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ABSTRACT

CAYLAH NATIELLE RETZ. Accurate and efficient calculation of singular
electrostatic potentials in charge-dielectric spherical and Janus particle systems.

(Under the direction of DR. WEI CAI)

We introduce an efficient and accurate boundary element method for computing

the electrostatic potential in closely-packed dielectric spheres and Janus particles.

Close physical proximity occurs in modeling molecular ion interactions or colloidal

materials. The electrostatic potential, which is described by the Poisson-Boltzmann

equation, becomes highly singular under close interactions, resulting in difficulties in

computational results. We select a boundary element approach due to the natural

reduction of the dimension of the problem from volume to surface elements. The

singular behavior caused by the close proximity of the system due to the source

charge and part of the reaction field is removed from the potential via a subtraction

de-singularization technique within a hyper-singular, high order second kind integral

equation formulation.

The resulting system of equations has a number of right-hand-side integrals that

do not contain basis elements and contain the bulk of the singular behavior. These

auxiliary integrals require treatment in order to best capture the singular behavior

while keeping cost at a minimum. So long as these integrals are calculated accu-

rately, the system can be readily, easily solved. Regularization techniques for the

Hadamard finite part integral that appears in this method are then presented, where

mathematical identities and adaptive meshes offer a means to compute the singular

integral with the required level of accuracy at a much reduced computational cost.

Adaptive quadrature is presented and used for other less challenging, but still singu-

lar integrals. We demonstrate that numerical results of the singular potential for one

and two closely-packed spheres have validated the effectiveness and accuracy of the

proposed method.
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CHAPTER 1: Introduction

1.1 Motivation

The topic of electrostatic interactions encompasses many scientific disciplines. Elec-

trostatic interactions exert important influences in applications such as protein folding

[41], biomolecular processes [24], colloidal materials sciences [46] and optics [13]. As

a result of such broad applications, integral equations for finding electrostatic fields

have been extensively studied and used. The electrostatic potential itself is described

by the Poisson or Poisson-Boltzmann differential equation [19] and is a scalar quan-

tity equaling the amount of work necessary to move a test unit positive charge from a

reference point to a designated endpoint. When given a system of interacting objects

that have specific dielectric and/or ionization properties, one can find the electric

potential at any point in space through solving the Poisson or Poisson-Boltzmann

equation by one of the many existing numerical techniques. In this dissertation, we

choose the numerical, boundary element method approach [9, 28, 12]. Our primary

goal is the accurate computation of the electric potential for a chosen system when

the objects in question are in close proximity. The singular nature of the Green’s

function to the Poisson-Boltzmann equation indicates that there are limitations to

how close two objects can get (< 0.2 units usually) before the singularity unfavorably

impacts the results of a solver algorithm. In this work we develop and utilize tech-

niques that seek to mitigate a substantial portion of the singular behavior that arises

in particular close-proximity systems when using boundary element methods. These

techniques result in more accurate electric potential results than otherwise. We then



2

demonstrate the effectiveness of our methods through several examples of physical

systems of choice.

1.2 Background and Previous Work

Differential equations present themselves as mathematical descriptions of many physi-

cal problems. Wave phenomena and heat conduction are among the more elementary

of these. Along with a plethora of significant partial differential equations comes

numerous methods by which they may be solved. Choosing the best mathematical

framework for solving a differential equation depends on what restrictions or charac-

teristics must be considered. In general, there are two types of solutions to differential

equations: analytical (exact) solutions and numerical solutions. Analytical solutions

have the advantage of being fast, accurate and computationally inexpensive. How-

ever, it is not always possible or preferable to solve a problem analytically, as an

analytic solution may not exist, and in the event that it does, it may not be easy to

directly compute. Numerical methods is a natural alternative to analytic solutions,

with the disadvantage sometimes being that they are computationally expensive.

In this dissertation, we are interested in modeling electrostatic interactions in

and around systems of source charges with dielectric spheres and Janus particles.

The electric potential at any point in space is described by the Poisson or Poisson-

Boltzmann partial differential equation, depending on if ionic material is involved

[19]. An analytic approach to solving for the electrostatic potential might include

image charge methods [14, 48, 18] or generalized Born approximations [42]. On the

other hand, numerically we have the choice of finite differences [32, 17], finite elements

[16, 23], and boundary element techniques [11, 32, 33]. In this work we are interested

in the electrostatic potential within a physical geometry similar to that of colloidal

materials [47], where charges, ions and molecules interact in very close physical prox-

imity. This means that the value of the potential must be reliable and accurate since
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small changes in proximity may have significant impact. This naturally lends to the

use of numerical methods to solve the Poisson-Boltzmann (PB) equation. We will

use boundary element methods for boundary integral equations to solve, due to the

reduction of the problem to lower dimensional manifolds [7, 8].

Boundary element methods blossomed and gained popularity in the last half cen-

tury due to advances in computing capabilities made possible by modern technology.

The method’s development has a long history [15, 5], with foundations laid by a num-

ber of well-known mathematicians, leading up to the use of integral equations and

boundary element methods to describe and numerically solve electrostatic potential

problems in independent works by Jaswon, Ponter, Symm, and Rizzo [26, 25, 44, 38].

From there, the modern boundary element method condensed and found its name

in a research group consisting of Brebbia, Dominguez, and others [9, 12]. Boundary

element methods afford the luxury of only having to discretize the boundary of a

volume using surface elements, instead of having to use volume elements as in finite

element methods. Thus boundary element methods spare some computational cost

compared to finite element techniques. Since ultimately we desire to model several

objects in a system, any reduction in computation time is much valued. However, a

notable disadvantage to using boundary element techniques is the need to have a fun-

damental solution to the differential equation already known [33]. For our purposes,

fundamental solutions used in [29], [50], and [13] will be appropriate for our systems.

A classical approach for electric potential integral equations calls for the use of

single and double layer potentials for the respective solutions of the Neumann and

Dirichlet problems of the Poisson-Boltzmann equation [39]. This results in a so-called

second kind integral equation, which satisfies the conditions of Fredholm theorems

and results in asymptotically stable solution algorithms when in a discretized system

[34, 4].

We follow an approach used in Juffer [27] and Lu [31], and recently implemented
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in the immediate predecessors to this work [50, 30], that results in a hypersingular

integral equation and whose second kind integral formulation is well-conditioned. The

hypersingularity of order O(∣r−r′∣−3) is the result of taking the second derivative of the

Green’s function kernel. In those works the hypersingularity is treated using a singu-

larity subtraction technique outlined in Müller [35] and Rokhlin [39], which ultimately

ensures very good accuracy in the electric potential. However, the Green’s function

fundamental solution G(r, r′) corresponding to the Poisson-Boltzmann equation can

only be treated to result in such nicely behaved hypersingular integral equations when

r and r′ are sufficiently far apart. For geometries and physical problems in which we

are interested, that require close proximity of the two points, such treatments are

largely unsuccessful at ensuring that the kernel’s singular behavior does not severely

degenerate the results of the algorithm.

The specific Green’s function solution to be used depends on the geometries and

setup of the problem. In particular, in many topics the physical problem can involve

layered media, where special “layered” Green’s functions must be used when dis-

cussing boundary integral techniques [37, 50, 29]. For example, inhomogeneous (ion-

ized) media may be considered, as in ion transport through a cell membrane, where

the membrane is a layered structure whose dielectric properties vary and whose elec-

trostatic forces influence the dynamics of the ions. In another example, and the one

most relevant to this work, the polarization of particles in inhomogeneous media can

influence the building of materials, as in colloidal material sciences involving Janus

particles, which are themselves layered. Janus particles are micro-objects that con-

tain asymmetrical physical and chemical traits that influence self-assembled materials

and their overall properties, such as mechanical strength, magnetism and conductiv-

ity [47]. When scientists are interested in building some new, structured material, the

building blocks are colloidal particles, which themselves can be built by a combination

of homogeneous (dielectric) or inhomogeneous (Janus) particles. Therefore, we will
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be working with homogeneous, inhomogeneous and layered media situations, each of

which requires different fundamental solutions.

In adapting the physical problem of electrostatically interacting particles to a

mathematical one, we must be able to model more than one particle at a time, with

those particles interacting in close range. In this dissertation we will derive a set of

hypersingular integral equations and further treat the hypersingularity and resulting

computational difficulty through the use of change of variables, in addition to the

techniques outlined in [50, 30]. As a result, the singular behavior of the potential

is moved to a number of right-hand side integrals of the resulting matrix equation,

which can then be treated using adaptive quadratures and a mathematical identity

similar to that used in [49].

1.3 Layout of Dissertation

This dissertation is laid out as follows: Chapter 2 starts with introducing the Poisson-

Boltzmann equation and the functions which will be used in a change of variables to

a new smooth de-singularized variable. A system of two hypersingular boundary

integral equations will then be derived for a physical system consisting of a single

dielectric sphere and a source charge. The system of equations will result in a matrix

equation that contains a few right-hand-side auxiliary integrals that contain the bulk

of the singular behavior of the electrostatic potential. Then we will derive a mathe-

matical identity which exists over a purely mathematical boundary and apply it to the

integral equations so that the right-hand-side integrals contain integrands with more

manageable singular behavior. In Chapter 3, the integral equations from Chapter 2

are discretized and we demonstrate the improved results we obtain compared to pre-

vious results where the subtraction de-singularization method has not been used. In

Chapter 4, we refine the Gauss quadrature used when calculating the right-hand-side

integrals so that calculation time is reduced while maintaining the integrity of the
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results. The resulting adaptive quadrature places dense “patches” of Gauss points

around areas of the integrals where singular behavior is most pronounced, with fewer

points spread elsewhere.

Chapter 5 re-derives the boundary integral equations, using the same substitution

and integral techniques, to systems of more than one dielectric sphere and a source

charge. We then present a few examples where a system of dielectric spheres exist,

but one of them is “fake,” where its dielectric properties are identical to the back-

ground medium. This lets us reduce a system of two spheres to the results as if there

were only one. This is in an effort to show that the results are identical to those

for only one sphere and that our computer code correctly works for systems. Other

examples featuring perturbed dielectric constants and a second non-fake sphere are

also shown and elaborated upon. In Chapter 6 we re-derive the boundary integral

equations to those where Janus particles are involved instead of dielectric spheres.

The mathematical identity we used in the integral equations for dielectric spheres is

altered and adapted for Janus particles, which slightly changes the system of bound-

ary integral equations from what they were for dielectric spheres. A few interesting

examples about Janus particle interactions are then presented.
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CHAPTER 2: Single-sphere system setup and its boundary integral equations

2.1 Differential equation and charge-sphere system

Consider a sphere in an infinite medium. Denote regions of this system as Ωj, where

j = i, o, the interior and exterior regions of the spheroid, respectively. We further

denote dielectric constants by εj and the inverse Debye Hückel lengths [22] by λj,

where j = i, o. Assume that there is a charge with magnitude qs at rs located outside

the sphere. For convenience, we let qs = 1.

λi, εi λo, εoΩo

Ωi

qs, rs
•

Figure 2.1: Dielectric sphere and source charge system

In this model, the sphere represents a homogeneous particle interacting with a

source charge in a medium that may or may not be ionic in nature. Assuming

ionicity of the exterior domain, the potential field φ at arbitrary position r satisfies

the Poisson-Boltzmann equation in free space

∇2φ(r) − λ2(r)φ(r) = −
4π

ε(r)
qsδ(r − rs) (2.1)
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with boundary conditions

[φ(r)] = 0 and [ε(r)
∂φ(r)

∂n
] = 0, (2.2)

where δ is the dirac delta function and [⋅] is the jump across a boundary. Here, we

have that

ε(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

εi r ∈ Ωi

εo r ∈ Ωo

(2.3)

and

λ(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

λi r ∈ Ωi

λo r ∈ Ωo

. (2.4)

Let the fundamental solution for (2.1) be given by G, where

G(r, r′) =
e−λ(r)∣r−r

′∣

4πε(r)∣r − r′∣
. (2.5)

Then G satisfies the PDE

ε(r)[∇2G(r, r′) − λ2(r)G(r, r′)] = −δ(r − r′) (2.6)

with boundary conditions on the surface of the sphere:

[G(r, r′)] = 0, [ε(r)
∂G

∂n
(r, r′)] = 0. (2.7)

In work by B. Zinser [50] and H. Lin [29], a system of hypersingular integral

equations was derived for the domain of a round-topped cylinder, which allows for

the reduction of the domain to a sphere if the height of the cylinder is set to zero.

That paper showed an example of such a reduction by finding the potential for a

Janus particle and source charge system. The limitations of those hypersingular

integral equations, written in terms of the potential φ, arise when we let the source
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charge rs approach the surface of the sphere, inducing singular behavior. The closer

the source charge gets to the particle, the less accurate the potential is and the

harder the iterative solver, GMRES [40], has to work to converge. This dissertation

uses BIE derivations similar to those used in [50], taking advantage of the methods

developed in that work that tackle the hypersingularity that appears in the matrix

part of the eventual matrix equation. Our contribution then focuses on developing

means to gain accuracy when considering close-body interactions, a scenery by which

previous works fall short. We set about our task by introducing a new function w(r)

that is much smoother than the potential φ(r) when the source charge rs is close

to the particle. We re-derive the integral equations in terms of w(r). The resulting

discretized matrix equation is then easy to solve, since most of the singular behavior

of the Green’s function kernel is captured by right-hand-side auxiliary integrals. We

then tackle the issue of accurately capturing the hypersingularity in these auxiliary

integrals through specific treatments.

2.2 De-singularized variables

In general, the potential φ(r) can be decomposed into the sum of the potential due to

the source charge and the reaction field potential φrf(r), the latter of which reflects

the polarization of the material outside the sphere Ωo. That is,

φ(r) =
qs

ε(r)∣r − rs∣
+ φrf(r). (2.8)

Using Kelvin image location x1 [45] and Jacobi-Gauss-Radau locations xM−1
m=2 [43][20],

we estimate the reaction field potential using image charges [14] as

φrf(r) ≈
q1

ε(r)∣r − x1∣
+
M−1

∑
m=2

qm
ε(r)∣r − xm∣

, (2.9)
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where M is a pre-determined number of image charge locations. We choose M ac-

cording to the guidelines indicated in [14]. We note here that to use the estimation

of the reaction field as outlined in [14], we must stipulate that λ = 0 in the Poisson-

Boltzmann equation. However, we will continue to derive the integral equations in

terms of the Poisson-Poltzmann equation (instead of the Poisson equation) for later

use. The reaction field can be re-defined as necessary for the cases where λ ≠ 0.

We define a “de-singularized” solution variable such that the potential due to the

source charge in (2.8) as well as the dominant part of the reaction field from the image

charges (2.9) are explicitly removed from the potential. For this purpose, let

Go(r, r
′) =

e−λo(r)∣r−r
′∣

4πεo(r)∣r − r′∣
(2.10)

and define a function H by

H(r, rs) = 4πqsGo(r, rs), (2.11)

where H satisfies the P-B equation

εo(∇
2H(r, rs) − λ

2
oH(r, rs)) = −ρ(r), (2.12)

and, for sphere Ω,

ρ(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4πqsδ(r − rs) if r ∈ Ωo

0 if r ∈ Ωi

(2.13)

Secondly, define T (r, rs) equal to the sum of n terms of the M screened Coulomb

potential terms used to approximate the reaction field [14], where n <M ,

T (r, rs) =
q1

εo∣r − x1∣
+
n−1

∑
j=2

qj
εo∣r − xj ∣

, (2.14)
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where, for each image location xj, T (r, rs) satisfies the P-B equation

εo(∇
2T (r, rs) − λ

2
oT (r, rs)) = −ν(r), (2.15)

and, for a sphere Ω,

ν(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if r ∈ Ωo

4π∑
n
j=1 qiδ(r − xj) if r ∈ Ωi

. (2.16)

Finally, we introduce a de-singularized solution variable w, with which we will derive

the boundary integral equations,

w(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

φo(r) −H(r, rs) − T (r, rs) if r ∈ Ωo

φi(r) if r ∈ Ωi

, (2.17)

which can be shown to satisfy a homogeneous P-B equation in Ωo and Ωi, respectively.

This definition will result in different interface conditions on the surface of the sphere

than in (2.7), to be given a little later. First we will re-write the partial differential

equation in terms of this new variable w(r).

For r outside the sphere, first we subtract equations (2.1) and (2.12) as follows:

εo(∇
2φo(r) − λ

2
oφo(r)) = −4πqsδ(r − rs)

−(εo(∇
2H(r, rs) − λ

2
oH(r, rs)) = −4πqkδ(r − rs))

⇒ εo(∇
2(φo(r) −H(r, rs)) − λ

2
o(φo(r) −H(r, rs))) = 0.

(2.18)
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Next we subtract (2.15) from (2.18)

εo(∇
2(φo(r) −H(r, rs)) − λ

2
o(φo(r) −H(r, rs))) = 0

−(εo(∇
2T (r, rs) − λ

2
oT (r, rs)) = 0)

⇒ εo∇
2(φo(r) −H(r, rs) − T (r, rs)) − λ

2
o(φo(r) −H(r, rs) − T (r, rs)) = 0.

(2.19)

Substituting in for the variable w, we have

εo∇
2wo(r) − λ

2
owo(r) = 0. (2.20)

For the case that r is inside the sphere, we have

εi(∇
2wi(r) − λ

2
iwi(r)) = εi[∇

2φi(r) − λ
2
iφi(r)) = 0.

In addition, we have new jump condition on the interface for w as

wi −wo = φi − (φo −H − T ) =H + T

and

εi
∂wi
∂n

− εo
∂wo
∂n

= εi
∂φi
∂n

− εo (
∂φo
∂n

−
∂H

∂n
−
∂T

∂n
) = εo

∂H(r, rs)

∂n
+ εo

∂T (r, rs)

∂n
.

That is, after changing variables, the boundary conditions are

[w(r)] =H(r, rs) + T (r, rs), [ε(r)
∂w(r)

∂n
] = εo

∂H(r, rs)

∂n
+ εo

∂T (r, rs)

∂n
. (2.21)
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2.3 Boundary integral equations

In this section we will derive hypersingular boundary integral equations of the second

kind in terms of the variable w(r). The process starts by finding the integral equations

of the first kind and then taking appropriate derivatives of the integral equations. We

then use them to derive the integral equations of the second kind. Afterward, we will

derive an identity on a purely mathematical, non-physical boundary and apply it to

the integral equations so that the auxiliary integrals that result from the change of

variables from φ to w will be more manageable.

2.3.1 Integral equations of first kind on the outside of the boundary

The two PDE’s for r′ outside the sphere Ω are:

εo∇
2wo(r) − λ

2
owo(r) = 0 (2.22)

εo(∇
2Go(r, r

′) − λ2
oGo(r,r

′)) = −δ(r − r′), (2.23)

where Go(r, r
′) =

e−λo(r)∣r−r
′∣

4πεo(r)∣r − r′∣
Multiply (2.22) by Go(r, r′) and (2.23) by wo(r) and

take their difference

εo(Go(r, r
′)∇2wo(r) − λ

2
owo(r)Go(r, r

′)) = 0

−(εo(wo(r)∇
2Go(r, r

′) − λ2
owo(r)Go(r, r

′)) = −wo(r)δ(r − r′))

εo(Go(r, r
′)∇2wo(r) −wo(r)∇

2Go(r, r
′)) = wo(r)δ(r − r′)

(2.24)
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and then integrate over the exterior of Ω and a ball B(r′, ρ) of radius ρ centered at

r′

ˆ

R3∖(Ω∪B(r′,ρ))

εo(Go(r, r′)∇2wo(r) −wo(r)∇2Go(r, r′))dr =
ˆ

R3∖(Ω∪B(r′,ρ))

wo(r)δ(r − r′)dr

⇒
ˆ

R3∖(Ω∪B(r′,ρ))

εo(Go(r, r′)∇2wo(r) −wo(r)∇2Go(r, r′))dr =0.

(2.25)

Using Green’s second identity, we move the domain of integration to the boundary.

˛

∂(R3∖(Ω∪B(r′,ρ)))

εo (Go(r, r
′)
∂wo(r)

∂n
−wo(r)

∂Go(r, r′)

∂n
) dS(r) = 0. (2.26)

Considering separate parts of the boundary that the integral is calculated over, we

have that the integral on the infinite interface is zero, as both Go and wo vanish at

infinity. So that leaves 1) the integral on the surface dielectric sphere S, and 2) the

integral on the boundary of B(r′, ρ).

˛

∂(R3∖(Ω∪B(r′,ρ)))

εo(Go(r, r′)
∂wo(r)
∂n

−wo(r)
∂Go(r, r′)

∂n
)dS(r)

= −
˛

S

εo (Go(r, r′)
∂wo(r)
∂n

−wo(r)
∂Go(r, r′)

∂n
) dS(r)

−
˛

∂B(r′,ρ)

εo (Go(r, r′)
∂wo(r)
∂n

−wo(r)
∂Go(r, r′)

∂n
) dS(r)

=
˛

S

εo(wo(r)
∂Go(r, r′)

∂n
−Go(r, r′)

∂wo(r)
∂n

)dS(r) + (−wo(r′)),

(2.27)

where the negative is due to the normal vector pointing into the domain. So then

we have for boundary S

˛

S

εo(wo(r)
∂Go(r, r′)

∂n
−Go(r, r

′)
∂wo(r)

∂n
)dS(r) + (−wo(r

′)) = 0

Ô⇒ wo(r
′) =

˛

S

εo(wo(r)
∂Go(r, r′)

∂n
−Go(r, r

′)
∂wo(r)

∂n
)dS(r)

(2.28)
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Taking the limit as r′ approaches some p in S, we have

Ô⇒
1

2
wo(p) =

˛

S

εo(wo(r)
∂Go(r,p)

∂n
−Go(r,p)

∂wo(r)

∂n
)dS(r), (2.29)

resulting in the one-half out front [36, 13].

