 

which arise because of this moving axis of rotation.  

FIGURE 3.4 Amplitude parametric representation of the 1,000 trials in the Monte 

Carlo, reported as: rms = 5.7001 ± 0.00003 mm. 
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The freeform part rotations shown in Figure 2.3 were simulated about a common 

axis of rotation. An example showing freeform part rotations about a moving axis is shown 

in Figure 3.5. Here, the moving axis can be observed, between rotations, by the inconsistent 

spacing between the freeform part and the surrounding box of each graph.  

To estimate uncertainty contributions from a moving axis of rotation, this moving 

axis was used as an input parameter to the Monte Carlo simulation. In these simulations, it 

was assumed that the part translated in the plane perpendicular to the axis of rotation. 

Uncertainty contributions that might arise because of tip/tilt about the optical axis were not 

considered. 

FIGURE 3.5 Depictions showing rotations of the part about a moving axis of 

rotation. 
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Between rotations, the rotation axis translated freely and randomly within a square 

region with a 300-µm length (3-pixel square). Figure 3.6 depicts the freeform part and the 

allowed translations. The dashed lines on the periphery show the upper and lower limits of 

the allowed part translation, while the dashed lines in the center show the bounds of the 

allowed optical axis translation. As a reminder, the freeform part was simulated on a matrix 

grid with a 1001-pixel aperture diameter.  

With the rotation axis as the input parameter, a Monte Carlo simulation like the 

flowchart described in Figure 3.2 was used to estimate the uncertainty contributions from 

the moving rotation axis. In one forward loop, each rotation of the part had a rotation axis 

whose position was random within the 300-µm square center. This resulted in one possible 

output of the part (Output PRV + Output PRI). Then, after many Monte Carlo iterations, the 

Monte Carlo converged to the height map shown in Figure 3.7 (left). Since the best estimate 

Freeform 

part 

Limits of the 

moving axis of 

rotation 

100.1 mm 

300 µm 

Not drawn to scale 

FIGURE 3.6 Depiction of the freeform part allowed to translate randomly within a 

300 µm square region (3-pixel square). 
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part measurement shown in Figure 2.17, reported an rms of 5.7003 mm, Figure 3.7 (left) 

shows the Monte Carlo converged to approximately one part in 50,000. The standard 

uncertainty in the estimate of the output part, because of an uncertainty in the rotation axis, 

is shown in Figure 3.7 (right). This shows the uncertainty in the estimate of the measurand 

because of an uncertainty in the location of the rotation axis. 

In solving for the RI component of the freeform part, one or more translations of 

the part are required. These translation distances are possible sources of uncertainty; 

therefore, the next section uses Monte Carlo analyses to estimate uncertainty contributions 

from translation distances. 

3.3 Uncertainty from the Translation Distance 

 In Chapter 2.2, simulated measurements of the part were made, before and after it 

was laterally shifted by a known translation distance, Δ, with respect to the machine. A 

translation distance of 2 mm was used in the simulations. To estimate its uncertainty 

contributions, the translation distance was used as the input parameter to the Monte Carlo, 

and a uniform distribution was used around the nominal value. This uniform distribution 

is depicted in Figure 3.8 with upper and lower limits of ± 200 µm (± 2 pixels).  

FIGURE 3.7 The convergence of the Monte Carlo to the estimated measurement of 

the freeform part, because of an uncertainty in the axis of rotation (left). The 

uncertainty in the best estimate measurement, because of an uncertainty in the axis of 

rotation (right). 
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Instead of using an exact translation distance of 2 mm, the translation distance 

randomly fell anywhere within the uniform distribution. From a random translation 

distance, the Monte Carlo generated a possible output of the freeform surface (Output PRV 

+ Output PRI). This was then repeated 1000 times to yield 1000 possible outputs. From 

these outputs, the Monte Carlo converged to the output part shown in Figure 3.9 (left). The 

rms of this graph shows the Monte Carlo converged to 2 parts in 50,000. Also from the 

1000 possible outputs, the standard uncertainty in the best estimate output part is shown as 

the map in Figure 3.9 (right). 

 

 

 

FIGURE 3.9 The convergence of the Monte Carlo to the estimated measurement of 

the freeform part, because of an uncertainty in the translation distance (left). The 

uncertainty in the best estimate measurement, because of an uncertainty in the 

translation distance (right). 

Input parameter 

(mm) 

2.0 2.2 1.8 

Translation distance 

FIGURE 3.8 Uniform distribution around the translation distance. 
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3.4 Uncertainty from Electronic Noise and Vibrations 

 The next uncertainty contributor to be assessed was electronic noise and vibrations 

which are likely to be present in CMMs and other measuring machines. Before noise was 

added to the Monte Carlo simulation, the intrinsic noise present within the Monte Carlo 

software was investigated. This was done by running the Monte Carlo simulation 100 

times, with all input parameters fixed at nominal values (no added uncertainties). These 

100 trials generated 100 possible outputs of the freeform surface (Output PRV + Output 

PRI), and the standard uncertainty of these outputs was used to quantify the intrinsic noise 

as shown in Figure 3.10 (right).  

FIGURE 3.10 Monte Carlo convergence from 100 trials with nominal input 

parameters (left). Intrinsic noise present in the Monte Carlo software, obtained from 

the 100 trials (right). 
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This intrinsic noise stems from the precision of the computational software and 

serves as an indication of the threshold, above which the forthcoming simulated electronic 

noise should lie. The next step involved adding noise to the Monte Carlo. To simulate 

electronic noise and vibrations, ±15 nm uniformly distributed random noise was generated, 

and an example of this noise is shown in Figure 3.11.  

Random versions of this noise were then added to all simulated part measurements, 

input to the Monte Carlo. All the input parameters were at their nominal values, but every 

simulated part measurement had an added ±15 nm random noise. The Monte Carlo was 

run 100 times and from the outputs, converged as shown in Figure 3.12 (left). The 

FIGURE 3.11 A simulated electronic noise to be added to the Monte Carlo 

simulations. 

FIGURE 3.12 Monte Carlo convergence after the addition of 30 nm P-V random noise 

to the input parameters (left). The output noise because of the random 30-nm P-V input 

noise (right). 
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uncertainty from these outputs is shown in Figure 3.12 (right) and depicts the noise output 

of the Monte Carlo software because of the ±15 nm uniformly distributed noise.  

The bulk of the output noise shown in Figure 3.12, stems from the RI portion of the 

Monte Carlo / Shift-Rotation algorithm. To double-check, before arriving at the noise 

outputs above, the noise output from the RV portion was that shown in Figure 3.13. This 

further confirms the noise tolerance of the N-rotation technique and shows the sensitivity 

of the RI-shift technique to added noise.  

3.5 A Combined Standard Uncertainty 

 The standard uncertainty estimations can be summarized as shown in Figure 3.14. 

Figure 3.14 (left) shows the measurand, which is the best estimate freeform surface (Output 

PRV + Output PRI), while Figure 3.14 (right) shows the standard uncertainties obtained from 

the Monte Carlo simulations. 

FIGURE 3.13 Output noise from the RV portion of the Monte Carlo software. 
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The standard uncertainty, uRotAngle, represents the uncertainty after each nominal 

rotation angle randomly varied within upper and lower limits of ± 0.05°. The standard 

Standard Uncertainties Measurand 

FIGURE 3.14 The best estimate of the freeform surface (left) and its standard 

uncertainties (right). 

complete list of 
uncertainty 
sources 

• Depends on the 
instrument 
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uncertainty, uRotAxis, represents the uncertainty after the rotation axis of every simulated 

part (in the N-rotation technique) fell anywhere within a 300-µm square center. The 

standard uncertainty, uTransDist, represents the uncertainty after the nominal translation 

distance (in the RI-Shift technique) varied randomly within upper and lower limits of 200 

µm. The standard uncertainty, uAddedNoise, represents the Monte Carlo’s output response to 

random ±15 nm uniformly distributed noise. 

With the assumption that the above standard uncertainties were uncorrelated, a 

combined standard uncertainty, uC was obtained from their root sum of squares [97] as 

shown in Equation 3.3.  

 

This combined standard uncertainty is shown alongside the measurand in Figure 

3.15 reported with a 95th percentile coverage probability (k = 2). 

 

 

 

 
𝑢𝐶 = √(𝑢𝑅𝑜𝑡𝐴𝑛𝑔𝑙𝑒)2 + (𝑢𝑅𝑜𝑡𝐴𝑥𝑖𝑠)2 + (𝑢𝑇𝑟𝑎𝑛𝑠𝐷𝑖𝑠𝑡)2 + (𝑢𝐴𝑑𝑑𝑒𝑑𝑁𝑜𝑖𝑠𝑒)2 

(3.3) 

FIGURE 3.15 The best estimate of the freeform surface (left) and its combined 

standard uncertainty (right). 
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3.6 Summary 

Monte Carlo simulations were used to evaluate task-specific uncertainties from 

sources associated with applying the Shift-Rotation technique to measurements of freeform 

surfaces. The best estimate of the freeform surface was used as the measurand while the 

inputs to the Monte Carlo were these potential sources of uncertainty: the rotation angles, 

a moving axis of rotation, the translation distance, and electronic noise and vibration. From 

the Shift-Rotation model described in Chapter 2, the Monte Carlo generated many possible 

outcomes which could arise from variations of the input parameters. For each input 

parameter, a standard uncertainty map was obtained from the many possible outcomes; 

these standard uncertainties were expressed as maps that showed the spatial distribution of 

the uncertainty within the aperture. 

The standard uncertainty in the rotation angle represented the uncertainty after each 

nominal rotation angle randomly varied within upper and lower limits of ± 0.05°. The 

standard uncertainty in the rotation axis represented the uncertainty after the rotation axis 

of every simulated surface (in the N-rotation technique) translated freely within a 300-µm 

square center. The standard uncertainty in the translation distance represented the 

uncertainty after the nominal translation distance (in the RI-Shift technique) varied 

randomly within upper and lower limits of 200 µm. The standard uncertainty in the 

electronic noise represented the Monte Carlo’s output response to random ±15 nm 

uniformly distributed noise. With the assumption that these standard uncertainties were 

uncorrelated, a combined standard uncertainty was obtained from their root sum of squares 

and reported (with a 95th percentile coverage probability) alongside the measurand. 

 

complete list of 
uncertainty 
sources 

• Depends on the 
instrument 



 

CHAPTER 4: ERROR SEPARATION OF MID-SPATIAL FREQUENCIES  

 The Shift-Rotation error separation technique is a form metrology; it is suited to 

separating low-spatial frequency surface components. Besides form, optical surfaces also 

comprise roughness and mid-spatial frequency components. This chapter investigates how 

the Shift-Rotation technique separates some mid-spatial frequencies that could be left 

behind by some sub-aperture fabrication processes.  

In the frequency domain, one tool that shows the power of the spatial frequency 

components present on a surface, against the spectrum of spatial frequencies, is the power 

spectral density function (PSD) [98]. An example of a PSD graph is shown in Figure 4.1 

[98]. The demarcations between these three frequency groups are user-defined spatial 

frequency cutoffs: a transition between form and mid-spatial frequencies, and another 

between mid-spatial frequencies (MSF) and roughness [99].

FIGURE 4.1 Separation of a profile into frequency bands. 
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In Chapter 2, the Shift-Rotation calibration technique was used to separate the surface 

components present in the simulated freeform surface shown in Figure 4.2.  

This surface was simulated without MSF or roughness components, therefore, the 

Shift-Rotation separated components comprised of form, only. To show the spatial 

frequencies present on this surface, a horizontal profile was extracted (shown in dashed 

lines in Figure 4.2). This profile was transformed into the Fourier domain and its PSD was 

plotted in Figure 4.3. 

 The graph shows no discernable mid-spatial frequencies or roughness components. 

To test the Shift-Rotation’s error separation of mid-spatial frequency errors, the freeform 

surface was simulated to contain different mid-spatial frequency errors. 

FIGURE 4.2 The freeform surface simulated with low-spatial frequency surface 

components.  

FIGURE 4.3 The PSD of a profile from the simulated freeform surface. 
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Since Shift-Rotation decomposes surfaces into rotationally varying (RV) and 

rotationally invariant (RI) components, the technique can thoroughly separate only mid-

spatial frequency errors that can be classified as either purely rotationally varying or 

invariant. After the error separation, MSF components that are not classified as RV or RI, 

show up as residuals. The simulations in this chapter use very large amplitude MSF to 

highlight the consequences. The choice of MSF amplitudes and spatial frequencies were 

chosen to represent the effect, not the likely amplitude in state of the art freeforms. The 

simulations also use low values of N (number of rotational positions) during the error 

separations, meaning that there are many kN terms. The residual errors here will decrease 

as the number of rotational positions increase.  

4.1 Error Separation of Sinusoidal Mid-Spatial Frequency Errors 

Unidirectional scanning sub-aperture fabrication processes can leave behind 

sinusoidal or raster MSF errors [100, 101]. Shift-rotation error separations of these errors 

were simulated by generating the sinusoidal-distributed MSF error shown in Figure 4.4 

(left). This contains 10 cycles across its aperture and was added to the simulated freeform 

surface in 4.4 (right).  

  

FIGURE 4.4 A simulated sinusoidal mid-spatial frequency error (left). The 

simulated freeform surface without mid-spatial frequency errors (right). 
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The freeform surface with the sinusoidal MSF error is shown in Figure 4.5. These 

mid-spatial frequency errors can be noticed in the frequency domain, after calculating the 

PSD of a central horizontal profile extracted from Figure 4.5. This PSD graph is shown in 

Figure 4.6. 

The mid-spatial frequency peak observed around a spatial frequency of 0.1 

cycles/mm, arises from the sinusoidal MSF error. Using the Shift-Rotation technique, the 

simulated freeform surface in Figure 4.5 was decomposed into four surface components: 

output PRV, output MRV, output PRI, and output MRI. For consistency, the error separation 

configuration (four part-rotations in the N-Rotation technique, and a 2-mm translation 

FIGURE 4.5 The freeform surface with a sinusoidal mid-spatial frequency error. 

FIGURE 4.6 The power spectral density of the central horizontal profile, extracted 

from the simulated freeform surface with sinusoidal mid-spatial frequency errors. 
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distance in the Shift technique) applied in this chapter, was the same as that applied in the 

description of Shift-Rotation in Chapter 2. These separated components are shown in 

Figure 4.7. Output PRV contains the rotationally varying components of the freeform 

surface, as well as the rotationally varying components of the sinusoidal MSF errors. 

