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ABSTRACT

YASAMAN KAMYAB HESSARY. Artificial financial market: an agent-based
approach to modeling the influence of traders characteristics on emergent market

phenomena. (Under the direction of DR. MIRSAD HADZIKADIC)

Financial markets play a critical role in today’s societies and are extremely im-

portant to the general health and efficiency of an economy. Solid understanding of

the behavior of financial markets can benefit investors, governing organizations and in

general, the whole economic growth. In financial markets, psychology and sociology of

the traders have significant effects in giving rise to unique and unexpected (emergent)

macroscopic properties, causing the classical economic approaches hardly effective to

explain or reproduce them. Agent-based modeling (ABM) is a flexible methodology

for simulating such complex systems and their behaviors. The literature using agent-

based approach for analyzing patterns and phenomena observed in complex systems

such as financial markets has grown into an important field of research in the recent

years.

This research proposes an agent-based model of stock market to study the behavior

of market and traders. The model is created using a bottom-up approach, taking

into consideration the effects of cognitive processes and behaviors of the traders (e.g.

decision-making, interpretation of public information and learning) on the emergent

phenomena of financial markets. We use Genetic Algorithm (GA) to better explore

the parameters space and find the best parameter set with respect to our optimization

function, which is replicating some of the important statistical properties present in

actual financial time series (stylized facts). This study suggests that local interactions,

rational and irrational decision-making approaches and heterogeneity, which has been

incorporated into different aspects of agent design, are among the key elements in

modeling financial markets. In this model, all agents fall under three general trading

systems; fundamentalist, optimist, and pessimist, while having different beliefs and
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reaction intensities within each category.

To evaluate the effectiveness and validity of our approach, a series of statistical

analysis was conducted to test the artificial data with respect to a benchmark pro-

vided by the Bank of America (BAC) stock over a sufficiently long period of time.

The results revealed that the model was able to reproduce and explain some of the

most important stylized facts observed in actual financial time series and was con-

sistent with empirical observations. Using this validated model, we estimate how

and in what direction different market phenomena and states such as herding, vol-

ume, market volatility, number of traders in different categories and bullish/bearish

markets, influence each other. Herding is an emergent property of financial markets,

often leading to the creation of speculative bubbles. Bubbles inevitably make markets

unstable and prone to major crashes, hence it is crucial to understand the origins and

driving forces of herd behavior. The results from model generated time series suggest

that herd behavior may cause or intensify volatility in the market, but not the other

way around. Further, there is strong evidence of a bi-directional causal relationship

between market volatility and trading volume in both model generated and BAC time

series, implying that past values of trading volume in the market can help predict the

current level of volatility, and vice versa. These investigations can help enhance the

understanding of dynamics and structure of financial markets and paves the way for

further explorations on causes and effects of the market and traders characteristics

and behavior.

Using our proposed validated framework, we design and develop the necessary in-

frastructure that allows us to better explore and understand the relationships between

traders behavioral factors and global market properties.
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CHAPTER 1: OVERVIEW

1.1 Introduction

Solid understanding of the behavior of financial markets and its participants is

extremely important to the general health and efficiency of an economy, and plays

a critical role in today’s societies. The classical approach to the process of analyz-

ing such systems requires the use of experimental and theoretical models. Much of

these approaches are based on the Efficient Markets Hypothesis (EMH), the notion

that assumes all market participants are perfectly rational and homogeneous. EMH

claims that market price movements incorporate all information rationally and in-

stantaneously, and that past information has no impact on the future market [3].

Under this theory, markets should be efficient and stable because traders always

act perfectly rational and correct the mispricing in the market almost immediately.

Therefore, crashes and other market inefficiencies can only be triggered by exogenous

shocks such as earthquakes or evolutions. However, careful investigation of some of

the financial crises, such as the stock market crash of 1987 and the 2008 global fi-

nancial crisis, have shown otherwise [4]. The dramatic price volatility during these

periods cannot be explained by the arrival of significant new information. This re-

veals that the price changes do not always reflect rational adjustments to the news

in the market, and that other factors besides information-based trading can affect

stock price volatility. In addition, these theoretical models fail to explain many of

the important stylized facts that are present in financial time series, such as excess

volatility, positive correlations of returns at short horizons, and negative correlation

of returns at long horizons [5]. These empirical observations give rise to doubts in

the overall efficiency of financial markets, and lead to the greater acceptance of the
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importance of psychological and behavioral aspects of the economy.

1.2 Financial Markets

1.2.1 Market Efficiency

Financial markets are characterized by their high complexity. They consist of

large numbers of adaptive agents, interacting locally and giving rise to emergent

phenomena and macroeconomic dynamics. Traditional theoretical and experimental

economic models with their top-down approach have lacked the means to properly

model financial markets in its complete dynamic complexity [6]. These conventional

models are based on EMH that normally makes the following assumptions:

1. Full Rationality: All market participants are perfectly rational and always act

and make decisions in an optimum fashion.

2. Perfect Information: Market price reflects all information rationally and instan-

taneously and all market participants have full knowledge of the situation.

3. Common Expectations: All agents assume that everyone is exposed to same

information; therefore they are all expected to react to each situation with the

same approach [7].