2.3.2 Integral equations of first kind on the inside of the boundary

Let r′ be inside Ω. Then the two PDEs are:

εi(∇
2wi(r) − λ

2
iwi(r)) = 0 (2.30)

εi(∇
2Gi(r, r

′) − λ2
iGi(r, r

′)) = −δ(r − r′). (2.31)

We then multiply (2.30) by Gi(r, r′) and (2.31) by wi(r) and integrate their difference

ˆ

Ω∖B(r′,ρ)

εi(Gi(r, r
′)∇2wi(r) −wi(r)∇

2Gi(r, r
′))dr =

ˆ

Ω∖B(r′,ρ)

wi(r)δ(r − r′)dr = 0

(2.32)

where B(r′, ρ) is a ball of radius ρ at r′. Applying Green’s second identity, we move

the integral to the boundary S and take the limit as ρ goes to zero:

wi(r
′) =

˛

S

εi(Gi(r, r
′)
∂wi(r)

∂n
−wi(r)

∂Gi(r, r′)

∂n
)dS(r). (2.33)
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Taking the limit as r′ approaches a point p in S from the inside and using the

boundary conditions (2.21), we have

1

2
wi(p) =

˛

S

εi(Gi(r,p)
∂wi(r)
∂n

−wi(r)
∂Gi(r,p)

∂n
)dS(r)

⇒ 1

2
(wo(p) +H(p, rs) + T (p, rs)) =

˛

S

εi(Gi(r,p)(
εo

εi

∂H(r, rs)
∂n

+ εo
εi

∂wo(r)
∂n

+ εo
εi

∂T (r, rs)
∂n

)

− (wo(r) +H(r, rs) + T (r, rs))
∂Gi(r,p)

∂n
)dS(r)

⇒ 1

2
wo(p) =

˛

S

(εoGi(r,p)
∂wo(r)
∂n

− εiwo(r)
∂Gi(r,p)

∂n
) dS(r)

+
˛

S

(εoGi(r,p)
∂H(r, rs)

∂n
− εiH(r, rs)

∂Gi(r,p)
∂n

) dS(r)

+
˛

S

(εoGi(r,p)
∂T (r, rs)

∂n
− εiT (r, rs)

∂Gi(r,p)
∂n

) dS(r)

− 1

2
H(p, rs) −

1

2
T (p, rs).

(2.34)

Together equations (2.29) and (2.34) make up the integral equations of the first

kind. However, they form an ill-conditioned system of equations [13][50]. So we must

consider integral equations of the second kind.

2.3.3 Integral equations of the second kind

The integral equations of the second kind are made by taking the sum of equations

(2.29) and (2.34) and by taking the sum of normal derivatives of (2.29) and (2.34)

with respect to r′. So we need to find the normal derivatives and then sum the

equations.

Taking the derivative of (2.28) with respect to r′, we get the following equation

for when r′ is outside of Ω

∂wo(r′)

∂n′
=

˛

S

εo (wo(r)
∂2Go(r, r′)

∂n′∂n
−
∂Go(r, r′)

∂n′
∂wo(r)

∂n
) dS(r). (2.35)
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Taking the limit from the outside as r′ approaches a point p in S, we have

1

2

∂wo(p)

∂n
=

˛

S

εo (wo(r)
∂2Go(r,p)

∂n′∂n
−
∂Go(r,p)

∂n′
∂wo(r)

∂n
) dS(r). (2.36)

Taking the normal derivative of (2.33) with respect to r′, we get the following

equation for when r′ is inside Ω.

wi(r′)

∂n′
=

˛

S

εi (
∂Gi(r, r′)

∂n′
∂wi(r)

∂n
−wi(r)

∂2Gi(r, r′)

∂n′∂n
) dS(r) (2.37)

Taking the limit as r′ approaches a point p in S from the inside and using the

boundary conditions (2.21)

1

2

wi(p)
∂n

=
˛

S

εi (
∂Gi(r,p)

∂n′
∂wi(r)
∂n

−wi(r)
∂2Gi(r,p)
∂n′∂n

) dS(r)

⇒ 1

2

εo

εi
(∂H(p, rs)

∂n
+ ∂wo(p)

∂n
+ ∂T (p, rs)

∂n
) =
˛

S

εi
∂Gi(r,p)

∂n′
( εo
εi

∂H(r, rs)
∂n

+ εo
εi

∂wo(r)
∂n

+ εo
εi

∂T (r, rs)
∂n

) dS(r)

−
˛

S

εi(wo(r) +H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′∂n

dS(r)

⇒ 1

2

εo

εi

∂wo(p)
∂n

=
˛

S

(εo
∂Gi(r,p)

∂n′
∂wo(r)
∂n

− εiwo(r)
∂2Gi(r,p)
∂n′∂n

) dS(r)

+
˛

S

(εo
∂Gi(r,p)

∂n′
∂H(r, rs)

∂n
− εiH(r, rs)

∂2Gi(r,p)
∂n′∂n

) dS(r)

+
˛

S

(εo
∂Gi(r,p)

∂n′
∂T (r, rs)

∂n
− εiT (r, rs)

∂2Gi(r,p)
∂n′∂n

) dS(r)

− 1

2

εo

εi

∂H(p, rs)
∂n

− 1

2

εo

εi

∂T (p, rs)
∂n

.

(2.38)
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2.3.4 Second kind integral equations

The first integral equation of the second kind is the sum of (2.29) and (2.34):

wo(p) =
˛

S

εo (Gi(r,p) −Go(r,p))
∂wo(r)
∂n

dS(r) +
˛

S

(εo
∂Go(r,p)

∂n
− εi

∂Gi(r,p)
∂n

)wo(r)dS(r)

+
˛

S

(εoGi(r,p)
∂H(r, rs)

∂n
− εiH(r, rs)

Gi(r,p)
∂n

) dS(r)

+
˛

S

(εoGi(r,p)
∂T (r, rs)

∂n
− εiT (r, rs)

∂Gi(r,p)
∂n

) dS(r)

− 1

2
H(p, rs) −

1

2
T (p, rs).

(2.39)

The second equation of the second kind is the sum of (2.36) and (2.38)

(1

2
+ 1

2

εo

εi
) ∂wo(p)

∂n
=
˛

S

(εo
∂2Go(r,p)
∂n′∂n

− εi
∂2Gi(r,p)
∂n′∂n

)wo(r)dS(r)

+
˛

S

(εo
∂Gi(r,p)

∂n′
− εo

∂Go(r,p)
∂n′

) ∂wo(r)
∂n

dS(r)

− p.f.

˛

S

εiH(r, rs)
∂2Gi(r,p)
∂n′∂n

dS(r) − p.f.

˛

S

εiT (r, rs)
∂2Gi(r,p)
∂n′∂n

dS(r)

+
˛

S

εo
∂H(r, rs)

∂n

∂Gi(r,p)
∂n′

dS(r) +
˛

S

εo
∂T (r, rs)

∂n

∂Gi(r,p)
∂n′

dS(r)

− 1

2

εo

εi

∂H(p, rs)
∂n

− 1

2

εo

εi

∂T (p, rs)
∂n

.

(2.40)

Together equations (2.39) and (2.40) make a system of hypersingular second kind

boundary integral equations. The hypersingularity is seen in the Hadamard finite part

integrals, where the second derivatives of the Green’s function give the integrands

singular behavior of order O(∣r−r′∣−3). These finite part integrals need regularization

so that they can be accurately calculated for source charges very close to the boundary

of the sphere. In the next section, we introduce a new mathematical boundary on the

surface of the spherical particle in the system and derive a mathematical identity [49]

that we can apply to the Hadamard finite part integrals. The result is the extension

of the single Hadamard finite part integral into several other integrals, each of which

divvies up the load of handling the hypersingular behavior.



19

2.4 Regularization of the hyper-singular integral

We would like to regularize the finite part integrals in (2.40). Let Σ denote the

integral(s) of interest, namely

Σ = −p.f.

˛

S

εo(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′∂n
dS(r). (2.41)

This integral is being calculated at a point p ∈ ∂Ω. When r→ p, the integrand of Σ has

order 1
∣r−p∣3 . The method to be discussed here, which we call the “bubble” technique,

will remove one order of the singularity, making the integrand to be of order 1
∣r−p∣2 .

While this reduction still leaves strongly singular integrands, significant improvement

in the ability to accurately calculate the integrals is observed nonetheless.

2.4.1 Hemisphere and special solution v(r)

Ω

•z p
S

•
Sa

Γ

Figure 2.2: Sphere and hemisphere setup

Let us construct a hemisphere

of radius a and center it at the

point p along the inside of the

surface of our sphere. The hemi-

spherical surface is denoted by Γ

and the intersection of the hemi-

sphere and the boundary of Ω is

denoted by Sa ≡ Sa(p). We call

the region enclosed by this hemi-

sphere Ωp. For some z ∈ Ωi, z ∉ Ωp and for some constant C, let us construct a special

solution for the potential of a charge at z:

v(r) =
e−λ(r)∣r−z∣

ε(r)∣r − z∣
C. (2.42)
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Details about the value of constant C will be discussed a little later in this section.

In addition, for ease of calculating the constant C, we generally take z to be located

in the center of the sphere. We then have that v satisfies the PDE

ε(r)(∇2v(r) − λ2(r)v(r)) = −C ⋅ 4πδ(r − z). (2.43)

Given the radius r of the sphere Ω, if we impose the restriction for the hemisphere

that a < 1
2r, then the pde for v(r) in Ωp is given by

εo[∇
2v(r) − λ2

i v(r)] = 0. (2.44)

We wish to derive the boundary integral equations for v on the domain Ωp.

The two PDE’s for r inside the sphere Ω are:

εi(∇
2v(r) − λ2

i v(r)) = 0 (2.45)

εi(∇
2Gi(r, r

′) − λ2
iGi(r, r

′)) = −δ(r − r′), (2.46)

so multiplying (2.45) by Gi(r, r′) and (2.46) by v(r), and taking their difference, we

get

εi(Gi(r, r
′)∇2v(r) − v(r)∇2Gi(r, r

′)) = v(r)δ(r − r′). (2.47)

Integrating over Ωp ∖B(r′, ρ) and using Green’s identity yields

˛

∂(Ωp∖B(r′,ρ))

εi (Gi(r, r
′)
∂v(r)

∂n
− v(r)

∂Gi(r, r′)

∂n
) dS(r) = 0,

which, using a previous argument, becomes

v(r′) =

˛

Sa∪Γ

εi (Gi(r, r
′)
∂v(r)

∂n
− v(r)

∂Gi(r, r′)

∂n
) dS(r). (2.48)



21

Care must be taken when considering normal derivatives on the boundary of Ωp. For

clarity, we introduce the notation no = −ni, where ni is the unit normal on the surface

of the sphere, at point p, pointing into domain Ωp. Furthermore, we denote nΓ as the

outward unit normal on Γ. Instituting this new notation, (2.48) becomes

v(r′) =

˛

Sa

εi (Gi(r, r
′)
∂v(r)

∂no
− v(r)

∂Gi(r, r′)

∂no
) dS(r)

+

˛

Γ

εi (Gi(r, r
′)
∂v(r)

∂nΓ

− v(r)
∂Gi(r, r′)

∂nΓ

) dS(r)

(2.49)

Taking the normal derivative of (2.49) with respect to r′

∂v(r′)

∂n′o
=

˛

Sa

εi (
∂Gi(r, r′)

∂n′o

∂v(r)

∂no
− v(r)

∂2Gi(r, r′)

∂n′o∂no
) dS(r)

+

˛

Γ

εi (
∂Gi(r, r′)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Gi(r, r′)

∂n′o∂nΓ

) dS(r)

(2.50)

and taking the limit as r′ approaches p in S from the inside yields the following

identity:

1

2

∂v(p)

∂no
−

˛

Sa

εi (
∂Gi(r,p)

∂n′o

∂v(r)

∂no
− v(r)

∂2Gi(r,p)

∂n′o∂no
) dS(r)

−

˛

Γ

εi (
∂Gi(r,p)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Gi(r,p)

∂n′o∂nΓ

) dS(r) = 0.

(2.51)

2.4.2 De-singularized Hadamard finite part integral

We now treat (2.51) as the value zero and add it to our hyper-singular integral Σ.

But first let us split Σ up over the union (S ∖ Sa) ∪ Sa and use the above identity
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Σ = −
˛

(S∖Sa)

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r) −
˛

Sa

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r). (2.52)

Add 0 to Σ ∶

Σ + 0 = −
˛

(S∖Sa)

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r) +
˛

Sa

εi (v(r) −H(r, rs) − T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

−
˛

Sa

εi (
∂Gi(r,p)
∂n′o

∂v(r)
∂no

) dS(r) −
˛

Γ

εi (
∂Gi(r,p)
∂n′o

∂v(r)
∂nΓ

) dS(r)

+
˛

Γ

εi (v(r)
∂2Gi(r,p)
∂n′o∂nΓ

) dS(r) + 1

2

∂v(p)
∂no

.

(2.53)

It can be shown using Taylor series that v(r) −H(r, rs) − T (r, rs) = O(∣r − p∣) as r

goes to p. The details can be found in Appendix C. As a result, the second integral

in (2.53), which contains the majority of the singular behavior of Σ, is of order

O (
1

∣r − p∣2
). We then replace Σ in (2.40) with the additional integrals shown in

(2.53). With the introduction of the function v(r) and subsequent identity on the

mathematical hemisphere, we traded one computationally difficult integral for several

simpler, less challenging integrals. Further, we now declare that the constant C is

chosen so that v(r) −H(r, rs) − T (r, rs) vanishes at a point p on the surface of the

sphere. Given that we know v(r), H(r, rs), and T (r, rs), then C is easily found.
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After all these changes, equation (2.38) is re-written as

1

2

εo
εi

∂wo(p)

∂n′o
=

˛

S

(εo
∂Gi(r,p)

∂n′o

∂wo(r)

∂no
− εiwo(r)

∂2Gi(r,p)

∂n′o∂no
) dS(r)

+

˛

S

εo
∂Gi(r,p)

∂n′o
(
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
) dS(r)

−

˛

S∖Sa

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+

˛

Γ

εiv(r)
∂2Gi(r,p)

∂n′o∂nΓ

dS(r) −

˛

Sa

εi
∂Gi(r,p)

∂n′o

∂v(r)

∂no
dS(r)

−

˛

Γ

εi
∂Gi(r,p)

∂no

∂v(r)

∂nΓ

dS(r) +
1

2

∂v(p)

∂no

−
1

2

εo
εi

∂H(p, rs)

∂no
−

1

2

εo
εi

∂T (p, rs)

∂no
.

(2.54)

2.4.3 Modified second kind integral equations

Now that we have altered significant portions of one of the integral equations, we

write the complete set of second kind integral equations here for ease of reference.

The first integral equation of the second kind is the sum of (2.29) and (2.34):

wo(p) =
˛

S

εo(Gi(r,p) −Go(r,p))
∂wi(r)
∂no

dS(r)

+
˛

S

(εo
∂Go(r,p)
∂no

− εi
∂Gi(r,p)
∂no

)wo(r)dS(r)

+
˛

S

(εoGi(r,p)
∂H(r, rs)
∂no

− εiH(r, rs)
Gi(r,p)
∂no

) dS(r)

+
˛

S

(εoGi(r,p)
∂T (r, rs)
∂no

− εiT (r, rs)
Gi(r,p)
∂no

) dS(r)

− 1

2
H(p, rs) −

1

2
T (p, rs).

(2.55)
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The second equation of the second kind is the sum of (2.36) and (2.54), which yields

(1
2
+ 1

2

εo
εi
) ∂wo(p)

∂no
=
˛

S

(εo
∂2Go(r,p)
∂n′o∂no

− εi
∂2Gi(r,p)
∂n′o∂no

)wo(r)dS(r)

+
˛

S

εo (
∂Gi(r,p)
∂n′o

− ∂Go(r,p)
∂n′o

) ∂wo(r)
∂no

dS(r)

+
˛

S

εo
∂Gi(r,p)
∂n′o

(∂H(r, rs)
∂no

+ ∂T (r, rs)
∂no

) dS(r)

−
˛

S∖Sa

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
˛

Sa

εi(v(r) −H(r, rs) − T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
˛

Γ

εiv(r)
∂2Gi(r,p)
∂n′o∂nΓ

dS(r)

−
˛

Sa

εi
∂Gi(r,p)
∂n′o

∂v(r)
∂no

dS(r)

−
˛

Γ

εi
∂Gi(r,p)
∂no

∂v(r)
∂nΓ

dS(r) + 1

2

∂v(p)
∂no

− 1

2

εo
εi

∂H(p, rs)
∂no

− 1

2

εo
εi

∂T (p, rs)
∂no

.

(2.56)

In the next chapter we discretize these boundary integral equations and state the

corresponding matrix equation. We then show how we calculate the right-hand-side

integrals of the matrix equation and give a few examples showcasing the improved

electric potential results that these integral equations give when compared to integral

equations where the change of variables to w(r) was not used [50].
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CHAPTER 3: Discretized boundary integral equations and numerical calculations

3.1 Discreted equations and numerical calculations

Figure 3.3: Projection of the fitted mesh for one hemisphere of the particle

We now discretize the boundary integral equations, defined on S, by introducing

a mesh of curvilinear triangles that conform to the surface of the sphere. The pro-

jections of a first degree mesh is shown in Figure 3.3. Details about the construction

of first and second degree basis meshes can be found in [29]. A first degree mesh has

nodes on the vertices of the triangles only, while a second degree mesh also has nodes

on the midpoints of the triangle segments as well as the vertices. Table 3.1 lists the
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1st degree basis 2nd degree basis
mesh Nodes Elements Nodes Elements

2 8 12 26 12
4 30 56 114 56
8 122 240 482 0240
16 498 992 1986 992
32 2018 4032 8066 4032

Table 3.1: Mesh sizes and corresponding node and element quantities

mesh size and the corresponding node and element counts contained on a spheroid

mesh for a first and second degree basis.

Let rt denote the coordinates of the tth mesh point, and let ψ(r) represent basis

functions with the kronecker delta property, ψti(rtj) = δi,j. We use Lagrange polyno-

mials as the basis functions. So for first degree basis functions, all mesh points rt are

vertices of triangles. Second degree basis functions require mesh points to be located

at the vertices and on the side edges.