Output MRV contains the rotationally varying components of the machine error 

contributions. Since the sinusoidal MSF errors were added to the freeform surface, these 

did not show up in the Output MRV map. As expected, the Output PRI is a combination of 
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the rotationally invariant components of the freeform surface, and the rotationally invariant 

components of the sinusoidal MSF errors. At this point in the error separation process, the 

sinusoidal MSF errors have been decomposed into an RV component (convolved with the 

Separated components 
Freeform surface with sinusoidal 

MSF errors 

FIGURE 4.7 The simulated freeform surface with sinusoidal mid-spatial frequency 

errors (left). The Shift-Rotation separation of the freeform into four components (right). 
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RV component of the freeform surface), and an RI component (convolved with the RI 

component of the freeform surface). The residual MSF components, which are neither 

purely RV nor RI, are convolved with the RI component of the machine errors, as shown 

in the fourth separated component in Figure 4.7. If sinusoidal or raster MSF errors are 

present on a freeform surface, Shift-rotation error separations of the measurement data 

would report the residual MSF errors convolved with the machine’s RI errors. Additional 

information would be required to extract these residual MSF errors.  

These residual MSF errors can be seen after the Shift-Rotation is applied to the 

sinusoidal MSF errors, only. Figure 4.8 shows this MSF error separation into its 

rotationally varying and rotationally invariant components. The MSF error components, 

which are not fully described as RV or RI, are shown as the residuals. The MSF error’s RV 

component in Figure 4.8, was convolved with the RV component of the freeform surface 

in Figure 4.7. The MSF error’s RI component in Figure 4.8, was convolved with the RI 

component of the freeform surface in Figure 4.7, while the MSF residuals in Figure 4.8, 

were convolved with the RI machine errors in Figure 4.7. 
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Separated components Sinusoidal MSF errors 

FIGURE 4.8 Sinusoidal mid-spatial frequency error (left). The Shift-Rotation 

separation of the mid-spatial frequency error, into rotationally varying, rotationally 

invariant, and residual components (right). 
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4.2 Error Separation of On-Axis Circular Mid-Spatial Frequency Errors 

 Besides raster mid-spatial frequency errors, another form of MSF error that can be 

added to a surface by fabrication and finishing processes, are spiral or other rotationally 

invariant MSF errors left behind by rotational sub-aperture tool paths [102]. These errors 

were simulated by generating on-axis circular MSF errors with single and multiple 

frequencies. Off-axis versions of these errors were also generated and error-separated. 

Shift-rotation error separations of rotationally invariant MSF errors were simulated 

by generating the on-axis circular MSF error shown in Figure 4.9 (left). This was added to 

the simulated freeform surface in Figure 4.9 (right) and the resulting surface is shown in 

Figure 4.10. 

FIGURE 4.9 A simulated rotationally invariant mid-spatial frequency error (left). 

The simulated freeform surface without mid-spatial frequency errors (right). 

FIGURE 4.10 The simulated freeform with on-axis circular mid-spatial frequency 

errors. 
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These mid-spatial frequency errors can be noticed in the frequency domain, after 

calculating the PSD of a central horizontal profile extracted from the surface in Figure 4.10. 

This PSD graph is shown in Figure 4.11. 

The mid-spatial frequency peak observed around a spatial frequency of 0.16 

cycles/mm, arises from the added MSF error. Using the Shift-Rotation technique, the 

freeform surface in Figure 4.10 was decomposed into four surface components: output PRV, 

output MRV, output PRI, and output MRI. Since the on-axis circular MSF errors consist 

solely of rotationally invariant terms, it is expected that these will show up convolved with 

the rotationally invariant components of the freeform surface. The Shift-Rotation error 

separations of the freeform surface with circular MSF errors are shown in Figure 4.12.   

The separated RV components of the freeform surface and machine, do not reveal 

the presence of the circular mid-spatial frequency errors. Since the added circular mid-

spatial frequency errors were on-axis and primarily comprised of RI components, the bulk 

of these added MSF errors are noticed in the separated RI components of the part. Some 

MSF residuals, however, can be noticed as convolved with the separated RI components 

of the machine.  

FIGURE 4.11 The power spectral density of the central horizontal profile extracted 

from the freeform surface with on-axis circular mid-spatial frequency errors. 
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At this point in the error separation process, the circular MSF errors have been 

decomposed into an RI component (convolved with the separated RI component of the 

Separated components 
Freeform surface with on-axis circular 

MSF errors 

FIGURE 4.12 The simulated freeform surface with on-axis circular mid-spatial 

frequencies (left). The Shift-Rotation separation of the freeform into four components 

(right). 
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part), and some residuals (convolved with the RI component of the machine). If these types 

of circular MSF errors are present on a freeform surface, after error separations of the 

measurement data, the bulk of the circular MSF errors would correctly be separated as 

convolved with the rotationally invariant components of the part. However, the residual 

MSF errors would be indistinguishable from the machine’s RI errors. The amplitudes of 

these residuals can be observed after a Shift-Rotation error separation of the circular MSF 

errors, only. 

Figure 4.13 shows the error separation of the on-axis circular MSF errors, into 

rotationally varying and rotationally invariant components. The MSF error components, 

which are not fully described as rotationally varying or invariant, are shown as the 

residuals. The circular MSF error contained no rotationally varying components, hence, no 

rotationally varying MSF error was convolved with the RV component of the part. The 

circular MSF error’s RI component in Figure 4.13 was convolved with the RI component 

of the part. If the circular MSF errors were purely RI without interpolation inaccuracies, 

the entirety of these errors would be separated as RI components. As seen in Figure 4.13, 
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some residuals MSF errors are present. These circular MSF residuals were convolved with 

the RI machine errors.  

Separated components On-axis circular MSF errors 

FIGURE 4.13 Simulated on-axis circular mid-spatial frequency errors (left). The 

Shift-Rotation separation of the circular mid-spatial frequency errors into rotationally 

varying, rotationally invariant, and residual components (right). 
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On-axis circular MSF errors comprised of multiple random frequencies and 

amplitudes were also error separated. The results are in Appendix C. Though multiple 

random frequencies and amplitudes were present in the MSF errors, since these errors 

remained on-axis and rotationally invariant, the Shift-rotation correctly convolved them 

with the rotationally invariant component of the freeform surface. The next section 

investigates the error separation of off-axis circular MSF errors. 

4.3 Error Separation of Off-Axis Circular Mid-Spatial Frequency Errors 

 The finishing or fabrication processes that leave spiral mid-spatial frequency errors 

behind, could leave off-axis errors that are not solely rotationally invariant, but contain 

rotationally varying terms. This section investigates the error separation of off-axis circular 

MSF errors using the simulated errors in Figure 4.14 (left). These off-axis circular MSF 

errors comprised multiple frequencies and amplitudes, and were added to the simulated 

freeform surface in Figure 4.14 (right). 

 The surface that resulted from adding the off-axis MSF error to the 

simulated freeform surface is shown in Figure 4.15. Using the Shift-Rotation technique, 

this freeform surface was decomposed into four surface components: output PRV, output 

FIGURE 4.14 A simulated off-axis circular mid-spatial frequency error with multiple 

frequencies and amplitudes (left). The simulated freeform surface without mid-spatial 

frequency errors (right). 
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MRV, output PRI, and output MRI. Since the off-axis MSF errors contain both RV and RI 

terms, it is expected that these will be convolved with the RV and RI separated components 

of the freeform surface, respectively. The Shift-Rotation error separations of the freeform 

surface with off-axis MSF errors are shown in Figure 4.16. 

 

 

 

 

FIGURE 4.15 The simulated freeform surface with off-axis circular mid-spatial 

frequency errors. 
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Separated components 
Freeform surface with off-axis 

circular MSF errors 

FIGURE 4.16 The freeform surface with off-axis circular mid-spatial frequencies 

(left). Shift-Rotation error separation of the freeform into four components (right). 
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Since the off-axis MSF errors contain both RV and RI components, these separated 

convolved with the RV and RI components of the freeform part, respectively. MSF error 

components that were neither RV nor RI, were residual errors and convolved with the RI 

machine errors. If similar off-axis circular MSF errors are present on a freeform surface, 

after error separations of the measurement data, these residual MSF errors would be 

separated as residuals indistinguishable from the machine’s RI errors. The amplitudes of 

these residuals, as well as the RV and RI components of the off-axis MSF errors can be 

observed after a Shift-Rotation error separation of the MSF errors, only, as shown in Figure 

4.17. 
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Separated components Off-axis circular MSF errors 

FIGURE 4.17 Off-axis circular mid-spatial frequency errors (left). Shift-Rotation 

separation of the mid-spatial frequency errors, into rotationally varying, rotationally 

invariant, and residual components (right). 



82 

4.4 Error Separation of Crosshatch Mid-Spatial Frequency Errors 

 Another pattern of mid-spatial frequency errors that can be left behind on a surface 

by some finishing processes, is a crosshatch pattern [103, 104]. Blanchard grinding is a 

process that could leave behind such patterns is [105], and Figure 4.18 [106] shows an 

example of a Blanchard ground part.  

These crosshatch MSF errors comprise both RV and RI components and were Shift-

rotation separated using the simulation in Figure 4.19 (left). These MSF errors were added 

to the simulated freeform surface in Figure 4.19 (right), and the resulting surface is shown 

in Figure 4.20. 

FIGURE 4.19 A simulated crosshatch mid-spatial frequency error (left). The simulated 

freeform surface without mid-spatial frequency errors (right). 

FIGURE 4.18 A Blanchard ground part showing a crosshatch pattern. 
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Using the Shift-Rotation technique, this freeform surface was decomposed into four 

surface components: output PRV, output MRV, output PRI, and output MRI. Since the 

crosshatch MSF errors comprise both RV and RI terms, these are expected to be separated, 

convolved with the RV and RI components of the freeform part, respectively. The Shift-

Rotation error separations of the freeform surface with MSF errors are shown in Figure 

4.21. The error separations show that the RV components of the MSF errors were 

convolved with the RV components of the freeform surface, the RI components of the MSF 

errors were convolved with the RI components of the freeform surface, and the MSF 

residuals ended up convolved with the RI components of the machine errors. These 

components present in the crosshatch MSF errors are observed after a Shift-Rotation 

separation of only the crosshatch errors, and shown in Figure 4.22.  

 

 

 

 

FIGURE 4.20 The simulated freeform surface with crosshatch mid-spatial frequency 

error. 
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Separated components 
Freeform surface with crosshatch 

MSF errors 

FIGURE 4.21 The simulated freeform surface with crosshatch mid-spatial 

frequencies (left). The Shift-Rotation error separation of the freeform into four 

components (right). 
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Separated components Crosshatch MSF errors 

FIGURE 4.22 Crosshatch mid-spatial frequency errors (left). Shift-Rotation 

separation of the mid-spatial frequency errors, into rotationally varying, rotationally 

invariant, and residual components (right). 
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4.5 Summary 

 The Shift-Rotation technique is a form metrology suited to separating low-spatial 

frequency surface components, but this chapter used simulations to explore its error 

separation of some mid-spatial frequency (MSF) patterns that could be left behind by 

finishing processes. The MSF patterns in this chapter were chosen to represent the effect, 

not the likely amplitude in state of the art freeform surfaces.  

The Shift-Rotation process separated the MSF errors into rotationally varying 

(RV), rotationally invariant (RI) components, and residuals. The amplitudes of these 

residuals can be decreased by increasing the number of rotational positions. These residuals 

were convolved with the RI components of the machine errors and further information 

would be required to deconvolve the errors. 



 

CHAPTER 5: FREEFORM SURFACE MEASUREMENTS 

So far, the demonstrations of the Shift-Rotation error separation technique have 

been carried with simulations. The measurement steps and procedures explained in Chapter 

2, and the flowchart in Appendix A, were applied to experimental freeform surface 

measurements. The Shift-Rotation error separation was demonstrated by measuring a 

freeform surface on two touch-probe machines: a Zeiss F-25 CMM and a Mahr LD 260 

surface profiler. From these measurement results, rotationally varying and invariant 

freeform surface components (and machine error contributions) were separated, to obtain 

best-estimate freeform measurements without machine error contributions. These best-

estimates from the tactile machines were compared to optical measurements of the same 

freeform surface. 

Since the error separation technique required predefined rotations and translation(s) 

of the test part, the measurement stage on which the part was measured had rotation and 

translation capabilities. In Chapter 3.2, Monte Carlo simulations were used to estimate 

uncertainty contributions from a moving axis of rotation. Ideally, these predefined rotations 

of the part should be about a fixed axis of rotation. This rotation axis should be constrained 

against translations in the plane perpendicular to the axis of rotation. One step towards 

achieving this goal involved positioning the freeform part on a linear-rotary stage, such 

that the optical axis of the part remained aligned to the rotation axis of the rotary stage. 
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Since the linear stage was to be used in the alignment process, a two-axis stage was 

appropriate. This x-y stage was mounted on the rotary stage (not the rotary stage on the x-

y stage) because this configuration allowed for translations of the optical axis of the part, 

relative to that of the rotary stage. If the x-y stage was underneath the rotary stage, linear 

translations would move the rotation axes of the rotary stage and the part concurrently, and 

that would not improve the alignment of the rotary axes. 

5.1 The Freeform Surface to be Measured 

 The freeform surface that was measured in this project was fabricated on a BK7 

optical flat, on a magnetorheological finishing (MRF) machine [107]. It was housed in a 

polycarbonate mount with four silicon carbide balls and a reference mark that transfer 

coordinates from MRF to metrology. The freeform part had an outer diameter of 40-mm 

and a clear aperture of about 35-mm and is shown in Figure 5.1. 

This freeform surface was measured on a Zeiss F-25 CMM and a Mahr LD 260 

surface profiler and the task-specific measurement uncertainties were minimized by 

applying the Shift-Rotation error separation technique. In addition to these measurements, 

the freeform surface was also measured on two optical measuring machines and 

FIGURE 5.1 The freeform surface to be measured. 
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comparisons were made between the measurement results. The next section introduces the 

measuring machines used. 

