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ABSTRACT

SARAH J. BIRDSONG. On the structure and invariants of cubical complexes.
(Under the direction of DR. GÁBOR HETYEI)

This dissertation introduces two new results for cubical complexes. The first is a

simple statistic on noncrossing partitions that expresses each coordinate of the toric

h-vector of a cubical complex, written in the basis of the Adin h-vector entries, as

the total weight of all noncrossing partitions. This expression can then be used to

obtain a simple combinatorial interpretation of the contribution of a cubical shelling

component to the toric h-vector.

Secondly, a class of indecomposable permutations, bijectively equivalent to stan-

dard double occurrence words, may be used to encode one representative from each

equivalence class of the shellings of the boundary of the hypercube. Finally, an adja-

cent transposition Gray code is constructed for this class of permutations, which can

be implemented in constant amortized time.
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CHAPTER 1: INTRODUCTION

Cubical complexes are the simplest possible generalization of simplicial complexes

about which much is known. All possible vectors (f -vectors) of face numbers of

simplicial complexes are given by the Kruskal-Katona Theorem. See [72, Definition

8.32]. The Upper Bound Theorem for face numbers of simplicial polytopes was shown

by McMullen [49], and the same upper bound was generalized to all simplicial spheres

by Stanley [63]. While McMullen relied on a decomposition called a shelling, shown

to exist for all polytopes by Brugeser and Mani [13], Stanley’s generalization relied

on proving the Cohen-Macaulay property for the face ring of a simplicial sphere. The

generalized lower bound for the number of edges of a simplicial polytope was shown

by McMullen and Walkup [50]; however, the best lower bound for the number of edges

of a simplicial polytope was proven by Barnette [4]. A far-reaching generalization of

the Lower Bound Theorem was shown by Stanley [64] using toric varieties.

A central notion in the study of face numbers of simplicial complexes is the h-

vector. It is an equivalent re-encoding of the f -vector with smaller numbers which are

nonnegative for Cohen-Macaulay simplicial complexes. Several important, apparently

independent, quantities may be associated to the h-vector:

• coefficients in the numerator of the Hilbert-Poincaré series of the face ring,

• number of shelling components of a given type if the complex is shellable, and
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• invariants of toric varieties associated to rational simplicial polytopes.

Much less is known for cubical complexes. There is no known analogue of the Kruskal-

Katona Theorem. Even proving that a d-dimensional cubical complex has at least as

many vertices as a d-dimensional cube seemed surprisingly difficult until the recent

proof of Klee [43].

There is a cubical analogue of the face ring [34] yielding one h-vector which has

nothing to do with the enigmatic toric h-vector proposed by Stanley [64] when he

generalized the simplicial h-vector to lower Eulerian posets. The number of possible

shelling components of a given type is too large to cover with the face numbers. That

said, both of these cubical h-vectors are nonnegative for shellable complexes. In fact,

they weakly increase after adding each shelling component [35]. A combinatorical

model for the contribution of a shelling component to the toric h-vector was given by

Chan [15].

An enigmatic new h-vector was proposed by Adin [2]. It was shown by Hetyei [35]

that this h-vector is the smallest h-vector that increases on a shelling and the entries of

all other cubical h-vectors can be expressed as nonnegative combinations of the Adin

h-entries. A combinatorial interpretation of the coefficients connecting the h-vector

of the cubical face ring with the Adin h-entries was given by Haglund [33].

This dissertation fills in a blank in the picture described above and opens a new area

of research. This blank is a combinatorial interpretation of the coefficients connecting

the Adin h-entries and the entries in the toric h-vector. The new area is the study

of the structure of all shellings of a cubical complex. Virtually nothing has been
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done in this area at present, even for simplicial complexes. As a first step in this

new direction, this dissertation constructs an adjacent transposition Gray code for all

shelling types of a hypercube.

As witnessed by the latest addition to Knuth’s classic work [45], Gray codes are

widely used in computer science to enumerate all words, n-tuples, or permutations

of a given type. In particular, there is a significant amount of research devoted to

finding Gray codes for classes of permutations, where two permutations are considered

adjacent if they differ by an involution of some special kind. For a survey of some key

results, see Savage’s paper [57, Section 11]. The simplest and most elegant result in

this area is the Johnson-Trotter algorithm [41, 70], providing an adjacent transposition

Gray code for all permutations of a finite set.

The following chapters of this dissertation are structured as follows. Chapter 2

defines the main terms and properties used throughout the rest of the document.

This chapter starts by looking at various complexes, face numbers, and h-vectors.

Then it discusses types of shellings and cubical shelling component types. At the end

of the chapter, the other main structures used are defined and discussed: noncrossing

partitions, signed permutations, arc and circular diagrams, and Gray codes.

Chapter 3 finds the coefficients connecting the Adin h-entries and the entries in

the toric h-vector, and then gives a combinatorical interpretation of these coefficients.

The main result of this chapter is finding the toric contribution of cubical shelling

component types and the associated combinatorical interpretation.

Chapter 4 defines equivalence classes for the listings of all of the facets of the

hypercube and then represents each with a signed permutation. A Gray code is
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then found for the set of these listings using the arc diagrams associated to the signed

permutations, which are then encoded by words. To find a Gray code for the shellings

of the hypercube, all signed permutations which do not represent a shelling are deleted

from the first Gray code found. The resulting sublist is a Gray code for the shellings

of the n-cube. The main result of this chapter proves that this simple operation

actually produces a Gray code.

Finally, Chapter 5 outlines possible directions for future work based off the results

found in the first chapters.



CHAPTER 2: DEFINITION OF TERMS

A partially ordered set or poset P is a set that has a binary relation which is

antisymmetric, reflexive, and transitive [68]. The Möbius function µ of P is defined

as µ(x, x) = 1 for any x ∈ P and µ(x, y) = −
∑

x≤z<y µ(x, z) for all x < y in P .

Example 2.0.1: Let P be the chain N. Then for i, j ∈ P ,

µ(i, j) =


1, i = j

−1, i+ 1 = j

0, otherwise.

A poset is graded if it has a unique minimum element 0̂, a unique maximum element

1̂, and a rank function. A Eulerian poset is a finite graded poset with 0̂ and 1̂ where

µ(x, y) = (−1)`(x,y) for x ≤ y in the poset [68]. The function `(x, y) gives the length

of the interval (x, y). For example, the boolean algebra B3 (see Fig. 2) is an Eulerian

poset. In fact, Bn is Eulerian for all n ≥ 1. Alternatively, a poset is Eulerian if it

is graded and for any open interval (x, y) the number of elements at odd and even

ranks is the same.

Let V = {1, 2, . . . , ν} be the vertex set. Then an abstract complex, C, is a family

of subsets of V , called the faces of C, such that ∅, {1}, . . . , {ν} ∈ C, and for any two

faces F,G ∈ C, then F ∩ G ∈ C. A polytope is a convex hull of a finite set, where

1-dimensional faces are edges and maximal proper faces are called facets [32].
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A (finite) polyhedral complex P is a finite family of convex polytopes in d-dimensional

Euclidean space, called the faces of P, such that any (geometric) face of a polytope in

P also belongs to P, and the intersection of any two polytopes in P is a (geometric)

face of both and also contained in P. The dimension of P is the maximum dimension

of a polytope in P, and the complex is pure if any polytope in P is a (geometric) face

of a polytope in P of dim(P) [32].

For a polyhedral complex, define fi to be the number of i-dimensional faces. These

are called the face numbers and form the f -vector (f0, . . . , fd). Since dim ∅ = −1,

f−1 = 1 for any object. See Fig. 1 for an example.

Figure 1: The double-square where f0 = 6, f1 = 7, and f2 = 3

Let P̂ be an arbitrary Eulerian poset of rank n + 1 with 0̂ and 1̂. Then the

flag f -vector of the complex is defined to be fS = |{{0̂ < x1 < . . . < xk} ⊆ P :

{rank(x1), . . . , rank(xk)} = S}|. Let S be some subset of {1, . . . , rank(P )}. Then the

flag h-vector is defined by hS =
∑

T⊆S(−1)|S\T | · fT .

Example 2.0.2: Consider the Boolean algebra B3. See Fig. 2. Then the flag f - and

flag h-vectors are listed in Table 1.

2.1 Simplicial Complexes

A simplicial complex ∆ on some vertex set V is a collection of subsets of V such

that
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(i) if ν ∈ V , then {ν} ∈ ∆; and

(ii) if F ∈ ∆ and G ⊆ F , then G ∈ ∆.

The element F ∈ ∆ is called a face of ∆, and dimF = |F | − 1. Then dim ∆ =

maxF∈∆(dimF ) [31, 67].

{1, 2, 3}

{1} {2} {3}

{1, 3}{1, 2} {2, 3}

∅

Figure 2: B3

Table 1: The flag vectors for B3

flag f -vector flag h-vector
f∅ = 1 h∅ = 1
f1 = 3 h1 = 2
f2 = 3 h2 = 2
f12 = 6 h12 = 1

2.1.1 The Face Ring of a Simplicial Complex

Let ∆ be a (d − 1)-dimensional simplicial complex on an n element vertex set V

with f -vector (f−1, . . . , fd−1).

Let K be a field; then K[∆] = K[ν ∈ V ]/I∆ is defined to be the face ring of K[∆]

where I∆ =< xi1 . . . xir |i1 < . . . < ir, {xi1 , . . . , xir} /∈ ∆ > [67]. Then dimK[∆] =

1 + dim ∆; hence, dimK[∆] = d.
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Example 2.1.1: Consider ∆ given in Fig. 3. Then I∆ =< x1x4 > since x1x4 is not a

face in ∆. The face ring for this example is K[x1, x2, x3, x4]/ < x1x4 >.

x4x1

x2

x3

Figure 3: A simplicial complex with V = {x1, x2, x3, x4}

If V =
⊕

i∈N Vi is an N -graded vector space over field K where each subspace

Vi of vectors of degree n is finite dimensional, then the Hilbert-Poincaré series is∑
i∈N dimk(Vi) · ti. For example, the Hilbert-Poincaré series of K[x] is H(K[x], t) =∑
i∈N t

i = 1
1−t . Since the face ring is a graded ring, its Hilbert-Poincaré series is given

by H(∆, t) =
∑

i∈N t
i =

∑d
k=0 fk−1

(
t

1−t

)k
=

∑d
i=0 hit

i

(1−t)d . The h-vector of ∆ is defined

by this relation.

2.1.2 Shellability and Shellings

A shelling is a particular way of listing the facets of the boundary of a polytope.

The following general definition of a shelling was stated in [72, Definition 8.1].

Definition 2.1.2: A shelling of the boundary of a convex polytope P (i.e., C(∂P)) is

a linear ordering of the facets F1, . . . , Fm of P such that either dimP = 0, 1 or it

satisfies the following two conditions:

(i) the boundary complex of F1 has a shelling, and

(ii) for 2 ≤ i ≤ m, (F1 ∪ . . . ∪ Fi−1) ∩ Fi = G1 ∪ . . . ∪ Gj, where G1, . . . , Gk is a
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shelling of Fi and j ≤ k.

Shellings have a number of properties. For example, suppose F1, . . . , Fm is a

shelling. Then it can be proved by induction that Fm, . . . , F1 is also a shelling.

In a simplicial complex, facet Fi has type k if (F1 ∪ . . . ∪ Fi−1) ∩ Fi is the union of

k components. Each entry of the h-vector hk counts the number of type k shelling

components of ∆. It is easily seen that the h-vector of a shellable simplicial complex

is nonnegative.

Example 2.1.3: Consider the simplicial complex in Fig. 4 with shelling F1, F2, F3, F4.

Facet F1 has type 0, F2 and F3 have type 1, and F4 has type 2. Thus, h0 = 1, h1 = 2,

and h2 = 1.

F1

F3

F4

F2

Figure 4: A simplicial complex with shelling: F1, F2, F3, F4

The Upper Bound Conjecture (UBC) states that cyclic polytopes, which are formed

by the convex hull of points on the moment curve, maximize the f -vector of any

simplicial convex polytope [44, 63]. The UBC is equivalent to hi ≤
(
h−d+i−1

i

)
for

0 ≤ i ≤ d, where ∆ is the boundary complex of a d-dimensional simplicial convex

polytope with n vertices [62].

2.1.3 The Dehn-Sommerville Equations

The Dehn-Sommerville equations are a complete set of linear equations satisfied by

the face numbers of a simplicial sphere [32]. These equations reduce to hi = hd−i [64,
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Theorem 2.4].
d∑
j=0

fj−1

(
x

1− x

)j
=

∑d
i=0 hix

i

(1− x)d

can be transformed into
∑d

j=0 fj−1(1 − x)d−j =
∑d

i=0 hix
i. As a result of the Dehn-

Sommerville equations, this is equivalent to

d∑
j=0

fj−1x
j(1− x)d−j =

d∑
i=0

hix
i.

For the order complexes of Eulerian posets, the relations between the flag f - and

flag h-vectors (or really their entries) are a generalization of the Dehn-Sommerville

equations and are proved using the same techniques. The flag f - and flag h-vectors

can be used to compute the simplicial f - and h-vectors by hi =
∑
|S|=i hS and fj−1 =∑

|S|=j fS. It can also be shown that fj−1 =
∑j

i=0

(
d−i
j−i

)
hi.

2.2 Toric Polynomials of an Eulerian Poset

Barnette [4] proved the Lower Bound Conjecture (LBC) for all simplicial d-polytopes:

fk ≥
(
d

k

)
f0 −

(
d+ 1

k + 1

)
k for 1 ≤ k ≤ d− 2, and

fd−1 ≥ (d− 1)f0 − (d+ 1)(d− 2).

Define P = P̂\{1̂} where P̂ has rank d + 1. Stanley [64] generalized the LBC to

h0 ≤ h1 ≤ . . . ≤ hb d
2
c using toric varieties. Inspired by this model, he defined toric

polynomials for all (lower) Eulerian posets using two recursively defined polynomials

f(P, x) and g(P, x) as follows:

1. f(∅, x) = g(∅, x) = 1,

2. if P̂ has rank d + 1 ≥ 1 and f(P, x) = k0 + k1x + · · · + kdx
d, then g(P, x) =



11∑m
i=0(ki − ki−1)xi where m = brank(P )

2
c and k−1 = 0, and

3. if P̂ has rank d+ 1 ≥ 1, then f(P, x) =
∑

t∈P g([0̂, t), x)(x− 1)d−rank(t).

Set hi = kd−i for each i. Then the toric h polynomial is h(P, x) =
∑
hix

i. Also,

applying the Dehn-Sommerville equations to the toric polynomials yields h(P, x) =

f(P, x) for Eulerian posets.

A lower Eulerian poset is a finite graded poset with 0̂ where every interval [x, y] is

Eulerian. Stanley extended the definition of the toric f polynomial to lower Eulerian

posets. This was possible since the definition of the toric f polynomials uses half

open intervals [0̂, t) where t is any element in the poset and d is the length of the

longest chain in the poset.

The face poset of a polyhedral complex is a specific type of lower Eulerian poset.

Billera, Chan, and Liu investigated this particular case [9], and their adapted defini-

tion is given below.

Definition 2.2.1 (Billera-Chan-Liu): Let P be a d-dimensional polyhedral complex and

F any face of P. Then the toric f and g polynomials are defined by the following three

rules:

1. f(∅, x) = g(∅, x) = 1,

2. f(P , x) =
∑

F∈P g(∂F, x)(x− 1)d−dim(F ), and

3. g(P , x) =
∑m

i=0(ki − ki−1)xi where ki is the coefficient of f(P , x), k−1 = 0, and

m = bd+1
2
c.



12

Set h(P , x) =
∑

i hix
i = xd+1f(P , 1/x). The toric h polynomial is a degree d + 1

polynomial, and the toric h-vector is comprised of the coefficients of the toric h

polynomial.

If P is the face complex of a convex polytope and ∂P is its boundary complex,

then h(P, x) = g(∂P, x) [38, Corollary 1.1]. For example, the h polynomial of a d-

dimensional cube (see Section 2.3 for a detailed definition) is the g polynomial of

its boundary as noted in [9] and proved by Stanley [64]. Gessel [64] showed that

g(Ld, x) =
∑bd/2c

k=0
1

d−k+1

(
d
k

)(
2d−2k
d

)
(x−1)k, and Hetyei [38] showed this was equivalent

to
∑bd/2c

k=0 Cd−k
(
d−k
k

)
(x− 1)k.

Table 2: The g polynomials of the d-cube for small d

d g(Ld, x)

−1 1
0 1
1 1
2 1 + x
3 1 + 4x
4 1 + 11x+ 2x2

Example 2.2.2: Let P be the object illustrated in Fig. 1, and find the toric f polynomial

of P . Since Definition 2.2.1 sums over components of P , one must start by finding

the toric f and g polynomials of the components of P .

f(∅, x) = g(∅, x) = 1

f(B0, x) = g(B0, x) = 1

f(B1, x) = g(∅, x)(x− 1) + 2g(B0, x) = x+ 1

g(B1, x) = 1



13

f(B2, x) = g(∅, x)(x− 1)2 + 4g(B0, x)(x− 1) + 4g(B1, x) = x2 + 2x+ 1

and g(B2, x) = x+ 1. Putting these altogether yields the toric polynomial of P :

f(P, x) = g(∅, x)(x−1)3 +6g(B0, x)(x−1)2 +7g(B1, x)(x−1)+2g(B2, x) = x3 +3x2.

Then h(P , x) = 1 + 3x, which implies that h0 = 1 and h1 = 3.

2.2.1 The cd Index

For a graded poset P of rank n + 1, the ab-index ΨP (a, b) in the noncommuting

variables a and b is defined as ΨP (a, b) =
∑

S⊆[1,n] hS ·uS where [1, n]:={1, . . . , n} and

uS = u1 . . . un such that for each 1 ≤ i ≤ n,

ui =


a, i 6∈ S

b, i ∈ S.

For example, consider B3. Here S ⊆ [1, 2]. Then u∅ = a2, u1 = u{1} = ba, u2 =

u{2} = ab, u12 = u{1,2} = b2. This gives ΨB3(a, b) = a2 + 2ba+ 2ab+ b2 since the flag

h-vector is given by h∅ = 1 = h12 and h1 = 2 = h2.

If the flag f -vector is used instead of the flag h-vector, then the resulting index is

ΥP (a, b) =
∑

S fS · uS = ΨP (a+ b, b) also called the (a+ b)b-index.

The cd-index, denoted ΦP (c, d), of an Eulerian poset P can be calculated from the

ab-index using the following conversions: c = a + b and d = ab + ba. For example,

consider B3 again. Then ΨB3(a, b) = a2 + 2ba + 2ab + b2 = (a + b)2 + (ab + ba) =

c2 + d = ΦB3(c, d).

Being able to write the ab-index as a polynomial of c and d is equivalent to a

complete set of linear equations for the flag f -vector. Bayer and Billera [5] first found

the generalization of the Dehn-Sommerville equations to the flag vectors. Bayer and
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Klapper [8] then showed that these complicated equations are equivalent to simply

stating that the cd-index exists.

The ce-index of an Eulerian poset may also be computed from the ab-index by

the conversions: c = a + b and e = a − b. Stanley [65] noted that the cd-index is

equivalent to writing the ce-index as a polynomial of c and e2. The ce words are given

by vS = v1 . . . vn such that for each 1 ≤ i ≤ n,

vi =


c, i 6∈ S

e, i ∈ S.

Let LS be the coefficient of the ce words. Then the ce-index is given by
∑

S LS · vS.

LS is called the flag L-vector and is related to the flag f -vector by

LS = (−1)n−|S|
∑

T⊇[1,n]\S

(
−1

2

)|T |
fT and fS = 2|S|

∑
T⊆[1,n]\S

LT

which was shown by Bayer and Hetyei [7].

Definition 2.2.3: A permutation π ∈ Sn is an André Permutation if

(i) π has no double descents; i.e., πi−1 > πi > πi+1, and

(ii) πj−1 = max(πj−1, πj, πk−1, πk) and πk = min(πj−1, πj, πk−1, πk) where j < k in

[1, n], then there exists l such that j < l < k and πl < πk.

Definition 2.2.4: An André permutation π ∈ Sn is augmented if πn = n.

Hetyei [36] proved the following proposition.

Proposition 2.2.5 (Hetyei): A permutation π ∈ S is an André permutation if and only

if for m := π−1(1) the permutations π |[1,m] and π |[m+1,n] are André permutations.
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Letting Dn be the number of augmented André permutations, Foata and Strehl [28]

showed that Dn+1 = 1
2

∑n
i=0

(
n
i

)
DiDn−i. See Table 3.

Table 3: The André permutations for small n

n André permutations Dn

1 1 1
2 12 1
3 123, 213 2
4 1234, 1324, 2134, 2314, 3124 5
5 12345, 12435, 13245, 13425, 14235, 16

21345, 21435, 23145, 23415, 24135,
31245, 31425, 32415, 34125,
41235, 41325

The ab-variation monomial Vab(π) of an André permutation π ∈ Sn is a word

w1 . . . wn−1 such that

wi =


a, πi is an ascent

b, πi is a descent

for 1 ≤ i ≤ n − 1. The cd-variation monomial Vcd(π) of an André permutation

π ∈ Sn is a word that can be built from Vab(π) by replacing every ba with d and

replacing every remaining letter with c. Let An be the set of André permutations.

