Tarnowska, Katarzyna
Customer Loyalty Improvement Recommender System (CLIRS)
1 online resource (184 pages) : PDF
2018
University of North Carolina at Charlotte
This dissertation presents a novel data-driven approach to solve the problem of improving customer loyalty and customer retention. The data mining concepts of action rules and meta actions are used to extract actionable knowledge from customer survey data and build a knowledge-based recommender system (CLIRS - Customer Loyalty Improvement Recommender System). Also, a novel approach to extract meta-actions from the text is presented. So far, the use of meta-actions required a pre-dened knowledge of the domain (e.i. medicine). In this research an automatic extraction of meta actions is proposed and an implemented by applying Natural Language Pro-cessing and Sentiment Analysis techniques on the customer reviews. The system's recommendations were optimized by means of implemented mechanism of triggering optimal sets of action rules. The optimality of recommendations was dened as maximal Net Promoter Score impact given minimal changes in the company's service. Also, data visualization techniques are proposed and implemented to improve understanding of the multidimensional data analysis, data mining results and interactingwith the recommender systems results. Another important contribution of this research lies in proposing a strategy for build-ing a new set of action rules from text data based on sentiment analysis and folksonomy. This new approach proposes a strategy for building recommendations directly from action rules, without triggering them by meta actions. The coverage and accuracy of the opinion mining was significantly improved within a series of experiments, which resulted in better recommendations. Therefore, the research presents a novel approach to build a knowledge-based recommender system whenever only text data is available.
doctoral dissertations
Computer science
Ph.D.
Action RulesData AnalyticsKnowledge-Based SystemsNatural Language ProcessingRecommender SystemsSentiment Analysis
Computer Science
Ras, Zbigniew
Zadrozny, WlodekHadzikadic, MirsadWhitmeyer, Joseph
Thesis (Ph.D.)--University of North Carolina at Charlotte, 2018.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). For additional information, see http://rightsstatements.org/page/InC/1.0/.
Copyright is held by the author unless otherwise indicated.
Tarnowska_uncc_0694D_11678
http://hdl.handle.net/20.500.13093/etd:144