
SECURING THE DATA STORAGE AND PROCESSING IN CLOUD COMPUTING
ENVIRONMENT

by

Rodney Owens

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Computing and Information Systems

Charlotte

2013

Approved by:

Dr. Weichao Wang

Dr. Xintao Wu

Dr. Mohamed Shehab

Dr. Bill Chu

Dr. Wei Zhao

ii

c⃝2013
Rodney Owens

ALL RIGHTS RESERVED

iii

ABSTRACT

RODNEY OWENS. Securing the data storage and processing in Cloud Computing
Environment. (Under the direction of DR. WEICHAO WANG)

Organizations increasingly utilize cloud computing architectures to reduce costs and en-

ergy consumption both in the data warehouse and on mobile devices by better utilizing

the computing resources available. However, the security and privacy issues with publicly

available cloud computing infrastructures have not been studied to a sufficient depth for or-

ganizations and individuals to be fully informed of the risks; neither are private nor public

clouds prepared to properly secure their connections as middle-men between mobile de-

vices which use encryption and external data providers which neglect to encrypt their data.

Furthermore, cloud computing providers are not well informed of the risks associated with

policy and techniques they could implement to mitigate those risks.

In this dissertation, we present a new layered understanding of public cloud comput-

ing. On the high level, we concentrate on the overall architecture and how information

is processed and transmitted. The key idea is to secure information from outside attack

and monitoring. We use techniques such as separating virtual machine roles, re-spawning

virtual machines in high succession, and cryptography-based access control to achieve a

high-level assurance of public cloud computing security and privacy. On the low level,

we explore security and privacy issues on the memory management level. We present a

mechanism for the prevention of automatic virtual machine memory guessing attacks.

iv

ACKNOWLEDGMENTS

This dissertation would not have happened without the help, inspiration, and encourage-

ment of many people along the way.

First and foremost, I want to thank my advisor, Prof. Weichao Wang. I am very fortunate

to have the privilege of being his graduate student. Dr. Wang is readily available to provide

guidance and direction in my research. His support goes beyond his role as my advisor and

I will never forget the fun we’ve had along the way.

I am honored to have Professors Xintao Wu, Mohamed Shehab, Bill Chu, and Wei Zhao

serve on my PhD Committee. Their scrutiny has helped shape this dissertation. I want

to especially thank Bill Chu for handling the details necessary for my temporary teaching

position in ITIS 3200, and Mohamed Shehab for his guidance in how to steer students

towards an education in information security.

I could not have completed my studies at UNCC without the financial support of the

Charlotte Information Systems Security Association, the NSF Partnerships for International

Research and Education, and Graduate Assistance in Areas of National Need. These pro-

grams not only provided financial support, but they all have adjusted my perspectives on

information security, teaching, and international research.

Last, but not least, I would like to thank my family and friends, most especially my

parents, Roger and Millie, my wife, Anna, and my Savior, Jesus Christ, who’s constant

support gave me the drive to pursue my goals.

v

TABLE OF CONTENTS

LIST OF FIGURES vii

CHAPTER 1: INTRODUCTION 1

1.1 Motivation 1

1.2 Contribution 15

1.3 Outline 16

CHAPTER 2: SECURE AND EFFICIENT ACCESS TO OUTSOURCED DATA 17

2.1 Introduction 17

2.2 Related Work 20

2.3 Problem Definition 23

2.4 Secure and Efficient Data Access 26

2.5 Calculating the Key Set S ′ 34

2.6 Handling Dynamics in System 35

2.7 Analysis of Overhead: an Example 42

2.8 Discussion 47

2.9 Conclusions 49

CHAPTER 3: DE-DUPLICATION VULNERABILITY AND DEFENSE 51

3.1 Introduction 52

3.2 Attacks through Memory Deduplication 56

3.3 Implementation and Experimental Results 63

3.4 Guest Based Prevention of Memory Deduplication Fingerprinting 77

3.5 Discussion 82

vi

3.6 Conclusion 85

CHAPTER 4: PRESERVING DATA QUERY PRIVACY IN MOBILE MASHUPS 87

4.1 Introduction 87

4.2 Related Work 89

4.3 The Proposed Approaches 91

4.4 Experiment Results and Evaluation 98

4.5 Conclusion 102

CHAPTER 5: CONCLUSION 104

REFERENCES 107

vii

LIST OF FIGURES

FIGURE 1: A diagram of our target universe. 11

FIGURE 2: A model of our target areas. 15

FIGURE 3: Illustration of the application scenario. 24

FIGURE 4: Key derivation hierarchies. 29

FIGURE 5: Handling updates to data blocks. 41

FIGURE 6: Computation time caused by the proposed approach. 44

FIGURE 7: Communication overhead of the proposed approach. 45

FIGURE 8: Memory de-duplication reduces the OS footprint size. 54

FIGURE 9: The proposed fingerprinting procedure. 62

FIGURE 10: OS fingerprinting results when CPU and memory demands are low. 67

FIGURE 11: OS fingerprinting under medium computation workload. 68

FIGURE 12: OS fingerprinting under medium level memory demand. 68

FIGURE 13: OS fingerprinting under medium workload and memory demand. 69

FIGURE 14: OS fingerprinting under extreme workload and memory demand. 69

FIGURE 15: Screenshot of 3D-IRCADb2.2, as used in experimentation. 70

FIGURE 16: Results with 3D-IRCADb1.1 under idle level computation workload. 74

FIGURE 17: Results with 3D-IRCADb1.1 under moderate computation workload. 75

FIGURE 18: Results with 3D-IRCADb1.3 under moderate computation workload. 76

FIGURE 19: 3D-IRCADb1.1 with high level workload and memory demand. 76

FIGURE 20: Defense results under different orders of magnitude. 78

FIGURE 21: Page write results with and without defense under idle workload. 79

viii

FIGURE 22: Write results with/without defense; high CPU/low memory usage. 80

FIGURE 23: Mashup scenarios in mobile cloud. 93

FIGURE 24: Privacy preservation for server-side mashups. 94

FIGURE 25: CloneCloud based privacy preservation. 96

FIGURE 26: CloneCloud based data acquirement procedure. 100

CHAPTER 1: INTRODUCTION

1.1 Motivation

With the nature of the modern economy, it is becoming increasingly important to min-

imize the costs of a computing infrastructure. Organizations are looking to do more with

less, by making management easier with less man-power, while decreasing the total cost

of ownership associated with service oriented computing resources. Due to these con-

straints, organizations are increasingly turning to cloud-computing resources. Since the

early 2000’s, Cloud computing is often a vague term that is gaining popularity. It is im-

portant to pin down what, precisely, is being discussed when the term ‘cloud computing’

is used, in order to effectively discuss the importance of this technological trend in today’s

world. Currently, the trend is to describe cloud computing as ‘Everything as a Service’

or ‘EaaS.’ Infrastructure as a service (IaaS), which is a more specific concept, offers the

consumer a greater degree of control than other types of cloud services. The authors of

[63] explain that “the consumer does not manage or control the underlying cloud infras-

tructure but has control over operating systems, storage, and deployed applications; and

possibly limited control of select networking components (e.g., host firewalls).” Software,

computer storage, and even a desktop are transformed into services offered by providers

such as Google and Amazon. [36] This explanation is adequate for the average consumer,

2

but something more specific is needed to obtain a better understanding of these concepts.

Cloud computing, according to [63], is the following:

Cloud computing is a model for enabling ubiquitous, convenient, on-demand

network access to a shared pool of configurable computing resources that can

be rapidly provisioned and released with minimal management effort or service

provider interaction. This cloud model is composed of five essential character-

istics, three service models, and four deployment models.

This is a generally accepted definition of cloud computing, as evidenced by its mention

in [68], which also considers it the “closest to capturing in a minimal number of words

all of the essential ideas of cloud computing.” The authors of [104] say that these listed

attributes: ubiquitous, convenient, and on-demand are the driving forces behind the in-

creasing popularity of cloud computing. The mobile cloud is the embodiment of these

elements. According to [94] the mobile cloud is “mobile services and applications deliv-

ered from a centralized (and perhaps virtualized) data center to a mobile device such as a

smart phone.” In [94] they suppose that “the mobile cloud-stands to significantly increase

the overall value of mobility, as well as radically alter the way people live, learn, work, and

play.” With so many mobile users poised to take advantage of all the services the mobile

cloud can offer, the amount of growth is anticipated to be “unprecedented.”

Businesses, particularly “small and medium sized enterprises (SMEs),” can benefit from

what the ‘cloud’ has to offer. [68] As [74] states, “Cloud computing means someone else

runs your computers and software while you use what they deliver and focus on delivering

value.” Value here meaning whatever product or service your customers seek from your

3

business. The authors of [74] elaborate: “You can let your people concentrate on doing

their jobs, instead of worrying about which new technology needs to be purchased.”

Cloud computing does more than allow your business to become more focused. The

benefits are monetary, and easily calculable. In the cloud computing world, the business

pays for the outcome, not the technology. [74] The authors of [74] describe it this way:

You no longer need to own some of your computing equipment, which also

means you don’t need staff to maintain it. An external provider can handle

all this for you as a service, just like Starbucks manages the coffee-making

equipment and the barristers. You get a reduced price through economies of

scale.

Normally, a business would need to buy and maintain their own servers and networks.

Cost of these operations include: electricity to run the machines, salaries to those knowl-

edgeable enough to keep them functioning and secure, and replacing technologies as they

rapidly change. When all the equipment is stored in a large warehouse, in a data center

(think Google or Amazon), this reduces all of these costs. Storage as a service (STaaS) is a

fundamental cloud service that takes advantage of these large data centers. The total cost for

a data warehouse to store data is lower than for individual consumers. The authors of [68]

conjecture that “another driver of cloud computing is an evolution from small, distributed,

data-oriented computing centers to more cost-effective, very large scale commercial cloud

services. This trend is likely to continue.” Cost-effectiveness is the key. Electricity, includ-

ing heating and cooling, costs are lower. The cost of backup and general maintenance is

also lower. The authors of [68] go on to say that “The last few years has seen rapid learning

4

in warehouse-size data centers on the design of cooling systems, environment monitoring,

and backup with the result that power utility efficiency is improving.”

Another benefit of cloud computing is that businesses do not pay for what they do not

need. The authors of [63] describe this as one of the characteristics of cloud computing,

“rapid elasticity- capabilities can be elastically provisioned and released, in some cases

automatically, to scale rapidly outward and inward commensurate with demand. To the

consumer, the capabilities available for provisioning often appear to be unlimited and can

be appropriated in any quantity at any time.” New businesses normally would have to try

to anticipate consumer demand (how quickly and to what extent it will increase) when

purchasing equipment. They don’t want newly purchased servers to become quickly over-

whelmed by a surge in high traffic, leading to down time and consumer dissatisfaction.

“Computing servers and desktop computers in a modern organization are often underuti-

lized, since IT infrastructure is configured to handle theoretical demand peaks.” [104] With

cloud computing, this is not an issue. Most of the time cloud services are pay as you go

(PAYG). When you no longer need a service, you stop paying for it. “The PAYG model’s

flexibility lets customers scale up or scale down the work they do with [providers].” [74]

Both [14] and [68] describe concerns about security and privacy as barriers to busi-

nesses embracing cloud computing. “A ‘one-size-fits-all’ approach to providing the latest

state-of-the art in security, privacy and trust technologies is neither appropriate nor even

possible,” [68] points out. The authors of [14] observe these and other barriers, including:

“unclear legal jurisdiction and data location issues, complex security and data protection

regulations, uncertain trust in suppliers, and lack of guaranteed data access and portability

between cloud system.” The authors of [39] state the following basic security issue: “For a

5

business, disclosing the personal information of customers or employees, or other business

information to a cloud provider is often unrestricted by law because no privacy law or other

law applies.” A related security issue involves encryption of data. Data that is sent over the

Internet is often encrypted for the sake of privacy and security. The authors of [68] explain

this problem:

Encryption is not a complete solution because data needs to be decrypted in

certain situations - so that computation can occur and the usual data manage-

ment functions of indexing and sorting can be carried out. Thus although data

in transit and data at rest are effectively encrypted, the need to decrypt, gener-

ally by the cloud service provider, can be a security concern.

The authors of [39] point out an inherent flaw in cloud services:

A cloud provider will also acquire transactional and relationship information

that may itself be revealing or commercially valuable. For example, the sharing

of information by two companies may signal a merger is under consideration.

In some instances, only the provider’s policy will limit use of that information.

To protect itself, a business should be intimately familiar with the terms of service set out

by the cloud provider, and be aware of potential problems. “Ultimately, however, the uptake

of cloud services is dependent upon providers and their clients trusting each other” [68]

points out. The authors of [14] describes “uncertainties about the way legal and security

issues are managed in the cloud environment are strongly correlated with uncertainties

about the relationship with and the trustworthiness of cloud providers.” The authors of

6

[83] observed that “Google’s Terms of Service explicitly disavow any warranty or any

liability for harm that might result from Google’s negligence, recklessness, malintent, or

even purposeful disregard of existing legal obligations to protect the privacy and security of

user data.” If a business gives their data to a cloud service/storage provider, how certain can

they be that the provider will act responsibly, and what would the legal repercussions be if

they are not responsible? These questions cause businesses to hesitate when considering

cloud solutions. The problems of “Data access and portability barriers are less relevant in

the short term, but are expected to become more relevant in time for all stakeholders, as

intensity of cloud usage increases,” [14] states.

The authors of [68] note a security advantage of cloud computing by stating that “Some

threats are better dealt with by warehouse-size data centers (e.g. Distributed Denial of Ser-

vice attacks, which involve attempts to prevent an internet site or service from functioning).

Applications running in the cloud are less vulnerable to these attacks.”

As stated earlier, mobile clouds offer the best that cloud computing has to offer, though

with very particular drawbacks. With a mobile device, such as a Smartphone or IPad (using

3G or 4G networks), one has access to a huge variety of applications and information

that, without the cloud, would be beyond the capabilities of such mobile devices. Smart

phone use is on the rise, with [94] predicting “that up to 60 percent of U.S. mobile phone

subscribers could be smart phone users by the end of 2013.” The rise has been so fast that it

has been difficult to predict. According to [94] “International Data Corporation’s forecast

for smart phone sales in 2010 underestimated the actual growth by half.” These smart phone

users are very interested in the mobile cloud. The authors of [94] explain it this way:

7

Smartphone users are most attracted to the mobile cloud because it can sup-

plement and augment their devices by offering better security, convenience,

and an expanded range of functionality compared to device-centric services.

Security is top of mind because users recognize the growing importance of

their mobile devices and understand how difficult life would be if their devices

were lost, stolen, or damaged. Smartphone users also recognize the key value

proposition of the mobile cloud-storing all of their critical information, media

content, and apps in the cloud, where they can be readily accessed no matter

what happens to their mobile device.

Apple advertises on their website that iCloud gives you music, photos, calendars, con-

tacts, and documents, from any device you are currently using and there is no need to

transfer data between your devices as they share the same files. The mobile user has an ac-

count that can be accessed on multiple devices with minimum effort and no repurchasing.

Apps such as SoundHound and Shazam use a cloud database and an algorithm to identify

songs by letting the owner’s mobile device “listen” to the music. Something like this would

not be possible without access to the huge store of data in the cloud and mobility.

Ultraviolet, a feature that is included with most BluRay purchases, allows you to store

your movies in the cloud and access them anywhere, anytime. This concept has appeal

because the idea of ownership is more concrete. You own the movie, and have an actual

disk that proves it. The mobile cloud (Ultraviolet) merely lets you have increased access to

it, and makes your life more convenient.

8

Business users are also taking advantage of the mobile cloud, and are far more likely

to do so if they already utilize cloud services on their PCs. [96] Mobile services they

utilize include dropped-call reconnect, visual voicemail, messaging history, mobile con-

ferencing, document management, and “specific business apps that allow them to extend

the boundaries of their offices.” [96] Whether for business or personal use, [95] believes

mobile users are interested in having access to a virtual desktop infrastructure (VDI) that

they can personalize, and would have access to from any mobile device. The idea of be-

ing able to utilize a cloud service, but at the same time have something personalized, not

one-size-fits-all, greatly appeals to consumers.

The authors of [94] mention security as being a benefit, but mobile cloud usage involves

a certain amount of risk. The authors of [49] quell the enthusiasm for the mobile cloud

by pointing out that “mobile devices, particularly embedded devices, require proper set

up and protection to be of benefit overall, which include restrictions on the type of data

maintained on the device.” The authors of [24] submit that, with the increased popularity

of smart phone use, “now is a good time to understand the security threat to the mobile

cloud and to begin to prepare for an inevitable increase in security threats.”

One threat is malware, as [24] points out, “smart phones, being sophisticated and fully

featured computers, are receiving the growing attention of malware creators.” The authors

of [15] state that “there are three main [mobile] security threats – malware, privacy and

authenticating access.” He downplays the threat by arguing that, since operating systems

are more diverse on mobile devices, attacks will be less likely than with a PC. “It’s hard to

know where to focus the attack with the mobile cloud,” [15] conjectures. He states directly

afterwards that “There are other attack vectors people could potentially use. For instance,

9

one that will work on any mobile device is an SMS message that can get to the device

and persuade it to part with information.” In [17]’s stipulations about cloud computing,

it requires “Data (including sensitive personal information) must be encrypted in transit

and at rest where potentially at risk (e.g., on mobile devices).” Though, as this chapter has

pointed out previously, encryption does not guarantee security.

Other institutions, including governmental, scientific and healthcare, may benefit from

cloud computing technology. The authors of [68] mention “the rapid evolution and widespread

deployment of sensors - in the soil, tree canopies, in gene sequencing machines, in tele-

scopes, on the sea floor.” The point of which would be to “communicate their location,

identity, and local measurements of their environment wirelessly over low-power computer

networks.” This data would be compiled and analyzed in the cloud, where data could be

shared, and conclusions reached, far more quickly than would otherwise be possible. The

authors of [52] grant that “The cloud’s vast computing power is making it easier and less

expensive for companies and clinicians to discover new drugs and medical treatments. An-

alyzing data that used to take years and tens of millions of dollars can now be done for a

fraction of that amount.” “The ability to analyze vast amounts of data in this way is chang-

ing lots of industries - including healthcare.” The authors of [87] discuss both the benefits

and challenges of having all medical records ‘in the cloud.’ While it enables easy com-

munication between all people in the medical profession (doctors, nurses, pharmacists) it

also means risking the privacy of patients. Medical professionals will have to decide if the

convenience is worth the risk.

Another trend in the world of cloud computing is mashups. Mashups integrate existing

web services and content to create a new web tool. The authors of [56] are more specific,

10

defining a mashup as “a Web-based application that is created by combining and process-

ing on-line third party resources, that contribute with data, presentation or functionality.”

Facebook and Google maps are examples of popular mashups. Facebook is littered with

mashups, although they call them ‘apps.’ Various games (such as Angry Birds and Words

with Friends), and websites such as Pinterest, hulu and Goodreads are part of the mashups

available on Facebook. You can search for restaurants in a specific area, and Google maps

will show you a map with the exact locations of those restaurants pinpointed. The next

step, requesting directions to these places, is also provided on the same page. These ser-

vices don’t originate from a single place, but are brought together for the convenience of

the user. There are two types of mashups- server side and client side. These two categories

are based on where the data is ‘mashed up.’ Server side mashups occur on the server, and

client side mashups integrate services and content on the client. [71] Usually a combination

of server-side and client-side is used in the creation of a mashup. [56]

Security is a problem for mashups, particularly when it comes data integrity and privacy.

Not much is being written about these problems. The authors of [56] state that “While

security challenges have been identified for mashups only few approaches exist that try to

handle security lacks and identity of mashups.” The provider does not have full control over

the content of the mashup, so [56] determines that “This requires mechanisms to control

the user connection and the data security.” Trust certificates, which would “assure the end-

user the trustworthiness of the content and also the integrity of the mapping application,”

are recommended for use with mashups. These certificates would work in much the same

way as certificates given to online shopping sites. [56] The issue of same-origin policy

11

Figure 1: A diagram of our target universe.