Next, let w(r) = wo(r) and k(r) = ∂wo(r)
∂no

. Then we can interpolate w and k using

the Lagrange basis functions as follows:

w(r) ≈∑
t

wtψt(r) =∑
t

w(rt)ψt(r) and k(r) ≈∑
t

ktψt(r) =∑
t

k(rt)ψt(r). (3.1)

3.1.1 Matrix equation

Rewriting the second kind integral equations (2.39) and (2.54) in terms of the un-

knowns wt and kt, we have
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w(p) =∑
t

kt

˛

S

εo (Gi(r,p) −Go(r,p))ψt(r)dS(r)

+∑
t

wt

˛

S

(εo
∂Go(r,p)

∂no
− εi

∂Gi(r,p)

∂no
)ψt(r)dS(r)

+

˛

S

(εoGi(r,p)
∂H(r, rs)

∂no
− εiH(r, rs)

Gi(r,p)

∂no
) dS(r)

+

˛

S

(εoGi(r,p)
∂T (r, rs)

∂no
− εiT (r, rs)

Gi(r,p)

∂no
) dS(r)

−
1

2
H(p, rs) −

1

2
T (p, rs).

(3.2)

(
1

2
+

1

2

εo
εi

)k(p) =∑
t

wt

˛

S

(εo
∂2Go(r,p)

∂n′o∂no
− εi

∂2Gi(r,p)

∂n′o∂no
)ψt(r)dS(r)

+∑
t

kt

˛

S

εo (
∂Gi(r,p)

∂n′o
−
∂Go(r,p)

∂n′o
)ψt(r)dS(r)

+

˛

S

εo
∂Gi(r,p)

∂n′o
(
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
) dS(r)

−

˛

S∖Sa

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+

˛

Sa

εi(v(r) −H(r, rs) − T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+

˛

Γ

εiv(r)
∂2Gi(r,p)

∂n′o∂nΓ

dS(r) −

˛

Sa

εi
∂Gi(r,p)

∂n′o

∂v(r)

∂no
dS(r)

−

˛

Γ

εi
∂Gi(r,p)

∂no

∂v(r)

∂nΓ

dS(r) +
1

2

∂v(p)

∂no

−
1

2

εo
εi

∂H(p, rs)

∂no
−

1

2

εo
εi

∂T (p, rs)

∂no

(3.3)

For the sake of elegance, let the following quantities be defined.
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S0 =

˛

S

Gi(r,p)ψt(r)dS(r) S1 =

˛

S

Go(r,p)ψ(r)dS(r)

D0 =

˛

S

∂Gi(r,p)

∂no
ψt(r)dS(r) D1 =

˛

S

∂Go(r,p)

∂no
ψt(r)dS(r)

D2 =

˛

S

∂Gi(r,p)

∂n′o
ψt(r)dS(r) D3 =

˛

S

∂Go(r,p)

∂n′o
ψt(r)dS(r)

T0 =

˛

S

∂2Gi(r,p)

∂n′o∂no
ψt(r)dS(r) T1 =

˛

S

∂2Go(r,p)

∂n′o∂no
ψt(r)dS(r)

J5 = −

˛

Γ

εi (
∂Gi(r,p)

∂n′o

∂v(r)

∂nΓ

) dS(r) J6 = −

˛

Sa

εi (
∂Gi(r,p)

∂n′o

∂v(r)

∂no
) dS(r)

J7 =

˛

Γ

εi (v(r)
∂2Gi(r,p)

∂n′o∂nΓ

) dS(r) L0 =
1

2

∂vo(p)

∂no

L1 = −
1

2
H(p, rs) L2 = −

1

2
T (p, rs)

L3 = −
1

2

εo
εi

∂H(p, rk)

∂no
L4 = −

1

2

εo
εi

∂T (p, rk)

∂no

J0 =

˛

S

(εoGi(r,p)
∂H(r, rs)

∂no
− εiH(r, rs)

∂Gi(r,p)

∂no
) dS(r)

J1 =

˛

S

(εoGi(r,p)
∂T (r, rs)

∂no
− εiT (r, rs)

∂Gi(r,p)

∂no
) dS(r)

J2 =

˛

Sa

εi(v(r) −H(r, rs) − T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

J3 =

˛

S

εo
∂Gi(r,p)

∂n′o
(
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
) dS(r))

J4 = −

˛

S∖Sa

εi(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

Then we can rewrite (2.39) and (2.54) as the following matrix equation:

⎡
⎢
⎢
⎢
⎢
⎢
⎣

⎛

⎜
⎜

⎝

I 0

0 (
1
2
+

1
2

εo
εi
) I

⎞

⎟
⎟

⎠

+

⎛

⎜

⎝

(εiD0 − εoD1) − (S0 − S1)εo

(εiT0 − εoT1) − (D2 −D3)εo

⎞

⎟

⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎦

⎛

⎜

⎝

wo

ko

⎞

⎟

⎠

=

⎛

⎜

⎝

J0 + J1 +L1 +L2

J2 + J3 + J4 + J5 + J6 + J7 +L0 +L3 +L4

⎞

⎟

⎠

(3.4)

where p takes different mesh points rt in different rows of the matrix.
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Figure 3.4: The sphere surface S and hemispherical mathematical boundary Γ around
singularity location p

In looking at the matrix equation above, the overall goal of introducing the sub-

traction wo = φo −H − T becomes clearer: the matrix equation solves for smoother

variable wo and its normal derivative, while the right-hand side vector b contains

integrals that house the bulk of the singular behavior of the the electric potential

of the close charge-sphere system. So to find accurate values for the potential and

its derivative, emphasis shifts to accurately calculating the auxiliary integrals. Since

the integral equations are of the second kind and therefore the coefficient matrix in

(3.4) has a low condition number [50], the matrix equation can be solved with a small

number of iterations of the GMRES solver. Also, since the auxiliary integrals play

such an important role in the accuracy of the solutions, we will focus the rest of this

chapter, and all of the next, on describing how the integrals are calculated and ways

that they can be done so more efficiently.

3.1.2 Calculation of right-hand-side integrals in matrix equation

Here we describe in more detail what happens when we introduce the interior hemi-

sphere Γ “bubble” at each mesh point location p where the matrix equation (3.4) is

satisfied. The figure is repeated here for convenience in Figure 3.4.

It must be emphasized that in defining the special solution v(r) and introducing
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a hemisphere at p, we are actually introducing a mathematical boundary Γ around

each mesh point as a result. This means that for every mesh point p, we introduce

this hemisphere, or “bubble”, and then calculate the corresponding integrals in the

matrix equation (3.4).

Attention should also be drawn to the bounds on the integrals J0−J7 that exist in

the right-hand side vector b = Ax portion of the matrix equation (3.4). Each of these

integrals have different portions of the structure’s surface as its region of integration.

For example, while integral J0 is evaluated over the entire surface of the sphere S,

the integral J2 is evaluated over the region Sa, which is the portion of the surface

defined by the intersection of the hemisphere Γ with the sphere S. This region Sa is

then dependent on the location of the hemisphere Γ, which itself is dependent on the

location of the mesh points p. Since the mathematical barrier Γ is used over each

mesh points p, we must develop an adaptable way of calculating the RHS integrals

over their various domains, as we cycle through all the mesh points.

3.1.3 Normal Gauss-Legendre quadrature

In this paper, we use traditional Gauss-Legendre quadrature to calculate the right-

hand side integrals in the matrix equation. Let xi denote the Gauss points on the stan-

dard interval [−1,1] and let ξi denote the weights. Since the integrals are evaluated

over regions conducive to spherical coordinates, let φ denote the azimuthal angle and

θ the polar angle. Then each integral is defined over region [θmin, θmax]× [φmin, φmax],

where the radius is constant since evaluation is on the surface. We then employ a

standard mapping to scale the integration intervals

[θmin, θmax] × [φmin, φmax] Ð→ [−1,1] × [−1,1]. (3.5)
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by means of the following: for φmin ≤ φ ≤ φmax,

φi → (φmax − φmin) (
xi + 1

2
) + φmin

wi → (
φmax − φmin

2
) ξi

and for θmin ≤ θ ≤ θmax,

θi → (θmax − θmin) (
xi + 1

2
) + θmin

ŵi → (
θmax − θmin

2
) ξi.

With these mappings, each ordered pair (φi, θj) corresponds to one individual Gauss

point. Next, in order to calculate any integral in Cartesian coordinates, we addition-

ally have to perform the change of coordinates for each Gauss point (φi, θj):

xi = r sin(θj) cos(φi)

yi = r sin(θj) sin(φi)

zi = r cos(θj).

So then, for any integral with integrand f(x, y, z) and x = x(r, φ, θ), y = y(r, φ, θ),

z = z(r, φ, θ), we calculate

ˆ θmax

θmin

ˆ φmax

φmin

f(r, φ, θ)∣J(r, φ, θ)∣dφdθ ≈
M

∑
i=1

N

∑
j=1

wiŵjf(r, φi, θj)∣J(r, φi, θj)∣. (3.6)

3.1.4 Reference sphere and point rotation

When wishing to evaluate any one of the matrix integrals that are not evaluated over

the entire surface S, there are a couple of circumstances that arise. Firstly, an integral

on the region Sa, for example, requires that we integrate over a circular region on the
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Figure 3.5: Finding necessary angles when integrating over surface of sphere

spheroid. As the boundary of the patch Sa is a constant θ line only if it is centered

at the north pole, the bounds of integration are then difficult to find in terms of the

polar and azimuthal angles of the sphere. Secondly, even if we could easily find the

bounds of integration that determines region Sa, there is a possibility that one of

the Gauss points (φi, θj) accidentally has the same location as point p. This would

introduce a non-treatable singularity in the integrand, making calculation impossible.

We address these two issues by introducing the concept of a reference sphere, as

shown in Figure 3.5. The north pole of the reference sphere is rotated to the location

of the mesh point p, where we have a hemisphere of radius a centered at p. There are

two angles that will be important on the reference sphere, labeled θ∗ and θ′. Details

on the calculation of θ∗ and θ′ are in Appendix A.

Depending on the regions over which the auxiliary integrals J0−J7 are evaluated,

we find the bounds of integration by assuming that the mesh point p is located at

the north pole of the reference sphere. By using the reference sphere, the bounds of

integration become constant, easily calculable values. For example, if it was desired
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to evaluate an integral over Sa on the reference sphere in Figure 3.5, then the Gauss

points need to be distributed over [0, θ′] × [0,2π]. If instead we wish to evaluate

an integral over Γ, then the Gauss points are distributed over [θ∗, π] × [0,2π] on

the reference sphere. Since the bounds of integration on the physical (non-reference)

sphere depend on the mesh point p being the focal point, then we rotate the Gauss

points that were already distributed over the reference sphere to the appropriate

physical locations. That is, we make the reference sphere north pole position p′

rotate to the orientation of the actual mesh point p, taking the distributed Gauss

points along with it. This reference sphere process makes it easier to integrate over

the circular patches Sa or the hemisphere Γ.

So then our next concern is the rotation required to map reference point p′, located

at the the north pole of the reference sphere, to the mesh point location p. When

rotating a point around the surface of the sphere, we only need two transformations:

one of angle γ about the x-axis, and another of angle α about the z-axis. This means

that we employ two transformation matrices that together will map every previously

placed Gauss point. For arbitrary point (x, y, z) and transformed point (xt, yt, zt),

the rotation matrices are

Rx(γ) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

1 0 0

0 cos(γ) − sin(γ)

0 sin(γ) cos(γ)

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

and Rz(α) =

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎢
⎣

cos(α) − sin(α) 0

sin(α) cos(α) 0

0 0 1

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎥
⎦

. (3.7)

and then we have

(xt, yt, zt) = Rz(−α) ×Rx(−γ) × (x, y, z)T , (3.8)

where the operator is standard matrix multiplication and γ and α are readily cal-

culated using trigonometry. Then we have that for arbitrary Gauss point (xi, yi, zi),
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which is already under a spherical-to-Cartesian coordinate transformation,

xt = xi cos(−α) − yi cos(−γ) sin(−α) + zi sin(−α) sin(−γ)

yt = xi sin(−α) + yi cos(−α) cos(−γ) − zi cos(−α) sin(−γ)

zt = yi sin(−γ) + zi cos(−γ).

Then our boundary integrals, calculated around arbitrary mesh location point p, are

now evaluated as follows:

˛
f(x, y, z)dxdy dz ≈

M

∑
i=1

N

∑
j=1

wiŵjf(xt, yt, zt), (3.9)

where the bounds of integration for the rotated integrals are the same as in the

integrals of the un-rotated reference sphere. Figure 3.6 below shows Gauss points

that have been distributed around a complete sphere and then rotated.

Figure 3.6: Gauss point locations that have been rotated to emanate from point p

3.2 Numerical results for potentials of single dielectric sphere

In this section, we will display numerical results of the subtraction method imple-

mented in the boundary integral equations. Here we will compare the “true solution”
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of the total electrostatic potential and its derivative with those that were computed

by the the methods presented so far in this paper. Additionally, we will be comparing

the values of the reaction field potential, as it is a much smaller quantity and there-

fore harder to calculate accurately. Since currently our system consists of a dielectric

sphere in a homogeneous medium, the true solution is taken to be the Legendre poly-

nomial expansion in [14], taken to a sufficient number of terms for it to converge. So

the true solution of the electric potential is

φ(r, θ) = 4π
∞
∑
n=0

C(r)Pn(cos(θ)), (3.10)

where C(r) is given by

C(r) =
q

4πεors
(
r

rs
)
n

−Dn
1

rn+1
, (3.11)

and Dn is the constant given by

Dn =
q

4πεo

a2n+1

rn+1
s

γ (1 −
1 − γ

1 − γ + 2n
) , (3.12)

where for this definition only, a is the radius of the dielectric sphere. We make note

here that the accuracy of the results of the matrix equation (3.4) is influenced by a

number of factors. For instance, we have a choice of how big we let the hemisphere Γ

be, how many terms M we use in the reaction field approximation in equation (2.9),

how many terms n of the reaction field estimation that we wish to include in the func-

tion T (r, rs) and how big or small we choose the mesh sizes to be. Henceforth when

showing an example, we will also list what parameters we chose for that particular

case.

Now let us discuss a couple more specifics as we go forward to the numerical

examples. First, recall that the total potential can be decomposed into the potential
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from the source charge and the potential from the reaction field

φ(r) =H(r, rs) + φrf(r). (3.13)

We will be comparing results for both the total potential and the reaction field, both

of which we take the true solution to be the Legendre polynomial expansion. Recall

that in the numerical calculations, the reaction field is estimated by image charges.

Secondly, we should note that we are solving for wo(r) and ∂wo(r)
∂n in the matrix

equation. So in order to compare the true solution of the total potential φ(r) and its

derivative, we use equation (2.17) to isolate φ and ∂φ
∂n :

wo = φo −H − T ⇒ φo = wo +H + T, (3.14)

∂wo
∂n

=
∂φo
∂n

−
∂H

∂n
−
∂T

∂n
⇒

∂φo
∂n

=
∂wo
∂n

+
∂H

∂n
+
∂T

∂n
. (3.15)

3.2.1 Example 1

This is a familiar case considered in previous works [50]. For a source location rs =

(0.5,2,0.2), εi = 2, εo = 1, λo = λi = 0, the errors in the total potential, reaction field

potential, and normal derivative of potential are shown in Tables 3.2-3.4. Each table

displays errors from using first or second degree basis functions, as well as the errors

found by using the different subtraction options.

In this example, we let the reaction field potential be estimated by M = 16 image

charge locations, with the first n = 3 of those terms being included in the function

T (r, rs). Further, we took hemisphere Γ to have radius a = 0.1 units, and the true

solution was calculated by a Legendre polynomial expansion out to 300 terms. In this

example, the source rs is 1.07 units away from the surface of the sphere.

To showcase the effectiveness of the subtraction method, we have included what

the errors are with and without its use. Recall that the matrix equation (3.4) solves
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for the variable wo = φo−H−T , where the presence of the functions H and T indicates

use of the “subtraction technique.” The column in Tables 3.2-3.4 labeled “no subtr.”

represents the relative errors per mesh size generated if the potential was calculated

directly in the matrix equation; that is, if both H = T = 0. The columns labeled

“H subtr.” and “H & T subtr.” represent the cases where T = 0 and H ≠ T ≠ 0,

respectively.

Additionally, the mesh sizes chosen correspond to those used in prior papers [50]

and [30]. For example, mesh size “2” corresponds to 8 total mesh points, mesh size

“4” corresponds to 30 mesh points, etc. We chose these specific mesh sizes out of

convenience of comparing new data/errors to old.

In analyzing tables 3.2-3.4, we see that using second degree basis functions yields

the better results overall. This has already been established and shown in previous

works [50][30]. Additionally and more importantly, we see that in using either H

or both H and T subtractions in the boundary integral equations, relative error is

certainly improved over what errors we see without the subtraction at all. This shows

that introducing the variable wo = φo −H −T in the boundary integral equations, and

solving for it in the matrix equation (3.4), is effective in reducing the error in the

potential φ and its normal derivative dφ
dn . This example is considered a “nice case” for

the source charge location, because the source far enough away from the sphere that

sufficiently accurate results can be obtained without using the subtraction technique

at all, although the subtraction method certainly improved in those already good

results.

Let us now focus on comparing the reaction field potentials for this particular case.

In general, the reaction field φrf = φ−H is a much smaller quantity (in absolute value)

compared to the potential from the source charge H, so getting accurate results for

it out of the matrix equation is harder to accomplish. We see in Table 3.3 that the

results using the subtraction method proposed in this paper are improved compared
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Table 3.2: Relative errors of total potential in Example 1 for mesh sizes 2-32,
using first and second degree basis functions, when first using no subtraction de-
singularization and then full subtraction de-singularization

Relative Errors of Total Potential
1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr
2 1.47 × 10−1 4.52 × 10−2 6.47 × 10−3 1.25 × 10−1 3.69 × 10−2 3.96 × 10−3

4 5.22 × 10−2 1.51 × 10−2 1.94 × 10−3 2.16 × 10−2 6.17 × 10−3 4.66 × 10−4

8 1.39 × 10−2 4.17 × 10−3 5.94 × 10−4 3.35 × 10−3 8.98 × 10−4 3.24 × 10−5

16 5.69 × 10−3 1.67 × 10−3 1.94 × 10−4 2.31 × 10−4 6.34 × 10−5 4.78×10−6

32 1.92 × 10−3 5.56 × 10−4 5.51 × 10−4 2.20 × 10−5 5.90×10−6 2.37×10−6

Table 3.3: Relative errors of reaction field potential in Example 1 for mesh sizes
2-32, using first and second degree basis functions, when first using no subtraction
de-singularization and then full subtraction de-singularization

Relative Errors of Reaction Field

1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr

2 34.3892 10.5425 1.5096 39.5287 11.5307 1.0329

4 50.716 13.2191 7.32 × 10−1 28.499 8.0666 5.45 × 10−1

8 8.3196 2.6429 5.93 × 10−1 6.37 × 10−1 1.60 × 10−1 6.69 × 10−3

16 1.6258 5.49 × 10−1 1.58 × 10−1 6.91 × 10−2 2.08 × 10−2 7.47 × 10−3

32 1.7072 4.98 × 10−1 1.11 × 10−1 1.44 × 10−2 4.54 × 10−3 5.86 × 10−3

to results without it, where the potential was solved for directly. The errors for ∂φ
∂n

were determined using 150 terms in the Legendre polynomial expansion.

3.2.2 Example 2

In the interest of pushing the capabilities of the subtraction technique and subsequent

new boundary integral equations, in this example the source charge is chosen to be

0.01 units away from the surface of the sphere, which is historically a difficult distance

in which to accurately calculate the potential and its derivative. In tables 3.5-3.7, we

showcase the relative errors in the total potential, reaction field potential, and the

normal derivative of potential. As in last example, there are columns that differentiate

the use of the different basis functions, as well as the various choices of how the matrix
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Table 3.4: Relative errors of normal derivative of potential in Example 1 for mesh sizes
2-32, using first and second degree basis functions, when first using no subtraction
de-singularization and then full subtraction de-singularization

Relative Errors of Derivative

1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr

2 34.3892 1.91 × 10−1 2.74 × 10−2 39.5287 1.07 × 10−1 9.67 × 10−3

4 50.716 1.0092 6.11 × 10−2 28.499 6.37 × 10−1 4.03 × 10−2

8 8.3196 2.15 × 10−1 4.45 × 10−2 6.37 × 10−1 1.22 × 10−1 1.52 × 10−2

16 1.6258 2.85 × 10−1 5.74 × 10−2 6.91 × 10−2 7.79×10−3 1.18×10−3

32 1.7072 8.33 × 10−2 1.49 × 10−2 1.44 × 10−2 9.15×10−4 8.25×10−4

equation (3.4) solves for wo = φo −H − T . The potentials calculated in the matrix

equation are compared to the true solutions, not shown here, that are all taken to be

the Legendre polynomial expansion out to 1500 terms.

In this example, all parameters are the same as in the last example, but with the

source very close to the sphere at

rs = (0.2438162975,0.9752651902,0.097526519).

For the right-hand side integrals in (3.4) that are evaluated over the entire surface

S, we allocate over 3 million Gauss points per integral in order to calculate them

to sufficient accuracy. For those right-hand side integrals with smaller integration

regions than S, a very high density of Gauss points were chosen for those regions as

well. In this instance, a dense spread of Gauss points is needed for accurate calculation

as the source charge gets closer to the surface of the sphere.

In Table 3.5, we can see the use of both H and T in wo = φo −H − T in the BIE’s

paying off, as we have a significantly lower relative error in the total potential than

with having solved for just wo = φo. For example, we have 0.00003 relative error for

mesh size 32, second degree basis functions, where the subtraction of H and T were

used. This is significantly lower than the 0.36 relative error obtained by solving the

BIE’s without H and T .
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Table 3.5: Relative errors of total potential in Example 2 for mesh sizes 2-32,
using first and second degree basis functions, when first using no subtraction de-
singularization and then full subtraction de-singularization

Relative Errors of Total Potential
1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr
2 2.52 × 10−1 1.15 × 10−1 2.41 × 10−2 5.31 × 10−1 1.17 × 10−1 2.13 × 10−2

4 4.82 × 10−1 1.17 × 10−1 9.11 × 20−3 4.41 × 10−1 1.19 × 10−1 4.02 × 10−3

8 4.48 × 10−1 1.18 × 10−1 3.05 × 10−3 4.40 × 10−1 1.14 × 10−1 1.21 × 10−3

16 4.41 × 10−1 1.15 × 10−1 9.43 × 10−4 3.46 × 10−1 8.70 × 10−2 3.01 × 10−4

32 3.65 × 10−1 9.25 × 10−2 1.95×10−4 3.66 × 10−1 9.26 × 10−2 3.22×10−5

Table 3.6: Relative errors of reaction field potential in Example 2 for mesh sizes
2-32, using first and second degree basis functions, when first using no subtraction
de-singularization and then full subtraction de-singularization

Relative Errors of Reaction Field

1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr

2 5.1824 1.6975 0.3528 43.6461 10.2175 9.87 × 10−1

4 40.4081 10.1842 1.75 × 10−1 80.106 21.7792 6.43 × 10−1

8 80.7679 21.6078 4.48 × 10−1 300.33 76.6964 3.24 × 1−−1

16 302.034 77.8786 2.03 × 10−1 565.648 141.099 2.23 × 10−1

32 626.125 158.083 1.23 × 10−1 1407.16 355.185 5.39 × 10−2

Also, in Table 3.6, where we are comparing errors in the reaction field, we see

that the error only converges as we take finer meshes for the second degree basis

functions, with both H and T being used. Again this is because the reaction field is

a much smaller quantity than the total potential. So the accuracy gathered for the

total potential will always be better than the accuracy gathered for the reaction field,

but it is important to demonstrate that the subtraction method is noticeably more

effective for calculating this small quantity as well.
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Table 3.7: Relative errors of derivative of potential in Example 2 for mesh sizes 2-
32, using first and second degree basis functions, when first using no subtraction
de-singularization and then full subtraction de-singularization

Relative Errors of Derivative
1st degree basis 2nd degree basis

mesh no subtr H subtr H & T subtr no subtr H subtr H & T subtr
2 3.23 × 10−1 1.16 × 10−1 2.43 × 10−2 2.49 × 10−1 1.83 × 10−1 2.15 × 10−2

4 2.69 × 10−1 1.83 × 10−1 9.17 × 10−3 2.82 × 10−1 1.87 × 10−1 4.84 × 10−3

8 2.77 × 10−1 1.86 × 10−1 3.74 × 10−3 1.4795 7.01 × 10−1 1.33 × 10−3

16 1.4807 7.08 × 10−1 4.42 × 10−3 2.4667 9.82 × 10−1 2.17 × 10−3

32 2.6608 1.0955 1.94 × 10−3 10.5346 5.5738 2.70 × 10−3
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CHAPTER 4: Adaptive quadratures for singular right-hand side integrals

In subtracting the H(r, rs) and T (r, rs) functions from the electric potential and re-

deriving the boundary integral equations in terms of w = φ−H −T , we shift the most

difficult-to-calculate parts of the potential to the right-hand side auxiliary integrals in

the BIE’s and resulting matrix equation (3.4). Therefore, to get accurate results for

the potential, we must be able to calculate those right-hand side integrals extremely

accurately. In the case of the examples of the last section, this meant using millions

Gauss points on some integrals in order to achieve sufficient accuracy to result in

those small relative errors. While this does indeed yield the desired effect, it is

computationally expensive and rather wasteful, as such densities of Gauss points on

the integrals are only necessary in specific locations. So in this section, we endeavor

to reduce the amount of Gauss points required to calculate the auxiliary integrals

accurately, while maintaining the accuracy in the potentials seen in the examples in

the last section. This will make the subtraction de-singularization technique in the

boundary integral equations more efficient.