Then Vcd(An) =
∑

π∈An
Vcd(π) [36].

The cd-index of the Boolean algebra can be computed by ΦBn(c, d) = Vcd(An) [56].

Stanley [65] generalized this to André permutations of the second kind and Simsun

permutations.

Hetyei [39] defined the short toric polynomial t([0̂, 1̂), x) to be a shorter variant of

the toric f polynomial for an Eulerian poset [0̂, 1̂] of rank n+1, where t([0̂, 1̂), x) is the

polynomial formed by discarding all terms of degree less than 0 from xnf([0̂, 1̂), 1
x2

).
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2.3 Cubical Complexes

Define the standard n-dimensional hypercube or n-cube by [−1, 1]n ⊂ Rn. As ob-

served by Metropolis and Rota [51], each nonempty face of the standard hypercube

may be denoted by a vector (u1, . . . , un) ∈ {−1, ∗, 1}n, where ui = −1 or ui = 1

indicates that all points in the face have the ith coordinate equal to ui; whereas,

ui = ∗ indicates the ith coordinate of the points in the face range over the entire set

[−1, 1]. Using this notation, each facet of the boundary of the n-cube is of the form

(u1, . . . , un) such that exactly one ui belongs to {−1, 1}.

Thus, each facet may be represented by a single number. Namely, if ui = 1, then

that face is represented by i, and if ui = −1, then −i represents the facet. An

antipodal pair of a cubical complex is a pair of facets where there is a pair of parallel

(distinct) supporting hyperplanes of the complex such that one of the facets belongs

to one of the hyperplanes and the other facet belongs to the other hyperplane [32].

The facets i and −i are an antipodal pair.

For example, consider the 2-cube given by [−1, 1]2. Then 1 represents the side of

the square where x = 1 and y varies, and 2 is the side where y = 1 and x varies.

As a result of this notation, a permutation on {±1, . . . ,±n} represents a list of

the facets of the n-cube. This correspondence is a bijection. To continue the above

example, the permutation 1, 2,−2,−1 lists the order in which the facets of the square

are numbered. See Fig. 5.

A cubical complex is a polyhedral complex where each face is combinatorially equiv-

alent to a cube. Chan [15] gave the following alternative definition. A cubical d-
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F2

F1

F3

F4

Figure 5: The 2-cube with its facets listed in order: 1, 2,−2,−1

complex Q is a geometric realization of a finite graded poset P with 0̂ such that for

any t ∈ P the set Pt = {s ∈ P : 0̂ ≤ s < t} is isomorphic to Lr for some r. Lr is the

face poset of an r-dimensional cube. The boundary complex of a cubical polytope is

a pure cubical complex.

For cubical complexes, the triangulation, Adin, and toric h-vectors are defined.

These are all combinations of the f -vector, where here fi is the number of i-cubes.

2.3.1 The Face Ring of a Cubical Complex

The triangulation h-vector occurs in the numerator of the Hilbert-Poincaré series of

the face ring (or the Stanley ring) of a cubical complex. This is the cubical analogue

of the face ring of a simplicial complex. This h-vector also has the property that for

cubical polytopes it is the (simplicial) h-vector of the triangulation of the polytope’s

vertices [34].

2.3.2 Line Shellings

Bruggeser and Mani [13] showed that the boundary complex of any polytope is

shellable. They used line shellings to prove this. Bruggeser and Mani [13] defined

line shellings in the following way.
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Definition 2.3.1 (Bruggeser-Mani): Let P be a convex polytope. Choose a line L

through the interior of P which is not parallel to any facet of P and intersects the

affine hulls of different facets of P in distinct points. Let p be a point on L such that p

is not in the interior of P . Orient L such that p is in the positive direction relative to

P . Starting at the location where L leaves P move along L (towards p) in the positive

direction to ∞. Then return to P along L but from the opposite direction. Order the

facets of P as they become visible on the journey out to infinity and as they disappear

on the horizon on the way back to P . This gives the ordering F1, . . . , Fm of the facets

of P . This order is called a line shelling of P .

F6

F1

F5

F7

F3

F2
F4

Figure 6: A convex polytope with a line shelling

Example 2.3.2: Consider the convex polytope in Fig. 6. To find a line shelling of this

polytope, construct a straight line through the polytope such that the line is not parallel

to any side (facet). Extend each side of the polytope until it intersects the line. The

extensions of the first four facets will intersect the line in the positive direction. Then,
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as can be seen, the line shelling constructed from the given line is F1, . . . , F7.

Now consider the n-cube. From the definition of a line shelling, it is obvious that

the n-cube has a line shelling. Stanley [61] found that there are 2nn!2 distinct line

shellings of the n-cube. Let f(n) be the number of shellings of the n-cube. Then∑
n≥1 f(n)x

n

n!
= 1− 1∑

n≥0(2n)!x
n

n!

. For example, the 3-cube has a total of 480 shellings

and 288 line shellings. Develin [21] proved that every shelling of the n-cube can be

realized as a line shelling of some polytope that is combinatorially equivalently to the

n-cube. Also, when traveling along the constructed line, one will never see both the

facets denoted by k and −k [61]. This is because ±k is an antipodal pair, and the

constructed line is not parallel to either. However, since ±k are antipodal, exactly

one of these two facets will be visible from the positive direction of the line.

2.3.3 Cubical Shelling Components

Let P be a d-dimensional pure cubical complex. Suppose {F1, . . . , Fm} are the

facets of P . A shelling of P is a way of ordering the facets such that Fk∩(F1∪. . .∪Fk−1)

is a union of (d− 1)-faces homeomorphic to a ball or sphere for each 1 ≤ k ≤ m. The

facet Fk is a cubical shelling component whose type is (i, j) if this intersection is the

union of i antipodally unpaired (d − 1)-faces and j antipodally paired (d − 1)-faces.

This was stated by Chan [15]. For a proof, see [25, Lemma 3.3].

Lemma 2.3.3 (Ehrenborg-Hetyei): The ordered pair (i, j) is the type of a shelling

component in a shelling of a cubical d-complex if and only if one of the following

holds:

(i) i = 0 and j = d; or



20

(ii) 0 < i < d and 0 ≤ j ≤ d− i.

Furthermore, in case (i), the shelling component is homeomorphic to a (d−1)-sphere;

and in case (ii), the shelling component is homeomorphic to a (d− 1)-ball.

A direct result of this lemma is that the first shelling component has type (0, 0),

and for spheres, the last shelling component has type (0, d).

Let ci,j be the number of type (i, j) shelling components. In particular, c0,0=1. The

vector (. . . , ci,j, . . .) is called the c-vector of the shelling. The c-vector is not unique

to the cubical complex; instead, it depends on which shelling is chosen. However,

different shellings may have the same c-vector.

Example 2.3.4: The 3-cube may be written as [−1, 1]3 and has 10 shellings but only

two distinct c-vectors. Each side (a1, a2, a3) has exactly one position fixed as 1 or −1.

To denote these shellings, let k indicate the facet or side where ak = 1 and −k where

ak = −1. Then each shelling is represented by a permutation of {±1,±2,±3}. See

Table 4.

Table 4: Representative shellings, producing the two c-vectors of the 3-cube

Shelling 1: 1, 2, 3,−1,−2,−3

ci,j: c0,0 = 1 c1,0 = 1 c2,0 = 2 c1,1 = 1 c0,2 = 1
Shelling 2: 1, 2,−1, 3,−2,−3

ci,j: c0,0 = 1 c1,0 = 2 c2,0 = 0 c1,1 = 2 c0,2 = 1

2.3.4 The Adin h-Vector

Adin [2] called his h-vector the (long) cubical h-vector and defined it in terms of

a short cubical h-vector, denoted h
(c)
i and h

(sc)
i , respectively. Adin’s (long) cubical
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h-vector will be referred to as the cubical h-vector or simply as the Adin h-vector.

Let P be a d-dimensional cubical complex with f -vector (f0, . . . , fd). Then the Adin

h-vector is defined by the equations

h
(sc)
i =

i∑
j=0

(
d− j
d− i

)
(−1)i−j2jfj , for 0 ≤ i ≤ d and (1)

h
(sc)
i = h

(c)
i + h

(c)
i+1 for 0 ≤ i ≤ d (2)

with the initial and last values

h
(c)
0 = 2d,

h
(c)
1 = f0 − 2d, and

h
(c)
d+1 = (−2)dχ̃(P)

where χ̃(P) is the reduced Euler characteristic of P ; i.e., χ̃(P) =
∑d+1

j=0(−1)j−1fj−1.

Writing the f -vector in terms of the cubical h-vector yields

fj−1 = 21−j
j∑
i=1

(
d+ 1− i
d+ 1− j

)
[h

(c)
i + h

(c)
i−1] for 1 ≤ j ≤ d+ 1.

For example, the boundary complex of the n-dimensional cube has a cubical h-vector

of h
(c)
0 = · · · = h

(c)
n = 2n−1.

For ease of computation, normalize the Adin h-vector by dividing each h
(c)
i by 2d.

Then drop the superscript (c), resulting in h0 = 1 and the relation

fj = 2d−j
j∑
i=0

(
d− i
d− j

)
[hi+1 + hi] for 0 ≤ j ≤ d. (3)

Example 2.3.5: Consider the cubical complex shown in Fig. 1. Then the Adin h-vector

is h0 = 1, h1 = 1
2
, h2 = 0, and h3 = 1.
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Hetyei [35, Theorem 1] showed that any invariant I of d-dimensional cubical com-

plexes, which can be expressed as a linear combination of the face numbers (or entries

of the f -vector fi), may be rewritten as a nonnegative linear combination of the nor-

malized cubical h-vector if and only if the invariant is nonnegative when applied to

the d-cube and adding a facet of type (1, j) or (0, d) in any shelling will not decrease

I.

Due to this result, other h-vectors such as the toric h-vector [35], and the trian-

gulation h-vector [33], may be expressed as nonnegative linear combinations of the

cubical h-vector. Hence, the cubical h-vector is the smallest h-vector. In Chapter 3,

the toric h polynomial is written in terms of the Adin h-vector and several properties

of the resulting coefficients are examined.

2.3.5 Adin and the cd Index

Using the same notation as Ehrenborg and Hetyei [25], let Cn be the cubical lattice

of rank n. Then Bn is the face lattice of the (n− 1)-dimensional simplex ∆n−1 while

Cn is the face lattice of the (n− 1)-cube. Define Un := ΦBn(c, d) and Vn := ΦCn(c, d).

If n = 1, U1 = 1 = V1.

Definition 2.3.6 (Ehrenborg-Hetyei): Given a list of the facets F1, . . . , Fk of the bound-

ary of the simplex ∆n−1 where k ≤ n − 1, then Bn,k denotes the semisuspension

of the poset [0̂, F1] ∪ . . . ∪ [0̂, Fk] ∪ {1̂} ⊂ Bn, and the cd-index of Bn,k is called

Un,k. Similarly, given a list of the facets F1, . . . , Fi+2j of the boundary of the (n− 1)-

cube of type (i, j) where i > 0, then Cn,i,j denotes the semisuspension of the poset

[0̂, F1] ∪ . . . ∪ [0̂, Fi+2j] ∪ {1̂} ⊂ Cn, and the cd-index of Cn,i,j is called Vn,i,j.
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Proposition 2.3.7 (Ehrenborg-Hetyei): Let C be an (n − 1)-dimensional shellable cu-

bical sphere which has a shelling with c-vector (. . . , ci,j, . . .). Then the cd-index of the

face poset of C with 1̂ attached is given by

Vn+1,1,0 +
∑
i>0,j

ci,j · (Vn+1,i+1,j − Vn+1,i,j).

They also found that when P is an Eulerian cubical poset of rank n + 1 there are

several additional results that are known about the cubical h-vector.

Definition 2.3.8 (Ehrenborg-Hetyei): Let P be an Eulerian cubical poset of rank n+1,

with f -vector (f−1, f0, . . . , fn). The cubical h-vector can be defined with the following

polynomial:

n∑
l=0

hl · xl =
1 + xn+1 +

∑n−1
k=0 fk · xk+1 · ((1− x)/2)n−1−k

1 + x
.

Theorem 2.3.9 (Ehrenborg-Hetyei): Let P be an Eulerian cubical poset of rank n+ 1,

with h-vector (h0, . . . , hn). Then

ΦP (c, d) = h0 · Vn+1,1,0 +
n−1∑
l=1

hl · (Vn+1,1,l − Vn+1,1,l−1).

Following the notation in [39], define tn(x) =
∑bn

2
c

k=0 x
n−2k for n ≥ 0 where t−1(x) =

0. Then obviously, xn = tn(x)− tn−2(x) for n ≥ 2 and xn = tn(x) for n = 0, 1. Define

the functions C : Q[x]→ Q[x] and D : Q[x]→ Q[x] to be C(tn(x)) = tn+1(x)−tn−1(x)

and D(tn(x)) = δn,0 [39, Corollary 5.3] where δn,0 is the Kronecker delta function; i.e.,

δn,0 equals one if n = 0 and zero otherwise.

Reversing the cd-index, denoted by a superscript of rev, means every c is replaced

with C and d with D. Next reverse the order of the C’s and D’s in each term. Since Bn
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is self-dual, Un = U rev
n . To calculate U rev

n (1) and V rev
n (1), let x = 1 in each function

C and D. Using tn(x), it is easy to see that U rev
n (1) = tn−1(x).

One can write Un and Vn in terms of the short toric polynomial. Using the fact

that U1 = 1 and the formula Un+2 = c · Un+1 +
∑n

i=1

(
n
i

)
Ui · d · Un+1−i, all of the Un

can be generated. See Table 5.

Table 5: Un for small n

n Un U rev
n U rev

n (1)

1 1 1 1
2 c C x
3 c2 + d C2 +D x2 + 1
4 c3 + 2cd+ 2dc C3 + 2DC + 2CD x3 + x
5 c4 + 3c2d+ 5cdc+ 3dc2 + 4d2 C4 + 3DC2 + 5CDC + 3C2D + 4D2 x4 + x2 + 1

Using V1 = 1 and Vn+2 = Vn+1 · c+
∑n−1

i=0

(
n
i

)
2n−iVi+1 ·d ·Un−i [25], all of the Vn can

be generated. See Table 6. V rev
n (1) =

∑bn−1
2
c

k=0 rn−1−2k · tn−1−2k(x) where rn−1−2k is the

coefficient of the polynomials tn−1−2k(x). Notice these coefficients rn−1−2k are equal to

[xk]g(Ln−1, x). This is consistent with [39, Theorem 5.4]. See Table 7. Using the for-

mula in [39, Theorem 6.6], V rev
n+1(1) = t(Ln, x). This is because for the n-cube hi =

(
n
i

)
.

Table 6: Vn for small n

n Vn V rev
n V rev

n (1)

1 1 1 1
2 c C x
3 c2 + 2d C2 + 2D x2 + 2
4 c3 + 4cd+ 6dc C3 + 4DC + 6CD x3 + 5x
5 c4 + 6c2d+ 16cdc C4 + 6DC2 + 16CDC x4 + 12x2 + 14

+14dc2 + 20d2 +14C2D + 20D2
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Table 7: V rev
n (1) in terms of the short toric polynomials

n V rev
n (1) tk(x) t(Ln, x)

1 1 t0(x) t(L1, x)
2 x t1(x) t(L2, x)
3 x2 + 2 t2(x) + t0(x) t(L3, x)
4 x3 + 5x t3(x) + 4t1(x) t(L4, x)
5 x4 + 12x2 + 14 t4(x) + 11t2(x) + 2t0(x) t(L5, x)

2.3.6 The Toric Contribution of ci,j

Let P be a d-dimensional cubical complex. Consider a shelling F1, . . . , Fm of P ,

and let (i, j) be the type of the tth facet in the shelling. According to Adin,
∑

k hkx
k =∑

t ∆th(x), where ∆th(x) is the contribution from Ft. Adin [2, Equation (33)] defines

this contribution as

∆th(x) =


(1

2
)ixj+1(1 + x)i−1 if i ≥ 1,

1 if i = 0 and j = 0

xd+1 if i = 0 and j = d.

When i ≥ 1, Lemma 2.3.3 implies that 1 ≤ i ≤ d− j and 0 ≤ j ≤ d− 1. Thus,

∑
k

hkx
k = 1 + c0,d · xd+1 +

d−1∑
j=0

d−j∑
i=1

ci,j

(
1

2

)i
xj+1(1 + x)i−1

= 1 + c0,d · xd+1 +
d−1∑
j=0

d−j∑
i=1

ci,j

(
1

2

)i
xj+1

i−1∑
m=0

(
i− 1

m

)
xm.

Set k = m+ j + 1, and reorder the summations to get

∑
k

hkx
k = 1 + c0,d · xd+1 +

d∑
k=1

k−1∑
j=0

d−j∑
i=k−j

ci,j

(
1

2

)i(
i− 1

k − j − 1

)
xk.

This is equivalent to
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hk =
k−1∑
j=0

d−j∑
i=k−j

(
1

2

)i(
i− 1

k − 1− j

)
ci,j for 1 ≤ k ≤ d. (4)

Now consider the f polynomial of P . According to Ehrenborg and Hetyei [25],∑d
k=0 fk ·xk =

∑
i,j ci,j · (x+ 2)d−i−j · (x+ 1)ixj. Hence, the contribution of ci,j to the

f polynomial is (x+ 2)d−i−j · (x+ 1)ixj. Call this c̃i,j(x).

Consider the following basis for the polynomials c̃i,j(x): c̃0,0(x), c̃0,d(x), and c̃1,j(x)

for 0 ≤ j ≤ d − 1. It is easily seen from the definition of c̃i,j(x) that c̃i,j(x) =

1
2

[c̃i−1,j+1(x) + c̃i−1,j(x)]. Then for i > 0, every c̃i,j(x) can be written in terms of

c̃1,j(x), namely c̃i,j(x) =
(

1
2

)i−1∑i−1
k=0

(
i−1
k

)
c̃1,j+k(x). Hence the f polynomial can be

written as

d∑
k=0

fk · xk = c̃0,0(x) + c0,d · c̃0,d(x) +
d−1∑
j=0

d−j∑
i=1

ci,j · c̃i,j(x)

= c̃0,0(x) + c0,d · c̃0,d(x) +
d−1∑
j=0

d−j∑
i=1

ci,j ·
(

1

2

)i−1 i−1∑
k=0

(
i− 1

k

)
c̃1,j+k(x)

= c̃0,0(x) + c0,d · c̃0,d(x) +
d−1∑
k=0

c̃1,k(x)
k∑
j=0

d−j∑
i=k+1−j

ci,j

(
1

2

)i−1(
i− 1

k − j

)
.

Let ad,k be the coefficient of c̃1,k. Then ad,k =
∑k

j=0

∑d−j
i=k+1−j ci,j

(
1
2

)i−1 (i−1
k−j

)
.

Comparing this to the Adin h-vector found above yields ad,k = 2 · hk+1, which should

not be surprising since this is an explicit case of [35, Theorem 1] and was commented

on in the proof of that theorem.

2.4 Noncrossing Partitions

Suppose π is a partition of [1, d] := {1, . . . , d}. If whenever 1 ≤ a < b < c < e ≤ d

where a and c are in the same block of the partition and b and e are also in one block
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implies that all four elements must be in the same block of π, the partition π is called

noncrossing. Let NC(d) denote the set of all noncrossing partitions of [1, d]. Then it

is known that |NC(d)| = Cd = 1
d+1

(
2d
d

)
. See [60] or [69].

There are several ways to represent (noncrossing) partitions on [1, d] visually. The

two representations used here are linear and circular. To create a linear representation

or an arc diagram of a noncrossing partition, see Section 2.5.

To create a circular representation (see Fig. 7), place d points around a circle. Label

the points 1 through d, increasing clockwise. Connect any two (cyclically) consecu-

tive elements in a block of the partition with a chord. In the circular representation,

nonsingleton blocks are chords or polygons.

6 1

2

34

5

Figure 7: The circular representation of π = (136)(2)(4)(5)

A partition of [1, d] is noncrossing if and only if no chord crosses another in the

diagram. For example, let π = (1)(24)(356). This partition is not noncrossing since

(24) and (356) are in separate blocks. The 3 and 4 cause the noncrossing condition

to fail and, in the circular representation, cause the chord representing (24) to cross
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1

2

34

5

6

Figure 8: The circular representation of π = (1)(24)(356)

the triangle representing (356). See Fig. 8.

In a noncrossing partition, consider three special types of elements. The first are

singleton elements. In a nonsingleton block, call the largest element of the block the

last element. Obviously, the number of last elements in a partition is exactly the

number of its nonsingleton blocks. Lastly, suppose both k and k + 1 are in the same

block of a partition; in this case, call the element k an antisingleton element, and call

the element d an antisingleton if and only if both d and 1 are in the same block of the

partition. This naming convention follows from the duality of the lattice of NC(d).

See Lemma 2.4.6 and its proof for more details.