12

has been mentioned in certain contexts, such as what [5] provides. First, an explanation of

same-origin policy, given by [5]:

Browsers implement the same-origin policy as a protection mechanism in or-

der to isolate Web applications coming from different domains from each other,

under an assumption that different domains represent different originators. As

a result, if applications in multiple windows or frames are downloaded from

different servers, they will not be able to access each other’s data and scripts.

Same-origin policies make it difficult for mashups to work, so programmers

‘bypass’ the problem. What isn’t discussed, however, is the security vulner-

abilities this opens up. If your bank account, or other similarly private and

sensitive data, is part of the mashup anyone who has access to one part of

the mashup (something less private) could also have access to your sensitive

data. The same-origin policy that normally prevents this has been bypassed,

and therefore rendered useless.

Figure 1 gives an illustration of our target universe, without losing generality. In this

scenario we have multiple users. Some own the data the organization uses and some simply

access this data to perform their tasks. As an example within this target universe, we

have a data owner opening their mashup application (this would normally be performed

automatically by the user’s smartphone). This mashup application requires data that is

both internal to the company and external from outside providers. To offload the mashup

task to the cloud, the request is sent to the user’s mobile cloud-based virtual machine.

This virtual machine is hosted at a provider which hosts many virtual machines for many

13

outside users. This same virtual machine, must then request the data the mashup application

requires which is, again, both internal and external to the organization. In this example the

internal data is stored on another cloud providers STorage-as-a-Service (STasS). The virtual

machine must request this data over encrypted channels to build part of the mashup result.

Once received, the mashup also requires data hosted by external providers which do not

encrypt their transmissions to their end users. The virtual machine makes its un-encrypted

request to these providers and receives its unencrypted result. This data is then “mashed

up” and returned to the original mobile user.

There are many ways an attacker could compromise the security of our end user. We have

chosen to focus on the most important ones to this situation, which are outlined in red in

figure 1. We feel these attacks are the most dangerous because they involve the most “legal”

actions or stealthy and attack can conduct, thus minimizing the risk of the attacker being

caught or the attack even being noticed. This creates “unknown unknown” vulnerabilities.

They are unknown, because the entities in the position to detect the attacks do not know

how to detect them. They are “unknown unknowns” because these same entities also do

not know they even need to be on the lookout for such attacks. It is around these attacks

this dissertation is designed.

First, attackers could listen to the traffic from the virtual machine provider to correlate

unencrypted requests from data providers and traffic to end users to determine which unen-

crypted requests match up with encrypted mobile user return traffic. During this completely

passive attack, the attacker needs to only listen to one Internet connection (the virtual ma-

chine provider) to conduct this correlation attack. The results of this attack would enable

the attacker to determine information about many mobile users such as their geographical

14

position, the companies they rent cars from, the hotels they plan on staying at and the list

goes on from there.

Second, Attackers must be prevented from tricking the STasS provider the organization’s

internal data is stored from allowing the wrong users from accessing the content. The

struggle is to prevent from taxing the resources of the STasS provider too much, while also

making the encryption key space small enough for data owners and data users to easily

be able to store without becoming too large. This must still be done in a manner that is

versatile enough to allow many different users to have permissions to different sections

of data while not accidently giving any users permissions over data they should not have

access to, which to the STaaS Provider may have looked like a legitimate access request,

thus preventing a breach of confidentiality.

Third, an attacker could legitimately create a virtual machine on the same cloud provider

our organization user’s virtual machine is hosted. If this virtual machine ends up on the

same host, this attacker could perform Operating System or data set fingerprinting through

only memory access requests on the attacker’s virtual machine. Through our presented

“guess and check” strategy, the attacker would be able to confirm “guesses” of memory

content and confirm these “guesses” through memory access delays within their own vir-

tual machine, thus providing a compromise of confidentiality. In the case of Operating

System fingerprinting, this will further provide the opportunity for “one-hit-knock-out” at-

tacks because the attacker would not have to scan the target virtual machine first with net-

work based scanners. Once the attacker has penetrated the virtual machine, further levels

of security such as data integrity can be easily accomplished before an intrusion detection

system has time to respond.

15

1.2 Contribution

Figure 2: A model of our target areas.

This dissertation explores several approaches for exploiting public cloud computing in-

frastructures and their possible mitigation strategies. The main contributions of this disser-

tation are the following:

1. Flexible cryptography-based access control of outsourced data.

2. Methods for securing virtual machines from OS and Data Fingerprinting.

3. Secure mobile-to-cloud-to-provider communication.

16

A graphical illustration of the scope of this dissertation is presented in Figure 2. This

dissertation looks at the low level security of cloud computing by exploring OS and data

set fingerprinting in virtual machine hypervisors. Additionally, we look at protecting the

confidentiality, integrity, and availability of outsourced data, from the point of view of the

cloud computing clients. Finally, we look at the security of the multiparty communication

required for mobile-to-cloud-to-provider mashup computing.

1.3 Outline

The remainder of this dissertation begins with chapter 2, which presents our method to

provide Secure and Efficient Access to Outsourced Data. Chapter 3 presents virtual ma-

chine OS and Data Fingerprinting and our experiments on how to mitigate against attackers

who may use these fingerprinting techniques to gain secret insights into penetrating a cloud

computing virtual machine. Chapter 4 presents our methods of providing secure communi-

cations between both the mobile user to the cloud and the cloud to the information provider

using our newly de-duplication attack defended cloud computing virtual machines. Chapter

5 concludes this dissertation.

CHAPTER 2: SECURE AND EFFICIENT ACCESS TO OUTSOURCED DATA

2.1 Introduction

Since the daily operations of modern corporations heavily depend on their information

processing capabilities, the costs and overhead to manage their computation resources pose

serious challenges to these companies. To free the companies and their manpower from the

burden of IT services, the concept of cloud computing has been proposed. In this new envi-

ronment, a client may choose to outsource its data storage, information processing, or even

the whole information infrastructure to a service provider. These new services allow com-

panies to focus more on their core business and leave the IT operations to professionals.

While the concept of cloud computing provides a new method for information process-

ing, the security problems must be properly solved before these services can be widely

deployed. Since many service providers are untrusted, the confidentiality and privacy of

the clients’ information must be protected by some mechanisms.

Among various services of cloud computing, enabling secure access to outsourced data

lays a solid foundation for information management and other operations. However, more

research efforts are needed to achieve flexible access control to large-scale dynamic data.

For example, using asymmetric encryption to protect data or metadata [40] will impact the

adoption of the outsourcing platform by devices with limited computational power (e.g.

18

mobile devices). At the same time, user-group-based data encryption may lead to a com-

plicated access hierarchy after a series of grant and revocation operations. [32]

In this chapter, we focus on the data outsourcing scenario investigated in [26, 27, 31, 32].

In this environment, the data can be updated only by the original owner. At the same time,

end users with different access rights need to read the information in an efficient and secure

way. Both data and user dynamics must be properly handled to preserve the performance

and safety of the outsourced storage system. Before presenting the details of the proposed

approach, we use an example to illustrate the potential applications.

The world’s largest collider accelerator LHC (Large Hadron Collider) can generate about

10 PB (Peta-Bytes, 1015 bytes) data each year. [84] The data can be stored on a third party

cluster and the European Organization for Nuclear Research may publish new data, update

existing records, and delete expired information. The data can be accessed by scientists

in different countries. Since the scientists may have different security clearance levels, en-

cryption based access control will be adopted. At the same time, methods must be designed

to support dynamic changes of the access rights of the end users.

Enforcing data security in this scenario poses new challenges for researchers. First,

since the size of the outsourced data could be huge, we want the server to store only one

copy of each data block (the data should be encrypted). Second, since a popular storage

outsourcing pricing model is pay-per-use (e.g. Amazon S3), we want to reduce the number

of operations on the storage server except for information access and updates. Specifically,

we want to avoid data re-encryption caused by changes of user access rights. Last, but not

least, we want to provide fine-grained access control to end users.

In this chapter, we propose to develop a new approach [105] that integrates several ad-

19

vanced techniques to solve these problems. First, we encrypt every data block with a dif-

ferent symmetric key and adopt the key derivation method [8, 27] to reduce the number

of secrets that the data owner and end users need to maintain. Different from [27], we do

not organize users into groups based on their access rights. Our method, although leading

to more data encryption keys, will simplify operations during user access right changes.

We propose to store the metadata for key derivation with the corresponding data blocks.

In this way, we can establish multiple indexes of the blocks to reduce the communication

overhead for key distribution during data access. Second, we adopt over-encryption by

the server [32] to achieve data isolation among end users even when they have the same

access rights. For the servers that refuse to conduct over-encryption, we propose to use

lazy revocation [50] to prevent revoked users from getting access to updated data. Finally,

we present detailed methods to handle dynamics in both user access rights and outsourced

data. To summarize, the contributions of the research include:

• The proposed approach provides fine grained access control to outsourced data with

flexible and efficient management. The data owner needs to maintain only a few

secrets for key derivation. It does not need to access the storage server except for

data updates.

• We propose comprehensive mechanisms to handle dynamics in user access rights and

updates to outsourced data. The metadata for key derivation will allow us to establish

multiple indexes for different data access patterns of the end users.

The remainder of the chapter is organized as follows. Section 2 discusses the related

work. In Section 3, we describe assumptions in the investigated scenario. We also discuss

requirements to the proposed approach. Section 4 presents the details of the data access

20

procedure. We introduce the construction of the key hierarchies and the key derivation

procedures. The organization of the metadata and data blocks will also be presented. In

Section 5, We describe how to calculate the key set. In Section 6, we describe mechanisms

to handle dynamics in outsourced data blocks and user access rights. Section 7 investigates

the overhead of the proposed approach through simulation. Section 8 studies the safety and

scalability of the proposed approach. Finally, Section 9 discusses future extensions and

concludes this chapter.

2.2 Related Work

Although the official name of ‘cloud computing’ is proposed in recent years, the con-

cept of treating data, storage, software, platform, and even infrastructure as a service has

been investigated for a long time. Cloud computing is poised to provide computation for

public utilities, such as water and electricity, and as such, new challenges arise for the con-

fidentiality, privacy, and integrity of the information and resources in the system. Although

many research papers have been published on related topics, security research for cloud

computing is still in its early stage. Therefore, below we first review the expected proper-

ties of data security in cloud computing and map them to the investigated scenario. We will

then discuss the achievements in two research directions: secure remote untrusted storage

and key management for access hierarchies, from which our proposed approach benefits.

Requirements of Data Security in Cloud Computing

Different from many fields in which a big gap exists between academic research and in-

dustry applications, cloud computing has attracted attentions from both sides since the very

21

beginning. For example, secure data storage and management is an important component

of the security guidance recently published by Cloud Security Alliance [23], the member-

ship of which includes the leading corporations in cloud computing such as Sun, eBay,

Visa, and McAfee. In the guidance, a secure data outsourcing service should be evaluated

from at least the following aspects: (1) strong encryption and scalable key management; (2)

user provisioning, de-provisioning, and information lifecycle management; and (3) system

availability and performance.

For the first aspect, in this chapter we propose to use data block level symmetric en-

cryption. Since the proposed mechanism does not depend on any specific encryption algo-

rithms, the end users can make their choices based on the requirements of the applications.

The key derivation tree structure will allow data consumers to use a few keys to generate

all secrets in need. For the second aspect, we provide detailed description on handling

dynamics in user access rights and data blocks. For the last aspect, the performance and

overhead analysis is conducted in Section 7.

Secure Remote Storage

Securing outsourced data for multi-user accesses can be achieved through encrypted file

systems. However, the following analysis will show that existing approaches cannot satisfy

the requirements of the example application discussed in Section 2.1.

To allow users to get secure and efficient access to outsourced data files, both data and

metadata must be properly protected. An early approach [66] presents the basic idea to en-

crypt the information and use hash values and digital signatures to guarantee information

integrity. FARSITE [1] uses symmetric secrets to encrypt files and uses every reader’s pub-

22

lic key to encrypt the symmetric keys. In Plutus [50], both files and directory information

are encrypted. It uses sign and verify keys respectively to determine whether or not a user

can write or read a file. Since the key generation procedure depends on power-modular

computation, the overhead is relatively heavy. SiRiUS [40] adopts a more complicated

structure. Every data file has an encryption key and a sign key. At the same time, ev-

ery user has a public/private key pair. The approach continuously signs the metadata tree to

guarantee the freshness of the information and prevent rollback attacks. Every time a secret

is revoked, it will generate a new key and reencrypt corresponding data files. In SUNDR

[57] the authors use hash trees and chains to prevent fork attacks and guarantee that users

have the same view of files. They use update certificates to handle concurrent updates. The

advantages and disadvantages of many approaches can be found in [53]. Recently, a data

sharing platform for outsourced information using asymmetric encryption is proposed in

[88]. We find that all these approaches adopt asymmetric encryption to protect data confi-

dentiality. At the same time, encrypting information at the data block level will make the

key management mechanism of secure file systems very cumbersome. Therefore, a new

approach is needed to protect the safety of the outsourced data.

Key Management for Access Hierarchies

To enable secure and efficient access to outsourced data, investigators have tried to in-

tegrate key derivation mechanisms [19, 20, 59, 114] with encryption-based data access

control. Atallah et al. [8] propose a generic method that uses only hash functions to derive

a descendant’s key in a hierarchy. The method can handle updates locally and avoid propa-

gation. Although the proposed key derivation tree structure can be viewed as a special case

23

of access hierarchies, analysis in Section 8 will show that our method serves the studied

application better.

In [27], the authors divide users into groups based on their access rights to the data.

The users are then organized into a hierarchy and further transformed to a tree structure

to reduce the number of encryption keys. This method also helps to reduce the number of

keys that are given to each user during the initiation procedure. In [32], data records are

organized into groups based on the users that can access them. Since the data in the same

group are encrypted by the same key, changes to user access rights will lead to updates in

data organization. While a creative idea in this approach is to allow servers to conduct a

second level encryption (over-encryption) to control access, repeated access revocation and

grant may lead to a very complicated hierarchy structure for key management. In [31], the

approach will store multiple copies of the same data record encrypted by different keys. At

the same time, when access rights change, reencryption and data updates to the server must

be conducted. These operations will cause extra overhead on the server and do not fit into

our application scenarios. An experimental evaluation of these approaches can be found in

[26].

2.3 Problem Definition

In this section, we briefly sketch out the application scenario under investigation and the

system assumptions. We also describe the requirements to the proposed data outsourcing

mechanism.

24

Application Scenario and Assumptions

As the example in Section 1 illustrates, the owner-write-users-read scenario is a popular

case in the storage outsourcing applications. Figure 3 provides an abstract illustration of

the scenario under investigation. The data owner stores a large amount of information on

the service provider. Since the service provider is untrusted, the owner will encrypt the

outsourced data before putting them on the server. Here we assume that the smallest infor-

mation access unit is called a ‘block’. This is an abstract concept and it may have different

meanings in different systems. To provide fine-grained access control, the encryption will

be conducted at the block level. Only the owner can make updates to the outsourced data.

Here the operations include updates to data blocks, and deletion, insertion, and appending

of blocks. We also assume that there exist pre-distributed secrets between data owner and

service provider, and between data owner and end-users. The key distribution and update

problem is beyond the scope of this research and we refer interested readers to existing

approaches such as [13].

Figure 3: Illustration of the application scenario.

The outsourced data can be accessed by many different end users that are distributed all

over the network. Since the end users may use devices with weak processing capabilities

such as PDAs, we want to avoid computationally expensive operations such as asymmetric

25

encryption of data blocks. At the same time, we want to reduce the amount of information

that is stored on the end users. The access rights of the end users are different and they may

change (grant and revocation) as time proceeds. Therefore, right keys must be provided to

the end users to control their access.

We assume that the service provider adopts a curious but not malicious model. That

means, the provider will not intentionally send wrong data blocks to an end user but it

will try to get access to the plaintext of the stored information. To preserve confidentiality

of the outsourced data, the owner may ask the service provider to conduct a second level

encryption (over-encryption) [32] before the data is sent to the end users. For providers that

refuse to offer this service, we adopt the lazy revocation method [50] to reduce information

leakage through eavesdropping.

With the introduction of the roles of data owner, service provider and end user, we can

describe the data access procedure as follows. An end user will send a data access request

to the owner. The owner will refer to its access control matrix and send back corresponding

encryption keys through the secure channel between them. At the same time, the owner will

send back a data access certificate to the end user. The user will then present the certificate

to the service provider. The provider will verify it and send the corresponding encrypted

data blocks to the end user. We assume that the end user has information to verify the

integrity of the received data. [41, 107] In this way, end users directly communicate with

the service provider to get the data blocks and the owner will not become the data transfer

bottleneck.

26

System Requirements

In this section, we describe the requirements on efficiency and security to the proposed

approach. First, since the outsourced data could be huge and the service provider may

charge the owner based on used space, we want to maintain only one encrypted copy for

each data block on the outsourced storage. This will put new challenges to the key manage-

ment mechanism. Second, in addition to providing the storage space, the service provider

may or may not offer the service of over-encryption [32] when it sends the data blocks

to end users. The proposed mechanism must properly handle both cases to preserve data

confidentiality. Third, since the service provider may have a pay-per-use pricing policy, the

data owner should reduce the number of information accesses to the service provider when

they are not caused by updates to data blocks. That means we want to avoid data block

reencryption when the access rights of end users change. Last but not least, we want to

reduce the storage, communication, and computation overhead on the data owner and end

users to promote the wide adoption of the proposed approach. Later discussion will show

that some of the requirements conflict with each other and the designed approach will try

to achieve a tradeoff.

2.4 Secure and Efficient Data Access

In this section, we present the details of the proposed approach. We first introduce key-

derivation-based data block encryption. We will then describe the data access procedure.

Mechanisms to reduce the overhead on the data owner and to prevent information access

from revoked users will also be discussed.

27

Determining Keys for Data Encryption

As we introduce in Section 3, the smallest information access units are data blocks.

Therefore, to provide fine-grained access control, we propose to encrypt every data block

with a different secret. Here we do not assume the adoption of any specific symmetric

encryption algorithm and leave the choice to the system designers. However, an efficient

mechanism must be designed to allow data owner and end users to manage the encryption

keys. We assume that the outsourced data contains n blocks {D1,D2, · · · ,Dn} and each

block is encrypted with a randomly generated secret ki (i=1 to n). If the data owner keeps a

copy of all these keys, the storage overhead will be linear to n. At the same time, when an

end user needs to access l data blocks, the communication overhead between the owner and

the user for key distribution will also be linear to l. This overhead can be overwhelming

for many end users when we consider that the outsourced data can easily contain millions

of blocks. Therefore, a more efficient key management method must be designed.

To solve this problem, we propose to adopt the key derivation method. [8] The basic

idea is as follows. Each of the encryption keys ki can be represented as the XOR result of

a public part and a private part. The public part will be stored as metadata with the corre-

sponding block. The private part, on the contrary, will be generated through key derivation

hierarchies. Here every key in the hierarchies can be derived from its ancestors. Two hierar-

chies are used in our example to enable more versatile key assignment for different sections

of data blocks they are mapped to. Since the derivation procedure uses a one-way func-

tion, we cannot reverse the computation to get the secret keys of the ancestors and sibling

nodes. In this way, the data owner needs to maintain only the root nodes of the hierarchies.

28

During the key distribution procedure, the owner can send the secrets in the hierarchies

to end users based on their access rights. The end user will derive the leaf nodes in the

hierarchy/hierarchies. It will then combine the derivation results with the public metadata

to decrypt the data blocks. The cost of this approach includes the calculation of one-way

functions and XOR operations during key derivation. Since previous experiments [100]

show that both operations can be accomplished very efficiently, in this paper we propose to

trade computation for storage and communication overhead.