In the complex setting of financial markets, none of these three assumptions above

can be fully satisfied. As for the first assumption, real traders cannot always be

fully rational. They sometimes chose to do the wrong thing, either because they

are not smart enough, or because they hope to speculate in the future. The second

assumption cannot stand for many cases as well, such as financial crisis of 2008 and

IT bubble burst in spring 2000. These are just two examples of many that reveal

price dynamic do not always reflect rational adjustments to complete information in

the market. The third assumption would also fail to hold by definition since it is

dependent on the first two assumptions.
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The fact that EMH has a powerful theoretical and empirical basis cannot be ignored

[8]. However, as it was pointed out above, various empirical observations in financial

markets such as volatility clustering, speculative bubbles and even financial crisis can

not be explained in terms of this theory [6].

1.2.2 Behavioral Finance

The field of behavioral finance, which views finance from a broader social science

perspective, is rapidly expanding. Previous works presented in this field have provided

evidence that, in addition to information, emotions play a significant role in decision-

making process [9]. As [10] presented in their survey, behavioral finance argues that

some financial phenomena can plausibly be understood using models in which some

agents are not fully rational. The goal of behavioral finance is to improve financial

modeling by considering the psychology and sociology of agents. This field considers

non-standard models, in which the price movements are influenced by the actions of

heterogeneous boundedly rational traders, whose financial decisions are significantly

driven by emotions such as fear or greed. This type of models can explain the afore-

mentioned stylized facts and market inefficiencies, which could not be explained by

EMH.

Viewing financial market participants as mutually interacting boundedly rational

adaptive agents lead to a world of complexity. Such systems often create internal

structure and dynamics that give rise to unique and unexpected (emergent) macro-

scopic properties. Consequently, it is difficult, if not impossible, for the experimental

and theoretical approaches to replicate or describe many of the financial market char-

acteristics. This has led to alternative approaches such as Agent-based Modeling

(ABM), which is the methodology followed in this project for estimating models and

testing hypotheses [11]. An agent based approach models the financial markets in

an incremental bottom-up fashion, as an evolving adaptive system of autonomous

interacting traders. This approach makes it possible to start from very simple setting
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and add different variables and components as the system goes on. Therefore, the

agent’s behavioral rules can be set along the way according to the requirements of

each given experiment. This makes it possible to analyze the influence of different

characteristics on various phenomena, as Lebaron [12] says: "It is important in agent

based models not just to replicate features of real markets, but also to show which

aspects of the model may have lead to them."

1.2.3 Agent-based Modeling

The state-of-the-art illustrates that agent-based approach is a well-suited modeling

methodology for economical and financial analysis [6,11,13]. ABM is not just a tool,

but also a mindset that describes a complex system from its constituent entities view-

point, stressing interaction and learning among heterogeneous agents. With ABM,

market or economy can be constructed in bottom-up fashion, populated with bound-

edly rational agents, each having certain characteristics, information and modes of

behavior like communication and learning. Through the course of simulation the

agents interact and evolve along with the market, leading to emergent phenomena

that can then be further analyzed [14].

ABM provides the possibility of settings the agent’s rules of behavior according to

the experiment at hand, making it plausible to investigate macro phenomena with

respect to micro aspects of market and agent’s characteristics. Beyond this, finan-

cial markets have other features that make them further appealing for agent-based

modelers including,

(i) Financial data are available plentifully and accurately in different frequencies,

creating a detailed image of trade dynamics and market unfolding, which re-

searchers can take advantage of.

(ii) The availability of experimental data can be used towards calibrating agent’s

characteristics and behavioral rules.
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(iii) There are many puzzles in financial time-series that are yet to be understood

which can be possibly solved with ABM approaches [15].

1.3 Motivation and Contribution

This research focuses mainly on developing an agent based model of financial mar-

ket that can reproduce and explain the most important stylized facts observed in

actual financial time series. The developed validated model is then used as a plat-

form to study the effect of different market and trader parameters on the emergent

properties of the market, such as herd and volatility.

As described in Section 1.2, traditional approaches to analyze financial markets

are hardly adequate to explain or reproduce many of the stylized facts observed in

real markets. Moreover, the trader’s behavior is not always backed up by correct

information and fundamentals, an some fluctuations in stock price can be due to the

impact of certain inefficient social phenomena. The motivation of the present study

is to develop a framework to fulfill the following research objectives:

• Develop an agent based model of financial market that can reproduce the key

stylized facts observed in real financial markets.

• Investigate that under what conditions, the endogenously produced price of the

model will resemble the statistical properties of real financial price time series.

• Investigate market and trader behavioral parameters and their contribution to

the emergence of stylized facts.

• Investigate the relationships between different market phenomena and parame-

ters such as herding, investment return, volatility, volume, number of different

trader types and bullish/bearish markets.

In this thesis, an agent-based model of stock market is proposed to study the ef-

fects of trader’s psychological and behavioral characteristics on the overall properties
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of financial markets. Two key features of this model are local interactions and hetero-

geneity, which allow for global market protocols and behavioral norms to arise from

the bottom up. The model stresses interaction and learning between two general

types of agents: fundamentalist traders and chartist traders. The behavior of the

market as a whole, such as the dynamics of asset prices, is an emergent property

of the agents’ behavior. This study suggests that local interactions, rational and ir-

rational decision-making approaches and heterogeneity, which has been incorporated

into different aspects of agent design, are among the key elements in modeling financial

markets. We use this validated model as a platform to investigate and understand the

relationships between traders behavioral factors and global market properties, such

as herding and volatility.