To begin this process, we observe that singular behavior in the auxiliary integrals

J0 − J7 is displayed in two regions: around each mesh point location p and around

the projection r′s of the source charge rs on the sphere . For instance, Figures 4.7, 4.8

shows the graph of the integrand J0 where the two “spikes” around those two regions

show singular behavior. In order to capture all of that singularity and calculate those

integrals accurately, more Gauss points must be placed around those locations. Since

the integrand is smooth everywhere else, such a Gauss point density is unnecessary
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and, indeed, wasteful. Therefore, we introduce an adaptive integration quadrature,

where we partition the integration domain into subdomains, only putting a dense

coverage of points where required.

Figure 4.7: Graph of the in-
tegrand J0 for mesh point
p = (1,0,0) and source
rs = (0.2438,0.9752,0.0975),
which is 0.01 units away from the
surface of the sphere

Figure 4.8: Top view of the same
graph, with balls indicating where
p and rs are

4.1 Subdomain grid

Initially, each of our RHS integrals are calculated as written above in (3.9), written

again here for convenience:

˛
f(x, y, z)dxdy dz ≈

M

∑
i=1

N

∑
j=1

wiŵjf(xt, yt, zt). (4.1)

For each integral, the Gauss points and weights were calculated to be spread over a

set of bounds that would cover the entirety of whatever boundary region the integrals

dictated. So for example for integral J0, which is defined over the entire spherical

surface area S, the Gauss points would be distributed over the region [0, π]× [0,2π].
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Figure 4.9: Normal integration region
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Figure 4.10: Integration region divided
into a grid

However, to better allocate Gauss points where needed, we start by taking a

standard region that an integral will be calculated over, θmin ≤ θ ≤ θmax and φmin ≤

φ ≤ φmax, and subdivide this region into blocks of arbitrary size. We note here that

φ is temporarily used to represent the azimuthal angle in spherical coordinates, not

the electrostatic potential φ(r). So if we wish to have p divisions for θ ∈ [θmin, θmax],

then we divide this direction into p sections of length (θmax − θmin)/p. Similarly, the

φ axis will be divided into sections of length (φmax − φmin)/q. This creates a grid

pattern seen in figure 4.10. For each subdivision or “box”, we will use the scaled

tensor product Gauss-Legendre quadrature formula.

Now for an arbitrary m,n-box, we can distribute a higher number of Gauss points

in that specific box, leaving other boxes with a much lower density. Calculating the

integrals using this grid-spaced distribution of Gauss points rather than a high density

over the entire domain means that calculation time is reduced. Now that we know

how we want to distribute Gauss points, the next step is to find a way to determine

specifically what regions over the bounds of an integral that a higher distribution of

Gauss points is needed.
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4.1.1 Point allocation

We have previously shown that we need more Gauss points in the region around mesh

point p and the projection of the source rs onto the sphere. So we want to identify

into which m,n boxes these two points on the surface of the sphere fall. For this, we

determine what the respective (φ′, θ′) coordinates of these points are and find which

m,n makes the following test true:

mIθ ≤ θ
′ ≤ (m + 1)Iθ

nIφ ≤ φ
′ ≤ (n + 1)Iφ.

Knowing into which m,n box the point falls, we assign an increased number of points

to that box, the density of which can vary.

φ
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φmax

θmax

•
p
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×

×

×

×

Figure 4.11: Boxes that will have a dense distribution of Gauss points around p

In the event that the point does not fall directly into the center of the m,n-box,

which will happen more often than not, not all of the singular region of the integrand

around that point is entirely contained in that box. To eliminate this issue, we dictate

that all of m,n-box’s neighbors will have denser points as well, as shown by the ×’d

boxes in the integration region in Figure 4.11 and on the sphere in Figure 4.12. This

creates a region large enough to capture all of the integrand’s singularity, regardless
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of where the point is located in the m,n-box. When the divisions size, p and q, are

sufficiently large (but not too large, as the boxes become too small to capture all

behavior), then we have a significant portion of the rest of the boundary where we

can distribute fewer points, as there is no singular behavior there.

Figure 4.12: The nine boxes with a denser Gauss pt distribution visible

4.1.2 Rotation of patches

Finally, we need to comment on the rotation that is used when distributing Gauss

points around mesh point p. Recall this rotation was implemented to make it easier

to find the bounds over which to evaluate the RHS integrals, specifically the ones

that are not over the entire spherical boundary S. Some integrals are defined over

boundary S, Sa, or Γ. The entire mathematical boundary that our integrals are

calculated over is shown in Figure 4.13.

When using rotation to distribute the Gauss points, we encounter a difficulty

when locating the m,n box that a point falls into, as those regions have been moved.

The test we discussed in the previous section is only valid for non-rotated points
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Figure 4.13: Mathematical integration geometry, with “bubble” used and visible; all
RHS integrals will be evaluated over specific regions of this geometry

distributed over the box [0, π] × [0,2π]. As a result, it becomes necessary to find

which now-skewed “box” a point resides. That is, we need to identify which m,n box

gets mapped and rotated to contain a point of interest.

Then let us first consider the rotation matrix R, which is the matrix multiplication

of the two matrices in (3.7). Then we have

R(α, γ) = Rz(α)timesRx(γ), (4.2)

and for any arbitrary x = (x1, x2, x3), the rotated point is x̂ = R(α, γ)xT . Now, to

identify whichm,n-box will rotate to contain a point x′, we have to find its coordinates

under the inverse mapping, and determine into which m,n box those coordinates fall.

In other words, we are treating x′ as x̂′ and evaluating

x′′ = R−1(α, γ)x̂′. (4.3)
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We then find the associated polar coordinates of x′′ and perform the test to see which

m,n-box contains it. So then once the rotation mapping is performed on all Gauss

points, that m,n-box will rotate to contain x′.

Finally, it should be noted here that by using the rotation matrix, which, as it is

defined, rotates Gauss points to emanate from a mesh point p, then the “patch”, or

m,n-box that the mesh point p is in will always be at the north pole. When Gauss

locations over the standard interval [−1,1]×[−1,1] get mapped to [0, π]×[0,2π], then

the boxes along the top of our divvied grid become “squished,” compared to boxes

that span over the equator of the sphere. To further ensure that sufficient surface area

is covered to capture singular behavior of an integral at p, we dictate that the top

two rows of boxes will have a denser Gauss point distribution for the region around

the mesh point, as shown in the figure below.
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Figure 4.14: Boxes that will have a dense distribution of Gauss points around p. In
practice, there will be many more boxes used than in this figure.

This results in one patch on the sphere looking like a circle, while the other patch

located around the projection of rs looks like a skewed box.
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Figure 4.15: Spherical patch around mesh point p and rectangular patch around
source projection region

Table 4.8: Integrals calculated using patch method

integral true d=128, s=8 abs error
677888 pts

J0 0.420119962364 0.42011996239 2.6×10−11

J1 -0.015986142 -0.01598671417 5.7217×10−7

J3 -0.04183241584 -0.04183241586 2×10−11

4.2 Adaptive Numerical results

Now we will demonstrate the effectiveness of this “patch method” adaptive quadrature

we have developed. First we will show how the values of the auxiliary integrals

in (3.4) improved using this adaptive quadrature. Then we will go on to revisit

previous examples in estimating the errors of the potentials. In this, we will show

how this adaptive quadrature for the integrals overall improves the accuracy gotten

when solving the matrix equation.
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Table 4.9: Integrals calculated using traditional [0,2π] × [0, π] point distribution

integral true 1024*1024 abs error
1,048,576 pts

J0 0.420119962364 0.41999738802 1.225×10−4

J1 -0.015986142 -0.016026949148 4.0807×10−5

J3 -0.04183241584 -0.04175077572 8.164 ×10−5

4.2.1 Integral accuracy improvement

For mesh point (0,0,1) and source location rs = (0.2438,0.9752,0.0975), we show

results that we have gathered for the integrals J0, J1, J2. The top table shows the

true value of the integral, gotten through Mathematica, compared to the value we

calculated for the integrals in our program. The third column in Table 4.8 are the

values we got in our program when using the patch method. The denser patches

had Gauss point distributions of 128 × 128, with the rest of the domain grid having

8× 8 distributions. This means that the total number of Gauss points over the entire

integral domain is 677888 points. The last column in Table 4.8 is the absolute error

between the values in column two (the true value) and column three (the estimated

value).

The next table, Table 4.9, we have the true value of the integrals and the estimated

value of the integrals without using the patch method in our program. The values in

the third column were found by using a traditional all-over 1024×1024 distribution of

Gauss points. Notice that we end up using more more Gauss points here, with larger

error. We then see that the patch technique is more efficient and improves accuracy

compared to without it.
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4.2.2 Example 2 with adaptive quadratures

For source location

rs = (0.2438162975,0.9752651902,0.097526519),

which is 0.01 units away from the surface of the sphere, we compare our previous

results in Example 2 with results found by patch method. The overall parameters

are the same as in Example 2: εi = 2, εo = 1, λo = λi = 0, M = 16, n = 3, a = 0.1.

Additionally, we should note that there are four integrals, J0, J1, J3, J4 that are

over large domains of the integration geometry. For these four integrals, we employ

the patch method technique, using a 10 × 20 grid. This means that for those four

integrals, we divvie the integration region into 200 patches. The other four integrals

are evaluated over such a small region, that instead of using the patch method, we

just assign a dense spread of Gauss points distributed in the traditional way.

Table 4.10 shows the relative errors gotten for the total potential using a second

degree basis for the mesh. Table 4.10 shows the relative errors in the reaction field

using a second degree basis. The first columns of the tables are errors that we already

saw in Tables 3.5, 3.6, and 3.7. The successive columns in these tables show the

relative errors in the respective quantities gotten by using the patch method on the

four right-hand side integrals, instead of no method at all. For column two in Tables

4.10 and 4.10, the denser patches had 128× 128 Gauss points per patch, and the rest

of the patches had 8 × 8 points per patch. In column three, the denser patches had

64 × 64 Gauss points per patch.

The goal of these tables are two demonstrate how few total Gauss points we could

use and still get the good results that we already had. We can see for both the

total potential and the reaction field potential, for this particular example and setup,

anything below 210368 total Gauss points on those four integrals would generate
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unacceptable errors. Given that the results we had before took over three million

total points on those integrals, the savings just between the first and second row is

substantial, with very minute differences in relative error.

4.2.3 Example 4

For source location identical to Example 2 at 0.01 units away from the sphere,

rs = (0.2438162975,0.9752651902,0.097526519),

with parameters all the same except for n = 12 and M = 64 (reaction field estimated by

64 images, 12 of those included in T (r, rs)), we get the following relative errors using

second degree basis functions for the potential and reaction field potential. These

results were gathered using the patch method for the four right-hand side integrals,

using a 10×20 = 200 patch grid. The denser patches used 128×128 Gauss points each,

while the other patches were of size 8×8. Since this example would take substantially

more time to calculate since the function T (r, rs) has more terms, we waited to try

it until we had a more efficient way to evaluate the integrals (i.e. the patch method).

Notice that with the results here are improved over those gotten with M = 16 and

n = 3.

4.2.4 Example 3

For source location rs = (0.0,0.0,1.01), we test the accuracy of our methods against

those by which variable substitution and quadrature adaption were not used. For

n = 3, M = 16, a = 0.1, and a 10 × 20 quadrature grid with dense patches of size

128 × 128 and 77 × 77, and all other patches of size 8 × 8, we see the following results

for the total potential and its derivative. Notice in Figure 4.17, which the subtraction

method was not used, the potential calculates to a negative value instead of the
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εi = 2 εo = 1

•
rs

Figure 4.16: To-scale illustration of physical interaction between dielectric sphere and
source charge in Example 3

Figure 4.17: Contour plot of
potential for deg 1, mesh 32
for the plane z=0 without
de-singularization subtraction
method

Figure 4.18: Contour plot of po-
tential for deg 1, mesh 32 for the
plane z=0 with de-singularization
subtraction method

expected positive. Figure 4.18 uses the subtraction method and subsequent RHS

integral grid refinement techniques to show a similar, but positive-valued electric

potential contour plot.

4.2.5 Example 4 (refined adaptive quadrature)

Based on the way we set up the patch method technique for the right-hand side

integrals in the matrix equation (3.4), when we choose a domain grid size of p × q,

then a total of 9+ 2q patches will have denser Gauss point coverage; nine patches are



54

around the projection of the source point onto the sphere, r′s, and 2q patches will be

around the mesh point p.

When we revisited Example 2 earlier, we used a domain grid size of 10 × 20,

resulting in 200 total patches over which the domain was divided. Out of those 200,

49 of those patches would then have the denser coverage of Gauss points. So in this

case, 2q equals 40, which is a substantially higher number of patches used around the

mesh point p than the nine used for r′s. Recall that the extra number of patches around

the mesh point is necessary due to the way the patches shrink and are compressed

around it. This means that we are actually placing, in this example, four times as

many Gauss points in the region around the mesh point than the region about r′s.

Since those specific patches have a very high density of Gauss points distributed over

them, this means that perhaps we are using far too many points than are necessary

for accuracy.

Here we explore further reducing the total number of Gauss points used to calcu-

late those four right-hand side auxiliary integrals, while preserving the accuracy we

have gotten so far. The idea is to use a comparable total number of Gauss points

over both regions. So, in the example we’ve been discussing, if we use M total Gauss

points in the nine patches about r′s, we aim to use close to M number of total points

in the 40 patches about the mesh point p. We hope this will greatly reduce the cost

of calculation with minimal loss in overall accuracy of the results for the potential.

We revisit Example 4 again. This time we are attempting to reduce the density

of Gauss points in the patch around mesh point p when calculating the auxiliary

integrals in the matrix equation (3.4). The tables below contain results previously

shown, where d = 128, s = 8 (dense patches are d × d and smaller-density patches are

s × s). The value d1 corresponds to the density of the patches around r′s, and the

value d2 corresponds to the density of the patches around mesh point p. In tables

4.16 through 4.18, the “points used per integral” row indicates how many total Gauss
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points were necessary to calculate the four difficult right-hand-side integrals in matrix

equation 3.4 for which this “patch method” is meant to improve results. All other

integrals were calculated using far fewer Gauss points, as the dense coverage is not

needed for those.

4.3 Summary

Thus far, we have tested a variety of ideas to increase the accuracy and efficiency of the

electric potential and its normal derivative for an interacting system of one dielectric

sphere and one charge. This specific interaction has been preferable to us until now

to demonstrate and compare the accuracy obtained when using our techniques and

methods since exact (true) values of the potential can be evaluated using Legendre

polynomial expansions [13][14]. However, the boundary integral equations considered

so far in this paper also allow for the interaction of multiple spheres and multiple

source charges, should such a system be desired. Since the errors shown in our

examples have been compared with reliable, accurate methods that already exist,

we can be confident that the subtraction de-singularized substitution wo = φ(r) −

H(r, rs) − T (r, rs) in the boundary integral equations does indeed work for more

general cases.

In addition, the use of a couple of numerical “tricks” has proved most valuable

in increasing or maintaining the accuracy of results, while reducing computational

cost. In particular, we have implemented the “bubble technique” in the boundary

integral equations, and we have used the “patch method” in the C++ code, both of

which lighten the burden of computation compared to their absence. The “bubble

technique” is effective at mathematically altering the boundary integral equations in

such a way that the resulting auxiliary integrals in (3.4) split the burden of singular

behavior over several integrals that are much easier to tend to individually. Further,

the “patch method” is very effective at allowing for accurate calculation of those
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integrals, while using fewer Gauss points and therefore reducing computational cost.

In concluding this portion of our work, we have shown how our methods improve

calculation of electric potentials for the interaction of one sphere and one source

charge. Naturally, we want to further this investigation into how effective these meth-

ods would be in a system of more than one sphere. So the next segment of our work

focuses on modeling systems of spheres and, to the best of our ability, determining

how accurate our techniques are when calculating those electric potentials.
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Table 4.10: Relative error of total potential in Example 2 for mesh sizes 2-32, using
second degree basis functions and refined adaptive quadrature

Parameters
d=128 d=128, s=8 d=64, s=8 d = 32, s=8

pts. used per int. 3,276,800 812480 210368 59776

mesh

2 2.13 × 10−2 2.13 × 10−2 2.12 × 10−2 2.04 × 10−2

4 4.02 × 10−3 4.02 × 10−3 4.11 × 10−3 1.74 × 10−2

8 1.21 × 10−3 1.21 × 10−3 1.27 × 10−3 2.17 × 10−2

16 3.01 × 10−4 3.01 × 10−4 3.97 × 10−4 2.18 × 10−2

32 3.21 × 10−5 3.21 × 10−5 2.86 × 10−4 2.18 × 10−2

Table 4.11: Relative error of reaction field potential in Example 2 for mesh sizes 2-32,
using second degree basis functions and refined adaptive quadrature

Parameters
d=128 d=128, s=8 d=64, s=8 d = 32, s=8

pts. used per int. 3,276,800 812480 210368 59776

mesh

2 0 9.87 × 10−1 9.87 × 10−1 9.87 × 10−1 9.99 × 10−1

4 6.43 × 10−1 6.43 × 10−1 6.41 × 10−1 4.52 × 10−1

8 3.24 × 10−1 3.24 × 10−1 3.39 × 10−1 2.006
16 2.23 × 10−1 2.23 × 10−1 2.27 × 10−1 3.0974
32 5.39 × 10−2 5.39 × 10−2 8.16 × 10−2 6.5585

Table 4.12: Relative error of normal derivative of potential in Example 2 for mesh
sizes 2-32, using second degree basis functions and refined adaptive quadrature

Parameters
d=128 d=128, s=8 d=64, s=8 d = 32, s=8

pts. used per int. 3,276,800 812480 210368 59776

mesh

2 2.15 × 10−2 2.15 × 10−2 2.13 × 10−2 2.06 × 10−2

4 4.84 × 10−3 4.84 × 10−3 4.84 × 10−3 1.75 × 10−2

8 1.33 × 10−3 1.33 × 10−3 1.34 × 10−3 3.06 × 10−2

16 2.17 × 10−3 2.17 × 10−3 2.73 × 10−3 1.74 × 10−1

32 2.70 × 10−3 2.70 × 10−3 8.05 × 10−3 8.06 × 10−1



58

Table 4.13: Relative error of total potential, reaction field potential, and derivative
of potential for mesh sizes 2, 4, 8, 16, 32 in Example 4, using second degree basis

mesh size 2 4 8 16 32

tot. pot. 1.80 × 10−2 2.67 × 10−3 7.57 × 10−4 8.35 × 10−5 4.75117 × 10−6

r.f. 8.38 × 10−1 4.06 × 10−1 2.40 × 10−1 5.16 × 10−2 3.34 × 10−3

der. 1.81 × 10−2 3.09 × 10−3 8.41 × 10−4 1.12 × 10−3 2.98 × 10−3

Table 4.14: Relative error in total potential for mesh sizes 2-32 in Example 3, using
no subtraction de-singularization and then full subtraction de-singularization

Relative Errors of Total Potential
1st degree basis 2nd degree basis

mesh no subtr H & T subtr no subtr H & T subtr
2 552.394 1.17 × 10−1 27.762 4.21 × 10−3

