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ABSTRACT

LETING WU. Spectral analysis of rich network topology in social networks. (Under
the direction of DR. XINTAO WU)

Social networks have received much attention these days. Researchers have de-

veloped different methods to study the structure and characteristics of the network

topology. Our focus is on spectral analysis of the adjacency matrix of the underlying

network. Recent work showed good properties in the adjacency spectral space but

there are few theoretical and systematical studies to support their findings.

In this dissertation, we conduct an in-depth theoretical study to show the close

relationship between algebraic spectral properties of the adjacency matrix and vari-

ous patterns in a broad range of social networks such as friendship networks, alliance

and war networks, and distrusted networks. In our framework, we apply matrix per-

turbation theory and approximate the eigenvectors of real graphs by those of the

ideal cases. Our theoretical results show that the principal eigenvectors capture the

structure of major communities and exhibit them as orthogonal lines/clusters rotated

with certain angles from canonical axes. Our results also show that the minor eigen-

vectors with skew distributions in values capture weak or subtle signals hidden in

local communities. We utilize our theoretical results to develop algorithms for several

problems in social network analysis including community partition, anomaly detec-

tion and privacy preserving social network reconstruction. Empirical evaluations on

various synthetic data and real-world social networks validate our theoretical findings

and show the effectiveness of our algorithms.
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In a nutshell, we theoretically study the patterns in the adjacency spectral space

as well as conditions for their existence and explore the application of the spectral

properties of the adjacency matrix in different tasks of social network analysis.
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CHAPTER 1: INTRODUCTION

With the fast development of internet and large databases, online social networks

are growing rapidly. Launched in February 2004, the famous online social network

Facebook1 has over one billion of active users. Other social networks such as Twit-

ter2 or Sina Weibo3 have hundreds of millions of registered users. The analysis on

the social networks gains increasing attention in various application domains such as

marketing, psychological or epidemiological researches, and homeland security. How-

ever, it is not an easy task. The complexity of network data itself already brings

large challenges to researchers. Other related issues such as privacy concern make the

situation more complicated. In this dissertation, we focus on the relationships in the

networks and the rich information they carry. We will show that spectral analysis

based on the adjacency matrix offer solutions for various graph analysis tasks such as

graph partition, signal detection and privacy preserving graph publishing.

Social networks are usually modeled as graphs with nodes representing individu-

als and edges representing the relationship between two individuals. An unsigned

graph usually contain one type of relationship. One typical example is the friendship

network on Facebook. Researches have developed various methods to capture the

structure and characteristics of the networks from different perspectives[Costa et al.,

1http://www.facebook.com/
2https://twitter.com
3http://www.weibo.com/
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2007; Newman, 2003; Strogatz, 2001]. They discovered various properties of social

networks such as power-law degree distributions, small-world phenomenon and the

community structure. The community structure was pointed out as one important

property[Girvan and Newman, 2002]: nodes tend to join in tightly knit communities

while there are only loose connections in-between communities. In other words, two

nodes from the same community are more likely connected than those from different

communities. Much work then focused on this property. In [Newman, 2006], the

authors introduced modularity measure to quantify the strength of communities by

the difference from the real network to a null model. Several graph partition algo-

rithms were later developed based on maximizing modularity[Clauset et al., 2004;

Shiga et al., 2007].

Meanwhile, the relationship between two nodes could be inherently negative to

express distrust or dislike among people, e.g., the distrusted relationship on Epin-

ion4. Unlike the positive relationship such as friendship to “pull” nodes together, the

negative relationship “pushes” nodes away from each other. We call the graphs with

both positive and negative relationships as signed graphs. Originally introduced in

anthropology and sociology, signed graphs were used to model friendship and enmity.

The authors in [Davis, 1967; Inohara, 2002] showed that the stability of sentiments is

equivalent to k-balanced(clusterable): nodes in the same communities have positive

connections and any two nodes from different communities have negative connec-

tions. General signed graphs are often unbalanced and have more complicated and

unstable structures. In order to analyze signed graphs, researchers extended some of

4http://www.epinions.com/
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existing measures and algorithms for unsigned graphs signed graphs. For example,

the authors in [Traag and Bruggeman, 2009] extended the definition of modularity

on signed graphs and developed a graph partition algorithm to maximize the signed

modularity.

Instead of giant components as communities, some other papers focused on much

smaller subgraphs of the networks. The subgraph can be formed by a set of most

influencial nodes[Kempe et al., 2003] or attackers[Backstrom et al., 2007]. Because of

the small size of the subgraphs, many traditional topology-based detection methods

(e.g., [Eberle and Holder, 2007; Noble and Cook, 2003]), which explore the graph

topology directly, often fail to locate anomalies and signals. The detection of subtle

subgraphs is difficult especially when the whole graph is very large and has multiple

large communities.

1.1 Spectral Analysis in Unsigned Graphs

In this dissertation, we specially focus on one approach, spectral graph analysis,

to analyze the social networks. Spectral analysis of the adjacency matrix and the

variants(e.g., Laplacian matrix and the normal matrix) uses the intimate relationship

between the algebraic spectral properties of the matrices and the combinatorial char-

acteristics of the graphs to study the structure of social networks and detect hidden

patterns. For an unsigned graph, the adjacency matrix A has its entry aij equals 1

if there is some relationship between nodes i and j and equals 0 otherwise. In the

following, we first revisit the well studied Laplacian and the normal matrix and then

turn to our focus: the adjacency matrix.

The Laplacian matrix is defined as L = D − A where D = diag(di, . . . , dn) is the
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diagonal matrix with the degree of the i-th node, di, on the i-th diagonal entry. The

normal matrix is defined as N = D−1A. Sometimes the normal matrix may also refer

to its symmetric variant D− 1
2 AD− 1

2 . The two matrices have the same eigenvalues, and

their eigenvector entries are different by a factor of the node degrees of corresponding

entries.

There is a large body existing literature on examining the eigenvectors of the Lapla-

cian matrix or the normal matrix with various applications such as spectral cluster-

ing[Chan et al., 1993; Ding et al., 2001; Hagen and Kahng, 1992; Huang et al., 2008;

Ng et al., 2001; Pothen et al., 1990; Shi and Malik, 2000] and graph visualization

[Belkin and Niyogi, 2002]. Two most important milestones of spectral clustering are

Ratio Cut[Hagen and Kahng, 1992] and Normalized Cut[Shi and Malik, 2000]. Each

of the two papers introduced a graph partition algorithm that is directly associated

with the eigenvalue problems of Laplacian matrix or the normal matrix. In Ratio Cut,

the authors built an objective function to partition a graph with a minimal number

of edges to cut. An indicator (xi1, . . . , xik) is assigned to node i in community u with

only xiu = 1 and 0 otherwise. The total number of edges among communities is equal

to w = 1
2

∑k
i=1

∑n
u,v=1 auv(xui−xvi)2. Rewrite w into matrix form: w = XT (D−A)X.

By applying Lagrange multipliers, we can easily show that the eigenvectors associ-

ated to the leading k non-trivial eigenvalues (the smallest comes first) of the Laplacian

matrix is the solution to the optimization problem. However, Ratio Cut often gives

a skew partition. Instead of cutting between the major components of the graph,

it usually finds a much smaller subgraph to separate from the major components.

Normalized Cut later was introduced[Shi and Malik, 2000] to reweigh the edges to
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cut between two communities by the sum of node degrees of each community. The

objective function can be transformed to the eigenvalue problem of the normal matrix

similarly. Notice the graph partition problem is NP-hard. The eigenvalue problems

of the matrices only offer heuristic solutions of the graph partition problem: the en-

tries of the indicator vector are relaxed to real numbers between 0 and 1. Spectral

clustering by the normal matrix gives good experimental results, but little work dis-

cussed clusterability of communities in the normal matrix space except [Ng et al.,

2001]. Starting from the block-wise normalized matrix representing a graph with k

disconnected components, Ng and et al. derived the bound of the leading eigenvalues

and eigenvectors. However, for the normal matrix, it is challenging to link the pertur-

bation in the normal spectral space directly to the changes of graph’s topology, due

to the fact that the normal matrix has each link normalized by the nodes’ degrees.

Different from the Laplacian matrix or the normal matrix, the properties of the

adjacency eigenspace have received much less attention. However, many spectral

properties of the adjacency matrix are closely related with the characteristics of the

graph[Costa et al., 2007]. For example, the eigenvalues of the adjacency matrix en-

code information about the cycles of a network as well as its diameter. The maximum

degree, chromatic number, clique number, and extend of branching in a connected

graph are all related to λ1, the largest eigenvalue of the adjacency matrix. In [Wang

et al., 2003], it was shown that the epidemic threshold for a network under virus prop-

agation is closely related to λ1. In [Ying et al., 2011; Ying and Wu, 2009c], the authors

utilized the spectra of the adjacency matrix to characterize and capture the graph

randomness. They gave a framework which can quantify graph non-randomness at
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edge, node, and the overall graph levels. They used the spectral coordinates of nodes

in the first k-dimensional spectral space, where k corresponds the number of commu-

nities, to derive the non-randomness measure and showed quantitative comparisons

between various social networks with different sizes and densities or between different

snapshots of a dynamic social network. They also showed that neither Laplacian nor

the normal matrices can give a concise expression of a similar measure at the node

level. In their work, the authors also showed their observations of line orthogonality

pattern in the adjacency spectral space, and they suggested that such a pattern is

associated with the presence of a clear community structure in the graph. However,

they did not give theoretical explanation on when and why the observed pattern ex-

ists and how the pattern in the spectral space is connected with the structure in real

graphs.

In this dissertation, we conduct a thorough theoretical study on adjacency spectral

analysis. We offer rigorous proofs of the intimate relation between the topological

structures in a social network and the spectral properties of its adjacency matrix.

We analyze a broad range of social networks including friendship networks, alliance

and war networks, and distrusted networks. The matrix perturbation theory plays a

crucial role in the study of spectral analysis. The theory explains how the perturbation

on a matrix affects its spectral system such as eigenvalues and eigenvectors. General

matrix perturbation theory is complicated and conditions are abstract. We derive

a simplified version in the context of social network analysis. We consider the real

graph as a perturbation result from a graph in an ideal case that has a more clear

structure and is easier to analyze. Based on the matrix perturbation theory, we then
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approximate the eigenvectors of the real graph by those of a graph in the ideal case.

Focusing on unsigned graphs, we describe the general community structure as a

perturbation from a graph with k disconnected communities. The adjacency matrix

of the observed graph, Ã, is then divided into two parts: Ã = A + E, where A is

the adjacency matrix of the graph with k disconnected communities(i.e., A is diag-

onal k-block matrix) and E is the perturbation matrix denoting the edges among

communities. The magnitude of E is usually smaller than that of A because the

inter-community connection is relatively sparse.

Based on the matrix perturbation theory, we approximate the eigen-pairs (eigenval-

ues and eigenvectors) of Ã by the eigen-pairs of the hidden matrix A and perturbation

matrix E. Hence, we can assess the effect of the perturbation (E) on the coordinate

of each node in the adjacency spectral space. We follow the framework in [Ying et al.,

2011] and use the first k-dimensional spectral space to analyze the graph. We call

the first k leading eigenvectors as principal eigenvectors. These eigenvectors have the

largest eigenvalues in magnitude. In the spectral space of the hidden k-block graph

(A), nodes of k communities stay on k canonical axes spanned by principal eigenvec-

tors. When E is added, the approximated eigenvectors of Ã have clear relationship

with A and E: the k lines rotate from the axes and those nodes connected to other

communities are pulled away from their lines by the inter-community edges. As a

result, we are able to demonstrate the line orthogonality pattern in the spectral space

of Ã observed in [Ying et al., 2011]. We also derive the conditions on which the

pattern exists, and give explicit formula to quantify the rotation and deviation of the

nodes in the adjacency spectral space caused by the perturbation matrix E.
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This methodology is significantly different from the spectral analysis of the Lapla-

cian or the normal matrix, in which the cluster patterns are usually demonstrated

via some graph-cut optimization problem. We also examine the spectral spaces of

the Laplacian matrix and the normal matrix through the perturbation framework.

We find that the line orthogonality pattern in general does not hold in the Laplacian

eigenspace or the normal eigenspace. We further provide theoretical explanations.

1.2 Spectral Analysis in Signed Graphs

Most social network analysis approaches focused on unsigned graphs, but the rela-

tionship could be inherently negative to express distrust or dislike. In contrast to the

extensive studies on social networks that restrict to only positive relationship between

individuals, we extend the study to signed networks with both positive and negative

relationships. We similarly apply the matrix perturbation theory to investigate the

impacts of introducing negative edges and explore the patterns in the spectral space

of the graph’s adjacency matrix.

For a signed graph, aij = −1 in the adjacency matrix A if there exists a nega-

tive relationship between the nodes i and j. In [Kunegis et al., 2010], the authors

showed spectral analysis of signed graphs by the extended definition of the Laplacian

matrix[Hou et al., 2003]: L = |D| − A where |D| is diag(|d1|, · · · , |dn|) and |di| is

the total number of positive or negative edges from node i. The authors showed the

different drawings of graph based on eigenvectors from A, D−A, and |D|−A. They

then extended Ratio Cut and Normalized Cut to signed graphs. They also showed

link sign prediction via different graph kernels. However, they did not relate the

structures in signed graphs with patterns in the spectral space directly.
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In a signed graph, positive and negative edges are two forces that behave differ-

ently. Positive edges group people together and usually exist inside a community

while negative edges separate people into different communities and usually exist

outside communities. These two forces sometimes work together harmonically. The

k-balanced graph is the special case to describe the situation. However, in other

cases, these two forces may not work together. The graph may be dominated by

positive inner-community edges or negative inter-community edges. We discuss them

respectively to show the clusterable patterns in signed graphs.

• k-Balanced Signed Graphs: In this type of signed graphs, the community struc-

ture is determined by both positive inner-community edges and negative inter-

community edges. The idea k-balanced signed graphs has all inner-community

edges positive and all inter-community edges negative. We treat it as a per-

turbed variant of a k-block graph. The k-block graph has been discussed in

the unsigned graphs as the graph with k well separated communities. We then

show that communities in k-balanced signed graphs are distinguishable in the

spectral space of its signed adjacency matrix, even when negative connections

between communities are dense. In the real world networks, a small number of

negative inner-community edges or positive inter-community edges may exist

in the graph and violate the balance of the graph. We apply the matrix per-

turbation theory to examine the unbalanced signed graph perturbed from the

k-balanced signed graphs.

• Signed Graphs with Dominated Positive Inner-community Edges: In this type of
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signed graphs, the community structure is mainly determined by positive inner-

community edges and there can be both positive and negative edges between

communities. It is straightforward to see the communities are separable in

the spectral space if inter-community edges are sparse regardless of signs. We

are particularly interested in the case when the inter-community connection is

dense. Intuitively, the negative inter-community edges would offset the effect of

the positive inter-community edges. Starting from the k-block graph as the ideal

case, we theoretically demonstrate that, when the graph contains dense positive

and negative inter-community edges of equal magnitude, the communities are

still distinguishable in the adjacency spectral space.

• Partite-dominated Signed Graphs: In this type of signed graphs, the commu-

nity structure is mainly determined by negative inter-community edges. The

ideal case is called a k-partite graph where there is no inner-community con-

nection and only dense negative inter-community connection. In real networks,

the relationship such as distrust or dispute mainly appears between communi-

ties and rarely exist inside communities. If we use −1 to denote the negative

relationship, we find that the largest eigenvalue in magnitude of the adjacency

matrix is negative. After removing the effect of the first eigenvalue and eigen-

vector, we get a matrix similar to that of signed graphs with dominated positive

inner-community edges. We follow similar procedures to approximate its eigen-

vectors. With properly re-orthogonalizing the eigenvectors, we give the approx-

imated eigenvectors of k-partite graphs and we theoretically demonstrate that
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such graphs have k orthogonal clusters in the adjacency spectral space.

These three types of graphs are the clusterable signed graphs. General clusterable

signed graphs are close to one of the three or their combinations. We are the first to

study the clusterability of the community structure in the adjacency space of signed

networks. We conduct theoretical explanation of the patterns for different types of

clusterable signed graphs and verify our findings with illustrative examples.

Based on our findings in both unsigned and signed graphs, we develop an efficient

and effective graph partition algorithm UniAdjCluster. The idea of the algorithm

is to project node coordinates in the adjacency spectral space to the unit sphere in

the spectral space and then apply the k-means algorithm to find the clusters. The

empirical evaluations on synthetic graphs and real-world social networks demonstrate

the effectiveness of our graph partition algorithm. Calculation of the eigenvectors of

an n × n matrix takes in general a number of operations O(n3), which is almost in-

applicable for large networks. However, in UniAdjCluster, we only need to calculate

the first k eigen-pairs where k % n. Furthermore, adjacency matrices in our con-

text are usually sparse. The Arnoldi/Lanczos algorithm[Golub and Van Loan, 1996]

generally needs O(n) rather than O(n2) floating point operations at each iteration.

The algorithm also outperforms those clustering methods based on the Laplacian or

the normal spectrum. The main reason is that the leading adjacency eigenpairs are

generally more robust under moderate noises due to the large magnitude of the eigen-

values. Unlike adjacency eigenvalues, the leading eigenvalues of the Laplacian and

normal matrices are typically less than 1 in magnitude, which results in instability
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under noise.

1.3 Anomalies and Signals

In some other situations, it is of great interest for data analysts or data owners to

detect small abnormal subgraphs compared to the whole graph. A small and subtle

subgraph often indicates a subset of users that are extremely active or the attackers

that behave differently from the normal users. We refer the embedded small and

subtle subgraphs as signals or anomalies and the large graph as background. Those

small and subtle signals, which are structurally dissimilar to the background, are often

hidden within graph communities and can not be revealed in the global structure of

the graph. Traditional topology-based detection methods (e.g., [Eberle and Holder,

2007; Noble and Cook, 2003]) often fail to locate those subtle signals. A question is

then raised here: whether adjacency spectral analysis can detect the subtle signals.

The adjacency matrix A of a real graph that is composited of two parts: the

background graph B and the embedded signal S. In the adjacency spectral space,

embedded signals exhibit the pattern significantly different from the community struc-

ture. Because of their small magnitude, embedded signals usually affect the leading

eigenvectors too little to detect. We then focus on exploring the eigenvectors with

smaller eigenvalues to detect subtle anomalies. We call these eigenvectors with smaller

eigenvalues as minor eigenvectors.

We first demonstrate that the anomaly nodes have extreme values in some mi-

nor eigenvectors compared to background nodes. When the background graph is

an Erdos-Renyi graph and there is only one signal, we give the approximated first

two eigenvectors. We then discuss the conditions when the difference between signal
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entries and background entries is large enough to detect the signal on these two eigen-

vectors. We then extend our theoretical studies to the general case where multiple

anomalies are embedded in a general background graph. These eigenvectors appear

after the k-th eigenvectors. However, they are not necessarily the eigenvectors right

after the k-th. We develop an algorithm that leverages the kurtosis (rather than the

L1-norm of eigenvector in [Miller et al., 2010]) to find those eigenvectors that best

reflect the signals. The kurtosis metric describes the extremeness in the distribution

of eigenvector entries caused by embedded signals. Our results do not rely on the

assumption that the background graph is generated by some parametric model as in

[Miller et al., 2010]. Our theoretical analysis and empirical evaluations on both syn-

thetic data and real social networks show effectiveness of our approach to detecting

subtle signals.

1.4 Privacy Perserving Graph Reconstruction

Different from biological networks, social networks have the privacy issue. Many

social networks contain sensitive information of their users. In [Backstrom et al.,

2007; Hay et al., 2007], the authors discussed the challenges in privacy protection

of social networks. They pointed out that even the naive node-anonymized net-

work does not guarantee privacy. Adversaries may re-identify a targeted individual

from the anonymized graph by exploiting some known structural information of his

neighborhood. Various randomization techniques were later developed such as edge

modification[Liu and Terzi, 2008; Zhou and Pei, 2008; Zou et al., 2009], edge ran-

domization[Hay et al., 2007; Ying and Wu, 2008, 2009a,b], and clustering-based gen-

eralization[Bhagat et al., 2009; Campan and Truta, 2008; Cormode et al., 2008; Hay
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et al., 2008; Zheleva and Getoor, 2007]. These above anonymization approaches have

been shown as a necessity, in addition to naive anonymization, to preserve privacy

in publishing social network data. However, in order to protect the privacy of the

individual entry under feature based attacks or structural attacks, a medium or large

perturbation is needed[Hay et al., 2007; Ying and Wu, 2008] and hence the utility of

the released randomized graph (in terms of topological features) is significantly lost

in the randomized graph. We focus on whether we can reconstruct a graph from the

edge randomized graph such that accurate feature values can be recovered. In our

study, we find that the adjacency spectral space is relatively stable under the per-

turbation and principal eigenvectors capture the information of major components.

We apply low rank approximation of the adjacency matrix to reconstruct the graph

that is randomly added and deleted the same number of edges. We then give a novel

solution to determine the (approximate) optimal rank, a key parameter in our recon-

struction algorithm. We explicitly assess effects of perturbation on the accuracy of

the reconstructed feature values. What is more, one surprising finding is that, for

most social networks, the reconstructed networks do not incur further disclosure risks

of individual privacy than the released randomized graphs. It has much difference

from the numerical data setting. Our further investigation shows that only networks

with low ranks or a small number of dominant eigenvalues may incur further privacy

disclosure due to reconstruction.

1.5 Paper Organization and Datasets

The dissertation is organized as follows:

In Chapter 2, we first present the general matrix perturbation theory and derive a
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simplified version in our context. We then apply the theory and show that commu-

nities in unsigned graphs exhibit as orthogonal lines in the adjacency spectral space.

We demonstrate the conditions when this pattern holds and why it generally disap-

pears in the Laplacian and the normal eigenspaces. We develop a graph partition

algorithm, AdjCluster, to utilize our theoretical findings to analyze unsigned graphs.

In Chapter 3, we extend our study to signed graphs. We first study the k-balanced

graphs and their variants. We apply the matrix perturbation theory and show that

these signed graphs are clusterable in the adjacency spectral space. We then study

signed graphs with dominated positive inner-community edges and we are especially

interested in the case when the inter-community edges are dense. We show that such

graphs with equal magnitude of positive and negative edges still keep similar struc-

tures decided by the inner-community edges. Finally, for partite-dominated signed

graphs, we transform them to the form of signed graphs with dominated positive

inner-community edges and conduct a similar analysis procedure to show their clus-

terability in adjacency spectral space. We run empirical evaluations to verify our

theoretical findings and extend AdjCluster to UniAdjCluster to partition communi-

ties of signed graphs.

In Chapter 4, we explore how minor eigenvectors capture the subtle signals and

develop an algorithm to detect them. We start with the Erdos-Renyi random graphs

with one signal and give approximated forms of the principal eigenvectors and the

minor eigenvectors respecitively. We derive formulas to show the difference of signal

entries from the background entries. We then extend the study to general cases with

multiple signals. Our algorithm does not require the assumption of background graph



16

as in [Miller et al., 2010]. We evaluate both synthetic data and real social networks

to show the effectiveness of the algorithm.

In Chapter 5, we discuss the privacy issue in publishing social networks and review

the state-of-the-art anonymization methods on network data. We explore spectral

properties of the graph data and show why noise could be separated from the per-

turbed graph using low rank approximation. We also show the key difference between

numerical data and network data reconstruction through empirical evaluations and

theoretical justifications.

Finally, in Chapter 6, we summarize our work and contributions. The adjacency

matrix has many good properties in spectral analysis. It has long been underesti-

mated due to the lack of study of the fundamental properties. We show the theo-

retical proofs based the simplified perturbation theory to support the applications of

adjacency spectral analysis. In future work, we discuss further exploration of adja-

cency spectral properties in more social networks. We will compare our algorithms

with other existing algorithms and analyze networks with very large scale. We believe

that there is also promising applications in privacy preserving data mining.

In this dissertation, we use various synthetic data and real network datasets. Syn-

thetic data will be discussed in each chapter. The following are the details of the real

network datasets.

• Polbooks: US political books dataset5 contains frequent co-purchasing records

of US politics books sold by the online bookseller Amazon.com. It has 105 nodes

and 441 edges. Each node represents a books published during 2004 presiden-

5http://www-personal.umich.edu/~mejn/netdata/
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tial election and each edge indicates that two books are frequently purchased

together. Nodes are separated into groups with labels: liberal, neutral, or con-

servative by Mark Newman based on a reading of the descriptions and reviews

of the books posted on Amazon.

• Polblogs: Political Blogs dataset6, collected by by Adamic and Glance[Adamic

and Glance, 2005], contains incoming and outgoing links and posts during the

time of the 2004 presidential election among US political blogs. It contains 1222

nodes and 16714 edges. Each Node represents a political blog and each edge

indicates that two blogs have links or blog posts between them. The nodes are

labeled as either liberal or conservative.

• Enron: Enron email network was built from email corpus of a real organization

over the course covering a 3 years period. We used a pre-processed version of

the dataset provided by [Shetty and Adibi, 2004]. It contains 252,759 emails

from 151 Enron employees, mainly senior managers. In the graph Enron we

focus on emails sent from and to these 151 people and the semantics of an edge

(u, v) in such a graph is that there have been at least five email communications

between u and v, which results in 869 edges.

• Facebook: We use the dataset provided by Bimal Viswanath et al.[Viswanath

et al., 2009], which contains a subset of all of the user-to-user links from the

Facebook New Orleans networks. They crawled the dataset by the breadth-

first-search algorithm: they started from a single user, visited all the friends

6http://www-personal.umich.edu/~mejn/netdata/
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who have their profiles visible and use these friends as new start points to

repeat the same process. It contains 63731 nodes and 817090 edges. Each node

represents a Facebook user and each edge indicates that two users are connected

on Facebook as friends.