This research contributes to agent-base modeling of financial markets by designing

a very simple market mechanism with non-simple agents, to study the co-evolution

of agents and their trading behavior, and their consequences on the changes of the

market as a whole. The proposed model and its mechanisms are simple enough to

avoid the complications that would prevent us from understanding the critical origins

of the reproduced statistical properties of real financial markets. Yet, the agents

settings posses enough heterogeneity and sophistication to allow for co-evolution of

the trading rules and reflect agents’ strategic behaviours on the price changes of

the market. As the number of parameters increases, the size of the search space rises

enormously, since one needs to explore the space of parameters as well as thresholds to

investigate their effects on market macro properties. To overcome this limitation, we

tuned and calibrated the model using a standard Genetic Algorithm. By using such

technique, we not only explore the search space more efficiently, but also improve

aggregate dynamics of the market and the micro behavior of agents by means of

increasing the degree of autonomy.

This research also contributes to the body of literature that studies herding behav-
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ior, as it uniquely investigates the relationships of different herding measures with

other market parameters and properties, and advances the understanding of the phe-

nomenon.

The market mechanism, the parameters of agent’s behaviour and the analysis of

the results will be described in detail in the following chapters.

1.4 Dissertation Organization

The dissertation is organized as follows:

Chapter 2 is devoted to the literature review of research in agent-based modeling

of financial markets. First, it reviews literature on market mechanisms and agent

design. In the second part, the herd related studies are investigates to understand

the nature of the phenomenon. Finally, it explains the means of validation and

provides a comprehensive list of stylized facts used in validation process.

Chapter 3 provides the description of the computational model and its specifica-

tions.

Chapter 4 focuses on calibration and validation of the model by the means of

Genetic Algorithm, and provides the results on reproducing the stylized facts.

Chapter 5 presents the statistical analysis of the model’s results and BAC time

series, along with the investigation of relationships between different market phenom-

ena.

Chapter 6 summarizes and concludes the thesis.



CHAPTER 2: LITERATURE REVIEW

2.1 Agent-Based Models of Financial Markets

In order to start modeling the market and economy, one should start with answering

the design questions such as: What are the types of securities to be traded? What

would be the fundamental value of the asset and how would it move? How and to

what degree heterogeneity, learning and interactions are considered in the model?

These are some of the large number of design questions that we try to attend in the

following sections.

2.1.1 Agent Design

In try to categorize different agent-based models, it is helpful to classify them

based on their agent’s complexity in terms of three basic elements: heterogeneity,

interaction and learning. Of course there are other taxonomies, which can be found

in the works of [11], [5], and [15]. The complexity of agents can go from simplest

settings with only two types of agents learning with imitation and reinforcement

algorithms all the way to many type agents with complex learning algorithms such as

genetic programming and neural networks. Similarly, as for interactions, it can range

from simply interacting with neighbors to complex network typologies [2].

In actual financial markets, financial actors and traders can differ in so many as-

pects. They can have different levels of sophistication, exposure to public and private

information, strategies, beliefs and so on. To decide on the level of heterogeneity

that would serve the goal of artificial financial market is one of the important steps

of such modeling. Obviously, keeping the model as simple as possible would make

the validation process less complicated and allows for tractability of the model’s pa-
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rameters. On the other hand, it is not an easy choice to decide on keeping, cutting

or simplifying different aspects of agents. A good practice can start from a simple

setting and incrementally add necessary parameters and components to the model

until reaching a certain goal.

2.1.1.1 Two-Type Design

This type of agent design is the simplest kind with respect to heterogeneity. Vast

empirical investigation was done in 1990s by [16] and [17] on the behavior of finan-

cial agents. The data was gathered through different surveys and the result of these

studies showed that in general, there are two different types of trading strategies that

financial agents follow, fundamental and technical. Fundamentalists and chartists

(technical, trend-follower, or noisy traders) have very different views on price dynam-

ics. The former make decisions with the belief that the price of an asset return to

their fundamental value in the long run, while the latter are mostly concerned about

the trends and patterns observed in the past prices. Fundamentalists make the mar-

ket stable by forcing the price towards the fundamental value while chartists are the

destabilizing force in the market by causing positive feedback by extrapolating [5].

Evidence of the existence of these two types of traders in real markets and models

can also be traced back to the fifties [18]. Later on, a number of literatures including

[19] argued that chartist, due to their irrational beliefs, would eventually lose all

their money and vanish from the market. Despite the popularity of this idea, some

authors like [20] nearly immediately presented counterexamples to it. It is safe to say

that the dollar bubble from the eighties and technology bubble which burst in 2000

have proved that not all financial agents are fully rational in real markets [11]. It is

also noted that the market fraction, which is the proportion of fundamentalists and

chartists, changes over time, indicating the adaptive features of financial agents [2].

These empirical discoveries created a stepping-stone for design and development of

artificial financial agents.
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The model with only these two types of traders is the simplest type of Hetero-

geneous Agent Models (HAMs). Zeeman’s model [21] is one of the first HAMs of

stock market with fundamentalists and chartists traders. He proposed a qualitative

description of the stylized facts observed in short-term bull and bear markets. In

the model, fundamentalists are assumed to know the intrinsic value of the stock and

they only buy (sell) when the observed price is below (above) that value. Chartists,

on the other hand, believe that prices move in trends so they buy when price rises

and sell when it falls. He, based on behavioral assumptions of chartists and funda-

mentalists, explains the switching between bull and bear market [5]. Zeeman’s model

was a pioneer in financial market models with fundamentalists and chartists, and a

large number of the literature was developed following the lead of him, e.g. [22], [23],

and [24].