4 140.758 2.82 × 10−2 6.4480 1.23 × 10−3

8 35.2121 6.85 × 10−3 1.7531 3.19 × 10−4

16 8.5716 1.72 × 10−3 6.69 × 10−1 1.01 × 10−4

32 1.9248 4.60 × 10−4 2.51 × 10−1 9.99 × 10−5

Table 4.15: Relative error in normal derivative of potential for mesh sizes 2-32 in
Example 3, using no subtraction de-singularization and then full subtraction de-
singularization

Relative Errors of Derivative of Potential
1st degree basis 2nd degree basis

mesh no subtr H & T subtr no subtr H & T subtr
2 286.837 1.22 × 10−1 16.9181 4.93 × 10−3

4 83.7425 3.33 × 10−2 10.2608 3.56 × 10−3

8 53.8031 2.06 × 10−2 2.1537 8.35 × 10−4

16 12.3785 4.75 × 10−3 1.4254 8.13 × 10−4

32 3.3697 1.69 × 10−3 8.94 × 10−1 9.12 × 10−4
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Table 4.16: Relative error of total potential in Example 4 for mesh sizes 2-32, using
second degree basis functions and refined adaptive quadrature

Parameters
d=128, s=8 d1=128, d2 = 77, s=8 d1 = 128, d2 = 64, s=8

pts per int. 812480 394280 320960

mesh

2 1.80 × 10−2 1.80 × 10−2 1.80 × 10−2

4 2.67 × 10−3 2.67 × 10−3 2.67 × 10−3

8 7.57 × 10−4 7.50 × 10−4 8.26 × 10−4

16 8.35 × 10−5 8.47 × 10−5 2.68 × 10−4

32 4.76 × 10−6 5.17 × 10−5 2.41 × 10−4

Table 4.17: Relative error of reaction field potential in Example 4 for mesh sizes 2-32,
using second degree basis functions and refined adaptive quadrature

Parameters
d=128, s=8 d1=128, d2 = 77, s=8 d1 = 128, d2 = 64, s=8

pts per int. 812480 394280 320960

mesh

2 8.38 × 10−1 8.38 × 10−1 8.37 × 10−1

4 4.06 × 10−1 4.06 × 10−1 4.05 × 10−1

8 2.40 × 10−1 2.40 × 10−1 2.42 × 10−1

16 5.16 × 10−2 5.16 × 10−2 5.31 × 10−2

32 3.34 × 10−3 3.31 × 10−3 3.52 × 10−3

Table 4.18: Relative error of normal derivative of potential in Example 4 for mesh
sizes 2-32, using second degree basis functions and refined adaptive quadrature

Parameters
d=128, s=8 d1=128, d2 = 77, s=8 d1 = 128, d2 = 64, s=8

pts per int. 812480 394280 320960

mesh

2 1.81 × 10−2 1.81 × 10−2 1.81 × 10−2

4 3.09 × 10−3 3.09 × 10−3 3.09 × 10−3

8 8.41 × 10−4 8.43 × 10−4 1.85 × 10−3

16 1.12 × 10−3 1.52 × 10−3 2.02 × 10−3

32 2.98 × 10−3 2.76 × 10−3 8.60 × 10−3
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CHAPTER 5: Systems of dielectric spheres

Since the tools developed in the previous chapter do indeed increase electric potential

accuracy for one dielectric sphere and one charge, it is of interest to extend this

idea to more than one dielectric sphere interacting with a charge. However, we must

go through this process with the understanding that we no longer have any “exact

solution” of the potential of such a system with which to compare our results. Our

results must stand on their own, and we will show some convincing examples to

support our claim that our methods are effective for such a system.

In this section, we will provide an updated set of boundary integral equations

that models more than one sphere interacting with a source charge. Much of these

derivations are very similar, or identical, to those already shown, so many of the

details have been left out.

5.1 Mapping for the case of more than one sphere

We can use a reference particle centered at the origin, radius 1, with the north pole

located at the “top” of the sphere at (0,0,1). Next assume there is a physical dielectric

sphere with location Rk and orientation (φk, θk). The orientation can be obtained by

considering how much the north pole is rotated from (0,0,1). To map the reference

sphere to the physical sphere, we define three mappings. First, we rotate around the

y−axis by

m1(x, y, z) = (x cos(θk) + z sin(θk), y, z cos(θk)). (5.1)
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Then we rotate around the z−axis by

m2(x, y, z) = (x cos(φk) − y sin(φk), y cos(φk) + x sin(φk), z). (5.2)

Finally, we shift the center of the particle to its physical location by

m3(x, y, z) = (x, y, z) +Rk. (5.3)

We now define the mapping mk from the reference domain to the physical domain by

the composition

mk(x, y, z) =m3(m2(m1(x, y, z))). (5.4)

The Jacobian of this mapping is 1. The inverse mappings that go from the physical

sphere to the reference sphere are given by

m1−1(x, y, z) = (x, y, z) = (x cos(θk) − z sin(θk), y, z cos(θk) + x sin(θk)),

m2−1(x, y, z) = (x, y, z) = (x cos(φk) + y sin(φk), y cos(φk) − x sin(φk), z),

m3−1 = (x, y, z) −Rk,

m−1
k =m1−1(m2−1(m3−1(x, y, z))).

(5.5)

5.2 Integral equations for more than one dielectric sphere

In this section, we derive, modify, and update the boundary integral equations for

one sphere into an appropriate set necessary to model a system of spheres.

First, we will discuss our options regarding the use of the image subtraction func-

tion T (r, rs) for a system of dielectric spheres. Whether discussing the boundary

integral equations of one sphere or a system of them, we always have the choice to

set T (r, rs) = 0, and the integral equations are still true and easily usable. Recall

that T (r, rs) represents the first few terms of an image approximation of the reaction
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field φrf of the potential φ [14]. In setting T (r, rs) equal to the first few terms in this

approximation and including it in the subtraction wo(r) = φ(r) −H(r, rs) − T (r, rs),

we increase the accuracy in approximating φ, specifically for the case when a source

charge rs is very close to the surface of the sphere(s). When rs is not close enough

to cause singular bahavior in the integrands in the BIE’s, the function T (r, rs) is

unnecessary to obtain good accuracy.

To use this observation in setting up the boundary integral equations of a system,

we incorporate the option to use T (r, rs) on sphere Sj if it is within a tolerance

distance δ to the source rs. If the minimum distance of the sphere to the source is

greater than δ, we set T (r, rs) = 0 on that sphere, as T (r, rs) is not needed. That is,

let j and k be differing indexes for functions wo(r) and T (r, rs) defined on spheres

j and k, and let δ > 0 be a tolerance value for the minimum distance between the

surface of any particular sphere Sk in the system and a source charge rs. We dictate

that if min (∣∣Sk − rs∣∣) < δ for sphere Sk, then we will use the function Tk(r, rs) to

estimate the reaction field on that specific sphere k.

Now to adapt the BIEs to multiple-sphere interactions, we redefine the function

T (r, rs) to be equal to the sum of the T terms over the L total spheres where the

function is needed. That is,

T (r, rs) = T1(r, rs) + T2(r, rs) +⋯, l = 1,⋯, L. (5.6)

So then

wk(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

φo(r) −H(r, rs) − T (r, rs) r ∈ Ωok ,

φi(r) r ∈ Ωik ,
, (5.7)

where the subtraction of the functionsH(r, rs) and T (r, rs) is only done in the exterior

region of the union of all spheres. Since the source charge is on the outside, the

subtraction is not needed for the interior region of the spheres.

In the boundary integral equations for one sphere, S is the union of all the bound-



63

aries of one sphere. We expand this to include the boundaries of all dielectric spheres,

skipping the more laborious details of the derivations. Let 1 ≤ j ≤ J for J total spheres

in the system, and let 1 ≤ k ≤ J , where k is not necessarily the same as j. Then the

first boundary integral equation of the first kind is

1

2
wok(p) =

J

∑
j=1

ˆ

Sj

εo(r)(wok(r)
∂Go(r,p)

∂n
−Go(r,p)

∂wok(r)

∂n
) dS(r) (5.8)

and the second integral equation of the first kind is

1

2
wok(p) =

J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂woj(r)

∂n
− εo(r)woj(r)

∂Gi(r,p)

∂n
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂H(r, rs)

∂n
− εi(r)H(r, rs)

∂Gi(r,p)

∂n
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂T (r, rs)

∂n
− εi(r)T (r, rs)

∂Gi(r,p)

∂n
) dS(r)

−
1

2
H(r, rs) −

1

2
T (r, rs).

(5.9)

To develop the integral equations of the second kind, we need to take the normal

derivatives of the two previous integral equations. The derivative of (5.8) is

1

2

wok(r)

∂n
=

J

∑
j=1

ˆ

Sj

εo(r)(wok(r)
∂2Go(r,p)

∂n′∂n
−
∂Go(r,p)

∂n′
wok(r)

∂n
) dS(r) (5.10)
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and the derivative of the (5.9) is

1

2

εo(r)

εi(r)

∂wok(p)

∂nok
=

J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′
∂woj(r)

∂n
− εi(r)woj(r)

∂2Gi(r,p)

∂n′∂n
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′
∂H(r, rs)

∂n
− εi(r)H(r, rs)

∂2Gi(r,p)

∂n′∂n
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′
∂T (r, rs)

∂n
− εi(r)T (r, rs)

∂2Gi(r,p)

∂n′∂n
) dS(r)

−
1

2

εo(r)

εi(r)

∂H(p, rs)

∂nok
−

1

2

εo(r)

εi(r)

∂T (p, rs)

∂nok
,

(5.11)

where we take nok to be the outward unit normal corresponding to sphere k, on

which p lies. Adding the two equations of the first kind, (5.8) and (5.9), gives the

first integral equation of the second kind, and adding the derivatives of the two first

kind equations, (5.10) and (5.11), gives the second equation of the second kind.

wok(p) =
J

∑
j=1

ˆ

Sj

εo(r) (Gi(r,p) −Go(r, rs))
∂woj(r)

∂no
dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂H(r, rs)

∂no
− εi(r)H(r, rs)

∂Gi(r,p)

∂no
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂T (r, rs)

∂no
− εi(r)T (r, rs)

∂Gi(r,p)

∂no
) dS(r)

−
1

2
H(r, rs) −

1

2
T (r, rs)

(5.12)
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and

(
1

2
+

1

2

εo(r)

εi(r)
)
∂wok(p)

∂nok
=

J

∑
j=1

ˆ

Sj

(εo(r)
∂2Go(r,p)

∂n′o∂no
− εi(r)

∂2Gi(r,p)

∂n′o∂no
)woj(r)dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′o
− εo(r)

∂Go(r,p)

∂n′o
)
∂woj(r)

∂no
dS(r)

−
J

∑
j=1

p.f.

ˆ

Sj

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+
J

∑
j=1

ˆ

Sj

εo(r) (
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
)
∂Gi(r,p)

∂n′o
dS(r)

−
1

2

εo(r)

εi(r)

∂H(r, rs)

∂nok
−

1

2

εo(r)

εi(r)

∂T (r, rs)

∂nok
.

(5.13)

Before going further, we should note here that equation (5.13) does not yet include

the use of the “bubble technique” we developed to regularize the finite part integrals.

In addition, we have the option to pick and choose when and on which sphere(s) the

bubble method and image subtraction method are used. As a reminder, the so-called

“bubble technique” is used to regularize the integral

−p.f.

˛

S

εo(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′∂n
dS(r). (5.14)

Its integrand is hypersingular, and therefore difficult to accurately calculate, when

mesh point p is close to watch point r. This difficulty is mitigated by using the

identity (2.51), which distributes the computational load over a more manageable set

of integrals. As a result, for the integral equations of one sphere, this identity was

used for every row in the matrix equation (3.4).

However, when discussing the boundary integral equations of a system of spheres,

this integral will be calculated J times. This means that any given mesh point p will

not be located on every sphere Sj being integrated over in the sum of J finite part
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integrals, but p will always be on one of them. In the case where p and r are located

on different spheres for the integral ξj, the second derivative of the Green’s function

in ξ does not display singular behavior, and therefore the subsequent exchange of

integrals through the identity (2.51) is not necessary. So we then only use the identity

(2.51) for the particular integral ξj in the sum that corresponds to the same sphere

on which p is located, but not the other integrals in the sum. Incorporating this idea

into (5.13), it is now modified to be:

(
1

2
+

1

2

εo(r)

εi(r)
)
∂wok(p)

∂nok
=

J

∑
j=1

ˆ

Sj

(εo(r)
∂2Go(r,p)

∂n′o∂no
− εi(r)

∂2Gi(r,p)

∂n′o∂no
)woj(r)dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′o
− εo(r)

∂Go(r,p)

∂n′o
)
∂woj(r)

∂no
dS(r)

−
J

∑
j=1

p.f.

ˆ

Sj

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+
J

∑
j=1

ˆ

Sj

εo(r) (
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
)
∂Gi(r,p)

∂n′o
dS(r)

−

ˆ

Sk/Sak

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+

ˆ

Sak

εi(r) (v(r) −H(r, rs) − T (r, rs))
∂2Gi(r, rs)

∂n′o∂no
dS(r)

−

ˆ

Sak

εi(r)
∂Gi(r,p)

∂n′o

∂v(r)

∂no
dS(r)

−

ˆ

Γk

εi(r)
∂Gi(r,p)

∂n′o

∂v(r)

∂nΓ

dS(r)

+

ˆ

Γk

εi(r)v(r)
∂2Gi(r,p)

∂n′o∂nΓ

dS(r) +
1

2

∂v(p)

∂nok

−
1

2

εo(r)

εi(r)

∂H(r, rs)

∂nok
−

1

2

εo(r)

εi(r)

∂T (r, rs)

∂nok

(5.15)
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One last adjustment to equations (5.12) and (5.15) must be completed before we

can say that our new derivations are finished. Since we are defining multiple spheres

to be our integration domain, we must use the mappings in the previous section to

ensure that points from a reference sphere centered at the origin get mapped to the

appropriate physical location(s). So that means that points p and r in (5.12) and

(5.15) are understood to already be under the mapping (5.4). More precisely, let

r̂ and p̂ be the points on the reference sphere that correspond to r and p via the

mappings. Then in (5.12) and (5.15), p =mk(p̂) and r =mk(r̂).

Further, it should be noted that the layered Green’s function is only defined for

the reference dielectric sphere (one centered at the origin). Since we eventually want

to prepare for using these BIE’s for Janus particle systems, where the superimposed

mathematical hemispherical boundary of the spheres have different dielectric constant

values, we want to address this particular restriction of the layered Green’s functions

sooner than later. Ultimately we will need to map from the physical location back to

the reference sphere location in order to make use of the layered Green’s functions.

This inverse mapping need not be applied to all the integrals in the BIE, as those

that do not contain basis functions do not contain layered Green’s functions, since

there are no layers outside of the boundary of the spheres. These extra integrals

can therefore be calculated normally. So for the integrals in (5.12) and (5.15) that

will contain basis functions, we need the variable of integration to be passed to the

Green’s functions as r̂, not mj(r). So to make the layered Green’s functions useful

for both Janus particles and dielectric spheres, we will apply the mapping m−1
j to all

arguments of the Green’s functions in the integrals that will contain basis functions.

Finally, our system of boundary integral equations for a system of dielectric
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spheres can be written out as follows:

wok(p) =
J

∑
j=1

ˆ

Sj

εo(r̂) (Gi(r̂,m−1
j (mk(p̂))) −Go(r̂,m−1

j (mk(p̂))))
∂woj(r̂)
∂no

dS(r̂)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂H(r, rs)
∂no

− εi(r)H(r, rs)
∂Gi(r,p)
∂no

) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂T (r, rs)
∂no

− εi(r)T (r, rs)
∂Gi(r,p)
∂no

) dS(r)

− 1

2
H(r, rs) −

1

2
T (r, rs)

(5.16)

and

(1

2
+ 1

2

εo(r)
εi(r̂)

)
∂wok(p)
∂nok

=
J

∑
j=1

ˆ

Sj

⎛
⎝
εo(r̂)

∂2Go(r̂,m−1
j (mk(p̂)))

∂n′o∂no
− εi(r)

∂2Gi(r̂,m−1
j (mk(p̂)))

∂n′o∂no

⎞
⎠
woj (r̂)dS(r̂)

+
J

∑
j=1

ˆ

Sj

⎛
⎝
εo(r̂)

∂Gi(r̂,m−1
j (mk(p̂)))
∂n′o

− εo(r)
∂Go(r̂,m−1

j (mk(p̂)))
∂n′o

⎞
⎠
∂woj (r̂)
∂no

dS(r̂)

−
J

∑
j=1

p.f.

ˆ

Sj

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
J

∑
j=1

ˆ

Sj

εo(r)(
∂H(r, rs)
∂no

+ ∂T (r, rs)
∂no

) ∂Gi(r,p)
∂n′o

dS(r)

−
ˆ

Sk/Sak

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
ˆ

Sak

εi(r) (v(r) −H(r, rs) − T (r, rs))
∂2Gi(r, rs)
∂n′o∂no

dS(r)

−
ˆ

Sak

εi(r)
∂Gi(r,p)
∂n′o

∂v(r)
∂no

dS(r)

−
ˆ

Γk

εi(r)
∂Gi(r,p)
∂n′o

∂v(r)
∂nΓ

dS(r)

+
ˆ

Γk

εi(r)v(r)
∂2Gi(r,p)
∂n′o∂nΓ

dS(r) + 1

2

∂v(p)
∂nok

− 1

2

εo(r)
εi(r)

∂Hl(r, rs)
∂nok

− 1

2

εo(r)
εi(r)

∂T (r, rs)
∂nok

(5.17)

Let the following quantities be defined as we have defined them previously, and let

all other integrals simply be described as “right-hand side integrals.” Consider these

definitions to be flexible, in that the Green’s function can either be layered or not

(hence the lack of mappings in the definitions). Then we have the following matrix
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equation for this system of boundary integral equations:

S0 =

˛

S

Gi(r,p)ψt(r)dS(r) S1 =

˛

S

Go(r,p)ψ(r)dS(r)

D0 =

˛

S

∂Gi(r,p)

∂no
ψt(r)dS(r) D1 =

˛

S

∂Go(r,p)

∂no
ψt(r)dS(r)

D2 =

˛

S

∂Gi(r,p)

∂n′o
ψt(r)dS(r) D3 =

˛

S

∂Go(r,p)

∂n′o
ψt(r)dS(r)

T0 =

˛

S

∂2Gi(r,p)

∂n′o∂no
ψt(r)dS(r) T1 =

˛

S

∂2Go(r,p)

∂n′o∂no
ψt(r)dS(r)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎝

I 0

0 (1
2 +

1
2
εo
εi
) I

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

(εiD0 − εoD1) − (S0 − S1) εo

(εiT0 − εoT1) − (D2 −D3) εo

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎝

wo

ko

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

top RHS

bot. RHS

⎞
⎟
⎟
⎠

,

(5.18)

where p takes different mesh points rt in different rows of the matrix.

5.3 Numerical results as compared to previous single-sphere computation

We now put these new boundary integral equations for a system of spheres to the test.

In the following examples, we revisit examples already seen, but with the addition of

a secondary dielectric sphere located a certain distance away from the first. We will

try different scenarios, changing the distance and dielectric constants of the secondary

sphere, and investigating the effect this has on the first sphere. Since we definitively

have a solution for the electric potential on one of the spheres, we compare the results

gotten from previous examples with a single sphere to those potentials on the first

sphere in the system. This will help us appropriately gauge if the BIE’s and coding

look to be behaving as they should. Since we do not have an analytic solution of the

electric potential in a system, this is the next best way to test our results.

Additionally, when the second sphere in the system is completely invisible, where

its dielectric constants are identical to those of the exterior medium, not only can we
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verify results on the first sphere, but we can also use the slightly different Legendre

polynomial expansion below to verify that the potential is being calculated correctly

on the second sphere:

φ(r, θ) = 4π
∞
∑
n=0

C(r)Pn(cos(θ)), (5.19)

where C(r) is given by

C(r) =
q

4πεors
(
rs
r
)
n

−Dn
1

rn+1
, (5.20)

and Dn is the constant given by

Dn =
q

4πεo

a2n+1

rn+1
s

γ (1 −
1 − γ

1 − γ + 2n
) , (5.21)

for when r is out beyond rs.

5.3.1 Example 1.2

For this example, we consider the same parameters as listed under Example 1, with

some additions. That is, for the single-sphere case, we considered the case where there

was one source charge located at rs = (0.5,2,0.2), which is approximately 1.07 units

away from the sphere. We let the reaction field potential be estimated by M = 16

image charge locations, with the first n = 3 of those terms being included in the

function T (r, rs). Further, we took hemisphere Γ to have radius a = 0.1 units, ε1i = 2

and ε1o = 1, and the true solution was calculated by a Legendre polynomial expansion

out to 300 terms.