While there are different choices of the organization of key hierarchies and key derivation

functions, below we present an approach using the binary tree structure and hash functions.

Both hierarchies are computed in the same way, but with different root nodes, so we will

describe a one hierarchy derivation. Without losing generality, we assume that the out-

sourced data contains n blocks and 2p−1 ≤ n < 2p. Therefore, we can build a binary tree

with height p as follows. The data owner will choose a root secret (root node) s0,1. Here the

first index of the key represents its level in the hierarchy, and the second index represents

its sequence number in the level. For example, for level x in the hierarchy, the sequence

numbers are from 1 to 2x. In this way, for node si, j in the hierarchy, its parent is s(i−1),(⌈ j/2⌉)

(when i ̸= 0), and its children are s(i+1),(2∗ j−1) and s(i+1),(2∗ j) (when si, j is not a leaf node).

The nodes in level p will be used as the private parts to calculate the encryption keys ki.

The public parts yi will be stored with the blocks Di as metadata. An example hierarchy is

illustrated in Figure 4.

Now let us look at the key derivation procedure. The data owner chooses a public

hash function h(). For any node si, j in the hierarchy, its left child can be calculated as

s(i+1),(2∗ j−1) = h(si, j||(2 ∗ j − 1)||si, j). Here we ‘sandwich’ the sequence number of the

29

child node with the parent’s key and then apply the hash function. We can calculate the

right child of si, j in a similar way. Through repeatedly applying this function, a node can

calculate the secrets of all of its descendants. When we reach level p of the hierarchy, the

hash results can be XORed with the metadata to get the encryption keys. Since XOR is a

bit by bit manipulation, the public part (yn and zn in figure 4) that is XORed can be chosen

to give the same keys when secrets from different trees point to the same data blocks.

Figure 4: Key derivation hierarchies.

The safety of the approach comes from the one-way property of the hash function. While

a node can easily derive its descendants in the hierarchy by applying the public hash func-

tion, it has to reverse the function to get the secrets of its siblings or ancestors. If a secure

hash function is chosen, the end users cannot decrypt the data blocks that they are not

authorized to access.

We need to pay attention to several issues when we establish the key hierarchies and

distribute the secrets during information access. First, when we choose the height of the

hierarchies, we need to leave some room for the insertion and appending operations to

30

the outsourced data. The details of such operations will be discussed in the next section.

Second, we should not disclose encryption keys of the blocks that are temporarily missing

from the outsourced data. For example, when n = 7 and an end user can access blocks D5,

D6 and D7, the owner should send s2,3 and s3,7 to the user instead of s1,2. In this way, later

when we append D8 to the outsourced data and the user cannot access it, we do not need to

revoke the secret.

We notice that end users’ access rights have a direct impact on the communication over-

head of the proposed approach. For example, if one secret in the hierarchy can be used to

derive all encryption keys of the data blocks that a user needs to access but not any other

keys, the owner needs to send only this secret to the end user. On the contrary, if we have

only one key derivation hierarchy and the data blocks that a user wants to access do not

share any common ancestors in level (p−1) of the hierarchy, the number of returned keys

will be equal to the number of requested blocks.

Two methods can be used to solve this problem and improve the efficiency of the owner.

First, we can use the method described in [27]. The basic idea is to organize data blocks

with similar access patterns into groups and give them sequential index numbers when they

are outsourced. In this way, the end users have a higher probability to access data blocks

with consecutive index numbers and the owner can locate a few keys in the hierarchy to

satisfy a reading request. The disadvantage, however, is that the block organization can be

mapped to only one access pattern.

Second, we can generate multiple key derivation hierarchies, each of which will have a

different mapping function between the leaf nodes and the index numbers of the outsourced

blocks. Here the metadata for the leaf nodes of each hierarchy must be stored with the data

31

blocks. An example of two hierarchies is illustrated in Figure 4. In the first hierarchy, the

sequence numbers of the leaf nodes and the index numbers of the data blocks are identical.

In the second hierarchy, the left half of the tree maps to all blocks with odd index numbers,

and the right half maps to blocks with even index numbers. During an information access

procedure, the owner can examine both hierarchies to locate the smallest key set for secret

derivation. The cost of maintaining multiple hierarchies includes the storage overhead of

the metadata and hash calculation during secret derivation. A quantitative analysis will be

presented in Section 7.

Data Access Procedure

In this part we describe the data access procedure. To prevent revoked users from get-

ting access to outsourced data through eavesdropping, we assume that the service provider

will conduct over-encryption [32] when it sends data blocks to end users. To conduct this

operation, the service provider and end users need to share a pseudo random bit sequence

generator P(). [21, 58] Given a seed, P() can generate a long sequence of pseudo random

bits. The scenarios in which the service provider refuses to offer this operation will be

discussed in the next section.

We use O to represent the data owner, S to represent the service provider, and U to

represent the end user. We assume that O shares the pairwise keys kOU and kOS with U

and S respectively. With these assumptions, the data access procedure works as follows.

1. U will send a data access request to O .

U → O : {U ,O,EkOU (U ,O,request index,data block indexes,MAC code)}

Since only U and O know kOU , O will be able to authenticate the sender. The request

32

index will be increased by 1 every time U sends out a request and it is used by O to defend

against replay attacks. The request contains the index numbers of the data blocks that U

wants to access. The Message Authentication Code (MAC) will protect the integrity of the

packet.

2. When O receives this message, it will authenticate the sender and verify the integrity

and freshness of the request. It will then examine its access control matrix and make sure

that U is authorized to read all blocks in the request. If the request passes this check, the

owner will determine the set of keys S ′ in the hierarchies such that (1) S ′ can derive

the keys that are used to encrypt the requested data blocks; and (2) U is authorized to

know all keys that can be derived from S ′. The algorithm to determine S ′ from multiple

hierarchies will be presented in Section 4.

The owner will then generate the reply to the end user.

O → U : {O,U ,EkOU (O,U ,request index,ACM index,

seed f or P(),S ′,cert f or S ,MAC code)}

Here the request index is used to uniquely label this reply. The ACM index is used by

O to label the freshness of the Access Control Matrix (ACM). This index will be increased

by 1 every time O changes some end user’s access rights. The updated ACM index will be

sent to S by O to prevent those revoked users from re-using expired certificates to access

data blocks. The seed is a random number to initiate P() so that U can decrypt the over-

encryption conducted by S . U will use S ′ to derive the data block encryption keys. The

cert in the packet is a certificate for the service provider and it has the following format:

{EkOS(U ,request index,ACM index,seed, indexes o f data blocks,MAC code)}

33

3. The user U will send {U ,S ,request index,cert} to the service provider. When S

receives this packet, it can verify that the cert is generated by O since only they know the

secret kOS. S will make sure that the user name and request index in cert match to the

values in the packet. If the ACM index in cert is smaller than the value that S receives

from O , some changes to the access control matrix have happened and S will notify U

to get a new cert. Otherwise, the service provider will retrieve the encrypted data blocks

and conduct the over-encryption as follows. Using the seed as the initial state of P(), the

function will generate a long sequence of pseudo random bits. S will use this bit sequence

as a one-time pad and conduct the XOR operation to the encrypted blocks. The computation

results will then be sent to U .

4. When U receives the data blocks, it will use the seed to re-generate the pseudo

random bit sequence and use S ′ to derive the encryption keys. It will then recover the data

blocks.

This approach adopts two methods to reduce the overhead on the data owner. First, the

cert that it provides to the end user does not contain a timestamp. Therefore, if the access

control matrix has not been changed and the ACM index value has not been updated, a user

can reuse previous certs to access the data blocks. Second, during the whole data access

procedure, the owner only needs to use the root key(s) to determine S ′ by calculating a

group of hash functions. Since this computation can be accomplished very efficiently, the

data owner will not become the bottleneck in the application.

This approach adopts two methods to prevent revoked users from getting access to the

outsourced data. First, when an end user U loses access to some data blocks, the access

control matrix at O will be updated. This will lead to the increase of the ACM index and

34

the value will be sent to S . In this way, if U presents the old cert to S , it will be rejected.

U can still get access to the data blocks by eavesdropping on the traffic between S and

other end users if it has kept a copy of the key set S ′. To defend against such attacks,

we ask the service provider to conduct over-encryption before sending out the data blocks.

Since for every data request the seed is dynamically generated and never transmitted in

plaintext, U will not be able to regenerate the bit sequences of other end users. Therefore,

unless U keeps a copy of the data blocks from previous access, it will not be able to get

the information.

2.5 Calculating the Key Set S ′

Given a key derivation hierarchy, it is fairly easy to locate the smallest set of nodes that

can be used to calculate the encryption keys of the blocks in a data reading request. When

multiple key derivation hierarchies exist in the system, it is possible to combine the node

sets from different hierarchies and find an even smaller node set to calculate the keys. This

procedure, however, can be very computationally expensive. Below we discuss the two

problems respectively.

Since the encryption key of a data block will be mapped to only one leaf node in a

hierarchy, “Determine the node set in one hierarchy” is a greedy algorithm which can be

used to determine the smallest node set in it for a reading request.

When multiple hierarchies have been established for the data blocks, we can calculate

a node set N for each of the hierarchies. The procedure to select a minimum number of

nodes from these sets to cover the blocks in the request is actually a variation of the set

covering problem, which is one of the famous NP-complete problems in Karp’s list. [51]

35

Many heuristic approaches have been proposed for this problem [97] and the data owner

can balance between the search and communication overhead.

Determine the node set in one hierarchy

N = /0; D = indexes o f data blocks in the request;

While (D ̸= /0)

{

choose any d ∈ D;

locate the lea f node n in the hierarchy f or d;

While (the user is authorized to read all keys

derived f rom n′s parent)

{n = n.parent;}

remove the indexes f rom D whose keys can be derived f rom n;

add n into N;

}

return N;

2.6 Handling Dynamics in System

Thus far, we have considered only static data and access rights of end users. Although

some applications, such as digital libraries, have relatively stable data contents, many sce-

narios for outsourced data storage require the system to support data dynamics. For exam-

ple, in the DoE case discussed in Section 1, scientists may conduct new experiments and

36

need to add new information to the outsourced data. At the same time, they may find that

some data have been mis-calculated and several data blocks on S need to be updated.

The proposed approach also needs to support changes to access rights of end users. For

example, when DoE is collaborating with researchers in country X , it will temporarily au-

thorize them to read more data. When the collaboration is terminated, the access rights

will be revoked. Below we show how to amend the basic scheme to handle dynamic oper-

ations in the proposed system. The revised approach still tries to satisfy the requirements

described in Section 3.2.

Dynamics in User Access Rights

Dynamics in user access rights can be represented as different combinations of two prim-

itive operations: access right grant and revocation.

Grant Access Right

When an end user U is authorized to read a data block Di, the owner will change its

access control matrix and increase the value of ACM index. The next time that U submits

a data access request, the owner will recalculate the key set K ′ based on the new access

rights. The service provider and the end user do not need to change to adapt to this update.

Revoke Access Right

Access right revocation is a more complicated event and we need to discuss two mech-

anisms based on whether or not the service provider conducts over-encryption during data

block transmission.

As we describe in Section 4.2, over-encryption conducted by the service provider can

defend against eavesdroppers even when they have the data block encryption keys. Under

37

this condition the owner will update the access control matrix and increase the ACM index

by 1. It will repeatedly send the new ACM index to the service provider until it receives a

confirmation. At this time the revoked user can no longer use its old cert. The owner will

calculate a new key set K ′ when it receives the next data access request from the revoked

user.

If the service provider does not conduct over-encryption, the eavesdropper will be able

to get access to data blocks if it has kept a copy of the encryption keys. Since the system

design criteria require the owner to reduce the number of accesses to outsourced storage,

we propose to adopt the lazy revocation method. [50] In lazy revocation, we assume that it

is acceptable for the revoked user to read unmodified data blocks. However, it must not be

able to read updated blocks. Lazy revocation trades re-encryption and data access overhead

for a degree of security. The details of the method are as follows.

When the access right to data block Di of the user U is revoked, the access control

matrix in O will be updated and the ACM index increased. At the same time, O will

label this data block to show that some user’s access right has been revoked since its last

content update. Before Di is updated for the next time, the owner will not re-encrypt the

block on the outsourced storage. Since the ACM index value has been changed, U can no

longer use its old cert to access Di. However, when another user gets encrypted Di through

the network, U can eavesdrop on the traffic. Since the service provider does not conduct

over-encryption, the data will be transmitted in the same format whoever the reader is.

Therefore, should U have kept a copy of the encryption key, it will get access to Di. This

result, however, is the same as U has kept a copy of Di before its access right is revoked.

When the owner needs to change the data block from Di to D′
i, it will check the label

38

and find that some user’s access right has been revoked. Therefore, it cannot encrypt the

updated data block with the current key. To solve this problem, the owner will encrypt a

control block with the secret ki and put it at the slot for Di. Since the encryption key does

not change, the metadata in the key derivation hierarchies will not be impacted. The control

block will contain a pointer to another block in which the updated data is stored. It will

also contain enough information for the owner to derive the new encryption key. In this

way, when a user retrieves this control block from the service provider, it will submit it to

the owner. The owner will derive the new key and send it back to the user. At the same

time, a new cert will be generated so that the user can get the new block from the service

provider. A revoked user will be able to read the control block. However, the owner will

not send the new encryption key and the cert to it. Therefore, the revoked user cannot get

access to the updated data. More details of this method will be introduced when we discuss

dynamics in the outsourced data.

The adoption of lazy revocation also explains the reason that we want to encrypt every

data block with a different key. If we divide data blocks into groups based on the users that

can access them, we can encrypt the blocks in the same group with a single key. In this case,

whenever a user’s access right is revoked, the data block group needs to be fragmented and

many blocks need to be re-encrypted. Larger overhead will be caused on the data owner

and service provider. At the same time, the requirement to reduce accesses to outsourced

storage by the data owner will also be violated.

39

Dynamics in Outsourced Data

The data owner may need to conduct various operations on data blocks (e.g. update,

delete, insert, append). Below we describe the details.

Block Deletion

When a data block Di is deleted from the outsourced data, the owner will use a special

control block to replace Di. The special block will be encrypted by ki and stored at the

original slot for Di on the service provider. The metadata for different hierarchies will not

be impacted. At the same time, the owner will label its access control matrix to show that

the block no longer exists. The end users can still access this control block but they will

not get any useful information from the contents.

Block Update

We assume that the owner needs to modify the i-th block of the outsourced data from Di

to D′
i. Since in Section 6.1 we require the owner to maintain a label to show whether or

not some user’s access right to this block has been revoked since its last update, below we

describe two methods based on the value of the label.

If no user’s access right to this data block has been revoked since its last update, the

owner can update its content in the current storage place. The owner will first locate the

slot in which Di is stored and derive its encryption key. It will then use the key to encrypt

D′
i and write the new block to the storage place. The end users will not be impacted by this

operation and they will automatically get the new data when they access the block.

If some user’s access right to Di has been revoked since its last update and the service

provider does not conduct over-encryption during data transmission, we cannot encrypt the

40

new block D′
i with the current key. On the contrary, we will encrypt a control block with

ki and write it to the i-th block of the outsourced data. The control block will contain the

following information: (1) a pointer to the data block in which D′
i is stored; (2) information

used by the data owner to derive the new encryption key of D′
i; (3) information used by the

data owner to verify the integrity of the control block. The owner will also use the new

secret to encrypt D′
i and write it to the corresponding place in S.

When a user needs to access D′
i, it will get the encrypted control block from the service

provider and submit it to the owner. The owner will verify the authenticity and integrity of

the control block and derive the current encryption key. It will then return the key with a

cert to the user through a secure channel so that the user can access D′
i from S . A revoked

user can get the control block but it will not get the new encryption key and the cert from

the owner.

While there are different ways to implement the block update operation, below we de-

scribe one approach. We assume that the data owner will choose two secret keys k′0 and

kveri f y. The former is used to protect the newly generated encryption keys for the updated

data blocks, and the latter is used to verify the integrity of the control blocks. When the

owner needs to update Di, it will use ki to encrypt the control block and store it in the i-th

block of the outsourced data. The control block has the format of:

Eki(Ek′0
(k′i,2

p + i,x),hashkveri f y(k
′
i,2

p + i,x))

In the first component, the owner will use k′0 to encrypt the newly generated secret k′i, the

index number 2p+ i of the block, and the number of times x that Di has been updated. In the

second component, kveri f y will be used to generate the message authentication code of the

41

information to protect its integrity. The owner will encrypt D′
i with k′i and store the result

in the block with the index number (2p + i). Figure 5 illustrates the update operations.

When a user U needs to access the updated data block D′
i, it will first get the encrypted

control block from S and submit it to the data owner. The owner will use ki and k′0 to

determine the secret k′i. It will use the secret kveri f y to examine the integrity of the control

block. The owner will return the encryption key and a new cert to U so that U can get D′
i

from the service provider.

This method has several properties. First, we store all metadata in the control blocks on

the service provider so that the data owner only needs to store two secrets k′0 and kveri f y.

Second, since kveri f y is known to only the owner, attackers cannot generate fake control

blocks. Third, every time the data block Di is updated, the value of x will be increased and

the encryption key will be regenerated. At the same time, the control blocks of different

data blocks will not be confused since their index numbers have a one-to-one mapping.

Figure 5: Handling updates to data blocks.

The costs of this method include another group of encryption/decryption operations and

a second round of communication between the owner and the user. Although the blocks for

the updated data have the index numbers from (2p +1) to (2p +n), we have to clarify that

42

we do not need to double the storage space on the service provider when only a fraction of

blocks are updated. Instead, we can maintain a list of the updated blocks and their index

numbers.

Block Insertion and Appending

The data owner may need to generate new information and put it on the service provider.

Here we do not intentionally distinguish insertion from appending and follow the same

procedure to handle the two operations. The data owner will locate an unused block index,

generate the encryption key and derive the metadata, encrypt the data block, and store it

on the service provider. One trick that can be adopted to improve the efficiency of future

data access is to reserve some index numbers in the storage space. Later the data owner

can insert the new data blocks into these holes based on their access patterns.

2.7 Analysis of Overhead: an Example

In this part, we use the application scenario described in Section 1 as an example to an-

alyze the computational, storage, and communication overhead of a data access operation.

We assume that the size of the outsourced data is 10 PB and the data block size is 4 KB.

Therefore, we have 2.5× 1012 blocks. It is prohibitively expensive to store all encryption

keys on the data owner. Using the method described in Section 4, we find that the height

of the key hierarchy is p = 42. We assume the data that a user needs to access each time

falls into a 4GB = 1,000,000 data block range. The access requests may read different

fractions of the data. Since the authors of [28, 79] find that scientific databases have very

infrequent data update operations, we assume that 0.1% of data blocks have been updated

and they have control blocks on the server. Previous research [6, 65] shows that the number

43

of consecutive data blocks that are accessed in scientific applications ranges from 100 to

30,000. Therefore, in our analysis we assume that on average 95% of the data is accessed

in chunks of 1,000 consecutive data blocks. The remaining 5% of the accessed blocks

distribute randomly and uniformly in the 4 GB data. We assume that two key derivation

hierarchies as shown in Figure 4 have been established. We adopt 256-bit block encryption

keys and 64-bit block indexes in our system. We also assume that the owner, the end users,

and the server all use computers with 1-GHz CPU. Combining the information, we show

the communication overhead of each party in Table 1.

Table 1: Overhead of the proposed approach.

computational overhead (in machine cycle)
owner O server S user U

key derivation 27M – 720M
one-time pad

generation and – 10G 10G
over-encryption

communication overhead
owner O server S user U

data blk index # 6KByte – 10KByte
control blk – – 10.5KByte

keys per hierarchy 16KByte – –
updated data blk – 1MByte –

The table shows only the overhead of the proposed key management mechanism. It does not contain the transmission and decryption of

the 1GB outsourced data since that overhead is independent of the adopted key management scheme.