Let block(π) equal the number of nonsingleton blocks in the partition π and sing(π)

equal the number of singleton elements in π. Then the total number of components

of the partition is |π| = block(π) + sing(π). For example, if π = (136)(2)(4)(5), then

block(π) = 1, sing(π) = 3, and |π| = 4.
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2.4.1 The Kreweras Complement and the Simion-Ullman Involution

Kreweras [46] showed that NC(d) forms a lattice ordered by refinement. Suppose

π, σ ∈ NC(d). Then π ≤ σ under refinement if every block of π is contained in a

block of σ. For example, (12)(347)(56) ≤ (1256)(347). The rank function of NC(d) is

rank(π) = d− |π|. Noncrossing partitions are also related to the Narayana numbers.

For 1 ≤ k ≤ d, NCd(k) := |{π ∈ NC(d) : rank(π) = d − k}| = 1
d

(
d
k

)(
d

k−1

)
. This is

consistent with |NC(d)| = Cd since

|NC(d)| =
d∑

k=1

NCd(k) =
d∑

k=1

1

d

(
d

k

)(
d

k − 1

)
=

1

d

d∑
k=1

(
d

k

)(
d

d+ 1− k

)

=
1

d

(
2d

d+ 1

)
=

1

d+ 1

(
2d

d

)
= Cd.

Kreweras used what later became know as the Kreweras complement K(π) to show

that the lattice of NC(d) is self-dual. See Fig. 9 for the lattice when d = 4. K(π)

has the important property that for π ∈ NC(d), |π|+ |K(π)| = d+ 1 [46].

(1)(2)(3)(4)

(123)(4) (124)(3) (134)(2) (1)(234) (12)(34) (14)(23)

(12)(3)(4) (13)(2)(4) (14)(2)(3) (1)(23)(4) (1)(24)(3) (1)(2)(34)

(1234)

Figure 9: The lattice of NC(4)
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Given some π ∈ NC(d), define its Kreweras Complement as follows. Consider the

circular representation of π. On the same circle, label the midpoints between each

existing point 1̄ through d̄, where ī is the midpoint of the arc determined by (i, i+ 1).

K(π) is the coarsest noncrossing partition of [1̄, d̄] whose chords do not cross any

chord of π [46, 53]. See Fig. 10.

1

2

3

5

6

4

4̄

5̄
1̄

3̄

6̄

2̄

Figure 10: The circular representation of π = (136)(2)(4)(5) with K(π) =
(12)(345)(6)

Set τ = (12 . . . d) to be the maximum element of NC(d) and ρ = (1)(2) . . . (d) to be

the minimum element of NC(d). McCammond [48] showed the following proposition.

Proposition 2.4.1 (McCammond): If ρ < σ < τ in NC(d) and (α1, . . . , αn) is a

sequence of transpositions labeling a saturated chain from ρ to σ, then there is a

unique element σ′ in NC(d) and a saturated chain from σ′ to τ with the exact same

sequence of labels.

Similarly, if (β1, . . . , βn) is a sequence of transpositions labeling a saturated chain

from σ to τ , then there is a unique element σ′′ in NC(d) and a saturated chain from

ρ to σ′′ with the exact same sequence of labels.
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In Proposition 2.4.1, σ′′ will be K(σ) and σ′ will be K(σ) adjusted such that one

is added to each element of K(σ) in circular order. If the original element in K(π) is

d, then the associated element in σ′ is 1.

Example 2.4.2: Let σ = (1)(235)(4)(6). Then K(σ) = (156)(2)(34), and there is

a sequence (α1, α2) = ((25), (23)). See Fig. 11. Illustrating the second half of the

proposition, there is another sequence (β1, β2, β3) = ((56), (34), (16)). See Fig. 12.

(25)

(1)(25)(3)(4)(6)

ρ = (1)(2)(3)(4)(5)(6)

σ = (1)(235)(4)(6) (123456) = τ

(12456)(3)

(126)(3)(45) = σ′

(23)

(25)

(23)

Figure 11: Applying the transpositions (α1, α2) = ((25), (23))

While the Kreweras Complement is an order-reversing isomorphism ofNC(d) which

is quite useful, it is not an involution [53]. For example, if π = (136)(2)(4)(5), then

K(K(π)) = (1)(256)(3)(4). Simion and Ullman [59] gave an alternative proof for the

self duality of NC(d), which used the circular representation of partitions, and the

involution α : NC(d) → NC(d) that they defined. This involution is the Kreweras

Complement relabeled, and it will be used throughout the rest of this dissertation

instead of K(π).

The involution α(π) may be defined in the following way. Take any π ∈ NC(d),

and represent it circularly. Label the midpoint of the arc determined by (d− 1, d) as
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(1)(2)(3)(4)(5)(6) = ρ

τ = (123456)

(16)

(1)(23456)

(34)

(1)(2356)(4)

(56)

σ = (1)(235)(4)(6)

(156)(2)(34) = K(σ)

(16)

(1)(2)(34)(56)

(34)

(56)

(1)(2)(3)(4)(56)

Figure 12: Applying the transpositions (β1, β2, β3) = ((56), (34), (16))

1′. Subdivide each arc (i, i + 1) by placing a new point between the existing points

on the circle. Label this new point (d− i)′. 1′ through d′ increase counterclockwise,

and d′ is the midpoint of the arc (d, 1). Then α(π) can be represented on the same

circle as π by the coarsest noncrossing partition on [1′, d′], which does not intersect

any of the chords of π. In Fig. 13, π is represented by the solid lines and points and

α(π) by the dashed lines and open points.

For the rest of this dissertation, k will be used to represent k′ as an element of α(π)

unless it is unclear in the context as to whether the element k is in α(π) or π.

The involution α may also be defined without using the construction above [59].

Pick any π ∈ NC(d), and let k = |π|. Define α(π) to be the noncrossing partition

of [1, d] such that the following condition holds. Let i < j. Then i and j are in the

same block of α(π) if and only if no block of π contains elements l < k which have
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1

2

34

5

6

6′

5′

4′

3′

2′

1′

Figure 13: The circular representation of π = (136)(2)(4)(5) and α(π) = (123)(45)(6)

the property i ≤ d − k < j ≤ d − l or the property d − k < i ≤ d − l < j. This is

equivalent to saying that no chord of α(π) may cross a chord of π.

Proposition 2.4.1 can be rewritten in terms of α. Since α is an involution, both σ′

and σ′′ will be become α. Define an involution φ : (a, b) → (c, e) where a < b are

elements of [1, d]. If b 6= d, set c = d− b and e = d− a. If b = d, then c = d− a and

e = d.

Proposition 2.4.3: If ρ < π < τ in NC(d) and (β1, . . . , βn) is a sequence of transpo-

sitions labeling a saturated chain from ρ to π where βn . . . β1π = ρ, then the sequence

(φ(β1), . . . , φ(βn)) of transpositions labels a saturated chain from α(π) to τ where

τ = φ(βn) . . . φ(β1)α(π).

Example 2.4.4: Suppose π = (134)(2)(56); then α(π) = (1)(26)(3)(45). There is

a sequence (β1, β2) = ((23), (25)) such that (25)(23)π = ρ. Then (φ(β1), φ(β2)) =

((34), (14)) where (14)(34)α(π) = τ .
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Table 8: The prefixes βi and the corresponding dual prefixes φ(βi)

prefix dual prefix

βi φ(βi)
(23) (34)
(25) (14)
(35) (13)

(1)(2)(35)(4)(6)(1)(25)(3)(4)(6)

π = (1)(235)(4)(6)

ρ = (1)(2)(3)(4)(5)(6)

(25)(35)
(23)

(35)
(25)

(23)

(1)(23)(4)(5)(6)

(a) The sublattice from ρ to π

(156)(234)

(13)
(14)

(14)
(34)

(13)

(34)

(1456)(23) (12356)(4)

τ = (123456)

α(π) = (156)(23)(4)

(b) The sublattice from α(π) to τ

Figure 14: Multiple options for (β1, . . . , βn)

The sequence (β1, . . . , βn) is not unique. For example, see Fig. 14 where the prefix

labels along the paths in Fig. 14(a) correspond to the dual prefix labels along the

paths in Fig. 14(b) by way of the involution φ. See Table 8.

In Simion and Ullman’s [59] proof of the self-duality of the lattice of NC(d), the

involution α was defined such that if π ∈ NC(d) has k blocks (either singleton or

nonsingleton blocks) then α(π) has d+1−k blocks. Lemma 2.4.5 follows immediately.

Lemma 2.4.5: Let π ∈ NC(d) for some d > 0. Then |π|+ |α(π)| = d+ 1.

Lemma 2.4.6: Let π ∈ NC(d). Then k ∈ [1, d− 1] is an antisingleton element of π if

and only if d− k is a singleton element of α(π).

Proof. If k is an antisingleton of π, k+1 must be in the same block of π as k. Thus, in

the circular representation of π, k and k+ 1 are connected by a chord. By definition,
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α(π) is the coarsest noncrossing partition on [1, d] whose chords do not cross any

chords of π. Since d − k is the element of α(π) that is located between k and k + 1

of π, d− k must be a singleton of α(π). The converse is proved similarly.

Remark 2.4.7: Following the same method as in the proof of Lemma 2.4.6, one can

show that d is a singleton element of α(π) if and only if d an antisingleton element

of π.

For more information on noncrossing partitions and their applications, see [16],

[58], [68], and [66].

2.4.2 Special Elements for Noncrossing Partitions

Definition 2.4.9 defines a weight function in terms of a family S of i pairwise

disjoint subsets of [1, d] such that each element in S is a set of consecutive integers

of [1, d] in circular order. An element of S is denoted by [k, l] := {k, . . . , l} and

is called an interval of S. In particular, if k = l, the interval consists of a single

element. If 1 ≤ k < l ≤ d, then [k, l] is a set of increasing consecutive integers. Call

[k, l] = {k, . . . , d, 1, . . . , l} a wrapped interval when k > l. Notice the last element

of a wrapped interval, namely l, will not be the largest element of the interval. Let

[1, d]∗ denote the special wrapped interval consisting of all of the elements 1 through

d; whereas, [1, d] is the non-wrapped interval.

The family of sets S is defined in the following way. Let S = {[k1, l1], . . . , [ki, li]}

where 1 ≤ k1 ≤ l1 < k2 ≤ l2 < . . . < ki ≤ d and either ki ≤ li ≤ d or 1 ≤ li < k1. If

1 ≤ li < k1, then the last interval in S is wrapped. Also, only the last interval may

be wrapped. Define j to be the number of elements of [1, d] that are not contained
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in any interval of S.

S may be represented visually using the same circular representation that was

defined earlier for partitions. The intervals of S correspond to sets of consecutive

elements; see Fig. 15. Let B be the union of the regions bounded by the arcs corre-

sponding to the intervals of S. Call the remaining region A. In other words, for each

[k, l] ∈ S, draw an arc such that the elements of [k, l] are on one side of the arc and

all other elements of [1, d] are on the opposite side of the arc.

A

B

B

B

1

2

34

5

6

Figure 15: The circular representation of S = {[2, 3], [4], [6, 1]} and [1, 6]− S = {[5]}

Define [1, d] − S to be the set of intervals determined by the longest sequence of

consecutive elements in [1, d] located between the intervals of S in circular order. If S

is defined as above, then [1, d]−S = {[l1 +1, k2−1], [l2 +1, k3−1], . . . , [li+1, k1−1]},

where [ln+1, kn+1−1] exists for 1 ≤ n < i if and only if ln < kn+1−1, and [li+1, k1−1]

exists if and only if li + 1 6≡ k1 in circular order. Also, if li = d, then li + 1 ≡ 1, and

if k1 = 1, then k1 − 1 ≡ d. If d ≤ li < k1 − 1, then [li + 1, k1 − 1] is the first interval

of [1, d]−S in the same sense as in the ordering of the intervals of S; otherwise, it is
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considered the last interval in the set [1, d]− S.

Notice that [1, d]−S has the same number of intervals as S exactly when, in circular

order, each interval of S is directly followed by an element of [1, d] that is not in any

interval of S; i.e., ln + 1 < kn+1 for n ≥ 1. Otherwise, [1, d] − S will contain fewer

intervals than S. See Fig. 15. How j is defined implies that [1, d] − S will always

contain a total of j elements from [1, d] in its intervals.

The set S consists of i intervals, which contain a total of d − j elements. Define

a related family of intervals S ′ = {[d − ki + 1, d − li−1], . . . , [d − k2 + 1, d − l1], [d −

k1 + 1, d − li]}. Since k1 ≤ l1 < k2 ≤ l2 < . . . < ki, then d − ki + 1 ≤ d − li−1 <

d − ki−1 + 1 ≤ d − li−2 < . . . < d − k1 + 1. S ′ contains i pairwise disjoint intervals

and a total of i + j elements. See below for a justification. In particular, if S = ∅,

then S ′ = {[1, d]∗} and vice versa.

Let S be as above. Then S could also be defined as a subset of {1, 1′, . . . , d, d′},

which consists of strings of consecutive elements where the first and last element of

each string must be from {1, 2, . . . , d}. Considered in this light, S ′ is exactly the

complement of S. Each string of elements in S ′ will begin and end with an element

from {1′, 2′, . . . , d′}.

Define β to be the operation that takes a given S and transforms it into the

associated S ′; i.e., β(S) = S ′. Then β is an involution since given S and S ′ as defined

above β(S ′) = {[d− (d− k1 + 1) + 1, d− (d− l1)], . . . , [d− (d− ki−1 + 1) + 1, d− (d−

li−1)], [d− (d− ki + 1) + 1, d− (d− li)]} = S.

S and S ′ may be represented visually on the same circle. Place [1, d] and [1′, d′]

on a circle as before with π and α(π). For each [kn, ln] ∈ S, insert an arc, whose
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6

A

B

B

B

1

2

34

5

6′

5′

4′

3′

2′

1′

Figure 16: The circular representation of S = {[2, 3], [4], [6, 1]} with S ′ =
{[1, 2], [3], [5]}

endpoints are adjacent to kn and ln, in the way described above. Call the union of

the regions determined by these arcs B. Let the remaining region be A. S ′ is the set

of intervals determined by the longest list of consecutive elements of [1′, d′] in region

A, which do not skip over any region of B. See Fig. 16.

Obviously, S ′ consists of i intervals. To see that S ′ contains a total of i+j elements,

consider [1, d] − S ′ where each interval in this set corresponds to the elements of

[1′, d′] contained in a single arc of region B. For 1 ≤ n ≤ i, the region determined by

[kn, ln] ∈ S is associated to [d− ln + 1, d− kn] ∈ [1, d]− S ′ when kn < ln. If kn = ln,

there is no associated interval in [1, d] − S ′. If ki ≤ li ≤ d, then [d − li + 1, d − ki]

becomes the first interval in [1, d]−S ′ in the same sense as in the order of the intervals

of S; otherwise, it is the last.

Since the intervals in [1, d] − S ′ correspond to the elements of [1′, d′] within the

region B, these intervals have exactly one less element than their associated intervals

in S. Because there is a total of d− j elements contained in the intervals of S, there
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must be a total of d−j−i elements in the intervals of [1, d]−S ′. Thus, there is a total

of i+ j elements in the intervals of S ′. For example, in Fig. 16, [1, 6]−S ′ = {[4], [6]}.

Lemma 2.4.8: Let S be as defined above and S 6= {[1, d]∗} or ∅. If li 6= d, then exactly

one interval of S and S ′ is wrapped. If li = d, then no interval of S or S ′ is wrapped.

Proof. By the numbering convention of the intervals of S, only the last interval [ki, li]

may be wrapped. This is also true for S ′. Let li 6= d. Suppose [ki, li] is not wrapped.

Then 1 ≤ k1 < li < d, which implies that 1 ≤ d−li < d−k1+1 ≤ d. This is equivalent

to the last interval of S ′ [d− k1 + 1, d− li] being wrapped. These implications are all

reversible; hence, [ki, li] is not wrapped if and only if [d − k1 + 1, d − li] is wrapped.

The result that [ki, li] is wrapped if and only if [d − k1 + 1, d − li] is not wrapped is

proved similarly.

If li = d, then the last interval of S is [ki, d], and the last interval of S ′ is [d−k1+1, d].

Neither of which is wrapped.

If S = {[1, d]∗}, then S ′ = ∅. Obviously, in this situation, exactly one of the inter-

vals of S and S ′ is wrapped. The situation is similar when S = ∅ and S ′ = {[1, d]∗}.

This lemma can also be proved using the properties of the circular representations of

S and S ′. See below for this alternative proof.

alternative proof. By the definition of S, only the last interval [ki, li] may be wrapped.

This is also true of S ′. Let li 6= d. Suppose [ki, li] is wrapped. This only occurs if,

in the circular representation, d′ is within the arc determined by [ki, li] since {d, 1} ⊆

[ki, li]. Hence, d′ is in [1, d]−S ′. This is equivalent to no interval in S ′ being wrapped.

Note, in the circular notation, li 6= d is equivalent to d − li 6≡ d. Thus, each of



40

the above implications are reversible; hence, [ki, li] ∈ S is wrapped if and only if

[d− k1 + 1, d− li] ∈ S ′ is not wrapped. The result that [ki, li] is not wrapped if and

only if [d− k1 + 1, d− li] is wrapped is proved similarly.

If li = d, then the last interval of S is [ki, d], which is not wrapped. Then the last

interval of S ′ is [d− k1 + 1, d] which is also not wrapped.

Given some partition of [1, d] and an S as defined above, a singleton element or

a last element is called in S if the element is contained in some interval of S. An

antisingleton element k is called in S when the pair {k, k+ 1} is contained in a single

interval of S. Also, if d is an antisingleton element of the partition, it is considered in

S if and only if the last interval of S is wrapped. Note, the only difference between

the intervals [1, d]∗ and [1, d] is that d may be an antisingleton in [1, d]∗ but not in

[1, d].

2.4.3 Weight Functions

Definition 2.4.9: Let π ∈ NC(d) and S as defined above. Define the weight function

wtS(π) as follows. Singleton and antisingleton elements have a weight of x if they are

in S and a weight of 1 otherwise. Nonsingleton blocks have a weight of x.

Example 2.4.10: Let π = (136)(2)(4)(5) and S = {[2, 3], [4], [6, 1]}. Then α(π) =

(123)(45)(6) and S ′ = {[1, 2], [3], [5]}. See Fig. 17. Hence, using the definition of the

weight function, wtS(π) = x4 and wtS′(α(π)) = x3.

If S consists of a single interval, namely S = {[k, d]} for some k, the following

abbreviated notation for the weight function is used.

Definition 2.4.11: Let π ∈ NC(d). If 1 ≤ k ≤ d, define wtk(π) = wt{[k,d]}(π). Define
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Figure 17: The circular representation of π = (136)(2)(4)(5) and S = {[2, 3], [4], [6, 1]}
with wtS(π) = x4 and wtS′(α(π)) = x3

wt0(π) = wt{[1,d]∗}(π) and wtd+1(π) = wt∅(π).

A direct consequence of this definition is that wtd+1(π) = xblock(π) and wt0(π) =

x|π|+sing(α(π)). By Lemma 2.4.5, the second weight function may be rewritten as

w0(π) = xd+1−block(α(π)).

Using [38, Lemma 5.4], given below,
∑

π∈NC(d) wd+1(π) = g(Ld, x).

Lemma 2.4.12 (Hetyei): [xk]g(Ld, x) is the number of noncrossing partitions on [1, d]

with exactly k nonsingleton blocks.

Let singS(π) denote the number of singleton elements of π in S. By Lemma 2.4.6,

sing[1,d]−S′(α(π)) is the number of antisingletons of π in S. Thus, Definition 2.4.9

yields the explicit formula

wtS(π) = xblock(π)+singS(π)+sing[1,d]−S′ (α(π)), (5)

and for 1 ≤ k ≤ d, Definition 2.4.11 gives the formula
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wtk(π) = xblock(π)+sing{[k,d]}(π)+sing{[1,d−k]}(α(π)). (6)

2.5 Arc Diagrams

To create a linear representation, or an arc diagram, of a partition, place d consecu-

tive points in a horizontal row. Label the points 1 through d, and connect consecutive

elements in a block of the partition with an arc. If there are k elements in the block,

there will be k − 1 linked arcs representing the block in the diagram. A singleton

block will have no arcs. Fig. 18 shows the arc diagram of a partition of [1, 6] which is

not noncrossing.

1 2 3 4 5 6

Figure 18: The arc diagram of π = (1)(24)(356)

Now, suppose π is a noncrossing partition of [1, d] as defined in Section 2.4. Recall

that this means that whenever 1 ≤ a < b < c < e ≤ d with a and c in the same block

of the partition and b and e contained in a single block, then all four elements must

be in the same block of π. See Fig. 19.

1 2 3 4 5 6

Figure 19: The arc diagram of π = (136)(2)(4)(5)

As can be seen from Fig. 18 and 19, a partition is noncrossing exactly when none

of the arcs in its diagram intersect.
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2.5.1 Standard Permutations

Definition 2.5.1: A standard permutation is defined as a permutation of {±1, . . . ,±n}

such that the following two properties hold:

(i) i occurs before −i for all i in the list, and

(ii) the negative numbers in the list appear in the following order: −1, . . . ,−n.