In the two-typed models, all agents pick among two behavioral rules at the start

of each trading period and later on, in the next period they review and possibly

switch rules based on a pre-defined fitness function. Switching mechanism, which is

the binary choice model, captures all the interaction and learning in the model. At

time t, the forecasting mechanism that each type uses to decide on the next action is

based on its expectation of the price at time t+ 1, which can be written as [2]:

Ef
t [pt+1] = pt + αf (pft − pt) (2.1)

Ec
t [pt+1] = pt + αc(pt − pt−1) (2.2)

where, (2.1) and (2.2) are the forecast rule of fundamentalists and chartists, respec-

tively, pt is the current price, αf ∈ [0, 1], αc ∈ [0, 1], and pft is the fundamental value

of the asset. The second parts of the equations are formalization of orders generated
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by each trading rules:

Df
t = αf (pft − pt) (2.3)

Dc
t = αc(pt − pt−1) (2.4)

where, αf is a positive coefficient that describes fundamentalist mean-reverting belief

and its basically specifying the speed with which fundamentalists expect the price

to return to fundamental value. Fundamentalists would change their minds about

an asset if the price departs-more than some threshold value- from the fundamental

value. The threshold can be randomly generated for each fundamentalist in order

to add further heterogeneity to the model and make each fundamentalist unique. In

the special case αf = 1 they expect the price to return to its fundamental value

immediately, while in the case of αf = 0 they naively expect the price to follow a

random walk.

Furthermore, αc is a reaction coefficient, conveying the sensitivity of chartists to

price change and pt − pt−1 indicates the trend. Chartists extrapolate and predict

the price change rate to be proportional to the latest observed change. Some litera-

ture (see, e.g., [25]) include a random term (a normal, Independent and Identically

Distributed (IID) noise process with zero mean and constant standard deviation) in

the equations to capture the diversity and uncontrollable elements in technical and

fundamental analysis.

In the models discussed of fundamentalists and chartists, none of the two trader

types can be entirely rational, as the Friedman hypothesis suggests, fully rational

traders would eventually out-perform all other types of traders and make them vanish

from the market. In this case, where all agents are rational and aware that all

the others are rational as well, no trade will take place (see [26] and [27]). In this

market, traders cannot benefit from their information, take a case for example that a
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traders wants to buy an asset, all the other traders anticipate that he has the positive

information and would not sell the asset to him. As it can be seen in real markets,

high volume of daily trading is in contrast with this no trade theory.

2.1.1.2 Three-Type Design

Three-type design is an extension of two-type design, adding to the heterogene-

ity of the agents. With the risen capability of observing the behavior of financial

agents due to large amount of proprietary trading data, it can be confirmed that

chartist, either individuals or institutions, differ in the way they react to past price

and trends. Empirical investigations suggest that chartist can be further divided into

optimists and pessimists, or as in most literature, momentum and contrarian traders.

Momentum traders are the same as previously defined chartist, whereas contrarians

act completely opposite to that. They still look at the past movements of the price

to predict the future, but act against the trend, anticipating that the trend will soon

be finish and reversed. Here is the formulation of their expectation of next period’s

price [2]:

Eco
t (pt+1) = pt + αco(pt − pt−1) (2.5)

where αco ≤ 0.

This class of models is proven to be very successful at reproducing many of the

stylized facts observed in financial markets. [28] and [1] developed models with these

three types of agents, either an optimistic or a pessimistic chartist or fundamental-

ist. Traders can switch between chartist and fundamentalist and within chartist,

between optimistic and pessimistic strategies and the price is determined based on

aggregated excess demand. With their approach, the appeal of chartist rule depends

on achieved profits, while for fundamentalist it depends on the expected future profit

opportunities.
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Figure 2.1: Switching dynamics of Lux-Marchesi model [1].

2.1.1.3 Fitness Function and Switching

Switching or adaptive belief dynamics that enables agents to shift between different

strategy alternatives is considered to be a necessary source for creation of many

stylized facts observed in the real markets ( [29], [30], and [1]). In the N-type models,

learning is encapsulated in the switching method. The fitness measure that drives

agents to change their opinion and switch to a new trading strategy can be temporal

realized profits from each rule or relative accuracy or pricing error following each

rule [31]. Although, in the case of realized profit, [32] has critiqued that there maybe

a bias that pushes traders towards chartist rule since chartists are driven by realized

profit, while fundamentalists are driven by expected arbitrage profits that will not be

recognized until the price has returned to its fundamental value.

In the two-type fundamentalist/chartist model, agents can only choose between

two rules, therefore modeling the switch gets quite easy and is typically done using

a the binary choice model, particularly, the logit model ( [33]) which is a well-known

behavioral optimization model. Consider having two alternative options (f (funda-

mentalist), c (chartist)), each having some random profit, to choose from. In this case

the logit model assumes that the probability of choosing one of the options is equal

to the probability that the gained profit from the chosen option is larger than those
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gained from choosing the other one. The following binary logit model can be derived

under the assumption of random profit [2] as,

P (X = f, t) =
exp(λV f

t−1)

exp(λV f
t−1) + exp(λV f

t−1)
(2.6)

where, V f
t and V c

t are the deterministic components of the profits from the options f

and c at time t, respectively, and the parameter λ is the intensity of choice, measuring

how fast agents switch between the two strategies ad it is inversely correlated to the

level of random utility. If λ = 0 no switching is going to take place between strategies,

while all agents instantaneously switch to the best strategy if λ = 1.

In the model of [1], as shown in Fig. 1, agents are able to switch between chartist

and fundamentalist strategy as well as switching between optimist and pessimist

within the chartists. In the case of chartist, majority and current price trend plays

the key role in the switching process. For example the probability that pessimistic

turn into optimistic rise if the majority of chartists are optimistic and prices are going

up. The number of agents in each category determines excess demand (the difference

between demand and supply) and lead to price changes, which in turn affect agents’

choices of strategies [11].