Based on these assumptions, we can calculate the overhead of the data access opera-

tions. The computational overhead of the proposed approach comes from two aspects: key

derivation using hash functions and over-encryption using a one-time key pad. When the

data owner O receives the index numbers of the data blocks that U wants to access, it

needs to derive the encryption keys from the roots of the hierarchies. It can then compare

the two key sets and adopt the one with a smaller size. Since the hash function needs about

44

20 machine cycles to process one byte [75], we need 1440 machine cycles to accomplish

key derivation in one level. For the generation of and encryption with the one-time key

pad, previous research shows that algorithms such as ISAAC [82] need 19 machine cycles

to generate 32 bits of pseudo random number. At the same time, exclusive-or operation is

usually more efficient than random number generation.

Figure 6 illustrates the simulation results of the expected computation time at the owner,

the user, and the service provider when 10% to 70% of the data blocks in 4 GB are accessed.

We can see that the owner and the end user need only a few seconds of computation time

to derive the block encryption keys even when 2.8 GB data is read. At the same time,

the service provider and the user need less than 30 seconds of computation time for the

XOR-based double encryption. All of the computation time can be easily hidden in the

transmission time of the data.

Figure 6: Computation time caused by the proposed approach.

For the communication overhead we focus on the number of key derivation keys that

the owner needs to transmit to the end user, especially the reduction caused by the estab-

lishment of multiple hierarchies. We experiment with two scenarios of the 5% data blocks

whose index numbers are not consecutive. In the first scenario, the blocks are chosen

45

randomly and uniformly from the 4 GB data. In the second scenario, they are still cho-

sen randomly but are restricted to the odd index numbers. In this way, they have a better

chance to be the descendants of the same secret in the second key derivation hierarchy.

We use this simple, yet biased access pattern, to demonstrate the potential advantages of

multiple hierarchies. The simulation results are shown in Figure 7.

(a)

(b)

Figure 7: Communication overhead of the proposed approach.

In Figure 7.(a), we illustrate the number of keys that the owner needs to send out for

different access requests. We find that when the user reads 2.8 GB data, the communication

overhead for key distribution is about 40000 keys × 32 Bytes/key ≈ 1.3 MB. As a compar-

ison, if every block encryption key is transmitted, the overhead will be 22.4 MB. Although

the second hierarchy does not bring a lot of benefits to the random access scenario, the

46

reduction in the odd-index only scenario becomes very obvious. Figure 7.(b) provides a

better illustration of the results. For the odd-index only scenario, the second key derivation

hierarchy saves 12% keys when 2.8 GB data is read. Please note that our simulation adopts

a very simple access pattern for the key hierarchy establishment. When the data owner has

a more accurate access pattern model, a larger reduction could be expected. At the same

time, we can use the heuristic solutions to the set covering problem [16] to select keys from

both hierarchies to further reduce the communication overhead.

The proposed approach introduces very limited storage overhead. The key derivation

mechanism allows the owner O to store only the root keys of the hierarchies. The end

user U does not need to pre-calculate and store all data block encryption keys. Quite the

opposite, it can calculate the keys on the fly when it is conducting the data block decryption

operations. The service provider S needs to store an extra copy of the updated data blocks.

When the data update rate is very low in the applications, the extra storage overhead at S

is also low compared to the size of the outsourced data.

One problem that we need to consider is the lengthened data retrieval delay caused by

the access to the updated data blocks. We can shorten the response time from both the

server and the data owner sides. At the server side, it has a one-to-one mapping among

the index numbers of the original data blocks and those of the updated blocks. When the

server receives a data access request to a control block, it can send the updated data block

together with the control block to the user. This will not compromise the confidentiality

of the information since the user still needs to get the new encryption key from the owner.

At the data owner side, it can take advantage of the temporal locality of data access to

shorten the response time. The owner can maintain a cache of the mapping between the

47

index numbers of updated data blocks and their new encryption keys. In this way, when

the owner receives an access request to such a block, it can directly send both the old and

the new encryption keys back without waiting for the control block. This operation allows

the server and the owner to deliver information of the updated blocks to end users more

efficiently by avoiding another round of request/reply.

2.8 Discussion

In this section we discuss several problems of the proposed key management approach.

Comparison to CCS’05 Approach

Consider the difference between our approach and the mechanism proposed by Atallah

et al. in ACM CCS’05. [8] First, we want to say that Atallah’s paper provides a more

generic approach to key management in access hierarchies. It has several features that our

approach does not provide such as the support of downward and limited depth inheritance

and the support of shortcut edges in hierarchies.

However, when we zoom into the application scenarios investigated in this paper, our

approach makes special adjustments to adapt to their properties. For example, our approach

handles user revocation differently from [8]. When a user’s access right changes (but the

data blocks do not change), we want to avoid operations to the storage service provider. We

adopt two methods: over-encryption and lazy revocation, to achieve this goal. In [8], the

authors suggest two schemes, both of which will immediately change the encryption keys

and metadata of the impacted data blocks. These methods will cause extra communication

and computational overhead for data reencryption to achieve consistent data confidentiality.

48

Security of the Approach

In previous sections we have described mechanisms to defend against eavesdroppers.

Now, we investigate the safety of the proposed approach over collusive attacks and replay

attacks of the control blocks.

In collusive attacks, two or more revoked end users may put their stored keys together

and try to derive a secret that is not the descendant of any key known to them. Following

the proof in [8], we can show that the adversaries have to have a non-negligible advantage

in breaking the hash function to accomplish this task. Therefore, the proposed approach is

robust against collusive attacks if the hash function is considered safe.

In Section 6.2, we show that an end user needs to send the control block of the updated

data to the owner to get the new encryption key. Here a user may send an old control

block to the owner to get the encryption key of a previous version of the data block. In

this way, an adversary that can access only the current data block will get a copy of the old

encryption key. Should it have kept a copy of the encrypted data block by eavesdropping

on the network traffic, it will compromise the backward secrecy of the system. To defend

against the replay attack, the data owner must verify the freshness of the control block. For

example, when the service provider sends the control block to the end user, it can encrypt

the user name, the request index, and the hash of the control block with the secret key

between O and S . In this way, the owner will be able to verify whether or not this control

block is the latest version.

49

Extending to Multi-owner Outsourced Data

While in this chapter we consider only the simple case of storage outsourcing with a

single data owner, the proposed approach can be extended to the scenarios in which the

data has multiple owners and each of them can change data blocks independently. In this

part, we discuss techniques to accomplish this extension.

To preserve data consistency, we should have orderly execution of the update operations

when multiple owners want to change the data contents. This can be achieved through a

semaphore flag at the service provider S . This problem has been extensively studied in

Operating Systems and distributed systems for access to shared resources.

The update operations to the multi-owner data are similar to the procedures described in

Section 6. When a data owner wants to update a data block, it will store a control block

to its original place. The control block will be protected by a secret key shared among the

data owners. The control block contains a pointer to the new storage place, the information

used by the owners to derive the new data encryption key, and a hash value of the whole

block to protect its integrity. To prevent an attacker from sending an old control block or

a control block for another data block to the owner, the service provider will link a control

block to a specific data access request when the contents are sent back to the end user.

2.9 Conclusions

We propose a mechanism to achieve secure and efficient access to outsourced data in

owner-write-users-read applications. We assume that the outsourced data has a very large

size and we try to reduce the overhead at the data owner and service provider. We pro-

pose to encrypt every data block with a different key so that flexible cryptography-based

50

access control can be achieved. Through the adoption of the key derivation method, the

owner needs to maintain only a few secrets. We propose to store the metadata with the

blocks so that multiple key derivation hierarchies can be established for different access

patterns to reduce the processing overhead of the data access requests. Analysis shows that

the key derivation procedure based on hash functions will introduce very limited overhead.

We propose to use over-encryption and/or lazy revocation to prevent revoked users from

getting access to updated data blocks. We design mechanisms to handle both updates to

outsourced data and changes in user access rights. We investigate the computational, stor-

age, and communication overhead of the approach through simulation. We also investigate

the scalability and safety of the approach.

Extensions to our approach include the following aspects. First, we plan to design a new

scheme for key management based on this approach so that it can be applied to many-write-

many-read applications. Second, we want to design dynamic mapping functions among

keys in the hierarchy and index numbers of data blocks so that we can progressively reor-

ganize the data blocks based on their access patterns. In this way, we can further reduce

the number of keys that the owner sends to the end user. Finally, we plan to integrate

existing approaches to access control, provable data possession, and key management for

outsourced data to develop a new approach to secure Storage-as-a-Service.

CHAPTER 3: DE-DUPLICATION VULNERABILITY AND DEFENSE

Cloud computing has at its core, virtualization. Without virtualization, cloud computing

would be too expensive to be economically feasible. Virtualization, by definition, shares

computing resources between different computing applications (such as between different

objects within a program all the way to independent Operating Systems), thus greatly in-

creasing the utilization of computing hardware. As with all cases of sharing, there can be

violations of trust. Customers may trust that a cloud computing provider is doing every-

thing possible to protect their computing environment from attack, but a malicious cus-

tomer may find ways to violate the trust in this resource sharing to gain confidential insight

into what other customer’s virtual environments are working on. A malicious customer may

also discover vulnerabilities in, or even gain complete access to, other customer’s virtual

machines.

One such attack example is described here, along with our mitigation strategies. In this

example attack, a malicious customer takes advantage of the copy-on-write security protec-

tion mechanism designed to protect user integrity while allowing the performance advan-

tages of memory de-duplication. The malicious customer uses this protection mechanism

to facility an attack on confidentiality, more specifically, to launch a “guess-and-check”

method of identifying the Operating Systems and data set contents stored in memory on

other customer’s virtual machines. Once a detailed look at this attack methodology is

52

made, we demonstrate how other customers may protect themselves from this attack while

still gaining the advantages of cloud computing with acceptable performance loss.

3.1 Introduction

OS fingerprinting is an essential step for many subsequent penetration attempts and at-

tacks. Only after identifying the type and version of the OS of a system, can an attacker

determine the vulnerabilities to exploit. Traditional OS fingerprinting schemes [9, 37, 42,

80, 93] are usually interactive procedures through IP packet analysis, service querying, or

chronological exploits. Since these mechanisms usually initiate some interaction with the

target system and use the contents and delay of the network packets from the target OS

to determine its type and version, the target OS can monitor the network traffic to detect

such attempts. It can also disable the responses or generate fake packets to disguise the

fingerprinting procedure.

Additionally, with the ever increasing computation capabilities, storage space, and net-

work bandwidth, more and more scientific and military projects are starting to use very

large data sets for analysis, computation, and decision making. For example, NASA’s Earth

Observing System Data and Information System (EOSDIS) can generate two terabytes of

data each day. Because of the intellectual property, user privacy, and several other reasons,

many of these projects choose to hide the information about what data sets they are using

for analysis and computation, even when some of the data sets are public. For example, a

survey conducted in 2009 [61] shows that out of 62 groups that are requested to share their

data or data sources, only 24 groups comply. To get access to such information, attack-

ers have designed various mechanisms to compromise the operating system and database

53

management system. Different schemes have been designed to defend against such attacks.

Virtual machines in the cloud also make it so mobile users can defend themselves against

traffic correlation attacks, as will be discussed in Chapter 4.

The proliferation of virtual machine platforms creates a new path for non-interactive

OS and Data set fingerprinting. In a VM hypervisor, multiple virtual machines share the

same hardware platform. Although perfect isolation among VMs is required by design [99],

researchers have identified several mechanisms to break such isolation through the schemes

such as side channels. [10] For example, researchers find that the shared cache may become

a side channel for the detection of the web traffic access rate or even keystrokes of the

co-resident VM instances. [81] As another example, CCCV [70] is a system that can

create a covert channel using the CPU loads to secretly transmit information among virtual

machines.

In this research we seek to investigate OS fingerprinting [73] and data set identification

[72] in virtual machine hypervisors with the memory de-duplication functionalities en-

abled (such as VMware ESX and ESXi [101], Extended Xen [43, 110], and KSM (Kernel

Samepage Merging) [7] of the Linux kernel). The memory de-duplication technique takes

advantage of the similarity among memory pages so that only a single copy and multiple

handles need to be preserved in the physical memory, as shown in Figure 8. Here each of

the two virtual machines V M1 and V M2 needs to use three memory pages. Under the nor-

mal condition, six physical pages will be occupied by the VMs. If memory de-duplication

is enabled, we need to store only one copy of multiple identical pages. Therefore, the

two VMs can be fit into four physical pages (note that we have both inter- and intra-VM

memory de-duplication). This technique can reduce the memory footprint size of VMs

54

and the performance penalty caused by memory access miss. However, it will break the

isolation among VMs and introduce new vulnerabilities of non-interactive OS and data set

fingerprinting. The objective here is to exploit the vulnerability by constructing concrete

attacks on the VMware ESXi hypervisor long side a widely used scientific visualization

software package called ParaView [18], and investigate the mechanisms to defend against

such attacks.

Figure 8: Memory de-duplication reduces the OS footprint size.

The overview of our approach is as follows. When we detect that the target VM has been

launched, we will use the mechanisms described in [81] to initiate multiple VM instances

using different OS onto the same physical box. Additionally, we will read multiple data

sets into the memory of our VM. Without losing generality, for OS fingerprinting, we call

the operating system of the target VM as St and those of the attacker’s VMs as Sa1, Sa2, · · · ,

San. The goal is to determine whether or not Sai and St are of the same type. Without losing

generality, for Data set fingerprinting, we assume that the target VM is using the data set

Dt for analysis and computation, and the data sets we open are Da1, Da2, · · · , Dan. The

intent is to determine whether or not Dai and Dt contain many identical pages. If so, we

will conclude that the target VM is actually using Dai for analysis, or running the same OS

as Sai. To achieve these goals, we will let the memory de-duplication mechanisms identify

55

and merge those identical pages. Once this procedure is accomplished, we will introduce

reading and writing operations to the memory pages that are unique for each different OS

type or data set, respectfully. Since the hypervisor handles the operations differently for

those de-duplicated pages and the pages with their own copies [90], we can measure the

accumulated differences in the memory access delay to figure out whether or not Sai and St

are of the same type, or if Dai and Dt are the same file. During this procedure, the attacker’s

VMs do not need to directly interact with the target VM.

We design several mechanisms to defend against OS Fingerprinting by the hypervisor

and the guest OS respectively. At the virtual machine level, the guest OS can load the

unique memory pages belonging to other OS into its memory to obfuscate the fingerprinting

procedures. The hypervisor can monitor the behaviors of different VMs and avoid the de-

duplication of any memory pages belonging to the OS image files. More details of the

defense mechanisms will be discussed in Section 5.

The advantages of our approaches are as follows. First and most importantly, it is a non-

interactive fingerprinting procedure since during the attack we only conduct operations on

our own VM instances. This non-interactive property will prevent the target VM from de-

tecting the identification operations. Second, our experiments show that many scientific

data sets, even when they are from the same broad field, contain a large number of unique

memory pages. Reading/Writing operations to these pages can generate a measurable dif-

ference in access delay. Third, we have analyzed the memory footprint of many different

OS types and identified the memory pages that are unique to each type. Our preliminary

results show that the number of unique pages is large enough to generate a measurable

difference in access delay. Last but not least, both our experiment results on ParaView and

56

our experiment results on VMware ESXi with both Windows and Linux systems show that

our respective attacks are practical. Since our OS fingerprinting approach does not conflict

with the interactive OS fingerprinting mechanisms, they can work together to improve the

detection accuracy.

The remainder of the chapter is organized as follows. In section 2, we describe the details

of the OS fingerprinting approach and our data set identification approach. We discuss the

generation of OS and data signature files and the procedures to measure the accumulated

differences in access delay. In section 3, we present the implementation of the attacks and

the experimental results when VMware ESXi hypervisor is used. During section 4, we

demonstrate our guest OS fingerprinting defense strategy with performance penalty and

defense effectiveness results. Section 5 discusses the problems such as VM co-residence

detection and other methods for the prevention of the attacks which were not experimented

with. Section 6 concludes this chapter.

3.2 Attacks through Memory Deduplication

System Assumptions and Background

In the investigated scenario, we assume that an attacker can initiate VM instances in the

same cloud infrastructure as the target VM. We also assume that through the co-residence

detection mechanisms discussed in Section 5 we can determine whether or not the target

system is running as a guest on the same physical box as the attacker’s VMs. Since the

target VM could have very sophisticated Intrusion Detection/Prevention Systems in place,

it can detect any OS fingerprinting attempts through network interactions. Under this con-

dition, the attacker wants to learn what OS version the target is, without any network scans,

57

in order to exploit known vulnerabilities and conduct a direct one-hit attack before the

IDS/IPS can respond. In a data set fingerprinting attack, we assume that the attacker can

submit queries to the target VM to initiate data access for analysis and computation. The

attacker also holds some data sets and it wants to determine whether or not the target VM

is using one of these data sets to resolve the queries.

We assume the attacker has root control over the VM instances that it initiates. We also

assume the attacker’s VMs have large enough memory (such as 512MB) to avoid very

frequent page swapping. We do not assume the attacker can decide how many CPU cycles

it is allowed to use, nor do we assume the attacker can decide how much physical RAM its

VMs are allowed to consume. These are reasonable assumptions based on current industry

practice. Without losing generality, we assume that the host uses 4KB memory pages.

Since our experiments use VMware ESXi as the hypervisor, below we briefly describe

its memory de-duplication operations. A comprehensive description can be found at [103].

To avoid unnecessary delay during page loading, whenever a new memory page is read

from the hard disk, ESXi will allocate a new physical page for it. Later, ESXi will use idle

CPU cycles to locate the identical memory pages in physical RAM, and remove duplicates

by leaving pointers for each VM to access the same memory block. Hash results of the

memory page contents are used as index values to locate identical pages. To avoid false

de-duplication caused by hash collisions, a byte-by-byte comparison between the pages

will be conducted. While the reading operations to the de-duplicated pages will access

the same copy, copy-on-write is used to prevent one VM from changing another VM’s

memory pages. Specifically, on writing operations a new page will first be allocated and

copied. This procedure will incur extra overhead compared to writing to not-shared pages,

58

which will lead to a measurable delay when a large number of shared pages are allocated

and copied.

ESXi uses three system wide parameters to adjust how it looks for de-duplicated pages.

These are “ShareScanTime”, “ShareScanGHz”, and “ShareRateMax”. ShareScanTime

specifies how much time the administrator would like ESXi to scan an entire VM’s mem-

ory pages for duplicates. ShareScanGHz specifies the maximum number of pages to scan

in physical RAM per second. ShareRateMax specifies how quickly the pages should be

scanned per-virtual machine. VMware sets these parameters to some default values to offer

the least amount of overhead, while still finding identical pages fairly quickly. According

to VMware, the algorithm also scans faster if it determines that there is a high likelihood

of finding duplicate pages based on the previous scans, and vice-versa.

ParaView [54] is an open-source, multi-platform data analysis and visualization software

package. ParaView allows users to generate visualizations to analyze their data using qual-

itative and quantitative techniques. ParaView is used by the organizations such as Army

Research Laboratory, Sandia and Los Alamos National Laboratories, and NASA.

Generation of Memory Fingerprints

The fingerprints created in the following fashion give us a real world representation to

what can be found in the wild. The off-line memory dump and analysis described in the

following two sections is also much faster, easier, and only slightly less accurate than cal-

culating what the similar memory pages would be based on the OS’s documented loading

behavior on essential OS files, and the documented loading behavior of the data analysis

software and the data files themselves, respectively. Based on these considerations, we be-

59

lieve that an attacker would most likely build memory signatures in the same fashion as we

have for our approach.