Since there are 2n ways to assign the negative sign to the pair k and −k and n!

ways to order {−1, . . . ,−n}, there is a total of
(2n)!

2n · n!
standard permutations.

Definition 2.5.2: Call a permutation π of {±1, . . . ,±n} sign-connected if and only if

for all 1 ≤ m < 2n there is at least one j ∈ {1, . . . , n} such that |{π(1), . . . , π(m)} ∩

{−j, j}| = 1. If a permutation of {±1, . . . ,±n} is not sign-connected, call it sign-

disconnected.

The following characterization of standard sign-connected permutations is an im-

mediate consequence of Definitions 2.5.1 and 2.5.2.

Lemma 2.5.3: A standard permutation π of {±1, . . . ,±n} is sign-disconnected if and

only if there exists an i such that |π(j)| ≤ i for all j ≤ 2i (and |π(j)| ≥ i + 1 for all

j > 2i).

Applying the definition of a standard permutation to the previous notion of a

sign-connected permutation yields the following characterization.

Lemma 2.5.4: A standard permutation π is sign-connected if and only if for all m <

2n, the sum π(1) + · · ·+ π(m) is positive.
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Proof. By definition of a standard permutation, each j appears before −j; thus,

π(1) + · · · + π(m) ≥ 0 for every m ≤ 2n. Equality occurs exactly when the set

{π(1), . . . , π(m)} is the union of pairs of the form {j,−j}. Thus, the existence of an

m < 2n satisfying π(1) + · · · + π(m) = 0 is equivalent to the standard permutation

being sign-disconnected.

Remark 2.5.5: The proof of the sufficiency part of Lemma 2.5.4 may be restated in the

following, stronger from: π is sign-connected if for all m < 2n then π(1)+· · ·+π(m) 6=

0.

A standard permutation π ∈ S{±1,...,±n} can be represented visually by an arc di-

agram. The arc diagram is constructed as follows: put 2n vertices in a row; label

them left to right with π(1), . . . , π(2n); then for each k ∈ {1, . . . , n}, create an arc

connecting the vertices labeled −k and k. See Fig. 20 for an example when n = 3.

−1 −2 −33 1 2

Figure 20: The arc diagram associated to (3, 1,−1, 2,−2,−3)

The labels of the vertices in the arc diagram are uniquely determined by the under-

lying complete matching. This matching is represented by arcs whose right endpoints

must be labeled left to right by −1, . . . ,−n, in this order, and whose left endpoint is

labeled k if its right endpoint is −k. Using these rules, the standard permutation can

be uniquely reconstructed from its arc diagram. Thus, the arc diagram provides a
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one-to-one correspondence between standard permutations in S{±1,...,±n} and complete

matchings of a 2n element set.

Almost the same bijection appears in the work of Drake [24]; the only difference

being that Drake encodes complete matchings with standard double occurrence words

in the letters 1, . . . , n. A double occurrence word is a word in which each letter occurs

exactly twice. Ossona de Mendez and Rosenstiehl [55] call a double occurrence word

standard if the first occurrence of the letters happens in increasing order. See Fig. 21.

(Note that Drake [24] omits the adjective ‘standard,’ but he adopts his terminology

from [55], and the words he uses to encode complete matchings are the standard

double occurrence words.)

2 3 3 11 2

Figure 21: The arc diagram associated to 122331

Ossona de Mendez and Rosenstiehl [55] call double occurrence words connected

if the word cannot be factored into two nonempty double occurrence words. For

example, 122331 is connected, but 121233 is not since it can be factored into 1212

and 33, which are both double occurrence words.

Taking the reverse complement of such a double occurrence word and changing

the second occurrence of each k to −k results in a standard permutation. This

correspondence is a bijection. (As usual, the complement of a word in the letters
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1, . . . , n is the word obtained by replacing each letter i with n+ 1− i, and the reverse

of a word w1 · · ·w2n is the word w2n · · ·w1.)

For example, the standard permutation (3, 1,−1, 2,−2,−3) corresponds to the

same matching as the double occurrence word 122331 in Drake [24] as can be seen in

Fig. 20 and 21. Using this bijection, it is easy to see that connected standard double

occurrence words correspond exactly to sign-connected standard permutations.

Remark 2.5.6: Associate each standard permutation π of {±1, . . . ,±n} to the fixed-

point-free involution π̂ of {±1, . . . ,±n} that exchanges the elements π−1(−i) and

π−1(i) for i ∈ {1, . . . , n}. This correspondence is a bijection. Under this bijection,

sign-connected standard permutations correspond to indecomposable fixed-point-free

involutions, as defined by Cori [19].

For k ∈ {1, . . . , n}, the definition of a standard permutation forces the vertex

labeled k to be to the left of the vertex labeled −k in the arc diagram. Any arc

diagram associated to a standard permutation can be encoded by a word a1 · · · an as

follows. Let an be the position of the left endpoint of the rightmost arc, that is, an

is the position of the vertex labeled n. Remove the rightmost arc from the diagram,

and repeat the process until all arcs are removed. The word a1 · · · an is obtained.

Example 2.5.7: (3, 1,−1, 2,−2,−3) ∼= 131.

Definition 2.5.8: The word a1 · · · an described above is the encoding of a standard

permutation of {±1, . . . ,±n}.

Equivalently, a1 = 1, and for 1 < i ≤ n, the letter ai is 1 plus of the number of

elements proceeding i whose absolute value is less than i. As a consequence of the
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definition, 1 ≤ ai ≤ 2i − 1 holds for each ai. Conversely, each word a1 · · · an of this

form corresponds to exactly one standard permutation as every such word will encode

some arc diagram.

Definition 2.5.9: Let σ(a1 · · · an) be the standard permutation encoded by a1 · · · an.

Lemma 2.5.10: A standard permutation σ(a1 · · · an) is sign-disconnected if and only

if there exists k with k ≥ 2 such that ak = 2k − 1 and aj ≥ ak for j > k.

Proof. Suppose a1 · · · an encodes a sign-disconnected standard permutation called

π(1) · · · π(2n). By Lemma 2.5.3, there exists i such that |π(j)| ≥ i+ 1 for all j > 2i,

meaning that in the associated arc diagram both ends of the (i+1)st through nth arcs

are located at vertex positions 2i+ 1 or greater. Hence, ai+1 = 2i+ 1 and aj ≥ 2i+ 1

for j > i.

Conversely, let a1 · · · an encode a standard permutation π(1) · · · π(2n). Suppose k

is the smallest integer such that k ≥ 2, ak = 2k − 1, and aj ≥ ak for all j > k.

In the associated arc diagram, the right endpoint of the (k − 1)st arc is located at

vertex position 2k−2. Since the right endpoint of any arc is labeled with the negative

number of the antipodal pair, then π(2k − 2) = −(k − 1). Because π(1) · · · π(2n) is

a standard permutation, |π(j)| ≤ k − 1 for all j ≤ 2k − 2. When aj ≥ 2k − 1 for

all j ≥ k, the endpoints of the jth through nth arcs in the associated arc diagram are

located at position 2k − 1 or greater. Hence, |π(j)| ≥ k for all j ≥ 2k − 1.

Clearly, a standard permutation is sign-disconnected if and only if a vertical line

can be drawn between the first and last vertices of the associated arc diagram, which

does not intersect any of the arcs and that separates two adjacent vertices. In other
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words, the arc diagram is comprised of more than one component of overlapping arcs.

Drake [24] noted that this occurs if there exists a vertex k with 1 < k < 2n that is

not nested under any arc in the diagram.

The arc diagram of a sign-connected standard permutation will be referred to as

connected and the arc diagram of a sign-disconnected standard permutation as discon-

nected. An arc diagram is connected exactly when it represents a connected matching

as defined by Drake [24]. In terms of standard double occurrence words, connected

arc diagrams correspond to the connected standard double occurrence words in the

work of Ossona de Mendez and Rosenstiehl [55].

Call a word a1 · · · an arc-connected if and only if the arc diagram of σ(a1 · · · an) is

connected; otherwise call the word arc-disconnected.

Example 2.5.11: The arc diagram of (1, 2,−1,−2, 3,−3), shown in Fig. 22, is discon-

nected. This diagram is encoded as 125.

−32 −2 31 −1

Figure 22: The arc diagram associated to (1, 2,−1,−2, 3,−3)

Corollary 2.5.12: A word is arc-disconnected if and only if there exists k such that

ak = 2k − 1 and aj ≥ ak for j > k. Similarly, a word is arc-connected if and only if

no such k exists.

Definition 2.5.13: A minimal arc will be defined to be a component of an arc diagram

such that the component consists of exactly one arc.
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For example, in the arc diagram of Example 2.5.11 (see Fig. 22), there is one

minimal arc located at the rightmost end of the diagram. However, in the arc diagram

of Example 2.5.7 (see Fig. 20), there is no minimal arc since the third arc stretches

over the first two; i.e., a3 = 1.

If two standard permutations differ by an adjacent transposition, the two associ-

ated arc diagrams will differ by exactly one swap of adjacent ends of two distinct

arcs. There may be an interchange of one left and one right end (see Fig. 23(a)) or an

interchange of two left ends (see Fig. 23(b)); however, there will not be a swap of two

right ends. Due to property (ii) of the definition of standard permutations, a swap of

two right ends causes the arcs to be relabeled, yielding a nonadjacent transposition

whenever the two corresponding left ends are not adjacent. See Fig. 23(c).

3 − 1 1 3 2 −3−2 −3 −22 −11

(a) A left and right end: σ(132) and σ(122)

31 3 21 −1−2 −3 −2 −3−1 2

(b) Two left ends: σ(132) and σ(131)

−11 2 1 2 3−2 −3 −2 −3−13

(c) Two right ends: σ(132) and σ(124)

Figure 23: Swapping two adjacent ends in the arc diagram



50

If σ(a1 · · · an) and σ(b1 · · · bn) differ by an adjacent transposition, then there exists

a unique i such that bi = ai ± 1 and bj = aj for all j 6= i. The converse is not true.

For example, the word 122 is obtained from the word 112 by changing the second

letter by 1, but the standard permutations σ(112) and σ(122) differ by a nonadjacent

transposition (see Fig. 24).

−132 1 1 2−2 −33 −1 −3−2

Figure 24: The arc diagrams associated to σ(112) and σ(122)

In fact, the situation in Fig. 24 is a specific instance of a general case where two

standard permutations will not differ by an adjacent transposition.

Lemma 2.5.14: Suppose a1 . . . an and b1 . . . bn encode two standard permutations where

there exists a unique i such that bi = ai± 1 and bj = aj for all j 6= i. If ai+1 ≤ 2i− 1,

ai = ai+1, and bi = ai − 1, then the two standard permutations σ(a1 . . . an) and

σ(b1 . . . bn) will not differ by an adjacent transposition.

Proof. Without loss of generality, let i = n−1. Set ai+1 = k where k ≤ 2n−3. Then

ai = k and bi = k − 1. In the arc diagram of a1 . . . an, i + 1 is located at position

k, and i is at position k + 1 since in the construction of the diagram the (i + 1)st

arc moved the ith arc out of its original position k. However, in the arc diagram of

b1 . . . bn, i+1 is still located at position k, but i is now located at position k−1. This

change is not an interchange of two adjacent left ends of arcs. Hence, the standard
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permutations do not differ by an adjacent transposition.

However, it is obvious that the following, more general, statement is true.

Lemma 2.5.15: If a1 · · · an and b1 · · · bn satisfy
∑n

i=1 |ai − bi| = 1, then σ(a1 · · · an)

and σ(b1 · · · bn) differ by a single (not necessarily adjacent) transposition.

Fig. 25 shows the graph for the standard permutations of n = 2 and n = 3 where

the vertices are the encoded standard permutations, and edges occur where the two

standard permutations differ by an adjacent transposition.

11 12 13

111 121 131

112 122 132

113 123 133

114 124 134

115 125 135

n = 3:

n = 2:

Figure 25: The graph for the standard permutations of n = 2 and n = 3

2.6 Gray Codes

Gray codes are widely used in computer science to enumerate all words, n-tuples,

or permutations of a given type. In particular, there is much research on finding

Gray codes for classes of permutations where two permutations are considered ad-

jacent if they differ by an involution of some special kind. Gray codes are used in
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such applications as error correction for digital signals, signal encoding, or image

processing [3, 29, 57].

2.6.1 History and General Definitions

Suppose one wants to generate all n-tuples of a certain number k. Each n-tuple

or string has the form a1, a2, . . . , an where ai may be any number from 0 to k− 1 for

each 1 ≤ i ≤ n. Consider now the specific situation where one would like to generate

all binary strings of length n.

These strings may be listed in lexiographical order, starting with (0, . . . , 0)2 and

ending with (1, . . . , 1)2 after adding 1 repeatedly. While this method will reach all

2n−1 strings, it is not the most efficient way to reach all of the strings. For example,

in lexiographic order 100 follows 011. This one step requires all positions to change. If

the goal is to reach all 2n−1 strings in an efficient way, where efficiency is determined

by the computation cost to implement, then a new method for listing all n-tuples is

required.

The Gray binary code, denoted Γn, lists all binary strings of length n such that

subsequent strings differ by exactly one bit change; i.e., exactly one position changes

from 1 to 0 or vice versa. See Table 9 for the Gray binary code for strings of length

2 and 3.

In the 1950’s, Frank Gray, a physicist known for his work with color television,

used this method to list binary strings in the analogue transmission of digital signals

for television. While the Gray binary code was named after Frank Gray since he

patented it [30], it was actually used many years prior to the 1950’s. In fact, in
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the 1870’s, Émile Bandot used Γ5 in his telegraph machine. The transactions from

the 1878 Paris Exhibition [71] give a detailed description of Bandot’s machine. See

Fig. 26 for a reproduction of plate 2 from the transactions, which shows Bandot’s

machine. Those notes also discuss Otto Schäffler’s telegraph machine, which also

used this encoding although it was developed independently of Baudot and was not

as efficiently implemented. Other types of listings were used at this time; however,

Bandot’s was by far the most efficient.

Figure 26: Bandot’s telegraph machine

To generate the Gray binary code, also called the binary reflected Gray code, for

binary strings of length n, start with 0 . . . 0. Add 1 to produce the next string the
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enumeration. At this point, replace a1 . . . an−1 with the subsequent code from the

Gray binary code of length n − 1. Set an = 0 to get the next code. Repeat this

method until the last code 10 . . . 0 is reached. Boothroyd [12] published a computer

programmable algorithm for this code, which was later modified by Misra [52].

Table 9: The Gray binary code for n = 2 and n = 3

length code
n = 2 00 01 11 10
n = 3 000 001 011 010

110 111 101 100

Notice, the binary reflected Gray code is recursively generated. Let 0Γn be the

Gray binary code for strings of length n with 0 affixed to the beginning of each string

and 1ΓRn be the Gray binary code for strings of length n in reverse order with 1 then

affixed to the beginning of each string. Using this notation, an alternate recursive

definition for Gray binary code is Γn+1 = 0Γn, 1ΓRn where Γ0 is the empty string [10].

In both the method given above and in Boothroyd’s algorithm, the binary reflected

Gray code is recursively defined. Because of the use of recursive calls, the latter [12, 52]

requires O(n · 2n) operations to reach all 2n binary n-tuples [10]. Bitner, Ehrlich,

and Reingold [10] were able to produce a streamlined algorithm which reduced the

number of operations down to O(2n). Later, Ali, Islam, and Foysal were able to

improve the algorithm further; however, obviously, not better than O(2n). These

two improved algorithms mentioned made use of loop-free algorithms by inducing

pointers to indicate when certain changes occur. Since a purpose of this Gray code
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is to reduce signal transmission error or to list all n-tuples of binary strings, having

an efficient algorithm is desirable.

The binary reflected Gray code is only one specific Gray code used to generate all

binary n-tuples [27]. In general, such codes are called binary Gray codes.

Definition 2.6.1: Given a finite set X, let SX be the set of all strings comprised of

elements of X, where the strings adhere to some guideline such as being an n-tuple

or a permutation. A Gray code is a sequence where each element of SX is reached

exactly once, and consecutive strings in the sequence differ by a specified closeness

condition.

For Gray codes of the binary system, two strings are close if they differ by 1 bit,

similarly for a list of n-tuples. When dealing with a sequence of permutations, two

permutations are close if they differ by a transposition. Obviously, this closeness

condition changes as the set of objects changes. If the first and last object in the

Gray code also satisfy the closeness condition, then the Gray code is a Gray cycle.

Consider the unit n-cube, whose vertices are given by (v1, . . . , vn) where vi ∈ {0, 1}

for each i. It is clear that each of the 2n vertices corresponds to a string in a binary

Gray code, and the edges of the n-cube represent a 1-bit change between the two

strings corresponding to the associated vertices. Hence, a binary Gray code is also an

oriented Hamiltonian path along the edges of the n-cube, and a binary Gray cycle is

an oriented Hamiltonian cycle on the n-cube. Recall, a Hamiltonian path of a graph

is a path such that each vertex is reached exactly once [29].

For non-binary Gray codes, form a graph from the objects of the underlaying set.
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Let the objects be the vertices of the graph, and any two objects which are close,

as defined by the closeness condition, are connected by an edge. The Gray code is

an oriented Hamiltonian path on the created graph. For example, Conway, Sloane,

and Wilks [17] gave Gray codes for finite reflection groups using Hamiltonian cycles.

Gray codes are not necessarily unique so long as multiple Hamiltonian paths exist;

however, depending on the underlying set of objects and the closeness condition, a

Gray code may not always be possible. See Fig. 28 from Example 2.6.4.

Definition 2.6.2: Let A be a set of objects, and f : A → A be a closeness condition.

The Gray graph has vertices corresponding to the objects from set A, and any two

vertices are connected by an edge if and only if they satisfy the closeness condition.

A transposition Gray code is a Gray code where two objects are considered close if

they differ by a transposition of two elements. For example, the permutations 13524

and 12534 differ by a transposition. Gray codes for permutations are transposition

Gray codes. In an adjacent transposition Gray code, subsequent codes differ by an

adjacent transposition. For example, the permutations 13524 and 13254 differ by an

adjacent transposition.

Consider permutations of {1, . . . , n} which adhere to certain topological conditions.

A transposition Gray code may also be found in these situations. However, it might

not be possible to find an adjacent transposition Gray code. Knuth [45] gave the

following example in his book The Art of Computer Programming, vol 4.

Example 2.6.3: Suppose a Gray code is needed for all permutations of {1, 2, 3, 4} such

that 1 precedes 3, 2 precedes 3, and 2 precedes 4. Then there are four adjacent trans-
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position Gray codes for this set. Read the following two lists forward and backward

to get these Gray codes: 1243, 1234, 2134, 2143, 2413 and the sequence 2134, 1234,

1243, 2143, 2413.

Suppose one needs to generate all permutations of a set or a multiset. Just as with

n-tuples, these permutations may be listed in lexicographical order; however, just as

with the n-tuples, this is not the most cost efficient way to list all the permutations.

Example 2.6.4: Consider the multiset: {1, 1, 2, 2}. The permutations of this set listed

in lexicographical order are 1122, 1212, 1221, 2112, 2121, 2211. Fig. 27 shows the graph

formed by all arrangements of the multiset. Permutations are joined by an edge in

the graph if they differ by a single transposition. A Hamiltonian path for this graph

exists. Thus, there exists a transposition Gray code on the multiset. One such Gray

code is 1122, 1212, 2112, 2121, 1221, 2211.

1122

2211

1221 2121 2112 1212

Figure 27: The graph associated to the multiset: {1, 1, 2, 2}

Now, consider the graph formed by all permutations of the multiset where an edge

occurs if the joined permutations differ by a single adjacent transposition. See Fig. 28.

Obviously, there is no Hamiltonian path for this graph. Hence, no adjacent transpo-

sition Gray code exists.

There is a simple way to generate the permutations on [1, n] in n! steps by making
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2112

1212 2121 2211

1221

1122

Figure 28: The graph associated to {1, 1, 2, 2}

n! − 1 adjacent interchanges. Although this algorithm was originally defined for

the permutations on [1, n], the same method can easily be extended to any set of

distinct objects which have an ordering. Thus, while not all multisets have an adjacent

transposition Gray code, permutations of distinct objects will always have an adjacent

transposition Gray code.

The Johnson-Trotter algorithm generates an adjacent transposition Gray code on

the set SX of all permutations of the set X. When X = {1, . . . , n}, this algorithm

recursively defines the Gray code as follows: set the initial permutation to 12 . . . n.

Let the element n move from one end of the permutation to the other. Whenever, n

reaches the end of a permutation, the next string in the Gray code on S[1,n−1] replaces

the permutation consisting of the first n − 1 elements [41, 70]. See Table 10 for the

Gray code when n = 2 and n = 3.

Table 10: The Gray code produced by the Johnson-Trotter algorithm

length code
n = 2 12 21
n = 3 123 132 312 321 231 213

While the Gray code produced by the Johnson-Trotter algorithm was known before

Trotter [70] published its first computer implementation in the 1960’s, Trotter’s algo-
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rithm was efficient even though it utilized recursive calls. In the 1970’s, Ehrlich [26]

and later Dershowitz [20] developed a simplified loop-free version of the Johnson-

Trotter algorithm.