• Correlates of War: The Correlates of War[Ghosn et al., 2004] dataset over

the period 1993-2001 contains international relationships such as alliance and

dispute among different countries and areas. The dataset Formal Alliances

(v3.03) records formal alliance among different countries. There are three types

of alliance: defense pact (Type I), neutrality and non-aggression pact (Type

II), and ententes (Type III). The dataset Militarized Interstates Disputes (v3.1)

records all instances that one state threatened, displayed, or used force against

another, e.g., border extension between Colombia and Venezuela and Turkish

groups entering Iraqi territory. There are five levels of dispute: no militarized

action (Level 1), threat to use force (Level 2), display of force (Level 3), use

of force (Level 4), and war (Level 5). For those disputes that involve different

levels of actions, we use the highest level to represent the level of dispute. We

construct a signed graph where military alliances are represented by positive

edges and disputes by negative edges. We use the alliance of defense pact

(Type I) to construct the cliques of positive edges and the disputes of use of

force (Level 4) and war (Level 5) to construct the bipartite graph of negative

edges. When a positive edge conflicts with a negative edge, we treat the negative

edge with higher priority. This is because the use of force breaks the alliance.
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The adjacency matrix of the constructed signed graph contains 159 nodes with

1093 positive edges and 155 negative edges.

• Epinions: Epinions is a consumers opinion site where the users have their

block lists of some other users whose reviews are usually inaccurate or not

valuable[Massa and Avesani, 2004]. We specially extract the two way distrust

relationship, i.e., user i has user j on his/her block list while user j also has

user i on the block list. We then get a graph with 2027 nodes representing the

users and 2383 edges representing the distrust relationship.

• AstroPh: Astro Physics Collaboration Network dataset7 is from the e-print

arXiv and covers scientific collaborations between authors who submitted papers

to Astro Physics category. It contains 18772 nodes and 396160 edges. Each node

represents an author and each edge indicates that two authors have coauthored

for at least one paper.

7http://snap.stanford.edu



CHAPTER 2: SPECTRAL ANALYSIS OF COMMUNITY STRUCTURE IN
UNSIGNED GRAPHS

In this chapter, we first focus on the graphs with only one type of relation. We

first simplify the general matrix perturbation theory in the context of social net-

work analysis. We conduct theoretical studies based on it to demonstrate: why this

line orthogonality pattern holds in the adjacency eigenspace and disappears in the

Laplacian and the normal eigenspaces. We then utilize the orthogonal line pattern

to develop a graph partition algorithm. Empirical evaluations on synthetic data and

real-world social networks validate our theoretical findings and show the effectiveness

of our graph partition algorithm.

2.1 Introduction

Social networks have received much attention these days. To understand and uti-

lize the information in a social network, researches have developed various methods

to capture the structure and characteristics of the network from different perspec-

tives. Among them, spectral analysis of the adjacency matrix and its variants (e.g.,

Laplacian matrix and normal matrix) has shown intimate relationship between the

combinatorial characteristics of a graph and the algebraic spectral properties of its

matrix [Seary and Richards, 2003]. Different from the Laplacian matrix or normal

matrix, the properties of the adjacency eigenspace received much less attention ex-

cept some recent work [Prakash et al., 2010; Ying and Wu, 2009c]. It was shown by
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Prakash et al. [Prakash et al., 2010] that the singular vectors of mobile call graphs

exhibit an EigenSpokes pattern wherein, when plotted against each other, they have

clear, separate lines that neatly align along specific axes. The authors suggested that

EigenSpokes are associated with the presence of a large number of tightly-knit com-

munities embedded in very sparse graphs. Ying and Wu [Ying and Wu, 2009c] showed

that node coordinates in the adjacency eigenspace of a graph with well structured

communities form quasi-orthogonal lines (not necessarily axes aligned) and devel-

oped a framework to quantify importance (or non-randomness) of a node or a link

by exploiting the line orthogonality property. However, no theoretical analysis was

presented [Prakash et al., 2010; Ying and Wu, 2009c] to demonstrate why and when

this line orthogonality property holds.

Before we go to the theoretical study, we use a real network to illustrate the line

orthogonality pattern.

Figure 2.1(a) plots the polbooks dataset [Krebs, 2006] with 105 nodes, 441 edges,

and two clear communities. Figure 2.1(b) plots node coordinates projected in the

2-D spectral space of the adjacency matrix. We can observe from Figure 2.1(b)

that the majority of vertices projected in the 2-D spectral space distribute along two

straight and quasi-orthogonal lines. It matches the topological structure that there

exist two communities with sparse edges connecting them. The first up-trend line

consists of most nodes in red color while the second down-trend line consists of most

nodes in blue color. White nodes, which correspond to either noise nodes or bridging

nodes, distribute either around the origin or between two quasi-orthogonal lines in

the projected space. We removed all edges across two communities and plotted node
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(c) After deleting bridging
edges

Figure 2.1: The political books network [Krebs, 2006]: nodes represent books about
US politics sold by the Amazon.com while edges represent frequent co-purchasing
of books by the same buyers on Amazon. Each node is labeled as “liberal”(blue),
“neutral”(white), or “conservative”(red) by Mark Newman

coordinates in Figure 2.1(c). We can see clearly that there exist two axes-aligned

lines where each line contains nodes from the same community. Generally speaking,

if there is k communities in the graph, we can observe k quasi-orthogonal lines. In the

following, we conduct theoretical study of the relation between these two patterns.

2.2 Notation

The network considered in this chapter is binary, symmetric, connected, and with-

out self-loops. It can be represented as the symmetric adjacency matrix An×n with

aij = 1 if node i is connected to node j and aij = 0 otherwise. Let λi be the i-th

largest eigenvalue of A and xi the corresponding eigenvector. xij denotes the j-th

entry of xi. Formula 2.1 illustrates our notation. The eigenvector xi is represented

as a column vector. The leading eigenvectors xi (i = 1, · · · , k) corresponding to the
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largest k eigenvalues contain most topological information of the original graph in the

spectral space. The k-dimensional spectral space is spanned by (x1, · · ·xk). When

we project node u in the k-dimensional subspace with xi as the basis, the row vector

αu = (x1u, x2u, · · · , xku) is its coordinate of in this subspace. We call αu the spectral

coordinate of node u. The eigenvector xi becomes the canonical basis denoted by

ξi = (0, . . . , 0, 1, 0 . . . , 0), where the i-th entry of ξi is 1.

x1 xi xk xn

↓

αu →





x11 · · · xi1 · · · xk1

...
...

...

x1u · · · xiu · · · xku

...
...

...

x1n · · · xin · · · xkn

· · · xn1

...

· · · xnu

...

· · · xnn






(2.1)

2.3 Spectral Perturbation

Spectral perturbation analysis deals with the change of the graph spectra (eigen-

values and eigenvector components) when the graph is perturbed. For a symmetric

n × n matrix A with a symmetric perturbation E, the matrix after perturbation

can be written as Ã = A + E. Let λi be the i-th largest eigenvalue of A with its

eigenvector xi. Similarly, λ̃i and x̃i denote the eigenvalue and eigenvector of Ã. It

has been shown that the perturbed eigenvector x̃i can be approximated by a linear

function involving all original eigenvectors (refer to Theorem V.2.8 in [Stewart and

Sun, 1990]). We quote it as below.
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Lemma 2.1: Let U = (x1, . . . , xi−1, xi+1, . . . , xn), S = diag(λ1, . . . ,λi−1,λi+1, . . . ,λn),

and βij = xT
i Exj. The eigenvector x̃i (i = 1, · · · , k) can be approximated as:

x̃i ≈ xi + U(λiI − S)−1UT Exi (2.2)

when the following conditions hold:

1. δ = |λi − λi+1|− ‖xT
i Exi‖2 − ‖UT EU‖2 > 0;

2. γ = ‖UT Exi‖2 < 1
2δ.

We simplify its approximation by only using the leading k eigenvectors when the

first k eigenvalues are significantly greater than the rest ones. Based on the simplified

approximation shown in Theorem 2.1, we are able to prove the line orthogonality

pattern in the adjacency eigenspace.

Theorem 2.1: Assume that the conditions in Lemma 2.1 hold. Further assume that

|λi| ) |λj|, for any i = 1, · · · , k and j = k + 1, · · · , n. Then, the eigenvector x̃i

(i = 1, · · · , k) can be approximated as:

x̃i ≈ xi +
k∑

j=1;j $=i

βji

λi − λj

xj +
1

λi

Exi. (2.3)

Proof. With Lemma 2.1, we have

x̃i ≈ xi + U(λiI − S)−1UT Exi

= xi +
n∑

j=1;j $=i

βji

λi − λj

xj

= xi +
k∑

j=1;j $=i

βji

λi − λj

xj +
n∑

j=k+1

βji

λi − λj

xj.
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Since |λi| ) |λj| for all i = 1, . . . , k and j = k + 1, . . . , n, βji

λi−λj
≈ βji

λi
, and we further

have

x̃i ≈ xi +
k∑

j=1,j $=i

βji

λi − λj

xj +
n∑

j=k+1

βji

λi

xj. (2.4)

Note that

n∑

j=k+1

βji

λi

xj ≈
n∑

j=1

βji

λi

xj =
n∑

j=1

xT
j Exi

λi

xj

=
1

λi

n∑

j=1

〈Exi, xj〉xj =
1

λi

Exi. (2.5)

The last equality of Equation 2.5 is because xj (j = 1, . . . , n) forms an orthogonal

basis of the n-dimensional space, and xT
j Exi is just the projection of vector Exi

onto one of the basis vector xj. Combining Equation 2.4 and Equation 2.5, we get

Equation 2.3.

2.4 Spectral Analysis of Graph Topology

Social networks usually exhibit community structures. Communities are loosely

defined as collections of individuals who interact unusually frequently. For a graph

contains k communities, its adjacency matrix Ã can be divided into two parts: the

adjacency matrix A of a graph with k disconnected communities and the perturbation

E denoting the edges between communities. The magnitude of E is usually smaller

than that of A.

2.4.1 Graphs with k Disconnected Communities

For a graph with k disconnected communities C1, · · · , Ck of size n1, . . . , nk respec-

tively (
∑

i ni = n), its adjacency matrix A can be written as a block-wise diagonal
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matrix:

A =






A1 0

. . .

0 Ak






, (2.6)

where Ai is the ni×ni adjacency matrix of Ci. Let λCi
be the largest eigenvalue of Ai

in magnitude with eigenvector xCi
∈ Rni. Without loss of generality, we assume λC1 >

· · · > λCk
. Since the entries of Ai are all non-negative, with Perron-Frobenius theorem

[Stewart and Sun, 1990], λCi
is positive and all the entries xCi

are non-negative.

When Ci contains one dominant component or does not have a clear inner-community

structure, the magnitude of λCi
is significantly larger than the rest eigenvalues of Ai

[Chung et al., 2003]. Hence when the k disconnected communities are comparable,

λi = λCi
, i = 1, . . . , k (the eigenvalues and eigenvectors of Ai are naturally the

eigenvalues of A). Here we call two communities Ci and Cj are comparable if both

of the second largest eigenvalues of Ai and Aj are smaller than λCi
and λCj

. Two

communities are not comparable when one of them contains either too few edges or

nodes and hence does not contribute much to the graph topology.

Lemma 2.2: For a graph with k disconnected comparable communities as shown in

Equation 2.6, for all i = 1, · · · , k and j = k + 1, . . . , n, λi ) |λj|. The first k
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eigenvectors of A have the following form:

(x1, x2, · · · , xk) =






xC1 0 · · · 0

0 xC2 · · · 0

...
...

. . .
...

0 0 · · · xCk






,

and all the entries of xi are non-negative.

When we project each node in the subspace spanned by x1, x2, · · · , xk, we have

the following result.

Proposition 2.1: For a graph with k disconnected comparable communities as shown

in Equation 2.6, spectral coordinates of all nodes locate on the k axes ξ1, · · · , ξk

where ξi = (0, . . . , 0, 1, 0 . . . , 0) is the canonical basis and the i-th entry of ξi is 1.

Specifically, for any node u ∈ Ci, its spectral coordinate has the form

αu = (0, · · · , 0, xiu, 0, · · · , 0). (2.7)

The position of non-zero xiu in Equation 2.7 indicates the community that node u

belongs to; and the value of xiu indicates the weight or importance of node u within

the community Ci and hence captures the magnitude of belongings.

Two Dimensional Case

For a graph with two disconnected communities C1 and C2 of size n1 and n2 respec-

tively (n = n1 + n2), its adjacency matrix A and two leading eigenvectors can be
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(c) Perturbed graph Ã

Figure 2.2: Illustration example: A graph with two communities

written as follows:

A =






A1 0

0 A2




 , (x1, x2) =





x11 0

...
...

x1n1 0

0 x2,n1+1

...
...

0 x2n





=






xC1 0

0 xC2






All the nodes from C1 lie on the line that passes through the origin and the point (1, 0)

and nodes from C2 lie on the line that passes through the origin and the point (0, 1).

We show a synthetic graph with two disconnected communities in Figure 2.2(a).

The solid lines are links within each community. Figure 2.2(b) shows the spectral

coordinates in the 2-D scatter plot when the two communities are disconnected. Blue

circles represent the 25 nodes from one community and red square nodes represent
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the 20 nodes from the other community. We can see that all nodes lie along the two

axes.

2.4.2 Spectral Properties of Observed Graphs

The observed graph Ã can be written as Ã = A+E, where A is as shown in Equation

2.6 and E denotes the edges across communities. Based on Theorem 2.1, we derive the

approximation of the perturbed spectral coordinate αu, which is determined by the

original spectral coordinate of itself and that of its neighbors in other communities.

Theorem 2.2: Denote an observed graph as Ã = A + E where A is as shown in

Equation 2.6 and E denotes the edges across communities. For a node u ∈ Ci, let Γj
u

denote its neighbors in Cj for j -= i, and Γi
u = ∅. The spectral coordinate of u can

be approximated as

αu ≈ xiuri +




∑

v∈Γ1
u

euvx1v

λ1
, . . . ,

∑

v∈Γk
u

euvxkv

λk



 (2.8)

where scalar xiu is the only non-zero entry in its original spectral coordinate shown

in Equation 2.7, euv is the (u, v) entry of E, and ri is the i-th row of the following

matrix

R =






1 β12

λ2−λ1
· · · β1k

λk−λ1

β21

λ1−λ2
1 · · · β2k

λk−λ2

...
...

. . .
...

βk1
λ1−λk

βk2
λ2−λk

· · · 1






. (2.9)

Proof. With Theorem 2.1, the leading k eigenvectors of Ã can be approximated as

x̃i ≈ xi +
k∑

j=1;j $=i

βji

λi − λj

xj +
1

λi

Exi.
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Putting the k columns together, we have

(x̃1, · · · , x̃k) ≈ (x1, · · · , xk)R + E(
x1

λ1
, . . . ,

xk

λk

). (2.10)

Note that when A can be partitioned as in Equation 2.6, and the original coordi-

nate αu has only one non-zero entry xiu as shown in Equation 2.7, the u-th row of

(x̃i, · · · , x̃k) in Equation 2.10 can be simplified as:

αu ≈ xiu(
βi1

λ1−λi
, · · · , βi,i−1

λi−1−λi
, 1, βi,i+1

λi+1−λu
, · · · βik

λk−λi
)

+

(
1

λ1

∑

v∈C1

euvx1v, · · · ,
1

λk

∑

v∈Ck

euvxkv

)

,

= xiuri +




∑

v∈Γ1
u

euvx1v

λ1
, . . . ,

∑

v∈Γk
u

euvxkv

λk



 .

Note that euv in the right hand side (RHS) of Equation 2.8 can be further re-

moved since euv = 1 in our setting. We include euv there for extension to general

perturbations. Our next result shows that spectral coordinates also locate along k

quasi-orthogonal lines ri (the i-th row of R), instead of exactly on the axes ξi when

the graph is disconnected.

Proposition 2.2: For a graph Ã = A + E, spectral coordinates form k approximately

orthogonal lines. Specifically, for any node u ∈ Ci, if it is not directly connected

with other communities, αu lies on the line ri; otherwise, αu deviates from lines ri

(i = 1, · · · , k), where ri is the i-th row of matrix R shown in Equation 2.9.

Proof. First we prove that node u ∈ Ci locates on the line ri. When node u has no

connections to other communities, the second part of the RHS of Equation 2.8 is 0.
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Hence αu ≈ xiuri. When node u has some connections outside Ci, the second part

of its spectral coordinate in Equation 2.8 is not equal to 0, and it thus deviates from

line ri.

Next we prove that lines ri are approximate orthogonal. Let W = R − I, then

W T +W = 0 since βij = βji. Hence RT R = (I +W T )(I +W ) = I−W T W . The (i, j)

entry of matrix W T W is
∑

t$=i,j
βit

λt−λi

βtj

λj−λt
. Note that the conditions of Theorem 2.1

imply that βit = xT
i Ext is much smaller than |λt − λi|, and hence W T W ≈ 0. Then,

RT R ≈ I, and we prove the orthogonality property.

Two Dimensional Case

Nodes from C1 lie along line r1, while nodes from C2 lie along line r2, where

r1 = (1,
β12

λ2 − λ1
), r2 = (

β21

λ1 − λ2
, 1).

Note that r1 and r2 are orthogonal since r1r
T
2 = 0. For nodes that have connections

to the other community, e.g., nodes u and v shown in Figure 2.2(a), their spectral

coordinates scatter between two lines. For node u, its spectral coordinate can be

approximated as

αu ≈ x1u

(
1,

β12

λ2 − λ1

)
+

(

0,

∑
v∈Γ2

u
x2v

λ2

)

. (2.11)

Its spectral coordinate jumps away from line r1. The magnitude of jump is determined

by spectral coordinates of its connected nodes in the community C2, as shown by the

second parts of RHS of Equation 2.11. Since the jump vector is non-negative, node

u gets closer to line r2. Similarly, we can see for node v jumps towards line r1. In



32

Figure 2.2(c), we can also see that both r1 and r2 rotate clockwisely from the original

axes. This is because β12 = xT
1 Ex2 =

∑
i,j eijx1ix2j > 0. There is a negative angle θ

between line r1 and x-axis since tan θ = β12

λ2−λ1
< 0.

2.4.3 Discussion

The line orthogonality property shown in Theorem 2.2 and Proposition 2.2 are

based on the approximation shown in Theorem 2.1. Recall that Theorem 2.1 is derived

from Lemma 2.1 which involves two conditions. The two conditions in Lemma 2.1

are naturally satisfied if the eigen-gap of any k leading eigenvalues is greater than

3‖E‖2 (‖E‖2 is the largest eigenvalue of E), which guarantees the relative smaller

change and the order of the eigenvectors preserved after perturbation. For condition

1, it is easy to verify that ‖xT
i Exi‖2 = 0. Since ‖UT EU‖2 ≤ ‖E‖2 for graph A

with k disconnected comparable communities, the condition holds when the eigengap

λi − λi+1 is greater than ‖E‖2. For condition 2, we can see ‖UT Exi‖2 is also much

smaller than ‖E‖2. Hence, condition 2 is satisfied when the eigengap λi − λi+1 is

greater than 3‖E‖2. Note that ‖E‖2 is bounded by the maximum row sum of E and

tends to be small when the perturbation edges are randomly added. We can even

further relax the conditions. To have the line orthogonality property well preserved,

we only need the subspace spanned by the first k eigenvectors stable, which is satisfied

when the gap λk − λk+1 is large (Corollary V.2.2 in [Stewart and Sun, 1990]).

Theorem 2.1 requires that |λi| ) |λj|, which is naturally satisfied for adjacency

matrix A with k disconnected communities in our context. Please refer to Lemma 2.2.

In Section 2.6, we will run empirical evaluations to show how well these conditions

are met in real social networks and show the effect when conditions do not strictly
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hold.

In this chapter, we assume the observed graph contains k comparable communities

as well as some edges across communities and each community itself does not have a

clear inner community structure. The assumption guarantees the largest eigenvalue of

each community turns out to be one of the leading k eigenvalues of the observed graph.

This assumption can be relaxed since large graphs usually contain communities at

multiple levels [Karypis and Kumar, 1996]. In practice, the line orthogonality pattern

still holds as long as the lower-layer community structure is not as significant as that

of upper-layers, in which cases the second largest eigenvalue of every community is

smaller than the largest eigenvalues of any other k − 1 communities.

2.4.4 Laplacian and Normal Eigenspaces

Our perturbation framework based on the adjacency eigenspace utilizes the eigen-

vectors of the largest k eigenvalues, which are more stable (due to large eigen-gaps)

under perturbation. In this section, we examine the spectral spaces of the Laplacian

matrix or the normal matrix and show why the line orthogonality pattern generally

does not hold.

Recall that the Laplacian matrix L is defined as L = D−A, where D = diag(d1, . . . , dn)

and di is the degree of node i. The normal matrix N is defined as N = D− 1
2 AD− 1

2 .

We can easily derive that, for the block-wise diagonal graph, the spectral coordinate

of node u ∈ Ci in the Laplacian eigenspace is (0, . . . , 1, . . . , 0) where the i-th entry is 1,

indicating the node u’s community whereas the coordinate in the normal eigenspace

is (0, . . . ,
√

du, . . . , 0). Note that the k eigenvectors corresponding to the smallest

eigenvalues of L capture the community structure. However, Lemma 2.1 is not ap-



34

plicable to L̃ in general under perturbation, because the gap between the k smallest

eigenvalues and the rest ones is too small and the two conditions in Lemma 2.1 are

violated. For the normal matrix, all the eigenvalues of N are between 1 and −1.

The conditions in Lemma 2.1 do not hold either because the eigen-gaps is generally

smaller than ‖∆N ‖2. Hence it is impossible to explicitly express the perturbed spec-

tral coordinates using the original ones and the perturbation matrix in the Laplacian

or normal eigenspace. As a result, the line orthogonality disappears in the Laplacian

or the normal eigenspace.

2.5 Adjacency Eigenspace based Clustering

In this section, we present a community partition algorithm, AdjCluster, which

utilizes the line orthogonality pattern in the spectral space of the adjacency matrix.

When a graph contains k clear communities, there exist k quasi-orthogonal lines in

the k-dimensional spectral space and each line corresponds to a community in the

graph. The spectral coordinate αu should be close to the line corresponding to the

community that the node u belongs to. In general, the idea of fitting k orthogonal

lines directly in the k-dimensional space is complex. As shown in Algorithm 1, we

project each spectral coordinate αu to the unit sphere in the k-dimensional subspace

by normalizing αu to its unit length (line 3). We expect to observe that nodes from

one community form a cluster on the unit sphere. Hence there will be k well separated

clusters on the unit sphere. We apply the clustering k-means algorithm on the unit

sphere to produce a partition of the graph (line 4).

To evaluate the quality of the partition and determine the k, we use the classic
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Algorithm 1 AdjCluster : Adjacency Eigenspace based Clustering
Input: A,K
Output: Clustering results

1: Compute x1,. . . ,xK by the eigen-decomposition of A with λ1 > · · · > λK

2: for k = 2,. . . , K do

3: αu = (x1u, . . . , xku) and ᾱu = αu

‖αu‖ ;

4: Apply k-means algorithm on {ᾱu}u=1,...,n;
5: Compute fitting statistics from k-means algorithm ;
6: end for

7: Output partitions under k with the best fitting statistics.

Davies-Bouldin Index (DBI ) [Davies and Bouldin, 1979]:

DBI =
1

k

k∑

i=1,j $=i

( σi + σj

d(Ci, Cj)

)
. (2.12)

where k is the number of clusters, σi is the average distance of all nodes in i-th

cluster to centroid of Ci and d(Ci, Cj) is the distance between centroids of Ci and

Cj. The low DBI indicates output clusters with low intra-cluster distances and high

inter-cluster distances. When the graph contains k clear communities, we expect

to have the minimum DBI after applying k-means in the k-dimensional spectral

space. We also expect all the angles between centroids of the output clusters are

close to 90◦ since spectral coordinates form quasi-orthogonal lines in the determined

k-dimensional spectral space. However, in the subspace spanned by fewer or more

eigenvectors, the coordinates scatter in the spaces and do not form clear orthogonal

lines, hence we will not obtain a very good fit after applying the k-means on the unit

sphere.

Calculation of the eigenvectors of an n × n matrix takes in general a number of

operations O(n3), which is almost inapplicable for large networks. However, in our

algorithm here, we only need to calculate the first K eigen-pairs. We can determine
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the appropriate K as examining the eigen-gaps [Stewart and Sun, 1990]. Furthermore,

adjacency matrices in our context are usually sparse. The Arnoldi/Lanczos algorithm

[Golub and Van Loan, 1996] generally needs O(n) rather than O(n2) floating point

operations at each iteration.

2.6 Empirical Evaluation

We use several real network data sets in our evaluation: Political books and Political

blogs1, Enron2, and Facebook dataset [Viswanath et al., 2009]. We also generate two

synthetic graphs: Syn-1 and Syn-2. The Syn-1 has 5 communities with the number

of nodes 200, 180, 170, 150, and 140 respectively, and each community is generated

separately with a power law degree distribution with the parameter 2.3. We add cross

community edges randomly and keep the ratio between inter-community edges and

inner-community edges as 20% in Syn-1. Syn-2 is the same as the Syn-1 except that

we increase the number of links between community C4 and C5 to 80%. As a result,

the Syn-2 has four communities.

2.6.1 Line Orthogonality Property

We use spectral plots to check the line orthogonality property in various networks.