5.1.1 Four Different Machines to Measure the Freeform Surface 

 The freeform surface shown in Figure 5.1 was measured on the following four 

measuring machines: a Zeiss F-25 micro-CMM, a Mahr MarSurf LD 260 surface profiler, 

a Zygo Verifire Fizeau interferometer, and a Zygo NexView Scanning White Light 

interferometer. The F-25 CMM is a touch-probe based machine (also with optical 

capabilities) with a 100-mm x 100 mm x 100 mm measuring volume. The touch-probe 

CMM has a maximum permissible error, MPE: (0.25 + L/666) µm (L = measuring length 

in mm) [108]. The MarSurf LD 260 surface profiler is also a touch-probe based machine; 

it has a measuring length up to 260 mm, a vertical resolution of 0.8 nm and form deviations 

of less than 100 nm [109]. The Shift-Rotation error separation was applied to the 

measurement results from these tactile machines, but the interferometric measurement 

results were not error separated. These measuring machines are shown in Figure 5.2.  
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5.2 Measurement of the Freeform Surface on the Zygo Fizeau Interferometer 

 The freeform surface was fabricated with slopes slow enough to be measurable on 

the Fizeau interferometer using a transmission flat. The Fizeau measurement of the 

freeform surface was of the entire 40-mm diameter and included an annulus around the 

clear aperture. This measurement result was cropped down to the 35-mm clear aperture 

and fit to twelve Zernike terms. Figure 5.3 shows the surface generated from these twelve 

Zernike terms while Table 5.1 shows the Zernike coefficients. 

(c) 

(d) 

(b) 
(a) 

FIGURE 5.2 Four machines to measure the freeform surface. (a) Zeiss F-25 micro 

Coordinate Measuring Machine (b) Mahr MarSurf LD 260 surface profiler (c) Zygo 

Verifire Fizeau Interferometer (d) Zygo NexView Scanning White Light 

Interferometer. 
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Zernike coefficients (nm) 
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(2, 0) 
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(2, 2) 
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(3, 1) 
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(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

Fizeau -22 -129 -2390 -125 -2392 109 -151 15 67 -27 -54 6 

 

 

 The Zeiss F-25 CMM was the next measuring machine used to measure the 

freeform surface. The Shift-Rotation error separation was applied to these measurement 

results and the next section describes the measurement strategy used, measurement results 

and error separations. 

5.3 Measurements of the Freeform Surface on the Zeiss F-25 CMM 

A Cartesian measurement model was used to measure the freeform on the Zeiss F-

25 CMM. Thirty-seven parallel profiles were scanned across the freeform surface; Figure 

5.4 depicts this measurement strategy. Beginning with the first vertical profile on the left-

hand side, a 12.17-mm-long profile was scanned. After translating the part 1 mm to the 

left, a second profile, 16.97-mm-long was measured. Successive profiles were also 

measured with 1-mm-long separations in-between until thirty-seven profiles were 

TABLE 5.1 Zernike coefficients from the Fizeau measurement of the freeform 

surface. 

 

TABLE 5.2 Zernike coefficients from the Fizeau measurement of the freeform 

surface. 

 

TABLE 5.3 Zernike coefficients from the Fizeau measurement of the freeform 

surface. 

 

TABLE 5.4 Zernike coefficients from the Fizeau measurement of the freeform 

surface. 

FIGURE 5.3 A Fizeau measurement of the freeform surface. 
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measured across the surface of the 40-mm diameter part. The longest profile was the 19th 

profile, and was 38 mm-long while the shortest profiles were the 1st and 37th with lengths 

of 12.17 mm. Each of the scanned profiles had data densities with point coordinates every 

1 µm. 

Between the first and thirty-seventh profile measurements, stage drifts and tilt 

changes could occur. To correct for the possible changes in tilt and piston, additional 

profiles were measured. These were five parallel tie-profiles measured perpendicular to the 

thirty-seven profiles. The third of the five tie-profiles was 38-mm-long and ran across the 

middle of the part. The second and fourth tie-profiles were 36 mm-long and were measured 

6 mm above and below the middle tie-profile, respectively. The first and fifth tie-profiles 

were 33 mm-long and were measured 9.5 mm above and below the middle tie-profile, 

Profile probe trace 

Tie profile probe trace to correct for tilt/piston 

Outer 

diameter of 

the freeform 

part 

37 vertical profiles, with 

1 mm spacing in-between  

Cartesian measurement strategy 

FIGURE 5.4 Cartesian measurement strategy employed on the Zeiss F-25 CMM. 
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respectively. From the expected intersection points between the five tie-profiles and the 

thirty-seven profiles, the tilt and piston of each of the thirty-seven profiles were corrected. 

 Since the Shift-Rotation error separation technique requires multiple measurements 

of the freeform surface at predefined angular orientations and translations of the part, the 

above measurement strategy was repeated during the measurements at every orientation of 

the part. Figure 5.5 shows the first set of profiles scanned across the freeform surface, with 

the part in an initial orientation. These are pre-processed profiles and the figure includes 

the five tie-profiles that will be used to correct the tilts and piston of the thirty-seven 

profiles. 

  Since the Shift-Rotation technique is a form metrology, the roughness of the 

profiles was removed by applying a low-pass Gaussian filter, in the spatial domain, to all 

the profiles. Equation 5.1 shows the weighting function of this filter, where 𝛼 =

√ln 2 𝜋⁄ = 0.4697, x is the position from the origin of the weighting function and a long-

wavelength roughness cutoff, λc, of 0.8 mm was used [99]. 

FIGURE 5.5 Profiles scanned across the freeform surface, measured on the F-25 CMM 

with the part in an initial position/orientation. 
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 𝑆(𝑥) =
1

𝛼𝜆𝑐
𝑒𝑥𝑝 [−𝜋(

𝑥

𝛼𝜆𝑐
)2]   (5.1) 

 The next data processing was a crop-down to the clear aperture. The profiles 

scanned on the freeform surface spanned a 38-mm diameter; these were cropped down to 

the 35-mm clear aperture. Next, the tilts and pistons of the thirty-seven profiles were 

corrected by using the x-y intersection points between the tie-profiles and the thirty-seven 

profiles. The tilt- and piston-corrections entailed making the thirty-seven profiles pass 

through the tie-profiles with minimum z-axis residuals at the x-y intersections. This was 

done by matching the slopes and pistons of the thirty-seven profiles, to those of the tie-

profiles, at the respective intersection points. The low-pass filtered, cropped, and slope-

corrected profiles from the first set of F-25 CMM measurements is shown in Figure 5.6. 

  

FIGURE 5.6 Low-pass filtered, cropped, and slope-corrected profiles from the first set 

of F-25 CMM measurements. 
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 Next, twelve Zernike terms were fit to the surface data in Figure 5.6. The Zernike 

coefficients from this fit are listed in Table 5.2, while the surface generated from these 

coefficients is shown in Figure 5.7. 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

F-25 

(part at 

0°) 

-45 146 -2272 23 2173 -165 -5 39 66 34 238 153 

 

5.3.1 Error Separations of the Rotationally Varying Components  

 The surface in Figure 5.7 represents the first measurement of the freeform surface 

on the Zeiss F-25 CMM. To solve for the rotationally varying (RV) components of the 

freeform, additional measurements of the part at predefined angular orientations were 

made. The number of angular orientations of the part was chosen to be five because there 

was a priori knowledge of the angular orders expected to be of significant amplitude on the 

freeform. Zernike terms with angular orders of 2θ were expected to dominate the freeform, 

hence, a minimum of three measurements of the part at equally-separated angular 

orientations would adequately solve for the RV components of the part. 

TABLE 5.5 Zernike coefficients of the Zernike fit to the corrected profiles (F-25 

freeform measurement of the part in the initial position/orientation). 

 

FIGURE 5.5 F-25 CMM freeform measurement of the part in the initial 

position.TABLE 5.6 Zernike coefficients of the Zernike fit to the 

corrected profiles (F-25 freeform measurement of the part in the initial 

position/orientation). 

 

TABLE 5.7 Zernike coefficients of the Zernike fit to the corrected profiles (F-25 

freeform measurement of the part in the initial position/orientation). 

 

FIGURE 5.6 F-25 CMM freeform measurement of the part in the initial 

position.TABLE 5.8 Zernike coefficients of the Zernike fit to the 

corrected profiles (F-25 freeform measurement of the part in the initial 

position/orientation). 

FIGURE 5.7 F-25 CMM freeform measurement of the part in the initial position. 
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 The Cartesian measurement model described in Chapter 5.3 was used to measure 

the freeform surface at each angular orientation. These measured profiles were also low-

pass Gaussian filtered, clear-aperture cropped, slope-corrected and fit to twelve Zernike 

terms. The five surfaces generated from the F-25 measurements of the freeform, at the five 

angular orientations of the part separated by 72°, are shown in Figure 5.8, while their 

corresponding Zernike coefficients are shown in Table 5.3. 

 

  

 

 

 

FIGURE 5.8 F-25 CMM freeform measurements of the part at five angular orientations. 
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The freeform part was measured at multiple angular orientations to enable 

separation of the RV component of the part by using the N-Rotation technique described 

in Chapter 2.1. Equations 2.1 – 2.7 expressed the error separations in Chapter 2; these 

equations were repeated in this Chapter to express the error separation of the F-25 

measurement results. An F-25 measurement of the freeform surface was expressed as 

shown in Equation 5.2, where PRV represents the rotationally varying component of the 

freeform surface, PRI represents the rotationally invariant component of the freeform, MRV 

represents the rotationally varying component of the machine error contributions, and MRI 

represents the rotationally invariant component of the machine error contributions. 

 𝐹25𝑚𝑒𝑎𝑠 = 𝑃𝑅𝑉 +  𝑃𝑅𝐼 + 𝑀𝑅𝑉 + 𝑀𝑅𝐼 (5.2) 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 
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Z 
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(3, 3) 
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(4, -4) 
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(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

F-25 

(part at 

0°) 

-45 146 -2272 23 2173 -165 -5 39 66 34 238 153 

F-25 

(part at 

72°) 

-8 -1522 1643 2166 658 71 -223 98 33 -64 -143 -43 

F-25 

(part at 

144°) 

32 2152 -522 1284 -1799 110 332 -156 -108 -21 128 35 

F-25 

(part at 

216°) 

-10 -2164 -802 -1386 -1730 -241 27 134 155 8 11 39 

F-25 

(part at 

288°) 

-53 1260 1876 -2148 709 125 -106 -81 -136 -35 -123 -99 

TABLE 5.9 Zernike coefficients from the F-25 freeform surface measurements of the 

part in five angular orientations. 

 

FIGURE 5.7 An average of the F-25 measurements of the freeform surface at the five 

angular orientations.TABLE 5.10 Zernike coefficients from the F-25 

freeform surface measurements of the part in five angular orientations. 

 

TABLE 5.11 Zernike coefficients from the F-25 freeform surface measurements of the 

part in five angular orientations. 

 

FIGURE 5.8 An average of the F-25 measurements of the freeform surface at the five 

angular orientations.TABLE 5.12 Zernike coefficients from the F-25 

freeform surface measurements of the part in five angular orientations. 
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The average of the five maps in Figure 5.8 cancelled out the RV component of the 

part; this average was denoted by MeanP(rot), is expressed in Equation 5.3 and shown Figure 

5.9. 

 𝑀𝑒𝑎𝑛𝑃(𝑟𝑜𝑡) = 𝑃𝑅𝐼 +  𝑀𝑅𝑉 + 𝑀𝑅𝐼 (5.3) 

 

The RV component of the part, dropped out by the averaging process, was obtained 

by subtracting the map in Figure 5.9 from that in Figure 5.7; and the resulting map is shown 

in Figure 5.10.  

FIGURE 5.9 An average of the F-25 measurements of the freeform surface at the five 

angular orientations. 

FIGURE 5.10 The separated rotationally varying component of the freeform surface. 
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The height map in Figure 5.10 represents the first of the four desired separated 

components of the F-25 freeform surface measurement. The next surface component to be 

extracted is the RV component of the machine’s errors. Since the RV components of the 

test part have been extracted, any residual RV components must come from the machine 

error contributions. This RV machine error component was obtained by applying the N-

Rotation technique to the height map in Figure 5.9 (Alternatively, the RV component of 

the machine can be obtained by rotating the maps in Figure 5.8 to the same orientation, and 

averaging). The rotations of the height map are shown in Figure 5.11. 

The RV components of the machine errors rotate with each rotation in Figure 5.11. 

The average of these maps dropped out the RV machine error components and was 

expressed as Equation 5.4 and shown in Figure 5.12.  

 𝑀𝑒𝑎𝑛𝑀(𝑟𝑜𝑡) = 𝑀𝑅𝐼 + 𝑃𝑅𝐼 (5.4) 

 

FIGURE 5.11 N-Rotations to extract the machine’s rotationally varying error contributions. 
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The RV machine error component dropped out by the averaging process was 

obtained by subtracting Equation 5.4 from Equation 5.3; the resulting map is shown in 

Figure 5.13. 

 𝑀𝑅𝑉 = 𝑀𝑒𝑎𝑛𝑃(𝑟𝑜𝑡) − 𝑀𝑒𝑎𝑛𝑀(𝑟𝑜𝑡) (5.5) 

This height map in Figure 5.13 represents the second of the four desired separated 

components. So far, the RV components of the part and machine error contributions have 

been separated, and the height map in Figure 5.12 contains only RI components of the test 

part and the machine’s errors. These RI components were obtained from the ‘Shift’ portion 

of the Shift-Rotation technique. 

FIGURE 5.12 Average of the height maps that depict machine rotations. This average 

drops out the rotationally varying components of the machine errors. 

FIGURE 5.13 The separated rotationally varying component of the machine’s errors. 
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5.3.2 Error Separations of the Rotationally Invariant Components  

 The Shift-technique described in Chapter 2.2 was used to separate the RI 

components present in Figure 5.12. This error separation requires an additional 

measurement of the freeform surface, after a lateral translation with respect to an initial 

position. With respect to the initial position of the part, as shown in Figure 5.7, the part 

was translated 1-mm and measured on the F-25 CMM. The surfaces generated from 

Zernike fits to the profiles from both measurements are shown in Figure 5.14.  

If the measurement of the freeform in the initial position is expressed as shown in 

Equation 5.6, where the superscripts, ‘0’, indicate an initial position, then, the measurement 

after a lateral shift of the part can be expressed as shown in Equation 5.7. The superscripts, 

Δ, indicate the translated components. 