Generation of OS Signatures

The first step to turn the proposed approach into a practical attack is to identify the mem-

ory pages that are unique to each OS type. To accomplish this task, we load the OS image

files into a VM instance and then conduct a memory dump. The dump files are then cut

into 4KB pages. We adopt the mechanism in [43] and use hash results of the memory con-

tents as indexes to locate the identical pages. For each OS type and version, we analyze the

memory dump files from different installation sources so that we can remove the impacts of

the factors including different hardware drivers, different product keys, and different prod-

uct IDs. Once we have categorized the memory pages by OS types and versions, we can

find out which memory pages are unique to each OS version, but present in all copies of

that OS version. These memory pages will hereafter be referred to as OS signatures. Please

note that not all memory pages can be used as the signatures. For example, the memory

dump of Windows XP SP3 contains 59,238 copies of all-zero memory pages. These pages,

however, cannot be used for OS fingerprinting since they are not unique to any specific OS

type.

During the signature generation procedures, we conduct cross-comparison among only

the memory pages of different OS types. Therefore, it is possible that some of the signature

pages will appear in the memory images of other software applications or data files. This

may affect the OS fingerprinting accuracy since the attacker would not be able to identify

the sources of these memory pages. Fortunately, because of the large number of diverse

60

memory pages (24096×8 if every bit has the same probability to be 0 or 1), the impacts on

fingerprinting accuracy will be very limited.

Generation of Data File Signatures

Considering the size of the data sets for scientific and military applications, their memory

footprint often contains many pages. Some of these pages, however, cannot be used for data

set identification since they are not unique for any specific file. For example, the header

of the data files often follows a pre-defined format and contains information such as the

dimension of the data, the number of records in the file, and the size of each data record.

At the same time, the data files may also have some identical memory pages with the

operating system or user applications. To determine whether or not a data file has enough

unique memory pages, we propose to conduct off-line memory dumps of computers after

they have loaded the file. The dump file is then cut into 4KB pages and compared to

the memory pages of different operating systems and user applications. We adopt the

mechanism in [43] and use hash results of the memory contents as indexes to locate the

identical pages. Once we have categorized the memory pages of the data sets, we can find

out which memory pages are unique to each data file. These coalesced memory pages will

hereafter be referred to as data file signatures.

Fingerprinting Procedures

As we describe in Section 1, VMware ESXi uses different methods to handle the writ-

ing operations to the de-duplicated pages and pages with their own copies. For the pages

with their own copies, the writing operation can be conducted immediately. For the de-

duplicated pages, a new copy must be created first. This memory allocation and copy

61

procedure will introduce extra processing delay. Our OS fingerprinting procedure, there-

fore, is to detect the accumulated difference in access delay caused by the de-duplication

between our OS signatures and the target VM. To achieve the goal, we adopt the following

schemes.

First, since we want to measure the extra processing delay caused by the writing oper-

ations to the de-duplicated pages of the data sets or operating systems, we need to control

at what time and to which pages such writing operations will be initiated. Fortunately,

for many data analysis and visualization applications such as ParaView, the data sets are

treated as read-only raw-data inputs. Likewise, since many OS files are read-only, we plan

to construct a different signature file for each OS and data set by chaining its unique mem-

ory pages together. Therefore, by loading the corresponding signature file into memory and

writing to it, we can force the hypervisor to create a new copy for any de-duplicated pages

that uniquely belong to that OS or data set.

Second, since the pages that have not been accessed recently will be swapped out by

the hypervisor, we need to distinguish the delay of hard disk reading from that of copy-on-

write. To accomplish this task, we plan to conduct a reading operation to the OS or data

set signature file right before the writing operation. If a page is in the memory, this reading

operation can be accomplished immediately and it will not change the de-duplication status

of the page. However, if a page has been swapped out, this reading operation will force

the hypervisor to execute a hard disk access. Since VMware ESXi will allocate a new

memory page for the newly read contents, the next step of writing can be accomplished

immediately and will not provide us useful information about the fingerprinting. In this

way, we can distinguish between the two types of access delay.

62

With these basic components established, our OS fingerprinting procedure is illustrated

in Figure 9. Although here we use the narrative description “short” and “long”, the exper-

iments in Section 3 will help us to determine quantitative thresholds for OS and data set

fingerprinting in real systems.

Figure 9: The proposed fingerprinting procedure.

When we confirm that our VM instance and the target VM are located on the same

physical box through co-residence detection, we will read the signature files into memory.

These files will then be left alone for a period of time to allow memory de-duplication

algorithms to locate and merge the identical pages. Once the de-duplication procedure is

accomplished, we will conduct a reading operation on the signature files. The purpose of

this operation is to determine whether or not the files have been swapped out to hard disk. If

the reading access delay matches the hard disk loading time, we will abort the fingerprinting

procedure since the newly loaded pages all have their own copies. Otherwise, we will

conduct a writing operation to the signature files. Since we already know that these pages

are in memory, based on the delay of the writing operation, we can determine whether

or not they experience the copy-on-write procedures. If so, we know that a VM instance

matching this signature file exists in the physical box.

63

3.3 Implementation and Experimental Results

Although the basic idea of the proposed approach is straightforward, many issues need

to be solved before we can turn the idea into a practical attack. For example, we need

to examine the size of the OS and data set signature files to make sure that the accumu-

lated delay is actually measurable. At the same time, we need to examine the timekeeping

schemes in hypervisors so that we can measure the delay accurately. In this Section, we

present the details of our implementation of the attack and the experiment results.

OS Signature Experiment Environment Setup

Our VMware ESXi server is running on a PC with a dual core 2.4GHz Xeon CPU,

4GB RAM, and SATA hard drives. To simplify the experiment setup and examine the

practicability of the attack, during each trial there are only the target VM and our attacking

VM instance running on ESXi. OS fingerprinting in more complicated scenarios will be

studied in future work.

In order to build the OS signatures, we have generated and examined the memory dump

files of different operating systems to find memory pages that would be unique for a specific

OS version. We sampled four types of Linux/Unix and nine types of Windows to cross

examine their memory pages. The number of unique pages of each OS type/version is

summarized in Table 2. From the table, we find that the size of the signature files ranges

from several thousands to tens of thousands of pages. The experiment results presented

later will show that the accumulated difference in access delay to these pages can be easily

detected.

Another issue that we are facing is the accuracy of time measurement. Traditionally a

64

computer provides three schemes to measure the length of a time duration: time of the day,

CPU cycle counter, and APIC (advanced programmable interrupt controller) timer. The

first method provides the measurement granularity of seconds which is too coarse for our

application. The second method will be a good candidate for time measurement if the at-

tacker’s OS completely owns the hardware platform. In a VM-based system, however, it

cannot accurately measure the time duration. For example, if a page fault happens during

our reading operation, the hypervisor may pause the CPU cycle counter while it fetches

the memory page. Therefore, the delay caused by hard disk reading will not be measured.

Based on these observations, we choose to use the timestamp service provided by masm32

in: \masm32\lib\winmm.lib to access the APIC timer. Specifically, we use the timeGet-

Time directive because it provides a 1 millisecond resolution. [64] According to [102],

VMware has fully emulated the local APIC timer to provide accurate time readings, so the

page fault handler built into ESXi to handle de-duplication will not pause the virtual local

APIC timer.

Table 2: Size of OS signature files in 4KB pages

OS Type
Fedora Ubuntu

7 8 10 11
of unique pages 4572 5274 8179 5547

OS Type
Windows

XP XP 2003 Vista Vista Win 7 Win 7 2008 2008
SP2 SP3 32 bit 64 bit 32 bit 64 bit 32 bit 64 bit

unique 3325 3582 3695 5503 20053 9753 23977 5638 16240

Three reasons make us choose Windows 95 as the OS of the attacker’s VM instance.

First, we want an operating system with a very small memory footprint size so that its

contents will not pollute the de-duplication results. Since Windows 95 can easily run on

a platform with only 64MB RAM, it achieves a good balance between the size and the

65

supported functions. Second, there are not many systems still running Windows 95 so

there is a very low probability that our VM instance and the target VM are running the

same OS. Last but not least, we have extended experiences in working with the portable

executable (PE) file format and Windows 95 is one of the earliest systems supporting this

format. To further reduce extra delay caused by high level programming languages, we

implemented the memory access and time measurement functions in assembly language.

As illustrated in Figure 9, we have divided the OS fingerprinting procedure into four

groups of operations. Operation group one will read the first 32 bits of every memory page

of the OS signature file and store each result into the EAX register. Our program then sleeps

the processor for a duration of several hours to allow de-duplication to occur. After that, it

will perform operation groups two through four immediately after each other. Group two

does the same operation as group one. Group three writes junk data into the first 32 bits

of every memory page for each OS signature. Finally, group four reads back the memory

pages to confirm the changes.

OS Signature Experiment Results

We conduct six groups of experiments to evaluate the OS fingerprinting capability of the

proposed approach under different levels of computation and memory access workload.

The target OS that we try to identify includes Windows 2008 Server 32 bit, Windows 7 32

bit, and Ubuntu 10. In the attacker’s VM instance, we load the OS signature files of Win-

dows 2008 Server 32 bit, Windows 2003 Server, Windows XP Service Pack 3, Windows 7

32 bit, Ubuntu 10, and Ubuntu 11. We choose these signatures since they are the favorites

of IT staff in our day-to-day lives and would have a high probability of a hit in the real

66

world. The idle periods for memory de-duplication are usually four hours. Our results are

shown in Figures 10 through 14. Given the fact that the delays span across multiple degrees

of magnitude, we use log-scale Y-axis. Seeing as the signature files of different OS types

have different sizes, we illustrate the average reading and writing time per memory page

in the figures. For a signature file that contains thousands of memory pages, the accumu-

lated difference in access delay will be several to tens of milliseconds, which can be easily

measured by the proposed approach. Each node in the figures is the average value of five

experiment runs with the same configuration. All time delays are measured in milliseconds.

To help readers to better understand the experiment results, the average access delay to the

signature file of the target OS will always be represented by “x”.

In the first experiment, we set up a baseline test case. Here one instance of Windows

2008 is initiated in the host as the target OS. To reduce the impacts of page swapping

on the approach and accelerate the de-duplication calculation procedure, the target VM

instance does not activate any other applications. The attacker’s VM runs Windows 95 and

loads the signature files of Windows 2008, 2003, XP SP3, Windows 7 32bit, Ubuntu 10,

and Ubuntu 11 into its memory. As shown in Figure 10.(a), the delay of the first reading

operations is relatively long since the pages have to be read from the hard disk. After that,

the target VM instance and the attacker’s VM are left idle for four hours to give the de-

duplication algorithms enough time to scan the memory. Given that each VM has enough

memory to hold the OS files, we do not expect a lot of page swapping to happen. This is

confirmed by the very short access delay of the second group of reading operations. The

access delay of the writing operations, however, demonstrates the difference among the

signature files. Here the access delay to the signature file of Windows 2008 is about three

67

times longer than those of other OS types because of the copy-on-write operations. Our

approach can successfully identify the type of the target OS in this baseline setup. The

second experiment has the same configuration as experiment one except that the target VM

is running Ubuntu 10. As the results shown in Figure 10.(b), the long delay will allow us

to easily identify the target OS.

(a) when Windows 2008 is the target OS

(b) when Ubuntu 10 is the target OS

Figure 10: OS fingerprinting results when CPU and memory demands are low.

In the third experiment, we want to investigate the impacts of computation workload

in the target VM on the fingerprinting accuracy. Here the basic setup is the same as the

first experiment. The only difference is that we use Windows 7 32bit as the target OS. To

introduce medium-level computation workload on the target VM, we run DES encryption

and RSA encryption algorithms on the VM. The results are shown in Figure 11. Here the

68

second group of reading operations become slower. This could be caused by context switch

between the VMs since the target VM is running some applications. The writing delay to

the signature files of the target OS is still much longer than those of other OS types (4 to

8 times longer). From this figure, we find that our OS fingerprinting approach will work

properly when the computation workload on the target VM is not too heavy.

Figure 11: OS fingerprinting under medium computation workload.

Figure 12: OS fingerprinting under medium level memory demand.

In the fourth experiment, we want to investigate the impacts of memory demands on the

target VM on the fingerprinting accuracy. Again we choose Windows 2008 as the OS of

the target VM. We run a memory testing software “QA+Win32” [35] to introduce medium-

level memory demand on the target VM. The results are shown in Figure 12. Here the

second group of reading operations become even slower because of the page swapping.

The write delay to the signature files of the target OS is still 2 to 3 times longer than those

69

of other OS types. This figure shows that our approach can work properly under medium

level memory demand on the target VM.

Figure 13: OS fingerprinting under medium workload and memory demand.

Figure 14: OS fingerprinting under extreme workload and memory demand.

In the fifth experiment, we have medium-level computation workload and memory de-

mand on the target VM. The results are shown in Figure 13. The OS type of the target VM

can still be identified based on the slow speed of the writing operations.

In the last group of experiments, we want to investigate the OS fingerprinting accuracy

of our approach under very heavy computation workload and memory demand. We use

Windows 2008 as the OS of the target VM. The target VM is running Prime95 [106], a CPU

and RAM stress test software package. Very frequent memory page swapping is expected.

The results are shown in Figure 14. We can see that the writing delay to the signature files

of different OS types cannot be distinguished from each other. This experiment shows that

70

memory de-duplication based OS fingerprinting will not work properly under extremely

heavy computation workload and memory demand. This is reasonable since under this

condition, the hypervisor would not have enough computation power or a relatively stable

memory image to identify and maintain the de-duplicated pages.

Data Set Experiment Environment Setup

Our VMWare ESXi server is running on a PC with a dual core 2.4GHz Xeon CPU, 4GB

RAM, and SATA hard drives. We have chosen two Windows Operating Systems as the

guest OSes for the target VM: Windows 7 32-bit, and Windows XP SP3. The attackers VM

is Windows 95 because it has a smaller memory footprint than modern Windows Operating

Systems. Here, having a small memory footprint prevents our attackers’ VM from requir-

ing excessive amounts of memory for loading memory page samples. We have chosen five

biological data sets available from 3D-IRCADb [34] to serve as the data files for finger-

printing and identification. A screenshot of an example data set is available in Figure 15.

We choose the five data sets available that have a signature of over 3,000 memory pages.

Their basic information is shown in Table 3.

Figure 15: Screenshot of 3D-IRCADb2.2, as used in experimentation.

71
Table 3: Selected data sets.

file & size content source signature size
3D-IRCADb1.1 liver tumor 3D-IRCADb

3524 pages
(6.9MB) structure database

3D-IRCADb1.3 liver tumor 3D-IRCADb
7836 pages

(13.4MB) structure database
3D-IRCADb1.5 liver tumor 3D-IRCADb

3640 pages
(7.1MB) structure database

3D-IRCADb1.6 liver tumor 3D-IRCADb
3661 pages

(7.2MB) structure database
3D-IRCADb2.2 Chest/Abdomen 3D-IRCADb

7435 pages
(13.1MB) 3D CT-scan database

In order to build our data set signatures, we have generated and examined the memory

dump files under different scenarios. Specifically, we need to examine the memory page

contents under two conditions: (1) ParaView is initiated but no data file is opened; and

(2) ParaView has opened the data file and generated the visualization. We experiment

with different types of guest OS to investigate their impacts on the size of the signatures.

The number of unique pages of each data set is summarized in Table 3. Please note that

in this table, we have cross-compared all the memory pages of the two guest operating

systems, the memory pages of ParaView opened under different guest OS, and the pages

of the data sets. From the table, we find that the signature files usually have the size of

several thousands pages. The later experiment results will show that the accumulated delay

of accessing these pages can be easily detected. At the same time, we find that when

ParaView opens the same data file in different guest OSes, the memory dumps have many

duplicate pages. This shows that ParaView is almost OS-independent. This property will

definitely promote its wide adoption. However, it will also provide convenience to attackers

72

in data set identification since the malicious parties do not need to first figure out the guest

OS of the target virtual machine.

Another issue that we are facing is the accuracy of time measurement. Traditionally an

operating system provides three methods to measure the length of a time duration: time

of the day, CPU cycle counter, and APIC timer. The first method provides the granular-

ity of seconds and it is too coarse for our application. The second method will be a good

candidate for time measurement if the OS completely owns the hardware platform. In a

VM-based system, however, it cannot accurately measure the time duration. For example,

if a page fault happens during our reading operation, the hypervisor will pause the CPU

cycle counter and switch to another VM. Therefore, the delay caused by hard disk reading

will not be measured. Based on these observations, we choose to use the timestamp ser-

vice provided by masm32 in winmm.lib to access the APIC timer. Specifically, we use the

timeGetTime directive because it provides a 1 millisecond resolution. According to [102],

VMWare has fully emulated the local APIC timer to provide accurate time readings, so

the page fault handler built into ESXi to handle de-duplication will not pause the virtual

local APIC timer. To further reduce extra delay caused by high level programming lan-

guages such as Java, we implemented the memory access and time measurement functions

in assembly.

As illustrated in Figure 9, we have divided our program’s functions into four groups of

operations. The operation group one is to immediately read the first 32 bits of each data

set signature’s memory page and store the result of each read operation in the accumulator

(EAX). Our program then sleeps the processor for a sufficient amount of time to allow

de-duplication to occur. Our program then performs operation groups two through four

73

immediately after each other. Group two does the same operation as group one, but reads

the signatures after the sleep period. Group three writes junk data to the first 32 bits of

every memory page for each data set signature. Group four then reads back the memory

pages to confirm the changes.

Data Set Experiment Results

We conduct four groups of experiments to evaluate the data set identification capability

of the proposed approach under different levels of computation and memory access work-

load. We have two virtual machines running on the physical box. The operating system

of the target virtual machine is Windows XP SP3. It has the latest version of ParaView

installed. The attacker’s VM uses Windows 95 as the operating system. The target VM has

512 MB memory and the attacker’s VM has 256 MB memory. Because we have constructed

the data set signature files in the binary format, we do not need to install ParaView on the

attacker’s VM. This is preferred, because writing junk data to memory pages in actual use

by ParaView may cause the program to crash, which may be a detectable event on the hy-

pervisor. We assume that the attacker has a rough idea of what sample data sets might be

used by the target VM. In our experiments, since we have direct access to the target VM,

we will activate ParaView to operate on a single selected data set at a time. Given that the

attackers do not know which data sets the target VM is using, we will load the signature

files of all data sets into memory and conduct the reading/writing operations on each of

them.

Our results are shown in Figures 16 through 19. In addition to our 4 groups of opera-

tions, we first show in each figure the hard disk delay required to load each signature from

74

disk. As the access delays span across multiple degrees of magnitude, we use log-scale

Y-axis. Because the signature files of different data sets have different sizes, we illustrate

the average reading and writing time per memory page in the figures. Each node in the

figures are the average value of five experiment runs with the same configuration. All time

delays are measured in milliseconds. To help readers better understand the identification

results, the page access delay of the data set read by ParaView on the target VM is always

represented by “x”.

Figure 16: Results with 3D-IRCADb1.1 under idle level computation workload.

In the first experiment, we set up a baseline test case. Here the ParaView software on the

target VM reads the 3D-IRCADb1.1 data set and generates the visualization. We choose

this data set as the test case since it contains the smallest number of signature pages that

still fit our 3000 page count lower limit. As shown in Figure 16, the hard disk delay is

long. Next, the first read operation is short because the pages have just been freshly loaded

into memory. After that, the target VM and the attacker’s VM are left idle to give the

de-duplication algorithms enough time to scan the memory. Since each VM has enough

memory to store the signature files, we do not expect a lot of page swapping to happen.

This is confirmed by the very short access delay of the second group of reading operations.

75

The access delay of the writing operations, however, demonstrates the difference among the

signature files. Here the delay of the signature file of the 3D-IRCADb1.1 data set is about

twelve times longer than those of other data sets because of the copy-on-write operations.