We can clearly observe from Figures 2.3(a), 2.3(b), and 2.3(c) that for Syn-1 there

exist five orthogonal lines in the spectral space spanned by x̃1, · · · , x̃5 and nodes

from the same community (denoted by different colors) lie on the same line. For

Syn-2, we can see from Figure 2.3(d) and 2.3(e) that communities also exhibit clear

orthogonal lines in the adjacency spectral space spanned by x̃1, · · · , x̃4, and each

1http://www-personal.umich.edu/~mejn/netdata/
2http://www.cs.cmu.edu/~enron/
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Figure 2.3: Illustration examples of line orthogonality property



38

line corresponds to one community. We are particularly interested in the subspace

spanned by x̃3, x̃4, x̃5 for Syn-2. As shown in Figure 2.3(f), we can observe that

there is no clear line orthogonality pattern, which matches our theoretical analysis

since there are actually four communities in Syn-2. We also show the 2-D and 3-D

spectral plots of Polblogs data. As we already knew, there are two communities in

this network. Hence, we can observe that spectral coordinates form two orthogonal

lines in the subspace spanned by x̃1 and x̃2 as shown in Figure 2.3(g). However, there

is no clear line orthogonality pattern when we add the additional eigenvector x̃3, as

shown in Figure 2.3(h).

Table 2.1: Statistics of the spectra for some networks. δ values for both the Laplacian
and the normal matrices(shown in bold) and ‖∆L‖2 for the Lapalcian matrix and
‖∆N ‖2 for the normal matrix(shown in italic) violate conditions in Lemma 2.1.

Polbooks Polblogs Syn-1 Syn-2

Adjacency matrix
γ 0.59 6.95 3.87 3.16
δ 3.08 30.8 2.44 3.23

|λk − λk+1| 5.82 39.6 7.65 8.26
‖E‖2 2.78 13.61 6.99 6.61

Laplacian matrix
γ 1.54 12.1 4.10 4.11
δ -11.7 -73.5 -23.7 -25.37

|µk − µk+1| 0.24 0.16 0.30 0.30
‖∆L‖2 11.2 69.3 15.8 15.64

Normal matrix
γ 0.144 0.15 0.24 0.27
δ -0.526 -0.29 -1.04 -1.07

|νk − νk+1| 0.139 0.07 0.20 0.20
‖∆N‖2 0.650 0.35 0.76 0.78

Our theoretical analysis in Section 2.4.4 showed that the orthogonality pattern

does not held in either the Laplacian or the normal eigenspace because their small

eigen-gap values affect the stability of the spectral space (Recall the conditions in
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Lemma 2.1 and Theorem 2.1). Table 2.1 shows the calculated values of γ, δ, eigen-

gap, and the magnitude of perturbations in adjacency, the Laplacian, and the normal

eigenspaces for various networks. We can see that for adjacency matrices, all the

networks generally satisfy conditions, which explains line orthogonality patterns in

their adjacency eigenspaces. However, for the Laplacian or the normal matrices, none

of networks satisfies the conditions. For example, all δ values for the Laplacian or the

normal matrix (shown in bold) are less than zero, violating Condition 1 in Lemma

2.1; all values of ‖∆L‖2 or ‖∆N ‖2 (shown in italic) are less than their corresponding

eigengaps, incurring the violation of Condition 2 in Lemma 2.1; and the eigengaps

(|µk − µk+1|, |νk − νk+1|) are relatively small, violating the condition in Theorem

2.1. Hence, the orthogonality pattern does not held in the Laplacian or the normal

eigenspaces.

2.6.2 Quality of Community Partition

Table 2.2: Statistics of networks and partition quality of AdjCluster (“k” is the num-
ber of communities, “DBI ” is the Davies-Bouldin Index, “Angle” is the average
angle between centroids, and “Q” is the modularity.)

Dataset n m k DBI Angle Q
Syn-1 840 4917 5 0.45 80.7◦ 0.37
Syn-2 840 5389 4 0.49 76.5◦ 0.34

Polbooks 105 441 2 0.15 83.8◦ 0.45
Polblogs 1222 16714 2 0.17 90.4◦ 0.42
Enron 148 869 6 0.59 88.9◦ 0.48

Facebook 63392 816886 9 0.83 83.6◦ 0.51

Table 2.2 shows the quality of our graph partition algorithm AdjCluster. The

algorithm chooses the value of k that incurs the minimum DBI for each network

data set. For a network with a clear community structure, we expect that the DBI is

small, the modularity is away from zero, and the average angle is close to 90◦ since
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there exist k quasi-orthogonal lines in the spectral space. We can see from Table 2.2

that all networks show relatively clear community structures. Notice the networks all

have DBI lower than 1. It indicates there is relative strong community structure in

each network. We also notice that all the average angles of the real world datasets are

over 80◦. This result verifies the orthogonality of the lines or clusters in the spectral

space.

Table 2.3: Accuracy (%) of clustering results (“Lap” denotes the geometric Laplacian
clustering, “NCut” denotes the normalized cut, “HE′” denotes the modularity based
clustering, and SpokEn denotes EigenSpoke.)

Dataset AdjCluster Lap NCut HE′ SpokEn
Syn-1 90.8 57.5 84.4 49.1 40.2
Syn-2 85.1 62.8 80.1 45.9 44.7

Polbooks 96.7 93.5 96.7 88.0 93.5
Polblogs 94.7 58.8 95.3 92.4 91.9

The original data descriptions of Polbooks and Polblogs (and Syn-1/Syn-2) provide

node-community relations. So we are able to compare different algorithms in terms

of accuracy. The accuracy is defined as
Pk

i=1 |Ci∩Ĉi|
n

where Ĉi denotes the i-th commu-

nity produced by different algorithms. In our experiment, we compare our algorithm,

AdjCluster, with four graph partition algorithms: one Laplacian based algorithm (the

geometric spectral clustering) [John R. Gilbert and Teng, 1998], one normal based

algorithm (the normalized cut [Shi and Malik, 2000]), one modularity based agglom-

erative clustering algorithm (HE′ [Wakita and Tsurumi, 2007]), and the EigenSpoke

algorithm (SpokEn [Prakash et al., 2010]). Table 2.3 shows the accuracy values on

the above four networks. Note that we cannot report accuracy values for Enron or

Facebook since we do not know about their exact true community partitions. We

can see that the quality of the partitioning produced by our algorithm, AdjCluster,
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is better than (or comparable with) that produced by the normalized cut in terms

of accuracy. On the contrary, the Laplacian spectrum based algorithm, the modular-

ity based agglomerative clustering algorithm, and the EigenSpoke algorithm produce

significant low accuracy values, which matches our theoretical analysis.

2.7 Summary

In this chapter, we show why node points in a graph with k communities exhibit the

k orthogonal line pattern in the spectral subspace spanned by the principal eigenvec-

tors of the graph’s adjacency matrix. We treat the observed graph as a perturbation

variant from the graph with k disconnected communities. The latter has the first k

eigenvectors of a clear pattern: each has nonzero entries only for nodes within one spe-

cific community. We apply the matrix perturbation theory to get the approximated

eigenvectors of the former. We then construct spectral coordinates by eigenvectors

and show the nodes in adjacency spectral space. Specifically we show that 1) spectral

coordinates of nodes with no direct links to other communities locate exactly on the

orthogonal lines; 2) spectral coordinates of nodes with links to other communities

deviate from lines; and 3) for a network with k communities there exist k orthogonal

lines (and each community forms one line) in the spectral subspace formed by the

first k eigenvectors of the adjacency matrix. We further give explicit formula (as well

as its conditions) to quantify how much orthogonal lines rotate from the canonical

axes and how far spectral coordinates of nodes with direct links to other communities

deviate from the line of their own community. We also examine the spectral spaces of

the Laplacian matrix and the normal matrix under the same perturbation framework.

Our findings show that the line orthogonality pattern in general does not hold in the
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Laplacian or the normal spectral space. We conduct empirical evaluations on both

synthetic data and real-world social networks and validate our theoretical findings.

We also present a graph partition algorithm, AdjCluster. The idea is to project nodes

coordinates to the unit sphere and apply the classic k-means to find cluster. The

line orthogonality property ensures the effectiveness of this graph partition algorithm

and the empirical evaluations show competitive analytic results compare with many

existing algorithms. The work in this chapter was published in the 22nd International

Joint Conference on Artificial Intelligence [Wu et al., 2011].

In next chapter, we similarly apply the matrix perturbation theorem to study

the spectral properties of signed graphs. The structures of signed graphs are more

complicated due to the introduction of negative edges into the graph. We divide signed

graphs into three basic types and show the patterns that exhibit in their adjacency

spectral spaces. Based on the theoretical results, we extend graph partition algorithm

AdjCluster to UniAdjCluster to cover the graph partition problem in signed graphs.



CHAPTER 3: SPECTRAL ANALYSIS OF COMMUNITY STRUCTURE IN
SIGNED GRAPHS

Previous studies on social networks are often focused on networks with only positive

relationships between individual nodes. As a significant extension, we conduct the

spectral analysis on graphs with both positive and negative relationships. Specifically,

we investigate the different impacts of positive and negative edges to the graph and

community related patterns in the spectral space of the graph’s adjacency matrix.

3.1 Introduction

In the last chapter, we have shown the community structure is closely related with

the adjacency spectral properties in unsigned graphs. In some networks, however,

relationships between two nodes could be inherently negative to express distrust or

dislike. In contrast to the extensive studies on social networks that restrict to only

positive relationships between individuals, in this chapter we study signed networks

with both positive and negative relationships.

In anthropology and sociology, signed networks were originally used to model

friendship and enmity [Davis, 1967; Hage and Harary, 1983]. The psychologists use

-1, 0, and 1 to represent disliking, indifference, and liking, respectively. Graph topol-

ogy of signed networks can then be expressed as an adjacency matrix where an entry

is 1 (or −1) if the relationship is positive (or negative) and 0 if the relationship is

absent. Positive and negative edges work differently in the networks. Positive rela-
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tionships such as friendship or cooperation usually group people together and they

mostly exist inside communities. Negative relationships such as distrust or dispute

usually separate people into different groups and they mostly exist among communi-

ties. To form a community, positive and negative edges sometimes work harmonically.

k-balanced signed graphs, first introduced in social psychology, describe this special

status: there are only positive inner-community edges and negative inter-community

edges in the graph. Our theoretical results show that communities in a k-balanced

signed graph are distinguishable in the spectral space of its signed adjacency matrix,

even with dense negative edges among communities. This is very different from that

of unsigned graphs where communities tend to mix together when connections be-

tween communities become dense. In other cases, positive and negative edges may

not work so well together. Some graphs are dominated by positive inner-community

edges. We are specially interested in the situations when these graphs have dense

inter-community edges. We will show that the negative inter-community edges offset

the rotation effect of the positive inter-community edges. When positive and negative

inter-community edges are of equal magnitude, the graph still keeps a similar com-

munity structure as that decided by the inner-community edges. Some other graphs

may have dominated negative inter-community edges and no/few inner-community

edges. We call them as partite-dominated signed graphs and these graphs are of

very different structures compared with all the graphs we discussed before. They do

not appear to be close to block-wise diagonal matrices. However, we will show that

the ideal case of partite-dominated signed graphs, the k-partite graph, can be trans-

formed to a similar type of signed graphs with dominated positive inner-community
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edges and we can apply similar analytic procedures.

These three types of signed graphs cover the community structures decided by both

positive and negative edges, by dominated positive edges only and by dominated neg-

ative edges only. In the real world situation, various types of community structures

may exist in the same graph. By sorting eigenvalues in the sequence of their magni-

tude, we find the principal eigenvectors well capture the community structure. The

only difference from unsigned graphs is that some of the eigenvalues of signed graphs

are negative. We thus extend our graph partition algorithm AdjCluster to UniAdj-

Cluster to include the large negative eigenvalues. We then run empirical evaluation

on several synthetic data and real social networks to validate our theoretic results.

3.2 Notation

In this chapter, An×n represents the adjacency matrix of a signed graph G. aij = 1

if there is a positive edge between the nodes i and j, aij = −1 if there is a negative edge

between the nodes i and j, and aij = 0 otherwise. A has n real eigenvalues. Let λi be

the i-th largest eigenvalue of A with the eigenvector xi, |λ1| ≥ |λ2| ≥ · · · ≥ |λn|. Let

xij denote the j-th entry of xi. The spectral decomposition of A is A =
∑

i λixix
T
i .

Recall formula 2.1 in Chapter 2 as above. The eigenvector xi is represented as

a column vector. There usually exist k leading eigenvalues that are significantly

greater than the remaining ones for networks with k well-separated communities.

We call the row vector αu = (x1u, x2u, · · · , xku) the spectral coordinate of node u

in the k-dimensional subspace spanned by (x1, · · ·xk). This subspace contains most

topological information of the original graph. We denote the i-th canonical basis as

ξi = (0, . . . , 0, 1, 0 . . . , 0), where the i-th entry of ξi is 1 and all other entries are zero.
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x1 xi xk xn

↓

αu →





x11 · · · xi1 · · · xk1

...
...

...

x1u · · · xiu · · · xku

...
...

...

x1n · · · xin · · · xkn

· · · xn1

...

· · · xnu

...

· · · xnn





Let E be a symmetric perturbation matrix, and Ã be the adjacency matrix after

perturbation, i.e., Ã = A + E. Similarly, let µi be the i-th largest eigenvalue of Ã

with eigenvector x̃i, and x̃ij is the j-th entry of x̃i. Row vector αu = (x̃1u, . . . , x̃ku)

is the spectral coordinate of node u after perturbation.

3.3 Spectral Properties of k-Balanced Signed Graphs and Their Variants

The k-balanced graph is one type of signed graphs that have received extensive

examinations in social psychology. It was shown that the stability of sentiments is

equivalent to k-balanced (clusterable). A necessary and sufficient condition for a

signed graph to be k-balanced is that the signed graph does not contain a cycle with

exactly one negative edge [Davis, 1967].

Definition 3.1: Graph G is a k-balanced graph if the node set V can be divided into k

non-trivial disjoint subsets such that V1, . . . , Vk, edges connecting any two nodes from

the same subset are all positive, and edges connecting any two nodes from different

subsets are all negative.
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The k node sets, V1, . . . , Vk, naturally form k communities denoted by C1, . . . , Ck

respectively. Let ni = |Vi| (
∑

i ni = n), and Ai be the ni × ni adjacency matrix

of community Ci. After ordering the nodes properly, the adjacency matrix Ã of a

k-balanced graph can be written as:

B = A + E, where A =






A1 0

. . .

0 Ak






, (3.1)

and E represents the negative edges across communities. More generally, euv = 1(−1)

if a positive(negative) edge is added between the nodes u and v, and euv = 0 otherwise.

For a graph with k disconnected communities, its adjacency matrix A is shown in

Equation 3.1. Recall our discussion about such graphs in last chapter. When the k

communities are comparable in size, the first k eigenvectors of A are as follows:

(x1,x2, · · · ,xk) =






xC1 0 · · · 0

0 xC2 · · · 0

...
...

. . .
...

0 0 · · · xCk






(3.2)

where xCi
is the first eigenvector for community Ci. Now, consider the node u in

community Ci. The spectral coordinate of node u is just the u-th row of the matrix

in Equation 3.2. Then, we have

αu = (0, · · · , 0, xiu, 0, · · · , 0), (3.3)

where xiu > 0 is the only non-zero entry of αu. A graph with k disconnected compa-

rable communities has spectral coordinates of all nodes located on k positive half-axes
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of canonical basis ξ1, · · · , ξk and nodes from the same community locate on the same

half axis.

Let Γi
u (i = 1, . . . , k) be the set of nodes in Ci that are newly connected to node

u by perturbation E: Γi
u = {v : v ∈ Ci, euv = ±1}. Recall that in last chapter

we derived several theoretical results on general graph perturbation. We include the

approximation of spectral coordinates below as a basis for our spectral analysis of

signed graphs.

Theorem 3.1: Let A be a block-wise diagonal matrix as shown in Equation 3.1, and

E be a symmetric perturbation matrix satisfying ‖E‖2 % λk. Let βij = xT
i Exj. For

a graph with the adjacency matrix Ã = A+E, the spectral coordinate of an arbitrary

node u ∈ Ci can be approximated as

αu ≈ xiuri +




∑

v∈Γ1
u

euvx1v

λ1
, . . . ,

∑

v∈Γk
u

euvxkv

λk



 (3.4)

where scalar xiu is the only non-zero entry in its original spectral coordinate shown

in Equation 3.3, and ri is the i-th row of matrix R in Equation 3.5:

R =





1 β12

λ2−λ1
· · · β1k

λk−λ1

β21

λ1−λ2
1 · · · β2k

λk−λ2

...
...

. . .
...

βk1
λ1−λk

βk2
λ2−λk

· · · 1





. (3.5)

3.3.1 Moderate Inter-community Edges

Proposition 3.1: Let B = A+E where A has k disconnected communities and ‖E‖2 %

λk and E is non-positive. We have the following properties:
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1. If node u ∈ Ci is not connected to any Cj (j -= i), αu lies on the half-line ri that

starts from the origin, where ri is the i-th row of matrix R shown in Equation

3.5. The k half-lines are approximately orthogonal to each other.

2. If node u ∈ Ci is connected to node v ∈ Cj (j -= i), αu deviate from ri.

Moreover, the angle between αu and rj is an obtuse angle.

To illustrate Proposition 3.1, we now consider a 2-balanced graph. Suppose that a

graph has two communities and we add some sparse edges between two communities.

For node u ∈ C1 and v ∈ C2, with Equation 3.4, the spectral coordinates can be

approximated as

αu ≈ x1ur1 + (0,
1

λ2

∑

v∈Γ2
u

euvx2v), (3.6)

αv ≈ x2vr2 + (
1

λ1

∑

u∈Γ1
v

euvx1u, 0), (3.7)

where r1 = (1, β12

λ2−λ1
) and r2 = ( β21

λ1−λ2
, 1).

The Item 1 of Proposition 3.1 is apparent from Equation 3.6 and Equation 3.7. For

those nodes with no inter-community edges, the second parts of the right-hand side

(RHS) of Equation 3.6 and Equation 3.7 are 0 since all euv’s are 0, and hence they

lie on the two half-lines r1 (nodes in C1) and r2 (nodes in C2). Note that r1 and r2

are orthogonal since r1r
T
2 = 0.

Next, we explain Item 2 of Proposition 3.1. Consider the inner product

〈αu, r2〉 = αur
T
2 =

1

λ2

∑

v∈Γ2
u

euvx2v.

If node u ∈ C1 has some negative links to C2 (euv = −1), 〈αu, r2〉 is thus negative.
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Figure 3.1: Syn-2Bal : rotation and deviation with inter-community edges (p = 0.05)

In other words, αu lies outside the two half-lines r1 and r2.

Another interesting pattern is the direction of rotation of the two half lines. For the

2-balanced graph, r1 and r2 rotate counter-clockwise from the axis ξ1 and ξ2. Notice

that all the added edges are negative (euv = −1), and hence β12 = β21 = xT
1 Ex2 =

∑n
u,v=1 euvx1ux2v < 0. Therefore, β12

λ2−λ1
> 0, β21

λ1−λ2
< 0, which implies that r1 and r2

have an counter-clockwise rotation from the basis.

Comparison with Adding Positives Edges

When the added edges are all positive (euv = 1), we can derive the following two

properties in a similar manner:

1. Nodes with no inter-community edges lie on the k half-lines. (When k = 2, the

two half-lines exhibit a clockwise rotation from the axes.)

2. For node u ∈ Ci that connects to node v ∈ Cj, αu and rj form an acute angle.

Figure 3.1 shows the scatter plot of the spectral coordinates for a synthetic graph,

Syn-2Bal. Syn-2Bal is a 2-balanced graph with 600 and 400 nodes in each community.

We generate Syn-2Bal and modify its inter-community edges via the same method

as synthetic data set Syn-3Bal in Section 3.3.4. As we can see in Figure 3.1(a), when
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the two communities are disconnected, the nodes from C1 and C2 lie on the positive

part of axis ξ1 and ξ2 respectively. We then add a small number of edges connecting

the two communities (p = 0.05). When the added edges are all negative, as shown

in Figure 3.1(b), the spectral coordinates of the nodes from the two communities

form two half-lines respectively. The two quasi-orthogonal half-lines rotate counter-

clockwise from the axes. Nodes with negative inter-community edges lie outside the

two half-lines. On the contrary, if we add positive inter-community edges, as shown in

Figure 3.1(c), the nodes from two communities display two half-lines with a clockwise

rotation from the axes, and nodes with inter-community edges lie between the two

half-lines.

3.3.2 Increase the Number of Inter-community Edges

Theorem 3.1 holds when the magnitude of perturbation is moderate. With per-

turbation of large magnitude, we can divide the perturbation matrix into several

perturbation matrices of small magnitude and approximate the eigenvectors step by

step. More general, the perturbed spectral coordinate of a node u can be approxi-

mated as

αu ≈ αuR +
n∑

v=1

euvαvΛ
−1, (3.8)

where Λ = diag(λ1, . . . ,λk).

One property implied by Equation 3.8 is that, after adding negative inter-community

edges, nodes from different communities are still separable in the spectral space. Note

that R is close to an orthogonal matrix, and hence the first part of RHS of Equation

3.8 specifies an orthogonal transformation. The second part of RHS of Equation 3.8
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specifies a deviation away from the position after the transformation. Note that when

the inter-community edges are all negative (euv = −1), the deviation of αu is just to-

wards the negative direction of αv (each dimension is weighted with λ−1
i ). Therefore,

after perturbation, the nodes u and v are further separable from each other in the

spectral space. The consequence of this repellency caused by adding negative edges

is that nodes from different communities stay away from each other in the spectral

space. As the magnitude of the noise increases, more nodes deviate from the half-lines

ri, and the line pattern eventually disappears.

Positive Large Perturbation

When the added edges are positive, we can similarly observe the opposite phe-

nomenon: more nodes from the two communities are “pulled” closer to each other

by the positive inter-community edges and are finally mixed together, indicating that

the well-separable communities merge into one community.

Figure 3.2 shows the spectral coordinate of Syn-2Bal when we increase the number

of inter-community edges (p = 0.1, 0.3 and 1). For the first row (Figure 3.2(a) to

Figure 3.2(c)), we add negative inter-community edges in Syn-2Bal, and for the second

row (Figures 3.2(d) to 3.2(f)), we add positive inter-community edges. As we add more

and more inter-community edges, no matter positive or negative, more and more nodes

deviate from the two half-lines, and finally the line pattern diminishes in Figure 3.2(c)

or Figure 3.2(f). When adding positive inter-community edges, the nodes deviate from

the lines and hence finally mix together as show in Figure 3.2(f), indicating that two

communities merge into one community. Different from adding positive edges, which
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Figure 3.2: Syn-2Bal with different types and sizes of inter-community edges

mixes the two communities in the spectral space, adding negative inter-community

edges “pushes” the two communities away from each other. This is because nodes with

negative inter-community edges lie outside the two half-lines as shown in Figure 3.2(a)

and Figure 3.2(b). Even when p = 1, as shown in Figure 3.2(c), two communities are

still clearly separable in the spectral space.

3.3.3 Approximate k-Balanced Signed Graphs

For unbalanced graphs that are close to k-balanced graphs, their topologies can

be considered as perturbations on balanced graphs with some negative connections

within communities and some positive connections across communities. Therefore,

we can divide an approximated k-balanced signed graphs into three parts

B = A + Ein + Eout, (3.9)
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where A is a non-negative block-wise diagonal matrix as shown in Equation 3.1,

Ein represents the negative edges within communities, and Eout represents the both

negative and positive inter-community edges.

Add Negative Inner-Community Edges

For the block-wise diagonal matrix A, we first discuss the case where a small number

of negative edges are added within the communities. Ein is also a block-wise diagonal.

Hence βij = xT
i Einxj = 0 for all i -= j, and matrix R caused by Ein in Equation 3.5

is reduced to the identity matrix I.

Consider that we add one negative inner-community edge between the nodes u, v ∈

Ci. Since R = I, only λi and xi are involved in approximating αu and αv:

αu = (0, . . . , 0, x̃iu, 0, . . . , 0), x̃iu ≈ xiu −
xiv

λi

αv = (0, . . . , 0, x̃iv, 0, . . . , 0), x̃iv ≈ xiv −
xiu

λi

.

Without loss of generality, assume xiu > xiv, and we have the following properties

when adding euv = −1:

1. Both the nodes u and v move towards the negative part of axis ξi after pertur-

bation: x̃iu < xiu and x̃iv < xiu.

2. Node v moves farther than u after perturbation: |x̃iv − xiv| > |x̃iu − xiu|.

The two preceding properties imply that, for those nodes close to the origin, adding

negative edges would “push” them towards the negative part of axis ξi, and a small

number of nodes can thus lie on the negative part of axis ξi, i.e., x̃iu < 0.
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Figure 3.3: Spectral coordinates of unbalanced graphs perturbed from Syn-2Bal

Add Inter-Community Edges

The spectral perturbation caused by adding Eout to matrix A+Ein can be complicated.

Notice that (A + Ein) is still a block-wise matrix, and we can still apply Thereom 3.1

and conclude that, when Eout is moderate, the major nodes from k communities form

k lines in the spectral space and nodes with inter-community edges deviate from the

lines.

It is difficult to give the explicit form of the lines and the deviations, because

xiu and the inter-community edges can be either positive or negative. However, we

expect that the effect of adding negative edges on positive nodes is still dominant in

determining the spectral pattern, because most nodes lie along the positive part of

the axes and the majority of inter-community edges are negative. Communities are

still distinguishable in the spectral space. The majority of nodes in one community

lie on the positive part of the line, while a small number of nodes may lie on the

negative part due to negative connections within the community.

We make graph Syn-2Bal unbalanced by flipping the signs of a small proportion q

of the edges. When the two communities are disconnected, as shown in Figure 3.3(a),

after flipping q = 0.1 inner-community edges, a small number of nodes lie on the
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negative parts of the two axes. Figure 3.3(b) shows the spectral coordinates of the

unbalanced graph generated from balanced graph Syn-2Bal (p = 0.1, q = 0.1). Since

the size of the inter-community edges is small, we can still observe two orthogonal lines

in the scatter plots. The negative edges within the communities cause a small number

of nodes lie on the negative parts of the two lines. Nodes with inter-community edges

deviate from the two lines. For Figure 3.3(c), we flip more edge signs (p = 0.1, q =

0.2). We can observe that more nodes lie on the negative parts of the lines, since more

inner-community edges are changed to negative. The rotation angles of the two lines

are smaller than that in Figure 3.3(b). This is because the positive inter-community

edges “pull” the rotation clockwise a little, and the rotation we observe depends on

the effects from both positive and negative inter-community edges.