2.1.1.4 N-type Design

The two and three type models can be generalized to more heterogeneous agent

setting by, for one, introducing a memory parameter to chartist equation. Therefore,

instead of just looking at the last time step price, they have the option to look further

into the past in order to choose their next move. This way the psychological bias,

law of small numbers, is abided. It basically says that people put much more weight

on recent events as oppose to long-term averages. For example if returns on an asset

stays high for many years, traders having this bias would consider it as "normal". The



15

expectation for momentum and contrarian traders can be formulated as follow [2]:

Ec
t (pt+1) = pt + αc(1− βc)

T∑
k=0

(βc)k(pt−k − pt−k−1)∑T
k=0(β

c)k
(2.7)

Eco
t (pt+1) = pt + αco(1− βco)

T∑
k=0

(βco)k(pt−k − pt−k−1)∑T
k=0(β

co)k
(2.8)

where, βc and βco ∈ [0, 1]. These two are the memory parameters of pessimist and

optimist chartists and as they increase, the weight they put on the price changes

farther in the past increases.

The memory parameter along with different thresholds and reverting and extrap-

olating coefficient for each of fundamentalists and chartists introduce further het-

erogeneity into the model and makes it an N-type design. However, although two

chartists or fundamentalist can have different views and actions, but eventually the

behavior of the agents would fall into one of the few vitally different groups.

2.1.1.5 Many-Type Design

As popular and useful N-type agent designs are in many cases, it still holds the

restrictions of exogenously given rules. They can only choose their actions based on

what is already in the system and are unable to follow new rules unless it is hard-

codded into the model. The many type-design introduces new approach that lets

artificial agents become more real by learning and creating new strategies on their

own. One of the interesting characteristics of many of these models is that agents start

with very homogeneous features and evolve in their features and rules endogenously

over time [34]. The Santa Fe Artificial Stock Market (SFI-ASM) [35] is a pioneer

and most influential work in this area. The may-type design approach uses Artificial

Intelligence techniques to model evolution and learning, which are outside the scope

of this research.
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2.1.2 Market Maker

Many different methods are used in literature for determining prices in artificial

financial markets. in this research, the category that uses a slow price adjustment

process is investigated. In this category the market is mostly never in equilibrium

and the price of an asset basically depends on excess demand, which is the difference

between demand and supply. It rises if more agents are willing to buy instead of

sell and falls if the supply exceeds the demand. An early example of such approach

is [22], where there is a market maker who broadcasts the price and agents submit

their buy and sell orders for this price. The orders are then summed and in the case

of existence of excess demand (supply), the price is increased (decreased):

pt+1 = pt + α(D(pt)− S(pt)) (2.9)

where, α is a positive coefficient, which can be explained as speed of adjustment of

price, D(pt) is the number of buy and S(pt) is the number of sell orders. A random

term (a normal, IID noise process with zero mean and constant standard deviation)

can also be added to the equation to account for more variety and unknown facts

contributing to price change, since this model only provides a simple representation

of real financial markets.

2.2 Herding

Herd happens when traders observe the choices of others and, regardless of their

private information and consequences of their choices; start to imitate them [36].

Suppose that there are 10 traders in the market, 2 optimists and 8 pessimists. The

group of 2 believes it is in their best interest to buy an asset and the other 8 think

that it is not. If these 2 optimists act first and buy, the other 80% will observe their

action and may change their opinions and also decide to buy. This could eventually

lead to all 10 traders to invest. As it can be seen in the above example, what will
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majority do can be based on the actions of the early traders and they may be most

crucial in determining the direction of herd, which may well be incorrect.

The incentive behind an investor’s decision to discard his own beliefs and infor-

mation after observing others vary by different factors. Everyone in the market is

trying to maximize their profit or utility and they may anticipate that others know

something about the return on an investment that they do not. An investor may

think that the action of others reveals true information about the value of an asset,

so they start imitating them. There could be less sophisticated reasons behind herd-

ing such as the intrinsic need of individuals to match their beliefs and behaviors to

group norms. Another reason which only relates to money managers who invest on

behalf of others is that sometimes the compensation system or terms of employment

may encourage and implicitly reward imitation [37].

It is worth injecting a note of caution that one should not confuse the "spurious

herding" with true herd behavior that is, the decision to disregard one’s private

information to follow the behavior of others (see, [38] and [39]). Spurious herding

happens when groups of traders face the same problems and information sets and

therefore make similar decisions [37]. In this case even though everyone acts the

same, their choice is based on fundamentals and will have an efficient outcome, as

opposed to true herding that can cause information inefficiency in the market due

to misalignment between the price we observe and the price we would have observed

in the absence of herding [40]. In this research, the spurious herding is not going

to be investigated, even though it is very difficult, if not impossible, to differentiate

between true and spurious herding due to unknown motive behind a trade and lack of

data on the private information available to traders. However, the reactions to public

information can be distinguished by explicitly allowing for changes in fundamentals

and then factoring out the effects. If collective behavior can still be seen in the data,

then true herding may well be the cause [37].
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2.2.1 Agent Based Models of Herding

2.2.1.1 Sequential vs. Non-Sequential Herding

There are various approaches towards modeling herd behavior in the literature.