The inversion table of a permutation is an n-tuple c1 . . . cn where ci is the number

of elements in the permutation to the right of i that are also less than i. Hence,

0 ≤ ci ≤ i− 1.

Dijkstra [22] showed that the inversion tables associated to an adjacent transposi-

tion Gray code is itself a Gray code when traversed in the same order as the original

Gray code. Algorithm 2.6.5 rewrites Dijkstra’s improvement of the Johnson-Trotter

algorithm using inversion tables and Knuth’s [45] notation.

For example, the left side of Table 11 gives the adjacent transposition Gray code on

the permutations of [1, 4]. Read down the first column, then up the second column.

Continue reading the table up and down the columns. Notice, if the right side of

Table 11 is read up and down the columns in the same way, it also produces a Gray

code where exactly one position changes by 1.

Table 11: The Gray code for n = 4 and its associated inversion table

Johnson-Trotter algorithm
1234 1324 3124 3214 2314 2134
1243 1342 3142 3241 2341 2143
1423 1432 3412 3421 2431 2413
4123 4132 4312 4321 4231 4213

the inversion tables
0000 0010 0020 0120 0110 0100
0001 0011 0021 0121 0111 0101
0002 0012 0022 0122 0112 0102
0003 0013 0023 0123 0113 0103

Given a sequence a1 . . . an of n distinct elements, where a1 < . . . < an, the Johnson-

Trotter algorithm generates all of its permutations by interchanging adjacent ele-
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ments. The algorithm below uses the corresponding sequence of inversions c1 . . . cn

to determine which adjacent elements are interchanged where 0 ≤ ci < j is defined

as above for 1 ≤ j ≤ n. An array σ1 . . . σn will be used to store when cj changes.

Algorithm 2.6.5 (Dijkstra): The Improved Johnson-Trotter Algorithm

initialize: set cj = 0 and σj = 1 for all 1 ≤ j ≤ n
step 2: display a1 . . . an
step 3: set j = n and s = 0

where s is the number of k such that k > j and ck = k − 1
step 4: set q = cj + σj

if q < 0, then go to step 7
if q = j, then go to step 6

step 5: interchange aj−cj+s and aj−q+s
(since σj = ±1, these indices are adjacent)
set cj = q
go to step 2

step 6: if j = 1, end algorithm
if j 6= 1, let s = s+ 1

step 7: set σj = −σj and j = j − 1
go to step 4

Example 2.6.6: Use the Johnson-Trotter algorithm to generate the Gray code for per-

mutations of length n = 3. See Table 12 for the resulting Gray code.

Table 12: Using the Johnson-Trotter algorithm for n = 3

Gray code inversions who’s moving?
a1a2a3 c1c2c3 σ1σ2σ3

123 000 1,1,1
132 001 1,1,1
312 002 1,1,1
321 012 1,1,-1
231 011 1,1,-1
213 010 1,1,-1
end 1,-1,1

Since there is exactly one transposition per step in the Johnson-Trotter algorithm,
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odd and even permutations will be listed in alternating order [70]. Thus, all even

permutations can be generated by just skipping the odd permutations in the full

Gray code.

Depending on the specifics of the objects in the Gray code and the closeness con-

dition, removing an unwanted block from the Gray code may still yield a Gray code.

However, any special requirements of the Gray code will still need to be checked. If

the original Gray code was an adjacent transposition Gray code, then after removing

any block, the resulting list is nearly always a Gray code on the subset of objects,

but it often is just a transposition Gray code [14].

Example 2.6.7: If the second block in the adjacent transposition Gray code of length

4 is removed (see Table 11), the resulting list is still a Gray code; however the codes

4123 and 3124 differ by a non-adjacent transposition.

2.6.2 Indecomposable Permutations

The results in Chapter 4 are motivated by King’s recent paper [42], providing a

transposition Gray code for the set of all indecomposable permutations of a finite set.

The combinatorial interest in these permutations is long-standing; see Comtet [16,

p. 261] and Stanley [68, Ch. 1, Exercise 32]. As shown by Ossona de Mendez and

Rosenstiehl [54], indecomposable permutations are bijectively equivalent to rooted

hypermaps. A recent generalization of Dixon’s famous result [23], stating that a

random pair of permutations almost always generates a transitive group, is also related

to enumerating indecomposable permutations; see Cori [18].

A permutation π of Sn is indecomposable, also called irreducible or connected,
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if there is no m < n such that π sends {1, . . . ,m} into {1, . . . ,m}. King found

a transposition Gray code for such indecomposable permutations [42]; i.e., a Gray

code for the graph whose vertices are indecomposable permutations and whose edges

connect permutations that differ by a (not necessarily adjacent) transposition. It is

still open whether there is an adjacent transposition Gray code for indecomposable

permutations.

Let π be a permutation of length n. Define πi to be the permutation on [1, i]

contained in π. For example, if π = 642153, then π3 = 213. Define two related

vectors p and spp, where p[i] is the location of i in πi and spp[i] is the length of the

smallest prefix of πi which is also a permutation.

Example 2.6.8: Consider π = 642153 as before. Calculate πi for each i. Use πi to

compute p = [1, 1, 3, 1, 4, 1] and spp = [1, 2, 2, 4, 5, 6].

π1=1
π2=21
π3=213
π4=4213
π5=42153
π6=642153

Since π = πn, π is indecomposable if and only if spp[n] = n. Thus, as can be

seen in Example 2.6.8, π = 642153 is indecomposable. When determining whether

a permutation is indecomposable by hand, it is often quicker to look at the given

permutation. Using King’s [42] lemma, given below, a computer can quickly calculate

the spp of each permutation of length n, thereby determining whether the permutation

is indecomposable or not.
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Lemma 2.6.9 (King): Let π be a permutation on [1, n]. For 1 < i ≤ n,

spp[i] =


i , if p[i] ≤ spp[i− 1]

spp[i− 1] , otherwise.

By definition, spp[1] = 1 for any permutation. Consider what happens when insert-

ing i into a permutation of [1, i− 1]. If i comes before the end of the smallest prefix

which is also a permutation; i.e., p[i] ≤ spp[i], the resulting permutation on [1, i] will

be indecomposable. However, if i is inserted after the end of this smallest prefix, then

the original prefix will still be the smallest prefix which is itself a permutation.

Using this information, walk through the Johnson-Trotter Gray code for permuta-

tions of length n. Update p and spp for each code. Keep the permutation if and only

if spp[n] = n. The resulting is a list of all indecomposable permutations of length n.

See Table 13.

Table 13: Indecomposable permutations in Johnson-Trotter order

n = 3 n = 6
312 612345
321 612354
231 612534

615234
512364
. . .

For n ≤ 5, the list of indecomposable permutations resulting from just removing

all the decomposable permutations from the Johnson-Trotter Gray code is itself a

Gray code. However, this method does not work starting with n = 6. See Table 13.

The permutations 615234 and 512364 do not differ by a single transposition even

though they are consecutive codes using the above method. Thus, King developed
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the following method to compute a transposition Gray code for indecomposable per-

mutations.

Define In to be the set of indecomposable permutations on [1, n]. Then I1 = 1,

I2 = 1, and

|In| =
n−2∑
j=0

(n− j − 1)j!|In−j−1|.

King’s Gray code for indecomposable permutations is constructed in blocks. To do

this, let π = p1 . . . pn. Set r = p1, the first element of the permutation, and let j be

the smallest number such that p2 . . . pj+1 is a permutation on [1, j]. Set In,r,j to be

the set of all permutations on [1, n] with fixed r and j and In,r to be the set of all

permutations on [1, n] with fixed r. Then In,r =
⋃

0≤j≤r−2 In,r,j.

Example 2.6.10: Let π = 52137486. Then r = 5 and j = 3 since p2p3p4 = 213.

Using the notation r and j, |In| may be rewritten as

|In| =
n∑
r=2

r−2∑
j=0

|In−j−1|j!

To construct the Gray graph for In, let the set of objects used as the vertices be

permutations in In, and two permutations are connected by an edge if and only if

they differ by a transposition. Call this Gray graph Gn. Then the subgraph induced

by In,r is Gn,r, and the subgraph induced by In,r,j is Gn,r,j.

Let Pj be the transposition Gray graph of Sn. Then it has the property that

Gn,r,j
∼= Pj ×Gn−j−1. King also defines topn,r,j and botn,r,j which allow each Gn,r,j to

be ordered.

Lemma 2.6.11 (King): If Gn,n,j has a Hamiltonian path from topn,n,j to botn,n,j for all
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j, then so does Gn.

Lemma 2.6.12 (King): Given any permutation π on [1, n], there is a Hamiltonian path

for Pn beginning at π and ending at a permutation whose final vertex differs from π

by a transposition of the last two positions.

Putting all of this together, the transposition Gray code for indecomposable per-

mutations is as follows. Let Gn be determined by Gn,2 → Gn,3 → . . . → Gn,n where

Gn,2 = Gn,2,0, and for r > 2, Gn,r is determined by Gn,r,r−3 → Gn,r,r−5 → . . .→ Gn,r,j.

If j = 1, then the path finishes with Gn,r,0 → Gn,r,2 → . . . → Gn,r,r−2, and if j = 0,

the path ends with Gn,r,1 → Gn,r,3 → . . .→ Gn,r,r−2.

When traveling from Gn,r to Gn,r+1, one travels from botn,r,j, for an appropriate j,

to botn,r+1,j. However, when traveling within a single Gn,r, one switches between the

Gn,r,j at either topn,r,j or botn,r,j. This is similar to the Johnson-Trotter algorithm

where one travels up and down the columns; see Table 11. As a side note, when j = 0

or 1, Gn,r,j is as expected; however, when j ≥ 2, the definition of topn,r,j and botn,r,j

can cause Gn,r,j to be quirky. Since this phenomenon does not have any bearing on

the results discussed in the rest of this dissertation, see [42] for further explanation.

Example 2.6.13: Suppose one wants to find G4. According to the above method, the

path will be determined by G4,2 → G4,3 → G4,4 where G4,2 = G4,2,0, G4,3 is determined

by G4,3,0 → G4,3,1, and G4,4 is determined by G4,4,1 → G4,4,0 → G4,4,2. Using the

facts that r is the first number of the permutation, j is the length of the smallest

permutation on [1, j] that starts at position 2, and Gn,r,j is the set of all permutations

on [1, n] with these properties, one can determine each Gn,r,j. Apply the concepts of
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topn,r,j and botn,r,j to get the order of each Gn,r,j. Hence, G4,4,0 = {4231, 4321, 4312},

G4,4,1 = {4132}, G4,4,2 = {4213, 4123}, G4,3,0 = {3241, 3421, 3412}, G4,3,1 = {3142},

and G4,2,0 = {2341, 2431, 2413}. Putting this altogether yields a Gray code for the

indecomposable permutations on [1, 4]:

2341
2431
2413

 G4,2

3412
3421
3241

 G4,3,0

3142
}

G4,3,1

 G4,3

4132
}

G4,4,1

4231
4321
4312

 G4,4,0

4213
4123

}
G4,4,2


G4,4



CHAPTER 3: NONCROSSING PARTITION STATISTICS

3.1 The Toric Contribution of the Adin h-Vector

Let P be a d-dimensional cubical complex. In this section, the toric contribu-

tion of the normalized Adin h-vector will be determined using the information from

Section 2.3.4. Start with Definition 2.2.1 for the toric f polynomial of P

f(P , x) =
∑
F∈P

g(∂F, x)(x− 1)d−dimF (7)

where F is a face of P . Then F is a j-cube for some 0 ≤ j ≤ d or F = ∅. Hence,

f(P , x) = (x− 1)d+1 +
d∑
j=0

fj · (x− 1)d−jg(Lj, x)

where (x− 1)d+1 is the contribution when F = ∅. Applying Equation (3),

f(P , x) = (x− 1)d+1 +
d∑
j=0

2d−j
j∑
i=0

(
d− i
d− j

)
[hi+1 + hi](x− 1)d−jg(Lj, x).

Since h0 = 1, collecting the contribution of each hi yields

f(P , x) =

[
(x− 1)d+1 +

d∑
j=0

2d−j
(
d

j

)
(x− 1)d−jg(Lj, x)

]
+ hd+1 · g(Ld, x)

+
d∑
i=1

hi

d∑
j=i−1

2d−j
[(

d− i
d− j

)
+

(
d+ 1− i
d− j

)]
(x− 1)d−jg(Lj, x).

(8)

Thus, (x− 1)d+1 will be part of the toric contribution of h0.

Definition 3.1.1: Suppose P is a d-dimensional cubical complex. Let Qd,k(x) be the

polynomial which gives the toric contribution of the normalized Adin h-vector of
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f(P , x), namely

f(P , x) =
d+1∑
k=0

hk ·Qd,k(x). (9)

By Equation (8), the polynomials Qd,k(x) have an explicit formula:

Qd,k(x) =


(x− 1)d+1 +

∑d
j=0 2d−j

(
d
j

)
(x− 1)d−jg(Lj, x) if k = 0,∑d

j=k−1 2d−j
[(

d−k
d−j

)
+
(
d+1−k
d−j

)]
(x− 1)d−jg(Lj, x) if 1 ≤ k ≤ d,

g(Ld, x) if k = d+ 1.

(10)

Table 15 in Section 3.3 lists Qd,k(x) for small d.

3.2 Contribution of Shelling Components to the Toric h-Vector

The original plan was to find a relationship between the toric h-polynomial and the

Adin h-vector, namely Qd,k(x). However, both Chan [15] and Hetyei [38] looked at the

contribution of shelling components to the toric h polynomial. Since the polynomials

Qd,k(x) satisfy the relations found in these two papers, it was hypothesized that there

may be a relation between the polynomials Qd,k(x) the contribution of the cubical

shelling components to the toric h polynomial. The following section explores this

relationship.

Consider a shelling F1, . . . , Fm of P , and let (i, j) be the type of the tth facet in the

shelling. According to Adin,
∑

k hkx
k =

∑
t ∆th(x), where ∆th(x) is the contribution

from Ft. See Section 2.3.3 for a definition of a shelling and shelling component types.

In Section 2.3.6, an explicit formula for the Adin h-vector was found in terms of the

number of types of cubical shelling components, namely Equation (4).

Applying Equations (4) and (9) to
∑

k hkx
k gives the contribution of ci,j in terms
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of the polynomials Qd,k(x):

d∑
k=1

hk ·Qd,k(x) =
d−1∑
j=0

d−j∑
i=1

ci,j

i+j∑
k=j+1

(
1

2

)i(
i− 1

k − 1− j

)
Qd,k(x).

Define Cd,i,j(x) to be the toric contribution of all shelling components of type (i, j).

Hence,

Cd,i,j(x) =

i+j∑
k=j+1

(
1

2

)i(
i− 1

k − 1− j

)
Qd,k(x) =

i∑
`=1

(
1

2

)i(
i− 1

`− 1

)
Qd,`+j(x). (11)

In particular if i = 1, Cd,1,j(x) = 1
2
Qd,j+1(x). Additionally, Cd,0,0(x) = 1 and

Cd,0,d(x) = c0,d · xd+1.

3.3 A Combinatorial Interpretation

In this section, the formulas for both Cd,i,j(x) and Qd,k(x) are developed using the

weight function defined in Section 2.4.9 as applied to noncrossing partitions.

3.3.1 Cd,i,j(x) as the Total Weight of Objects

Lemma 3.3.1: Let π ∈ NC(d), and suppose S = {[n,m]} where [n,m] may or may

not be wrapped. Let d− j be the number of elements in [n,m]. Hence, 0 ≤ j ≤ d− 1.

Then

Cd,1,j(x) =
∑

π∈NC(d)

wtS(π) =
1

2
Qd,j+1(x). (12)

Proof. Definition 2.4.9 may be rephrased as follows. Consider the special objects:

singleton and antisingleton elements in S as well as all nonsingleton blocks in π.

Assign the weight x to each special object in π. All others receive a weight of 1.

Next, consider a related weight function wt′S , where any special object is assigned

a weight of x + 1. All others have weight 1. This modified weight function wt′S
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differs from wtS in that there exists the option to choose whether or not to mark each

special object. Each marked object has weight x, and an unmarked object has weight

1. Then wt′S(π) is computed by replacing every x in wtS(π) with x + 1. The x + 1

counts both options.

By Equation (11), 1
2
Qd,j+1(x+ 1) = Cd,1,j(x+ 1), and by Equation (10), Qd,j+1(x+

1) =
∑d

j=k−1 2d−j
[(

d−k
d−j

)
+
(
d+1−k
d−j

)]
xd−jg(Lj, x+ 1). The rest of this proof will show

that Cd,1,j(x+ 1) =
∑

π∈NC(d) wt
′
S(π), which is equivalent to the desired result.

To compute
∑

π∈NC(d) wt
′
S(π), choose π in NC(d), and mark as many nonsingleton

blocks, antisingleton elements in S, and last elements where all other elements in the

block are marked and contained in one interval of S as desired.

Define type a elements to be the marked antisingletons of π. Define type b elements

to be marked last elements of a block of π whose other elements are all type a and

the entire block is completely contained in one interval of S. Marked singletons are

type b elements.

Remove all type a and type b elements from π. Let k be the number of elements

remaining in the partition. Call the noncrossing partition formed by these k elements

πk. Any marked object left in πk must be a nonsingleton block. By Lemma 2.4.12,

the weight of all possible πk in NC(k) is g(Lk, x+1). Since type a and type b elements

are only located in S, there are at most d− j of them. Since d− k is the number of

removed type a and type b elements, j ≤ k ≤ d.

Next, reinsert d − k type a and type b elements into πk, and count the number

of ways that this can be done. If only the position and order of the marked type

a and type b elements is known, the original π can be recovered from πk. Consider
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the linear representation of πk. Insert elements at each position where type a and

type b elements are known to be located. For type b elements, do nothing else. Each

inserted type a element joins the block to which the element directly following it

belongs. Thus, excluding the situation where a type b element is directly preceded

by a type a element, all type b elements are singletons. The original partition π can

be constructed from this newly created arc diagram. (See Example 3.3.2.)

For fixed k, one can determine where to insert the d−k type a and type b elements.

Type b elements may be inserted anywhere in S. Type a, or antisingleton, elements

may be inserted anywhere in S except at the end of an interval of S, namely at

position m.

Unless an inserted antisingleton element is placed immediately prior to a singleton

element in πk, the elements of πk will have the same role in π as they did in πk. If

an antisingleton element is inserted before a singleton element in πk, the singleton

element will change to a last element of a nonsingleton block. Singleton elements

cannot be marked in πk, so the new nonsingleton block is still unmarked. Thus, this

change will not affect the overall weight.

One may also insert consecutive type a and type b elements. Suppose one wants to

insert two consecutive type a and type b elements. If these two elements are located

at positions m− 1 and m, then there are only two options: ab and bb. Obviously, for

the first option, a two element block is inserted into πk, and for the second option,

two singletons are inserted. However, if two consecutive elements are inserted prior

to positions m− 1 and m, there are four options: aa, ab, ba, and bb, where the type

b element of ab is a last element, but all other type b elements are singletons.
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Suppose one wants to insert an arbitrary number of consecutive type a and type b

elements. Each inserted element may be either type a or type b so long as it is not

located at position m. This is possible since type b elements may be connected to

a type a element. Within the string of consecutive type a and type b elements, the

type b elements indicate the end of a block (either nonsingleton or singleton).

If m is a type b element, then the remaining d− k − 1 type a and type b elements

are placed in the other d− j − 1 positions of [n,m], and the total number of ways to

arrange these elements is
(
d−j−1
d−k−1

)
2d−k−1. If m is not a type b element, the last element

of [n,m] is an unmarked element. The element at position m could be located in a

marked nonsingleton block, but it will never be a type a element. In this situation,

all type a and type b elements are in the remaining d− j−1 positions of S. The total

number of ways to arrange these elements is
(
d−j−1
d−k

)
2d−k.

Summing over all partitions of NC(d) yields a total weight of

d∑
k=j

[(
d− j − 1

d− k − 1

)
2d−k−1 +

(
d− j − 1

d− k

)
2d−k

]
xd−kg(Lk, x+ 1),

where xd−k is the weight of the type a and type b elements, and g(Lk, x+ 1) gives the

weight of all the other elements, namely the weight of all πk. Thus,

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

[(
d− j − 1

d− k − 1

)
+

(
d− j − 1

d− k

)
2

]
2d−k−1xd−kg(Lk, x+ 1).

Apply Pascal’s identity as well as Equations (10) and (11) to get

=
d∑
k=j

[(
d− j − 1

d− k

)
+

(
d− j
d− k

)]
2d−k−1xd−kg(Lk, x+ 1)

=
1

2
Qd,j+1(x+ 1) = Cd,1,j(x+ 1).



73

Note k = d implies that d − k = 0, yielding the special case where there are no

type a or type b elements. At the other extreme, k = j means that d− k = d− j, or

every position in S is a type a or type b element.

Example 3.3.2: Let π = (145)(23)(6) and S = {[4, 6]}. Mark the elements at positions

4 and 6. Then the element at position 4 is a type a element and the one at position

6 is type b (see Fig. 29). Remove them. Call the remaining partition π4; see Fig. 30.