 𝐹25𝑚𝑒𝑎𝑠
0 = 𝑃0

𝑅𝑉 + 𝑃0
𝑅𝐼 +  𝑀0

𝑅𝑉
+ 𝑀0

𝑅𝐼 (5.6) 

 𝐹25𝑚𝑒𝑎𝑠
Δ =  𝑃Δ

𝑅𝑉 + 𝑃Δ
𝑅𝐼 +  𝑀0

𝑅𝑉 + 𝑀0
𝑅𝐼 (5.7) 

Equations 5.6 and 5.7 assume the machine errors remained constant between the 

initial- and translated-part measurements. Based on this assumption, and after removing 

the RV components, a difference between Equations 5.6 and 5.7 gave the slope of the 

FIGURE 5.14 Measurement of the freeform surface in an initial position (left). 

Measurement after the part was shifted upwards by 1 mm (right). 
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freeform surface evaluated at the separation and in the translation direction, as shown in 

Figure 5.15.  

The goal of the following steps was to obtain the RI component of the test part, 

from the slope height map in Figure 5.15. A profile, g, was extracted from the part center 

to the edge in the – Δ direction (indicated by the white vertical line in Figure 5.15). Each 

point in g was a height difference between two points (a distance 1-mm apart) in the desired 

radial profile, f. The relationship between profiles f and g was expressed as a system of 

linear equations: g = H*f, where g was an m x 1 column vector, f was an n x 1 column 

vector, and H was an m x n design matrix that was built based on the size of the freeform 

part and the translation distance [66].  

This design matrix H, and an alternative way around its singularity, were described 

using simulations in Chapters 2.2 and 2.2.1. The simulations showed the alternative 

approach (noise-modification of the singular matrix) yielded the same or more accurate 

solutions than the pseudo-inverse approach but the above experimental validations showed 

otherwise. The RI solutions obtained from the noise-modification of the singular matrix 

did not show RI details expected to be on the test surface. Therefore, the pseudo-inverse 

FIGURE 5.15 The slope of the freeform part evaluated after a 1-mm lateral translation. 
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approach was used to decompose the RI components from the experimental results. Further 

research is needed to determine more robust ways of noise-modifying the singular matrix. 

From the linear equation: g = H*f, the desired radial profile was solved using the 

pseudo-inverse of H and is shown in Figure 5.16. 

 The rotationally invariant component of the freeform surface was then generated 

from the radial profile in Figure 5.16. The final separated component, the RI component of 

the machine errors, was obtained by subtracting the separated RV components of the part 

and machine, and the RI part-component from the measurement of the part in its initial 0° 

orientation. These separated RI components are shown in Figure 5.17.  

FIGURE 5.16 The solved radial profile of the rotationally invariant component of the 

freeform surface. 

FIGURE 5.17 The solved rotationally invariant component of the freeform surface (left). 

The solved rotationally invariant component of the machine error contributions (right). 
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5.3.3 Best Estimate of the Freeform Surface from the Zeiss F-25  

 The error separations of the F-25 freeform measurements led to a best estimate of 

the freeform surface, without machine error contributions. This estimate was obtained by 

summing the two separated components of the freeform surface. These separated 

components, shown in Figure 5.10 and Figure 5.17 (left), were added to give the best 

estimate of the freeform in Figure 5.18. The Zernike coefficients from a twelve-Zernike 

polynomial fit to this best estimate freeform are listed in Table 5.4. 

 

 

 

 

 

 

 

 

 

 

 
Zernike coefficients (nm) 
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F-25: 

best est. 
-30 172 -2257 36 2171 -145 -10 32 64 49 216 136 

TABLE 5.13 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

 

TABLE 5.14 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

 

TABLE 5.15 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

 

TABLE 5.16 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

FIGURE 5.18 Best estimate of the freeform surface, separated from the Zeiss F-25 

measurement results. 
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5.3.4 Uncertainty Estimations in the Best Estimate from the CMM 

The Monte Carlo simulations described in Chapter 3 were used to evaluate task-

specific uncertainties associated with the freeform best estimate shown in Figure 5.18. The 

uncertainty sources used as inputs to the Monte Carlo simulation were the rotation angles, 

the axis of rotation, the translation distance, and electronic noise.  

The standard uncertainty, because of an uncertainty in the rotation angle, was 

represented as uRotAngle. This was evaluated using a flowchart like Figure 3.2, and had five 

rotation-angles separated by 72° as its input. This was because five angular orientations of 

the part were used to solve the RV components in the F-25 measurements. In using the 

Monte Carlo, instead of assuming these five angles were perfect rotation angles, we 

presumed that each rotation angle fell anywhere within some distribution. Uniform 

distributions with upper and lower limits of ± 0.05° were used around each nominal rotation 

angle. After running the Monte Carlo loop 1000 times, such that each trial had random 

angles from the input distributions, an array of possible outcomes of the freeform surface 

measurement was obtained. The standard deviation across this array led to the standard 

uncertainty shown in Figure 5.19 (right) as uRotAngle. 

The next uncertainty source input to the Monte Carlo simulation was a moving axis 

of rotation and its standard uncertainty was represented as uRotAxis. In the Monte Carlo 

simulation, it was assumed that the freeform part translated randomly within a square 

region with a 100-µm length, in the plane perpendicular to the axis of rotation. After 

running the Monte Carlo loop 1000 times, such that each trial had random rotation axis, an 

array of possible outcomes of the freeform surface measurement was obtained. The  

complete list of 
uncertainty 
sources 

• Depends on the 
instrument 

 

• Not from a 
complete list of 
uncertainty 
sources 

• Depends on the 
instrument 
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standard deviation across this array led to the standard uncertainty shown in Figure 5.19 

(right) as uRotAxis. 

Standard Uncertainties Measurand 

FIGURE 5.19 Best estimate of the freeform from F-25 measurements (left). Its standard 

uncertainties (right). 
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The standard uncertainty because of an uncertainty in the translation distance was 

represented by uTransDist. This input to the Monte Carlo presumed the nominal translation 

distance of 1 mm (in the RI-Shift technique) varied randomly within upper and lower limits 

of ±100 µm. The resulting standard uncertainty after running the Monte Carlo simulation 

1000 times is shown in Figure 5.19 (right) as uTransDist. The fourth standard uncertainty 

shown in Figure 5.19 (right) as uElectNoise, represents an uncertainty because of electronic 

noise. It is the Monte Carlo’s output response to random 10-nm P-V input noise. 

The uncertainty maps in Figure 5.19 are standard uncertainties in the low-order 

best-estimate (the measurand) obtained from low-order Zernike-fit results. With the 

assumption that the above standard uncertainties were uncorrelated, a combined standard 

uncertainty, uC, was obtained from their root sum of squares and reported with a 95th 

percentile coverage probability (k = 2) [97]. This combined standard uncertainty is shown 

alongside the best estimate of the freeform surface (separated from F-25 measurements) in 

Figure 5.20. 

 

 

FIGURE 5.20 The best estimate of the freeform surface from F-25 measurements (left) 

and its combined standard uncertainty (k = 2) (right). 
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5.4 Measurements of the Freeform Surface on the Mahr Surface Profiler 

Unlike the Zeiss F-25 CMM that can probe along the x-, y-, and z- axes and read 

the x-, y-, and z-point coordinates, the MarSurf LD 260 surface profiler [109] has a probe 

arm that travels only along the x-axis and reads the z-point coordinates. Since the probe 

arm travels along one axis, to repeat the Cartesian measurement model described in 

Chapter 5.3, multiple profiles were measured across the freeform surface by translating or 

rotating the freeform part between each profile measurement. The translation stage, rotary 

stage, stage mount and fixture that maneuver the part between profile measurements are 

mentioned in the next section. 

5.4.1 Stages, Mounts and Fixtures that Maneuver the Freeform Part 

The rotary stage used to rotate the part was an Aerotech ABRS-200MP rotary stage 

with a 178.1-mm tabletop diameter, installed in the measuring area of the MarSurf LD 260 

surface profiler and shown in Figure 5.21. To enable translations of the part, as well as to 

align the optical axis of the part to the rotation axis of the rotary stage, an x-y stage was 

mounted on the rotary stage. This x-y stage was not directly fastened to the rotary stage 

tabletop because the ABRS rotary stage specifications required a mounting interface which 

was flat to within 2 µm [110]. A second reason for an indirect fastening was to minimize 

the transfer of twisting stress from the x-y stage to the rotary stage. Halsey (1913) described 

this stress-minimization by saying “any machine frame standing on three legs is free from 

twisting stress and from the resulting distortion” [111]. This was addressed by using a 

kinematic coupling between the two stages. 
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 The kinematic coupling between the x-y stage and the rotary was a Maxwell 

Kinematic System with three truncated spheres on one platform, and three corresponding 

Vees (a pair of parallel cylinders formed each vee) on the other, as shown in Figure 5.22.  

ABRS-200MP 

rotary stage 

FIGURE 5.21 The MarSurf LD 260 surface profiler with the affixed rotary stage. 

Coupled kinematic 

mount 

Maxwell kinematic 

system 

FIGURE 5.22 The arrangement of the cylindrical pairs (top left) and spheres (top right) 

of the kinematic mount. The assembled kinematic mount (bottom). 
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The separate parts to be coupled are shown in Figure 5.22 (top) while the coupled system 

is depicted in Figure 5.22 (bottom).  

The x-y stage was a Newport M-401 two-axis linear stage with a square tabletop 

side length of 139.7 mm and a maximum stage travel of 13 mm. This x-y stage, fixtured on 

the kinematic mount, is depicted in Figure 5.23 while the complete assembly of the x-y 

stage, kinenematically coupled to the rotary stage, is shown in Figure 5.24.  

This arrangement allows for alignment of the part’s optical axis to the rotary axis 

of the rotary stage, as well as the required maneuverings of the part between profile 

measurements. 

X-Y translation 

stage 

Kinematic 

mount 

FIGURE 5.23 The x-y translation stage fastened to a kinematic mount. 
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5.4.2 Error Separations of the Rotationally Varying Components  

 The Cartesian measurement model (described in Chapter 5.3) used to measure the 

freeform surface on the Zeiss F-25 CMM, was used to measure the freeform surface on the 

Mahr Surface Profiler. The same Gaussian filter, clear-aperture crop, and tilt- and piston-

corrections (applied to the Zeiss CMM measurement results) were applied to the 

measurement results from the Mahr surface profiler. 

 To solve for the rotationally varying (RV) components of the freeform surface, the 

surface was measured with the part positioned at five predefined angular orientations. The 

surfaces generated from the Mahr measurements of the freeform, at the five angular 

Tactile probe 

 

Tactile probe 

 

Tactile probe 

 

Tactile probe 

Freeform part 

X-Y linear translation stage 

Kinematic couple 

Rotary stage 

FIGURE 5.24 Assembly of the freeform part, translation stage, and rotary stage on the 

Mahr surface profiler. 
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orientations of the part separated by 72°, are shown in Figure 5.25, while their 

corresponding Zernike coefficients are shown in Table 5.5. 

 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

Mahr 

(part at 

0°) 

47 299 -2262 116 2199 -38 -127 -7 45 62 173 203 

Mahr 

(part at 

72°) 

-59 -1563 1761 2380 665 33 -257 148 0 -98 -136 -124 

Mahr 

(part at 

144°) 

-13 2250 -524 1431 -1835 115 412 -205 -56 9 131 71 

Mahr 

(part at 

216°) 

8 -2197 -855 -1521 -1778 -208 119 179 84 19 20 84 

Mahr 

(part at 

288°) 

-51 1269 1881 -2366 732 208 -152 -98 -100 -90 -47 -144 

TABLE 5.17 Zernike coefficients from the Mahr LD 260 freeform surface 

measurements of the part in five angular orientations. 

 

FIGURE 5.9 Mahr LD 260 freeform measurements of the part at five angular 

orientations.TABLE 5.18 Zernike coefficients from the Mahr LD 

260 freeform surface measurements of the part in five angular 

orientations. 

 

TABLE 5.19 Zernike coefficients from the Mahr LD 260 freeform surface 

measurements of the part in five angular orientations. 

 

FIGURE 5.10 Mahr LD 260 freeform measurements of the part at five angular 

orientations.TABLE 5.20 Zernike coefficients from the Mahr LD 

260 freeform surface measurements of the part in five angular 

orientations. 

FIGURE 5.25 Mahr LD 260 freeform measurements of the part at five angular orientations. 
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The RV component of the freeform surface was deduced from the measurement 

results in Figure 5.25 by using the N-Rotation technique described in Chapter 2.1. The 

average of the five maps dropped out the RV component of the part; this average was 

denoted by MeanP(rot) and shown Figure 5.26.  

The RV component of the part, dropped out by the averaging process, was obtained 

by subtracting the map in Figure 5.26 from that in Figure 5.25 (top left); and the resulting 

map is shown in Figure 5.27.  

This represents the first of the four desired separated components of the Mahr LD 

260 freeform surface measurement. The next surface component to be extracted is the RV 

component of the machine’s errors. Since the RV components of the freeform have been 

FIGURE 5.26 An average of the Mahr LD 260 freeform surface measurements at the 

five angular orientations. 

FIGURE 5.27 The separated rotationally varying component of the freeform surface. 
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extracted, any residual RV components must come from the machine error contributions. 

This RV machine error component was obtained by applying the N-Rotation technique to 

the height map in Figure 5.26; these rotations are shown in Figure 5.28.  

The RV components of the machine errors rotate with each of the rotations in 

Figure 5.28. The average of these height maps drops out the RV machine error components; 

this average is shown in Figure 5.29.  

FIGURE 5.28 N-Rotations to extract the machine’s rotationally varying error contributions. 

FIGURE 5.29 Average of the height maps that depict machine rotations. This average 

drops out the rotationally varying components of the machine errors. 
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The RV machine error component dropped out by the averaging process is shown 

in Figure 5.30 and represents the second of the four desired separated components.  

 So far, the RV components of the test part and machine error contributions have 

been separated, and the surface in Figure 5.29 contains only convolved RI components of 

the freeform surface and the machine’s errors. These RI components were extracted using 

the ‘Shift’ portion of the Shift-Rotation technique. 

5.4.3 Error Separations of the Rotationally Invariant Components  

The Shift-technique described in Chapter 2.2, and applied to the Zeiss F-25 

measurement results, was used to separate the RI components present in Figure 5.29. This 

error separation required an additional measurement of the freeform surface, after a lateral 

translation with respect to an initial position. From the difference between the initial and 

translated measurements, minus RV components, the slope of the part was obtained. A 

profile from the part center to the edge (in the direction opposite the translation) was 

extracted from this slope to solve for the radial profile of the freeform surface.  

Since the Shift-technique utilizes a difference between profiles from the initial and 

translated surface measurements, the RI components can be solved from diametrical 

profiles (instead of areal measurements) measured at the initial and translated positions of 

FIGURE 5.30 The separated rotationally varying component of the machine’s errors. 