3.3.4 Evaluation on k-Balanced Signed Graphs

Synthetic Balanced Graph

Dataset Syn-3Bal is a synthetic 3-balanced graph generated from the power law

degree distribution with the scaling exponent 2.5. The three communities of Syn-

3Bal contain 600, 500, 400 nodes, and 4131, 3179, 2037 edges respectively. All the

13027 inter-community edges are set to be negative. We delete the inter-community

edges randomly until a proportion p of them remain in the graph. The parameter p is

the ratio of the size of inter-community edges to that of the inner-community edges.

If p = 0 there are no inter-community edges. If p = 1, inner- and inter-community

edges have the same size.

Figure 3.4 shows the change of spectral coordinates of Syn-3Bal, as we increase
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the size of inter-community edges. When there are no negative links (p = 0), the

scatter plot of the spectral coordinates is shown in Figure 3.4(a). The disconnected

communities display three orthogonal half-lines. Figure 3.4(b) shows the spectral

coordinates when the size of inter-community edges is moderate (p = 0.1). We can

see the nodes form three half-lines that rotate a certain angle, and some of the nodes

deviate from the lines. Figures 3.4(c) and 3.4(d) show the spectral coordinates when

we increase the size of inter-community edges (p = 0.3, 1). We can observe that, as

more inter-community edges are added, more and more nodes deviate from the lines.

However, nodes from different communities are still separable from each other in the

spectral space.

We also add positive inter-community edges on Syn-3Bal for comparison, and the

spectral coordinates are shown in Figures 3.4(e) and 3.4(f). We can observe that, dif-

ferent from adding negative edges, as the size of inter-community edges (p) increases,

nodes from the three communities get closer to each other, and completely mix in

one community in Figure 3.4(f).

Synthetic Approximate k-Balanced Signed Graphs

To generate an unbalanced graph that close to k-balanced signed graphs, we randomly

flip the signs of a small proportion q of the inner- and inter-community edges of a

balanced graph, i.e., the parameter q is the proportion of unbalanced edges given the

partition. We first flip edge signs of a small size of inter-community edges. Figures

3.5(a) and 3.5(b) show the spectral coordinates after we flip q = 10% and q =

20% edge signs on Syn-3Bal with p = 0.1. We can observe that, even the graph is
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unbalanced, nodes from the three communities exhibit three lines starting from the

origin, and some nodes deviate from the lines due to the inter-community edges.

We then flip edge signs of a large size of inter-community edges. Figure 3.5(c)

shows the spectral coordinates after we flip q = 20% edge signs on Syn-3Bal with

p = 1. We can observe that the line pattern diminishes because of the large number

of inter-community edges. However, the nodes from three communities are separable

in the spectral space, indicating that the unbalanced edges do not greatly change the

patterns in the spectral space.

Comparison with The Laplacian Spectrum

The signed Laplacian matrix is defined as L = D̄ − A where D̄n×n is a diagonal

degree matrix with D̄ii =
∑n

j=1 |Aij| [Kunegis et al., 2010]. Note that the unsigned

Laplacian matrix is defined as L = D − A where Dn×n is a diagonal degree matrix

with Dii =
∑n

j=1 Aij. The eigenvectors corresponding to the k smallest eigenvalues

of the Laplacian matrix also reflect the community structure of a signed graph: the k

communities form k clusters in the Laplacian spectral space. However, eigenvectors

associated with the smallest eigenvalues are generally instable to noise according to

the matrix perturbation theory [Stewart and Sun, 1990]. Hence, when it comes to

real-world networks, the communities may no longer form distinguishable clusters in

the Laplacian spectral space.

Figure 3.6(a) shows the Laplacian spectrum of a balanced graph, Syn-3Bal with

p = 0.1. We can see that the nodes from the three communities form 3 clusters in the

spectral space. However, the Laplacian spectrum is less stable to the noise. Figures
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Figure 3.4: The spectral coordinates of the 3-balanced graph Syn-3Bal. (b)-(d): add
negative inter-community edges; (e)-(f): add positive inter-community edges
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Figure 3.5: The spectral coordinates of a unbalanced synthetic graph generated via
flipping signs of inner- and inter-community edges of Syn-3Bal with p = 0.1 or 1
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3.6(b) and 3.6(c) plot the Laplacian spectra of the unbalanced graphs perturbed from

Syn-3Bal. We can observe that C1 and C2 are mixed together in Figure 3.6(b) and

all the three communities are not separable from each other in Figure 3.6(c). For

comparison, the adjacency spectra of the corresponding graphs were shown in Figure

3.5(b) and Figure 3.5(c) respectively where we can observe that the three communities

are well-separable in the adjacency spectral space.
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Figure 3.6: The Laplacian spectral space of signed graphs

3.4 Signed Graphs with Dominated Positive Inner-community Edges

In k-balanced signed graphs, the positive and negative edges work harmonically

to form the communities. However, k-balanced signed graphs are only one type of

special signed graphs. In other cases, the positive and negative edges may not work

so harmonically and they may offset some effect of the edges with different signs. In

this section, we focus on the signed graph with dominated positive inner-community

edges. From the starting point as a graph with k disconnected communities, we

add moderate inter-community edges of mixed signed edges. The graph still shows

k orthogonal lines in the adjacency spectral space by Theorem 2.1. If we continue

to add a large number of edges with different signs, the conditions of Theorem 2.1

may not hold. In the following, we specially interested in this situation when the
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inter-community edges are dense. For these signed graphs, we show that there exist

k orthogonal clusters in the spectral space spanned by the k principal eigenvectors

if the newly added inter-community edges are nearly half positive and half negative.

In k-balanced signed graphs, the communities are hostile to each other due to the

negative inter-community edges while in unbalanced graphs with equally positive and

negative edges, the communities are neutral to each other.

We separate the signed graphs with dominated positive inner-community edges into

two parts. A is the adjacency matrix of a 0-1 graph with k disconnected communities.

E is the perturbation matrix that contains the positive and negative edges added

across communities. The conditions of Theorem 2.1 do not put restriction on the

values of the entries. If E contains only a small number of edges, we can apply

Theorem 2.1 directly to get the approximation of the principal eigenvectors of the

original graphs. βji = xT
j Exi =

∑
xjueuvxvi where euv represents the newly added

edge. According to Equation 3.2, all entries of xi are non-negative. So βji can be

very small when the positive and negative edges are of equal quantity. When the

magnitude of edges added across communities is large, we derive the following result:

Corollary 3.1: Denote the adjacency matrix of a graph as Ã = A + E where A is as

shown in Equation 3.1 and E denotes the signed edges across communities. If E can

be decomposed into E = Er + Et satisfying:

• Er contains equal numbers of positive and negative edges so that xT
j Erxi is

almost zero;

• Et contains mostly one kind of edges and Et satisfies the condition in Theorem
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2.1;

we conclude that the leading k eigenvectors of Ã can be approximated as

x̃i ≈ xi +
k∑

j=1,j $=i

β̃ji

λi − λj

xj +
1

λi

Exi +
1

λ2
i

EtErxi +
k∑

j=1,j $=i

β̃jiEr

(λi − λj)λj

xj (3.10)

where

β̃ji ≈ xj
T Etxi +

1

λi

xj
T EtErxi +

1

λj

xj
T ErEtxi.

Proof. Er can be decomposed into a series of Es for s = 1, · · · , t − 1 where each Es

contains a very small number of edges and xT
j Esxi ≈ 0. We can apply Theorem

2.1 to get the approximated eigenvectors. Since xT
j E1xi ≈ 0, the approximated

eigenvectors for A + E1 are x̃
(1)
i ≈ xi +

E1
λi

xi. Because the edges are not added inside

the communities, the eigenvalues remain almost the same: λ̃i ≈ λi+xT
j E1xi = λi. E2

has a similar condition with E1. Thus the approximated eigenvectors of A + E1 + E2

are

x̃
(2)
i ≈ x

(1)
i +

E2

λi

x
(1)
i ≈ xi +

E1 + E2

λi

xi +
E2E1

λ2
i

xi. (3.11)

‖E1‖2 and ‖E2‖2 are small compared with λi and ‖E2E1‖2 ≤ ‖E1‖2‖E2‖2, so E2E1

λ2
i

xi

has much smaller value than E1+E2
λi

xi. So the last term in Equation 3.11 is negligible.

Then x̃
(2)
i ≈ xi + E1+E2

λi
xi. We follow similar procedure and get the approximated

eigenvectors of A +
∑t−1

s=1 Es:

x̃
(t−1)
i ≈ xi +

1

λi

Erxi (3.12)

When Et satisfies the condition of Theorem 2.1, we have the approximated eigen-
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vectors of A + E:

x̃i ≈ x̃
(t−1)
i +

k∑

j=1,j $=i

β̃ji

λi − λj

x̃
(t−1)
j +

1

λi

Etx̃
(t−1)
i (3.13)

where

β̃ji =
(
x̃

(t−1)
j

)T

Etx̃
(t−1)
i

≈ xj
T Etxi +

1

λi

xj
T EtErxi +

1

λj

xj
T ErEtxi +

1

λiλj

xj
T ErEtErxi

As λiλj is much larger than ‖Et‖2, we omit the last term from β̃ji since it is much

smaller than the second and third terms. We plug Equation 3.12 into Equation 3.13

and have:

x̃i ≈ xi +
Er

λi

xi +
k∑

j=1,j $=i

β̃ji

λi − λj

(
xj +

Er

λj

xj

)
+

Et

λi

(
xi +

Er

λi

xi

)

= xi +
k∑

j=1,j $=i

β̃ji

λi − λj

xj +
1

λi

Exi +
1

λ2
i

EtErxi +
k∑

j=1,j $=i

β̃jiEr

(λi − λj)λj

xj

We write Equation 3.10 in matrix form:

(x̃1, · · · , x̃k) ≈ (x1, · · · , xk)R̃ + E

(
x1

λ1
, . . . ,

xk

λk

)
(3.14)

+ EtEr

(
x1

λ2
1

, . . . ,
xk

λ2
k

)
+ Er

(
x1

λ1
, . . . ,

xk

λk

)
(R̃ − I)
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where

R̃ =





1 β̃12

λ2−λ1
· · · β̃1k

λk−λ1

β̃21

λ1−λ2
1 · · · β̃2k

λk−λ2

...
...

. . .
...

β̃k1
λ1−λk

β̃k2
λ2−λk

· · · 1





.

When Et = 0, we have β̃ji ≈ 0 so that (x̃1, · · · , x̃k) ≈ (x1, · · · , xk)+Er

(
x1
λ1

, . . . , xk

λk

)
.

Such signed graphs have communities with neutral relationships. This is a very spe-

cial type of signed graphs. Even with dense signed edges added across the commu-

nities, there is no rotation of the central lines of the communities and the nodes

stay close to the canonical axes in the spectral space. When Er has a large num-

ber of edges, the line pattern is lost due to most of the nodes have inter-community

edges and derive from the central line. On the other hand, when Er = 0, we have

(x̃1, · · · , x̃k) ≈ (x1, · · · , xk)R̃+Et

(
x1
λ1

, . . . , xk

λk

)
, which is of the same form with Equa-

tion 2.10. Notice Et needs to satisfy the condition of Theorem 2.1 so it usually has

very small magnitude. In this situation, the signed graph has sparse inter-community

edges with mixed signs. When E contains both parts, Equation 3.10 has two more

terms than Equation 2.10. The first term (x1, · · · , xk)R̃ is related with the impact

from the nodes’ direct neighbors and the second term Et

(
x1
λ1

, . . . , xk

λk

)
is related with

the impact from the nodes’ 2 steps away neighbours. We notice
∥∥∥EtErxi

λ2
j

∥∥∥ ≤ ‖E‖2

λ2
j

so

that the third term in Equation 3.10 is much smaller than the second term. The

fourth term is also small because ‖Er‖ and ‖R̃ − I‖ are small. They can be omitted

except for some individual nodes.

Similar as in Theorem 2.2, we can derive the form of spectral coordinates by ex-
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tracting the rows of Equation 3.14. We thus have the spectral coordinate of node u

as following:

Proposition 3.2: A graph as Ã = A + E that satisfies the condition of Corollary 3.1,

the spectral coordinate of u can be approximated as

αu ≈ xiur̃i + Eu

(
x1

λ1
, . . . ,

xk

λk

)
+ (3.15)

(EtEr)u

(
x1

λ2
1

, . . . ,
xk

λ2
k

)
+ (Er)u

(
x1

λ1
, . . . ,

xk

λk

)
(R̃ − I)

where xiu is the only non-zero entry in its original spectral coordinate shown in

Equation 2.7, (·)u means the uth row of the corresponding matrix.

If Et = 0, we have β̃ji ≈ 0 so that αu ≈ (0, · · · , 0, xiu, 0, · · · , 0)+(Er)u

(
x1
λ1

, . . . , xk

λk

)
.

(Er)u xi is the summation of impact of node u’s neighbors in Ci through Er. Though

we assume that the numbers of positive and negative edges between communities in

Er are equal, an individual node u could still have more positive inter-community

edges than negative ones or vice versa. Thus the node u could have large jump from

the central line (0, · · · , 0, xiu, 0, · · · , 0). Er contains both positive and negative edges

so that some nodes may derive from the central lines in the opposite direction com-

pared with some other nodes. When we have many nodes like node u, the line pattern

is no longer kept. We can see clusters stay on the canonical axes.

When Er = 0 and Et satisfies the condition in Theorem 2.1, the graph has very

sparse inter-community connection. Line pattern is still kept. The only difference

of signed graph from unsigned graph is that nodes can scatter on both side of the

central line instead of just one side.



66

When neither Er nor Et is zero, there are two extra terms in Equation 3.15 com-

pared with Equation 2.8 in Theorem 2.2. These two terms indicate further derivation

of the nodes from the central lines.

Proposition 3.3: The spectral coordinates of Ã form k approximately orthogonal lines

or clusters. Specially, for node u ∈ Ci with no connection with other communities or

with similar numbers of positive and negative edges with the same community, αu

lies close to r̃i. Otherwise αu scatters around r̃i.

Proof. The proof of orthogonality of r̃ is similar to that for Proposition 2.2. Since

Et satisfies the conditions in Theorem 2.1, β̃ji is much smaller than |λi − λj |. So

R̃T R̃ ≈ I and r̃i’s are approximately orthogonal. There are two kinds of nodes

that still stay on or close to r̃i. The first kind of nodes has no connection outside

their own community. The second kind of nodes has equal numbers of positive and

negative edges so that Euxi ≈ 0. These two kinds of nodes may not locate exactly on

r̃i due to the small perturbation caused by the third and fourth terms in Equation

3.15. When inter-community edges are dense, we have very few nodes without inter-

community connection or with exact equal number of positive and negative inter-

community edges. Line pattern may be lost. However, since r̃i’s are orthogonal, the

communities appear to be k clusters that are orthogonal to each other and thus they

are clusterable.

3.5 Partite-dominated Signed Graphs

The biggest difference of signed graphs from unsigned graphs is the introduce of neg-

ative edges. Negative edges work differently compared with positive edges in forming
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the communities. In this section, we specially study partite-dominated signed graphs:

signed graphs that have dominated negative inter-community edges and no/few inner-

community edges. They are very different from all the graphs we studied before. In

order to analyze them, we transform them to the graphs similar to signed graphs with

dominated positive inner-community edges but with values relaxed to real numbers.

With properly applying Corollary 3.1, we are able to give approximated eigenvectors

and spectral coordinates for partite-dominated signed graphs.

The graph contains only negative edges so that its largest eigenvalue in magnitude

is negative according to Perron-Frobenius theorem [Stewart and Sun, 1990]. The

corresponding eigenvector has all the entries nonnegative. The entries on this eigen-

vector corresponding to different communities overlap with each other unless they

have a significant difference in density. To better analyze the graph, we subtract the

first eigenpair from the graph and get a new matrix Q. We find that Q has blocks

with positive entries on the diagonal and blocks with positive and negative entries off

the diagonal, which is very similar to signed graphs with dominated positive inner-

community edges. When Q further satisfies all the conditions in Corollary 3.1, we

can apply Corollary 3.1 and get its approximated eigenvectors. By orthogonalizing

the first k eigenvectors of Q with the removed eigenvector, we can get the approxi-

mated eigenvectors of the original k-partite graph, and show the graph clusterable in

the spectral space spanned by the k approximated eigenvectors. In the following, we

give a formal definition of the ideal case, k-partite graph and theoretically study its

spectral properties.
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Definition 3.2: A k-partite graph represents a graph with k communities under two

constraints. First, there are no links inside the communities. Second, nodes from

different communities are densely connected with the negative. The adjacency matrix

Ap can be written in the following form with proper permutation of the nodes:

Ap =






0 B12 · · · B1k

B21 0 · · · B2k

...
...

. . .
...

Bk1 Bk2 · · · 0






, (3.16)

where Bij is the ni × nj matrix representing relationships between community i and

community j. We call Ap as a k-partite matrix.

Let |ζ1| > · · · > |ζn| be the eigenvalues of Ap and zi be the corresponding eigen-

vectors. We similarly define the spectral coordinate αu as in Equation 3.17.

z1 zi zk zn

↓

αu →





z11 · · · zi1 · · · zk1

...
...

...

z1u · · · ziu · · · zku

...
...

...

z1n · · · zin · · · zkn

· · · zn1

...

· · · znu

...

· · · znn





(3.17)

By the eigen-decomposition of a matrix, Ap =
∑n

i=1 ζiziz
T
i . We remove the effect

of z1 from Ap by introducing Q = Ap − ζ1z1z
T
1 . Write zT

1 = (zC1 , ..., zCk
)T where zCi

represents the entries of z1 corresponding to community Ci. Q contains a block-wise
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diagonal matrix:

A =






|ζ1|zC1z
′
C1

0 · · · 0

0 |ζ1|zC2z
′
C2

· · · 0

...
...

. . .
...

0 0 · · · |ζ1|zCk
z′

Ck






.

In E = Q−A, the corresponding blocks on the diagonal are zero and the off diagonal

blocks Bij − ζ1zCi
z′

Cj
represent the connection between Ci and Cj .

A is the same with Equation 3.1 except for the diagonal entries relaxed to real non-

negative numbers. E contains both positive and negative real number entries. Thus

Q is similar to the signed graph discussed in Corollary 3.1 except for the relaxation of

the entries to real numbers. However, the proof of Corollary 3.1 does not require the

matrix must have 0-1 entries. So we can apply Corollary 3.1 to Q if the conditions

are satisfied. In order to do so, we need to properly decompose E into Er and Et.

The first k normalized eigenvectors of A are:

(x1, · · · , xk) =





zC1
‖zC1‖2

0 · · · 0

0
zC2

‖zC2‖2
· · · 0

...
...

. . .
...

0 0 · · · zCk

‖zCk
‖2





(3.18)

and their corresponding eigenvalues are ‖zC1‖2
2 |ζ1| , · · · , ‖zCk

‖2
2 |ζ1|. Without loss

of generality, we assume ‖zC1‖2
2 ≥ · · · ≥ ‖zCk

‖2
2. We also notice that A has the

eigenvalues after kth all equal to zero. It means that the gap between kth and
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(k + 1)th eigenvalues is big as ‖zCk
‖2

2 |ζ1|.

Let

qij = 1 −
|ζ1| ‖zCi

‖2
2‖zCj

‖2
2

zT
Ci

BijzCj

(3.19)

and

Et =






0 q12B12 · · · q1kB1k

q21B21 0 · · · q2kB2k

...
...

. . .
...

qk1Bk1 qk2Bk2 · · · 0






. (3.20)

Then xj
T Erxi = xj

T (E − Et)xi = |ζ1|− (1 − qji)
zT

Cj
BjizCi

‖zCi
‖2
2‖zCj

‖2
2

= 0. If Et is of small

magnitude, we can now apply Corollary 3.1 to get the approximated eigenvectors of

Q. With proper transformation, we can derive the approximated eigenvectors for Ap.

We conclude our result as follows:

Proposition 3.4: Define qij and Et as in Equation 3.19 and Equation 3.20. If Et

satisfies the conditions of Theorem 2.1, the eigenvectors of Ap can be approximated

by the following form:

(z1, z̃2, · · · , z̃k) ≈ (x1, · · · , xk)TK + E

(
0,

x1

‖zC1‖2
2 |ζ1|

, . . . ,
xk−1

‖zCk−1
‖2

2 |ζ1|

)
K (3.21)
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where xi’s are defined in Equation 3.18

T =





‖zC1‖2 1 · · · β̃1(k−1)|ζ1|−1

‖zCk−1
‖2
2−‖zC1‖

2
2

‖zC2‖2
β̃21|ζ1|−1

‖zC1‖
2
2−‖zC2‖

2
2

· · · β̃2(k−1)|ζ1|−1

‖zCk−1
‖2
2−‖zC1‖

2
2

...
...

. . .
...

‖zCk−1‖2
β̃(k−1)1|ζ1|−1

‖zC1‖
2
2−‖zCk−1

‖2
2

· · · 1

‖zCk
‖2

β̃k1|ζ1|−1

‖zC1‖
2
2−‖zCk

‖2
2

· · · β̃k(k−1)|ζ1|−1

‖zCk−1
‖2
2−‖zCk

‖2
2





. (3.22)

K is an upper triangle matrix decided by Gram-Schmidt process such that TK is

orthogonal. The 2rd to k-th eigenvalues of Ap are of the different sign with the first.

Proof. By the definition of Et in Equation 3.20, xjErxi = 0. When the density

of edges between Ci and Cj is closed to the global density of edges, qij is close to

zero. We follow the similar procedure as shown in the proof of Corollary 3.1. ‖Et‖2

is bounded by |maxi,j{qij}ζ1|. When the communities have similar density of inter-

community edges, qij ’s are small and Et satisfies the conditions of Theorem 2.1. The

third and fourth terms in Equation 3.14 can be omitted due to their much smaller

magnitude compared with the second term. We then have the following approximated

eigenvectors for Q:

(x̃1, · · · , x̃k) ≈ (x1, · · · , xk)R̃ + E

(
x1

λ1
, . . . ,

xk

λk

)

where λi’s are the eigenvalues of A.

Since the k dimensional subspace spanned by x̃i for i = 1, · · · , k is approximately

the one spanned by xi for i = 1, · · · , k and z1 is of linear combination of xi, the

subspace spanned by (z1, x̃1, · · · , x̃k) is almost the same with the subspace spanned
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by (z1, x̃1, · · · , x̃k−1). In order to get z̃2, ..., z̃k, we need to othogonize x̃i for i =

1, · · · , k − 1 with z1.

By removing the last column in R̃ and adding one column before the first column,

we define T as Equation 3.22 so that

(z1, x̃1, · · · , x̃k−1) ≈ (x1, · · · ,xk)T + E

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)
.

By Gram-Schmidt process, we can find a matrix K such that TK is an orthogonal

matrix. When we apply the same K on (z1, x̃1, · · · , x̃k−1), we write out the following

equation:

KT (z1, x̃1, · · · , x̃k−1)
T (z1, x̃1, · · · , x̃k−1)K (3.23)

≈KT T T (x1, · · · ,xk)
T (x1, · · · ,xk)TK

+ (x1, · · · ,xk)
T E

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)
K

+ KT

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)T

ET (x1, · · · ,xk)

+ KT

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)T

ET E

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)
K

Since Et is of small magnitude, xT
i Exj ≈ 0 and thus the second, third and forth

terms in Equation 3.23 are close to 0. So we have:

KT (z1, x̃1, · · · , x̃k−1)
T (z1, x̃1, · · · , x̃k−1)K ≈ I

It means that (z1, x̃1, · · · , x̃k−1)K has approximately orthogonal columns and it can

be used as a good approximation for eigenvectors of Ap. So
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(z1, z̃2, · · · , z̃k) ≈ (x1, · · · , xk)TK + E

(
0,

x1

λ1
, . . . ,

xk−1

λk−1

)
K. (3.24)

Plug in λi = ‖zCi
‖2

2 |ζ1|, we reach our conclusion for eigenvectors.

Since x̃T
i Apx̃i = |ζ1| (‖zCi

‖2
2−‖zCi

‖3
2) > 0, the estimated eigenvalues for x̃1, · · · , x̃k−1

positive. Gram-Schmidt process does not change the subspace. So the approximated

eigenvalues for z̃i’s(i ≥ 2) are positive.

Proposition 3.4 converts the clusterability problem of a k-partite graph Ap to

whether Et is a perturbation small enough. When qij ’s are close to zeros, ‖Et‖ is

also close to zero and Ap is thus clusterable. Notice |ζ1| is the approximated global

density and
zT

Ci
BijzCj

‖zCi
‖2
2‖zCj

‖2
2

is the approximated inter-community connection density be-

tween Ci and Cj. Small qij ’s mean that all the inter-community connections have

similar density.

Extract the uth row from Equation 3.24 and we have the follow approximated form

for spectral coordinates of node u belonging to Ci.

Proposition 3.5: For a k-partite graph Ap, the spectral coordinate of node u in com-

munity Ci can be approximated as

αu ≈ z1u

‖zCi
‖tiK + Eu

(
0,

x1

‖zC1‖2
2 |ζ1|

, · · · ,
xk−1

‖zCk−1
‖2

2 |ζ1|

)
K,

where ti is the ith row of T . tiK and tjK are approximately orthogonal to each

other for i -= j. Two nodes in different communities Ci and Cj stay close to the

corresponding vectors so the spectral space has k separable clusters that are almost

orthogonal to each other.
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Proof. TK is an orthogonal matrix due to Gram-Schmidt process. Its rows are orthog-

onal to each other, i.e., (tiK)(tjK)T = 0 for i -= j. Eu

(
0, x1

‖zC1‖
2
2|ζ1|

, · · · , xk−1

‖zCk−1
‖2
2|ζ1|

)
K

represents the further derivation of node u from tiK.