2 3 4 5 61

Figure 29: The arc diagram of π = (145)(23)(6)

Working left to right, insert a type a element at position 4 and then a type b element

41 2 3

Figure 30: The arc diagram of π4

at position 6. Connect the type a element to the element directly following it in the

arc diagram. The resulting arc diagram is equivalent to the one in Fig. 29, and the

partition is the original π. See Fig. 31. Hence, as stated in the above proof, if it is

2 3 4 5 61

Figure 31: Inserting type a and type b elements into π4 to get π
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known where all type a and b elements are located, the original π can be recovered

from πk.

The following identity will be used in Theorem 3.3.4, the main result of this section.

Lemma 3.3.3: Let d > 0, i > 0, 0 ≤ j ≤ d− i, and j ≤ k ≤ d. Then

i∑
`=0

(
i

`

)(
d− i− j
d− k − `

)
· 2i−` =

i∑
`=0

(
i

`

)(
d− j − `
d− k

)
.

Proof.

i∑
`=0

(
i

`

)(
d− i− j
d− k − `

)
· 2i−` =

i∑
`=0

(
i

`

)(
d− i− j
d− k − `

) i−∑̀
m=0

(
i− `
m

)

Interchange the summations and apply the equality
(
i
`

)(
i−`
m

)
=
(
i
m

)(
i−m
`

)
. Finally, use

the Chu-Vandermonde identity to get the desired result. Thus, the left-hand side

equals
i∑

m=0

(
i

m

) i−m∑
`=0

(
i−m
`

)(
d− i− j
d− k − `

)
=

i∑
m=0

(
i

m

)(
d−m− j
d− k

)
.

Theorem 3.3.4: Let S be defined as above, where i is the number of intervals in S and

j is the number of elements in [1, d] but not in any interval of S. For i > 0,

Cd,i,j(x) =
∑

π∈NC(d)

wtS(π).

Proof. Let S = {S1, . . . , Si} where Sn = [kn, ln] for 1 ≤ n ≤ i. Recall, if [ki, li] is

wrapped, then d may be an antisingleton element. If i = 1, then the result follows

from Lemma 3.3.1. For the rest of the proof, suppose i > 1.

Consider the weight function wt′S defined as in the proof of Lemma 3.3.1, where it
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is optional to mark the special objects for some π ∈ NC(d). It will be shown that

Cd,i,j(x+ 1) =
∑

π∈NC(d) wt
′
S(π).

To compute
∑

π∈NC(d) wt
′
S(π), choose π in NC(d), and mark as many nonsingleton

blocks, antisingleton elements in S, and last elements where all other elements of the

block are marked and contained in a single interval of S as desired. Recall that for

each interval Sn, the last element ln cannot be a marked antisingleton element. Define

type a elements and type b elements as before.

Remove all type a and type b elements, and let k be the number of elements

remaining in the partition. As before, call the noncrossing partition formed by these

k elements πk. Recall, the weight of all possible πk in NC(k) is g(Lk, x + 1), and

j ≤ k ≤ d.

Next, count the number of ways the d − k type a and type b elements may be

reinserted into πk at positions in S. Type a elements cannot be inserted at the end

of any interval in S. Thus, type a elements can be inserted at d − j − i possible

locations. Type b elements may be inserted at any position in S, including the last

position of any interval in S. Let ` be the number of type b elements inserted at the

end of some interval in S. Then there are
(
i
`

)
ways to select these intervals. The

remaining d− k− ` type a and b elements are inserted at the positions in S that are

not at the end of any interval. Hence, max(0, i+ j − k) ≤ ` ≤ min(i, d− k).

The total possible ways to reinsert these elements is

min(i,d−k)∑
`=max(0,i+j−k)

(
i

`

)(
d− j − i
d− k − `

)
2d−k−` =

i∑
`=0

(
i

`

)(
d− j − i
d− k − `

)
2d−k−`.

Summing over all partitions π of NC(d) and calculating the weight of the partitions
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yields

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

i∑
`=0

(
i

`

)(
d− j − i
d− k − `

)
2d−k−`xd−kg(Lk, x+ 1)

=
d∑
k=j

i∑
`=0

(
i

`

)(
d− j − i
d− k − `

)
2i−`2d−k−ixd−kg(Lk, x+ 1).

Apply Lemma 3.3.3 to get

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

i∑
`=0

(
i

`

)(
d− j − `
d− k

)
2d−k−ixd−kg(Lk, x+ 1).

Note, if ` > k − j,
(
d−j−`
d−k

)
= 0. Similarly, if ` > i,

(
i
`

)
= 0. Hence,

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

k−j∑
`=0

(
i

`

)(
d− j − `
d− k

)
2d−k−ixd−kg(Lk, x+ 1)

=
d∑
k=j

[(
i

0

)(
d− j
d− k

)
+

(
i

1

)(
d− j − 1

d− k

)
+

. . .+

(
i

k − j

)(
d− k
d− k

)]
2d−k−ixd−kg(Lk, x+ 1).

Applying Pascal’s identity to each of the
(
i
`

)
yields

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

(
1

2

)i{(
i− 1

0

)(
d− j
d− k

)
+

[(
i− 1

0

)
+

(
i− 1

1

)](
d− j − 1

d− k

)
+

. . .+

[(
i− 1

k − j

)
+

(
i− 1

k − j − 1

)](
d− k
d− k

)}
2d−kxd−kg(Lk, x+ 1).

Rearranging the terms gives

∑
π∈NC(d)

wt′S(π) =
d∑
k=j

(
1

2

)i{(
i− 1

0

)[(
d− j − 1

d− k

)
+

(
d− j
d− k

)]
+

. . .+

(
i− 1

k − j

)[(
d− k − 1

d− k

)
+

(
d− k
d− k

)]}
2d−kxd−kg(Lk, x+ 1)

=
d∑
k=j

k−j+1∑
`=1

(
1

2

)i(
i− 1

`− 1

)[(
d− `− j
d− k

)
+

(
d− `− j + 1

d− k

)]
2d−kxd−kg(Lk, x+ 1).
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Interchange the summations, rearrange terms, and use Equations (10) and (11) to get

∑
π∈NC(d)

wt′S(π) =
i∑

`=1

(
1

2

)i(
i− 1

`− 1

) d∑
k=`+j−1

[(
d− `− j
d− k

)

+

(
d− `− j + 1

d− k

)]
2d−kxd−kg(Lk, x+ 1)

=
i∑

`=1

(
1

2

)i(
i− 1

`− 1

)
Qd,`+j(x+ 1)

= Cd,i,j(x+ 1).

Thus, it was found that Cd,i,j(x) =
∑

π∈NC(d) wtS(π) for some family S of intervals

of [1, d] where S consists of i intervals and a total of d− j elements are contained in

its intervals.

The proof of Theorem 3.3.4 could be shorten by using the following lemma instead

of Lemma 3.3.3. In Lemma 3.3.5, a combinatorial reason is given for why both sides

of the equation will count the same number of objects. Using this lemma, allows one

to condense several steps at the end of the proof of Theorem 3.3.4.

Lemma 3.3.5: Let d > 0, i > 0, 0 ≤ j ≤ d− i, and j ≤ k ≤ d. Then

i∑
`=0

(
i

`

)(
d− i− j
d− k − `

)
· 2i−` =

i−1∑
m=0

(
i− 1

m

)[
2

(
d−m− j − 1

d− k

)
+

(
d−m− j − 1

d− k − 1

)]
.

Proof. The following proof will show that both sides of the given equation count all

pairs (X, f) such that X is a subset of {1, . . . , d − j} and f : {1, . . . , i}\X → {1, 2}

is a 2-coloring of {1, . . . , i}\X.

On the left hand side, fix the size ` of X∩{1, . . . , i}. The binomial coefficients count

the number of ways to select X ∩ {1, . . . , i} and X ∩ {i+ 1, . . . , d− j}, respectively.
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Finally, 2i−` is the number of ways to select f .

On the right hand side, set m as the size of the set Y := f−1(1)∩{1, . . . , i− 1}. In

other words, Y is the set of elements of color 1 that are different from i. There are(
i−1
m

)
ways to select Y . The elements of {1, . . . , i− 1}\Y either belong to X or have

color 2. If i does not belong to X, then there are two ways to select the color of i,

and X is a subset of ({1, . . . , i − 1}\Y ) ] {i + 1, . . . , d − j}, which may be selected(
d−m−j−1

d−k

)
ways. The elements of the remaining set {1, . . . , d− j}\(X ]Y ]{i}) must

have color 2. A similar reasoning for the case when i belongs to X shows that the

elements of X\{i} may be selected in
(
d−m−j−1
d−k−1

)
ways, completing the proof that the

right hand side counts the same set of objects as the left hand side.

The result of Theorem 3.3.4 could also have been proved by induction. This alter-

native method is outlined in the following remark and provides an intuitive reason

for why Cd,i,j(x) is a linear combination of the polynomials Qd,k(x).

Remark 3.3.6: For i > 1, Cd,i,j(x) = 1
2
[Cd,i−1,j(x) + Cd,i−1,j+1(x)]. Let P be a d-

dimensional cubical complex, and assume that F1, . . . , Fk is a shelling of P. For

1 ≤ m ≤ k, suppose Fm ∩ (F1 ∪ · · · ∪ Fm−1) is a shelling component of type (im, jm)

where im > 0. Adding Fm to F1 ∪ · · · ∪ Fm−1 results either in introducing a new

antipodally unpaired facet to the component or Fm is the second facet of an antipodal

pair of a previously listed facet. In the first case, im = im−1 + 1 and jm = jm−1. In

the second case, im = im−1 − 1 and jm = jm−1 + 1. Hence, for i > 1, Cd,i+1,j(x) =

1
2
[Cd,i,j(x) + Cd,i,j+1(x)].
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Applying this relation repeatedly, gives the result that for i > 1,

Cd,i,j(x) =
1

2
[Cd,i−1,j(x) + Cd,i−1,j+1(x)]

=
1

2

[
1

2
(Cd,i−2,j(x) + Cd,i−2,j+1(x)) +

1

2
(Cd,i−2,j+1(x) + Cd,i−2,j+2(x))

]
=

(
1

2

)2

[Cd,i−2,j(x) + 2Cd,i−2,j+1(x) + Cd,i−2,j+2(x)]

= . . .

=

(
1

2

)i−1 [(
i− 1

0

)
Cd,1,j(x) + . . .+

(
i− 1

i− 1

)
Cd,1,i+j−1(x)

]
.

Hence, Cd,1,j(x), . . . , Cd,1,i+j−1(x) acts as a basis for Cd,i,j(x). Substituting Qd,j+1(x) =

2Cd,1,j(x) yields Equation (11):

Cd,i,j(x) =

(
1

2

)i [(
i− 1

0

)
Qd,j+1(x) + . . .+

(
i− 1

i− 1

)
Qd,i+j(x)

]
.

After it has been shown that Cd,i,j(x) =
∑

π∈NC(d) wtS(π) for some S consisting of i

intervals and j elements in [1, d] but not in any interval of S, consider the following

interpretation of Cd,i,j(x) = 1
2
[Cd,i−1,j(x) + Cd,i−1,j+1(x)].

Pick an S which has i intervals and d − j elements contained in those intervals

such that one of those intervals consists of a single element. Note, since S is not

specified other than number of intervals and elements for Cd,i,j(x) =
∑

π∈NC(d) wtS(π),

specifying additional conditions here will not change the result. In this terminology,

if an extra unpaired facet is added to the shelling, one of the intervals of S is divided;

whereas, if a facet which completes a pair of antipodal facets is added, it corresponds

to an element being moved out of S. Hence, a chosen S can be built in one of two

moves: start with some other S which has i− 1 intervals. Divide one of the intervals

in two; i.e., start with Cd,i−1,j(x) to get Cd,i,j(x). Alternatively, one element may be
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taken from the complement of S and moved into S; i.e., start from Cd,i−1,j+1(x). The

element moved into S is not joined to any existing interval in S since that would

constitute a second move; hence, the number of intervals of S also increases.

Recall that type b elements are defined as last elements of a block where all other

elements in that block of the partition are type a, and the entire block is contained

in the same interval of S. However, in Definition 2.4.9, the weight function only

gives weight to antisingleton and singleton elements. Marked singleton elements are

a specific case of type b elements. The question that naturally arises is how often are

type b elements singletons?

Consider strings of n consecutive type a and type b elements. There are 2n such

strings with a total of n · 2n−1 type b elements contained in all 2n strings. Let Nn be

the number of nonsingleton type b elements contained in all 2n strings. See Table 14.

Table 14: Statistics on strings of type a and type b elements

n total strings number of b Nn

1 2 1 0
2 4 4 1
3 8 12 4
4 16 32 12

. . . . . . . . . . . .
n 2n n · 2n−1 (n− 1) · 2n−2

Nn counts the number of pairs ab in strings of length n. Consider now strings of

length n + 1, which are formed by inserting either a type a or type b element at the

beginning of a length n string. If a type b element is at position 1, then Nn counts the

number of nonsingleton type b elements over all these length n+ 1 strings. However,
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if a type a element is at position 1, then Nn+2n−1 counts the number of nonsingleton

type b elements over all length n+ 1 strings. The extra 2n−1 counts all the situations

where the second element of the string is type b, transforming that type b element

from being counted as a singleton element in the length n string to a nonsingleton

element in the length n + 1 string. Hence, Nn+1 = 2Nn + 2n−1. Using the initial

values (see Table 14) yields a closed formula: Nn = (n− 1) · 2n−2.

Then the percentage of nonsingleton type b elements among length n strings is

number of nonsingleton type b’s

total number of type b’s
=

Nn

n · 2n−1
=

(n− 1) · 2n−2

n · 2n−1
=
n− 1

2n
.

Notice the number of nonsingleton type b elements is strictly less than half of the total

number of type b elements. However, as the length of the string approaches infinity,

the number of nonsingleton type b elements in the string approaches 50%. On the

other hand, when n is small, type b elements are predominately singleton elements.

In the situations where type a and type b elements are inserted into a partition at

positions in S, as in the previous proof, the only restriction on the length of these

inserted strings is that the string must stay within an interval of S. As such, many of

the inserted strings of type a and type b elements may be short, which implies that,

overall, the majority of type b elements will be singleton elements.

3.3.2 Qd,k(x) as the Total Weight of Objects

Theorem 3.3.7: For 0 ≤ k ≤ d+ 1,

Qd,k(x) =


2
∑

π∈NC(d) wtk(π) if 1 ≤ k ≤ d,∑
π∈NC(d) wtk(π) if k = 0 or d+ 1.
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Proof. Case 1: Suppose 1 ≤ k ≤ d. Definition 2.4.11 defines the weight function

wtk(π) for any π ∈ NC(d). Apply this definition to Lemma 3.3.1 to get the desired

result.

Case 2: Let k = d+1. By Lemma 2.4.12, Qd,d+1(x) = g(Ld, x) =
∑

π∈NC(d) x
block(π),

which gives the desired result.

Case 3: Suppose k = 0. Then S = {[1, d]∗}. Let wt′0(π) be the weight of π in

NC(d) where marked special objects have a weight of x and all others a weight of

1 as defined in the proof of Lemma 3.3.1. This case be will proved by showing that

Qd,0(x+ 1) =
∑

π∈NC(d)wt
′
0(π).

To compute
∑

π∈NC(d) wt
′
0(π), choose π in NC(d), and mark as many nonsingleton

blocks, antisingleton elements of π, and last elements of π where all other elements

of the block have been marked as desired. Since S = {[1, d]∗}, d is an antisingleton

of π if and only if d is a singleton of α(π). Define type a and type b elements as in

the proof of the Lemma 3.3.1.

Let d − ` be the number of type a and type b elements in π. Then 0 ≤ ` ≤

d, and π` ∈ NC(`) as defined in Lemma 3.3.1. Suppose ` 6= 0, 1. Then 0 ≤

d − ` < d − 1. Summing over all partitions and ways to mark the elements yields∑d
`=2 2d−`

(
d
d−`

)
xd−`g(L`, x+ 1).

When ` = 0, all elements are type a or type b elements. The total weight for

each of these partitions is xd. Let n be the number of blocks of the partition, and

suppose n > 1. The type b elements will determine the position of the blocks of

the partition since each block ends with a type b element. Consider the partition in

its circular representation, and pick the location of the type b elements. There are
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n=2

(
d
n

)
= 2d − d − 1 ways to choose these positions. Thus, the total weight of all

such partitions is (2d − d− 1)xd. On the other hand, suppose the partition has only

one block. Then, obviously, π = (1 . . . d) whose weight is xd(x + 1), where (x + 1) is

the weight of the block, which can either be marked or unmarked.

When ` = 1, all elements except for one are type a or type b elements. Suppose

the partition has at least two blocks. Once the unmarked position is chosen, there

are 2d−1 ways to arrange the type a and type b elements. However, if all the d − 1

marked elements are type a, the partition has exactly one block. Hence, there are

really 2d−1 − 1 ways to arrange the type a and type b elements, giving a total weight

of d(2d−1 − 1)xd−1. If the partition has one block, then π = (1 . . . d), and its weight

is dxd−1(x+ 1).

Summing over all partitions of NC(d) yields a total weight of

∑
π∈NC(d)

wt′0(π) =
[
xd(x+ 1) + (2d − d− 1)xd

]
+
[
dxd−1(x+ 1) + d(2d−1 − 1)xd−1

]
+

d∑
`=2

2d−`
(

d

d− `

)
xd−`g(L`, x+ 1)

= xd+1 +
d∑
`=0

2d−`
(
d

`

)
xd−`g(L`, x+ 1)

= Qd,0(x+ 1).

Thus, Qd,0(x) =
∑

π∈NC(d) wt0(π).

The next two corollaries follow directly from the result of Theorem 3.3.7; these two

properties are illustrated in Table 15 for small d.

Corollary 3.3.8: For 0 ≤ k ≤ d + 1, the coefficients of the polynomials Qd,k(x) are

nonnegative integers.
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Table 15: The polynomials Qd,k(x) for small d

d\k 0 1 2 3 4 5

0 x 1
1 x2 2x 1
2 x2 + x3 4x2 4x 1 + x
3 4x3 + x4 2x2 + 8x3 10x2 8x+ 2x2 1 + 4x
4 2x3 + 11x4 + x5 12x3 + 16x4 4x2 + 24x3 24x2 + 4x3 16x+ 12x2 1 + 11x+ 2x2

Corollary 3.3.9: For 1 ≤ k ≤ d, the coefficients of Qd,k(x) are even.

3.4 The Duality of the Polynomials Cd,i,j(x)

Suppose S = {[k1, l1], . . . , [ki, li]} as defined in Section 3.3 where [kn, ln] ⊆ [1, d] for

1 ≤ n ≤ i. Consider also S ′, [1, d]− S, and [1, d]− S ′ as defined in Section 3.3.

Lemma 3.4.1: Let π ∈ NC(d) and S as defined above. Then wtS(π) · wtS′(α(π)) =

xd+1.

Proof. By Equation (5), wtS(π) = xblock(π)·xsingS(π)·xsing[1,d]−S′ (α(π)), and wtS′(α(π)) =

xblock(α(π))·xsingS′ (α(π))·xsing[1,d]−S(π). By definition, sing(π) = singS(π)+sing[1,d]−S(π).

Using these definitions and applying Lemma 2.4.5 yields

wtS(π) · wtS′(α(π)) = xblock(π) · xsingS(π) · xsing[1,d]−S′ (α(π))

· xblock(α(π)) · xsingS′ (α(π)) · xsing[1,d]−S(π)

= xblock(π)+sing(π)+sing(α(π))+block(α(π))

= x|π|+|α(π)| = xd+1.

An immediate consequence of Lemma 3.4.1 is that if wtS(π) = xk for some k, then

wtS′(α(π)) = xd+1−k. Note, Lemma 3.4.1 also holds for S = ∅ (with S ′ = {[1, d]∗})
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and for S = {[1, d]∗} (where S ′ = ∅) since sing∅(π) = 0 and sing{[1,d]∗}(π) = sing(π).

Theorem 3.4.2: Let i > 0 and 0 ≤ j ≤ d− i. Then for 0 ≤ k ≤ d+ 1, [xk]Cd,i,j(x) =

[xd+1−k]Cd,i,d−i−j(x).

Proof. By Theorem 3.3.4, Cd,i,j(x) =
∑

π∈NC(d) wtS(π) for some set S of pairwise

disjoint intervals of [1, d] defined as in Section 3.3. Recall S consists of i intervals and

contains a total of d− j elements in its intervals. Define S ′ as before. Then S ′ has i

intervals and contains a total of i+ j elements in its intervals. Pick any π ∈ NC(d),

and let k ≥ 0 be such that wtS(π) = xk. Define α(π) as before. By Lemma 3.4.1,

wtS′(α(π)) = xd+1−k, which means that Cd,i,d−i−j(x) =
∑

π∈NC(d) wtS′(α(π)). Thus,

[xk]
∑

π∈NC(d) wtS(π) = [xd+1−k]
∑

π∈NC(d) wtS′(α(π)), implying that [xk]Cd,i,j(x) =

[xd+1−k]Cd,i,d−i−j(x).

Using these results, the duality of the polynomials Qd,k(x) is easily shown as seen

below.