116 

 

the part. Considering this, a diametrical profile was extracted from the surface in Figure 

5.25 (top left), and after translating the freeform part 1-mm along the direction of the 

diametrical profile, the same profile on the surface was remeasured. These initial and 

shifted profiles are shown in Figure 5.31. These profiles have been processed; they were 

cropped to the clear aperture and low-pass filtered with the same Gaussian filter applied to 

the previous freeform measurements from the Zeiss F-25 CMM and Mahr surface profiler. 

 

After removing the RV components present in the profiles above, and assuming the 

machine errors remained constant between the initial- and translated-profile measurements, 

a difference between the profiles gave the slope of the part evaluated at the separation and 

in the translation direction, as shown in Figure 5.32.  

FIGURE 5.31 Measurement of a profile on the freeform surface in an initial position (top). 

Measurement after the freeform part was shifted 1-mm to the left (right). 

FIGURE 5.32 The slope of the freeform surface evaluated after a 1-mm lateral translation. 
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The goal of the next step was to deduce the RI component of the freeform surface 

from the slope profile in Figure 5.32. This was obtained by extracting a portion, g, of the 

slope profile and solving the system of linear equations: g = H*f via the pseudo-inverse 

approach as described in Chapter 2.2 and Chapter 5.3.2. The rotationally invariant 

component of the freeform surface generated from the solved radial profile, f, is shown in 

Figure 5.33 (left). This represents the third of the four separated components from the 

Mahr-freeform surface measurements. The final separated component (the RI component 

of the machine errors) was obtained by subtracting the separated RV components of the 

part and machine, and the RI part-component from the measurement of the part in its initial 

0° orientation; this result is shown in Figure 5.33 (right).  

 

 

 

 

 

 

FIGURE 5.33 The solved rotationally invariant component of the freeform surface (left). 

The solved rotationally invariant component of the machine error contributions (right). 
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5.4.4 Best Estimate of the Freeform Surface from the Mahr LD 260  

 The error separations of the Mahr freeform measurements led to a best estimate of 

the freeform surface, without machine error contributions. This estimate was obtained by 

adding the two separated components of the freeform surface. These separated 

components, shown in Figure 5.27 and Figure 5.33 (left), were added to give the best 

estimate of the freeform in Figure 5.34. The Zernike coefficients from a twelve-Zernike 

polynomial fit to this best estimate freeform are listed in Table 5.6.  

 

 

 

 

 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

Mahr: 

best est. 
101 288 -2262 108 2203 -60 -126 -10 51 79 145 185 

TABLE 5.21 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

 

FIGURE 5.11 Best estimate of the freeform surface separated from the Mahr LD 260 

measurement results.TABLE 5.22 Zernike coefficients from a 

Zernike polynomial fit to the best estimate of the freeform surface. 

 

TABLE 5.23 Zernike coefficients from a Zernike polynomial fit to the best estimate 

of the freeform surface. 

 

FIGURE 5.12 Best estimate of the freeform surface separated from the Mahr LD 260 

measurement results.TABLE 5.24 Zernike coefficients from a 

FIGURE 5.34 Best estimate of the freeform surface separated from the Mahr LD 260 

measurement results. 
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5.4.5 Uncertainty Estimations in the Best Estimate from the Mahr profiler 

The Monte Carlo simulations in Chapter 5.3.4 were also used to evaluate task-

specific uncertainties associated with obtaining the freeform best estimate shown in Figure 

5.34. The uncertainty sources used as inputs were the rotation angles, the axis of rotation, 

the translation distance, and electronic noise. Their standard uncertainties were represented 

by uRotAngle, uRotAxis, uTransDist, and uElectNoise respectively, and shown alongside the 

measurand in Figure 5.35. The best estimate of the freeform surface separated from the 

Mahr LD 260 measurement results is shown in Figure 5.35 (left) while its standard 

uncertainties are shown in Figure 5.35 (right). 

The standard uncertainty, uRotAngle, represents the uncertainty after each nominal 

72° rotation angle varied randomly within upper and lower limits of ± 0.05°. The standard 

uncertainty, uRotAxis, represents the uncertainty after the rotation axis of the freeform part 

translated randomly within a square region with a 100-µm length, in the plane 

perpendicular to the axis of rotation. The standard uncertainty, uTransDist, represents the 

uncertainty after the nominal 1-mm translation distance (in the RI-Shift technique) varied 

randomly within upper and lower limits of ±100 µm. The standard uncertainty, uElectNoise, 

represents an uncertainty because of electronic noise; it is the Monte Carlo’s output 

response to ±5 nm uniformly distributed input noise. 

 

complete list of 
uncertainty 
sources 

• Depends on the 
instrument 

 

• Not from a 
complete list of 
uncertainty 
sources 

• Depends on the 
instrument 
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Standard Uncertainties Measurand 

FIGURE 5.35 Best estimate of the freeform from the Mahr LD 260 measurements (left). 

Its standard uncertainties (right). 
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The uncertainty maps in Figure 5.35 are standard uncertainties in the low-order 

best-estimate (the measurand) obtained from low-order Zernike-fit results. With the 

assumption that the above standard uncertainties were uncorrelated, a combined standard 

uncertainty, uC, was obtained from their root sum of squares and reported with a 95th 

percentile coverage probability (k = 2) [97]. This combined standard uncertainty is shown 

alongside the best estimate of the freeform surface (separated from Mahr LD 260 

measurements) in Figure 5.36. 

 

 

 

 

 

 

 

 

 

 

FIGURE 5.36 The best estimate of the freeform surface from Mahr LD 260 

measurements (left) and its combined standard uncertainty (k = 2) (right). 
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5.5 Measurement of the Freeform Surface on the Zygo NexView Interferometer 

 The freeform surface was measured on the fourth instrument, a Zygo NexView 

Scanning White Light interferometer. A 2.75X microscope objective was used to measure 

75 sites on the freeform surface. These sites were stitched together using an x-y blend 

stitching algorithm with a 20% overlap region between individual sites. This measurement 

result was cropped down to the 35-mm clear aperture and fit to twelve Zernike terms. 

Figure 5.37 shows the surface generated from these twelve Zernike terms while its Zernike 

coefficients are listed in Table 5.7. The next section compares this NexView freeform 

measurement result to the Verifire (Fizeau) measurement result and the best estimates from 

the Zeiss CMM and the Mahr surface profiler. 

 

 

 

 

 

 

 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

NexView 486 -118 -2569 -58 2503 141 139 -12 -79 -21 -25 9 

TABLE 5.25 Zernike coefficients of the NexView freeform measurement. 

 

FIGURE 5.13 Freeform surface measurements from four measuring 

instruments.TABLE 5.26 Zernike coefficients of the NexView freeform 

measurement. 

FIGURE 5.37 A NexView measurement of the freeform surface. 
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5.6 Comparisons between Freeform Measurements made on the Four Machines 

The Shift-Rotation error separation was applied to the freeform measurements 

made on the Zeiss F-25 CMM, as well as the Cartesian-model freeform measurements 

made on the Mahr surface profiler. From these error separations, best estimates of the 

freeform surface (without machine error contributions) were obtained. This section 

compares these best estimate results to the freeform measurement results from the optical 

instruments. Figure 5.38 shows these freeform surface comparisons while Table 5.8 lists 

their respective Zernike coefficients. 

 

 

FIGURE 5.38 Freeform surface measurements from four measuring instruments. 
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For consistency, the surfaces generated from Zernike coefficients from the four 

measuring instruments had the same grid size with an aperture diameter of 1001 pixels. 

The maps in Figure 5.38 (as well as all previous maps) have the same aperture diameter of 

1001 pixels. The comparison in Table 5.8 was further expressed as the amplitudes (root-

sum-square of the sine and cosine Zernike terms, where applicable) of the Zernike 

coefficients. These amplitudes are reported in Table 5.9.  

The table shows the dominant terms present on the freeform surface are 

astigmatism and coma. A comparison between these terms shows the best estimates from 

the Zeiss CMM and the Mahr profiler agree to within 35 nm. On the other hand, the 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

F-25: 

best est. 
-30 172 -2257 36 2171 -145 -10 32 64 49 216 136 

Mahr: 

best est. 
101 288 -2262 108 2203 -60 -126 -10 51 79 145 185 

Verifire

(Fizeau) 
-22 -129 -2390 -125 -2392 109 -151 15 67 -27 -54 6 

NexView

(SWLI) 
486 -118 -2569 -58 2503 141 139 -12 -79 -21 -25 9 

 
Amplitudes of the Zernike coefficients (nm) 

defocus astig. coma trefoil spherical 
sec. 

astig 
tetrafoil 

F-25:  

best est. 
30 2264 2171 145 49 225 140 

Mahr:  

best est. 
101 2280 2206 140 79 154 185 

Verifire 

(Fizeau) 
22 2393 2395 186 27 86 16 

NexView 

(SWLI) 
486 2572 2504 198 21 83 15 

TABLE 5.28 Zernike coefficients of the freeform measurement results from the four 

instruments. 

TABLE 5.27 Amplitude Zernike coefficients of the freeform surfaces from the four 

instruments. 
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amplitudes of the astigmatism and coma terms from the optical measurements were higher 

than those from the tactile instruments. 

5.7 Summary 

 This chapter demonstrated that the Shift-Rotation technique can be applied to 

coordinate measuring machine (CMM) and profilometer measurement results. A freeform 

surface was measured on a Zeiss F-25 CMM and a Mahr LD 260 surface profiler. On both 

machines, the surface was measured at predetermined angular rotations and translations of 

the surface. These measurement results were decomposed with the Shift-Rotation into 

rotationally varying and invariant freeform surface components (and machine error 

contributions), to obtain best-estimate freeform measurements without machine error 

contributions. 

 Task-specific uncertainties associated with these freeform best estimates, from the 

CMM and profilometer, were evaluated using Monte Carlo simulations. The uncertainty 

sources used as inputs to the Monte Carlo simulation were the rotation angles, the axis of 

rotation, the translation distance, and electronic noise. 

 The dominant terms present on the freeform surface were astigmatism and coma. 

A comparison between the Zernike-coefficient amplitudes of these terms showed the best 

estimates from the Zeiss CMM and the Mahr profiler agreed to within 35 nm. These 

comparisons, and the error separation of the freeform measurement results, demonstrate 

that the Shift-Rotation calibration technique can be applied to CMM and profilometer 

measurements to minimize task-specific uncertainty by separating machine error 

contributions. 

 



 

CHAPTER 6: CONCLUSIONS AND FUTURE WORK 

6.1 Conclusions 

In this research, task-specific measurement uncertainty was minimized by applying 

an in-situ self-calibration technique, known as Shift-Rotation, to freeform surface 

measurements. Shift-Rotation is an absolute testing procedure developed in interferometric 

optical surface metrology to separate measurement results into system errors and test piece 

errors [20, 21, 53-64]. This calibration method requires surface measurements after 

rotations and translations of the test part and relies on the decomposition of surface 

departures into rotationally varying (RV) and rotationally invariant (RI) components.  

Simulations were used to demonstrate the Shift-Rotation technique. The technique 

minimizes task-specific uncertainty by separating machine errors from test part 

measurements. These machine errors contain geometric and computational errors [48] and 

a number of methods are available for evaluating the errors [48-51]. With the Shift-

Rotation technique, it is unnecessary to measure these machine errors which include the 

parametric errors (21 D. o. F for a 3-axis machine), since the separated RV and RI 

components of the machine errors can be added to give a representation of the task-specific 

machine error contributions. These machine error contributions can be separated out, on a 

task-specific basis, anywhere in the machine’s measurement volume. Also, since this 

calibration method requires stability only over the measurement cycle time, effects of 

machine drifts are reduced to the timescale of the measurement rather than the interval 

between machine calibrations. 
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Simulations were also used to estimate uncertainties associated with applying the 

Shift-Rotation technique to measurements of freeform surfaces. These were Monte Carlo 

simulations that evaluated standard uncertainty contributions from potential sources 

inherent in the shift- and rotation-measurement process. These uncertainty sources were 

the rotation angles, the axis of rotation, the translation distance, and electronic noise. The 

standard uncertainty in the rotation angle was obtained after each nominal rotation angle 

varied randomly within upper and lower limits of ± 0.05°. The standard uncertainty in the 

axis of rotation was obtained after the rotation axis of every simulated part (in the N-

rotation technique) fell anywhere within a 300-µm square center. The standard uncertainty 

in the translation distance was obtained after the nominal translation distance (in the RI-

Shift technique) varied randomly within upper and lower limits of 200 µm. The standard 

uncertainty in the electronic noise was the Monte Carlo’s output response after adding ±5 

nm uniformly distributed electronic noise to every simulated surface. With the assumption 

that these standard uncertainties were uncorrelated, a combined standard uncertainty was 

obtained from their root sum of squares and reported alongside the best estimate of the 

measurand. 

The Shift-Rotation technique is a form metrology but its error separations of some 

mid-spatial frequency (MSF) patterns were simulated. These MSF errors could be left 

behind by some sub-aperture fabrication and finishing processes, and examples of the 

simulated MSF patterns include sinusoidal MSF errors, on- and off-axis spiral MSF errors, 

and crosshatch MSF errors. The simulations demonstrated that the Shift-Rotation process 

separates the MSF errors into RV and RI components but if the MSF errors are not 

described as purely RV or RI, the error separations would result in residual MSF 
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components. These residuals would be reported convolved with the RI components of the 

machine errors and further information would be required to deconvolve the errors. 

The next step involved experimental validation of the Shift-Rotation error 

separation technique. The error separation was demonstrated by measuring a freeform 

surface on a Coordinate Measuring Machine (CMM) and a tactile profilometer. This 

freeform surface was fabricated on a BK7 optical flat, on a magnetorheological finishing 

(MRF) machine. It was housed in a polycarbonate mount with four silicon carbide balls 

and a reference mark that transferred coordinates from MRF to metrology, it had an outer 

diameter of 40-mm and a clear aperture of about 35-mm. 