Now we can conclude that a k-partite graph is expected to form k clusters that are

approximately orthogonal to each other.

General Signed Graphs

We have discussed three types of signed graph: k-balanced signed graphs, signed

graphs with dominated positive inner-community edges and partite-dominated signed

graphs. They cover the community structures decided by both positive and negative

edges, dominated positive edges only or dominated negative edges only. In general

signed graphs, these three types of graphs may exist in the same graph. We may ob-

serve that some communities have dense positive inner-community edges and inter-

community edges of mixed signs while some other communities do not have many

inner-community edges but dense negative inter-community edges. We may also ob-

serve that we have partite structures inside some communities. The optimal process of

eigen-decomposition automatically handles the situations. It will return large positive

eigenvalues related with dense positive edges and large negative eigenvalues related

with dense negative edges. The corresponding eigenvectors then naturally capture

the related structures. With very slight modification from AdjCluster, we develop a

graph partition algorithm that works for both signed and unsigned graphs.
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3.6 Unified Adjacency Eigenspace based Clustering

In this section, we present a graph partition algorithm, UniAdjCluster, which uti-

lizes the clusterable patterns in the spectral space of the adjacency matrix. In signed

graphs, communities exhibit orthogonal lines/clusters in the adjacency spectral space.

We still project the nodes in spectral space to unit sphere to separate different com-

munities. The difference between AdjCluster and UniAdjCluster is the selection of

eigenvectors. If the communities are mostly decided by negative inter-community

edges, the adjacency matrix has large negative eigenvalues. We need to include these

eigenvectors so that we will not miss important structures. The modification from

AdjCluster to UniAdjCluster is not very big. We put “Unified” in order to emphasis

the nicely consistent patterns shown by adjacency spectral space.

As shown in Algorithm 2, we calculate the eigenvectors with the largest eigenvalues

in magnitude(line 1). If those eigenvalues are positive, it usually indicates that the

graph has some communities with higher density of positive edges inside them. If the

largest one of those eigenvalues is negative while the others are positive, it usually

indicates that the graph has k-partite structure. We then project each spectral coor-

dinate αu to the unit sphere in the k-dimensional subspace by normalizing αu to its

unit length (line 3). With the right value of k, we expect to observe that the nodes

from one community to form a cluster on the unit sphere. Hence there will be k well

separated clusters on the unit sphere. We apply the k-means clustering algorithm on

the unit sphere to produce a graph partition(line 4).

In order to evaluate the quality of the partition, we use three measures here: Davies-
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Algorithm 2 UniAdjCluster : Unified Adjacency Eigenspace based Clustering
Input: A,K
Output: Clustering results

1: Compute x1,. . . ,xK by the eigen-decomposition of A with |λ1| > · · · > |λK |
2: for k = 2,. . . , K do

3: αu = (x1u, . . . , xku) and ᾱu = αu

‖αu‖ ;

4: Apply k-means algorithm on {ᾱu}u=1,...,n;
5: Compute fitting statistics from k-means algorithm ;
6: end for

7: Output partitions under k with the best fitting statistics and corresponding eigen-
values

Bouldin Index (DBI ) [Davies and Bouldin, 1979], modularity for signed graphs [Traag

and Bruggeman, 2009] and average angle between centroids of the output clusters.

We have introduced DBI and average angle between centroids in Chapter 2. Recall

the low DBI indicates output clusters with low intra-cluster distances and high inter-

cluster distances. When the graph contains k clear communities, we expect to have the

DBI reach its minimum after applying k-means in the k-dimensional spectral space.

DBI can show a better result for a lower dimension than k when some communities

are more clear to separate than the others. In such situation, we usually observe a

local minimum for some higher dimension other than the global minimum of DBI.

As for the average angle, we expect all the angles between centroids of the output

clusters are close to 90◦ since spectral coordinates form quasi-orthogonal lines or k

orthogonal clusters in the determined k-dimensional spectral space.

The authors in [Traag and Bruggeman, 2009] extended the definition of modular-

ity to signed graphs by giving penalty to absent positive edges inside communities

and negative edge inside communities while reward to positive edges inside commu-

nities and absent negative edge inside communities. The high modularity indicates a
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stronger community structure that contains more positive inner-community edges and

more negative inter-community edges. When the graph contains k clear communities,

we expect to have modularity reach maximum.

The algorithm is focused on the first level of community structure in the graph. In

order to refine the clustering result, we can apply the algorithm once again on one of

the communities to do further partition.

3.7 Empirical Evaluation

3.7.1 Datasets

We generate several synthetic graphs for the purpose of illustrating our theoretical

results. Recall in Chapter 2, we generate Syn-1 with 5 communities of with the num-

ber of nodes 200, 180, 170, 150 and 140 respectively and each community is generated

separately with a power law degree distribution with the parameter 2.3. We extract

the inner-community edges of it and get Syn-0. It serves as the inner-community con-

nection for Syn-3, Syn-4 and Syn-5. Syn-3 is generated by adding random positive

inter-community edges based on Syn-0. Denote ratio of inter-community edges over

inner-community edges between Ci and Cj as pij. Syn-3 has pij = 80%. We generate

Syn-4 and Syn-5 by flipping 20% and 50% of inter-community edges in Syn-3 to neg-

ative. In Syn-6 to Syn-9 we keep them with the community size in Syn-0 but remove

all the inner-community edges. Syn-6, Syn-7 and Syn-8 are generated by randomly

adding positive edges between two communities with probability 0.2, 0.4 and 0.6 re-

spectively. We also generate Syn-9, Syn-10 and Syn-11 by adding inner-community

edges to Syn-6 with probability 0.04, 0.1 and 0.16 respectively.

We apply our algorithm UniAdjCluster on both the synthetic data and several real
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network datasets and give graph partition results in our evaluation. The real datasets

include Correlates of War(COW) and Epinions.

3.7.2 Separation of Communities in Signed Graphs with Dominated Positive

Inner-community Edges

In Syn-3, we see that the large number of positive inter-community edges make the

communities merge together. When negative edges are introduced, our theoretical

result shows that even when the number of inter-community edges is large, if we flip

nearly half of the edges to negative, we can still get a clear separation of the original

community structure.

In order to show this, we first construct two datasets, Syn-4 and Syn-5 by flip-

ping 20% and 50% of the inter-community edges of Syn-3 negative. We then run

UniAdjCluster on Syn-4 and Syn-5.
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Figure 3.7: Separation of communities for signed graphs with dominated positive
inner-community edges

We draw DBI against the number of clusters in Figure 3.7 for Syn-0,3,4,5. We

can see DBI for Syn-0 (blue dots) drops to zero at k = 5 and DBI for Syn-5 (green

squares) reach the minimum of DBI at k = 5. These indicate that we can find 5

communities in Syn-0 and Syn-5. DBI for Syn-3 (red triangles) and DBI for Syn-

4 (magenta diamond) keep going up when k increases and both of them exceed 1 at
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k = 5. These indicate that 5 community pattern is lost in Syn-3 and Syn-4. Syn-

4 has much denser positive inter-community edges than negative inter-community

edges. Et is not of small magnitude and communities are merged. Syn-5 has equal

magnitude of positive and negative inter-community edges so that the communities

are separable. This verify our theoretical results.

We show the fitting statistics of UniAdjCluster in Table 3.1. For Syn-4, DBI is

large and average angle is far from 90◦. It indicates the graph does not have a clear

5-community structure. Notice modularity of Syn-4 is larger than that of Syn-3.

This is because the modularity rewards negative inter-community edges. For Syn-5

where nearly half inter-community edges are negative, DBI has the minimum value

at k = 5 and we see the average angle is almost 90◦. Modularity of Syn-5 is much

larger than that of Syn-4, which indicates a stronger community structure.

3.7.3 Separation of Communities in k-partite Graph

A k-partite graph usually has the largest eigenvalue in magnitude negative and

the rest k − 1 ones positive. We have shown that a k-partite graph appears to be k

orthogonal clusters in the k-dimensional space. We plot DBI of Syn-6, Syn-7 and

Syn-8 against the number of clusters. We can see all these graphs with clear 5-partite

structure have minimum of DBI at k = 5. We also notice that with the increase

of inter-community connection, DBI decreases and it indicates that the denser the

inter-community connection is the more clear clusters are in the spectral space.

Figure 3.9 shows the spectral space of Syn-6 spanned by the first five eigenvectors

with largest eigenvalues in magnitude. If we look at the first three dimensions, two

of the communities, C4 and C5, are not separable. However, if we look at the fourth
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Figure 3.8: k-partite with different density

and the fifth dimensions, we can see they are clearly separated. With moderate inner-

community edges added, Syn-9 does not show big difference compared with Syn-6.

We then increase the inner-community edges to 0.1 in Syn-10. This graph still has

a 5-community structure. When we increase the inner-community edges to 0.16 as

in Syn-11, the graph is totally mixed and 5 community pattern is lost. In Table 3.1,

we can see that the k-partite graphs such as Syn-6, Syn-7 and Syn-8 all have low

DBI and average angles close to 90◦. Syn-9 is close to a k-partite graph so that the

fitting statistics also show it has a clear community structure. Syn-10 has a much

higher DBI but not exceed 1. The community structure is still separable. For Syn-11,

DBI exceeds 1 and we can hardly separate nodes for different communities.
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Figure 3.9: Spectral space of Syn-6 spanned by the first five eigenvectors with largest
eigenvalues in magnitude
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Table 3.1: Statistics of networks and partition quality of UniAdjCluster
Dataset n m(+/−) k DBI Q Angle
Syn-0 840 3260/0 5 0 0.8 90◦

Syn-3 840 13738/0 5 1.07 0.05 68.7◦

Syn-4 840 11642/2096 5 1.15 0.09 73.0◦

Syn-5 840 8708/5030 5 0.82 0.69 89.7◦

Syn-6 840 0/59242 5 0.37 0.2 88.8◦

Syn-7 840 0/117892 5 0.22 0.2 89.6◦

Syn-8 840 0/177303 5 0.14 0.2 89.8◦

Syn-9 840 0/62134 5 0.48 0.15 87.6◦

Syn-10 840 0/66398 5 0.96 0.09 81.2◦

Syn-11 840 0/70601 5 1.3 0.02 74.3◦

COW 159 1093/155 5 0.97 0.58 97.5◦

Epinions 2027 0/2348 3 0.74 0.14 93.2◦

Community Partition

Table 3.1 shows the quality of our graph partition algorithm UniAdjCluster on

the synthetic datasets and several real world dataset as described above. “k” is the

number of communities, “DBI ” is the Davies-Bouldin Index, “Angle” is the average

angle between centroids, and “Q” is the signed modularity. The synthetic networks

with clear community settings all return DBI lower than 1 and average angle close

to 90◦. The results verify our theoretical findings.

The analysis on real graphs returns interesting results. COW is a graph with

alliance and dispute among 159 countries from 1993 to 2001. We run UniAdjCluster

and find 5 communities. We plot the world map based on the output in Figure 3.101.

The power blocs can be identified as follows: Latin America, the West (including USA,

Canada, Australia, and West European countries), Muslim World, West Africa, and

China and the former Soviet Union. Latin America countries shared similar culture

and they had alliances inside. The West countries not only had alliances inside

1The figure is generated in Region Map Generator: http://www.cciyy.com/
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Figure 3.10: Map of the 5 communities in COW

but had many disputes with the other communities. China and the former Soviet

Union did not have alliances after the cold war, but they shared common enemies

so that they are grouped in one community. This is a complicated signed graph

mixed with multiple types from the three we have discussed. Our results match the

configuration depicted in [Huntington, 1997] with a few notable exceptions. The West

African power bloc is absent in the configuration of [Huntington, 1997]. Some other

noteworthy differences are South Korea is grouped with the West and South Africa

is grouped with China and the Soviet Union.

Epinions is a graph with two-way distrust relationship between any two users in

the consumer’s review website Epinions.com. We run UniAdjCluster and find 3 com-

munities. Its first three eigenvalues are negative, positive and positive. It shows that

the negative inter-community can also group people into different communities.
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Currently there are few algorithms on graphs with both positive and negative edges.

In [Kunegis et al., 2010], the authors extend NormalCut to signed graph by modi-

fying the definition of degree matrix(“SNCut”). In [Traag and Bruggeman, 2009],

the authors offer an extended definition of modularity and run various clustering

methods such as simulate annealing to maximize the modularity. Their algorithm is

called resolution-limit-free community detection algorithm(“RLF-CD”). We run the

algorithms on Syn-4 and Syn-5. Our algorithm produce higher accuracy as shown in

Table 3.2. We also vary pij to 50% and filp 20% or 50% of inter-community edges to

negative. The results are similar.

We also apply the same two algorithms on the synthetic k-partite graph. With

moderate inner-community connection added as in Syn-9, we can get a 100% in ac-

curacy from all the algorithms. On Syn-10, we notice that UniAdjCluster achieves a

much higher accuracy than the other two methods. It is because that these two meth-

ods mix two of the communities together though the graph still has a 5-community

structure. UniAdjCluster successfully detects all 5 communities. The results also

show that adjacency spectral space is more stable under perturbation than the nor-

mal spectral space.

Table 3.2: Accuracy (%) of clustering results
Dataset UniAdjCluster SNCut RLF-CD
Syn-4 68.57% 57.38% 37.5%
Syn-5 88.69% 82.26% 74.44%
Syn-9 100% 100% 100%
Syn-10 91.43% 71.79% 69.52%
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3.8 Summary

We conduct theoretical studies based on graph perturbation to examine spectral

patterns of signed graphs, which extend our preliminary research in Chapter 2. With

the assumption that positive edges mainly exist inside communities and negative edges

mainly exist outside communities, each signed graph has its structure decided by

balanced positive inner-community edges and negative inter-community edges, dom-

inate positive inner-community edge or dominate negative inter-community edges.

We specially discuss the spectral properties of k-balanced signed graphs, signed

graphs with dominated positive inner-community edges, partite-dominated signed

graphs and their clusterability in the spectral space. Other clusterable signed graphs

are usually within a small perturbation from them or their combination. To our best

knowledge, these are the first reported findings on showing separability of communi-

ties in the spectral space of the signed adjacency matrix. Base on theoretical findings,

we develop a unified partition method and verify our theoretical results with synthetic

data and real world networks. Part of this chapter was published in Advances in 15th

Pacific-Asia Knowledge Discovery and Data Mining Conference[Wu et al., 2011] and

International Journal of Social Network Mining[Wu et al., 2012].



CHAPTER 4: WEAK ANOMALIES AND SIGNAL DETECTION

In large social networks, there are some small subgraphs that indicate interesting

interaction patterns for a subset of users or capture fraudulent behaviors among

attackers. These small subgraphs are usually of much smaller size compared with the

whole graph. However, it is often very important for data analysts or network owners

to capture them. In this chapter, we explore the application of spectral analysis on

the detection of such small subgraphs.

4.1 Introduction

Spectral analysis has been shown as a very effective way to analyze network topol-

ogy as we see. It provides a global view of the graph and gives a very different statis-

tical framework from traditional Euclidean vector space. The leading eigenvectors of

a graph corresponding to the largest eigenvalues contain most global topological in-

formation of the graph in the spectral space. We call them principal eigenvectors and

call the remaining ones with small eigenvalues as minor eigenvectors. As we explored

in the last two chapters, the principal eigenvectors capture community structures in

social networks. Naturally, a question will be raised: whether the eigenvectors also

capture the smaller signals? The authors in [Miller et al., 2010] showed that some

eigenvectors with smaller eigenvalues may capture some signals. But they did not

explained why and how the eigenvectors capture the signals. We continue the direc-
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tion in their work, i.e., exploring the minor eigenvectors to detect subtle anomalies

from a background graph. Such subtle anomaly is often embedded in one particu-

lar community. Hence it does not change much the principal eigenvectors. We first

demonstrate that when there are such subtle anomalies, there exist some minor eigen-

vectors with extreme values on some entries corresponding to the anomalies. Under

the assumption of the Erdos-Renyi random graph model, we derive the formula to

show the difference between signal entries and background entries on both princi-

pal eigenvectors and minor eigenvectors and give conditions when such difference is

large enough on some eigenvectors for us to detect the signal. We then extend our

theoretical studies to the general case where multiple anomalies are embedded in a

general background graph. When we calculate the eigenvectors in the decreasing or-

der of eigenvalues, we find that the principal eigenvectors and minor eigenvectors of

different communities show up in a mixed order. Though the signal is detectable, the

particular eigenvector is arranged after a large number of eigenvectors.

We develop an algorithm that uses the kurtosis (rather than the L1-norm of eigen-

vector in [Miller et al., 2010]) to filter out those eigenvectors that capture the signals.

The kurtosis metric naturally captures the extremeness in the distribution of eigen-

vector entries that is caused by embedded signals. We remove the assumption in

[Miller et al., 2010] that the background graph is generated using known parameters

of a specific model. Our theoretical analysis and empirical evaluations on both syn-

thetic data and real social networks show effectiveness of our approach to detecting

subtle signals.
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4.2 Preliminary

Let G = G(V, E) be a graph with node set V and edge set E. n = |V | is the

number of nodes. A symbol with hat denotes the estimation of the real value. We

first revisit some important concepts and theorems in spectral graphs that we will

use throughout the paper.

Definition 4.1: Given an n × n symmetric matrix M and a non-zero n-dimensional

vector v, the rayleigh quotient is defined as

R(M, v) =
vT Mv

vT v
.

Rayleigh quotient is closely related with eigenvalues and eigenvectors. When v is

an eigenvector, R(M, v) is the corresponding eigenvalue.

Theorem 4.1: (Min-max Theorem) Given an n × n symmetric matrix M and its

eigenvalues ζ1 ≥ ζ2 ≥ · · · ≥ ζs · · · ≥ ζn, for all (n − s + 1)-dimensional subspace F ,

we have:

ζs = min
dimF=n−s+1

max
v∈F ,v$=0

R(M, v), (4.1)

and for all s-dimensional subspace F ′, we have:

ζs = max
dimF ′=s

min
v∈F ′,v$=0

R(M, v). (4.2)

Specially, when F is the whole n-dimensional space, ζ1 = max∀v∈F R(M, v).

Let G(n, p) denote the random graph generated by the Erdos-Renyi (ER) random

graph model [Erdős and Rényi, 1959], where n is the number of edges and p is the

probability that an edge is included in the graph. Notice when p is not very small,
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i.e., p ≥ 2 log n
n

, the random graph G(n, p) is usually connected with high probability

[Mitra, 2009].

Theorem 4.2: [Fredi and Komls, 1981] For a ER random graph G(n, p), the approxi-

mation of the first eigenvalue ζ1 is:

ζ̂1 = np. (4.3)

The approximation of the first eigenvector w1 is:

ŵ1 =

(
1√
n

, ...,
1√
n

)T

. (4.4)

The second eigenvalue ζ2 has an upper bound:

ζ2 ≤ 2
√

np(1 − p) + O
(
n

1
3 log n

)
. (4.5)

Notice when np is large, there is a large gap between ζ1 and ζ2. In [Fredi and

Komls, 1981], the authors proved that the first eigenvalue follows an asymptotical

normal distribution. For the first eigenvector, the authors in [Mitra, 2009] showed

that
∣∣∣w1(i) − 1√

n

∣∣∣ ≤ c 1√
n

log n
log(np)

√
log n
np

when p ≥ log6 n
n

.

Denote ξw1 is the error term of the approximation ŵ1, i.e., ξw1 = w1 − ŵ1. ‖ξw1‖2

is about 1√
np

[Fredi and Komls, 1981], which is much smaller than 1 when np is large.

We can show that the variance σ2(ξw1) of entries for ξw1 is also very small. σ2(ξw1) =

σ2(w1) =
Pn

i=1 w1(i)2

n
−

(Pn
i=1 w1(i)

n

)2

. The first term is 1
n

due to the normalization of

w1. The second term is
√

n+
Pn

i=1 ξw1(i)

n‖ bw1+ξw1‖2

2
. Because ‖ξw1‖2 is small, the second term is

close to 1
n
. Hence σ2(ξw1) is a very small number.

All other eigenvectors represent the noise of the random graph. The mean value



89

of wi (i ≥ 2) is approximately zero. This is due to their orthogonality with w1. For

i ≥ 2, wT
i w1 ≈ 1√

n

∑n
j=1 wi(i) ≈ 0. σ2(ξwi

) ≈
Pn

i=1 w1(i)2

n
= 1

n
. We can see that

σ2(ξwi
) (i ≥ 2) is much larger than σ2(ξw1).

4.3 Embedded Signal Detection

We focus on identifying small and subtle signals or anomalies that are not im-

mediately revealed in a graph’s principal eigenvectors. We consider the problem of

detecting a subgraph embedded in a background as one of detecting a signal from the

background. The small size of the signal usually makes it difficult to be detected.

Table 4.1: Notations
Observed Background Signal

Graph GA GB GS

Adj matrix A B S
i-th eigenvalue λi µi νi

i-th eigenvector xi yi zi

No. of nodes n n k

Let GB = (V, E) denote the background graph of n nodes, i.e., a graph in which no

anomaly exists. We define the subgraph GS = (VS, ES) with k nodes as the signal.

The observed graph GA = (V, E ∪ ES) is composed with the background graph GB

and the embedded signal GS. Let A and B be the adjacency matrix for GA and GB

and S be their difference: S = A − B. Notice that we write S an n × n symmetric

matrix that only has values in the block consisting of the first k rows and the first

k columns. Let λi be the i-th largest eigenvalue of the observed graph GA and xi

the corresponding eigenvector. Similarly let µi be the i-th largest eigenvalue and

yi the corresponding eigenvector of the background graph GB, and let νi be the i-

th largest eigenvalue and zi the corresponding eigenvector of the signal graph GS.
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Table 4.1 summarizes our notations. We choose to use the adjacency matrix of a

graph rather than its variants like Laplacian matrix or modularity matrix because

the adjacency matrix is a simple and direct way to present the relations in a network

and all information contained in other variants is inherently captured in the adjacency

matrix. The adjacency matrices of large social networks are often sparse and many

efficient and specialized spectral decomposition algorithms have been developed.

Graphs often contain community structures. For a graph with p communities that

are sparsely connected, the first p eigenvectors corresponding to the largest p eigen-

values contain most information of the graph’s global community structure. We call

them the principal eigenvectors. The remaining eigenvectors corresponding to small

eigenvalues are called minor eigenvectors. In this section we conduct theoretical

studies on how both principal and minor eigenvectors are changed when signals are

added. Specifically, we demonstrate that when there are subtle signals, certain minor

eigenvectors have extreme values on some entries and those entries correspond to the

signals. We first focus on a simple scenario that both the signal and the background

graph follow the simple ER model in Section 4.3.1. In this case, only the first eigen-

vector is the principal one and all remaining eigenvectors are minor ones. In Section

4.3.2, we extend to the general scenario where multiple signals are embedded in a

general graph with community structures.

4.3.1 Signal and Background Following ER Model

Assume both the background and the signal follow the ER random graph model:

GB = G(n, pb) and GS = G(k, ps). Without loss of generality, we assume the signal

is on the first k nodes. According to Equations 4.3 and 4.4, we have approximated
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eigenvalues and eigenvectors for B:

µ̂1 = npb, (4.6)

ŷ1 =

(
1√
n

, · · · ,
1√
n

)T

; (4.7)

and for S:

ν̂1 = kps, (4.8)

ẑ1 =

(
1√
k
, · · · ,

1√
k
, 0, · · · , 0

)T

. (4.9)

Illustrating Example

Throughout this section, we use a synthetic network GB = G(10000, 0.01) as the

background. We add a signal GS (with varied k and ps values) to the background.

For our generated random graph from GB = G(10000, 0.01), we have µ1 = 100.99

and µ2 = 19.98. The next few eigenvalues are close to µ2. We observe that there is a

large eigen-gap between the first and the second eigenvectors whereas the eigen-gaps

for other adjacent eigenvalues are very small. Figure 4.1 shows the scatter-plot of the

first four eigenvectors of the background graph G(10000, 0.01). We can see that the

entries of the first eigenvector are located within a narrow range near 1√
10000

= 0.01.

The entries of other eigenvectors randomly scatter near zero with a much larger

variance than the first eigenvector. This phenomena clearly matches our theoretical

justification in Section 4.2.

Figure 4.2 shows the scatter-plot of the first four eigenvectors xi (i = 1, · · · , 4)

after we add a signal with Gs = (100, 0.3). We can see that the signal is not clearly
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Figure 4.1: Scatter-plot of the first four eigenvectors of G(10000, 0.01)

−0.05 0 0.05 0.1
−0.02

0

0.02

0.04

0.06

0.08

0.1

x1

x 2

 

 

Background
Signal

(a) x1 and x2

−0.05 −0.03 −0.01 0.01 0.03 0.05
−0.05

−0.03

−0.01

0.01

0.03

0.05

x3

x 4

 

 

Background
Signal

(b) x3 and x4

Figure 4.2: ER signal G(100, 0.3)

separable by the first eigenvector where signal entries are mixed with the background.

However, the signal is well separated from the background by the second eigenvector

where it has a large gap between the signal and the background. Figure 4.2(b) shows

the signal entries are completely mixed with the background in the scatter-plot of x3

and x4. This is because the signal information is already captured in the previous

minor eigenvector x2.
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Figure 4.3: Scatter-plot of x1 and x2



93

Figure 4.3(a) shows the scatter-plot of x1 and x2 for a more subtle signal G(100, 0.1).

We can observe that the signal entries are mixed with the background in both the

principal eigenvector x1 and the minor eigenvector x2. We can not separate the sig-

nal from the background due to its subtleness. On the contrary, Figure 4.3(b) shows

the scatter-plot for a much stronger signal G(100, 0.7). We can see that the signal

entries can be well separated from the background by either the first or the second

eigenvector.