Some models like [41] and [42] attempt to model herding with a sequential charac-

teristic, in which traders make decisions one at a time and consider the actions of

the traders before them in their decision making process. On the other hand, [43]

introduced a non-sequential model of herding, where agents interact simultaneously

while modifying their decisions at each time step. He studies the Bayesian equilibria

resulting from identical agents with the same imitation tendency who make binary

decisions. By setting the imitation rate low, the model leads to a Gaussian distri-

bution whereas strong imitation setting leads to a bimodal distribution with nonzero

modes that he interprets as equivalent to crashes in market.

The decision structure of non-sequential models seems to be more realistic since

traders participate in the market simultaneously and cumulative market variables

like asset prices is determined by the aggregation of different orders. Although

non-sequential setting is better suited for financial markets, neither of these two ap-

proaches can reproduce heavy tail of returns as such observed in empirical properties

of stock returns. [44] have proposed a different approach that is non-sequential but

avoids Orlean’s impractical results by revising his assumption of all agents having the

same imitation rate. In this methodology agents interact on a basis of random com-

munication network, which leads to formation of groups of agent such that each group

makes independent decisions while agents within each group mimic the behavior of

each other.

2.3 Bubbles and Crashes

An overview of the relevant literature reveals that herding can cause information

inefficiency and lead to speculative bubbles, which makes the market unstable and
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prone to major crashes. As Sornette argues in "Why Stock Markets Crash" [45],

crashes are not solely the result of rational adjustments to news in the market, nor

are always triggered by exogenous shocks such as earthquakes or evolutions alone.

Sometimes, financial crisis happens due to the emergent instability in the market

that is a result of escalation in herd behavior. Take, for example, the crash of 1929.

For months preceding the crash, there was an increasing interest for commodities

such as stocks, coins and diamonds and a bubble was forming throughout the society.

Also, the election of Herbert Hoover as the president of the United States in that time

period produced an overall optimistic mood and as a result, the stock purchase had

the greatest increase up till then. After the boom of 1929, the investigations revealed

the existence of bubble and the role of herd behavior in the crash. The results

have shown that the actions of a large number of investors, who blindly followed the

popular stocks, caused the prices for those favorite stocks to go way higher than their

fundamental values. This had led to the creation of a bubble, subsequent volatility

in the market and finally the great crash [46].

[47] presented a model of stock market in which traders have incomplete informa-

tion about the price and they are aware that others may have different, incomplete

information as well. Knowing that their information set is incomplete, they are re-

luctant to completely rely on the current value which, differs from the fundamental.

Therefore, they might try and adjust their expectations to the opinion of some other

investor who may have information which is not available to them. This creates the

"fad" characteristic in the model. The results of the simulation explain that if agents

make strong-form rational expectations, there will be no herd behavior observed in

the market and the market price resembles the fundamental value. On the other

hand, in the case of weak-form rational expectations, contagion could form in the

market and price diverges from its fundamental value. The contagious behavior then

leads to creation of speculative bubble and excess volatility.
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There are other related literature that try to explain the creation of opinion clusters

and bubbles in terms of herding parameter, in particular the paper of [48]. They

propose a self-organized model for stochastic formation of opinion clusters. There is

only one parameter in this model which is h, the rate of information diffusion per

trade, and they call it the measure of herding behavior. The model consists of a

network in which agents are vertices, and links between agents indicate they share

the same information. Each agent can have three states, Φ = {−1, 0,+1}. Φ = 0

represents inactive, waiting state and Φ = 1 and Φ = −1 corresponds to active buying

and selling states, respectively. At the beginning all the agents are inactive and at

each time step, an agent is randomly selected. With probability a the state of the

chosen agent becomes active to either 1 or -1 randomly. After this step, all the agents

that belong to the same cluster follow the same action and then the cumulative state

of the system and total size of the clusters are computed. Afterwards, all links inside

the cluster are removed and all states change to inactive and, with the probability

of 1 − a, the chosen agent remains inactive and a new link between it and another

random agent gets created and this process repeats. The connectivity of the network

grows as agents remain inactive and decays whenever an activation happens. The

herding parameter is defined as h = 1/a− 1 and a ∈ [0, 1] controls the rate of trading

activity versus information dispersion. As a grows closer to 1, the agents get more

isolated and no herding behavior can be observed in the market. On the other hand,

as a gets closer to 0, h increases and subsequently, the connectivity of the network

rises until eventually, all the agents merge into a super-cluster close to the system

size. This could lead to a relative increase in the probability of extremely high returns,

which may end with a crash. Regarding these results, [48] conclude that herding can

be held responsible for the occurrence of crashes.
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2.4 Validation and Stylized Facts of Financial Time Series

Time series of financial markets exhibit many statistical features that are mostly

common to a wide range of markets and time periods [49]. These properties are known

as "stylize facts" and modelers of financial markets attempt to match the statistical

properties of the artificial data produced from their models with those properties in

order to make the model verifiable. The conditions under which stylized facts arise in

the agent base models of financial markets provide an strong way to validate the model

and confirm which factors matter in the simulation. For this purpose, econometric is

used to examine the data generated from the models and investigate that if they are

able to exhibit, grow and replicate a number of frequently observed empirical features

of financial markets (stylized facts).

Some of the most universally accepted stylized facts are as follows:

• Fat tail of the returns: The most commonly used stylized facts in the validation

process of financial market models by claiming that the distribution of high

frequency returns exhibits a heavy tail with positive excess kurtosis. It has been

first discovered by Mandelbrot [50] that there is higher density on the tails of the

distribution in comparison to the tails’ density under the normal distribution.

In a normal distribution, the excess kurtosis is zero while in financial data it

is usually greater than zero, which is an indication of fat tails. In order to

determine the density of the tail and the tail index, one can also use the Hill

tail index [51], which is a simple and efficient tool to the study the tail behavior

of financial time series.