Our approach can successfully identify the data set in use in this baseline setup.

Figure 17: Results with 3D-IRCADb1.1 under moderate computation workload.

For the second experiment we continued with the 3D-IRCADb1.1 data set. This time,

we also startup a Windows 7 VM and allow it to run along side the target and attacker VMs.

We repeatedly ran the System File Checker (SFC) included with Windows 7 to simulate a

normal moderate computer load by a third party Virtual Machine running on the hypervisor.

The physical machine maintained fluctuating demands on the CPU, memory, and hard disk

through the entire test. The results are shown in Figure 17. From the figure, we find that

the reading and writing delays are very similar to Figure 16. The measured writing delay

is still much longer than those of other data sets (4 to 6 times longer). From this figure, we

find that the proposed approach will work properly when the signature file is as small as

three thousand pages under normal real-world operating conditions.

In the third experiment, we want to assess what the impacts are of using a data set with

a larger signature, so we used the 3D-IRCADb1.3 data set. To introduce the impacts of

76

Figure 18: Results with 3D-IRCADb1.3 under moderate computation workload.

normal CPU, memory and disk usage operations, we again run the SFC included with Win-

dows 7 in a loop during the experiment. As we describe above, the ParaView software on

the target VM reads the 3D-IRCADb1.3 data set. After the visualization is generated, we

leave the ParaView application alone to avoid extra computation and memory access over-

head caused by the software. The results are shown in Figure 18. The write delay measured

is still 2 times longer than those of other data sets. This figure shows that our approach can

work properly with larger signature data sets under normal operating conditions.

Figure 19: 3D-IRCADb1.1 with high level workload and memory demand.

In the fourth experiment, we write a script to continually change the viewing angle on

the target VM. The view point rotated between each viewing axis and back again within

one second, causing the virtual CPU to peak out at 100 percent usage, with each physical

77

core maintaining about 50 percent usage. We use the 3D-IRCADb1.1 data set to see if a

smaller signature will have a noticeable access delay. The results are shown in Figure 19.

The identification of the data set in use in the target VM can still be identified with a 10

times longer writing delay.

3.4 Guest Based Prevention of Memory Deduplication Fingerprinting

As the analysis in Section 2 shows, the differences in access delay will allow attackers

to detect only the existence of specific pages in the main memory. However, they can-

not identify to which applications or data files these pages belong. Therefore, a VM can

obfuscate the attack by intentionally loading the signature files of other OS types into its

memory. Since most signature files contain only a few thousand unique memory pages, we

can easily fit multiple signatures into the main memory of a VM.

Experiment Environment Setup and Results

We set up an experiment environment identical to Section 3.1. We must first determine a

proper signature read time frequency for the defense program to use, in order to prevent the

target OS from swapping out signature files, subsequently preventing de-duplication from

masking the target’s signature. In order to do this, we used three different read frequencies:

2000 seconds, 200 seconds, and 20 seconds. Our attacker again used Windows 95 as the

attacking OS, and our target was chosen as Windows 7 because it is the most frequently

used OS at this time. On the target, we introduced a moderately high memory usage by

opening different retail web pages in Internet Explorer until there was no free memory and

the disk cache was down to 300MB. We then refreshed each web page in serial 10 second

loops. We noticed during our experiment that the CPU usage chart became highly unstable,

78

but should not interfere much with this experiment. Our attack results are shown in Figure

20.

Figure 20: Defense results under different orders of magnitude.

These results show an inverse correlation between signature read frequency and attacker

detection accuracy. This is the be expected because the target OS will have a better

chance of swapping signature pages out with longer signature read wait times, thus not

de-duplicating as many signature pages and increasing the attacker’s accuracy. In order to

avoid this problem, our defense experiments and performance analysis will be done with a

2 second read wait time.

For our defense vs. no defense comparison experiments, our attacker again used Win-

dows 95 as the attacking OS, and our target was Windows XP Service Pack 3. We chose

Windows XP because it is easier to more precisely control cpu and memory variables to

alleviate the unstable cpu usage seen in Windows 7. We conduct two groups of experiments

to evaluate the OS fingerprinting defense capability of the proposed approach under differ-

ent levels of computation and memory access workload. In the attacker’s VM instance, we

load the OS signature files of Windows 2008 Server 32 bit, Windows 2003 Server, Win-

dows XP Service Pack 3, Windows 7 32 bit, Ubuntu 10, and Ubuntu 11. The attacker wrote

79

these signature files into their virtual machine’s memory and waited five hours before trying

to write to these pages. The target wrote these same signature files into their memory and

read them every two seconds to make sure they were not swapped out by either the guest

or the hypervisor. An experiment was not conducted for both high CPU and High Memory

demand because, as shown in Figure 14, the attack does not work under these conditions

anyways.

In experiment group one, the memory signature write times were taken by the attacker

with both no defense and the defense program running in the target VM. The target VM

was left idle, other than the defense program running. The results are shown in Figure

21. As is shown, before the defense, the attacker could successfully identify the operating

system version running on the target VM. However, with the defense program running, the

attacker is now no longer able to successfully detect the target VM’s Operating System.

Figure 21: Page write results with and without defense under idle workload.

In experiment group two, the memory signature write times were taken by the attacker

with both no defense and the defense program running in the target VM. The target VM

was running Prime95, instructed to use very little ram or disk. The CPU in the virtual

machine stayed very near 100 percent usage the entire wait time. The results are presented

80

in Figure 22. Here, we can see that the memory write time for XP decreased without the

defense program running from Figure 21 to Figure 22. We believe this was due to a slight

decrease in the efficiency of the de-duplication engine in the hypervisor due to the large

CPU workload. With the defense program running, the write times for all signatures went

up as expected, with a slight dip in the middle, again, most likely due to a decrease in

the de-duplication efficiency. Despite this decrease, the defense program does successfully

mask the correct operating system signature.

Figure 22: Write results with/without defense; high CPU/low memory usage.

Performance analysis of VM with defense program running.

In order to assess the performance impact of our defense program, we ran our defense

program on a Microsoft SQL server configured Windows 7 guest VM and tested the mem-

ory performance when assigned 1.5 GB of memory. Windows 7 was chosen because it

has the highest idle memory demands of all the other OS signatures we made. To evalu-

ate a non-idle SQL server, we ran SQL stress tests on the server at the same time. These

stress tests simulated ten users submitting typical queries such as ”SELECT TOP 1024,”

”INSERT” and ”DELETE.” We conducted our test with first without any defenses, second

with our defense programming running and no antivirus, and third without our defense pro-

81

gram and Avast! version 8.0.1483. We included the results of the SQL performance test

with antivirus running to compare with a known user acceptable performance penalty. Our

results are shown in Table 4.

Table 4: Averages of SQL Memory Performance Measurements.

Before Defense or Avast! After Defense After Avast!
Cache Faults/sec 0 0.2105 1.6549
Page Faults / sec 63.0820 66.4911 102.6774
Page Reads/sec 0.0294 0.01754 0.0909

Pool Paged Bytes 85449089 84826606 102458806
% Committed Bytes In Use 79.6416 92.1890 82.01443

As is shown from these results, there is a slight performance penalty, but all the values are

negligible except for “Percent Committed Bytes In Use.” This value simply represents the

percentage of memory in use by all processes. This value goes up a reasonable amount

when containing six OS signatures, so we feel it proves to be of an reasonable performance

impact in comparison to the security offered. An attack on an operating system that is

successful without any detection is the worst nightmare of a security professional. Our

defense program provides less of a performance impact than many signature based antivirus

products, which have become a staple in the defense arsenal for any computer system. The

programming of our defense program in assembly made it have no noticeable impact on

the processor, and only a slight penalty to the OS memory management. We feel defense

programs written in this way could easily become standard practice for security conscious

virtual machine operators (such as mobile cloud users).

82

3.5 Discussion

The problem of VM instance co-residence detection

Although the experimental results in Section 4 are very encouraging, one problem is left

unsolved: how can the attacker put the malicious VM instance onto the same physical box

as the target and determine their co-residence. There exist two adversarial strategies to

place attacker’s VM onto the same physical box as the target. The first strategy is brute-

forcing placement. In this mechanism, the attacker will launch numerous instances over

a period of time and conduct co-residence test discussed below. Previous research [81]

shows that this simple approach has about 10% probability to successfully put at least one

VM of the attacker onto the same physical box as the target. In the second attack strategy,

the attacker can attempt to use the strong sequential and parallel placement locality of VM

instances that has been shown in third party clouds such as Amazon EC2. [81] With this

property, if attackers launch VM instances relatively soon after the launch of the target,

they have a better chance to achieve co-existence.

We understand that different VM management systems have different mapping policies

among the virtual machines and physical boxes. For example, some systems use static

mapping between the two groups. Under this condition, we can use the information such

as the Dom0 IP addresses and internal IP addresses in the cloud to determine whether or

not two instances are on the same physical box. Such management policy will also allow

us to launch a new instance immediately after the termination of our previous instance so

that the new one will take the slot of the terminated one.

The dynamic mapping between the VMs and physical boxes may even help attackers

83

on their fingerprinting procedures. For example, to maximize the benefits of memory de-

duplication, the hypervisors may move all instances with the same OS type onto a single

physical box. Under this condition, the attacker only needs to use the co-residence detection

schemes to determine whether or not its VM is on the same physical box as the target.

Attackers can use two groups of mechanisms to verify co-residence of their malicious

VM and the target. In the first group the attacker can examine the similarity of their Dom0

IP addresses and internal IP addresses in the cloud since many third party cloud manage-

ment systems use static mapping between the addresses of VMs and the physical boxes.

In the second group attackers can investigate load-based co-residence detection schemes

through side-channels. [81, 76] The basic idea is to induce different levels of computation

and data access loads onto the target and measure the operation delay of attacker’s VM

instance. If the two sequences of events match very well, the two VMs have a good chance

to be located on the same physical box.

Porting the attack to other hypervisors

Although we implement and evaluate the proposed attack using only the VMware ESXi

hypervisor, the technique can be easily ported to other hypervisors that support memory de-

duplication. For example, researchers [90] have examined information leakage caused by

memory de-duplication in Linux KSM (Kernel Samepage Merging). In their experiments,

attackers construct memory pages that have the same contents as some specific applica-

tions. They will then measure the write access time to these pages to determine whether

or not the applications are initiated in the target VM. In [43], memory harvesting using

84

de-duplication is implemented in Xen. Therefore, the similar attack can be conducted in

this environment with minor changes.

Other Prevention Methods of de-duplication based fingerprinting

Prevention of OS fingerprinting at the hypervisor level

Special mechanisms can also be designed to defend against the de-duplication based

OS fingerprinting attacks at the hypervisor. We propose two mechanisms which can be

adopted by the hypervisor to defend against the studied attacks. First, the hypervisor can

label the memory pages so that the de-duplication operations can be conducted on only the

pages of data files but not OS images. The disadvantages of this mechanism include the

required modification to existing hypervisors and the reduced memory usage efficiency. In

the second mechanism, physical isolation among the VMs will be enforced so that only

mutually trusted VMs will be positioned in the same physical box. For example, Amazon

introduces a new service with physically isolated, tenant-specific hardware so that NASA

will join its cloud infrastructure. [89] In [112], researchers have designed a scheme to help

end users to verify the physical isolation among VMs.

Prevention of Data Set Fingerprinting

Since the proposed data set identification mechanism uses the access delay to the mem-

ory pages to identify their contents, the defense mechanisms need to hide the difference.

Two approaches can be used to achieve the goal. In the first approach, we can combine the

unique pages of different data sets to construct a data file. When a VM instance tries to

defend against the fingerprinting attack through memory de-duplication, it can periodically

read the data file into its memory. In this way, the instance will demonstrate the signatures

85

of multiple data sets and raise the difficulty level of identification. Please note that this

approach can only defer the attack but not totally disable it since the real data set in use

will still be in memory.

In the second approach, we can change the organization of the data records in the mem-

ory when they are loaded from the hard disk. In this mechanism, we can adopt different

indexing schemes to organize the data records in the main memory. Therefore, even when

the same data file is read at different VMs, the memory pages will still have different

contents. The flexibility in data organization will not introduce too much overhead in in-

formation processing and analysis since many software packages such as MS SQL server

are designed to support multiple logical equivalent plans for query processing. [77]

3.6 Conclusion

In this chapter we propose a new OS and data set fingerprinting mechanism for VM

instances on hypervisors that enable the memory de-duplication functionality. Memory

de-duplication will make it so mobile mashups who use virtual machines to better secure

the end users can run several of the mobile virtual machines on a single host. However,

this strategy must be properly secured. The analysis shows that the reading and writing

delay of the memory pages will demonstrate a measurable difference when they do not

have their own copies in the memory. Experimental results on multiple OS types show that

each of these OS contains a large number of unique pages that can be used as its signature.

Additionally, experimental results on multiple biological data sets show that each of these

sets contains a large number of unique pages that can be used as its signature. We can

use the co-residence detection schemes to launch VM instances onto the same physical

86

box as the target and determine its OS type or the data set in use. Different from previous

approaches that need interaction with the target, our approach is more difficult to detect

by IDS or network traffic monitor. Our defense program proves that a virtual machine can

defend itself from deduplication based fingerprinting.

CHAPTER 4: PRESERVING DATA QUERY PRIVACY IN MOBILE MASHUPS

4.1 Introduction

With the proliferation of smart wireless devices such as Android and Apple phones, nu-

merous new widgets based on the widely adopted Web 2.0 standard are developed. Among

these applications, many are built upon the mashup technique. A mashup application is a

system which combines the local contents with the information from other web providers,

such as Google, Ebay, and Craigslist into an integrated information presentation platform.

The published web service interfaces such as Google Maps, Yahoo! Flickr, and Amazon

Web Services greatly simplify the creation of the mashups by hiding their internal com-

plexity.

While the mashup technique enables the development of new and convenient applica-

tions, it also raises security concerns. Previous research has been focusing on the pre-

vention of information leakage among data/service providers in the same mashup pages.

[29, 92, 98, 108] In this chapter, we investigate the security problem from a new perspec-

tive. As an example, a health care service delivering company develops a mobile mashup:

a patient needs to input only an address and a disease. The mashup will search in the com-

pany’s database to locate all doctors specialized in this disease within 10 miles of the input

address. It will then retrieve information from two other providers to label these doctors

on a map and show their patient reviews. The company knows that the privacy of health

88

information is critical. Therefore, it encrypts the query results from the database. Unfortu-

nately, the map and doctor review companies transmit information in plain text. Now if an

attacker Eve monitors the returned data of this mashup to Alice’s cell phone, she can easily

derive the disease that Alice might have. This kind of information leakage is beyond the

control of the developer of this mashup since she/he cannot determine the interface design

of the data providers.

In parallel to the development of mobile mashups is the design and deployment of mobile

cloud computing. [33, 46] Mobile cloud provides transparent services to portable devices

such as smart phones in order to resolve the discrepancy between the limited resources

of such devices and the demands of innovative applications. While the security of mobile

cloud has attracted interests from researchers [45, 111], using it to provide security services

for other application environments deserves more efforts. At least three reasons make us

believe that mobile cloud is an appropriate solution to privacy preservation in mashups.

First, with cloud based storage providers offering to keep private information available de-

spite company technology failures and enable fast storage retrieval from anywhere in the

world with worldwide distributed storage, mobile users will easily be able to supplement

their small data storage capabilities with cloud based storage. Thus preventing a lost smart-

phone from providing sensitive information to third parties. Second, mobile cloud provides

transparent services to end users so that we can hide the sources of aggregated information.

Third, mobile cloud allows components of the mashup software to move freely between

end users and cloud infrastructure. In this way, it becomes more difficult for attackers to

track the information flow and/or gather private information.

Although the client-side mashup technique has dominated mashups for desktop com-

89

puters, recent research [2] shows that for mobile devices client-side, server-side, and even

hybrid mashups are all popular. Therefore, in this chapter we propose to design two mech-

anisms for privacy preservation in data acquirement for client-side and server-side mashups

respectively. For server-side mashups, the server can dynamically create virtual machines

in the mobile cloud to work as proxies to handle information collection and integration.

The nondeterministic location of a virtual machine makes it extremely difficult for attack-

ers to eavesdrop on the communication contents. For client-side mashups, we propose to

use the techniques described in [22, 25] to decompose the application into multiple compo-

nents and move the data collection and aggregation part into the cloud. The overhead and

safety of both approaches will also be studied.

The contributions of the chapter can be summarized as follows. First, we explore us-

ing mobile cloud to improve information privacy in mobile mashups. Second, we have

designed different mechanisms for both client-side and server-side approaches so that they

can be integrated with various widgets. Last but not least, we study both security and

performance of the proposed approaches to evaluate their potential for wide deployment.

The remainder of this chapter is organized as follows. In Section 2 we will discuss the

related work. In Section 3 we will present the details of the proposed approaches and their

application environments. Section 4 will investigate the performance and security of the

approaches. Finally, Section 5 will conclude this chapter.

4.2 Related Work

As summarized in [30], previous research on security in mashup applications focuses

on preventing information leakage among multiple sub-frames belonging to different in-

90

formation sources. The approaches can be classified into three groups. In the first group,

researchers define the “object-capability” languages in which access control, message pass-

ing, and object reference are all tightly managed. For example, Caja [67] implements a

subset of javascript to protect third party contents in web applications. The second group

use the concept of sandboxing. They first encapsulate information from each source with a

subspace. Specially designed communication channels are then implemented among these

components. Subspace [48] and WebJail [98] are examples of the approaches. In the third

group, a complete set of communication protocols are implemented so that all sub-frames

must communicate with each other through the protocols. OMOS [108, 109] and SMash

[29] are examples of the approaches.

Using proxy-based approaches to preserve privacy in networks has been investigated

in different environments. For example, both Crowds [78] and Hordes [86] use proxies

to defend against traffic analysis attacks in Internet. Similar technique has been adopted

to achieve anonymity in HTTP requests [38], peer-to-peer networks [85], location based

services [12], and authorization and accounting [69], to name a few. The techniques of

cloud and virtualization make the dynamic establishment and maintenance of a proxy very

easy.

Decomposing a web application into multiple components and moving some of them

into cloud can serve different purposes of mobile computing. The early models such as

Click modular router [55], Dryad [47], and IBM SPL [44] all enable an application to

be composed by connecting modules. Both CloneCloud [22] and MAUI [25] focus on

reducing energy consumption by moving some components of an application into the cloud.

In [60], the authors propose a composition approach to rich mobile application development

91

to promote modular, flexible and configurable widgets, and reuse of independent software

components.

In [3] the researchers investigate how to improve the application and session layers of

mashup-to-browser communications so that they can enable data sharing between providers

while still preserving the user privacy. This research does not investigate safety of the

user-to-mashup-to-data provider communication links, nor does it acknowledge a possible

correlation between these communication pathways that an attacker could take advantage

of.

In [4] the authors focus on securing the link between end users and mashup content

providers. The approach can also defend against cross site scripting and cross site request

forgery attacks. In [11] the authors investigate solutions to preventing a malicious wid-

get used by a mashup interface from gathering information about mobile users. They also

investigate malicious widgets communicating with the network in a manner that appears

as though the user’s web browser itself is using the communication link. Our proposed

work focuses more on network traffic vulnerabilities presented by mashup providers inad-

vertently turning themselves into “web traffic funnels”, and thus, becoming a very enticing

target for malicious parties.

4.3 The Proposed Approaches

In this section, we present the details of the proposed approaches. We will first elabo-

rate on the system assumptions and the attacker model. We will then discuss the privacy

preservation procedures for server-side and client-side mashups respectively.