Theoretical Analysis

The entries of B and S, bij and sij, are binomially distributed random variables

with success probability pb and ps respectively. We have expectations E(bij) = pb,

E(sij) = ps and variances σ2(bij) = pb(1 − pb), σ2(sij) = ps(1 − ps). By the center

limit theorem, we can have an accurate estimation of the multiplication of vectors and

matrices with much smaller variances than σ2(bij) or σ2(sij). Our goal is to derive

the approximated form of eigenvectors of the observed A from eigenvectors of the

background graph B and the signal S. Next we present our theoretical results.

Result 4.1: Let A = B + S where A, B and S are the adjacency matrices for GA, GB

and GS. GB = G(n, pb) and GS = G(k, ps). When k = o(n) and kps < npb

1+2
√

k
n

, the

first eigenvector of A can be expressed as:

x1 ≈ y1 +
Sy1

µ1
(4.10)

where the approximation error is O(
√

k
n
).

Proof. Let U = (y2, . . . , yn) and V = diag(µ2, . . . , µn). If we apply Theorem V.2.8 in
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[Stewart and Sun, 1990], we have:

x1 = y1 + U(µ1I − V )−1UT Sy1, (4.11)

Equation 4.11 is quite complex because it involves all the eigenpairs of B. We can

further simplify it as:

x1 = y1 +
Sy1

µ1
, (4.12)

In order to apply Theorem V.2.8 in [Stewart and Sun, 1990], the following two

conditions need to be satisfied1:

1. δ = |µ1 − µ2|− ‖yT
1 Sy1‖2 − ‖UT SU‖2 > 0;

2. γ = ‖UT Sy1‖2 < 1
2δ.

By Equation 4.7, ‖yT
1 Sy1‖2 ≈

∑k
i=1

∑k
j=1

sij

n
≈ k(k−1)ps

n
. U is an n × (n − 1) matrix

whose singular value is 1. So δ > |µ1 − µ2| − ‖yT
1 Sy1‖2 − ‖UT‖2‖S‖2‖U‖2 ≈ µ1 −

µ2 − (1 + k
n
)kps > 0. To satisfy Condition 1, we require:

kps <
µ1 − µ2

1 + k
n

. (4.13)

For Condition 2,

‖UT Sy1‖2 ≤ ‖UT‖2‖Sy1‖2 ≈

√√√√
k∑

i=1

(
k∑

i=1

sij√
n

)2

≈
√

k

n
(k − 1)ps (4.14)

1The 2-norm is the induced matrix norm where ‖A‖2 is the largest singular value of A. This
norm is sub-multiplicative norm[Stewart and Sun, 1990].
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So to satisfy Condition 2, we require

kps <
µ1 − µ2

1 + 2
√

k
n

+ k
n

(4.15)

Combining Equations 4.13 and 4.15, we have Inequality 4.10 to be held when kps <

µ1−µ2

1+2
√

k
n

+ k
n

. By Theorem 4.2, we have µ1 ≈ npb and µ2 ≤ 2
√

npb(1 − pb). So µ1 ) µ2.

when npb is large. We also assume k = o(n). So the condition can be further simplified

to

kps <
npb

1 + 2
√

k
n

(4.16)

At last, we want to discuss about the approximation error. It is divided into two

parts. The first part ε1 is related with the higher order terms which are neglected the

approximation in Theorem V.2.8 and ‖ε1‖2 ∼ O( k
n
). The second part ε2 = ‖U(µ1I −

V )−1UT Sy1 − Sy1

µ1
‖2 ≤ ‖U‖2 ‖(µ1I − V )−1‖2

∥∥UT
∥∥

2
‖Sy1‖2 + ‖Sy1‖2

µ1
≈

√
kkps(2µ1−µ2)√
nµ1(µ1−µ2) .

By Equation 4.16, ‖ε2‖2 ∼ O(
√

k
n
). Combine two parts of error together, the total

approximation error is about O(
√

k
n
).

Denote x1(i) as the i-th entry of x1. The first k entries correspond to the embed-

ded signal. We expect they have different values than the rest of entries. Plugging

Equations 4.6 and 4.7 into Equation 4.10, we derive the estimation for both signal

entries and the background entries of x1.

Corollary 4.1: The entries of the first eigenvector of A can be expressed as:

x̂1(i) =






1+a√
n

when i ≤ k

1√
n

when i > k

(4.17)
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where a = kps

npb
.

Denote ∆x̂1 the difference between the first k entries with the rest of x̂1. We have

∆x̂1 = a√
n
. When the signal is strong, i.e., kps

npb
is large, the difference between the first

k entries with the rest of x1 is sufficient to separate the signal from the background.

However, when the signal is weak, ∆x̂1 is small and the first k entries of x1 tend

to be mixed with the rest entries of x1 due to the random noise caused by the ER

model.
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Figure 4.4: Histogram of x1 to show the difference between the signal entries and
background entries

Figure 4.4 shows the histograms of x1 when the background is embedded with

different signals. To make it clear, we show the histogram of the values of background

entries in x1 in the left-down corner (with blue color) and that of the signal entries

in the right-up corner (with red color). Each histogram reflects the distribution of
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Figure 4.5: Histogram of x2 to show the difference between the signal entries and
background entries

either signal entries or background entries. We can see a large gap between the

signal and the background entries for strong signals such as G(100, 0.7) (shown in

Figure 4.4(a)). But for subtle signals such as G(100, 0.3) (shown in Figure 4.4(b))

and G(100, 0.1) (shown in Figure 4.4(b)), there is a large overlap between the signal

and the background entries. ∆x̂1 is too small for the signal entries to be separated

from the background ones. Hence the usage of x1 to detect a small signal is very

limited.

A natural thought is to check whether the second eigenvector can be used to sep-

arate the signal from the background. However, when we derive Result 4.1, we need

a large gap in neighboring eigenvalues for the background graph. ER graph does

not have a gap large enough between the second and third eigenvalues so we cannot
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derive the estimation of the second eigenvector in a similar strategy. Our idea is to

construct a new vector, v = z1−(zT
1 x1)x1

‖z1−(zT
1 x1)x1‖2

, which is orthogonal to x1 and is expected

to capture most information of the signal. In the following we give the conditions

when v is a good approximation of x2.

We construct an interval and show all the eigenvectors having eigenvalues outside

this interval are quite irrelevant with v. When x2 is the only eigenvalue left in this

interval, we conclude that v is a good approximation of x2.

Result 4.2: Let v = z1−(zT
1 x1)x1

‖z1−(zT
1 x1)x1‖2

. When k = o(n) and λ3 < kps

(
1 −

√
k

c2(n−k)

)
<

λ2 < kps

(
1 +

√
k

c2(n−k)

)
, we have vT x2 >

√
1 − c2.

Proof. Let v = z1−(zT
1 x1)x1

‖z1−(zT
1 x1)x1‖2

. Since vT x1 = 0, we have the decompostion v =

∑n
j=2 cjxj where

∑n
j=2 c2

j = 1. Plug in and we have ‖Av − qv‖2
2 =

∑n
i=2 c2

i (λi − q)2.

So for an arbitrary set of ci’s we have the upper bound as following:

∑

i

c2
i ≤

‖Av − qv‖2
2

min(λi − q)2
.

Plug in A = B+S and v, we want to estimate the value of ‖Av−qv‖2
2. ‖Av−qv‖2 =

‖
(
Bz1 + (q − λ1)(zT

1 x1)x1

)
+(Sz1 − qz1) ‖2/‖z1− (zT

1 x1)x1‖2. We let q = ν1 ≈ kps

so that Sz1 − qz1 = 0. By Equation 4.17 and k = o(n), λ1 = R(A, x1) ≈ n2pb+k2ps

n
≈

npb. By Equations 4.9 and 4.10, zT
1 x1 ≈

√
k
n
. Thus we have Bz1 ≈ λ1(zT

1 x1)x1 and

‖z1 − (zT
1 x1)x1‖2 =

√
1 − (zT

1 x1)2 ≈
√

1 − k
n
. Finally, we have

‖Av − qv‖2 ≈
‖q(zT

1 x1)x1‖2

‖z1 − (zT
1 x1)x1‖2

≈ ν1

√
k

n − k
.

For λi /∈
(
ν1 −

√
k

c2(n−k)ν1, ν1 +
√

k
c2(n−k)ν1

)
, the sum of corresponding c2

i ’s is
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bounded by c2. So when λ3 < ν1 −
√

k
c2(n−k)ν1 < λ2 < ν1 +

√
k

c2(n−k)ν1, we have

n∑

i=3

c2
i ≤

‖Av − qv‖2
2

(λ3 − q)2
< c2.

So c2 =
√

1 −
∑n

i=3 c2
i >

√
1 − c2.

Result 4.2 provides an approximation of x2. We can derive the following property:

(xT
1 z1)2 + (vT z1)2 = 1, xT

i z1 = 0 for i ≥ 3. The signal has no significant information

shown on xi when i ≥ 3. We thus regard the eigenvectors and eigenvalues other

than the first two do not change. λ3 thus shares the same upper bound as µ2, i.e.,

λ3 ≤ 2
√

npb(1 − pb). So the lower bound for the signal to be captured by one of the

first eigenvectors can be further simplified as 2
√

npb(1 − pb) < kps

(
1 −

√
k

c2(n−k)

)
.

In the following, we also provide the estimation for both signal entries and back-

ground entries of x2:

Corollary 4.2: The entries of the second eigenvector of A can be expressed as:

x̂2(i) =






√
1
k
− 1

n
(1 + a)2 when i ≤ k

−
√

k
n

(1+a)√
1− k

n
(1+a)2

when i > k

(4.18)

where a = kps

npb
.

So when the conditions in Result 4.2 is satisfied, we expect a gap ∆x̂2 =
1− k

n
(a+1)(a+2)

q
k− k2

n
(1+a)2

between the signal entries and background entries.

Figure 4.5 shows the histograms of x2 for the same signals as shown in Figure 4.4.

We still show the histogram of the background nodes in the left-down corner and the

histogram of the signal nodes in the right-up corner. We can clearly see that the
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signal can be separated from the background for G(100, 0.7) and G(100, 0.3) with a

gap at about 0.1. These phenomena validate our theoretical result. Recall that this

signal G(100, 0.3) cannot be separated from the background using x1, as shown in

Figure 4.4(b). It indicates that minor eigenvectors capture more information about

the embedded subtle signal than principal eigenvectors. We also observe in Figure

4.4(c) that even the minor eigenvector x2 could not separate the signal from the

background (due to violation of the conditions shown in 4.2 ) when the signal is

extremely weak.

Discussion

Denote ξx1 is the error term of estimation in Equation 4.17. We can easily derive

that ξx1 = ξy1 + µ−1
1 Sξy1 + ε. The first two terms are introduced by the error term

of y1, ξy1, which is caused by the randomness of the ER model. From Section 4.2,

we know that ‖ξy1‖2 is about 1√
np

, which is very small when np is large. ‖ξy1 +

µ−1
1 Sξy1‖2 ≤ (1 + µ−1

1 ‖S‖2)‖ξy1‖2 = (1 + µ−1
1 ν1)‖ξy1‖2. The conditions of Result

1 require µ1 > ν1, so ‖ξy1 + µ−1
1 Sξy1‖2 ≤ 2‖ξy1‖2. Hence the first two terms are

ensured to be small. The last term ε represents the higher order terms neglected in

the approximation of x1 shown in Result 4.1. The higher order terms capture the

influence of indirect neighbors. For subtle signals, we can safely omit them in our

approximation. However, for strong signals, the first k entries of x1 tend to have

larger values than we estimate.

Similarly, denote ξx2 as the error term of approximating x2 in 4.18. The error term

of x2 is ξx2 ≈ ξz1−zT
1 ξx1x1√

1− k
n

(1+a)2
. ‖ξx2‖2 is about

√
‖ξz1‖2+ k

n
‖ξx1‖2√

1− k
n

(1+a)2
, which is ensured to be
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small. On the other hand, ∆x̂2 ≈ 1√
k
, which is significantly larger than ‖ξx2‖2. Hence,

we can use the minor eigenvector x2 to separate the signal from the background.

Our approximations of x1 and x2 shown in Results 4.1 and 4.2 focus on the scenario

where both the signal and the background follow ER random graphs. In Section 4.3.2,

we will extend to the general case where the background displays a community struc-

ture. For other types of signals, there are no concise approximations of eigenvectors

x1 and x2. However a general signal is more likely to have a larger eigenvalue than

the ER signal with the same density. So we can have an idea how many eigenvectors

we need at most. We generate a signal that follows the power law random graph

model with the scaling exponent α = 2.3. We control the density of the signal as 0.1,

which is the same as the ER signal G(100, 0.1). At most, we need We add this power

law signal to the same background G(10000, 0.1). Figures 4.4(d) and 4.5(d) show the

histograms of x1 and x2, respectively. We can observe that the power law signal is

well separable from the background using x2, which is quite different from that of ER

signal G(100, 0.1), as shown in Figure 4.5(c).

4.3.2 Detecting Signals from Graph with Community Structure

Social networks usually contain community structures. The background graph B

is not necessarily a simple ER graph. The embedded signals, which are structurally

dissimilar to the background, are not necessarily dense ER subgraphs either. Our

theoretical results showed that when a signal is strong enough to stand out from

the background, there exists some eigenvector with extremely large values on certain

entries. Hence, we can use some statistics to filter out those eigenvectors that have

extreme values on certain entries. Those eigenvectors tend to capture embedded



102

signals.

Our algorithm is sketched in Algorithm as follows. Given a graph, compute the

eigen-decomposition of its adjacency matrix. For each eigenvector, calculate its kur-

tosis. Finally we output the eigenvectors with large kurtosis values. In general,

eigen-decomposition of an n × n matrix takes a number of operations O(n3). In our

algorithm, we do not need a full eigen-decomposition. With the user specified size

and density of the signal, we only need to calculate a limited number of eigenvectors.

Furthermore, adjacency matrices in our context are usually sparse and well struc-

tured. We used the Arnoldi/Lanczos algorithm [Golub and Van Loan, 1996] which

generally needs O(n) rather than O(n2) floating point operations at each iteration.

The calculation of kurtosis of one eigenvector takes O(n).

Background with Community Structure

When a background graph contains a community structure (i.e., multiple communities

that are sparsely connected), we can treat B as a p-block diagonal network (with p

disconnected communities Ci for i = 1, · · · , p) plus a matrix consisting all cross-

community edges. Without loss of generality, we arrange communities in a proper

order so that the principal eigenvectors yi have large values on the nodes in community

Ci. When none of the signals is added in Ci, the principal eigenvector yi of B is almost

sure to be the eigenvector of A. It is because the entries of Syi are much smaller than

Byi and Ayi = Byi + Syi ≈ Byi = µiyi.

Next we discuss about how the principal eigenvector yi and its associated minor

eigenvectors are changed when signals are added in the community Ci. Since the
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added signals do not change much other principal eigenvectors yj, j = 1, · · · , p, j -= i,

we can treat the problem as adding multiple signals to a single-community background

graph. When we add q independent signals into GB, without loss of generality, the

adjacency matrix S can be written as a block matrix:

S =






S1

. . .

Sq

0






n×n

, (4.19)

where each block Si represents one signal. We arrange Si in the decreasing order

of their largest eigenvalues. Without loss of generality, we assume that the first

eigenvalues for Si are different. Then the first q eigenvectors of S usually have the

following form:

(z1, z2, · · · , zq) =






zS1 0 · · · 0

0 zS2 · · · 0

...
...

. . .
...

0 0 · · · zSq

0 0 · · · 0






n×q

, (4.20)

where zSi
is the first eigenvector of Si. When GB still has a big gap in eigenvalues and

the signals are of small size, we could still have x1 ≈ y1 + Sy1

µ1
. However, the change

on the principal eigenvector is often too small for the purpose of detection. Thus we

need to explore the minor eigenvectors. Following a similar strategy, we construct
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a series of vectors vi ≈ zi−(zT
i x1)x1

‖zi−(zT
i x1)x1‖2

. Due to the small size of Si, zT
1 x1 is small

so that So vi is closely collinear with zi. By the form of eigenvectors in Equation

4.20, zT
i zj = 0 if i -= j. So vT

i vj ≈ zT
i zj = 0. A similar proof in Result 4.2 can be

applied to show vi is closed to some eigenvectors within eigenvalues inside a certain

interval around the first eigenvalue of Si when the community is evenly distribution

other than the signals. Such interval may overlap with that of other signals. With

more communities, such interval may even include some other eigenvectors showing

the background noise of other communities. In this way, we want to filter out the

useful minor eigenvectors to detect the signals by some extra measures.

Kurtosis vs. L1-norm

In our algorithm, we propose the use of kurtosis to identify those eigenvectors that

capture embedded signals. In statistics, kurtosis is defined to measure the peakness

or infrequent extreme deviations of a set of data. For xj, κ(xj) = n
Pn

i=1(xj(i)−x̄j)4

(
Pn

i=1(xj(i)−x̄j)2)
2 −3

where x̄j = 1
n

∑n
i=1 xj(i). The “minus 3” at the end of the formula is a correction to

make the kurtosis of the normal distribution equal to zero. A high kurtosis distribu-

tion has a sharp peak and long-flat tails, whereas a low kurtosis distribution has a

rounded peak and short-thin tails.

In [Miller et al., 2010], the authors used L1-norm of eigenvectors of modularity

matrix to detect small dense subgraphs. The algorithm calculates the L1-norm of each

eigenvector, subtracts its expected value, and normalizes by its standard deviation. If

any of these modified L1-norm values is less than a threshold, the presence of a signal

is declared. However, the algorithm assumes that the distribution or statistics of the
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Table 4.2: Kurtosis and L1-norm of the first four eigenvectors of the observed graphs
– G(10000, 0.01) embedded with different signals

GS L1-norm Kurtosis
|x1| |x2| |x3| |x4| κ(x1) κ(x2) κ(x3) κ(x4)

Ø 99.50 78.62 78.90 78.96 -0.02 0.37 0.26 0.22
G(100, 0.1) 99.49 78.57 77.90 78.84 0.02 0.39 0.82 0.27
G(100, 0.3) 99.40 38.53 78.80 78.39 2.63 82.32 0.38 0.69
G(100, 0.5) 99.04 33.36 78.49 78.58 22.40 90.84 0.42 0.48
G(100, 0.7) 97.83 39.83 78.61 78.99 63.62 92.49 0.39 0.23

PL(100, 2.3), ν1 = 30.4 99.41 37.03 78.61 79.02 9.1 229.74 0.36 0.21

background graph is given. Otherwise, neither the expected value nor its standard

deviation could be computed. Besides, they do not know how many eigenvectors they

need to calculate.

We show that the kurtosis is a better metric than L1-norm for anomaly detection.

First kurtosis is zero for the ER random graph when no signal is embedded. In ER

random graphs, all the edges are generated by the same probability. Hence the entries

of yi approximately follow a normal distribution. κ(yi) ≈ 0 for all i no matter what

size the graph is. However, for L1-norm , |y1| ≈
√

n and |yi| ≈
√

2n
π

by the half

normal distribution when i ≥ 2. Graphs with different size can have very different

L1-norm values. As shown in Figure 4.7(b), |xi| tends to increase with i. As a result,

the algorithm based on L1-norm had to assume that the distribution or statistics of

the background graph is a-priori given but ours does not need such assumption.

Second, when there is an embedded signal, the signal entries are very different

from the other entries. Kurtosis increase dramatically when there is a small portion

of entries are different from others and the larger the difference is, the large the
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kurtosis is. We can see from Table 4.2 that both κ(x1) and κ(x2) (column 6 and 7)

are larger than zero and κ(x2) is always greater than κ(x1). This property guarantees

that our algorithm can correctly filter out the minor eigenvector that captures more

signal information. Our algorithm based on the kurtosis can filter out those strong

signals before weak signals.

Meanwhile the L1-norm of x1 does not change much (column 2) even when the

strong signal G(100, 0.7) is added. Although the L1-norm of x2 (column 3) decreases

from the original value 78.62, the change does not capture the magnitude of the

signal. For example, |x2| = 33.36 with signal G(100, 0.5), which is smaller than both

|x2| = 38.53 with a weaker signal G(100, 0.3) and |x2| = 39.83 with a stronger signal

G(100, 0.7). L1-norm values can not give a right order to filter out strong signals

first. In later evaluation on AstroPh network, we also find that the algorithm based

on L1-norm fails to detect some very strong signal.

4.4 Empirical Evaluation

4.4.1 Synthetic Graph

Table 4.3: Eigenvalues, L1-norm and kurtosis of the graph of 3-community back-
ground with 3 signals

Eigenvalue L1-norm Kurtosis
1 112.78 110.35 −1.76
2 55.87 89.98 −1.10
3 42.75 64.56 4.25
4 33.6 43.57 134.62
5 25.90 57.28 99.18
56 20.50 89.74 5.18

6 ∼ 100 ≈ 21 ≈ 89 ≈ 2

We generate a synthetic graph that contains a 3-community background with 3
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embedded signals. The first community is G1 = G(10000, 0.1), which is the same as

our illustrative example. The second community is G2 = G(5000, 0.01) and the third

community is G3 = G(2000, 0.02). Nodes from different communities are sparsely

connected by probability of 0.001 for each edge. We add two ER signals, G(100, 0.3)

and G(100, 0.2) into community G1 and a clique of 20 nodes to community G3.

We show eigenvalues, L1-norm and kurtosis of the first 100 eigenvectors in Table

4.3. In this example, x1, x2, and x3 are principal eigenvectors. We observe in Figures

4.6(a) that the three principal eigenvectors clearly capture the global community

structure. However, three embedded signals can not be clearly separated from the

background. Our algorithm based on kurtosis filters out three eigenvectors (x4, x5,

and x56). We can observe in Figure 4.6(b) that three signals are clearly separated

from the background communities using the identified minor eigenvectors. On the

contrary, the algorithm based on L1-norm can only output two minor eigenvectors,

x4 and x5, which correspond to the first two signals. The third signal can not be

detected because the L1-norm of x56 has no significant difference from other minor

eigenvectors. However, the kurtosis of x56 is significantly larger than other minor

eigenvectors.
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4.4.2 Real Social Networks

In this section we explore whether our algorithm can effectively filter out subtle

signals in the real graphs. We use Astro Physic collaboration network from the

Stanford Network Analysis Package database2.

AstroPh (Astro Physics) collaboration network is from the e-print arXiv and cov-

ers scientific collaborations between authors who submitted papers to Astro Physics

category. It has 18772 nodes and 396160 edges. We do the eigen-decomposition of

its adjacency matrix and calculate kurtosis and L1-norm of the first 100 eigenvectors

with largest eigenvalues in Figure 4.7.
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Figure 4.7: AstroPh network
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AstroPh contains a lot of small subgraphs with very high density. Figure 4.7(a)

2http://snap.stanford.edu
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shows the result of our algorithm. Among the first 100 eigenvectors, we can find

about 9 minor eigenvectors that are useful to detect signals. The scatter-plots in

Figure 4.8(a) show three eigenvectors selected by both Kurtosis and L1-norm . We can

detect four cliques with the size varying from 30 to 39 nodes. The selection based on

L1-norm is difficult because the L1-norm of eigenvectors have an increasing tendency,

as shown in Figure 4.7(b).In our experiment, we also find that L1-norm misses some

important signals as we label in Figure 4.7(b). For example, our algorithm identified

a clique with 36 nodes based on x37. However, L1-norm fails to detect this signal.

We also instrument some fake anomalies into the AstroPh graph. One anomaly is

an ER graph with k = 50 and ps = 0.5. The second is a power law signal of 50 nodes

with the scaling exponent 2.3. The third is a bipartite signal. As we see from Figure

4.9, three more eigenvectors are captured and each captures one embedded anomaly.
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Figure 4.9: Add three signals to AstroPh

4.5 Summary

In this chapter, we have demonstrated the efficacy of using minor eigenvectors of

a graph’s adjacency matrix to detect subtle anomalies embedded in the background.

Under the assumption of the Erdos-Renyi random graph model, we derive the explicit

formula about how signal entries and background entries of certain eigenvector are
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distributed. Our results showe that the gap between signal entries and background

entries in the minor eigenvector x2 is larger than that in the principal eigenvector

x1 for subtle signals, which provides a theoretical explanation behind the utility of

the approach. We further derive the detectability bound for the Erdos-Renyi random

graph model. Although our theoretical analysis mainly focuse on the Erdos-Renyi

random graph model, we believe theoretical results based on other graph models

could be developed. We also propose the use of kurtosis to filter out the eigenvectors

that could capture the signals. Our approach remove the assumption in [Miller et al.,

2010] that the background graph is generated using a-priori known parameters of a

specific model. Empirical evaluations on both synthetic data and real social networks

showe effectiveness of our approach to detecting subtle signals. Part of this chapter

will be published in Journal of Intelligent Information System[Wu et al., 2013].



CHAPTER 5: PRIVACY PRESERVING GRAPH RECONSTRUCTION

One big difference of social networks with others networks(i.e., biology networks) is

the privacy issue. The privacy concerns associated with data analysis over social net-

works have incurred the recent research on privacy-preserving social network analysis,

particularly on privacy-preserving publishing social network data. However, pertur-

bations may cause huge lost in utility and the published graphs are totally useless

for analysts. In this chapter, we explore the application of the adjacency spectral

properties in privacy preserving graph reconstruction. We focus on whether we can

reconstruct a graph from the edge randomized graph such that accurate feature val-

ues can be recovered. We exploit spectral properties of the graph data and show why

noise could be separated from the perturbed graph using low rank approximation. We

also show key differences from previous findings of point-wise reconstruction methods

on numerical data through empirical evaluations and theoretical justifications.