• Non normality: The stock returns on different frequencies are not normally

distributed.

• Volatility clustering: Which describes the fact that high-volatile events tend to

cluster in time. Empirical analysis on financial markets reveals that different
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measures of volatility display a positive autocorrelation over several days [49].

So if the market had been very volatile today, the chances are higher than

average that it will have large positive or negative changes tomorrow.

• The absence of autocorrelation in raw returns

• The presence of autocorrelation in absolute returns (volatility clustering).

A comprehensive list of stylized facts is provided in table 1. From the total of

30 facts listed in the table, the highlighted codes represent the stylized facts of low-

frequency financial time series of return and trading volume. The other codes refer to

high-frequency time series of return, trading duration, transaction size, and bid-ask

spread.
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Table 2.1: Stylized Facts [2]

No. Code Stylized Facts Reference
16 EPP Equity Premium Puzzle [52]
9 BC Bubbles and Crashes [53]
29 TLS Thinness and Large Spread [54]30 TD Turn-of-the-year Declining
1 AA Absence of Autocorrelations

[49]

2 AG Aggregational Gaussianity
3 CHT Conditional Heavy Tails
4 FT Fat Tails
5 LE Leverage Effect
6 LM Long Memory
7 VC Volatility Clustering
8 GLA Gain/Loss Asymmetry
19 PLBR Power Law Behavior of Return

[55]20 PLBTV Power Law Behavior of Trading Volume
21 PLBT Power Law Behavior of Trades
10 CE Calendar Effect

[56]

11 AA-H Absence of Autocorrelations
12 FT-H Fat Tails of Return Distribution
13 LM-H Long Memory
14 PE Periodic Effect
15 BU Bursts
27 US U Shape [57]28 SCPC Spread Correlated with Price Change
17 EV Excess Volatility [58]18 VVC Volatility Volume Correlations
22 PLBV Power Law Behavior of Volatility [59]
24 CTD Clustering of Trade Duration

[60]25 DLM Long Memory
26 DO Overdispersed
23 VLM Long Memory of Volume [61]



CHAPTER 3: THE ARTIFICIAL FINANCIAL MARKET

In this chapter, the developed dynamic, heterogeneous stock market model and its

main characteristics are presented and explained.

3.1 Introduction

In this work, the two-typed design methodology to model the stock market is fol-

lowed. The two typed design is chosen to allow for a less complicated validation

process and better tractability of the model’s parameters. Zeeman’s model [21] was

one of the first agent-based models of stock market with fundamentalist and chartist

traders, and a large number of literature was developed following the lead of him. He

proposed a qualitative description of the stylized facts observed in short-term bull and

bear markets. Although the model included several behavioral elements that are used

as base for other financial market modelings, it lacked micro details. The study done

by Gilli and Winker [62] showed that to have a better characterization of financial

markets models, traders should be able to switch between different trading strate-

gies than to simply assuming that the ratio of fundamentalists over chartists remains

constant over time. The approach of stressing evolution and switching between fun-

damentalists and chartists, taken by Hommes [23], Lebaron [15] and Westerhoff [63],

has proven to be quite successful. Although being able to reproduce some of the most

important stylized facts of financial markets, they do not consider local interactions

and heterogeneity within the two general belief systems.

The aim of this study is to investigate the effects of rational and irrational decision-

making process and social interaction on overall market dynamics and the emergent of

certain key stylized facts. In order to achieve this goal, a simple yet rich and flexible
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agent-based model of stock market is developed. In a first attempt to model this

complex system, the methodology of two-type design suggested by Westerhoff [63]

is followed. This method, being the simplest kind of heterogeneity, allows for a

better tractability of the model’s parameters and a less complicated validation process.

However, in order to gain additional explanation power and a closer representation of

real financial markets, further heterogeneity is incorporated as the model proceeds.

The objective is to satisfy the two essential agent design principals, simplicity and

heterogeneity by a well-defined scheme and parameter space.

The proposed model differs from the original model and other related works in the

approach that is taken to model heterogeneity, interaction and learning behavior of

the agents. Related research limits heterogeneity through only a few elements of two

general agent types, fundamentalists and chartists. They also capture learning and

interaction through switching mechanism, in that the overall population of fundamen-

talists and chartists is set due to the realized profit associated with their forecasting

rules. On the other hand, the novelty of the approach used in this work is that,

while consistent with other two-type design frameworks, it builds heterogeneity into

different aspects of agent design, making each fundamentalist and chartist unique

within the two general types. Also, the method to model learning and evolution is

through local interactions. At each time step, financial agents exchange information

with their surrounding neighbors. They either compare strategy profits and change

their tactic accordingly, or blindly choose to follow the most popular trading decision

in their neighborhood, regardless of its utility and their own private information. This

method helps gaining a broader global insight to trading strategies and evolution of

the agents.

In this work, heterogeneity is modeled through several key parameters:

• Agents with different reaction intensities to price and fundamentals changes.

• The initial wealth distribution among the agents.
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• Agents with different levels of sophistication in their decision-making process.

• Agents with different memories who use different trading time windows.