This freeform surface was measured on two touch-probe machines: a Zeiss F-25 

micro-CMM and a Mahr MarSurf LD 260 surface profiler, according to the Shift-Rotation 

measurement procedures explained in Chapter 2. From these measurement results, 

rotationally varying and invariant freeform surface components (and machine error 

contributions) were separated, to obtain best-estimate freeform measurements without 

machine error contributions. These best-estimates from the tactile machines were 

compared to optical measurements of the same freeform surface. The optical measurements 

were from a Zygo Verifire Fizeau interferometer and a Zygo NexView Scanning White 

Light interferometer. A comparison of the dominant terms on the freeform surface showed 

the best estimates from the Zeiss CMM and the Mahr profiler agree to within 35 nm. The 

research demonstrated that the Shift-Rotation calibration technique can be applied to CMM 

and profilometer measurements to minimize task-specific uncertainty by separating 

machine error contributions. 
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6.2 Future Work 

6.2.1 A More Robust Noise-Modification of a Singular Matrix 

The technique used to separate the rotationally invariant components involved 

calculating the inverse of a singular matrix. Besides a pseudo-inverse, an alternative 

approach was investigated. This alternative approach did not seek a pseudo-inverse 

solution, but focused on converting the singular matrix into a non-singular (invertible) 

matrix. This was achieved by adding negligible non-symmetric noise to the singular matrix 

to perturb the linear dependencies between its rows and columns, in such a way that the 

singular matrix became a well-behaved non-singular matrix. 

Simulations showed this approach yielded the same or more accurate solutions than 

the pseudo-inverse approach but the experimental validations showed otherwise. In this 

research, the negligible noise was added to the diagonal of the singular matrix to offset the 

symmetry of its design. The noise was added to the diagonal because the singular matrix 

was designed to have two non-zero elements in each row, and these included diagonal 

elements. Further work is required to determine optimum and robust ways of adding noise 

to singular matrices to make them invertible. 

6.2.2 Filtering Effect of Probe-Ball Radius  

A tactile CMM and a tactile profilometer were used to scan profiles across a 

freeform surface but the filtering effects of their probe ball radii on the profile measurement 

results were not investigated. Since comparisons were made between touch-probe 

measurements from different machines, research into the possible probe-induced dilation 

and erosion filtering effects could improve the comparisons.
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APPENDIX A: FLOWCHART OF THE SHIFT-ROTATION TECHNIQUE 
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APPENDIX B: INFLUENCE OF RANDOM MACHINE Z-AXIS ERRORS  

APPENDIX B.1 Influence of 1% Random Machine Z-axis Errors 

The added random machine errors were reduced from a maximum of 10% to 1% 

the nominal systematic machine errors. Figure B.1 (left) shows a simulated systematic 

machine error, without random errors in the z-axis, while Figure B.1 (right) shows the 

resulting machine error after the addition of a random machine z-axis error with a 

maximum amplitude of 1% deviation from the nominal.  

To evaluate the effects of the added random errors on the error separation process, 

the Shift-Rotation error separations were carried out on a simulated part with the systematic 

and random errors shown in Figure B.1 (right). After Shift-Rotation error separations (4 

rotations in the N-Rotation technique, and a 200 µm part translation in the Shift-technique) 

of the part that included the random machine errors, the separated output components were 

compared to the input components, as shown in Figure B.2. A comparison between the 

output and input rotationally varying components, shows that even with the added 1% 

random machine errors, the N-Rotation technique correctly separated the RV components 

FIGURE B.1 Simulated systematic machine errors (left). The machine’s systematic 

errors with a random component in the z-direction. The random errors have a maximum 

amplitude of 1% the nominal systematic error. (right). 

+z +x 
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of the part and machine. The rms of the Output PRV height map equals that of the Input 

PRV, while the rms of the Output MRV height map differed from the Input MRV by 0.5%. 

On the other hand, more significant changes were observed between the output and 

input RI components. After the addition of 1% random machine errors, the Shift technique 

imperfectly solved for the RI components. There was a 1% rms deviation between the 

Output and Input PRI height maps, and a 30% rms deviation between the Output and Input 

MRI height maps. The rms of this part estimate differed from its corresponding input by 

0.5%. 

The difference height maps which result from the addition of 1% random machine 

z-axis errors are shown in Figure B.3. Comparing the rms values of the RV differences, to 

those of the RI differences, shows that the addition of the 1% random machine z-axis errors, 

had negligible effect on the separation of the RV components but had a more significant 

effect on the separation of the RI components. The RI rms deviations were 2 orders of 

magnitude, larger than the RV rms deviations. 
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Output components after the addition of 

1% random machine errors Input components 

FIGURE B.2 Input components to the Shift-Rotation technique (left). Output 

components obtained after the addition of random z-axis machine errors with maximum 

amplitudes of 1% deviation from the nominal (right).  
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Difference between output and input best estimates 

of the part 

Differences between rotationally invariant components 

Differences between rotationally varying components 

Differences between output and input surface components, after the addition of 1% 

random machine z-axis errors 

FIGURE B.3 Differences between output and input surface components, after the 

addition of 1% random machine z-axis errors. 
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APPENDIX B.2 Influence of 0.1% Random Machine Z-axis Errors 

The added random machine errors were further reduced from a maximum of 1% to 

0.1% the nominal systematic machine errors. Figure B.4 (left) shows a simulated 

systematic machine error, without random errors in the z-axis, while Figure B.4 (right) 

shows a resulting machine error after the addition of a random machine z-axis error, with 

a maximum amplitude of 0.1% deviation from the nominal. These added errors were on a 

pixel-by-pixel basis and an effect of the added random error can be noticed by the change 

in the rms of the height maps. 

Similar to the previous section, in order to evaluate the effects of the added random 

errors on the error separation process, the Shift-Rotation error separations were carried out 

on a simulated part with the systematic and random errors shown in Figure B.4 (right). 

After Shift-Rotation error separations of the part that included the random machine errors, 

the separated output components were compared to the input components and shown in 

Figure B.5. Similar to the previous simulations (where 10% and 1% random errors were 

added), Figure B.5 shows that the N-Rotation technique correctly separated the RV 

components. The rms of the Output PRV height map equals that of the Input PRV, while the 

FIGURE B.4 Simulated systematic machine errors (left). The machine’s systematic 

errors with a random component in the z-direction. The random errors have a maximum 

amplitude of 0.1% the nominal systematic error (right). 
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+y 
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rms of the Output MRV height map differed from the Input MRV by 0.05%. Figure B.5 also 

shows an improvement in the Shift-technique’s separation of the RI components; the 

random errors reduced from 1% to 0.1%. The rms of the Output PRI height map differed 

from that of the corresponding input by 0.03%, while the rms of the Output MRI height map 

differed from its input by 2%. 

The difference height maps which resulted from the addition of 0.1% random 

machine z-axis errors are shown in Figure B.6. Comparing the rms values of the RV 

differences, to those of the RI differences, shows that the addition of the 0.1% random 

machine z-axis errors had little effect on the separation of the RV components but had a 

more significant effect on the separation of the RV components. The RI rms deviations 

were about 1 or 2 orders of magnitude larger than the RV rms deviations. 
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 Output components after the addition of 

0.1% random machine errors Input components 

FIGURE B.5 Input components to the Shift-Rotation technique (left). Output 

components obtained after the addition of random z-axis machine errors with maximum 

amplitudes of 0.1% deviation from the nominal (right).  

 (right).  
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Difference between output and input best estimates 

of the part 

Differences between rotationally invariant components 

Differences between rotationally varying components 

Differences between output and input surface components after the addition of 0.1% 

random machine z-axis errors 

FIGURE B.6 Differences between output and input surface components after the 

addition of 0.1% random machine z-axis errors. 
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APPENDIX B.3 Influence of 0.01% Random Machine Z-axis Errors 

 The fourth set of added random machine z-axis errors had maximum amplitudes of 

0.01% the nominal systematic machine errors. Figure B.7 (left) shows a simulated 

systematic machine error without random errors in the z-axis, while Figure B.7 (right) 

shows the resulting machine error after the addition of a random machine z-axis error with 

a maximum amplitude of 0.01% deviation from the nominal. These added errors were on 

a pixel-by-pixel basis and Figure B.7 shows they did not have a significant impact on the 

rms of the machine error. 

Similar to the previous chapter, to evaluate the effects of the added random errors 

on the error separation process, the Shift-Rotation error separations were carried out on a 

simulated part which included the systematic and random errors shown in Figure B.7 

(right). After Shift-Rotation error separations of the part that included the random machine 

errors, the separated output components were compared to the input components and 

shown in Figure B.8. 

FIGURE B.7 Simulated systematic machine errors (left). The machine’s systematic 

errors with a random component in the z-direction. The random errors have a maximum 

amplitude of 0.01% the nominal systematic error (right). 

+z +x 
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 Output components after the addition of 

0.01% random machine errors Input components 

FIGURE B.8 Input components to the Shift-Rotation technique (left). Output 

components obtained after the addition of random z-axis machine errors with maximum 

amplitudes of 0.01% deviation from the nominal (right).  
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Difference between output and input best estimates 

of the part 

Differences between rotationally invariant components 

Differences between rotationally varying components 

Differences between output and input surface components, after the addition of 0.01% 

random machine z-axis errors 

FIGURE B.9 Differences between output and input surface components, after the 

addition of 0.01% random machine z-axis errors. 
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APPENDIX C: ERROR SEPARATION OF ON-AXIS MSF ERRORS  

 In Chapter 4.2, the circular mid-spatial frequencies were comprised of one 

amplitude and frequency. In this chapter, the on-axis circular mid-spatial frequency error 

comprised multiple random frequencies and amplitudes. Figure C.1 (left) shows this 

simulated MSF error to be added to the simulated freeform surface in Figure C.1 (right). 

 

After adding the multiple-frequency circular MSF error in Figure C.1 (left) to the 

freeform surface in Figure C.1 (right), the resulting surface was shown in Figure C.2. These 

mid-spatial frequency errors can be noticed in the frequency domain, after calculating the 

PSD of a central horizontal profile extracted from Figure C.2. This PSD graph is shown in 

Figure C.3. 

 The PSD graph shows multiple mid-spatial frequency peaks around spatial 

frequencies of 0.16 cycles/mm and 0.2 cycles/mm which arise from the added MSF errors. 

Using the Shift-Rotation technique, the freeform height map in Figure C.2 was 

FIGURE C.1 A simulated on-axis circular mid-spatial frequency error comprised of 

multiple frequencies and amplitudes (left). The simulated freeform surface without 

mid-spatial frequency errors (right). 
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decomposed into four surface components: output PRV, output MRV, output PRI, and output 

MRI. Since the multi-frequency circular MSF errors were on-axis and rotationally invariant, 

they should show up as convolved with the RI components of the freeform surface.  

The Shift-Rotation error separations of the surface in Figure C.2, into four components, are 

shown in Figure C.4. 

 

 

 

 

FIGURE C.2 The simulated freeform surface with multi-frequency circular mid-

spatial frequency errors. 

FIGURE C.3 The power spectral density of the central horizontal profile extracted 

from the freeform surface with multi-frequency circular mid-spatial frequency errors. 
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Separated components 
Freeform surface with multi-

frequency circular MSF errors 

FIGURE C.4 The freeform surface with multi-frequency circular mid-spatial 

frequencies (left). The Shift-Rotation separation of the freeform into four components 

(right). 
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Figure C.4 shows the decomposition of the freeform surface with on-axis multi-

frequency MSF errors, into four surface components. The separated RV components are 

not influenced by the MSF errors since these MSF errors are comprised solely of 

rotationally invariant components. The RI components of the MSF errors are convolved 

with the separated RI component of the part. The residual MSF errors appear convolved 

with the RI component of the machine. If these types of multi-frequency circular MSF 

errors are present on a part, after error separations of the measurement data, the bulk of the 

multi-frequency circular MSF errors would correctly be separated as convolved with the 

rotationally invariant components of the part, while any residual MSF errors would be 

indistinguishable from the machine’s RI errors. The amplitudes of these residuals can be 
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observed after a Shift-Rotation error separation of only the multi-frequency circular MSF 

errors, as shown in Figure C.5. 

Separated components Multi-frequency circular MSF errors 

FIGURE C.5 Multi-frequency circular mid-spatial frequency errors (left). The Shift-

Rotation separation of the mid-spatial frequency errors, into rotationally varying, 

rotationally invariant, and residual components (right). 
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APPENDIX D: ALTERNATE MEASUREMENT STRATEGY ON THE MAHR  

In Chapter 5.3 and Chapter 5.4, a Cartesian measurement strategy was used to 

measure the freeform surface. In addition to this, a Polar measurement strategy was used 

to measure the freeform surface on the Mahr surface profiler. This alternative measurement 

strategy was for investigative and comparison purposes; the Shift-Rotation error separation 

was not applied to these measurement results.  

Instead of parallel profiles (Cartesian measurement strategy), the Polar 

measurement model used multiple profile measurements across diameters on the freeform 

surface. A depiction of these profiles is shown in Figure D.1.  

Profile probe trace 

Tie profile to correct for tip/tilt 

FIGURE D.1 Freeform surface measurement strategy on a Mahr surface profiler. A 

Polar measurement strategy that uses diametrical profile scans. 

Outer 

diameter of 

the freeform 

part 

Polar measurement strategy 
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Ten profiles were measured across the freeform surface, from an arbitrary clocking 

angle of 0° to 324° in 36° increments. As Figure D.1 indicates, the profiles from 180° to 

324° should, retrace the profiles from 0° to 144° respectively. This Polar measurement 

strategy has the advantage of ease of machine programming since the profile traces are of 

equal length and are about a common axis of rotation. On the other hand, one disadvantage 

of this strategy is the uneven data-point distribution. A high data density is observed around 

the axis of rotation, but this quickly tapers into a sparse data density towards the periphery 

of the part.  

The Polar profiles were each 38-mm long, with point-coordinates taken every 1-

µm, and measured at a probe speed of 1 mm/s. After the first profile at 0° was measured, 

the part was rotated clockwise by 36° and another 38-mm long profile was measured. This 

was repeated until the tenth profile at 324° was measured. 

Between the measurements of the first and tenth profiles, tilt and piston changes 

could be introduced by stage drift. To correct for this, an azimuthal profile (with a 32-mm 

diameter) measurement was made. In this measurement, the probe contacted a point on the 

surface (16-mm from the rotation axis) and was set to measure the change in z-height while 

the part was rotated at 10°/s. From the expected intersection points between this azimuthal 

trace and the Polar profiles, the tilts of the Polar profiles were corrected to match those 

across the azimuthal profiles. 
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APPENDIX D.1 Measurement Results 

Figure D.2 shows the ten Polar-model profiles without tilts. The profiles in Figure 

D.2 (right) are right-left retrace versions of those shown in Figure D.2 (left) since both 

sides show the same profiles measured from opposite directions.  
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Before generating a Zernike polynomial-fit surface from these profiles, their slopes 

FIGURE D.2 Polar-model freeform surface profiles measured on the Mahr surface 

profiler. 
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were corrected by using the azimuthal profile measurement shown in Figure D.3. This was 

a 32-mm diameter profile, measured quickly (36 seconds) to minimize the influence of 

stage drift. From the expected intersection points between this profile and the ten Polar 

profiles, the slopes from opposite points across the azimuthal profile were used to correct 

the slopes of the ten Polar profiles. 