5.1 Introduction

In a social network, nodes usually correspond to individuals or other social entities,

and an edge corresponds to the relationship between two entities. Each entity can

have a number of attributes, such as age, gender, income, and a unique identifier. In

this chapter, we consider social networks in which node identities (and even entity

attributes) are not confidential but sensitive links between individuals are confidential
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and should be protected. For example, in a transaction network, an edge denoting a

financial transaction between two individuals is considered confidential while nodes

corresponding to individual accounts is non-confidential.

To protect privacy, one common practice is to publish a naive node-anonymized

version of the network, e.g., by replacing the identifying information of the nodes with

random IDs. While the naive node-anonymized network still permits useful analysis,

as first pointed out in [Backstrom et al., 2007; Hay et al., 2007], this simple tech-

nique does not guarantee privacy since adversaries may re-identify a target individual

from the anonymized graph by exploiting some known structural information of his

neighborhood.

The state-of-the-art anonymization methods on network data have three categories:

K-anonymity privacy preservation via edge modification[Liu and Terzi, 2008; Zhou

and Pei, 2008; Zou et al., 2009], edge randomization[Hay et al., 2007; Ying and Wu,

2008, 2009a,b], and clustering-based generalization[Bhagat et al., 2009; Campan and

Truta, 2008; Cormode et al., 2008; Hay et al., 2008; Zheleva and Getoor, 2007]. These

above anonymization approaches have been shown as a necessity in addition to naive

anonymization to preserve privacy in publishing social network data.

We focus on one specific edge randomization strategy, Rand Add/Del, which ran-

domly adds one edge followed by deleting another edge and repeats this process for k

times. This strategy preserves the total number of edges in the original graph. Fig-

ure 5.1 shows the process of graph modification and reconstruction. Recall the the

adjacency matrix A = (aij)n×n: aij = 1 if node i and j are connected and aij = 0 oth-

erwise.The edge randomization process can be written in the matrix form Ã = A+E,
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where the perturbation matrix E is defined as eij = eji = 1 if edge (i, j) is added,

eij = eji = −1 if edge (i, j) is deleted, and eij = 0 otherwise. The process of random-

ization and the randomization parameter k are assumed to be published along with

the released graph G̃.

For randomization approach, there are two fundamentally conflicting requirements:

privacy for the individual entry (aij) and utility of the perturbed data (Ã). It has been

shown in [Hay et al., 2007; Ying and Wu, 2008] that a medium or large perturbation

is needed in order to protect the privacy of the individual entry under feature based

attacks or structural attacks. However, as shown in our empirical evaluation, the util-

ity of the released randomized graph (in terms of topological features) is significantly

lost in the randomized graph when a medium or large perturbation is applied.

To preserve utility, several advanced randomization strategies have been investi-

gated recently. In [Ying and Wu, 2008], Ying and Wu presented a randomization

strategy that can preserve the spectral properties of the graph. They presented two

spectrum preserving randomization methods, Spctr Add/Del and Spctr Switch, which

keep graph spectral characteristics (i.e., the largest eigenvalue of the adjacency ma-

trix and the second smallest eigenvalue of the Laplacian matrix) not much changed

during randomization by examining eigenvector values of nodes to choose where edges

are added/deleted or switched. In [Hanhijarvi et al., 2009; Ying and Wu, 2009a], the

authors studied the problem of how to generate a synthetic graph matching given fea-

tures of a real social network in addition to a given degree sequence. They proposed

a Markov Chain based feature preserving randomization. Although the proposed ad-

vanced randomization strategies generally can preserve more structural properties, it
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is very challenging to quantify disclosure risks since the process of feature preserving

strategies are complicated.

In this chapter we adopt a different approach. We focus on whether we can recon-

struct a graph Ĝ from the randomized one G̃ such that Ĝ is closer to the original

graph G than G̃ in terms of some feature f , i.e., |f(Ĝ) − f(G)| ≤ |f(G̃) − f(G)|.

In particular, we study the use of low rank approximation approach to reconstruct

structural features from the randomized graph. We exploit spectral properties of the

graph data and show that the noise could be separated from the perturbed graph.

G
modification−−−−−−−→ G̃

reconstruction−−−−−−−−→ Ĝ
↓ ↓ ↓

f(G) f(G̃) f(Ĝ)

Figure 5.1: The process of graph modification and reconstruction

The rest of this chapter is organized as follows.

In Section 5.2, we first discuss topological features used in this paper and revisit

those low rank approximation based reconstruction methods on numerical data. In

Section 5.3, we examine the spectra of network data and show the relationship between

the positive (negative) eigenvalues and the reconstructed graph structure via low

rank approximation. In Section 5.4, we present our low rank approximation based

reconstruction algorithm. We also show our novel method to determine the optimal

rank for low rank approximation. We conduct empirical evaluations on three real

social networks in terms of both privacy and utility in Section 5.5. In Section 5.6, we

further examine what type of graphs are sensitive to low rank approximation based

reconstruction in terms of privacy protection. Finally we offer our concluding remarks
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and point out future directions in Section 5.7.

5.2 Preliminary

5.2.1 Notation and Features

Table 5.1: Notations
n,m number of nodes and edges

k number of edges added and deleted
r number of eigen-pairs in low rank ap-

proximation

A(Ã) adjacency matrix of graph G (G̃)

Ar (Ãr) rank r approximation of A (Ã)

Â adjacency matrix of the reconstructed
graph

λi, xi the ith largest eigenvalue in magni-
tude of A and the corresponding eigen-
vector

E difference matrix, E = Ã − A
ε1 the largest eigenvalue of E in magni-

tude

We use the tilde conventions to denote perturbations and use the hat conventions

to denote estimations. The original quantity is denoted by the same symbol without

a tilde or hat. Table 5.1 summarizes our notations used in this chapter.

In this chapter, we consider the following topological features of the graph:

• λ1, the largest eigenvalue of the adjacency matrix A.

• ν2, the second largest eigenvalue of the normal matrix N = D−1A.

• Q, modularity is defined as the fraction of all edges that lie within communities

minus the expected value of the same quantity in a graph generated from a

random model which keeps the expected number of degree for each node.

• C, transitivity measure is one type of clustering coefficient measure and char-
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acterizes the presence of local loops near a vertex. It is formally defined as

C = 3N∆/N3, where N∆ is the number of triangles and N3 is the number of

connected triples.

Throughout this chapter, we use the polblogs as an example. Recall the polblogs

network compiles the 16714 links among 1222 US political blogs, based on incoming

and outgoing links and posts during the time of the 2004 presidential election [Adamic

and Glance, 2005].

5.2.2 Reconstruction Methods on Numerical Data Revisited

The low rank approximation has been well investigated as a point-wise reconstruc-

tion method in the numerical setting. In the setting of randomizing numerical data,

a data set U with m records of n attributes is perturbed to Ũ by an additive noise

data set V with same dimensions as U , i.e., Ũ = U + V . A spectral filtering based

reconstruction method was first proposed in [Kargupta et al., 2003] to reconstruct

original data values from the perturbed data. Similar methods (e.g., PCA based re-

construction method [Huang et al., 2005], SVD based reconstruction method [Guo

et al., 2008]) have also been investigated. All methods exploited spectral properties of

the correlated data to remove the noise from the perturbed data set. This is because

real-world numerical data is usually highly correlated in a low dimensional space while

the randomly added noise is distributed (approximately) equally over all dimensions.

Then, more accurate aggregate features can be reconstructed by projecting the ran-

domized data into a proper low dimensional space where the majority information of

the original data is preserved.



117

Spectral Filtering

The objective of the spectral filtering based approach is to derive the estimation Û of

U from the perturbed data Ũ based on random matrix theory. An explicit filtering

procedure is shown below.

1. Calculate the covariance matrix of Ũ by Σ̃ = ŨT Ũ (assume U has mean equal

to 0).

2. The covariance matrix Σ̃ is symmetric and positive semi-definite, we apply

spectral decomposition on Σ̃ to get its i-th largest eigenvalue λ̃i and the corre-

sponding eigenvector x̃i.

3. Derive the eigenvalues information from the covariance matrix of the noise V

and choose a proper number of dimensions, r.

4. Let X̃r = [x̃1 x̃2 · · · x̃r], and the orthogonal projection on to the subspace

spanned by x̃1, . . . , x̃r is Pr = X̃rX̃T
r . Obtain the estimated data set using

Û = ŨPr.

SVD

Singular value decomposition decomposes a matrix U ∈ Rm×n (say m ≥ n) as

U =
∑n

i=1 σipiq
T
i , where σ1 ≥ σ2 ≥ · · · ≥ σn are the singular values and pi ∈ Rm

and qi ∈ Rn are the left and right singular vector of σi respectively. Similarly, after

perturbation Ũ = U + V , we have the SVD of Ũ as Ũ =
∑n

i=1 σ̃ip̃iq̃i. The SVD re-

construction method simply reconstructs U approximately as Û = Ũr =
∑r

i=1 σ̃ip̃iq̃
T
i .
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It has been shown that the spectral filtering method is equivalent to the SVD

reconstruction method [Guo et al., 2008]. We can observe that all spectral based

methods reconstruct the original data by projecting the perturbed data onto the

projection subspaces that are determined by the first r eigenvectors for the spectral

filtering method or by the first r singular vectors for the SVD method. The original

spectral filtering algorithm [Kargupta et al., 2003] suggested using r = max{i|λ̃i ≥ ε1}

to determine the first r eigen components, where ε1 is the largest eigenvalue of the

noise covariance matrix Cov(V ). The authors of [Guo et al., 2008] further proved

that using r = max{i|λ̃i ≥ 2ε1} can achieve approximately optimal reconstruction

for i.i.d. noise. This is because that it only includes the i-th eigen component when

the benefit due to inclusion of the i-th component is greater than the loss due to the

noise projected on the i-th component, i.e., λ̃i ≥ 2ε1.

5.3 Low Rank Approximation on Graph Data

The adjacency matrix A discussed here is different from the numerical data set U

and the covariance matrix Σ in the following perspectives. First, A is a symmetric

0-1 matrix whereas U is a numerical matrix and the covariance matrix Σ is a semi-

definite one. Second, for numerical data, all the eigenvalues of Σ are real and non-

negative. For graph data A, the covariance matrix is not properly defined. We can

see that in AAT , the non-zero entry at row i column j means j is 2 steps away

from i. When we directly apply eigen-decomposition on the adjacency matrix A, the

eigen-decomposition of A contains negative eigenvalues.

In Section 5.3.1, we study the low rank approximation on graph data. In Section

5.3.2, we examine the spectra of graph data and show the relationship between the
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topological graph structure and the significant eigen-pairs that may involve both

positive and negative eigenvalues.

5.3.1 Low Rank Approximation

Let λi be A’s i-th largest eigenvalue in magnitude: |λ1| ≥ |λ2| ≥ · · · ≥ |λn|, and

xi denotes the eigenvector of λi. The rank r approximations of A via the eigen-

decomposition are given by:

Ar =
r∑

i=1

λixix
T
i . (5.1)

Among all the matrix with rank no larger than r, the low rank approximation Ar

shown in (5.1) is the matrix closest to A in term of the Frobenius norm [Stewart and

Sun, 1990]:

‖Ar − A‖2
F = min

rank(B)≤r
‖B − A‖2

F .

The key difference between our low rank approximation on graph data and those low

rank approximation methods on numerical data is that we rank eigenvalues based on

their absolute values and also include those significant negative eigenvalues in the low

rank approximation. In Section 5.3.2, we will illustrate the relationship between the

graph topology and significant positive and negative eigenvalues.

Because Ar is a real matrix, we need to derive a symmetric 0-1 matrix Â that is

close to Ar. Our strategy is to find the 2m largest off-diagonal entries in Ar (note

that A and Â are symmetric) and set the corresponding entries in Â as 1 and others

as 0, i.e.,

Â(i, j) =






1, if Ar(i, j) is one of the 2m
largest off-diagonal entries,

0, otherwise.

(5.2)
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By using (5.2), we have the following property.

Property 5.1: If Â is obtained by (5.2), Â is the closest adjacency matrix to Ar in

term of the Frobenius norm, i.e.,

‖Â − Ar‖2
F = min

B∈Am
n

‖B − Ar‖2
F ,

where Am
n denotes the set of all symmetric n × n 0-1 matrices with 2m off-diagonal

1’s and 0 else where.

The following theory states that the difference between the spectrum of Â and that

of Ar is upper bounded by ‖Â − Ar‖2
F .

Theorem 5.1: [Stewart and Sun, 1990] Given two n×n symmetric matrices A and E

with eigenvalues λ1 ≥ · · · ≥ λn and ε1 ≥ · · · ≥ εn respectively. Let λ̃1 ≥ · · · ≥ λ̃n be

the eigenvalues of Ã = A + E. Then we have

λi + εn ≤ λ̃i ≤ λi + ε1, (5.3)

∑
i(λ̃i − λi)2 ≤ ‖E‖2

F . (5.4)

By minimizing this upper bound, we expect the eigenvalues and eigenvectors of Â

is close to those of A. In fact, many spectral properties, such as eigenvectors, the sum

of several eigenvalues, and spectral subspace, are stable when the magnitude of the

difference matrix is moderate. For varies spectrum bounds and more details, please

refer to [Stewart and Sun, 1990]. Since the graph topology is closely related with

eigenvalues and eigenvectors of the graph, we expect that Â can preserve the major

topological information of the original graph.
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5.3.2 Leading Eigen-pairs vs. Graph Topology

In this section, we study the relationship between eigen-pairs and graph topol-

ogy. In particular, we examine the role of positive and negative eigenvalues in graph

topology.

Without loss of generality, we partition the node set V into two groups V1 =

{1, . . . , n1} and V2 = {n1 + 1, . . . , n}. Then the adjacency matrix can be partitioned

as

A = Ainner + Ainter =






A11 0

0 A22




 +






0 A12

AT
12 0




 , (5.5)

where A11 and A22 represent the edges within V1 and V2 respectively, and A12 repre-

sents the edges between V1 and V2.

Disconnected Communities

In an ideal graph with two disconnected communities, A11 and A22 are dense matrices

of comparable size, and A12 = 0. Then, all the eigenvalues of A11 and A22 are

eigenvalues of A. Let µ1 and η1 be the largest eigenvalue in magnitude of A11 and

A22 with eigenvector y1 and z1 respectively. µ1 and η1 are two eigenvalues of A with

eigenvectors
(

y1

0

)
and

(
0

z1

)
. Note that, by the Perron-Frobenius theorem [Cvetkovic

et al., 1997], µ1 and η1 must be positive and all entries in y1 and z1 must be positive.

Assume µ1 ≥ η1, then

A1 = µ1

(
y1

0

)
(yT

1 , 0) =






µ1y1y
T
1 0

0 0




 . (5.6)
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We can see all large entries only appear among the nodes in V1. Similarly, the rank

2 approximation of A is given by

A2 =






µ1y1y
T
1 0

0 η1z1z
T
1




 , (5.7)

and large entries appear both within V1 and V2. Figure 5.2 shows a synthetic network

with 60 nodes and 280 edges. This network contains two disconnected 30-node com-

munities generated via ER model with inner-community probability 0.5. The derive

graphs Â by discretizing A1 and A2 via (5.2) are shown in Figure 5.2(b) and 5.2(c).

For the graph derived from A1, all the edges appear in only one of the communities.

After adding one more eigen-pair in the low rank approximation, the derived graph

shown in Figure 5.2(c) reveals two very clear communities.

(a) Original graph (b) r = 1

(c) r = 2

Figure 5.2: Synthetic random graph with two disconnected communities

Bipartite Graphs

The negative eigenvalues are closely related to the bipartite structure of the graph. A

bipartite graph is a graph containing two types of nodes, and edges only exist between
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two nodes of different types. For a bipartite graph, A11 and A22 in (5.5) are both zero

matrix. The spectrum of A is then fully determined by A12. Let σ ≥ 0 be the largest

singular value of A12 (note A12 is generally a non-square matrix) with right-singular

value u and left-singular value v. If G is a connected graph, all the entries of u and

v are positive. It is easy to verify that σ and −σ are both the eigenvalues of A with

eigenvalue
(

u
v

)
and

(−u
v

)
respectively. Similar as (5.6) and (5.7), we can have

A1 =





σuuT σuvT

σvuT σvvT




 , A2 =






0 2σuvT

2σvuT 0




 .

We can see that entries within V1 and V2 in A1 are non-zero, which is significantly

different from A. However, as we introduce the leading negative eigenvalue, non-zero

entries in A2 only appear in those entries across two type of nodes.

Figure 5.3(a) shows a synthetic bipartite graph with 60 nodes and 94 edges. Any

two nodes of different colors have probability 0.1 to be connected, and nodes of the

same color do not connect to each other. The first two eigenvalues are 4.27 and

−4.27 respectively. The derived graphs (Â) from A1 and A2 are shown in Figure

5.3(b) and 5.3(c) respectively. We can see that, when only the positive eigenvalue

and its eigenvector are involved, many edges connecting two nodes of the same type

are falsely introduced in Â; and as the negative eigenvalue and its eigenvectors are

included, Â derived from A2 shown in Figure 5.3(c) correctly reveals the bipartite

structure.
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(a) Original graph (b) r = 1 (c) r = 2

Figure 5.3: Synthetic random quasi-bipartite graph

Real Social Networks

Real world social networks usually have clear connected community structures. In

other words, there are few non-zero entries in Ainter, i.e., ‖Ainter‖2
F is small. By Theory

5.1, the eigenvalues and eigenvectors of A are close to Ainner, and similar to (5.6) and

(5.7), the upper right and lower left parts of A1 and A2 are close to 0.

Figure 5.4(a) shows a synthetic network with 2 clear but connected communities. It

is generated by adding inter-community edges with probability 0.05 to the synthetic

graph in Figure 5.2(a). The first four eigenvalues are λ1 = 10.30,λ2 = 9.05,λ3 =

−4.82, and λ4 = −4.79. The 2m largest entries in A2 and A4 are shown in Figure

5.4(b) and 5.4(c) respectively. Similar as Figure 5.2(c), large entries of A2 appear in

both of the two communities, and no inter-community entries have large values. As

two negative eigenvalues λ3 and λ4 are included in A4, inter-community edges emerge.

Â is closer to the original graph A.

For graphs containing c large communities, the c largest positive eigenvalues cor-

responds to the communities. If node j and node k belong to the i-th community

Ci, the j-th and k-th entry of xi (xji and xki) tend to be large, which matches the

finding by Ying and Wu [Ying and Wu, 2009c] that eigenvectors corresponding to the
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(a) Original graph (b) r = 2

(c) r = 4

Figure 5.4: Synthetic random graph with two clear but connected communities

large positive eigenvalues of A are good indices of the community partition. Then, the

(j, k) entry of matrix (λixix
T
i ), which equals to λixjixki, tends to be large. Therefore,

large entries in the low rank approximation matrix Ac =
∑c

i=1 λixix
T
i would reflect

edges within these communities.

Similarly, for a quasi-bipartite graph, Ainner has few non-zero entries (‖Ainner‖2
F is

small). Hence, the spectrum of A would have the similar pattern of Ainter and some

of the leading eigenvalues of A are negative. Besides quasi-bipartite graphs, bowtie

graphs [?] or graphs with very skewed degree distribution also have their adjacency

matrices close to bipartite graphs (in term of the Frobenius norm). In such graphs,

a large number of nodes do not connect to each other directly but through a small

number of core nodes and core nodes are well connected to each other. Suppose node

set V1 represents the core nodes, then A11 represents the edges among core nodes,

and A22 represents the edges among non-core nodes. ‖Ainner‖2
F is small because there

are few edges in A22 and the size of A11 is small. By the perturbation theory, the

spectrum of a bowtie graph is similar to that of a bipartite graph and has significant
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negative eigenvalues.

5.4 Reconstruction from Randomized Graphs

Recall that in the edge randomization process, we randomly add k false edges

followed by deleting k true edges. The perturbation can be expressed as a perturbation

matrix E where eij = eji = 1 if edge (i, j) is added, eij = eji = −1 if edge (i, j) is

deleted, and eij = 0 otherwise. The process of randomization and the randomization

parameter k are assumed to be published along with the released graph.

In Section 5.4.1, we present our low rank approximation based reconstruction algo-

rithm and show why the algorithm (given an optimal rank r) can reconstruct topo-

logical features accurately. In Section 5.4.2, we conduct theoretical analysis and give

our procedure to determine the optimal r.

5.4.1 Algorithm

Let λ̃i be Ã’s i-th largest eigenvalue in magnitude: |λ̃1| ≥ |λ̃2| ≥ · · · ≥ |λ̃n|, and x̃i

denotes the eigenvector of λ̃i. The rank r approximation of Ã is Ãr =
∑r

i=1 λ̃ix̃ix̃
T
i .

The topology of the randomized graph Ã may be significantly different from that

of the original graph A when the magnitude of perturbation is medium or large.

However, by choosing an appropriate r, Ãr can preserve major topological structures.

This is because that Ãr only includes those significant eigen-pairs and filters out all

noises added in the rest dimensions. Recall that the leading eigen-pairs reflect the

dominant structure of the graph, e.g., those eigen-pairs with large positive eigenvalues

capture the inner structure of those significant communities and those eigen-pairs with

negative eigenvalues capture the inter-community connections. Since Ã is obtained

by randomly adding and deleting edges on A, both strong inner- and inter-community
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connections are less affected by the randomization. Therefore, Ãr consisting of the

leading eigen-pairs can still capture the major topological structures of the original

graph.

After low rank approximation, Ãr is a real matrix. Similarly we adopt the following

strategy to obtain a 0-1 matrix Â as the reconstructed graph.

Â(i, j) =






1, if Ãr(i, j) is one of the 2m
largest off-diagonal entries,

0, otherwise.

(5.8)

We show our graph reconstruction algorithm in Algorithm 3.

Algorithm 3 Graph Reconstruction Algorithm

Input: randomized graph Ã, randomization parameter k
Output: reconstructed graph Â

1: Calculate λ̃i and x̃i, |λ̃1| ≥ · · · ≥ |λ̃n|.
2: Calculate λ∗

1 using

λ∗
1 =

(mk − mN)λ̃1 + mkλ̃0

kN − mN + mk

N =
(

n
2

)
− m, and λ̃0 = x̃T

1 (1 − I − Ã)x̃1

3: r = 1;
4: repeat
5: Construct Â from Ãr =

∑r
i=1 λ̃ix̃ix̃

T
i by

Â(i, j) =

{
1, if Ãr(i, j) is one of the 2m

largest off-diagonal entries,

0, otherwise.

6: λ̂1 = the largest eigenvalue of Â in magnitude;
7: r = r + 1;
8: until |λ̂1 − λ∗

1| increases

5.4.2 Determine r in Low Rank Approximation based Graph Reconstruction

In the low rank approximation, the different choices of r can significantly affect

the accuracy of reconstruction. When r is very small, the topological structure of
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the reconstructed Â may be significantly different from that of the original graph

A. This is because too few eigen-pairs are included in reconstruction and not all

major structures are captured during the reconstruction. On the other hand, the

reconstruction with a large r may introduce too much noise. As a result, the benefit

due to the inclusion of major structures is decreased by the loss due to the added

noise. Figure 5.5 shows the reconstructed feature values, along with the original and

randomized values, for polblogs network as the choice of r varies (k = 0.4m). When r is

very small, the reconstructed feature values are significantly different from the original

value, indicating that the topology of Â is very different from the original graph. As r

increases, f(Â) approaches the original value, and for some r, the reconstructed value

approximately equals to original value. Further increasing r makes the reconstructed

feature values approach to the randomized one, indicating that too much noise is

included in Â. We can see that choosing a proper r is critical in reconstructing

graphs.

We would emphasize again that the strategies of determining r in reconstructing

numerical data (via comparing λ̃i with ε1) is not applicable here. This is because the

entries of E can only be 0, 1 and −1, and the magnitude of E can be very large while

k is actually moderate. For example, when we randomly add and delete k = 0.4m

edges on polblogs network, we can get ε1 = 28.6, which is greater than almost all λ̃i

except λ̃1 and λ̃2. The strategies of determining r by r = max{i|λ̃i ≥ ε1} [Huang

et al., 2005] would choose r = 2. However, as shown in Figure 5.5, when r = 2, the

feature values of the reconstructed graph are significantly different from the original

value.
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One natural idea is to determine r such that f(Â) is approximately equal to f(A)

for some feature f . One problem is that feature values of the original graph may not

be available to data miners. In general, it is difficult, if not impossible, to derive the

accurate estimates of real space feature values (e.g., cluster coefficient, transitivity)

from the randomized graph using the statistics of randomization. However, for the

spectral feature λ1, we can derive the moment estimate of the original values, as

shown in our next result.

Result 5.1: Let N =
(

n
2

)
− m, and λ̃0 = x̃T

1 (1 − I − Ã)x̃1, where 1 is a n × n all 1

matrix and I is the identity matrix. Let λ∗
1 denote the moment estimator of λ1. If Ã

is obtained by adding k false edges and deleting k true edges, λ∗
1 is given by

λ∗
1 =

(mk − mN)λ̃1 + mkλ̃0

kN − mN + mk
(5.9)

Proof. Define λ0 = xT
1 (1− I −A)x1 and λ̃0 = x̃T

1 (1− I − Ã)x̃1. Since λ̃1 = x̃T
1 Ax̃1,

we have

E(λ̃1) = E(x̃T
1 Ãx̃1) ≈ xT

1 E(Ã)x1. (5.10)

We adopt the assumption that x̃1 ≈ x1 in establishing the second equality of (5.10).

Since in Rand Add/Del every existing (non-existing) edge of A has the same proba-

bility to be add (deleted), we have E(ãij) = m−k
m

if aij = 1, and E(ãij) = k
N

if aij = 0

and i -= j, where N =
(

n
2

)
− m, i.e.,

E(Ã) =
m − k

m
A +

k

N
(1 − I − A).
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Continue with (5.10), we have

E(λ̃1) =
m − k

m
xT

1 Ax1 +
k

N
xT

1 (1 − I − A)x1

= (1 − k

m
)λ1 +

k

N
λ0.