92

System Assumptions and Attacker Model

Figure 23 illustrates the application scenarios that we need to protect. In this environ-

ment, end users depend on mashups through mobile cloud to get the needed data and ser-

vices. Some of the providers may reside in the cloud, while others are not. The figure shows

both server-side and client-side mashup applications. The mashup engine is in charge of

the collection and integration of returned data. We assume that end users have enough

computation power to support secure encryption algorithms so that they can protect confi-

dentiality of the traffic. However, neither the end users nor the server has any control over

the communication standard with the third party providers. They must follow the exposed

interfaces of the data providers. Therefore, it is possible that a data provider chooses to

return data in plain text and any eavesdropper will be able to understand the contents.

We assume the attacker model described in [62] and make some updates to it. Here

an attacker will be able to eavesdrop on the incoming and outgoing traffic of the mobile

end users. If a mashup server is used and it has a fixed position and static IP address in

the infrastructure, the attacker will be able to eavesdrop on the node as well. The attacker

does not have the computation power to compromise the secure encryption algorithms and

recover the contents. In theory, for a dynamically created virtual machine in the mobile

cloud, the attacker could trace and locate the node, launch a co-residence attack [81, 112],

and steal information from the VM through side-channel attacks. [73] However, the analy-

sis in subsequent subsections will show that the difficulty level and overhead of such attacks

are very high. Therefore, we assume that the attackers cannot eavesdrop on a dynamically

created virtual machine in the mobile cloud even if its IP address is known.

93

Figure 23: Mashup scenarios in mobile cloud.

k-anonymity [91] is a popular technique for hiding the target in a crowd in order to

preserve privacy. This technique, however, is not efficient in the investigated scenarios. If

the chosen value of k is too small, the privacy of end users will not be properly protected.

On the contrary, if k is too large, too much overhead will be introduced. For client-side

mashups, a mobile device has to consume valuable power resources to send out k−1 fake

requests. Since some providers will charge the mashup engine for every submitted request,

this approach could also be costly for server-side mashups. Based on this analysis, we find

that a new mechanism must be designed for privacy preservation in this application.

Privacy Preservation for Server-side Mashups

As described in section 3.1, an attacker can eavesdrop on the network traffic of the

mashup server if it has a fixed position and static IP address. However, it becomes much

more difficult to locate and monitor a dynamically created virtual machine in the mobile

cloud. In this part, we will design a mechanism based on this observation.

Figure 24 illustrates the proposed mechanism to protect information privacy in server-

side mashups. Here instead of letting the mashup server directly connect to the data and

service providers, we request it to initiate multiple virtual machines in the cloud to serve

as proxies. Since the VMs are created by the server, it can determine the communication

94

Figure 24: Privacy preservation for server-side mashups.

methods with the VMs. Therefore, secure encryption algorithms can be used to protect

network traffic on this segment. Note that traffic between the proxies and data providers

could still be transmitted as plain text.

Through monitoring the outgoing traffic from the server, attackers can figure out the IP

addresses of the proxies. However, eavesdropping on the proxies will be a very difficult

job that demands a lot of resources from the attackers. Experiments in [81] show that the

attackers need to launch 40 to 80 virtual machines to achieve co-residence with one of the

proxies if the mobile cloud provider does not adopt any VM placement policies to prevent

cartography. This number could be even larger if the owner of the cloud randomly places

VMs in the infrastructure.

Even after putting a malicious VM onto the same physical box as a proxy, the attacker

still faces the challenge to derive out the network traffic of the proxy through side channel

attacks. Please note that this is different from the cross VM private key extraction attack

[113] in the following aspects. First and most importantly, in [113] the attacker must be

able to remotely and repeatedly activate the encryption algorithm in the target VM and put

the secret key into cache. In our scenario, the mashup procedure is initiated by the end

user as a one-time execution so the attacker has no control over its happening. Second,

95

in [113] the attacker knows exactly where the key will reside in the cache through code

analysis. In our scenario, the returned information for the mashup could be put at any place

in the cache. Last but not least, in [113] the attacker must be able to regain control of

the CPU sufficiently frequently to conduct side-channel observations through the trigger of

Inter-Processor Interrupts (IPI). Such functionality may not be enabled in the mobile cloud

environment.

The mashup server can create multiple VM proxies to further increase the difficulty

for the attackers to trace and intercept network traffic. Here we propose two dispatching

mechanisms for the server to place requests from end users to different proxies. In the

“vertical” dispatching scheme, every request from a mobile user will be treated as a separate

transaction and assigned to a single proxy. Round-robin or least workload based placement

can be used to maintain balance among the proxies. The advantage of this approach is that

when the server determines to terminate a proxy, we can stop assigning new requests to it.

Therefore, the switch to a new proxy can be accomplished smoothly.

In the “horizontal” dispatching scheme, each proxy will be in charge of handling all

interaction with one or a few data providers. In this way, every user request needs the col-

laboration of multiple proxies and only the server itself can integrate the returned data. The

advantage of this approach is that when an attacker intercepts the network traffic to a proxy,

it can get access to only a part of the mashup result. At the same time, since there could be

many returned messages from the same provider, the attacker will not be able to identify

the request that it is interested in. The disadvantage, however, is that a malfunctioned proxy

may impact the processing of a large number of user requests. The designer of a mashup

application needs to choose the dispatching mechanism that fits her/his needs the best.

96

Privacy Preservation for Client-side Mashups

In theory, we can adopt a similar technique to protect the privacy of information in

client-side mashups. Here each mobile device can initiate a virtual machine in the mobile

cloud and use it as a proxy to handle information integration. However, products such

as Mobile Virtualization Platform (MVP) by VMware cannot yet provide full control of a

virtual environment through an app on a thin client such as a smart phone. Therefore, we

need to design some new mechanisms to protect client-side mashups.

Although the technique to control multiple VM proxies through a thin mobile client

has not become mature, partitioning the execution of a mobile application and outsourcing

some operations into the cloud has become a practical solution. [22, 25] In this chapter, we

propose to build an approach upon CloneCloud. [22] The basic idea is shown in Figure 25.

Figure 25: CloneCloud based privacy preservation.

In this approach, the mobile device will host an application level virtual machine such as

JVM, Microsoft .NET, or the DalvikVM in Android to execute the mashup application. The

VM will contain a partitioning and migration management component. When the mashup

application is ready to pull information from providers, the partitioner will suspend the

execution on the mobile device, and migrate the thread to a device clone that is hosted in the

cloud. The migrated thread will execute on the clone to acquire and integrate information

97

from different providers. Eventually, the thread will return to the mobile device and merge

the remotely created states into the original process.

Different from the mechanism described in Section 3.2, this approach does not depend

on a static server. On the contrary, the VM clone is a service provided by the mobile cloud

and it can be hosted by any physical box in the cloud. The mobile device can execute the

mashup in an application level VM until the information acquirement phase. It will then

package the states of the VM and port it to its clone in the cloud. Since a mobile user can

randomly choose the placement of its clone, it is very difficult for an attacker to intercept

the mashup traffic unless it can eavesdrop on the whole cloud simultaneously. Since the

thread migration traffic is encrypted, the attacker will not learn anything by monitoring the

inbound and outbound traffic of the mobile user.

Most functionality needed for this approach can be found in the implementation of

CloneCloud. We can choose the start position of thread migration in the mashup appli-

cation so that all communication with the data providers is conducted by the clone VM.

The functionalities of suspension, porting, resume, and merge have been included in the

DalvikVM of Android. Since the mobile end users can randomly choose machines in the

cloud to host their clones, we do not expect unbalanced workload to occur frequently. A

machine in the cloud can reject the migration request if it does not have enough resources

to host another application level VM.

98

4.4 Experiment Results and Evaluation

In this Section, we will present the evaluation efforts and the experiment results. We will

focus on the changes in computation and communication overhead in both mobile devices

and servers. We will also study power consumption of the proposed approaches.

Server-side Mashups

The proxy based approach has no impact on the computation or communication overhead

at the mobile devices since all operations are conducted by the server. The end users, how-

ever, could expect a longer delay that is introduced by the extra communication segment.

The extra overhead at the server comes from the following aspects. First, the server needs

to initiate, manage, and terminate the proxy VMs in the cloud. Second, to prevent attack-

ers from eavesdropping on the server, it has to encrypt the communication traffic with the

proxies. When the server handles many requests simultaneously, the increased CPU usage

could impact the system performance. Last, depending on the adopted dispatching algo-

rithm for proxies, the server may need to integrate returned data from different providers to

generate the mashup results.

To assess the overhead in real networks, we setup an evaluation environment. The

mashup server is a Ubuntu virtual machine with 1GB of RAM and an allotment of two

processors from a Dell Optiplex 980. We choose the open source mashup WSO2 as the

application so that we can easily change its configuration. The mashup server’s Internet

connection was 1.47Mbps down and 490Kbps up. The proxies were running on remote

servers with VMWare ESXi as the hypervisor. Each proxy was assigned one processor

with 512 MB of RAM, using an Internet connection with 9.59Mbps down and 1.34Mbps

99

up. All connections for the mashup server to data providers on the Internet were routed

through the remote proxies either encrypted with Blowfish (128 bit key size) or in plain

text, both by point-to-point links in OpenVPN. Experiments show that a 19-hop path exists

between our server and the proxies. Our evaluation focuses on the increase in delay that is

introduced by the communication segment between the mashup server and the proxies.

Table 5 shows the transmission and processing delay that is measured at the end user.

It represents the time duration between the sending of a request and the return of corre-

sponding mashup results. The decryption delay at the end user is not included since it is

not impacted by our approach. The average amount of returned traffic from data providers

is approximately 700KB. To better differentiate the delays caused by communication and

computation overhead, we conduct three groups of experiments. In the first group, the

mashup server will directly connect to the data providers and retrieve information. This is

the baseline case. In the second group, the mashup server will retrieve data with the help

of proxies that are hosted in the cloud. However, the data traffic between the proxies and

mashup server is not encrypted. In the last group, the proxies will encrypt the returned data

and then deliver it to the mashup server. 250 experiments for each group are conducted at

different time in a weekday.

Table 5: Delay of proxy-based server-side mashup.

Measured delay (ms) 95% Confidence
maximum minimum average min max

baseline case 820 274 292.5 292.21 292.96
proxy w/o encryption 1890 519 613 612.22 614.08
proxy with encryption 1954 523 615 614.54 616.32

From the table we find that the proposed approach roughly doubles the waiting time of

the end user. This is mainly caused by the long path between the mashup server and proxies.

100

Comparing the second and third groups of experiments, we find that the communication

delay between the mashup server and proxies dominates the increase in response time. The

encryption/decryption of the returned data does not impact the delay to a large extent thanks

to the computation resources available to the servers. This is very different from the results

in the next section when a mobile device has to conduct such operations. We also notice

that the values of the average delay and minimum delay are not far from each other, which

means that most end users will experience a relatively small increase in waiting time when

the proposed approach is adopted.

Client-side Mashups

For client-side mashups, most overhead introduced by the proposed approach will be

put upon mobile devices. Therefore, we need to carefully evaluate its impacts on these

thin clients before this approach can be widely deployed. Since modern mobile devices are

usually equipped with extension storage slots such as microSD cards, we do not expect the

increase in storage overhead to cause a problem. In the following discussion, we will focus

on the increases in communication overhead and delay, computation overhead during the

migration of the application level VM, and power consumption.

Figure 26: CloneCloud based data acquirement procedure.

Figure 26 illustrates the data acquirement procedure through clonecloud. The steps with

101

solid underlines (steps 1, 2, 3, and 5) are new operations that will introduce extra overhead.

Below we evaluate the overhead from different aspects.

The majority of the communication overhead comes from the migration and return of

the application level VM states (steps 3 and 5). For our experiment, we obtain a Sam-

sung Captivate smartphone and flash it with Cyanogenmod 10. We then setup a dual core

computer with an AndroVM virtual machine. We ran two client mashup programs, Land-

mark Manager and EarthAlbum. Landmark Manager is a program which shows the user

a Google map satellite image of a city, overlaid with frequently visited landmarks in that

city. It pulls its data from a number of sources such as google.com, googlehosted.com, gg-

pht.com, skyhookwireless.com, amazonaws.com, gms-world.net and doubleclick.net. The

data collected from these sources is approximately 700KB. EarthAlbum is a program that

displays a Google map satellite image of the globe, and permits the user to tap a location.

When a location is tapped, flickr.com images are displayed of the area. In our experiment

environment, we used a WIFI connection. Using this WIFI connection, the phone was

rated at 371KB/s download and 522 KB/s upload. Our communication and computation

overhead results are shown in Table 6.

To defend against eavesdropping attacks from malicious nodes, data traffic between the

mobile device and its clone must be encrypted, so encryption and decryption of upload

and download results are factored in with the rendering time. As can be seen in Table 6,

performance either increases or goes down only slightly. We expect users to see approxi-

mately the same or better performance, based on how much processing power the mashup

application requires vs. the size of the mashed up result.

102
Table 6: Measured Delays with and without CloneCloud expectation.

Up AndroVM Down Render CloneCloud Autonomously
Landmark
Manager 6.7 s 25.5 s 13.3 s 7 s 52.5 s 82.6 s

Earth Album 0.62 s 6.09 s 0.81 s 1 s 8.52 s 7.89 s

Table 7: Measured Power Consumption with and without CloneCloud expectation.

Up Down Render/Encrypt CloneCloud Autonomously
Landmark
Manager 0.0298% 0.0418% 0.25523% 0.33% 0.56%

Earth Album 0.0027% 0.0026% 0.1218% 0.13% 0.15%

Since the most valuable resource for mobile devices is energy, we must carefully assess

the power consumption of the proposed approach. The increases in power consumption

come from two aspects: (1) the transmission and receiving of the VM migration states, and

(2) encryption/decryption of the acquired data. Table 7 shows our results. From this table,

it can be see that in both cases, the power consumption is expected to go down when using

CloneCloud as opposed to the phone operating autonomously.

4.5 Conclusion

In this chapter, we study the problem of privacy preservation for mobile mashups. Since

end users do not have control over the communication protocols with the data providers,

new mechanisms must be designed to defend against eavesdropping attacks. For server-side

mashups in mobile clouds, we propose to use a proxy based approach to protect confiden-

tiality of the communication between the mashup server and data providers. Experiments

in cloud environments show that except for the lengthened response time, other aspects of

the application performance are not impacted. For client-side mashups, we use live migra-

tion of application level virtual machines into mobile clouds to hide the data acquirement

103

and aggregation procedures from eavesdroppers. We investigate the computation, commu-

nication, and power consumption overhead of the approach.

An immediate extension to this chapter is to explore the integration of the two approaches

so that application developers and end users do not have to explicitly distinguish server-

side mashups from client-side applications. A uniform approach would further reduce the

difficulty of its wide deployment and adoption.

CHAPTER 5: CONCLUSION

In this dissertation, we solve the most important security problems, at this time, with

cloud computing. More specifically the problems most at risk in cloud computing as

is needed to facilitate mobile devices in the very near future. Mobile cloud computing

promises to supplement the limited computing and power available to mobile devices to

enable them to deliver nearly the same computing resources as desktop computers attached

to local organizational networks, but from anywhere and with less down time. This always

globally available aspect introduces new security problems that must be addressed. We

have focused on:

1. Flexible cryptography-based access control of outsourced data.

2. Methods for securing virtual machines from OS and Data Fingerprinting.

3. Securing mobile-to-cloud-to-provider communications.

Flexible cryptography-based access control of outsourced data is delivered by using

hierarchical-based key management in owner-write-users-read applications. We propose

to encrypt every data block with a different key so that flexible cryptography-based access

control can be achieved. Through the adoption of the key derivation method, the owner

needs to maintain only a few secrets. We propose to store the metadata with the blocks so

that multiple key derivation hierarchies can be established for different access patterns to

reduce the processing overhead of the data access requests. Analysis shows that the key

105

derivation procedure based on hash functions will introduce very limited overhead. We pro-

pose to use over-encryption and/or lazy revocation to prevent revoked users from getting

access to updated data blocks. A new key management mechanism has yet to be designed

to satisfy many-write-many-read applications. Recognizability of current access patterns

in specific applications for optimized key management must also be designed and tested.

We have both proposed a new memory deduplication based OS and data set fingerprint-

ing attack technique and delivered methods for securing virtual machines from this attack.

By loading samplings of OS signatures into memory, we have proven it possible to thwart

memory deduplication based OS fingerprinting in publicly available cloud computing envi-

ronments with minimum performance impact through experimentation on VMware ESXi.

The process of realigning the memory page content of data sets per application launch was

proposed which, once enabled on memory consuming data set applications, should easily

prevent data set fingerprinting without any degradation in performance. This defense could

be further extended through enabling the hypervisor to be aware of this attack, and enabling

it to inject random memory delays in known OS signatures, or alert the operator as to the

attempt to deduplicate multiple OS signatures within a single VM.

Finally, we have explored securing mobile-to-cloud-to-provider communications. We

have explored different mechanisms based on either server-side or client-side mashups. For

server-side mashups, we proposed separating the roles of “mashing up the data” and gath-

ering the data from external providers onto geographically separated virtual machines and

presented the performance penalties from this solution through experimentation with vir-

tual machines on separate ISPs. For client-side mashups, we proposed live migration of the

mashup application to mobile cloud based virtual machines for the purposes of data gath-

106

ering and computation. We also investigate the computation, communication, and power

consumption overhead of this approach. An immediate extension to this research is to ex-

plore the integration of the two approaches so that application developers and end users

do not have to explicitly distinguish server-side mashups from client-side applications. A

uniform approach would further reduce the difficulty of its wide deployment and adoption.

Cloud computing, and most especially mobile cloud computing, are technologies that

are still evolving to fill the “niches” in industry where they can best solve problems or

make computing resources more efficient. This primarily industry driven technology has

yet to fulfill its full potential. Every step of the way, new security problems will arise that

must be addressed. After my graduation, the research on how to better optimize defenses

to the primary security problems addressed in this paper will continue. Both myself and

others at UNC Charlotte will continue developing cloud computing security solutions that

better address these problems from which many of the existing and ever changing cloud

computing providers and end users can use to provide a safer cloud computing experience

for all.

107

REFERENCES

[1] Adya, A., Bolosky, W. J., Castro, M., Cermak, G., Chaiken, R., Douceur, J. R.,
Howell, J., Lorch, J. R., Theimer, M., and Wattenhofer, R. P. Farsite: federated,
available, and reliable storage for an incompletely trusted environment. SIGOPS
Oper. Syst. Rev. 36, SI (2002), 1–14.

[2] Agarwal, V., Goyal, S., Mittal, S., and Mukherjea, S. A middleware framework for
mashing device and telecom features with the web. Tech. rep., IBM Research, RI
10009, 2010.

[3] Alam, M., Zhang, X., Nauman, M., Khan, S., and Alam, Q. Mauth: A fine-grained
and user-centric permission delegation framework for multi-mashup web services.
In Proceedings of the World Congress on Services (2010), pp. 56–63.

[4] Ali, S., Khusro, S., and Rauf, A. A cryptography-based approach to web mashup
security. In International Conference on Computer Networks and Information Tech-
nology (ICCNIT) (2011), pp. 53–57.

[5] Alliance, O. A. Ajax and mashup security.
http://www.openajax.org/whitepapers/Ajax and Mashup Security.php, 2013.

[6] Alvarez, G., Borowsky, E., Go, S., Romer, T., Becker-szendy, R., Golding, R., Mer-
chant, A., Spasojevic, M., Veitch, A., and Wilkes, J. Minerva: an automated resource
provisioning tool for large-scale storage systems. ACM Transactions on Computer
Systems 19 (2001), 483–518.

[7] Arcangeli, A., Eidus, I., and Wright, C. Increasing memory density by using ksm.
In Linux Symposium (2009), pp. 19–28.

[8] Atallah, M. J., Blanton, M., Fazio, N., and Frikken, K. B. Dynamic and efficient
key management for access hierarchies. ACM Trans. Inf. Syst. Secur. 12, 3 (2009),
1–43.