Now we use these errors for the single-sphere as a guide with which to compare a

two-sphere dielectric system. We let the source charge be at the same location. We

set the first sphere to be located at the origin of a grid and then placed the second one

3 units away with center at (5,0,0). Its dielectric constants were ε2i = ε2o = 1 so that
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ε1i = 2

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 5.19: Example 1.2 illustration of physical interaction for familiar non-
challenging computational example, where source charge is far away and Sphere Two
has the same dielectric properties of background medium

Table 5.19: Example 1.2, Sphere 1 mesh point total potential relative errors for mesh
sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Rel. Error Rel. Error Rel. Error Rel. Error
2 6.47 × 10−3 3.96 × 10−3 6.46 × 10−3 3.95 × 10−3

4 1.94 × 10−3 4.67 × 10−4 1.93 × 10−3 4.66 × 10−4

8 5.94 × 10−4 3.24 × 10−5 5.94 × 10−4 3.23 × 10−5

16 1.94 × 10−4 3.93 × 10−6 1.94 × 10−4 4.78 × 10−6

32 5.51 × 10−5 1.94 × 10−6 5.51 × 10−5 2.37 × 10−6

any electric potential results for mesh points on the first sphere should match those

of the single-sphere case, as the second sphere is a “fake.” As Table 5.19 shows, the

results of the electrostatic potential for Sphere 1 in the two-sphere system match those

of the one-sphere system quite nicely. Any improvement in the new data compared

to the old can be attributed to the “patch method” technique being implemented for

the new data.

Additionally, since Sphere 2 in this system is “fake,” or invisible, we would like to

demonstrate that the potentials evaluated on that sphere are accurate. To that end,
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Table 5.20: Example 1.2, Sphere 2 mesh point total potential relative errors for mesh
sizes 2-32

Sphere 2 potentials
1st Degree 2nd Degree

Mesh Rel. Error Rel. Error
2 3.42 × 10−3 1.28 × 10−3

4 1.20 × 10−4 5.70 × 10−5

8 3.37 × 10−5 1.64 × 10−6

16 7.94 × 10−6 1.81 × 10−7

32 1.99 × 10−6 9.00 × 10−8

we use equation 5.19 to compare with our results, since the mesh points on Sphere 2

are basically acting like watch points r outside of Sphere 1. As we can see in Table

5.20, the potentials for the mesh points on the second sphere are very accurate. This

ensures that the implementation of solving for the potential for systems is correct.

5.3.2 Example 2.2

In this example, we revisit Example 2 from earlier. Here everything is the same as

it was in Example 2, except that now we have added a second “fake” dielectric sphere 3

units away. The source charge is located at rs = (0.2438162975,0.9752651902,0.097526519),

which is 0.01 units away from the surface of Sphere 1. We have that λo = λ1i = λ2i = 0,

M = 16, n = 3, a = 0.1, and the true solution for the mesh points on Sphere 1 is found

by using 1500 terms of the Legendre polynomial expansion. We see that the total

potential errors are very good for both Sphere 1 and Sphere 2. In this we show that

the subtraction method is implemented correctly and working well for systems.

5.3.3 Example 2.3

In this example, we revisit Example 2 again. This time, everything is the same as it

was in Example 2, except that now we have added a second dielectric sphere 3 units

away, whose dielectric constants are only 0.01 units off from Example 2.2. We have
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ε1i = 2

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 5.20: Example 2.2 illustration of physical interaction between dielectric spheres
and a source charge located 0.01 units away from Sphere One’s surface when Sphere
Two has the same dielectric properties of background medium

Table 5.21: Example 2.2, Sphere 1 mesh point total potential absolute errors for mesh
sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error Abs. Error Abs. Error
2 2.07 × 10−2 1.57 × 10−2 2.07 × 10−2 1.57 × 10−2

4 6.70 × 10−3 9.20 × 10−3 6.70 × 10−3 9.21 × 10−3

8 7.07 × 10−3 2.00 × 10−3 7.07 × 10−3 2.00 × 10−3

16 3.58 × 10−3 9.56 × 10−4 3.37 × 10−3 9.55 × 10−4

32 1.08 × 10−3 3.19 × 10−4 1.01 × 10−3 2.35 × 10−4

Table 5.22: Example 2.2, Sphere 1 mesh point total potential relative errors for mesh
sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Rel. Error Rel. Error Rel. Error Rel. Error
2 2.41 × 10−2 2.14 × 10−2 2.41 × 10−2 2.14 × 10−2

4 9.12 × 10−3 4.03 × 10−3 9.12 × 10−3 4.03 × 10−3

8 3.06 × 10−3 1.20 × 10−3 3.06 × 10−3 1.21 × 10−3

16 9.43 × 10−4 3.01 × 10−4 9.43 × 10−4 3.01 × 10−4

32 2.22 × 10−4 7.34 × 10−5 1.95 × 10−4 3.22 × 10−5

that λo = λ1i = λ2i = 0, M = 16, n = 3, a = 0.1, rs = (0.2438162975,0.9752651902,0.097526519),

and the true solution for the mesh points on Sphere 1 is found by using 1500 terms
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Table 5.23: Example 2.2, Sphere 2 mesh point total potential relative errors for mesh
sizes 2-32

Sphere 2 potential errors
1st Degree 2nd Degree

Mesh Rel. Error Rel. Error
2 2.25 × 10−2 1.21 × 10−2

4 3.42 × 10−3 3.29 × 10−3

8 1.69 × 10−3 1.52 × 10−4

16 3.24 × 10−4 1.13 × 10−4

32 1.02 × 10−5 1.34 × 10−5

of the Legendre polynomial expansion.

ε1i = 2

ε1i = 2

εo = 1

ε2i = 1.01

ε2i = 1.01

•
rs

Sphere 1 Sphere 2

Figure 5.21: Example 2.3 illustration of physical interaction where a source charge
is located 0.01 units away from Sphere One, and Sphere Two has slightly perturbed
dielectric constants

We compare the relative errors obtained from the one-sphere case to the relative

errors on the first sphere in the system, with the perturbation present. The results

between the single sphere case and the system should only differ by O(0.01). Table

5.24 shows this to be the case. For the relative errors in the system, the true solution

is again taken to be the Legendre polynomial expansion, which completely neglects

addressing the perturbation in its calculations. So the errors are found by comparing

the results to a true solution without a perturbation.
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Table 5.24: Example 2.3, Sphere 1 total potential absolute errors for mesh points,
mesh sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error Abs. Error Abs. Error
2 2.07 × 10−2 1.614 × 10−2 2.07 × 10−2 1.57 × 10−2

4 6.72 × 10−3 8.49 × 10−3 6.70 × 10−3 9.21 × 10−3

8 7.04 × 10−3 2.84 × 10−3 7.07 × 10−3 2.00 × 10−3

16 3.54 × 10−3 1.68 × 10−3 3.37 × 10−3 9.55 × 10−4

32 1.05 × 10−3 1.10 × 10−3 1.01 × 10−3 2.35 × 10−4

5.3.4 Example 2.4

In this example, we revisit Example 2 again. This time, everything is the same as

it was in Example 2, except that now we have added a second “dielectric” sphere

3 units away, and have perturbed the first sphere’s dielectric constants in the top

and bottom to differ by 0.01. We have that λo = λ1i = λ2i = 0, M = 16, n = 3,

a = 0.1, rs = (0.2438162975,0.9752651902,0.097526519), and the true solution for the

mesh points on Sphere 1 is found by using 1500 terms of the Legendre polynomial

expansion.

ε1i = 2.01

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 5.22: Example 2.4 illustration of physical interaction where a source charge
is located 0.01 units away from Sphere One, and Sphere One has slightly perturbed
dielectric constants

We compare the relative errors obtained from the one-sphere case to the relative
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errors on the first sphere in the system, with the perturbation present. The results

between the single sphere case and the system should only differ by O(0.01), as we

see in Tables 5.25 and ref2.4Sphere2. For the relative errors in the system, the true

solution is again taken to be the Legendre polynomial expansion, which completely

neglects addressing the perturbation in its calculations. So the errors are found by

comparing the results to a true solution without a perturbation.

Table 5.25: Example 2.4, Sphere 1 total potential absolute errors for mesh points,
mesh sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error Abs. Error Abs. Error
2 1.98 × 10−2 1.74 × 10−2 2.07 × 10−2 1.57 × 10−2

4 7.54 × 10−3 4.06 × 10−3 6.70 × 10−3 9.21 × 10−3

8 2.46 × 10−3 1.01 × 10−2 7.07 × 10−3 2.00 × 10−3

16 6.92 × 10−3 3.62 × 10−2 3.37 × 10−3 9.55 × 10−4

32 3.40 × 10−2 3.51 × 10−2 1.01 × 10−3 2.35 × 10−4

Table 5.26: Example 2.4, Sphere 2 total potential absolute errors for mesh points,
mesh sizes 2-32

Sphere 2 potential errors
1st Degree 2nd Degree

Mesh Rel. Error Rel. Error
2 5.44 × 10−3 3.39 × 10−3

4 1.15 × 10−3 5.01 × 10−4

8 8.71 × 10−5 3.89 × 10−4

16 2.69 × 10−4 4.42 × 10−4

32 3.99 × 10−4 3.99 × 10−4

5.3.5 Example 2.5

In this example, we revisit Example 2 once more. This time, everything is the same

as it was in Example 2, except that now we have added a second, fake dielectric

sphere 0.1 units away. We have that λo = λ1i = λ2i = 0, M = 16, n = 3, a = 0.1,
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rs = (0.2438162975,0.9752651902,0.097526519), and the true solution for the mesh

points on Sphere 1 is found by using 1500 terms of the Legendre polynomial expansion.

As we see in Tables 5.27 and 5.28, the total potential absolute errors are unaffected

by the close proximity of Sphere 2 and are identical to those already seen in Example

2.2.

ε1i = 2

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 5.23: Example 2.5 illustration of physical interaction where a source charge
is located 0.01 units away from Sphere One, Sphere One is “fake,” with Sphere Two
close to Sphere One

Table 5.27: Example 2.5, Sphere 1 total potential absolute errors for mesh points,
mesh sizes 2-32

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error Abs. Error Abs. Error
2 2.07 × 10−2 1.57 × 10−2 2.07 × 10−2 1.57 × 10−2

4 6.70 × 10−3 9.20 × 10−3 6.70 × 10−3 9.21 × 10−3

8 7.07 × 10−3 2.01 × 10−3 7.07 × 10−3 2.00 × 10−3

16 3.58 × 10−3 9.57 × 10−4 3.37 × 10−3 9.55 × 10−4

32 1.08 × 10−3 3.19 × 10−4 1.01 × 10−3 2.35 × 10−4

5.3.6 Example 2.6

In this example, we revisit Example 2 once more. Everything is the same as it was in

Example 2, except that now we have added a second dielectric sphere 0.1 units away,
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Table 5.28: Example 2.5, Sphere 2 total potential absolute errors for mesh points,
mesh sizes 2-32

Sphere 2 potential errors
1st Degree 2nd Degree

Mesh Rel. Error Rel. Error
2 1.93 × 10−2 1.11 × 10−2

4 2.89 × 10−3 2.50 × 10−3

8 1.57 × 10−3 3.41 × 10−4

16 1.98 × 10−4 8.77 × 10−5

32 5.86 × 10−5 1.47 × 10−5

with perturbed dielectric constants. We have that λo = λ1i = λ2i = 0, M = 16, n = 3,

a = 0.1, rs = (0.2438162975,0.9752651902,0.097526519), and the true solution for the

mesh points on Sphere 1 is found by using 1500 terms of the Legendre polynomial

expansion. Again we see in Table 5.29 that the resulting perturbation in the results

of the electric potential is of the expected O(∣0.01∣) compared to those errors in Table

5.27.

ε1i = 2

ε1i = 2

εo = 1

ε2i = 1.01

ε2i = 1.01

•
rs

Sphere 1 Sphere 2

Figure 5.24: Example 2.6 illustration of physical interaction where a source charge is
located 0.01 units away from Sphere One, Sphere Two close to Sphere One and has
perturbed dielectric constants
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Table 5.29: Example 2.6, Sphere 1 total potential absolute errors for mesh points,
mesh sizes 2-32

Two-sphere system CPU time in seconds
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error seconds seconds
2 2.04 × 10−2 1.73 × 10−2 54 180
4 6.96 × 10−3 7.58 × 10−3 210 797
8 6.85 × 10−3 4.07 × 10−3 857 3578
16 3.37 × 10−3 2.74 × 10−3 3714 15952
32 8.54 × 10−4 2.68 × 10−3 18615 93195

5.3.7 Example 5

In this example, we investigate an entirely new interaction arrangement. We have

that λo = λ1i = λ2i = 0, M = 16, n = 3, a = 0.1, rs = (1.05,0,0.2) (approximately

0.069 units away), and the true solution for the mesh points on sphere 1 is found

by using 1500 terms of the Legendre polynomial expansion. The second, fake sphere

is located 0.1 units away from the first, and the source charge is located midway

between those two dielectric spheres, at approximately 0.07 units distance. Since the

Legendre polynomial analytic solution is again applicable to this interaction, we can

verify the accuracy of the electrostatic potential in Tables 5.30 and 5.31

ε1i = 2

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 5.25: Example 5 illustration of physical interaction, where source is located
0.07 units away from either sphere, the spheres are located 0.01 units away from each
other, and Sphere Two is “fake.”
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Table 5.30: Example 5, Sphere 1 mesh point total potential absolute errors for mesh
sizes 2-32

Two-sphere system CPU time in seconds
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Abs. Error Abs. Error seconds seconds
2 3.67 × 10−2 1.99 × 10−3 73 232
4 1.10 × 10−2 1.84 × 10−3 269 1010
8 3.11 × 10−3 2.26 × 10−3 1087 4359
16 1.19 × 10−3 6.10 × 10−4 4601 19236
32 7.63 × 10−4 5.13 × 10−5 21089 97852

Table 5.31: Example 5, Sphere 2 mesh point total potential absolute errors for mesh
sizes 2-32

Sphere 2 potential errors
1st Degree 2nd Degree

Mesh Rel. Error Rel. Error
2 3.45 × 10−2 1.40 × 10−3

4 9.91 × 10−3 1.42 × 10−3

8 1.83 × 10−3 1.62 × 10−3

16 7.17 × 10−4 3.26 × 10−4

32 4.26 × 10−4 1.24 × 10−5

5.3.8 Example 6

In this example, the two spheres are 0.02 units apart. Sphere 1 is located at (0,0,0) and

Sphere 2 is located at (2.02,0,0), with the source charge in the middle at (1.01,0,0).

Figure 5.27 shows the potential calculated when the subtraction method (resulting

in RHS integrals) is not used. On the other hand, Figure 5.28 shows the potential

calculated when the subtraction method and subsequent RHS integral grid refinement

is used. We see that the potential is symmetric. Due to the unavailability of an

analytic solution for this interaction, we will only show the numerical convergence

of the computed solution. In Table 5.32, we see convergence in the relative error of

the potential on the mesh points for mesh sizes 2-16, when we use mesh size 32 as a

reference.
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ε1i = 2

ε1i = 2

εo = 1

ε2i = 2

ε2i = 2

•

rs

Sphere 1 Sphere 2

Figure 5.26: Example 6 illustration of physical interaction, where both spheres have
dielectric constants of 2 and are located 0.02 units away from each other, with source
charge in the middle at 0.01 units’ distance

Table 5.32: Relative error of total potential in Example 6 for mesh sizes 2-16 when
mesh size 32 is used as the reference solution

Deg 1 mesh Rel. error
2 2.62 × 100

4 7.39 × 10−1

8 2.38 × 10−1

16 5.9 × 10−2

5.4 Summary

There are numerous tests and examples shown at the end of this section. The purpose

of these tests is to demonstrate the accuracy and convergence of the results compared

to those from a single-sphere system. The “fake” sphere in these examples is meant

to make our algorithm treat the system as a pair of spheres, while the results should

mimic those gotten as if there were only one. The slight variations in each example

presented here are to highlight that perturbations in the dielectric values do not

drastically change the results and that our methods to treat the singular behavior

induced by proximity are effective for systems. In the next chapter we will re-derive

the boundary integral equations to represent systems of Janus particles. This will

require slightly different treatment of the Hadamard finite part integral than that for
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Figure 5.27: Example 6 contour
plot of potential for deg 1, mesh
32 for the plane z=0 without sub-
traction

Figure 5.28: Example 6 contour
plot of potential for deg 1, mesh 32
for the plane z=0 with subtraction

systems of dielectric spheres in homogeneous media.



83

CHAPTER 6: Systems of Janus particles

The next step in our journey through boundary integral techniques and systems of

objects leads us to consider not just a system of dielectric spheres, but a system of

Janus particles. The computational framework of Janus particles is similar to that of

dielectric spheres; however, Janus particles do require more care in numerical calcula-

tion due to their layered structure. The behavior and properties of the corresponding

layered Green’s function that exists for the interior of the particle requires that the

boundary integral equations be derived in a different fashion. We seek to benefit

from the same techniques that were implemented for dielectric spheres (the so-called

“subtraction substitution,” “bubble technique,” and “patch method”), but we will

have to alter the functions that are included in the subtraction substitution and how

the bubble technique is used when adapting to Janus particle systems.

Further, in continuing our work in this direction, it should be noted that we have

no analytic values of the electric potential generated by Janus particles with which to

test our results for accuracy. Since we have observed stable and accurate computation

for dielectric spheres, we will extend this to study the qualitative behavior of a system

of Janus particles. As ultimately the only numerical change implemented in the BIEs

is in the definitions of Green’s functions and what is included in the subtraction

substitution, there should be no new difficulty and we expect no different behavior in

the computational stability and accuracy.
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6.1 Definitions and setup

Consider a sphere in an infinite, homogeneous medium. For region Ωj, we denote

dielectric constants by εj and the inverse Debye Huckel lengths by λj. Here, Ωo and

Ωi represents the domain inside and outside the spheroid, respectively. Similarly, the

indices on the dielectric constants and inverse Debye-Huckel lengths indicate values

inside and outside the sphere. Assume that there are is a charge with magnitude qs

at rs located outside the sphere. For convenience, we let qs = 1.

λi1 , εi1

λi2 , εi2

λo, εo
Ωo

Ωi2

Ωi1

qs, rs
•

Figure 6.29: Janus particle and source charge interaction, showing layered interior
domains Ωi1 and Ωi2 and corresponding dielectric and ionic properties

The potential field φ(r) at arbitrary position r satisfies the Poisson-Boltzmann

equation

∇2φ(r) − λ2(r)φ(r) = −
4π

ε(r)
qsδ(r − rs) (6.1)

with boundary conditions

[φ(r)] = 0 and [ε(r)
∂φ(r)

∂n
] = 0, (6.2)

where δ is the Dirac delta function and [⋅] is the jump across a boundary. Here, we
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have that

ε(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

εi1 r ∈ Ωi1

εi2 r ∈ Ωi2

εo r ∈ Ωo

, (6.3)

and

λ(r) =

⎧⎪⎪⎪⎪⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎪⎪⎪⎪⎩

λi1 r ∈ Ωi1

λi2 r ∈ Ωi2

λo r ∈ Ωo

. (6.4)

Let the fundamental solution for (6.1) be given by G, where

G(r, r′) =
e−λ(r)∣r−r

′∣

4πε(r)∣r − r′∣
. (6.5)

Then G satisfies the PDE

ε(r)[∇2G(r, r′) − λ2(r)G(r, r′)] = −δ(r − r′) (6.6)

with boundary conditions

[G(r, r′)] = 0, [ε(r)
∂G

∂n
(r, r′)] = 0. (6.7)

In general, the potential φ(r) can be decomposed into two parts: the potential

due to the source charge and the reaction field potential φrf(r) that reflects the

polarization of the material outside the sphere, Ωo. That is,

φ(r) =
qse−λ(r)∣r−rs∣

ε(r)∣r − rs∣
+ φrf(r). (6.8)

For the Kelvin image location x1 and Jacobi-Gauss-Radau locations xM−1
m=2 , we esti-
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mate the reaction field potential using image charges [14]

φrf(r) ≈
M

∑
m=1

qme−λ(r)∣r−xm∣

ε(r)∣r − xm∣
, (6.9)

where M is a pre-determined number of image charge locations. The higher the

chosen value of M , the more accurate the estimation of the reaction field potential

becomes.