Similarly, we can calculate E(λ̃0) and have

E(λ̃1) = (1 − k
m

)λ1 + k
N
λ0,

E(λ̃0) = (1 − k
N

)λ1 + k
m
λ0.

(5.11)

In estimating λ1, we substitute E(λ̃1) and E(λ̃0) with observed λ̃1 and λ̃0, and

solving (5.11) for λ0 and λ1, we can get the moment estimator of λ1 is given by:

λ∗
1 =

(mk − mN)λ̃1 + mkλ̃0

kN − mN + mk
.

This result is significant since λ1 is closely related with many real space topological

features, such as the maximum degree, chromatic number, clique number, and extend

of branching of the graph [Cvetkovic et al., 1997]. Therefore, our algorithm determines

r such that the difference between the reconstructed value λ̂1 and the estimated value

λ∗
1 is minimized. We expect that by preserving λ1 in the reconstructed graph, many

other features can also be well reconstructed.

The circled points in Figure 5.5 plot the r value chosen by our method and the

corresponding values for the four features. For λ1 shown in Figure 5.5(a), the recon-

structed value is close to original value, indicating that the estimator shown in (5.9)

accurately matches the original λ1. For other features, the chosen r value may not
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Figure 5.5: Original, randomized and reconstructed features for polblog network, r
varies from 1 to 200, k = 0.4m

be the optimal for those features. However, the reconstructed features are closer to

the original value than the randomized one when r is chosen by our method.

5.5 Empirical Evaluation

In addition to polblogs network, we use two network data sets (polbooks, Enron)

in our evaluation. The polbooks network contains 105 nodes and 441 edges. Nodes

represent books about US politics sold by the online bookseller Amazon.com, and

edges represent frequent co-purchasing of books by the same buyers.1 The Enron

network was built from email corpus of a real organization over the course covering

a 3 years period. We used a pre-processed version of the dataset provided by [Shetty

and Adibi, 2004]. This data set contains 252,759 emails from 151 Enron employees,

mainly senior managers. We regard there is an edge between node i and j if there

are at least 5 emails sent between i and j, which results in 869 edges. The numbers

of nodes and edges for three networks are shown in the first row of Table 5.2.

5.5.1 Feature Reconstruction

We focus on four topological features (λ1, ν2, Q, and C) in our evaluation. For

each network data set, we first calculate feature values of the original graph and show

them in Table 5.2. We randomize each network data with noise level k
m

= 0.4. We

1polbooks and polblogs are available at http://www-personal.umich.edu/~mejn/netdata/.
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then apply our low rank approximation based reconstruction algorithm on each ran-

domized graph and calculate the reconstructed feature values from the reconstructed

graph. The randomization and reconstruction process repeats 10 times. We report

the average results of these 10 rounds in Table 5.2.

We can observe that perturbation with noise level k
m

= 0.4 significantly changes

the feature values in the randomized graphs. It indicates that edge randomization in

general cannot well preserve the graph topological structure. However, for all four

features on three network data sets, our reconstructed feature values are much closer

to the original ones.

To evaluate accuracy of feature reconstruction, we use the following measure.

Definition 5.1: For a graph feature f , define reconstruction quality

Sf = 1 − |f(Â) − f(A)|
|f(Ã) − f(A)|

.

Sf ∈ (0, 1] indicates that the reconstructed feature is closer to the original feature

value than the feature value directly calculated from the randomized graph. The

larger Sf is, the better the feature is reconstructed. Sf = 1 if and only if f(Â) = f(A),

and Sf is close to 1 if f(Â) ≈ f(A).

Table 5.2 shows the reconstruction quality Sf for these four features on three net-

works (k = 0.4m). We can see that all Sf values are above 0.22 and some Sf values

are even close to 1, indicating that the majority of topological structure of the original

graph has been reconstructed. We also notice that λ1 is better reconstructed than the

other three features. This is because we use the estimate of λ1 as our target function

when we determine r.
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Table 5.2: The reconstructed features for three data sets (k = 0.4m)
polbooks (105, 441) Enron (151, 869) polblogs (1222, 16714)

orig rand recon Sf orig rand recon Sf orig rand recon Sf

λ1 11.9 9.95 12.62 0.65 17.8 14.3 18.3 0.87 74.1 49.5 74.5 0.98
ν2 0.96 0.72 0.77 0.22 0.89 0.65 0.80 0.63 0.92 0.67 0.76 0.35
Q 0.70 0.45 0.56 0.45 0.56 0.38 0.56 1.00 1.13 0.70 0.99 0.69
C 0.35 0.15 0.20 0.27 0.34 0.15 0.28 0.65 0.23 0.11 0.20 0.75

Effect of Noise Level

In this experiment, we evaluate how the reconstruction accuracy of features is affected

by the magnitude of noise. We set noise level k
m

= 0.2, 0.4, 0.6, 0.8. We report the

feature values of the original data sets (f(A)), the randomized feature values under

different noise levels (f(Ã)), and the reconstructed feature values using our algorithm

(f(Â)) in Table 5.3.

For all features, the difference between f(Ã) and f(A) increases as the magni-

tude of noise increases. For example, λ̃1 is reduced approximately by half from the

original value when k = 0.6m for the polblogs network. After reconstruction, all recon-

structed feature values are much more accurate than those feature values calculated

from randomized graphs. For example, even under noise k
m

= 0.6, our reconstructed

transitivity value (C) is 0.15, which is much closer to the original transitivity value

(0.23) than the randomized transitivity value (0.06). This result shows that our low

rank approximation based reconstruction method can effectively filter out the noise

and preserve the topological structure. We can also observe that the difference be-

tween f(Â) and f(A) increases when the magnitude of noise increases, indicating

that larger noise causes more loss of feature reconstruction quality. For example, the

reconstructed transitivity value decreases to 0.09 under noise level k
m

= 0.8, but it is
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still better than the randomized transitivity value (0.03).

Table 5.3: Reconstruction quality for polblogs network at different noise levels
λ1 (74.08) ν2 (0.92) Q (1.13) C (0.23)

k
m rand recon rand recon rand recon rand recon
0.2 61.43 75.83 0.77 0.84 0.90 1.11 0.16 0.22
0.4 49.38 74.28 0.66 0.75 0.69 0.98 0.10 0.19
0.6 38.39 71.35 0.54 0.62 0.47 0.78 0.06 0.15
0.8 30.56 60.74 0.40 0.48 0.27 0.50 0.03 0.09

5.5.2 Privacy

One question here is that whether attackers can exploit the reconstructed graph

Â to breach the link privacy. If Â is similar to A at the entry level, attackers may

simply use the value of âij as a guess of the original value aij (the sensitive link

between node i and j). If Â well matches A at the individual entry level, attackers

have high confidence about the existence of the true link between node i and j based

on the reconstructed âij .

To measure the average disclosure risk of all link entries, we use the normalized

Frobenius distance defined as

d(Â, A) =
‖Â − A‖2

F

4m
.

It is easy to verify that 1− d(Â, A) = |Ê ∩E|/|Ê|. In other words, the larger d(Â, A)

is, the lower the disclosure risk is in the reconstructed graph. d(Â, A) = 1 if and only

if no edge from the original graph appears in the reconstructed graph. Similarly, we

can measure the disclosure risk of the randomized graph as d(Ã, A) ≡ k
m

.

Figure 5.6 shows how d(Â, A) for the three networks changes for different choices

of r. We randomize each network data by the noise k = 0.4m. For each r, we derive



135

0 10 20 30 40 50

0.4

0.5

0.6

0.7

r

N
oi

se
 L

ev
el

 

 

Recon
Rand

(a) polbooks

0 10 20 30 40 50

0.4

0.5

0.6

0.7

0.8

r

N
oi

se
 L

ev
el

 

 

Recon
Rand

(b) Enron

0 100 200 300 400 500
0.35

0.4

0.45

0.5

0.55

r

N
oi

se
 L

ev
el

 

 

Recon
Rand

(c) polblogs

Figure 5.6: d(Â, A) for the three networks, as r varies (k = 0.4m)

the reconstructed graph Â by discretizing Ãr and calculate the normalized distance

d(Â, A). The circled points plots the d(Â, A) value when r is chosen by our method.

As r approaches n, d(Â, A) thus converges to k/m because Â approaches Ã.

One surprising observation is that for both polbooks and Enron the normalized

distance of the reconstructed graph (d(Â, A)) is always above that of the randomized

graph (d(Ã, A)) no matter how we choose r as shown in Figure 5.6(a) and 5.6(b). This

indicates that the reconstructed graph does not incur any further privacy disclosure

than the randomized graph. In Section 5.5.1, we know that the features can be well

reconstructed. This is because the risk of privacy disclosure depends on the extent to

which Â matches A individually, while most topological features are overall measures

of the graph. It is possible that two graphs have close topological structures but

are very different at the individual level, and an accurate reconstruction of features

does not necessarily lead to an accurate reconstruction of Frobenius distance. Note

that Â is reconstructed such that it preserves the leading eigenvalue and eigenvectors

of A. Therefore, strong structure, which is reflected by the leading eigen-pairs, is

preserved in the reconstructed features; and weaker structure indicated by remaining

eigen-pairs are neglected along with the noise. Therefore, the reconstruction method



136

can approximate many original topological features at the global level. However, at

the individual level, the neglected eigenvalues and eigenvalues can cause many false

edges, and the Frobenius norm distance, which accumulates the difference of each

entry, can be very large.

However, for polblogs, as shown in Figure 5.6(c), we can observe the normalized

distance of the reconstructed graph (d(Â, A)) is a little below that of the random-

ized graph (d(Ã, A)) for some choices of r. In other words, the reconstructed graph

can incur some additional privacy disclosure risks. In the next section, we further

investigate what type of graphs may incur additional privacy disclosure risks due to

reconstruction.

5.6 Reconstruction Accuracy on Low Rank Graphs

The phenomenon shown in Section 5.5.2 is very different from that in the nu-

merical setting. More accurate individual data can be recovered from the randomized

numerical data using those point-wise data reconstruction methods based on low rank

approximation [Guo et al., 2008; Huang et al., 2005], which jeopardizes data privacy

at the individual level.

Our intuition is that there usually exist strong correlations among attributes in

the numerical data and the number of attributes is much smaller than the number

of tuples. Hence the numerical data U (or its covariance Cov(U)) has a low rank.

On the contrary, for most real social networks, their adjacency matrices have very

high ranks. For example, all three networks used in our paper have almost full ranks.

Our conjecture is that for social networks with low ranks or with a small number of

dominant eigenvalues the reconstructed graph can also be close to the original one at
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the individual entry level.

The difference between the reconstructed graph and the original graph can be

divided into three components:

‖A − Â‖F = ‖(A − Ar) + (Ar − Ãr) + (Ãr − Â)‖F

≤ ‖A − Ar‖F + ‖Ar − Ãr‖F + ‖Ãr − Â‖F . (5.12)

‖A − Ar‖F denotes the low rank approximation error that is determined by those

excluded non-significant eigen-pairs; ‖Ar−Ãr‖F denotes the randomization error that

is determined by the noise added in the subspace spanned by the first r eigenvectors;

and ‖Ãr−Â‖F denotes the discretization error when we convert the real matrix Ãr to

the 0-1 matrix Â. To decrease ‖A−Ar‖F , we tend to choose a large r value. However,

a large r value introduces more noise in the projected spectral space, increasing the

randomization error ‖Ar − Ãr‖F .

Hence, if a graph A can be well approximated by Ar with a small r value, both the

low rank approximation error (‖A−Ar‖F ) and the randomization error (‖Ar − Ãr‖F )

could be small. In this case, Ãr ≈ Ar ≈ A, and Ãr is already close to a 0-1 matrix,

which then further reduces the discretization error ‖Â − Ã‖F .

For three network data sets used in our paper, we can derive their minimum r

values such that
‖A−Ar‖2

F

‖A‖2
F

≤ τ . When τ = 0.05, we have r = 54 (0.51n) for polbooks,

r = 64 (0.42n) for Enron, and r = 348 (0.28n) for polblogs network. Since all r values

are large, the difference between the reconstructed graph and the original graph at

the individual level (‖A − Â‖F ) is still significant, indicating the individual privacy

is well protected in the reconstructed graph. However, the feature values can still be
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well reconstructed. This is because those non-significant eigen-pairs do not contribute

much to the global topological structure although they may significantly affect the

Frobenius distance.

To verify our proposition, we construct a series of synthetic graphs

Ht (t = 2, 5, 10, 50, 100, 200) from the polblog network. We first calculate At =

∑t
i=1 λixix

T
i and regard its discretized version (using (5.2)) as Ht. We expect that

these synthetic graphs Ht have a small number of dominant eigen-pairs. When

τ = 0.05, their minimum r values are listed in Table 5.4. For example, for graph

H2, the number of dominant eigen-pairs is 16, which is much less than that of the

original graph A. As a result, when we apply our low rank approximation based

reconstruction algorithm on H2, the normalized distance is only 0.05, indicating that

95% of original edges are recovered in the reconstructed graph. We can also observe

that as t increases, the number of dominant eigen-pairs also increases, and the re-

construction accuracy at the individual entry level decreases. For example, when

t = 200, the normalized distance is 0.39, which is approximately equal to that of the

randomized graph.

Table 5.4: Normalized Frobenius distance of reconstruction for the synthetic graphs
from polblogs (k = 0.4m)

H2 H5 H10 H50 H100 H200 A
min r 16 54 95 179 231 299 348

d(Ĥt,Ht) 0.05 0.10 0.15 0.25 0.32 0.39 0.40

Figure 5.7 shows the normalized distance between the reconstructed graph Ĥt and

the original graph Ht for different choices of r. The circled points represent the

distance values when r is chosen via our method. We can see that, for graphs H5,
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H50 and H100, the normalized distance values (d(Ĥt, Ht)) are smaller than that of

the randomized graph (k/m) for the majority r values. In particular, the normalized

distance values on H5 could reach as low as 0.1. As t increases, the curve of the

normalized distance values on Ht approaches the curve of the original graph A, as

shown in Figure 5.7. This phenomenon supports our conjecture: for those graphs

with a small number of dominant eigen-pairs, reconstruction can accurately recover

the original individual entries, which may seriously jeopardize data privacy.
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Figure 5.7: The normalized Frobenius distance of the synthetic graphs

We also calculate the feature values of the reconstructed graphs (f(Ĥt)) and com-

pare them with the original feature values (f(Ht)). Table 5.5 shows the feature

reconstruction qualities (Sf ) for different features. For all features, Sf values are also

higher for those synthetic graphs constructed using small t values. This is because we

can have an accurate reconstruction on the individual entry level for those graphs,

and hence many global features can be accurately reconstructed. Note that, as shown

for the three real networks, the inverse direction is generally not guaranteed. In sum-

mary, the dominance of the leading eigen-pairs of a graph plays an important role in

reconstructing individual entries as well as global features.
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Table 5.5: Feature reconstruction quality of the synthetic graphs from polblogs (k =
0.4m)

H2 H5 H10 H50 H100 H200 A
Sλ1 1.00 1.00 0.99 0.99 0.98 1.00 1.00
Sν2 0.99 0.96 0.89 0.67 0.54 0.43 0.35
SQ 1.00 0.98 0.95 0.83 0.73 0.69 0.66
SC 0.98 1.00 0.98 0.95 0.83 0.78 0.73

5.7 Summary

In this chapter, we have presented a low rank approximation based reconstruction

algorithm, which can well recover feature values from the randomized network data.

We have shown the close relationship between graph topological structure and spec-

tral spaces determined by eigen-pairs of the adjacency matrix. We have also presented

a novel solution to determine the optimal rank r in reconstruction. Our empirical

evaluation results showed that accurate feature values can still be recovered from the

randomized graphs even with the large magnitude of noise. One surprising finding

is that, for most social networks, the reconstructed networks do not incur further

disclosure risks of individual privacy than the released randomized graphs. Our in-

vestigation showed that only networks with low ranks or a small number of dominant

eigenvalues may incur further privacy disclosure due to reconstruction.

This work is published in 2010 SIAM International Conference on Data Mining[Wu

et al., 2010]



CHAPTER 6: CONCLUSIONS AND FUTURE WORK

In this dissertation, we studied the spectral space of the adjacency matrix for

different types of social networks. By describing the observed graph as a perturbation

from some ideal graph model, we theoretically quantified the effect of noise edges to

the adjacency eigenvalues and eigenvectors. We conducted comprehensive evaluations

on both real-world and synthetic graphs to verify our theoretical results. Our study

showed that the eigenvalues and eigenvectors of the adjacency matrix reflect various

aspects of the graph topology, including those global structures such as communities

as well as those hidden subtle anomalies. While the Laplacian and the normal matrices

were well studied in spectral graph analysis, the adjacency matrix attracted less

attention in social network research. In our studies, we found that the adjacency

spectral space is more robust under moderate noise than the Laplacian or the normal

spectral spaces. Leveraging these theoretical results, we developed algorithms for

graph partition, anomaly detection, and graph reconstruction.

We highly leveraged theoretical results from the matrix perturbation theory, which

allows us to derive explicit formulas to approximate the eigenvalues and eigenvectors

using the perturbation matrix and the original eigenvalues and eigenvectors of the

ideal cases. The eigenvector entries of the adjacency matrix associated to the i-th node

represent the coordinate in the high dimensional space spanned by the eigenvectors.
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We demonstrated that the nodes’ positions in the spectral space, e.g., distance to

the origin or distance/angles to the coordinates of other nodes, reflect the roles of

these nodes in the social network. By approximating the eigenvectors of the observed

graphs, we were able to quantify the movement of the nodes’ spectral coordinates

from the ideal case, and thus revealed the topological features of a real-world graph

in its adjacency spectral space.

For the unsigned graph, the ideal case is a graph with k disconnected communi-

ties. Its adjacency matrix is a block-wise diagonal matrix with k blocks. Real-world

graphs are perturbed variants from this ideal case with moderate inter-community

edges added. Recent work[Prakash et al., 2010; Ying and Wu, 2009c] showed the

observations of orthogonal line pattern in the adjacency eigenspace spanned by prin-

cipal eigenvectors and the authors suggested that such a pattern is associated with

the presence of a clear community structure in the graph. However, they did not

show when and why such a pattern exists. Our theoretical results proved the line

orthogonality pattern in the adjacency eigenspace. Specifically we demonstrated the

following phenomena:

1. In the spectral space spanned by the principal eigenvectors, the k communities

form k straight lines starting from the origin, and each line represents one

community.

2. The k lines are (approximately) orthogonal to each other, and all the lines have

a rotation from the canonical axes caused by inter-community edges.

3. Nodes with no inter-community edges lie on the lines, whereas nodes with some
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inter-community edges deviate from the original lines and move closer to the

other lines (the distance of the deviation depends on the inter-community con-

nections).

We further gave the explicit formula for the orthogonal line rotation and nodes’

deviation caused by inter-community edges.

Following a similar methodology, we extended the study to signed graphs with

both positive and negative relations. We started with the typical signed graphs in

sociological study[Davis, 1967; Hage and Harary, 1983; Inohara, 2002]: k-balanced

graphs. Such signed graphs contain the following assumption: individuals tend to

have the positive relation within the same communities and the negative relation

with individuals from other communities. Following the same assumption, we focus

on three typical types of clusterable signed graphs and studied them respectively.

• k-Balanced Signed Graphs: These signed graphs have positive inner-community

edges and negative inter-community edges. We demonstrated the following

phenomena of it:

1. With moderate negative inter-community edges, k-balanced signed graphs keep

the orthogonal line pattern but all the lines have an opposite direction of ro-

tation from the canonical axes compared with unsigned graphs. Nodes with

no inter-community edges stay on the lines. Nodes with inter-community

edges deviate from the original lines and move further from the other lines.

2. With dense negative inter-community edges, k-balanced signed graphs are

still distinguishable in the adjacency spectral space though the line pattern
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is lost. This is very different from unsigned graphs where the communities

tend to mix together in the spectral space when inter-community edges are

dense.

3. With further adding moderate negative inner-community edges and posi-

tive inter-community edges, k-balanced signed graphs are still distinguish-

able. The majority of nodes in one community lie on the positive part of

the line, while a small number of nodes may lie on the negative part due

to negative inner-community connections.

• Signed Graphs with Dominated Positive Inner-community Edges: These signed

graphs have dominated positive inner-community edges. We showed that the

negative inter-community edges offset the rotation effect of the positive inter-

community edges. Specially, with dense positive and negative inter-community

edges of equal magnitude, the graph still keeps a similar community structure

as that decided by the inner-community edges. The communities exhibit as

orthogonal clusters in the spectral space spanned by the principal eigenvectors.

• Partite-dominated Signed Graphs: These signed graphs have dominated neg-

ative inter-community edges and no/few inner-community edges. We showed

that the communities still exhibit as orthogonal clusters in the spectral space

spanned by principal eigenvectors. The largest eigenvalue for the k-partite graph

has an opposite sign with the rest eigenvalues of the principal eigenvectors.

We can see that communities in both unsigned and signed graphs all exhibit as

orthogonal lines/clusters in the spectral space spanned by the principal eigenvectors
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with largest eigenvalues in magnitude. Based on our theoretical results, we devel-

oped an effective algorithm, UniAdjCluster, to partition both unsigned and signed

graphs. In our unified methodology, the algorithm is able to discover various struc-

tural patterns, such as the community or multi-partite structure. In the algorithm,

we leveraged the orthogonality of those clusters in the adjacency spectral space and

projected them on to a unit sphere before clustering. In comprehensive evaluations,

UniAdjCluster achieved higher accuracies on graph partition than those based on the

Laplacian or the normal spectral spaces. The complexity of our algorithm is mainly

determined by the complexity of the eigen-decomposition of the adjacency matrix.

Note that the adjacency matrix is usually sparse and has large eigenvalues, which

leads to some efficient algorithms such as Lanczos algorithm to obtain its eigenvalues

and eigenvectors.

While the principal eigenvectors capture the global structures as communities, we

also showed the efficacy of using minor eigenvectors of a graph’s adjacency matrix

to detect subtle anomalies embedded in the background. Under the assumption of

the Erdos-Renyi random graph model, we derived the explicit formula about how

signal entries and background entries of certain eigenvector are distributed. Our

results showed that the gap between signal entries and background entries in the

minor eigenvector is larger than that in the principal eigenvector for subtle signals,

which provides a theoretical explanation behind the utility of the approach. We

further derived the detectability bound for the Erdos-Renyi random graph model.

Although our theoretical analysis mainly focused on the Erdos-Renyi random graph

model, we believe theoretical results based on other graph models could be developed.
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We also showed the use of kurtosis to filter out the eigenvectors that could capture

the signals. Our approach removed the assumption in [Miller et al., 2010] that the

background graph is generated using a specific random graph model with prior-known

parameters. Empirical evaluations on both synthetic data and real social networks

showed effectiveness of our approach to detecting subtle signals.

From our study, we found that eigenvectors of the adjacency matrix capture the

structure of the graph and are quite stable under the perturbation. We utilized these

features of the adjacency spectral space to do privacy preserving graph reconstruction.

We showed the use of low rank approximation to reconstruct the graph topology from

the randomized network and presented a novel solution to determine the (approxi-

mate) optimal rank, a key parameter in our reconstruction algorithm. Our empirical

evaluation results showed that accurate feature values can still be recovered from the

randomized graphs even with the large magnitude of noise. One surprising finding

was that, for many social networks, the reconstructed networks do not incur further

disclosure risks of individual privacy than the released randomized graphs. This is

very different from the numerical data setting. Our further investigation showed that

only networks with low ranks or a small number of dominant eigenvalues may incur

further privacy disclosure due to reconstruction.

Future Work

The adjacency matrix has many good properties in spectral analysis. It has long

been underestimated due to the lack of study of the fundamental properties. Our

work mainly contributes to make up this part so that the application of the adja-

cency matrix would be widely explored. With the rapid development of online social
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networks such as Facebook, Twitter and Sina Weibo, we are able to obtain many large

real networks. It will be interesting to apply adjacency spectral analysis on these real

world data to do graph partition and signal detection. The eigen-decomposition of

large graphs may require extraordinary computing time and we will explore how to

extend our algorithms to the big data. We will conduct complete comparisons with

other recently developed algorithms with UniAdjCluster.

In signal detection, we currently assume the embedded signal is highly correlated

with a single eigenvector. It is interesting to see whether a much weaker signal that

can not be detected by a single eigenvector could be detected by combining multiple

eigenvectors together. We are also interested in exploring how the approach works for

various types of anomalies. We will also compare the approach with other anomaly

detection approaches in practice.

We believe that spectral perturbation is also promising in privacy preserving data

mining. In privacy preserving graph reconstruction, we are interested in comparing

with other various edge based randomization strategies[Wu et al., 2010]. For exam-

ple, we will explore whether a similar low rank approximation based reconstruction

method can be derived for the Random Switch strategy. It is also our conjecture that

it is very hard, if not impossible, to figure out reconstruction methods on the released

randomized data using K-anonymity schemes. This is because in K-anonymity based

modification schemes, modified edge entries are not randomly chosen. For example,

the K-degree scheme[Liu and Terzi, 2008] examined the degree sequence of nodes

and chose a subset of nodes (that violates the K-degree anonymity property) for edge

modification. It will be interesting to compare various randomization strategies in
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terms of the tradeoff between privacy and utility. We will also explore differential pri-

vacy preserving spectral graph analysis. Differential privacy[Dwork et al., 2006] is a

paradigm of post-processing the output of queries such that the inclusion or exclusion

of a single individual from the dataset makes no statistical difference to the output

results. Differential privacy is usually achieved by directly adding calibrated Laplace

noise on the output of the computation. It will be interesting to utilize the spectral

properties of the adjacency matrix to develop release mechanisms of graph analysis

results that satisfy the differential privacy conditions. We have some preliminary

findings as shown in [Wang et al., 2013] and we will continue to explore this topic.
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