[9] Auffret, P. Sinfp, unification of active and passive operating system fingerprinting.
Jour. Comp. Virology 6, 3 (2010), 197–205.

[10] Aviram, A., Hu, S., Ford, B., and Gummadi, R. Determinating timing channels in
compute clouds. In Proceedings of ACM workshop on Cloud computing security
workshop (2010), pp. 103–108.

[11] Batard, F., Boudaoud, K., and Riveill, M. A middleware for securing mobile
mashups. In Proceedings of international conference companion on World wide
web (2011), pp. 9–10.

[12] Beresford, A., and Stajano, F. Location privacy in pervasive computing. Pervasive
Computing, IEEE 2, 1 (2003), 46–55.

108

[13] Blaze, M. Key management in an encrypting file system. In Proceedings of the
USENIX Summer Technical Conference (1994), pp. 27–35.

[14] Bradshaw, D., Folco, G., Cattaneo, G., and Kolding, M. Quantitative estimates of
the demand for cloud computing in europe and the likely barriers to up-take, 2012.

[15] Caldwell, T. Mobile cloud security: How to address the issues, 2011.

[16] Caprara, A., Fischetti, M., and Toth, P. Algorithms for the set covering problem.
Annals of Operations Research 98 (1998), 353–371.

[17] Catteddu, D., and Hogben, G. Cloud computing - benefits, risks and recommenda-
tions for information security. Information Security 51273, 9 (2009), 1–125.

[18] Cedilnik, A., Geveci, B., Moreland, K., Ahrens, J., and Favre, J. Remote large data
visualization in the paraview framework. In Eurographics Parallel Graphics and
Visualization (2006), pp. 162–170.

[19] Chen, T., Chung, Y., and Tian, C. A novel key management scheme for dynamic
access control in a user hierarchy. In IEEE Annual International Computer Software
and Applications Conference (2004), pp. 396–401.

[20] Chien, H., and Jan, J. New hierarchical assignment without public key cryptography.
Computers & Security 22, 6 (2003), 523–526.

[21] Chow, A., Coates, W., and Hopkins, D. A configurable asynchronous pseudorandom
bit sequence generator. In IEEE International Symposium on Asynchronous Circuits
and Systems (2007), pp. 143–152.

[22] Chun, B.-G., Ihm, S., Maniatis, P., Naik, M., and Patti, A. Clonecloud: elastic
execution between mobile device and cloud. In Proceedings of the sixth conference
on Computer systems (2011), pp. 301–314.

[23] Cloud Security Alliance. Security guidance for critical areas of focus in cloud com-
puting. http://www.cloudsecurityalliance.org/, April 2009.

[24] Cox, P. A. Privacy build a more secure, mobile cloud environment.
http://www.ibm.com/developerworks/cloud/library/cl-mobilecloudsecurity/, 2011.

[25] Cuervo, E., Balasubramanian, A., Cho, D.-k., Wolman, A., Saroiu, S., Chandra, R.,
and Bahl, P. Maui: making smartphones last longer with code offload. In Proceed-
ings of the international conference on Mobile systems, applications, and services
(2010), pp. 49–62.

[26] Damiani, E., De Capitani di Vimercati, S., Foresti, S., Jajodia, S., Paraboschi,
S., and Samarati, P. An Experimental Evaluation of Multi-Key Strategies for
Data Outsourcing, IFIP International Federation for Information Processing, Volume
232, New Approaches for Security, Privacy and Trust in Complex Environments.
Springer, 2007, pp. 385–396.

109

[27] Damiani, E., di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and
Samarati, P. Key management for multi-user encrypted databases. In Proceedings
of the ACM workshop on Storage security and survivability (2005), pp. 74–83.

[28] D’Atri, A., and Ricci, F. L. Interpretation of statistical queries to relational databases.
In Proceedings of the international conference on Statistical and Scientific Database
Management (1988), pp. 246–258.

[29] De Keukelaere, F., Bhola, S., Steiner, M., Chari, S., and Yoshihama, S. Smash:
secure component model for cross-domain mashups on unmodified browsers. In
WWW (2008), pp. 535–544.

[30] Decat, M., Ryck, P. D., Desmet, L., Piessens, F., and Joosen, W. Towards building
secure web mashups. In OWASP AppSec Research (2010).

[31] di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and Samarati, P. A data
outsourcing architecture combining cryptography and access control. In Proceed-
ings of the ACM workshop on Computer security architecture (2007), pp. 63–69.

[32] di Vimercati, S. D. C., Foresti, S., Jajodia, S., Paraboschi, S., and Samarati, P. Over-
encryption: management of access control evolution on outsourced data. In Pro-
ceedings of the international conference on Very large data bases (2007), pp. 123–
134.

[33] Dinh, H. T., Lee, C., Niyato, D., and Wang, P. A survey of mobile cloud computing:
architecture, applications, and approaches. Wireless Communications and Mobile
Computing (2011).

[34] European Institute of Tele-Surgery - Institut de Recherche Contre
les Cancers de L’Appareil Digestif. Ircad/eits laparoscopic center.
http://www.ircad.fr/softwares/3Dircadb/3Dircadb.php, 2011.

[35] Eurosoft. Qa+win32 - diagnostic software. http://www.eurosoft-
uk.com/qawin32.html, 2010.

[36] Farber, D. Amazon the new geek chic: Data centers, 2012.

[37] Fyodor. Remote os detection via tcp/ip stack fingerprinting. Tech. rep., 1999.

[38] Gabber, E., Gibbons, P. B., Kristol, D. M., Matias, Y., and Mayer, A. Consistent, yet
anonymous, web access with lpwa. Commun. ACM 42, 2 (1999), 42–47.

[39] Gellman, R. Privacy in the clouds: Risks to privacy and confidentiality from cloud
computing, 2009.

[40] Goh, E., Shacham, H., Modadugu, N., and Boneh, D. Sirius: Securing remote
untrusted storage. In Proceedings of the Internet Society (ISOC) Network and Dis-
tributed Systems Security (NDSS) Symposium (2003), pp. 131–145.

110

[41] Goodrich, M. T., Papamanthou, C., Tamassia, R., and Triandopoulos, N. Athos: Ef-
ficient authentication of outsourced file systems. In Proceedings of the international
conference on Information Security (2008), pp. 80–96.

[42] Greenwald, L. G., and Thomas, T. J. Toward undetected operating system finger-
printing. In Proceedings of the first USENIX workshop on Offensive Technologies
(2007), pp. 6:1–6:10.

[43] Gupta, D., Lee, S., Vrable, M., Savage, S., Snoeren, A., Varghese, G., Voelker,
G., and Vahdat, A. Difference engine: harnessing memory redundancy in virtual
machines. Commun. ACM 53, 10 (2010), 85–93.

[44] Hirzel, M., Andrade, H., Gedik, B., Kumar, V., Losa, G., Nasgaard, M. H., Soule,
R., and Wu, K.-L. Spl stream processing language specification. Tech. rep., Tech.
Rep RC24897 (W0907-066), IBM Research, 2009.

[45] Huang, D., Zhang, X., Kang, M., and Luo, J. Mobicloud: Building secure cloud
framework for mobile computing and communication. In IEEE International Sym-
posium on Service Oriented System Engineering (SOSE) (2010), pp. 27–34.

[46] Huerta-Canepa, G., and Lee, D. A virtual cloud computing provider for mobile
devices. In Proceedings of the ACM Workshop on Mobile Cloud Computing &
Services: Social Networks and Beyond (2010), pp. 6:1–6:5.

[47] Isard, M., Budiu, M., Yu, Y., Birrell, A., and Fetterly, D. Dryad: distributed data-
parallel programs from sequential building blocks. In ACM European Conference
on Computer Systems (2007), pp. 59–72.

[48] Jackson, C., and Wang, H. J. Subspace: secure cross-domain communication for
web mashups. In WWW (2007), pp. 611–620.

[49] Jansen, W., and Grance, T. Guidelines on security and privacy in public cloud com-
puting, 2011.

[50] Kallahalla, M., Riedel, E., Swaminathan, R., Wang, Q., and Fu, K. Plutus: Scalable
secure file sharing on untrusted storage. In Proceedings of the USENIX Conference
on File and Storage Technologies (2003), pp. 29–42.

[51] Karp, R. Reducibility among combinatorial problems. In Complexity of Computer
Computations, R. Miller and J. Thatcher, Eds. Plenum Press, 1972, pp. 85–103.

[52] Kaufman, W. Cloud computing saves health care industry time and
money. http://www.npr.org/blogs/alltechconsidered/2012/10/01/162080613/cloud-
computing-saves-health-care-industry-time-and-money, 2012.

[53] Kher, V., and Kim, Y. Securing distributed storage: challenges, techniques, and
systems. In Proceedings of the ACM workshop on Storage security and survivability
(2005), pp. 9–25.

111

[54] Kitware. Paraview. http://paraview.org/, 2011.

[55] Kohler, E., Morris, R., Chen, B., Jannotti, J., and Kaashoek, M. F. The click modular
router. ACM Trans. Comput. Syst. 18, 3 (2000), 263–297.

[56] Koschmider, A., Torres, V., and Pelechano, V. Elucidating the Mashup Hype: Defi-
nition, Challenges, Methodical Guide and Tools for Mashups. In 2nd Workshop on
Mashups, Enterprise Mashups and Lightweight Composition on the Web (2009).

[57] Li, J., Krohn, M., Mazières, D., and Shasha, D. Secure untrusted data repository
(sundr). In Proceedings of the conference on Symposium on Opearting Systems
Design & Implementation (2004), pp. 121–136.

[58] Li, P., Li, Z., Halang, W. A., and Chen, G. A multiple pseudorandom-bit generator
based on a spatiotemporal chaotic map. Physics Letters A 349, 6 (2006), 467–473.

[59] Lin, C. Hierarchical key assignment without public-key cryptography. Computers
& Security 20, 7 (2001), 612–619.

[60] March, V., Gu, Y., Leonardi, E., Goh, G., Kirchberg, M., and Lee, B. S. µcloud:
Towards a new paradigm of rich mobile applications. Tech. rep., HP Laboratories,
HPL-2011-55R1, 2011.

[61] McCullough, B., and McKitrick, R. Check the numbers: The case for due diligence
in policy formation. the Fraser Institute, February, pp.2–43, 2009.

[62] Mehta, K., Liu, D., and Wright, M. Location privacy in sensor networks against
a global eavesdropper. In Proceedings of the IEEE International Conference on
Network Protocols (ICNP) (2007).

[63] Mell, P., and Grance, T. The nist definition of cloud computing, 2012.

[64] MICROSOFT DEVELOPER NETWORK. timegettime.
http://msdn.microsoft.com/en-us/library/ms713418(VS.85).aspx, 2010.

[65] Miled, Z., Liu, Y., Powers, D., Bukhres, O., Bem, M., Jones, R., and Oppelt, R. An
efficient implementation of a drug candidate database. J. Chem. Inf. Comput. Sci.
43, 1 (2003), 25–35.

[66] Miller, E., Long, D., Freeman, W., and Reed, B. Strong security for distributed
file systems. In IEEE International Conference on Performance, Computing, and
Communications (2001), pp. 34–40.

[67] Miller, M. S., Samuel, M., Laurie, B., Awad, I., and Stay, M. Caja: Safe active
content in sanitized javascript, June 2008.

[68] Mudge, J. C. Cloud computing: Opportunities and challenges for australia. Tech.
rep., The Australian Academy of Technological Sciences and Engineering (ATSE),
2010.

112

[69] Neuman, B. C. Proxy-based authorization and accounting for distributed systems.
In ICDCS (1993), pp. 283–291.

[70] Okamura, K., and Oyama, Y. Load-based covert channels between xen virtual ma-
chines. In Proceedings of the ACM Symposium on Applied Computing (2010),
pp. 173–180.

[71] Ort, E., Brydon, S., and Basler, M. Mashup styles, part 1: Server-side mashups.
Tech. rep., Oracle, 2007.

[72] Owens, R., and Wang, W. Fingerprinting large data sets through memory de-
duplication technique in virtual machines. In MILITARY COMMUNICATIONS
CONFERENCE, 2011 - MILCOM 2011 (2011), pp. 1363–1368.

[73] Owens, R., and Wang, W. Non-interactive os fingerprinting through memory de-
duplication technique in virtual machines. In IEEE International Performance Com-
puting and Communications Conference (2011).

[74] Plummer, D. The business landscape of cloud computing. Tech. rep., Gartner, 2012.

[75] Preneel, B., Rompay, B. V., Ors, S. B. ., Biryukov, A., Granboulan, L., Dottax, E.,
Dichtl, M., Schafheutle, M., Serf, P., Pyka, S., Biham, E., Barkan, E., Dunkelman,
O., Stolin, J., Ciet, M., Quisquater, J.-J., Sica, F., H.Raddum, and Parker, M. Perfor-
mance of optimized implementations of the nessie primitives. Deliverable 21 from
the NESSIE IST FP5 project, 2003.

[76] Raj, H., Nathuji, R., Singh, A., and England, P. Resource management for isolation
enhanced cloud services. In ACM Cloud Computing Security Workshop (2009),
pp. 77–84.

[77] Rankins, R., Jensen, P., Bertucci, P., Gallelli, C., and Silverstein, A. Microsoft SQL
Server 2000 Unleashed. Sams, 2001.

[78] Reiter, M. K., and Rubin, A. D. Crowds: anonymity for web transactions. ACM
Trans. Inf. Syst. Secur. 1, 1 (1998), 66–92.

[79] Rhodes, P. J. Granite: a scientific database model and implementation. PhD thesis,
University of New Hampshire, 2004. Adviser-Bergeron, R. Daniel and Adviser-
Sparr, Ted M.

[80] Richardson, D., Gribble, S., and Kohno, T. The limits of automatic os finger-
print generation. In ACM workshop on Artificial intelligence and security (AISec)
(2010), pp. 24–34.

[81] Ristenpart, T., Tromer, E., Shacham, H., and Savage, S. Hey, you, get off of my
cloud: exploring information leakage in third-party compute clouds. In ACM CCS
(2009), pp. 199–212.

113

[82] Robert J. Jenkins, J. Isaac. In Third International Workshop on Fast Software
Encryption (1996), pp. 41–49.

[83] Rotenberg, M., Verdi, J., and Sen, A. In the matter of google, inc. and cloud comput-
ing services complaint and request for injunction, request for investigation and for
other relief. http://epic.org/privacy/cloudcomputing/google/ftc031709.pdf, 2009.

[84] Sakamoto, H. Data grid deployment for high energy physics in japan. Computer
Physics Communications 177, 1-2 (July 2007), 239–242.

[85] Scarlata, V., Levine, B. N., and Shields, C. Responder anonymity and anonymous
peer-to-peer file sharing. In International Conference on Network Protocols (ICNP)
(2001), pp. 272–280.

[86] Shields, C., and Levine, B. N. A protocol for anonymous communication over the
internet. In ACM CCS (2000), pp. 33–42.

[87] Shimrat, O. Cloud computing and healthcare. Tech. rep., Healthcare Information
and Management Systems, 2009.

[88] Singh, A., and Liu, L. Sharoes: A data sharing platform for outsourced enterprise
storage environments. In Proceedings of the IEEE International Conference on Data
Engineering (2008), pp. 993–1002.

[89] Stone, B., and Vance, A. Companies slowly join cloud computing. New York Times,
18 April, 2010.

[90] Suzaki, K., Iijima, K., Yagi, T., and Artho, C. Memory deduplication as a threat to
the guest os. In Proceedings of the Fourth European Workshop on System Security
(2011), pp. 1:1–1:6.

[91] Sweeney, L. k-anonymity: A model for protecting privacy. International Journal of
Uncertainty, Fuzziness and Knowledge-Based Systems 10, 5 (2002), 557–570.

[92] Taivalsaari, A., and Mikkonen, T. Mashups and modularity: Towards secure and
reusable web applications. In Automated Software Engineering Workshops (2008),
pp. 25–33.

[93] Taleck, G. Ambiguity resolution via passive os fingerprinting. In RAID (2003),
pp. 192–206.

[94] Taylor, S., Young, A., Kumar, N., and Macaulay, J. A marriage made in heaven:
Mobile devices meet the mobile cloud. Tech. rep., CISCO, 2011.

[95] Taylor, S., Young, A., Kumar, N., and Macaulay, J. Mobile consumers reach for the
clouds cisco ibsg research uncovers opportunities for sps to prosper in mobile cloud
market. Tech. rep., CISCO, 2011.

[96] Taylor, S., Young, A., Kumar, N., and Macaulay, J. Taking care of business in the
mobile cloud. Tech. rep., CISCO, 2011.

114

[97] Umetani, S., and Yagiura, M. Relaxation heuristics for the set covering problem.
Journal of the Operations Research 50 (2007).

[98] Van Acker, S., De Ryck, P., Desmet, L., Piessens, F., and Joosen, W. Webjail:
least-privilege integration of third-party components in web mashups. In Annual
Computer Security Applications Conference (ACSAC) (2011), pp. 307–316.

[99] Verma, A., Ahuja, P., and Neogi, A. Power-aware dynamic placement of hpc appli-
cations. In Proceedings of the annual international conference on Supercomputing
(2008), pp. 175–184.

[100] Viana, W., Filho, B., and Castro, R. M. C. Pearl: a performance evaluaator of
cryptographic algorithms for mobile devices. In The First International Workshop
on Mobility Aware Technologies and Applications (MATA) (2004).

[101] VMWare. Esxi configuration guide. VMware vSphere 4.1 Documentation, 2010.

[102] VMWare. Timekeeping in vmware virtual machines.
http://www.vmware.com/files/pdf/Timekeeping-In-VirtualMachines.pdf, 2010.

[103] VMWare. Understanding memory resource management in vmware esx 4.1.
VMware vSphere 4.1 Documentation, 2010.

[104] Voorsluys, W., Broberg, J., and Buyya, R. Introduction to cloud computing. In
Cloud Computing: Principles and Paradigms (2011), pp. 1–44.

[105] Wang, W., Li, Z., Owens, R., and Bhargava, B. Secure and efficient access to out-
sourced data. In Proceedings of the 2009 ACM workshop on Cloud computing
security (2009), CCSW ’09, pp. 55–66.

[106] Woltman, G. Prime95. a component of Great Internet Mersenne Prime Search
(GIMPS), http://www.mersenne.org/, 2009.

[107] Xie, M., Wang, H., Yin, J., and Meng, X. Integrity auditing of outsourced data.
In Proceedings of the international conference on Very large data bases (2007),
pp. 782–793.

[108] Zarandioon, S., Yao, D., and Ganapathy, V. Omos: A framework for secure com-
munication in mashup applications. In Annual Computer Security Applications
Conference (ACSAC) (2008), pp. 355–364.

[109] Zarandioon, S., Yao, D., and Ganapathy, V. Privacy-aware identity management for
client-side mashup applications. In ACM workshop on Digital identity management
(2009), pp. 21–30.

[110] Zhang, X., Huo, Z., Ma, J., and Meng, D. Exploiting data deduplication to accel-
erate live virtual machine migration. In IEEE International Conference on Cluster
Computing (2010), pp. 88–96.

115

[111] Zhang, X., Schiffman, J., Gibbs, S., Kunjithapatham, A., and Jeong, S. Securing
elastic applications on mobile devices for cloud computing. In ACM CCSW (2009),
pp. 127–134.

[112] Zhang, Y., Juels, A., Oprea, A., and Reiter, M. Homealone: Co-residency detection
in the cloud via side-channel analysis. In IEEE Symposium on Security and Privacy
(SP) (2011), pp. 313–328.

[113] Zhang, Y., Juels, A., Reiter, M. K., and Ristenpart, T. Cross-vm side channels and
their use to extract private keys. In ACM CCS (2012), pp. 305–316.

[114] Zhong, S. A practical key management scheme for access control in a user hierarchy.
Computers & Security 21, 8 (2002), 750–759.