For practical applications where multiple spheres and charges are present, the

electric potential φ(r) has no analytical solution and image approximations as above,

and numerical methods will be needed to find approximations. When requiring that

the particles and source charge(s) interact in close proximity (<0.2 units), singular

behavior is observed in the layered Green’s functions and requires treatment. In order

to achieve better accuracy in numerical approximation of the potential, we first define

a “de-singularized” solution variable such that the potential due to the source charge

in (2.8) as well as the dominant part of the field from the image charges (6.9) are

explicitly removed from the potential. For this purpose, we first define a function H

by

H(r, rs) = 4πqsGo(r, rs), (6.10)

where

Go(r, r
′) =

e−λo(r)∣r−r
′∣

4πεo(r)∣r − r′∣
(6.11)

and where H satisfies the P-B equation

εout[∇
2H(r, rs) − λ

2
oH(r, rs)] = −ρ(r), (6.12)
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and, for the sphere Ω,

ρ(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

4πqsδ(r − rs) if r ∈ Ωo

0 if r ∈ Ωi

. (6.13)

Secondly, define T (r, rs) equal to the sum of n < M screened Coulomb potential

terms,

T (r, rs) =
n

∑
j=1

qje−λo∣r−xj ∣

εo∣r − xj ∣
, (6.14)

where, for each image location xj and corresponding charge value qj, T (r, rs) satisfies

the P-B equation

εo[∇
2T (r, rs) − λ

2
oT (r, rs)] = −ν(r), (6.15)

and, for sphere Ω,

ν(r) =

⎧⎪⎪⎪⎪
⎨
⎪⎪⎪⎪⎩

0 if r ∈ Ωo

4π∑
n
j=1 δ(r − xj) if r ∈ Ωi

. (6.16)

6.2 Boundary integral equations for systems of Janus particles

Since we are defining the substitution variable w(r) the same as we had for a system

of dielectric spheres, and we wish for the corresponding matrix equation of BIE’s

to solve for wo(r) like we had before, the derivation of the boundary integral equa-

tions for Janus particles will be identical. Thus, we will omit the laborious parts of

the derivations and simply re-write the resulting boundary integral equations of the

second kind here:
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wok(p) =
J

∑
j=1

ˆ

Sj

εo(r) (Gi(r,p) −Go(r, rs))
∂woj(r)

∂no
dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂H(r, rs)

∂no
− εi(r)H(r, rs)

∂Gi(r,p)

∂no
) dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂T (r, rs)

∂no
− εi(r)T (r, rs)

∂Gi(r,p)

∂no
) dS(r)

−
1

2
H(r, rs) −

1

2
T (r, rs)

(6.17)

and

(
1

2
+

1

2

εo(r)

εi(r)
)
∂wok(p)

∂nok
=

J

∑
j=1

ˆ

Sj

(εo(r)
∂2Go(r,p)

∂n′o∂no
− εi(r)

∂2Gi(r,p)

∂n′o∂no
)woj(r)dS(r)

+
J

∑
j=1

ˆ

Sj

(εo(r)
∂Gi(r,p)

∂n′o
− εo(r)

∂Go(r,p)

∂n′o
)
∂wol(r)

∂no
dS(r)

−
J

∑
j=1

p.f.

ˆ

Sj

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+
J

∑
j=1

ˆ

Sj

εo(r) (
∂H(r, rs)

∂no
+
∂T (r, rs)

∂no
)
∂Gi(r,p)

∂n′o
dS(r)

−
1

2

εo(r)

εi(r)

∂H(r, rs)

∂nok
−

1

2

εo(r)

εi(r)

∂T (r, rs)

∂nok
,

(6.18)

where J is the total number of Janus particles in the system and k indicates a sphere

that is not necessarily the same as sphere j.

6.2.1 Special solution v(r) and useful identity

In the boundary integral equation (6.18), just like for the dielectric sphere system,

there is a set of integrals with hypersingular integrands that could use some assistance

becoming less computationally cumbersome. To accomplish this, we again rely on
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deriving a mathematical identity that we will apply. Let

ξ = −p.f.

˛
εi(r)(H(r, rs) + T (r, rs))

∂2Gi(r,p)

∂n′o∂no
(6.19)

denote the hypersingular (O(∣r − p∣−3)) integral to be regularized. Since we are con-

sidering a system of Janus particles, this integral ξ will be calculated a total of J

times, once for every particle in the system. However, as is the case in the dielectric

sphere systems in Chapter 5, since p is fixed in (6.18), the integral ξ will only be

hypersingular on one of the J , not all of them. So in practice, we only need to apply

to one of the J integrals the mathematical boundary integral equation identity that

we are about to derive.

Let us introduce a mathematical boundary on our sphere-particle physical setup

and boundary. Construct a hemisphere of radius a and center it at the point p along

the outside of the surface of our sphere. The hemispherical surface is denoted by Γ and

the intersection of the hemisphere and the boundary of Ω is denoted by Sa ≡ Sa(p).

We call the region enclosed by this hemisphere Ωp. For some z ∈ Ωi, and for some

constant C, let us construct some special solution for the potential of a charge at z:

v(r) =
e−λ(r)∣r−z∣

ε(r)∣r − z∣
C. (6.20)

Ω

Ωp

•z p•
Sa

Γ

Figure 6.30: Janus particle and outward
bubble for identity boundary integral equa-
tion derivation

For ease of calculating the constant

C, we generally take z to be located in

the center of the sphere, and the exact

formula for C can be seen in the ap-

pendix. We now have that V satisfies
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the PDE

εo(r)(∇
2v(r)−λ2

o(r)v(r)) = −C ⋅4πδ(r−z).

(6.21)

Then the PDE for v(r) in Ωp is given by

εo(∇
2v(r) − λ2

ov(r)) = 0. (6.22)

We wish to derive the boundary integral equations for v on the domain Ωp.

The two PDE’s for r′ outside the sphere Ω are:

εo(∇
2v(r) − λ2

ov(r)) = 0 (6.23)

εo(∇
2Go(r, r

′) − λ2
oGo(r, r

′)) = −δ(r − r′), (6.24)

so multiplying (6.23) by Go(r, r′) and (6.24) by v(r), and taking their difference, we

get

εo(Go(r, r
′)∇2v(r) − v(r)∇2Go(r, r

′)) = v(r)δ(r − r′). (6.25)

Integrating over Ωp ∪B(r′, ρ) and using Green’s identity yields

˛

∂(R3∖(Ωp∪B(r′,ρ)))

εo (Go(r, r
′)
∂v(r)

∂n
− v(r)

∂Go(r, r′)

∂n
) dS(r) = 0,

which, using a previous argument, becomes

v(r′) =

˛

Sa∪Γ

εi (Go(r, r
′)
∂v(r)

∂n
− v(r)

∂Go(r, r′)

∂n
) dS(r). (6.26)

Once again we introduce the notation no = −ni, where ni is the unit normal on the

surface of the sphere, at point p, pointing into domain Ω. Furthermore, we denote nΓ
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as the outward unit normal on Γ. Instituting this new notation, (6.26) becomes

v(r′) =

˛

Sa

εo (Go(r, r
′)
∂v(r)

∂ni
− v(r)

∂Go(r, r′)

∂ni
) dS(r)

+

˛

Γ

εo (Go(r, r
′)
∂v(r)

∂nΓ

− v(r)
∂Go(r, r′)

∂nΓ

) dS(r)

(6.27)

Taking the normal derivative of (6.27) with respect to r′

∂v(r′)

∂n′o
=

˛

Sa

εo (
∂Go(r, r′)

∂n′o

∂v(r)

∂ni
− v(r)

∂2Go(r, r′)

∂n′o∂ni
) dS(r)

+

˛

Γ

εo (
∂Go(r, r′)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Go(r, r′)

∂n′o∂nΓ

) dS(r),

(6.28)

and taking the limit as r′ approaches p in S from the inside yields the following

identity:

1

2

∂v(p)

∂no
+

˛

Sa

εo (
∂Go(r,p)

∂n′o

∂v(r)

∂no
− v(r)

∂2Go(r,p)

∂n′o∂no
) dS(r)

−

˛

Γ

εo (
∂Go(r,p)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Go(r,p)

∂n′o∂nΓ

) dS(r) = 0.

(6.29)

6.2.2 Modified boundary integral equations

Notice that equation (6.29) has been mathematically derived to be in terms of the

outside Green’s functions. However, the integral ξ that needs regularized is written

in terms of the interior Green’s functions. Since the identity (6.29) is indeed derived

over a mathematical boundary Γ, not a physical one, we can actually impose whatever

dielectric properties over that region that we please. So far it has been convenient to

impose the same dielectric properties of the region Ωp as that of its background. But

for this case, we will need to alter that arrangement and dictate that the dielectric
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properties of Ωp are the same as those in Ω. Thus notationally we will alter the

Green’s functions in the identity 6.29 to be Gi(r, r′) instead of Go(r, r′).

Further, since we are modeling a system of Janus particles with the boundary in-

tegral equations, we end up needing to use layered Green’s functions, whose dielectric

properties obviously differ based on where in/on the particle a point lies. This means

that for arbitrary point r in the identity (6.29), the Green’s functions defined over

the region Ωp will also be layered and will take on whatever dielectric properties that

will make the identity useful for regularization.

We now treat (6.29) as the value zero and subtract it from the appropriate integral

in the boundary integral equations. But first let us split the arbitrary hypersingular

integral up over the union (S ∖ Sa) ∪ Sa and use the above identity

ξ = −

˛

(S∖Sa)

εi(r)(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

−

˛

Sa

εi(r)(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r).

(6.30)

Subtract 0 from ξ ∶

ξ − 0 = −

˛

(S∖Sa)

εi(r)(H(r, rs) + T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

+

˛

Sa

εi(r) (v(r) −H(r, rs) − T (r, rs))
∂2Gi(r,p)

∂n′o∂no
dS(r)

−

˛

Sa

εi(r)(
∂Gi(r,p)

∂n′o

∂v(r)

∂no
) dS(r) +

˛

Γ

εi(r)(
∂Gi(r,p)

∂n′o

∂v(r)

∂nΓ

) dS(r)

−

˛

Γ

εi(r)(v(r)
∂2Gi(r,p)

∂n′o∂nΓ

) dS(r) −
1

2

∂v(p)

∂no
.

(6.31)

Again, it can be shown (in the Appendix) that the function v(r)−H(r, rs)−T (r, rs)
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is of order O(∣r − p∣−3). All of the values and integrals in (6.31) are therefore more

readily calculable than the integral ξ by itself, as the singular behavior of the Green’s

functions is reduced and distributed over several more manageable integration regions.

Applying the same mapping conventions established in the last chapter and the

same summing notation used in (6.18) and (6.17), we have the following resulting

boundary integral equations for a system of Janus particles:

wok(p) =
J

∑
j=1

ˆ

Sj

εo(r̂) (Gi(r̂,m−1
j (mk(p̂))) −Go(r̂,m−1

j (mk(p̂))))
∂woj(r̂)
∂no

dS(r̂)

+
J

∑
j=1

ˆ

Sj

(εo(r)Gi(r,p)
∂H(r, rs)
∂no

− εi(r)H(r, rs)
∂Gi(r,p)
∂no

) dS(r)

+
J

∑
j=1

ˆ

Sk

(εo(r)Gi(r,p)
∂T (r, rs)
∂no

− εi(r)T (r, rs)
∂Gi(r,p)
∂no

) dS(r)

− 1

2
H(r, rs) −

1

2
T (r, rs) (6.32)

and

(1
2
+ 1

2

εo(r)
εi(r̂)

) ∂wok(p)
∂nok

=
J

∑
j=1

ˆ

Sj

(εo(r̂)
∂2Go(r̂,m−1

j (mk(p̂)))
∂n′o∂no

− εi(r)
∂2Gi(r̂,m−1

j (mk(p̂)))
∂n′o∂no

)woj(r̂)dS(r̂)

+
J

∑
j=1

ˆ

Sj

(εo(r̂)
∂Gi(r̂,m−1

j (mk(p̂)))
∂n′o

− εo(r)
∂Go(r̂,m−1

j (mk(p̂)))
∂n′o

)
∂woj(r̂)
∂no

dS(r̂)

−
J

∑
j=1

p.f.

ˆ

Sj

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
J

∑
j=1

ˆ

Sk

εo(r)(
∂H(r, rs)
∂no

+ ∂T (r, rs)
∂no

) ∂Gi(r,p)
∂n′o

dS(r)

−
ˆ

Sk/Sak

εi(r) (H(r, rs) + T (r, rs))
∂2Gi(r,p)
∂n′o∂no

dS(r)

+
ˆ

Sak

εi(r) (v(r) −H(r, rs) − T (r, rs))
∂2Gi(r, rs)
∂n′o∂no

dS(r)

−
ˆ

Sak

εi(r)
∂Gi(r,p)
∂n′o

∂v(r)
∂no

dS(r)



94

+
ˆ

Γk

εi(r)
∂Gi(r,p)
∂n′o

∂v(r)
∂nΓ

dS(r)

−
ˆ

Γk

εi(r)v(r)
∂2Gi(r,p)
∂n′o∂nΓ

dS(r)

− 1

2

εo(r)
εi(r)

∂H(r, rs)
∂nok

− 1

2

εo(r)
εi(r)

∂T (r, rs)
∂no

− 1

2

∂vl(p)
∂nok

, (6.33)

where we take nok to be the outward unit normal corresponding to sphere k, on which

p lies.

Let the following quantities be defined as we have defined them previously, and let

all other integrals simply be described as “right-hand side integrals.” Consider these

definitions to be flexible, in that the Green’s function can either be layered or not

(hence the lack of mappings in the definitions). Then we have the following matrix

equation for this system of boundary integral equations:

S0 =
¸
S

Gi(r,p)ψt(r)dS(r) S1 =
¸
S

Go(r,p)ψ(r)dS(r)

D0 =
¸
S

∂Gi(r,p)
∂no

ψt(r)dS(r) D1 =
¸
S

∂Go(r,p)
∂no

ψt(r)dS(r)

D2 =
¸
S

∂Gi(r,p)
∂n′o

ψt(r)dS(r) D3 =
¸
S

∂Go(r,p)
∂n′o

ψt(r)dS(r)

T0 =
¸
S

∂2Gi(r,p)
∂n′o∂no

ψt(r)dS(r) T1 =
¸
S

∂2Go(r,p)
∂n′o∂no

ψt(r)dS(r)

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎝

I 0

0 (1
2 +

1
2
εo
εi
) I

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

(εiD0 − εoD1) − (S0 − S1) εo

(εiT0 − εoT1) − (D2 −D3) εo

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎝

wo

ko

⎞
⎟
⎟
⎠

(6.34)

=

⎛
⎜
⎜
⎝

top RHS integrals

bottom RHS integrals

⎞
⎟
⎟
⎠

,

where p takes different mesh points rt in different rows of the matrix.



95

6.3 Numerical results for systems of Janus particles

In this section we explore examples involving the interactions of systems of Janus

particles. Since an analytic solution of the potential does not exist except for very

limited Janus particle systems [21, 2], we show that the potential is reasonable and,

more importantly, improved in value using the subtraction de-singularization tech-

nique and regularization methods compared to the results without their use. We also

note here that since an analytic expression of the reaction field estimate using image

charges is currently not accessible for Janus particles, we use the definition of the

reaction field estimate for dielectric spheres instead. While not completely accurate,

we show that the results are nevertheless improved in several numerical tests. In

addition, the closer the dielectric constants of the two halves of the Janus particle are

to each other, the more accurate the dielectric sphere definition of the reaction field

is, resulting in less error in the potential than otherwise.

6.3.1 Example 1.3

Here we revisit Example 1.2. That is, we consider the case where there is one source

charge located at a familiar location in past examples rs = (0.5,2,0.2) and two spheres

spaced three units apart, one whose interior dielectric constant is two and the other

whose interior dielectric constant matches that of the exterior medium. The second

sphere whose interior and exterior dielectric constants are equal has the effect of

making it numerically present but physically invisible. This makes it easy to compare

the numerical solutions for the potential on the first sphere to those obtained for the

case when modeling only the one sphere. Notice that in this example, the first sphere

is not actually a Janus particle, but a dielectric sphere.

In this example, we will re-calculate Example 1.2, but force the boundary integral

equations to use the Janus particle setup and therefore the layered Green’s functions

for the interior of the sphere. In this way we will determine if the layered Green’s
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ε1i = 2

ε1i = 2

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 6.31: To-scale illustration of physical interaction in Example 1.3

functions maintain the level of accuracy gotten when they were not used and make

sure that the boundary integral equations have been correctly derived for the Janus

particle configuration. Just like before, we have taken the true solution for this

example to be the Legendre polynomial expansion evaluated out to 300 terms. The

errors in the tables are the errors for the potential at the mesh points of the first

sphere only. We compare these errors to those we already saw for Example 1.2. As

we can see in Table 6.33, the results match up almost perfectly. This is significant

from a debugging standpoint, since we altered the BIE’s to use an out-bubble instead

of an in-bubble and then changed the interior Green’s functions. So now we can be

sure that the boundary integral equations have been implemented correctly.

6.3.2 Example 7

Let us take for this example two spheres set three units apart with a source charge

located at rs = (1,1,1). This source charge is approximately 0.73 units away from the

surface of the first sphere, so it is not especially close in proximity. Since the source

charge and second sphere are sufficiently far away, there is not singular behavior

demonstrated in the Green’s function kernel, making this example an easy candidate



97

Table 6.33: Total potential relative errors for mesh points on first sphere in Example
1.3 compared to those in Example 1.2

Two-sphere system One sphere (old)
1st Degree 2nd Degree 1st Degree 2nd Degree

Mesh Rel. Error Rel. Error Rel. Error Rel. Error
2 6.47 × 10−3 3.96 × 10−3 6.46 × 10−3 3.96 × 10−3

4 1.94 × 10−3 4.67 × 10−4 1.94 × 10−3 4.67 × 10−4

8 5.94 × 10−4 3.25 × 10−5 5.94 × 10−4 3.24 × 10−5

16 1.94 × 10−4 3.93 × 10−6 1.94 × 10−4 3.93 × 10−6

32 5.51 × 10−5 1.94 × 10−6 5.51 × 10−5 1.94 × 10−6

for comparison purposes. In this example, the first sphere is a Janus particle, with

the two dielectric constant equal to 18 and the lower dielectric constant equal to 3.9.

All Debye-Hückel lengths λ = 0. The second sphere is actually a dielectric sphere,

with its interior dielectric constant equal to that of the exterior medium.

Since singular behavior is not observed in this example, the potential can be easily

calculated without any of the processing means developed in this paper. That means

that this example is a perfect one to test the results of the methods proposed in this

section - if the results for the subtraction method are very close to those without its

implementation, then we show that at the very least the subtraction method has been

implemented correctly in the code.

This specific example, without the second sphere, has actually been studied and

published before [50]. Figure 6.33 shows the electric potential on the plane z = 0,

using the results for a basis degree 1, mesh size 32 grid. The same parameters were

used for the case of the subtraction de-singularization method and grid refinement

methods developed in this paper, shown in Figure 6.34 . We see that the potential

in these figures are very similar, almost exactly the same, and we therefore show

that our derivations and code are working correctly (since this is an easy case that is

without the necessity of singularity treatment).
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ε1i = 18

ε1i = 3.9

εo = 1

ε2i = 1

ε2i = 1

•
rs

Sphere 1 Sphere 2

Figure 6.32: To-scale illustration of physical interaction in Example 7, the first particle
is a Janus particle and the second sphere is an invisible dielectric sphere

Figure 6.33: Example 7, Contour
plot of potential for deg 1, mesh
32 for the plane z=0 without sub-
traction de-singularization

Figure 6.34: Example 7, Contour
plot of potential for deg 1, mesh 32
for the plane z=0 with subtraction
de-singularization

6.3.3 Example 8

This example sees two Janus particles located 0.1 units apart at centers (0,0,0) and

(2.1,0,0), shown in Figure 6.35. The source charge is at (1.05,0,0.2), which is approx-

imately 0.069 units away from the particles, and each Janus particle has different

dielectric constants in their northern and southern hemispheres of 3.0 and 2.5, re-

spectively. All Debye-Hückel lengths λ = 0. The source charge is located sufficiently

close to both particles to cause enough singular behavior that the methods developed

in this paper will prove necessary.
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ε1i = 3.0

ε2i = 2.5

εo = 1

ε3i = 3.0

ε4i = 2.5

•
rs

Sphere 1 Sphere 2

Figure 6.35: To-scale illustration of physical interaction in Example 8, where both
particles have identical dielectric values in their hemispheres and the source charge is
in the middle between them

We expect that the potential should reflect the symmetry shown in Figures 6.36

and 6.37, where we have sliced the system with the plane z = 0. The potential eval-

uated without the subtraction method (left) in Figure 6.36 shows negative potential

values. The subtraction method and subsequent processing methods give the po-

tential contour plot on the right, Figure 6.37, which shows stable, convergent and

positive potential values for the system.

Figure 6.36: Contour plot of po-
tential for deg 1, mesh 32 for
the plane z=0 without subtrac-
tion, Example 8

Figure 6.37: Contour plot of po-
tential for deg 1, mesh 32 for the
plane z=0 with subtraction, Ex-
ample 8
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ε1i = 18.0

ε2i = 3.9

εo = 1

ε3i = 1.0

ε4i = 1.0

•
rs

Sphere 1 Sphere 2

Figure 6.38: To-scale illustration of physical interaction in Example 9, where the
source charge is located 0.01 units away from Janus Particle One and the second
particle is “fake.”

6.3.4 Example 9

This example sees two Janus particles located 0.02 units apart at centers (0,0,0) and

(2.02,0,0). The source charge is at (0.2438162975, 0.9752651902, 0.097526519), which

is 0.01 units away from sphere 1. Janus particle 1 has different dielectric constants in

its northern and southern hemispheres of 18.0 and 3.9, respectively. And the second

Janus particle is “fake.” All Debye-Hückel lengths λ = 0. Comparing the contour

plots in Figures 6.39 and 6.40 shows that the value of the potential is less singular in

Figure 6.40, demonstrating that the subtraction method is improving the results.