Lemma 3.4.3: For 0 ≤ ` ≤ bd/2c, [x`]Qd,d+1(x) = [xd+1−`]Qd,0(x).

In the proof of Proposition 2.6 in [64], Stanley showed that

xd+1g(Ld, 1/x) = (x− 1)d+1 +
d∑
`=0

2d−`
(
d

`

)
(x− 1)d−`g(L`, x).

Reinterpreting this in terms of the polynomials Qd,k(x) yields xd+1Qd,d+1(1/x) =

Qd,0(x), which gives the desired result. Additionally, if ` > bd/2c, then [x`]Qd,d+1(x) =

0 = [xd+1−`]Qd,0(x).

Lemma 3.4.4: Let π ∈ NC(d) and 0 ≤ k ≤ d+1, then wtk(π) ·wtd+1−k(α(π)) = xd+1.
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Proof. If k = 0 or k = d+1, the result follows directly from the proof of Lemma 3.4.3

and the definition of wtk(π). Suppose 1 ≤ k ≤ d and π ∈ NC(d). Let S =

{[k, d]}. Then S ′ = {[d+ 1− k, d]}. By Definition 2.4.11 and Lemma 3.4.1, wtk(π) ·

wtd+1−k(α(π)) = wtS(π) · wtS′(α(π)) = xd+1.

A direct consequence of Lemma 3.4.4 is that if π ∈ NC(d) where wtk(π) = x` for

some ` then wtd+1−k(α(π)) = xd+1−`.

Theorem 3.4.5: Let 0 ≤ k ≤ d + 1. Then [x`]Qd,k(x) = [xd+1−`]Qd,d+1−k(x) for

0 ≤ ` ≤ d+ 1.

Proof. When k equals 0 or d + 1, apply Lemma 3.4.3. If 1 ≤ k ≤ d, let S =

{[k, d]}; then S ′ = {[d + 1 − k, d]}. Apply Theorem 3.4.2 to get [x`]Cd,1,k−1(x) =

[xd+1−`]Cd,1,d−k(x). Thus, [x`]Qd,k(x) = [xd+1−`]Qd,d+1−k(x) since, by Equation (11),

Qd,d+1−k(x) = 2 · Cd,1,d−k(x).

Example 3.4.6: Let P be a d-cube. The normalized Adin h-vector for P is hk = 1 for

all 0 ≤ k ≤ d + 1. Hence, f(P, x) =
∑d+1

k=0Qd,k(x). Note, h(P, x) = xd+1f(P, 1/x) =

f(P, x). Thus, the h polynomials will be symmetric (see Table 16) because of the

duality of the polynomials Qd,k(x).

Table 16: The h polynomials for the d-cube for small d

d h(P, x)

0 x+ 1
1 x2 + 2x+ 1
2 x3 + 5x2 + 5x+ 1
3 x4 + 12x3 + 14x2 + 12x+ 1
4 x5 + 27x4 + 42x3 + 42x2 + 27x+ 1
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Remark 3.4.7: For any d-dimensional cubical sphere P, the face poset is Eulerian.

Thus, the toric h polynomial satisfies the generalized Dehn-Sommerville equations

h(P , x) = xd+1h(P , 1/x) [64]. In terms of the polynomials Qd,k(x) this statement is

the same as
d+1∑
k=0

hkQd,k(x) = xd+1

d+1∑
k=0

hkQd,k

(
1

x

)
.

Adin [2] showed that the Dehn-Sommerville equations holding for P may be restated

as hk = hd+1−k holding for the Adin h-vector. Combining these produces

d+1∑
k=0

hkQd,k(x) =
d+1∑
k=0

hkx
d+1Qd,d+1−k

(
1

x

)
.

Since the cubical Dehn-Sommerville equations are a complete set of linear relations

even for cubical polytopes [32], then h0, . . . , hb d+1
2
c are linearly independent. Compar-

ing the contributions of hk and hd+1−k on both sides of the last equation yields

Qd,k(x) +Qd,d+1−k(x) = xd+1

(
Qd,d+1−k

(
1

x

)
+Qd,k

(
1

x

))
. (13)

Conversely, it is not difficult to show that the Dehn-Sommerville equations, stated for

the Adin h-vector, and Equation (13) imply f(P , x) = xd+1f(P , 1/x). Equation (13)

is a direct consequence of Theorem 3.4.5, but Theorem 3.4.5 cannot be derived from

it.

Remark 3.4.8: Theorem 3.4.5 could also be shown directly by specializing the proof of

Theorem 3.4.2. After that Theorem 3.4.2 can be proved by combining Theorem 3.4.5

and Equation (11) as follows:
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xd+1Cd,i,d−i−j(1/x) =

d−j∑
k=d+1−i−j

(
1

2

)i(
i− 1

k − 1− d+ i+ j

)
xd+1Qd,k(1/x)

=

d−j∑
k=d+1−i−j

(
1

2

)i(
i− 1

k − 1− d+ i+ j

)
Qd,d+1−k(x).

Set ` = d+ 1− k to get

xd+1Cd,i,d−i−j(1/x) =

i+j∑
`=j+1

(
1

2

)i(
i− 1

i+ j − `

)
Qd,`(x) = Cd,i,j(x).



CHAPTER 4: A GRAY CODE FOR SHELLINGS OF THE HYPERCUBE

As a consequence of Lemma 2.3.3 and how the hypercube, or n-cube, was defined

in Section 2.3, shellings of the boundary complex of an n-cube may be described in

the following way. Recall, using this notation means that each enumeration of the

facets of the boundary of the n-cube can be identified with a signed permutation of

the set {±1, . . . ,±n}.

Lemma 4.0.9: An enumeration F1, . . . , F2n of the facets of the boundary complex of

the n-cube is a shelling if and only if for each m < 2n, the set {F1, . . . , Fm} contains

at least one antipodally unpaired facet.

Proof. The cubical complex F1∪· · ·∪Fm is shellable and (n−1)-dimensional, and as

such, it is homeomorphic to a (n− 1)-ball or an (n− 1)-sphere. Since the boundary

complex F1 ∪ · · · ∪F2n is an (n− 1)-sphere, the proper subcomplex F1 ∪ · · · ∪Fm can

only be an (n − 1)-ball. By [25, Lemma 3.3] (see part (i) of Lemma 2.3.3 above),

F1 ∪ · · · ∪ Fm must contain at least one antipodally unpaired facet.

Conversely, assume that F1 ∪ · · · ∪ Fm contains at least one antipodally unpaired

facet for each m < 2n. In other words, each Fm∩(F1∪· · ·∪Fm−1) is a cubical shelling

component in the shelling of an n-dimensional cubical complex, and its type (im, jm)

satisfies im > 0. Adding Fm to F1 ∪ · · · ∪ Fm−1 results either in introducing a new

antipodally unpaired facet or Fm is the antipodal pair of a previously listed facet. In
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the first case, im = im−1 + 1 and jm = jm−1. In the second case, im = im−1 − 1 and

jm = jm−1 + 1. Finally, for m = 2n, F2n ∩ (F1 ∪ · · · ∪ F2n−1) is a shelling component

of type (0, n− 1).

For each initial segment of an enumeration of the facets of a shelling of the boundary

of the n-cube, there is at least one antipodal pair of facets such that exactly one of

the two facets belongs to the shelling component; i.e., the facet k is listed among the

first i facets of the shelling but facet −k facet is not [25].

Corollary 4.0.10: A permutation of {±1, . . . ,±n} is sign-connected if and only if it

represents a shelling of the facets of the hypercube. Similarly, a sign-disconnected

permutation represents an enumeration of the facets that is not a shelling.

As a result of Corollary 4.0.10, the number of sign-connected permutations equals

the number of shellings of the boundary of the n-cube, which differ by an isome-

try. Given any n, this number can be found by the recursive formula an = (2n −

1)!!−
∑n−1

k=1(2k − 1)!! · an−k. The sequence {an} is sequence A000698 in the On-Line

Encyclopedia of Integer Sequences [1].

4.1 Equivalence Classes of the Enumerations of the Facets of the n-Cube

The isometries of the n-cube permute its facets, inducing a Bn action on the enu-

merations of all facets of the boundary of the n-cube. This action is free; i.e., any

nontrivial isometry takes each enumeration into a different enumeration.

Definition 4.1.1: Two enumerations of the facets of the n-cube will be considered equiv-

alent if they can be transformed into each other by an isometry of the n-cube.

As noted in Section 2.3, every enumeration of the facets of the boundary of the
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n-cube can be identified with a signed permutation. The induced action of Bn on

these signed permutations is generated by the following operations:

1. for each k ∈ {1, . . . , n}, there is a reflection εk interchanging k with −k and

leaving all other entries unchanged;

2. for each {i, j} ⊂ {1, . . . , n}, there is a reflection ρi,j interchanging i with j and

−i with −j, leaving all other entries unchanged.

It is worth noting that the elements of Bn may be identified with signed permutations

in the usual way; the action of Bn considered is the action of Bn on itself, via conju-

gation. There exist 2n · n! symmetries of the n-cube [40]. Since the Bn action is free,

all equivalence classes have the same cardinality, giving a total of
(2n)!

2n · n!
equivalence

classes.

From Section 2.5.1, there are a total of
(2n)!

2n · n!
standard permutations.

Lemma 4.1.2: Each equivalence class of the enumerations of the facets of an n-cube

corresponds to exactly one standard permutation.

Proof. Since the number of equivalence classes and the number of standard permuta-

tions are the same, it only remains to be shown that every π ∈ S{±1,...,±n} is equivalent

to a standard permutation.

Pick any π ∈ S{±1,...,±n}, and suppose Π is the equivalence class that contains π.

Applying only reflections εk ∈ Bn, π may be replaced with a π′ ∈ Π that satisfies

condition (1) in Definition 2.5.1. Applying only reflections ρi,j ∈ Bn, π′ may be

replaced with a π′′ ∈ Π that also satisfies condition (2) in Definition 2.5.1. Note that

the application of an operator ρi,j leaves the validity of condition (1) unchanged.
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The set of sign-connected permutations is closed under the action of Bn; thus, the

equivalence classes of shellings may be thought of as types of shellings.

4.2 A Gray Code for all Standard Permutations

In this section, a Gray code will be defined for the standard permutations of the

set {±1, . . . ,±n} when n ≥ 1. Because standard permutations can be written in

the form σ(a1 · · · an), first define a code on the words a1 · · · an (see Definition 2.5.8).

Call this listing the Gray code for words. To get the Gray code for the standard

permutations, simply convert each word into its associated standard permutation.

Recursively define the Gray code for words as follows. For n = 1, there is only

one word to list, namely 1. To write the Gray code for words of length n, start with

11 . . . 1. Increase an by 1 to get the next word: 11 . . . 12. Continue to increase an by 1

to generate a list of codes. Stop increasing an once an = 2n−1 (recall 1 ≤ ai ≤ 2i−1

for any i). Now replace a1 · · · an−1 with the next word in the Gray code for words of

length n− 1 to get 11 . . . 12(2n− 1). Decrease an by 1 to get the next string of codes.

When an = 1, replace a1 · · · an−1 with the next word in the Gray code of length n−1.

Continue in this fashion until the Gray code terminates with 135 . . . (2n − 1). See

Table 17 for the Gray code when n = 2 and n = 3.

Table 17: The Gray code for n = 2 and n = 3

length code
n = 2 11 12 13
n = 3 111 112 113 114 115

125 124 123 122 121
131 132 133 134 135
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Theorem 4.2.1: The enumeration defined above is an adjacent transposition Gray code

for the standard permutations of the set {±1, . . . ,±n}.

Proof. Proceed by induction on n. Compare two consecutive words a1 · · · an and

b1 · · · bn in the list. They will differ at exactly one letter. There are two cases,

depending on whether this letter is the last letter of the word or some other letter.

Case 1: an 6= bn. In this case, the first n− 1 arcs in the two associated arc diagrams

remain stationary, and the nth arc moves to the right or to the left by one vertex

position. This move switches the left end of the nth arc with an adjacent end of a

different arc. As mentioned at the end of Section 2.5, switching adjacent ends of two

arcs corresponds to an adjacent transposition on the associated signed permutation.

Case 2: an = bn. This case occurs only when an = 1, corresponding to the nth arc

stretching over the first n − 1 arcs, or when an = 2n − 1, meaning the nth arc is a

minimal arc. In either situation, the nth arc will not affect whether or not the move

produces an adjacent transposition in the associated standard permutations. By the

recursive definition of the Gray code, replace a1 · · · an−1 with the next word in the

Gray code for words of length n− 1. By the induction hypothesis, consecutive words

in the Gray code for words of length n − 1 correspond to standard permutations on

{±1, . . . ,±(n− 1)} that differ by an adjacent transposition.

Fig. 32 illustrates the relationship between the Gray code for signed permutations

and its associated arc diagrams and words.
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WordsSigned Permutations

3,2,1,−1,−2,−3 111

2,3,1,−1,−2,−3 112

2,1,3,−1,−2,−3 113

2,1,−1,3,−2,−3 114

2,1,−1,−2,3,−3 115

1,2,−1,−2,3,−3 125

1,2,−1,3,−2,−3 124

1,2,3,−1,−2,−3 123

1,3,2,−1,−2,−3 122

3,1,2,−1,−2,−3 121

3,1,−1,2,−2,−3 131

1,3,−1,2,−2,−3 132

1,−1,3,2,−2,−3 133

1,−1,2,3,−2,−3 134

1,−1,2,−2,3,−3 135

Arc Diagrams

Figure 32: The Gray code for n = 3 in terms of signed permutations, arc diagrams,
and words
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4.3 Properties of the Full Gray Code

The Gray code for the equivalence classes of the enumerations of the facets of the

boundary of the n-cube, denoted by their standard permutations, will be referred to

as the full Gray code. As seen in Section 4.2, this Gray code may be defined in terms

of a list of standard permutations in the form σ(a1 · · · an). Let a = a1 · · · an. The

notation τ(a) will represent the truncated word a1 · · · an−1, obtained by removing the

last letter of a.

Definition 4.3.1: A run in the Gray code is defined to be a maximal sublist of consec-

utive words such that τ(a) is identical for all a in the sublist.

All words in a run form a sublist of codes corresponding to standard permutations

differing by an adjacent transposition. In the run, only an changes, either increasing

from 1 to 2n − 1 or decreasing from 2n − 1 to 1. A run is increasing if an increases

to get each subsequent word in the run. If an increasing run is the kth run in the

Gray code, then k ≡ 1 mod 2. Hence, increasing runs will also be referred to as odd

runs. A run is decreasing if an decreases to get each subsequent code in the run. If a

decreasing run is the kth run in the Gray code, then k ≡ 0 mod 2. Decreasing runs

will also be referred to as even runs. Odd and even refer to the count of the run and

not whether an−1 is odd or even. For example, 1111 through 1117 is the first run in

the Gray code for words of length 4, and a3 = 1. However, 12561 through 12569 is

the 37th run in the Gray code for words of length 5, and a4 = 6.

Several properties of the Gray code follow directly from its definition:

1. Suppose σ(b) immediately follows σ(a) in the Gray code and a and b are in
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different runs. If a is in an odd (increasing) run, then b is in an even (decreasing)

run and an = bn = 2n − 1. If a is in an even (decreasing) run, then b is in an

odd (increasing) run and an = bn = 1.

2. In every run, there is at least one arc-disconnected word (when an = 2n − 1)

and there are at least two arc-connected words (when an = 1 or 2).

3. There are (2n − 3)!! runs in the Gray code where each word that encodes a

standard permutation has length n.

Lemma 4.3.2: If σ(a) is the mth standard permutation in the Gray code, then (n −

1) +
∑n

i=1 ai ≡ m mod 2.

Proof. Use induction on m. If m = 1, then a1 = a2 = · · · = an = 1 and (n −

1) +
∑n

i=1 ai = 2n − 1 ≡ m mod 2. Assume the statement is true for the mth

standard permutation σ(a), and let b be the word which encodes the (m+1)st standard

permutation in the Gray code. As noted above, there exists a unique i such that

bi = ai ± 1 and bj = aj for all j 6= i. Hence the parity of (n − 1) +
∑n

i=1 bi is the

opposite of the parity of (n − 1) +
∑n

i=1 ai; that is, (n − 1) +
∑n

i=1 bi ≡ m + 1 mod

2.

Lemma 4.3.3: Suppose σ(a) is the mth code in the Gray code. If a is in an increasing

run, m ≡ an mod 2, and if a is in a decreasing run, m ≡ (an − 1) mod 2.

Proof. Let k be the number of increasing runs which occur before the run in which a

is located. Recall, there are 2n− 1 codes in each run.

Case 1: a is in an increasing run.
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Then there are k decreasing runs which occur before the run in which a is located.

Thus, m = (2k)(2n− 1) + an ≡ an mod 2.

Case 2: a is in a decreasing run.

Then there are k − 1 decreasing runs which occur before the run in which a occurs,

and since a is in a decreasing run, a is the (2n− 1)− an + 1 word in the run. Thus,

m = (2k)(2n− 1)− an + 1 ≡ (an − 1) mod 2.

Corollary 4.3.4: a is in an increasing run if and only if a1 + a2 + . . .+ an−1 + (n− 2)

is odd, otherwise a is in a decreasing run.

Lemma 4.3.5: Suppose that σ(a) is immediately followed by σ(b) in the full Gray code.

Let i be the unique index such that bi = ai ± 1 and bj = aj for all j 6= i. If i < n,

then either ak = 1 for all k > i or ak = 2k − 1 for all k > i.

Proof. By the recursive nature of the Gray code, for each k > i either ak = 1 or

ak = 2k− 1. The goal is to show that in a single word it is not possible to have both

ak = 1 and aj = 2j − 1 for some k and j both exceeding i. If there is such a change,

then there is a least k exceeding i such that exactly one of ak and ak+1 is equal to

one. Since aj = bj for j ≥ k + 2, the word b1 · · · bk+1 immediately follows a1 . . . ak+1

in the full Gray code for words of length k + 1. By the recursive nature of the Gray

code, assume k = n− 1. It will be shown by way of contradiction that the case when

an = 2n− 1 and an−1 = 1 is impossible. The case when an−1 = 2n− 3 and an = 1 is

analogous.

Since an = bn = 2n − 1, a is in an increasing run. By Corollary 4.3.4, a1 + . . . +

an−1 +(n−2) ≡ 1 mod 2. Thus, a1 + . . .+an−2 +(n−3) ≡ 1 mod 2, which means τ(a)
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is in an increasing run in the Gray code for words of length n − 1. Since an−1 = 1,

bn−1 = 2, which contradicts i < n− 1.

Corollary 4.3.6: If a = a1 · · · ak1 · · · 1 and the next word in the Gray code for words

is a1 · · · a′k1 · · · 1, then a′k = ak + 1 exactly when ak is even, and a′k = ak − 1 exactly

when ak is odd. Similarly, if a = a1 · · · ak(2k + 1) · · · (2n − 1) and the next word in

the Gray code for words is a1 · · · a′k(2k+ 1) · · · (2n−1), then a′k = ak + 1 exactly when

ak is odd, and a′k = ak − 1 exactly when ak is even.

Lemma 4.3.2 has an additional consequence.

Corollary 4.3.7: Under the conditions of Lemma 4.3.5, if a = a1 · · · ak1 · · · 1, then

a1 + . . .+ ak + (k− 1) ≡ 0 mod 2. If a = a1 · · · ak(2k+ 1) · · · (2n− 1), then a1 + . . .+

ak + (k − 1) ≡ 1 mod 2.

Lemma 4.3.8: In each run in the Gray code for words of length n, there exists k such

that an ≤ 2k − 2 if and only if a is arc-connected; and if an ≥ 2k − 1, a is arc-

disconnected. This k is the least index k′ ≤ n− 1 such that aj ≥ 2k′ − 1 holds for all

j ∈ {k′, k′ + 1, . . . , n− 1} if such an index exists; otherwise k = n.

Proof. Consider a run in the Gray code for words of length n. All words in the run

have the same truncated word τ(a) = a1 · · · an−1.

Case 1: τ(a) is arc-connected. Applying Corollary 2.5.12 to τ(a), here there is no

k′ ≤ n − 1 such that aj ≥ 2k′ − 1 holds for all j ∈ {k′, k′ + 1, . . . , n − 1}. By the

same Corollary 2.5.12, a is arc-disconnected if and only if there exists a k such that

ak = 2k − 1 and aj ≥ ak = 2k − 1 for all j > k. Since a1 · · · an−1 is arc-connected,

the only such possibility for k is n. Thus, a1 · · · an is arc-disconnected if and only if
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ak = an = 2n− 1.

Case 2: τ(a) is arc-disconnected. Applying Corollary 2.5.12 to τ(a) yields a smallest

k′ ≤ n − 1 such that ak′ = 2k′ − 1 and aj ≥ 2k′ − 1 for k′ < j < n. Clearly,

if an ≥ 2k′ − 1, then a is arc-disconnected. It is only left to show that a is arc-

connected whenever an ≤ 2k′−2. If a is arc-disconnected for some an ≤ 2k′−2, then

by Corollary 2.5.12, there is a k′′ such that aj ≥ 2k′′ − 1 holds for all j ≥ k′′. By the

minimality of k′, k′′ ≥ k′. On the other hand, an ≥ 2k′′ − 1 and an ≤ 2k′ − 2 imply

k′′ < k′, a contradiction.