 After slope-corrections of the ten profiles, the profiles from 180° to 324° were 

flipped to match the orientations of the 0° to 144° profiles. The 0.8-mm λc low-pass 

Gaussian filter (applied to the F-25 and previous Mahr freeform measurement results) was 

applied to these Polar-model measurement results. After filtering, twelve Zernike 

polynomials were fit to the Polar profiles and the fit was cropped down to the 35-mm clear 

aperture. The Zernike coefficients from this fit are listed in Table D.1, while the surface 

generated from these coefficients is shown in Figure D.4. 

 

 
Zernike coefficients (nm) 

Z 

(2, 0) 

Z 

(2, -2) 

Z 

(2, 2) 

Z 

(3, -1) 

Z 

(3, 1) 

Z 

(3, -3) 

Z 

(3, 3) 

Z 

(4, -4) 

Z 

(4, -2) 

Z 

(4, 0) 

Z 

(4, 2) 

Z 

(4, 4) 

Mahr: 

(Polar 

profiles) 

16 853 2080 -2108 373 -29 83 61 30 -15 -157 48 

FIGURE D.3 Azimuthal profile measured to correct for tilt. 

TABLE D.1 Zernike coefficients from a Zernike fit to the 10 Polar-model profiles. 
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FIGURE D.4 Surface fit to the 10 Polar-model profiles measured on the Mahr profiler. 
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APPENDIX E: MATLAB CODES 

%---------------------------------------------------------------------------------------------------------

%-------Program 1: Shift-Rotation Error Separation of Surface Measurement Maps-------- 

 

% A freeform surface was measured on a CMM in a predetermined order of  

% part-rotations and translations. The test-surface was measured at 5 angular  

% orientations (separated by 72 degrees) and at a translated position  

% (1-mm translation distance).  

% The purpose of this program is to separate these measurement results into  

% contributions from the test-surface and those from the machine. 

  

% The 'Shift' portion of the technique solves for the rotationally invariant (RI)  

% components, while the 'Rotation' portion solves for the rotationally varying (RV)  

% components. The simulation begins with the Rotation, and then proceeds to the Shift. 

 %--------------------------------------------------------------------------------------------------------

--------- 

 

% Separate the Rotationally Varying Components 

clear all; close all; clc 

 

% Input variables: 

rotations = 5; % number of rotated positions of the test part 

delta = 29; % Insert the translation distance (in pixels) here. 

 

% Load the height maps from measurements made at multiple angular positions 

load Freeform_F25_0_degrees.mat;  

part_at_0_degreees = Freeform_F25_0_degrees*1000;  

load Freeform_F25_72_degrees.mat;  

part_at_72_degreees = Freeform_F25_72_degrees*1000;  

load Freeform_F25_144_degrees.mat;  

part_at_144_degreees = Freeform_F25_144_degrees*1000;  

load Freeform_F25_216_degrees.mat;  

part_at_216_degreees = Freeform_F25_216_degrees*1000;  

load Freeform_F25_288_degrees.mat;  

part_at_288_degreees = Freeform_F25_288_degrees*1000;  

  

% Extract the RV components of the test-surface 

c = cell (1,5); % place the 5 measurements in an array to find the average 

c{1} = part_at_0_degreees; c{2} = part_at_72_degreees; c{3} = part_at_144_degreees; 

c{4} = part_at_216_degreees; c{5} = part_at_288_degreees; 

d = cat(3, c{:}); 

  

mean_part_rotate = nanmean(d,3); % average the rotated measurements to drop out  

% the RV components of the rotated part. 

outputPrv = part_at_0_degreees - mean_part_rotate; % the RV component of the  
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% test-surface 

  

set (0,'DefaultFigureColormap', jet) % set the default colormap as "jet". 

  

figure % plot the RV component of the test-surface 

b=imagesc(outputPrv); set(b,'AlphaData',~isnan(outputPrv)); axis image; colorbar; 

h = colorbar;ylabel(h,'height (\mum)','fontname','times new roman', 'fontsize', 36, 

'FontWeight', 'bold'); % caxis([-5 3]); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold') 

set(gca,'XTick',[0.5,length(outputPrv)/2,length(outputPrv)]) % sets x-axis tick locations 

set(gca,'XTickLabel',{'0','17.5','35'}); % labels the x-axis 

set(gca,'YTick',[0.5,length(outputPrv)/2,length(outputPrv)]) % sets y-axis tick locations 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_z = (sqrt(nanmean(outputPrv(:).^2))); % Root-Mean-Square after ignoring the  

% NaN values 

RMS_z = sprintf('%0.4f', RMS_z); % display the rms with 4 decimal places 

xlabel(['rms: ' num2str(RMS_z),' \mum'],'fontsize',36);ylabel('(mm)','fontsize',36);  

% inserts the rms value  

title ('Part_R_V') 

  

% Extract the RV components of the machine errors 

mean_angle = 0:360/rotations:360-(360/rotations); % a vector containing the  

% rotation angles 

  

for i = 1 : length(mean_angle) 

    machine_rotate (:,:,i) = imrotate(mean_part_rotate,mean_angle(i),'crop');  

     

    one_machine_rotate = machine_rotate(:,:,i); 

    one_machine_rotate(one_machine_rotate == 0) = NaN; 

    RMS_machine_rotate(i) = sqrt(nanmean(one_machine_rotate(:).^2)); % calculate the 

% rms of each machine_rotate map and store in an array 

end 

 

mean_machine_rotate = nanmean(machine_rotate,3); % average the rotated  

% measurements along the 3rd dimension. This drops out the RV components  

% of the machine. 

 

outputMrv = mean_part_rotate - mean_machine_rotate; % The RV component of the  

% machine errors 

 

figure % plot the RV component of the machine errors 

outputMrv(outputMrv == 0) = NaN; 

b = imagesc(outputMrv); set(b,'AlphaData',~isnan(outputMrv));  axis image; colorbar;  

h = colorbar;ylabel(h,'height (\mum)', 'fontname','times new roman', 'fontsize', 36, 

'FontWeight', 'bold'); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold') 
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set(gca,'XTick',[0.5,length(outputMrv)/2,length(outputMrv)]) % sets x-axis tick locations 

set(gca,'XTickLabel',{'0','17.5','35'}); % this labels the x-axis  

set(gca,'YTick',[0.5,length(outputMrv)/2,length(outputMrv)]) % sets y-axis tick locations 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_z = (sqrt(nanmean(outputMrv(:).^2))); % Root-Mean-Square after ignoring the  

% NaN values 

RMS_z = sprintf('%0.4f', RMS_z); % display the rms with 4 decimal places 

xlabel(['rms: ' num2str(RMS_z),' \mum'],'fontsize',36);ylabel('(mm)','fontsize',36);  

% inserts the rms value 

title('Machine_R_V') 

  

save outputPrv.mat; save outputMrv.mat 

  

% Separate the Rotationally Invariant Components 

 

% At least, 2 measurements are required: a measurement of the part in its initial position 

% and a measurement after the part is translated by a known distance, delta.  

% In these simulations, pads were added to the maps to depict translations. 

 

load Freeform_F25_0_degrees_sheared_1mm.mat % load the height map of the  

% translated measurement 

sheared_part_at_0_degrees = Freeform_F25_0_degrees_sheared_1mm*1000; 

 

Meas = mean_machine_rotate; % Depicts the height map after Prv and Mrv have  

% been subtracted from a measurement of the part in its initial position. 

  

Meas1 = padarray(Meas,[delta,0],NaN,'pre'); % Pads zero-valued columns to the  

% left of Meas1. This simulates a translation of the part. 

 

%% Remove RVs from the sheared measurement 

mean_angle = 0:360/rotations:360-(360/rotations); % a vector containing the  

% rotation angles 

  

for i = 1:length(mean_angle) 

    sheared_rotate(:,:,i) = imrotate(sheared_part_at_0_degrees,mean_angle(i),'crop');  

    one_sheared_rotate = sheared_rotate(:,:,i); 

    one_sheared_rotate(one_sheared_rotate == 0) = NaN; 

    RMS_sheared_rotate(i) = sqrt(nanmean(one_sheared_rotate(:).^2));% calculate the  

    % rms of each sheared_rotate map and store in an array 

end 

mean_sheared_rotate = nanmean(sheared_rotate,3); % average the rotations of the  

% sheared measurements along the 3rd dimension. This drops out the RV components of 

% the sheared measurement. 

sheared_RV_components = sheared_part_at_0_degrees - mean_sheared_rotate; %The  

% RV component of the sheared 
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Meas2 = padarray(mean_sheared_rotate,[delta,0],NaN,'post'); % Pads zero-valued 

columns to the left of RI component of the sheared measurement. 

  

slope = (Meas2 - Meas1)/delta; % An approximate slope of the part. This difference  

% drops out the machine's contributions. 

l = (length(mean_machine_rotate)); 

g = (slope(ceil(l/2)-1:l-1,ceil(l/2))); % A profile from the approximate slope, from which 

% the mean radial profile can be obtained  

 

% Build the design matrix 

H = zeros(length(g)); % H-sized matrix filled with zeros 

idx = delta+1; % inserts '1' in the first row 

n = length(g); 

turnIdx = n * ( idx - 1 ) + 1; % 1 element after the end of the idx-1 row 

H( idx:(n-1):turnIdx ) = -1; 

H( turnIdx:(n+1):end ) = -1; 

H = H.'; 

 

% Solve for the RI radial profile  

 

% To solve for the radial profile by the noise-modified matrix, uncomment the next 3  

% lines and comment the succeeding 2. 

 

% H_noise = (H + 1.000000000001*eye(size(H))); % adds 1.000000000001 noise along 

%% the diagonal 

% f = H_noise\g;  

 

H_pinv = H + 1*eye(size(H)); 

f = pinv(H_pinv)*g; 

 

% Generate an RI surface from the RI radial profile 

height = (f); 

radius = length(f)-1; 

[X,Y]=ndgrid(linspace(-radius,radius,l)); 

R=sqrt(X.^2+Y.^2); 

outputPri = interp1(0:radius,f,R(:,:),'spline'); % The RI component of the test-surface 

sd = find(isnan(mean_machine_rotate)); 

for i=(sd) 

    outputPri(i) = NaN; 

end 

             

figure % plot the RI component of the test-surface 

b = imagesc(outputPri); set(b,'AlphaData',~isnan(outputPri));  axis image; colorbar; 

caxis([-.004 .004]); 

h = colorbar;ylabel(h,'height (\mum)','fontname','times new 

roman','fontsize',36,'FontWeight','bold'); % caxis([-5 3]); 



166 

 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold') 

set(gca,'XTick',[0.5,length(mean_machine_rotate)/2,length(mean_machine_rotate)])  

set(gca,'XTickLabel',{'0','17.5','35'}); % this labels the x-axis 

set(gca,'YTick',[0.5,length(mean_machine_rotate)/2,length(mean_machine_rotate)]) 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_z = (sqrt(nanmean(outputPri(:).^2))); 

RMS_z = sprintf('%0.4f', RMS_z); 

xlabel(['rms: ' num2str(RMS_z),' \mum'],'fontsize',36);ylabel('(mm)','fontsize',36); 

title('Part_R_I') 

  

best_est_part = outputPri + outputPrv; % The test-surface without the machine errors 

outputMri = mean_machine_rotate - outputPri;  

machine_errors = outputMri + outputMrv; % The machine error contributions 

 

save outputPri.mat; save outputMri.mat 

save best_est_part.mat; save machine_errors.mat 

%---------------------------------------------------------------------------------------------------------

%-----------------------------------------End of Program 1------------------------------------------- 

 

***** 

 

%---------------------------------------------------------------------------------------------------------

%----------------Program 2: Monte Carlo uncertainty from the rotation angles---------------- 

 

% This program estimates the standard uncertainty in the best-estimate of the surface.  

% Input parameter: rotation angles. 

clear all; close all; clc 

  

load new_best_estimate_part_F25.mat; % Load the best-estimate height map 

best_est_freeform_F25 = new_best_estimate_part_F25;  

  

set (0,'DefaultFigureColormap', jet) % set the default colormap as "jet". 

  

% An inner loop rotated the best-estimate to each uncertain angle. The average of these  

% was subtracted from the best-estimate, and one possible outcome of the rotationally  

% varying component was extracted. 

 

% An outer loop repeated the inner loop multiple times and the possible outcomes from 

% the iterations were stored in an array. The standard deviation down the  

% array is calculated. 

 

% Input variables: 

rotations = 5; % number of rotated positions of the test-part 

dev = 0.05; % upper/lower deviation from the mean rotation angle in degrees 

iterations = 1000; % Number of times the Monte Carlo loop should be repeated.  

 



167 

 

nominal_angle = 0:360/rotations:360-(360/rotations); % lists out the angles of rotation 

low_lim = nominal_angle - dev; % lower limit of the input parameter 

up_lim = nominal_angle + dev; % upper limit of the input parameter 

  

iterations = 1: iterations; 

 

progressbar(0);progressbar('Prv Monte Carlo Simulation'); % Initialize and label the 

single progress bar 

  

tic 

for  ii = 1:length(iterations) 

    for i = 1:length(nominal_angle) 

        angle_uncert = low_lim + (up_lim - low_lim).*rand(1,length(nominal_angle));   

        % Generates rotation angles. Each angle is a random number within low_lim  

        % and up_lim. E.g., for a mean angle of 72, with limits +/- 1, a random number is 

        % generated between 71 and 73. 

        part_rotate(:,:,i) = imrotate(best_est_freeform_F25,angle_uncert(i),'bicubic','crop');   

        % Depicts measurements of the part at each rotated position of the part.      

        mean_part_rotate = mean(part_rotate,3); % average the rotated measurements,  

        % part_rotate, along the 3rd dimension. This drops out the RV components of the   

        % rotated part 

        trial_Prv = best_est_freeform_F25 - mean_part_rotate; % One possible outcome of   

        % the RV component of the part 

        RMS_trial_Prv = sqrt(nanmean(trial_Prv(:).^2)); % rms of the Prv map 

    end 

    Prvnew_Uncert(:,:,ii) = trial_Prv;% Stacks the Prv from each loop into an array 

    RMS_Prvnew_Uncert(ii) = RMS_trial_Prv;% Stacks the Prv's rms from each loop in  

    % an array 

     

    % Code controlling the progress bar... 

    progressbar(ii/(length(iterations))) % Update the progress bar 

    

end 

toc 

  

% Convergence of the Monte Carlo. 

tic 

outputPrv = mean(Prvnew_Uncert,3); % Average of the Prv maps along the 3rd  

% dimension. 