6.3.5 Example 10

This example sees two Janus particles located 0.02 units apart at centers (0,0,0) and

(2.02,0,0). The source charge is at (0.2438, 0.9752, 0.0975), which is 0.01 units away

from sphere 1. Janus particle 1 has different dielectric constants in its northern and

southern hemispheres of 3.0 and 2.5, respectively. And the second Janus particle

is “fake.” All Debye-Hückel lengths λ = 0. Comparing the contour plots in Figures

6.42 and 6.43 shows that the value of the potential is less singular in Figure 6.43,

demonstrating that the subtraction method is improving the outcome of the results.
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Figure 6.39: Contour plot of po-
tential for deg 1, mesh 32 for
the plane z=0 without subtrac-
tion, Example 9

Figure 6.40: Contour plot of po-
tential for deg 1, mesh 32 for the
plane z=0 with subtraction, Ex-
ample 9

ε1i = 3.0

ε2i = 2.5

εo = 1

ε3i = 1.0

ε4i = 1.0

•
rs

Sphere 1 Sphere 2

Figure 6.41: To-scale illustration of physical interaction in Example 10, where the
source charge is located 0.01 units away from Janus Particle One and the second
particle is “fake.”
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Figure 6.42: Contour plot of po-
tential for deg 1, mesh 32 for
the plane z=0 without subtrac-
tion, Example 10

Figure 6.43: Contour plot of po-
tential for deg 1, mesh 32 for the
plane z=0 with subtraction, Ex-
ample 10
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CHAPTER 7: Conclusion

This dissertation has emphasized mathematical methods to overcome computational

difficulty introduced by the singular potential due to the close proximity between

charges and dielectric spheres. Such effort is much needed when considering the

physical interactions on which we sought to accurately model. The first part of the

conclusion will recount the physical implications of the mathematics presented here,

while the second part of the conclusion will summarize the mathematical techniques

implemented. The third part of the conclusion will outline possible future work.

7.1 Physical Models

The inspiration for this work was the desire to model the electric potential field for

dielectric spheres and Janus particles closely interacting with each other and a source

charge. Once we acquired the capability to model more than one particle, we took

a step towards modeling and approximating the potential for colloidal materials,

where multiple such particles interact. The electric potential around the particles

influences how the particles will move and build. However, when discussing particles

and materials in this context, we need the ability to calculate the potential for when

the particles are very close together, as is natural for this physical case. When using

boundary integral techniques, there has been a limitation to how close together objects

and points can get, due to the singular nature of the fundamental solution used to

derive the equations.

The model first introduced in chapter one was the interaction of one dielectric
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sphere and one source charge in homogeneous media. Chapters two through four

were spent deriving the boundary integral equations for that system and subsequent

mathematical manipulations required to boost the accuracy of the electric potential

results. This is a simple system whose electric potential can be easily calculated using

Legendre polynomial expansions. We used this true solution as a comparison tool to

refine our mathematical methods for the context of boundary integral equations.

Once we showed that we could get accurate results for this simple system, we could

move on to larger systems, confident our methods would best serve us when a true

solution was no longer available. Chapter six discussed such larger systems, where

several examples of two dielectric spheres and a source charge in homogeneous media

were shown. The inclusion of examples where the two-sphere system was “reduced”

to the results of a one-sphere system by making the second sphere fake was meant to

demonstrate that the electric potential results were still trustworthy for such larger

systems. Chapter six saw us dabble in systems of Janus particles, where the dielectric

properties throughout each particle are not the same.

7.2 Mathematical Methods

The derivation of hypersingular boundary integral equations for our systems meant

that we already took advantage of methods previously developed to treat the singular

behavior of the electric potential [50, 30]. However, in the context of source charges

and other particles coming within a certain distance of each other, such methods are

still insufficient at stopping the singular behavior from ruining the results gotten by

solving the matrix equation. Thus, we developed and implemented multiple tech-

niques to treat the boundary integral equations in a manner where such issues are

drastically reduced.

Our first step was to re-derive the boundary integral equations using a change of

variables. This change of variables resulted in the matrix equation of the boundary
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integral equations containing several right-hand-side integrals, which do not contain

basis functions, and which contain the bulk of the singular behavior that affects

the matrix solver. Thus the matrix equation is solved in terms of the new variable

and gives accurate solutions, so long as those right-hand integrals are calculated

accurately. Emphasis then shifted to developing means to do so.

Treatment of the right-hand-side integrals began with introducing a hemispherical

mathematical boundary and deriving a mathematical identity with which to treat

the Hadamard finite part integral. This identity essentially separates the burden of

the one integral into several, more manageable ones. Further, each right-hand-side

integral was calculated using an adaptive Gauss quadrature, which increased accuracy

of results while reducing the computational burden that traditional Gauss quadrature

would impose. Each of these mathematical techniques worked together to get highly

accurate results using boundary integral equations for close-body interactions.

7.3 Future Work

There are a number of aspects in which this work may be expanded and continued.

Systems of a mix of dielectric spheres and Janus particles, the rotation of systems

of Janus particles, systems containing more than two or three particles, and systems

containing more than one source charge are more direct and immediate ideas that

may be explored and implemented fairly easily using the de-singularization methods

discussed in this work.

Further, another area that is largely unexplored in this dissertation is inhomoge-

neous media. While the mathematical framework for inhomogeneous media is dis-

cussed, we have yet to demonstrate an example due to the the reaction field term

T (r, rs) being defined for homogeneous media only [14]. Further research must be

done to derive a reaction field estimate using image charges for dielectric spheres in

the presence of inhomogeneous media. While this has been done for the case when
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the source charge is inside the sphere [18], it would need to be done for the case that

the source is outside the sphere to be of use for the systems in this work.

Along this same vein, in order to have more accurate representations of the electro-

static potential for systems of Janus particles, we must have a reaction field estimate

term T (r, rs) that is accurate for Janus particles. The Janus particle examples shown

in this work used the dielectric sphere definition of the reaction field estimate, and

while that provides improvement over the use of nothing at all, it is still technically

inaccurate. As a result, further research must be done to derive a reaction field

estimate using image charges in the presence of Janus particles. With this, the suc-

cessful implementation and accuracy of the subtraction de-singularization technique

discussed in this work is assured.
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APPENDIX A: ANGLES TO USE IN INTEGRAL DOMAINS

•

(0,0,1)
•

•z

θ′

θ∗

(0,0,0)

Sa

Γ

S

Figure A.44: Finding necessary angles when integrating over surface of sphere

We need to find z, the value where the hemisphere Γ intersects the sphere S. To

do that, we consider the intersection of the two spheres. Since the singularity p is at

the north pole, z will be the same value for the whole circle C that will be the curve

of intersection of the two spheres. The equation for the larger sphere S (of radius
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one) is given by

x2 + y2 + z2 = 1.

The equation for a sphere of radius a centered at the point (0,1) is given by

x2 + y2 + (z − 1)2 = a2.

Subtracting these two equations gives

z2 − (z − 1)2 = 1 − a2

Solving this equation for z, we get z =
2 − a2

2
. Now we need to determine the bounds

of integration of Θ for both the sphere and the hemisphere.

We see from the figure that z∗ = 1 − z = a cos(θ∗) and z = cos(θ′). From both

of these equations we can solve for θ∗ and θ′. So, for example, integrating over the

surface of the hemisphere means integrating over Θ from π − θ∗ to π. Furthermore,

integrating over the surface of the sphere S, omitting region Sa, means integrating

over Θ from θ′ to π.
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APPENDIX B: MATRIX EQUATION FOR FIRST KIND BIE’S

Here we write the matrix equation for the boundary integral equations of the first

kind. Using the same notation and integral designations as we did for the second

kind matrix equation, we have that the first kind equations (2.34) and (2.29) form

the following system:

⎡
⎢
⎢
⎢
⎢
⎢
⎢
⎣

⎛
⎜
⎜
⎝

1
2I 0

1
2I 0

⎞
⎟
⎟
⎠

+

⎛
⎜
⎜
⎝

−εoD1 S1εo

−εiD0 S0εo

⎞
⎟
⎟
⎠

⎤
⎥
⎥
⎥
⎥
⎥
⎥
⎦

⎛
⎜
⎜
⎝

wo

ko

⎞
⎟
⎟
⎠

=

⎛
⎜
⎜
⎝

0

J0 + J1 +L1 +L2

⎞
⎟
⎟
⎠
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APPENDIX C: Value of constant C for special solution v(r)

A crucial step in the regularization of the hyper-singular integral is the use of

v(r)−H(r, rs)− T (r, rs) as being of order O(∣r−p∣). This reduced the integral from

being hypersingular to being strongly singular. Requiring that f(r) = v(r)−H(r, rs)−

T (r, rs) = 0 at the mesh point p and using a Taylor expansion

f(r) = f(p) + f ′(p)(r − p) = 0 + f ′(p)(r − p), (C.1)

we show the required order. Now we must derive the value of the constant C, which

will be shown here. From the definitions, we have that

v(r) = C
e−λi∣r−z∣

εi∣r − z∣
(C.2)

H(r) = 4πGo(r, rs) =
e−λo∣r−rs∣

εo∣r − rs∣
(C.3)

T (r, rs) =
qke−λo∣r−rk ∣

εo∣r − rk∣
+
q1e−λo∣r−x1∣

εo∣r − x1∣
+
q2e−λo∣r−x2∣

εo∣r − x2∣
+⋯ (C.4)

We require that

v(p) = H(p, rs) + T (p, rs) +⋯

C
e−λi ∣p−z∣

εi∣p − z∣
= e

−λo ∣p−rs ∣

εo∣p − rs∣
+ qke

−λo ∣p−rk ∣

εo∣p − rk ∣
+ q1e

−λo ∣r−x1 ∣

εo∣p − x1∣
+ q2e

−λo ∣r−x2 ∣

εo∣p − x2∣
+⋯

C = ( e
−λo ∣p−rs ∣

εo∣p − rs∣
+ qke

−λo ∣p−rk ∣

εo∣p − rk ∣
+ q1e

−λo ∣r−x1 ∣

εo∣p − x1∣
+ q2e

−λo ∣r−x2 ∣

εo∣p − x2∣
) εi∣p − z∣
e−λi ∣p−z∣

+⋯

C = εi∣p − z∣
εo∣p − rs∣

eλi ∣p−z∣−λo ∣p−rs ∣ + qkεi∣p − z∣
εo∣p − rk ∣

eλi ∣p−z∣−λo ∣p−rk ∣ + q1εi∣p − z∣
εo∣p − x1∣

eλi ∣p−z∣−λo ∣p−x1 ∣

+ q2εi∣p − z∣
εo∣p − x2∣

eλi ∣p−z∣−λo ∣p−x2 ∣ +⋯

(C.5)
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APPENDIX D: TRUE SOLUTION OF POTENTIAL

The true solution for the potential on the outside of the dielectric sphere, for

a source charge located outside on the polar axis, was taken to be the Legendre

polynomial expansion given below, taken to a case-by-case sufficient number of terms.

For r = r(x, y, z), θ = θ(x, y, z), a equalling the radius of the sphere, γ = εi−εo
εi+εo , and

Pn(cos(θ)) being the nth Legendre polynomial:

φ(r, θ) = 4π
∞
∑
n=0

C(r)Pn(cos(θ)), (D.6)

where C(r) is given by

C(r) =
q

4πεors
(
r

rs
)
n

−Dn
1

rn+1
, (D.7)

and Dn is the constant given by

Dn =
q

4πεo

a2n+1

rn+1
s

γ (1 −
1 − γ

1 − γ + 2n
) (D.8)

The normal derivative of (D.6) is

∂φ

∂n
= (

∂φ

∂x
,
∂φ

∂y
,
∂φ

∂z
) ⋅ n,

where, by product rule,

∂φ

∂xi
= 4π

∞
∑
n=0

(
∂C(r)

∂xi
Pn(cos(θ)) +C(r)P ′

n(cos(θ))
∂

∂xi
(cos(θ))) . (D.9)

The various pieces of (D.9) that are functions are further described here. We write

∣r∣ = r =
√
x2 + y2 + z2 (D.10)
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cos(θ) =
r ⋅ rs
rrs

=
xrs1 + yrs2 + zrs3

rs
√
x2 + y2 + z2

, (D.11)

∂C(r)

∂xi
=

q

4πεors
n(

r

rs
)
n−1 ∂r

∂xi
+Dn(n + 1)

1

rn+2

∂r

∂xi
(D.12)
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APPENDIX E: DERIVATION OF INTEGRAL EQUATIONS

Here we derive equations (2.28) and (2.33) from equations (2.25) and (2.32), re-

spectively.

E.1 Outside BIE

For the outside integral equation, we have

ˆ

R3∖(Ω∪B(r′,ρ))

εo (Go(r, r
′)∇2wo(r) −wo(r)∇

2Go(r, r
′)) dr = 0 (E.13)

Now we can apply Green’s second identity. The boundary of R3 ∖ (Ω ∪ B(r′, ρ)) is

split into four parts,

0 = I + II + III + IV

Part I: The integral on the infinite interface. As both G(r, r′) and w(r) vanish

at infinity, I = 0.

Part II: The integral on the interface of the layered structure (if any exists). By

the boundary conditions, the terms in the integral cancel and II = 0.

Part III: The integral on the surface of the sphere.

IV = −

˛

S

εo (Go(r, r
′)
∂w(r)

∂n
−w(r)

∂Go(r, r′)

∂n
) dS(r).

Part IV: The integral on ∂B(r′, ρ):

IV =

˛

∂B(r′,ρ)

εo (Go(r, r
′)
∂wo(r)

∂n
−w(r)

∂Go(r, r′)

∂n
) dS(r) (E.14)
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For fixed r′ on B(r′, ρ), we have that

∣G(r, r′)∣ = ∣
1

4π

e−iλ∣r−r
′∣

∣r − r′∣
∣ = ∣

1

4π

e−iλρ

ρ
∣

and

∣
∂G(r, r′)

∂n
∣ = ∣

∂G(r, r′)

∂r
∣ = ∣

1

4π
(
−iλe−iλ∣r−r

′∣

∣r − r′∣
−
e−iλ∣r−r

′∣

∣r − r′∣2
)∣

≤ ∣
1

4π
(
−iλe−iλρ

ρ
−
e−iλρ

ρ2
)∣

We break integral IV into three pieces whose sum is IV:

IV = lim
ρ→0

˛

∂B(r′,ρ)

G(r, r′)
∂w(r)

∂n
dS(r)

− lim
ρ→0

˛

∂B(r′,ρ)

∂G(r, r′)

∂n
(w(r) −w(r′))dS(r)

− lim
ρ→0

˛

∂B(r′,ρ)

w(r′)
∂G(r, r′)

∂n
dS(r)

(E.15)

Now each of these three integrals behave a certain way in the limit as ρ→ 0

1)

lim
ρ→0

∣

˛

∂B(r,′,ρ)

G(r, r′)
∂w(r)

∂n
dS(r)∣ ≤ sup ∣

∂w(r)

∂n
∣

˛

∂B(r′,ρ)

∣G(r, r′)∣ dS(r)

= lim
ρ→0

sup ∣
∂w(r)

∂n
∣ ⋅ ∣

1

4π

e−iλρ

ρ
∣ ⋅ 4πρ2

= lim
ρ→0

sup ∣
∂w(r)

∂n
∣ ⋅ ∣ρe−iλρ∣→ 0 as ρ→ 0

(E.16)

and
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2)

lim
ρ→0

˛

∂B(r′,ρ)

∂G(r, r′)

∂n
(w(r) −w(r′))dS(r)

≤ lim
ρ→0

supr,r′∈B ∣w(r) −w(r′)∣

˛

∂B(r′,ρ)

∂G(r, r′)

∂n
dS(r)

= lim
ρ→0

supr,r′∈B ∣w(r) −w(r′)∣ ⋅
1

4π
(
−iλe−iλρ

ρ
−
e−iλρ

ρ2
) ⋅ 4πρ2

→ 0 as ρ→ 0 (as w(r) = w(r′))

(E.17)

3)

lim
ρ→0

w(r′)

˛

∂B(r′,ρ)

∂G(r, r′)

∂n
dS(r)

= lim
ρ→0

−w(r′)

˛

∂B(r′,ρ)

1

4π
(
−iλe−iλρ

ρ
−
e−iλρ

ρ2
) dS(r)

= lim
ρ→0

−w(r′)(
1

4π
(
−iλe−iλρ

ρ
−
e−iλρ

ρ2
)) ⋅ 4πρ2

= lim
ρ→0

−w(r′) (−iλρe−iλρ − e−iλρ)

→ w(r′)(1) as ρ→ 0

(E.18)

Now adding 1) +2) +3) together, we have that

IV = −w(r′) as ρ→ 0

Finally, combining parts I - IV yields (2.28):

wo(r
′) =

˛

S

εo (wo(r)
∂Go(r, r′)

∂n
−Go(r, r

′)
∂wo(r)

∂n
) dS(r)
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E.2 Inside BIE

For the inside integral equation, we have

ˆ

Ω∖B(r′,ρ)

εi(Gi(r, r
′)∇2wi(r) −wi(r)∇

2Gi(r, r
′))dS(r) = 0.

We apply Green’s second identity and split the boundary of Ω ∖ B(r′, ρ) into three

parts so that

I + II + III = 0.

Part I: The integral on the interface of the layered structure (if any exists). By

the boundary conditions, the terms in the integral cancel and I = 0.

Part II: The integral on the surface of the sphere

II =

˛

S

εi (Gi(r, r
′)
∂w(r)

∂n
−w(r)

∂Gi(r, r′)

∂n
) dS(r).

Part III: The integral on ∂B(r′, ρ) (using the same argument as we did for part

IV of outside BIE)

III =

˛

∂B(r′,ρ)

εi (Gi(r, r
′)
∂w(r)

∂n
−w(r)

∂Gi(r, r′)

∂n
) dS(r)

= −w(r′) as ρ→ 0

Combining I - III yields (2.33):

wi(r
′) =

˛

S

εi (Gi(r, r
′)
∂wi(r)

∂n
−wi(r)

∂Gi(r, r′)

∂n
) dS(r)



APPENDIX F: DERIVATION OF IDENTITY ON OUT/IN BUBBLE

When deriving a boundary equation for bubble domain Ωp, regardless of whether

the hemisphere is superimposed on the outside or inside of the sphere, we end up

with the following boundary equation, where ∂Ωp = Sa ∪ Γ:

v(r′) =

˛

Sa∪Γ

ε(r) (G(r, r′)
∂v(r)

∂n
− v(r)

∂G(r, r′)

∂n
) dS(r) (F.19)

F.1 Bubble on inside of sphere

Consider the case where we superimpose a hemisphere onto the interior of sphere Ω.

Then the hypersingular integral that we wish to regularize is written in terms of the

interior Green’s functions and dielectric constants. Further, in adapting (F.19) with

the proper normal vector notation, this equation becomes:

v(r′) =

˛

Sa

εi(r) (Gi(r, r
′)
∂v(r)

∂no
− v(r)

∂Gi(r, r′)

∂no
) dS(r)

+

˛

Γ

εi(r) (Gi(r, r
′)
∂v(r)

∂nΓ

− v(r)
∂Gi(r, r′)

∂nΓ

) dS(r)

(F.20)

Taking the normal derivative of (F.20) with respect to r′ and taking the limit as r′

goes to p from inside the domain:

1

2

∂v(p)

∂ni
=

˛

Sa

εi(r)(
∂Gi(r, r′)

∂n′i

∂v(r)

∂no
− v(r)

∂2Gi(r, r′)

∂n′i∂no
)

+

˛

Γ

εi(r)(
∂Gi(r, r′)

∂n′i

∂v(r)

∂nΓ

− v(r)
∂2Gi(r, r′)

∂n′i∂nΓ

)

Ô⇒ −
1

2

∂v(p)

∂no
=

˛

Sa

εi(r)(−
∂Gi(r, r′)

∂n′o

∂v(r)

∂no
+ v(r)

∂2Gi(r, r′)

∂n′o∂no
) dS(r)

+

˛

Γ

εi(r)(−
∂Gi(r, r′)

∂n′o

∂v(r)

∂nΓ

+ v(r)
∂2Gi(r, r′)

∂n′o∂nΓ

)

(F.21)
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If we set this equation equal to zero by moving all of the terms over to the left-hand

side and then multiply the whole equation by negative one, we get the corresponding

identity used in the main text.

F.2 Bubble on outside of sphere

Now consider the case where we superimpose a hemisphere onto the exterior of

the sphere Ω. Then we have a choice to use the exterior Green’s functions or the

sometimes-layered interior Green’s functions. We will drop the indices then here.

Using the appropriate notation for the normal vectors, we have

v(r′) =

˛

Sa

εi(r) (Gi(r, r
′)
∂v(r)

∂ni
− v(r)

∂Gi(r, r′)

∂ni
) dS(r)

+

˛

Γ

εi(r) (Gi(r, r
′)
∂v(r)

∂nΓ

− v(r)
∂Gi(r, r′)

∂nΓ

) dS(r)

(F.22)

Taking the normal derivative of (F.22) with respect to r′ and taking the limit as r′

goes to p on the boundary, we have

1

2

∂v(p)

∂no
=

˛

Sa

εi(r)(
∂Gi(r, r′)

∂n′o

∂v(r)

∂ni
− v(r)

∂2Gi(r, r′)

∂n′o∂ni
)

+

˛

Γ

εi(r)(
∂Gi(r, r′)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Gi(r, r′)

∂n′o∂nΓ

)

Ô⇒
1

2

∂v(p)

∂no
=

˛

Sa

εi(r)(−
∂Gi(r, r′)

∂n′o

∂v(r)

∂no
+ v(r)

∂2Gi(r, r′)

∂n′o∂no
) dS(r)

+

˛

Γ

εi(r)(
∂Gi(r, r′)

∂n′o

∂v(r)

∂nΓ

− v(r)
∂2Gi(r, r′)

∂n′o∂nΓ

)

(F.23)

Subtracting all terms to the left-hand side of the equation yields the corresponding

identity used for this case.