Lemma 4.3.9: If k is defined as in Lemma 4.3.8, then σ(a1 · · · ak−1) is the first sign-

connected component of the standard permutation σ(a1 · · · an−1).

Proof. Assume there is a least index k′ ≤ n − 1 such that aj ≥ 2k′ − 1 holds for

all j ∈ {k′, k′ + 1, . . . , n − 1}. In this case, k = k′ and, by Corollary 2.5.12, the

standard permutation σ(a1 · · · ak−1) is sign-connected. Since aj ≥ 2k − 1 holds for

j ∈ {k, . . . , n−1}, the left endpoints of the corresponding arcs are all to the right of the

arcs associated to σ(a1 · · · ak−1). Therefore, σ(a1 · · · ak−1) is the first sign-connected

component of σ(τ(a)).

The remaining case is when there is no k′ ≤ n − 1 satisfying aj ≥ 2k′ − 1 for all

j ∈ {k′, k′ + 1, . . . , n − 1}. In this case, k = n, and Corollary 2.5.12 implies σ(τ(a))

is sign-connected.

Lemma 4.3.10: Suppose a is immediately followed by b in the full Gray code for words,

and let k be the unique index such that bk 6= ak. If bk = ak + 1 and a is arc-

disconnected, then b is arc-disconnected; and if bk = ak − 1 and a is arc-connected,
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then b is arc-connected.

Proof. Consider first the case when k = n. In this case a and b belong to the same

run and the statement follows from Lemma 4.3.8. Finally, consider the case when

k 6= n. In this case Lemma 4.3.5 implies that either ai = 1 holds for all i > k or

ai = 2i − 1 holds for all i > k. By Lemma 4.3.8, a is arc-connected exactly when

ai = 1 holds for all i > k and a is arc-disconnected exactly when ai = 2i− 1 holds for

all i > k. The same characterization also applies to b since ai = bi for all i > k.

4.4 Restricting the Gray Code to the Shelling Types of the n-Cube

The goal of this section is to define a Gray code for the facet enumerations of the

boundary of the n-cube, restricted to shelling types. This is equivalent to finding a

Gray code for the arc-connected words a1 · · · an since arc-connected words encode sign-

connected standard permutations which in turn represent shellings of the boundary

of the n-cube.

In this section, it will be shown that the sublist obtained by removing all arc-

disconnected words from the full Gray code of words of Section 4.2 yields a Gray

code for the sign-connected standard permutations. This sublist of the standard

permutations will be referred to as the connected Gray code. Showing this sublist is a

Gray code will be done in two stages. First the following, weaker statement is proven.

Theorem 4.4.1: If a and b are arc-connected, but every code listed between these two

words in the full Gray code for words is arc-disconnected, then σ(a) and σ(b) differ

by a single transposition.
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Theorem 4.4.1 is an immediate consequence of Lemma 2.5.15 and of the following

statement.

Proposition 4.4.2: If a and b are as in Theorem 4.4.1, then there is a unique k < n

such that ak 6= bk. Furthermore, an = bn = 2i − 2 holds for some i ∈ {2, . . . , n},

satisfying ai = bi = 2i− 1 and aj, bj ≥ 2i− 1 for all j ∈ {i, . . . , n− 1}.

Proof. Without loss of generality one may assume that b follows a in the full Gray

code for words and that there is at least one arc-disconnected word between them.

By Lemma 4.3.8, a cannot be at the end of a run; by Lemma 4.3.10, a must be

in an increasing run. Thus, a1 · · · an−1an is arc-connected, and the next consecutive

word in the Gray code of words is a1 · · · an−1a
′
n, where a′n = an + 1. This word

is arc-disconnected as are all the remaining codes in the run up to and including

a1 · · · an−1(2n− 1).

The next run in the Gray code for words starts with c1 · · · cn−1(2n−1), which is arc-

disconnected. This run decreases down to c1 · · · cn−11, an arc-connected code. Since

b1 · · · bn is the first arc-connected code following a, c1 · · · cn−1 = b1 · · · bn−1. Thus, the

next run in the Gray code of words actually starts with b1 · · · bn−1(2n − 1), and the

subsequent codes in the run, down to b1 · · · bn−1(bn + 1), are arc-disconnected.

By the construction of the Gray code, τ(a) and τ(b) are consecutive words in the

full Gray code for words of length n − 1; thus, there is exactly one k < n such that

bk = ak ± 1. By Lemma 4.3.5, τ(a) has either the form a1 · · · ak1 · · · 1 or the form

a1 · · · ak(2k + 1) · · · (2n− 3).

Case 1: k < n − 1, and τ(a) = a1 · · · ak1 · · · 1 where ak 6= 1. By assumption,
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bk = ak ± 1. Thus, both τ(a) and τ(b) are arc-connected, and Lemma 4.3.9 implies

that an = 2n− 2 = bn.

Case 2: k < n − 1, and τ(a) = a1 · · · ak(2k + 1) · · · (2n − 3) where ak 6= 2k − 1.

By Corollary 2.5.12, τ(a) is arc-disconnected, so there must exist an i ≤ k + 1 such

that ai = 2i − 1 and aj ≥ 2i − 1 for i < j < n. Choose i to be the smallest index

with this property. By Lemma 4.3.8, the word a1 · · · ak(2k + 1) · · · (2n− 3)(2i− 2) is

arc-connected, but the rest of the codes in the run, a1 · · · ak(2k+1) · · · (2n−3)(2i−1)

through a1 · · · ak(2k+1) · · · (2n−3)(2n−1), are arc-disconnected. Thus, an = 2i−2.

Since b is in a decreasing run immediately following the run in which a is contained,

the run of b starts with b1 · · · bk(2k + 1) · · · (2n − 3)(2n − 1) where bk = ak ± 1. By

Corollary 4.3.6, if bk = ak + 1, then ak is odd, and if bk = ak − 1, then ak is even.

Since i 6= k and i ≤ k + 1, there are two subcases:

Case 2a: i = k + 1. In this case, a1 · · · ak is arc-connected and an = 2i − 2 = 2k.

The claim is that b1 · · · bk is also arc-connected. This is an immediate consequence of

Lemma 4.3.10 when bk = ak − 1. If bk = ak + 1, then bk is even and b1 · · · bk is arc-

connected because, by Lemma 4.3.8, the first arc-disconnected code in an increasing

run ends with an odd letter. Thus, both a = a1 · · · ak(2k + 1) · · · (2n − 3)(2k) and

b1 · · · bk(2k + 1) · · · (2n − 3)(2k) are arc-connected codes, and there are only arc-

disconnected codes between these two words in the full Gray code for words. Therefore

bn = 2k.

Case 2b: i < k. In this case, a1 · · · ai−1 is arc-connected and 2i − 1 ≤ ak < 2k − 1.

By Corollary 2.5.12, a1 . . . ak is arc-disconnected and, by Lemma 4.3.9, the first sign-

connected component of σ(a1 · · · ak) is σ(a1 · · · ai−1). When bk = ak+1, an immediate
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consequence of Lemma 4.3.10 is that b1 · · · bk is arc-disconnected. If bk = ak− 1, then

ak is even. Since ak is strictly greater than 2i − 1, bk ≥ 2i − 1, and b1 · · · bk is

arc-disconnected.

Since b1 · · · bm = a1 · · · am for any m strictly between i and k and σ(a1 · · · ai−1)

is the first sign-connected component of σ(a1 · · · ak), then σ(b1 · · · bi−1) is the first

sign-connected component of σ(b1 · · · bk). Hence, both a1 · · · ai · · · ak(2k+ 1) · · · (2n−

3)(2i− 2) and b1 · · · bi · · · bk(2k + 1) · · · (2n− 3)(2i− 2) are arc-connected codes such

that there are only arc-disconnected words between them in the full Gray code for

words. Thus, bn = 2i− 2.

Case 3: k = n − 1 (namely, bn−1 = an−1 ± 1). By Lemma 4.3.8, there exists i such

that a1 · · · an−1(2i − 2) is arc-connected but a1 · · · an−1(2i − 1) is arc-disconnected.

If τ(a) and τ(b) are both arc-connected, this is a degenerate case of case 2a with

i = k + 1 = n and an = bn = 2n − 2. If τ(a) and τ(b) are both arc-disconnected,

this is a degenerate case of case 2b with k = n − 1, i < k and an = bn = 2i − 2.

The remaining case is when τ(a) is arc-connected but τ(b) is arc-disconnected and

the case when τ(a) is arc-disconnected but τ(b) is arc-connected. The following will

show, by way of contradiction, that neither of these cases can occur.

Assume first that τ(a) is arc-connected but is immediately followed by the arc-

disconnected word τ(b) in the Gray code for words of length n− 1. By Lemma 4.3.8,

τ(a) = a1 · · · an−2(2i− 2) for some i. Since a is in an increasing run, Corollary 4.3.4

gives a1 + . . .+an−2 +(2i−2)+(n−2) ≡ 1 mod 2. Thus, a1 + . . .+an−2 +(n−3) ≡ 0

mod 2, so τ(a) is in a decreasing run in the Gray code of length n − 1. Hence,

bn−1 = an−1 − 1 = 2i − 3. By Lemma 4.3.10, τ(b) is arc-connected, which is a
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contradiction.

Assume finally that τ(a) is arc-disconnected but is immediately followed by the

arc-connected word in τ(b) the Gray code for words of length n−1. By Lemma 4.3.8,

τ(a) = a1 · · · an−2(2i− 1) for some i. Since a is in an increasing run, Corollary 4.3.4

gives a1+. . .+an−2+(2i−1)+(n−2) ≡ 1 mod 2. Thus, a1+. . .+an−2+(n−3) ≡ 1 mod

2, so τ(a) is in an increasing run in the Gray code for words of length n− 1. Hence,

bn−1 = an−1 +1 = 2i. By Lemma 4.3.10, τ(b) is arc-disconnected, a contradiction.

A second look at the proof of Proposition 4.4.2 allows for the proof of the main

result.

Theorem 4.4.3: If a and b are arc-connected, but every code listed between these two

words in the full Gray code for words is arc-disconnected, then σ(a) and σ(b) differ

by an adjacent transposition.

Proof. This proof will make the same assumptions as in the proof of Proposition 4.4.2,

will review the same cases, but will also consider the associated arc diagrams.

In case 1, aj = bj = 1 for k < j < n implies that the first k arcs are under n−k−1

nested arcs. An arc stretching over all previous arcs will not change how any two

ends of the previous arcs are interchanged since that move occurs completely under

the arcs. The nth arc (an = 2n − 2) will only overlap the (n − 1)st arc, meaning

that this last arc will not affect how the first k arcs change in the arc diagrams when

changing from a to b. By the recursive definition of the full Gray code, σ(a1 · · · ak) and

σ(b1 · · · bk) differ by an adjacent transposition. Hence the arc diagrams encoded by

a1 · · · ak and b1 · · · bk differ by exactly two adjacent ends of two distinct arcs swapping
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positions; and since it is already known that the (k + 1)st through nth arcs will not

affect that swap, then a = a1 · · · ak1 · · · 1(2n−2) and b = b1 · · · bk1 · · · 1(2n−2) encode

two standard permutations that differ by an adjacent transposition.

In case 2a, in the arc diagram of σ(a) = σ(a1 · · · ak(2k + 1) · · · (2n − 3)(2k)), the

arcs of σ(a1 · · · ak) form the first component of σ(τ(a)), which is followed by n−k−1

minimal arcs (see Section 2.5 for a definition). Then the nth arc stretches over the

minimal arcs to intersect only the kth arc of the first component of σ(τ(a)). Thus,

the (k + 1)st through nth arcs will not affect any moves among the first k arcs. Since

σ(a1 · · · ak) and σ(b1 · · · bk) must differ by an adjacent transposition, the recursive

construction of the full Gray code guarantees that σ(a) and σ(b) will also differ by

an adjacent transposition.

In case 2b, the arcs of σ(a1 · · · aj−1) form the first connected component of the arc

diagram of σ(τ(a)); the (k + 1)st through (n − 1)st arcs are minimal arcs located at

the right end of the diagram; and the nth arc stretches over the second through last

component of the arc diagram, intersecting only the (j−1)st arc of the first connected

component. Thus, the (k+1)st through nth arcs will not affect any changes occurring

in the first k arcs. The recursive construction of the full Gray code ensures that σ(a)

and σ(b) will differ by an adjacent transposition since σ(a1 · · · ak) and σ(b1 · · · bk)

differ by an adjacent transposition.

In case 3, there will only be a degenerate case of case 2a or 2b. In the degenerate

case of 2a, the number of minimal arcs to the right of the first connected component

of the arc diagram of σ(τ(a)) is zero (since τ(a) is arc-connected). This does not

change the conclusion of the argument. The analysis of the degenerate case of 2b is
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similarly easy.

Looking at the list of words encoding the standard permutations of the connected

Gray code, each run starts with an = 1 and ends with an = 2i − 2 for some i or

vice versa. The proof of Proposition 4.4.2 describes the relationship between any

arc-connected word a and the word b immediately following it in the connected Gray

code. When a and b are in different runs of the full Gray code for words, a and b

have the following properties:

1. σ(a) and σ(b) differ by an adjacent transposition;

2. an = bn;

3. if an = bn = 2i − 2 for some i > 1, then τ(a) and τ(b) are either both arc-

connected or both arc-disconnected;

4. if an = bn = 2i − 2 for some i > 1, both τ(a) and τ(b) are arc-disconnected,

and σ(a1 · · · ak) is the first sign-connected component of σ(τ(a)); then the first

sign-connected component of σ(τ(b)) is σ(b1 · · · bk).

As an immediate consequence of Theorem 4.4.3, the sublist of the full Gray code

obtained by simply removing all of the sign-disconnected standard permutations is

also a Gray code. Hence, by working with the words that encode standard permuta-

tions, a Gray code has been found, namely the connected Gray code, for the standard

permutations that represent the shelling types of the facets of the boundary of the

n-cube.
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4.5 The Cost to Implement the Full and Connected Gray Codes

Recall that the number of connected Gray codes of length n is given by an =

(2n − 1)!! −
∑n−1

k=1 an−k(2k − 1)!!. Let bn = an
(2n−1)!!

. Hence, bn is the proportion of

connected words in in the full Gray code. Using the definition of an, bn may be

rewritten as

bn = 1−
n−1∑
k=1

an−k
(2(n− k)− 1)!!

· (2(n− k)− 1)!!(2k − 1)!!

(2n− 1)!!

= 1−
n−1∑
k=1

bn−k ·
(2(n− k)− 1)!!(2k − 1)!!

(2n− 1)!!
.

In order to determine whether the connected Gray code can be generated in constant

amortized time, bn needs to approach a constant as n approaches infinity.

Lemma 4.5.1: The proportion bn approaches 1 as n approaches infinity.

Proof. Obviously, for each n, 0 < bn < 1. Thus, bn > 1 −
∑n−1

k=1
(2(n−k)−1)!!(2k−1)!!

(2n−1)!!
.

Hence, it is only needed to show that limn→∞
∑n−1

k=1
(2(n−k)−1)!!(2k−1)!!

(2n−1)!!
= 0. Set γn,k =

(2(n−k)−1)!!(2k−1)!!
(2n−1)!!

. Then γn,k = γn,n−k and γn,k ≥ 0 for all k. Consider:

γn,k+1

γn,k
=

(2(n−k−1)−1)!!(2k+1)!!
(2n−1)!!

(2(n−k)−1)!!(2k−1)!!
(2n−1)!!

=
(2(n− k − 1)− 1)!!(2k + 1)!!

(2(n− k)− 1)!!(2k − 1)!!
=

2k + 1

2n− 2k − 1

Hence,
γn,k+1

γn,k
≤ 1 if and only if 2k+1

2n−2k−1
≤ 1. This occurs exactly when 2k + 1 ≤

2n− 2k − 1. Thus, k ≤ n−1
2

yielding

γn,1 ≥ γn,2 ≥ . . . ≥ γn,bn
2
c = γn,dn

2
e ≤ . . . ≤ γn,n−2 ≤ γn,n−1

where 2γn,1 = γn,1 + γn,n−1 and (n− 3)γn,2 ≥ γn,2 + γn,3 + . . .+ γn,n−2. Therefore,
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n−1∑
k=1

(2(n− k)− 1)!!(2k − 1)!!

(2n− 1)!!
≤ 2γn,1 + (n− 3)γn,2

= 2 · (2(n− 1)− 1)!!(1)!!

(2n− 1)!!
+ (n− 3) · (2(n− 2)− 1)!!(3)!!

(2n− 1)!!

= 2 · (2n− 3)!!

(2n− 1)!!
+ (n− 3) · (2n− 5)!! · 3

(2n− 1)!!

=
2

2n− 1
+

3(n− 3)

(2n− 1)(2n− 3)
.

Hence,
∑n−1

k=1
(2(n−k)−1)!!(2k−1)!!

(2n−1)!!
→ 0 as n approaches infinity, which immediately im-

plies that bn approaches 1 as n approaches infinity.

Hence, it is possible that the connected Gray code could be generated in constant

amortized time.

Theorem 4.5.2: The full Gray code can be generated in constant amortized time.

Proof. Suppose each of the words in the full Gray code have length n, and a code a

has the form: a1 . . . ai . . . an, where 1 ≤ ai ≤ 2i − 1 for each i. Recall, there are a

total of (2n − 1)!! codes and (2n − 3)!! runs with 2n − 1 codes per run. The claim

is that the cost to implement the full Gray code is O((2n− 1)!!). Let i be the index

such that ai changes to get to the next word in the Gray code.

Case 1: i = n. In this case, an changes 2n − 2 times per run. The last word of

the run will not change at position n. Each time an changes, it must be verified that

a is not at the end of a run; i.e., an 6= 1 in a decreasing run or an 6= 2n − 1 in an

increasing run. Thus, the total cost to change an throughout the entire Gray code is

(1)(2n− 2)(2n− 3)!! = 2(n− 1) (2n−1)!!
2n−1

= O(2n− 1)!!.

Case 2: i < n. In this case, ai will only change at the end of a run. However, in
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the full Gray code of length i, ai changes (2i − 2)(2i − 3)!! times. By the recursive

nature of the Gray code, this is exactly the number of times ai changes in the full

Gray code of length n. When ai changes, there are (n− i+ 2) comparisons to make:

is aj = 1 for all j > i or aj = 2j − 1 for all j > i, is ai 6= an, and lastly, is ai odd or

even. By Corollary 4.3.6, this last comparison will determine whether ai will increase

or decrease to produce the next word in the Gray code. Since 2 ≤ i ≤ n − 1, then

3 ≤ n− i+ 2 ≤ n. Thus, the total cost to change ai is (n− i+ 2)(2i− 2)(2i− 3)!! =

(n − i + 2)(2i − 2) · (2n−1)!!
(2n−1)...(2i−1)

= O(n) · O( 1
nn−i ) · (2n − 1)!!. Combining these

relations yields a total cost of O(1) · (2n − 1)!! +
∑n−1

i=2 O(n) · O( 1
nn−i ) · (2n − 1)!! =

O(1) · (2n−1)!!+O(n
[

1
n

+ . . .+ 1
nn−2

]
) · (2n−1)!! = O(1+n · nn−3+...+1

nn−2 ) · (2n−1)!! =

O(1) · (2n− 1)!! = O((2n− 1)!!).

Theorem 4.5.3: The connected Gray code can be generated in constant amortized time.

Proof. Since the cost to generate the full Gray code is O((2n− 1)!!) and the number

of words in the code is (2n − 1)!!, it is not difficult to show that the number of arc-

connected words is also O((2n− 1)!!). Thus, it is only needed to show that the cost

to skip the disconnected codes is at most O((2n− 1)!!).

To know when to skip words in the Gray code for words, keep track of the k

from Lemma 4.3.8. This k can only change at the end of a decreasing run. When k is

constant, only an changes. However, when k does change, it takes at most O(n) steps,

reading left to right, to find the new value of k. Since there are (2n− 3)!! runs in the

code, the cost to skip the disconnected words is O(n(2n− 3)!!) = O((2n− 1)!!).



CHAPTER 5: CONCLUSION AND FUTURE WORK

The results from Chapter 4 highlight a connection between the study of hypermaps

and the theory of shellings, which may be worth exploring further in the future. It also

raises the hope that, by using a similar encoding to the one introduced in [37], one may

be able to find an adjacent transposition Gray code for indecomposable permutations.

Although a large amount of literature exists on shelling and shellability, very little has

been done to explore the set of all shellings of the same object. It may be worthwhile

to look for a Gray code on all the shellings of other objects related to the hypercube

such as orthotopes or cross-polytopes.

Another possible direction to take is to look at what other objects that signed

permutations can represent. In particular, signed permutations can represent rooted

hypermaps (see [19], [54], and [55]) and Feynman diagrams [47]. However, in both of

these two cases, the closeness condition used in this dissertation must be adjusted to

account for the situation which arises when a single component rooted hypermap or

Feynman diagram is followed by one containing multiple components.
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