  

RMS_outputPrv = sqrt(nanmean(outputPrv(:).^2)); % rms of the convergence 

Std_Prvnew_Uncert = (std(Prvnew_Uncert,0,3))/sqrt(length(iterations)); % computes  

% the standard deviation down the array, along the third dimension 

Std_Prvnew_Uncert(Std_Prvnew_Uncert == 0) = NaN; 

toc 
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%% Plots of the convergence and standard uncertainty maps 

  

figure%  

b = imagesc(outputPrv); set(b,'AlphaData',~isnan(outputPrv));  axis image; colorbar 

h = colorbar;ylabel(h,'height (\mum)','fontsize',36); % caxis([0 3]); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold') 

set(gca,'XTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'XTickLabel',{'0','17.5','35'});     

set(gca,'YTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_outputPrv = (sqrt(nanmean(outputPrv(:).^2)));% Root-Mean-Square after ignoring 

% the NaN values 

RMS_outputPrv = sprintf('%0.4f', RMS_outputPrv); % display the rms with 4 decimal  

% places 

xlabel(['rms: ' num2str(RMS_outputPrv),' \mum'],'fontsize',36); 

ylabel('(mm)','fontsize',36);  

title('Monte Carlo P_R_V Convergence') 

  

figure 

b = imagesc(Std_Prvnew_Uncert);  

set(b,'AlphaData',~isnan(Std_Prvnew_Uncert));  axis image; colorbar 

h = colorbar;ylabel(h,'height (\mum)','fontsize',36); % caxis([0 0.002]); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold')    

set(gca,'XTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'XTickLabel',{'0','17.5','35'}); 

set(gca,'YTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_Std_Prvnew_Uncert = (sqrt(nanmean(Std_Prvnew_Uncert(:).^2))); % Root-Mean-

% Square after ignoring the NaN values 

xlabel(['rms: ' num2str(RMS_Std_Prvnew_Uncert),' \mum'],'fontsize',36); 

ylabel('(mm)','fontsize',36); 

title('u_R_o_t_A_n_g_l_e','fontsize',36) 

 

Convergence_Rot_Angle = outputPrv; save Convergence_Rot_Angle.mat 

Uncertainty_Rot_Angle = Std_Prvnew_Uncert; save Uncertainty_Rot_Angle.mat 

%---------------------------------------------------------------------------------------------------------

%-----------------------------------------End of Program 2------------------------------------------- 

 

***** 

 

%---------------------------------------------------------------------------------------------------------

%----------Program 3: Monte Carlo uncertainty from a translating axis of rotation---------- 

 

% To depict the out of centering that might occur during rotations, NaN 

% pads were added around the best-estimate map. The out-of-center uncertainty  

% was applied to the test part but not the machine error components  
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clear all; close all; clc 

load new_best_estimate_part_F25.mat; % Load the best-estimate height map 

best_est_freeform_F25 = new_best_estimate_part_F25;  

  

set (0,'DefaultFigureColormap', jet) % set the default colormap as "jet". 

  

% Input variables: 

rotations = 5; % number of rotated positions of the part 

dev = 0; % upper/lower deviations from the mean rotation angle 

Out_of_Cen = 1; % the max. radial out-of-center deviation in pixels 

iterations = 1000; % number of times the Monte Carlo loop should be repeated 

 

nominal_angle = 0:360/rotations:360-(360/rotations); % lists out the angles of rotation 

low_lim = nominal_angle - dev; % lower limit of the input parameter 

up_lim = nominal_angle + dev; % upper limit of the input parameter 

  

Out_of_Cen = 1:1:Out_of_Cen; 

  

iterations = 1 : iterations; 

 

best_est_freeform_F25_pad = padarray(best_est_freeform_F25,[length(Out_of_Cen), 

length(Out_of_Cen)], NaN); 

  

progressbar(0);progressbar('Prv Monte Carlo Simulation'); % Initialize and label the 

single progress bar 

  

 tic 

for  ii = 1:length(iterations) 

    for i = 1:length(nominal_angle) 

        angle_uncert = low_lim + (up_lim - low_lim).* rand (1,length(nominal_angle));   

        % generates rotation angles where each angle is a random number within  

        % low_lim and up_lim. 

        

        Out_of_Cen_left = round(rand.*(2*length(Out_of_Cen))); % generates a random  

        % integer between 1 and Out_of_Cen 

        partPad = padarray(best_est_freeform_F25,[0,Out_of_Cen_left],NaN,'pre'); % Pad  

        % the left side of the part with NaN 

        partPad = padarray(partPad,[0,(2*length(Out_of_Cen) - Out_of_Cen_left)],… 

        NaN, 'post'); % Pad the right side of the part with NaN 

  

        Out_of_Cen_up = round(rand.*(2*length(Out_of_Cen))); % generates a random  

        % integer between 1 and Out_of_Cen 

        partPad = padarray(partPad,[Out_of_Cen_up,0],NaN,'pre'); % Pad the top side of the  

        % part with NaN 

        partPad = padarray(partPad,[(2*length(Out_of_Cen) - Out_of_Cen_up),0],…  

        NaN,'post'); % Pad the bottom side of the part with NaN 
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        part_rotate(:,:,i) = imrotate(partPad,angle_uncert(i),'bicubic','crop'); % depicts  

        % measurements of the part at each rotated position of the part. 

        mean_part_rotate = mean(part_rotate,3); % average the rotated measurements along  

        % the 3rd dimension. This drops out the RV components of the rotated part.  

        trial_Prv = best_est_freeform_F25_pad - mean_part_rotate; % the RV component of  

        % the test surface 

        trial_Prv(isnan(trial_Prv)) = 0; % replaces empty cells with zero   

        RMStrialPrv = sqrt(nanmean(trial_Prv(:).^2)); % rms of the Prv map 

        trial_Prv(trial_Prv == 0) = NaN; 

    end 

    Prvnew_Uncert_O_o_C(:,:,ii) = trial_Prv; % Stacks the Prv from each loop into an  

    % array 

    Prvnew_Uncert_O_o_C(Prvnew_Uncert_O_o_C == 0) = NaN; 

    RMS_Prvnew_Uncert_O_o_C(ii) = RMStrialPrv; % Stacks the Prv's rms from each  

    % loop into an array 

     

    % Code controlling the progress bar... 

    progressbar(ii/(length(iterations))) % Update the progress bar 

    

end 

toc 

  

tic 

mean_Prv_O_o_C = nanmean(Prvnew_Uncert_O_o_C,3); % Monte Carlo convergence 

RMS_mean_Prv_O_o_C = sqrt(nanmean(mean_Prv_O_o_C(:).^2)); 

Prvnew_Uncert_O_o_C(isnan(Prvnew_Uncert_O_o_C)) = 0; 

Std_Prvnew_Uncert_O_o_C = (std(Prvnew_Uncert_O_o_C,0,3))/sqrt(length(iterations)); 

Std_Prvnew_Uncert_O_o_C(Std_Prvnew_Uncert_O_o_C == 0) = NaN; 

toc 

 

xmin = 1 + length(Out_of_Cen); ymin = 1 + length(Out_of_Cen); 

xwidth = length(best_est_freeform_F25) - 1;  

yheight = length(best_est_freeform_F25) - 1; 

mean_Prv_O_o_C = imcrop(mean_Prv_O_o_C,[xmin ymin xwidth yheight]); 

Std_Prvnew_Uncert_O_o_C = imcrop(Std_Prvnew_Uncert_O_o_C,[xmin ymin…  

xwidth yheight]); 

mean_part_rotate = imcrop(mean_part_rotate,[xmin ymin xwidth yheight]); 

mean_Prv_O_o_C(sd) = NaN;Std_Prvnew_Uncert_O_o_C(sd) = NaN; 

%% Plots of the convergence and standard uncertainty 

figure% plot of the best estimate (average) of the 1000 Prv trials 

b=imagesc(mean_Prv_O_o_C); set(b,'AlphaData',~isnan(mean_Prv_O_o_C));  

axis image; colorbar; % caxis([-1 1]); 

h = colorbar;ylabel(h,'height (\mum)','fontname','times new roman','fontsize',36,… 

'FontWeight','bold'); caxis([-5 3]); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold') 
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set(gca,'XTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'XTickLabel',{'0','17.5','35'}); 

set(gca,'YTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_mean_Prv_O_o_C = (sqrt(nanmean(mean_Prv_O_o_C(:).^2))); 

RMS_mean_Prv_O_o_C = sprintf('%0.4f', RMS_mean_Prv_O_o_C); 

xlabel(['rms: ' num2str(RMS_mean_Prv_O_o_C),' \mum'],'fontsize',36); 

ylabel('(mm)','fontsize',36); 

title('Monte Carlo Convergence') 

     

figure 

b=imagesc(Std_Prvnew_Uncert_O_o_C); 

set(b,'AlphaData',~isnan(Std_Prvnew_Uncert_O_o_C)); axis image;  colorbar; 

h = colorbar;ylabel(h,'height (\mum)','fontname','times new roman', 'fontsize',36,… 

'FontWeight','bold'); % caxis([-5 3]); 

set(gca,'fontname','times new roman','fontsize',36,'FontWeight','bold')  

set(gca,'XTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'XTickLabel',{'0','17.5','35'});    

set(gca,'YTick',[0.5,length(best_est_freeform_F25)/2,length(best_est_freeform_F25)]) 

set(gca,'YTickLabel',{'35','17.5','0'}); 

RMS_Std_Prvnew_Uncert_O_o_C = 

(sqrt(nanmean(Std_Prvnew_Uncert_O_o_C(:).^2))); 

RMS_Std_Prvnew_Uncert_O_o_C = sprintf('%0.4f',… 

RMS_Std_Prvnew_Uncert_O_o_C);  

xlabel(['rms: ' num2str(RMS_Std_Prvnew_Uncert_O_o_C),' \mum'],'fontsize',36); 

ylabel('(mm)','fontsize',36); 

title('u_R_o_t_A_x_i_s','fontsize',36) 

 

Convergence_Rot_Axis = mean_Prv_O_o_C; save Convergence_Rot_Axis.mat 

Uncertainty_Rot_Axis = Std_Prvnew_Uncert_O_o_C_resized;  

save Uncertainty_Rot_Axis.mat 

%---------------------------------------------------------------------------------------------------------

%-----------------------------------------End of Program 3------------------------------------------- 

 

***** 

 

%---------------------------------------------------------------------------------------------------------

%-------------Program 4: Monte Carlo uncertainty from the translation distance------------- 

 

clear all; close all; clc 

load new_best_estimate_part_F25.mat;  

best_est_freeform_F25 = new_best_estimate_part_F25;  

  

set(0,'DefaultFigureColormap',jet) % set the default colormap as "jet". 
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% Input variables: 

rotations = 5; % number of rotated positions of the part 

iterations = 1000; % Number of times the Monte Carlo loop should be repeated.  

 

mean_angle = 0:360/rotations:360-(360/rotations); % lists out the angles of rotation 

 

for i = 1:length(mean_angle) 

    part_rotate(:,:,i) = imrotate(best_est_freeform_F25,mean_angle(i),'crop');  

    one_part_rotate = part_rotate(:,:,i); 

    RMS_part_rotate(i) = sqrt(nanmean(one_part_rotate(:).^2)); 

end 

  

mean_part_rotate = mean(part_rotate,3); % average the rotated measurements along the 

% 3rd dimension. This drops out the RV components of the rotated part. 

outputPrv = best_est_freeform_F25 - mean_part_rotate; % the RV component of the part 

       

iterations = 1:iterations; 

delta_spread = randi([26,32],[1,length(iterations)]); % edit the upper and lower limits of 

% the translation distance in randi([mini,maxi] 

 

progressbar(0);progressbar('Monte Carlo Simulation: translation distance'); % Initialize 

% and label the single progress bar 

  

tic 

for  i = 1:length(iterations) 

    delta = delta_spread(i); 

     

    Meas1_ri = padarray(mean_part_rotate,[0,delta],NaN,'pre'); % Pads zero-valued  

    % columns to the left of Meas1. This helps simulate a translation of the part. 

     

    Meas2_ri = padarray(mean_part_rotate,[0,delta],NaN,'post'); % padding to the right  

    %side of the part depicts a translation to the left 

     

    slope = (Meas2_ri - Meas1_ri)/delta; % approximate slope of the part. This difference  

    % drops out the machine's error contributions 

     

    l = (length(best_est_freeform_F25)); 

    g = (slope(ceil(l/2),ceil(l/2):l))';  

  

    % Build the design matrix: 

    H = zeros(length(g));  

    idx = delta+1;  

    n = length(g); 

    turnIdx = n * ( idx - 1 ) + 1;  

    H( idx:(n-1):turnIdx ) = -1; 

    H( turnIdx:(n+1):end ) = -1; 
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    H = H.'; 

    H = H + 1*eye(size(H)); 

    f = pinv(H)*g; % calculate f from the pseudo-inverse 

    % Generate an RI surface from the RI radial profile 

    height = (f); 

    radius = length(f)-1; 

    [X,Y]=ndgrid(linspace(-radius,radius,l)); 

    R=sqrt(X.^2+Y.^2); 

    outputPri = interp1(0:radius,f,R(:,:),'spline'); 

    sd = find(isnan(mean_part_rotate)); 

    for ii=(sd) 

        outputPri(ii) = NaN; 

    end 

         

    outputPri_array(:,:,i) = outputPri; 

     % Code controlling the progress bar... 

    progressbar(i/(length(iterations))) % Update the progress bar 

end 

toc 

  

Convergence_Trans_Dist = mean(outputPri_array,3); 

Uncertainty_Trans_Dist = (std(outputPri_array,0,3))/sqrt(length(iterations)); 

  

save Convergence_Trans_Dist.mat 

save Uncertainty_Trans_Dist.mat 

%---------------------------------------------------------------------------------------------------------

%-----------------------------------------End of Program 4------------------------------------------- 

 

 