3.2 Overview of the Model

The model describes daily stock trading with only one risky asset of the price pt at

time t. There is a fixed number of N traders in the market, scattered randomly across

a pseudo-landscape grid of square cells. Each trader can interact with the traders on

its eight neighboring patches. At the beginning of each simulation, all traders are

endowed with different amount of cash drawn from a power law distribution. At each

time step t, traders can choose between three actions, buy or sell one unit of the

stock, or remain inactive. Each Trader is assigned one of the three general belief

systems, optimist, pessimist or fundamental trading rules randomly at the beginning

of simulation. Afterwards, at each time step traders can interact with the traders

on its eight neighboring patches and change their strategy to maximize their profit

or simply follow the crowd. This switching mechanism captures the interaction and

learning in the model. The agent’s action space is:

Action =


1 Buy one unit of stock

−1 Sell one unit of stock

0 No trade

The overall flowchart of the model is presented in Figure 3.1, which will be discussed

in details in this section.

3.3 Model Mechanism

3.3.1 Wealth Distribution

It was first observed by Pareto [64] that the income distribution across several

countries follows a power law. Later, it was discovered that wealth is also distributed
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according to a power law [65], which implies rather extreme wealth inequality. The

probability density function that describes the Pareto distribution is of the form:

W (x) = x−(1+α) (3.1)

where, α is the Pareto exponent, which measures the level of wealth inequality and

was estimated by him as α = 1.5. In this model, the same power law distribution is

used to initially endow each agent with a different amount of money, in agreement

with human population.

3.3.2 Traders

3.3.2.1 Fundamentalist

Fundamentalists make decisions with the assumption that in the long run, price of

an asset returns to its fundamental value. In this model, fundamentalists are assumed

to know the intrinsic value of the stock and they only buy (sell) when the observed

price is below (above) that value.

The fundamental value of the asset Ft is publicly available to all traders. It is

assumed that the fundamental price of the risky asset is given exogenously as a

random walk process:

Ft = Ft−1 + η (3.2)

where, Ft−1 suggests that yesterday’s value of stock is carried into the future and η

is a IID noise process with zero mean and constant standard deviation ση, added to

take the fundamental shocks into account.

At the beginning of the simulation, a unique coefficient (0 < f < 1) drawn from a

Gaussian distribution is assigned to every fundamentalist. This element characterizes

the belief of each fundamentalist and specifies the speed with which each agent expects

the price to return to its fundamental value. By providing traders with different
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coefficients, every fundamentalist becomes unique in their beliefs and decision-making

process, as practiced in real world markets. In the special case of f = 1, they expect

the price to return to its fundamental value immediately, while f = 0 means that

they naively anticipate that the price follows a random walk. With this being said,

their expectation of the next period price can be written as:

Ef
t [pt+1] = pt + f ∗ (Ft − pt) + τ (3.3)

where, pt is the current price. A random variable τ (a normal, IID noise process with

zero mean and constant standard deviation στ ) is included in the equation to account

for diversity and uncontrollable elements.

Furthermore, granted that fundamentalists trade less frequently than chartists,

a threshold K is introduced. Fundamentalists become active only if the difference

between the current price and the price they expect for the next period is above such

threshold.

3.3.2.2 Chartist

Chartists, on the other hand, base their expectations on the past price changes,

patterns and trends. An empirical study done by [66] suggests that chartist traders

have varying investment horizons and thus use different time windows to analyze the

trend and patterns in the price time series. Here, each agent is assigned a differ-

ent memory length T , drawn randomly from a uniform distribution. The estimated

maximum investment horizon used here is 50 days. By having different investment

horizons in the market, the model not only conforms to real-world market traders,

but also has an increased autonomy degree which will improve the macro dynamics

of the artificial market.

In this model, following the methodology used by [1], two types of chartist are intro-

duced; optimists and pessimists. Optimists extrapolate and predict the price change
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rate to be proportional to the latest observed pattern in the price history. Whereas

pessimists, while still looking at the past movements of the price, act against the

trend, anticipating that the trend will soon be finished and reversed. The formula-

tion of their expectation of next periods price is as follow:

Eco
t [pt+1] = pt + co ∗ (pt −MAt) + β1 (3.4)

Ecp
t [pt+1] = pt + cp ∗ (pt −MAt) + β2 (3.5)

where, 0 < co < 1 and cp ≤ 0 are the reaction coefficients of optimists and pessimists

respectively, conveying the sensitivity of chartists to price changes and trends. These

two parameters are different for each chartist and are drawn from a Gaussian dis-

tribution at the beginning of simulation. β1 and β2 are random normal IID noise

processes (with zero means and constant standard deviations σβ1 and σβ2), added

to capture the diversity and uncontrollable elements in chartist analysis. pt −MAt

indicates the trend, where MAt is the moving average of the past prices, based on an

an Exponentially Weighted Moving Average (EWMA) process:

MAt = φ
∑T

i=1
(1− φ)i−1pt−i (3.6)

where, 0 < φ < 1 is a smoothing parameter and T is the memory length of

the agent. Each chartist is assigned a unique memory length (T ) drawn randomly

from a uniform distribution between one and fifty days. Using this formulation, the

psychological bias of law of small numbers is abided, which implies that people put

much more weight on recent events as oppose to long-term averages [2]. As φ increases,

the weight given to the recent prices further increases. It should be noted that, the

weight φ ∗ (1 − φ)i−1 in (3.6) controls the MAt and normalizes the average value.

The weight of past prices fades by (1 − φ) at each time step, making the total area

of the weight sequence upper bounded by 1. Meanwhile, the parameter φ is chosen
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with respect to T in order to make the area bellow the weights close to 1. Hence, the

sign of trend value (pt −MAt) is merely based on the current and previous values of

p and the weights chartists put on past prices.

3.3.3 Price Adjustment

At the end of each trading day, the market maker sets the price according to

observed excess demand. Following Day and Huang [22], a simple price adjustment

scheme based on the aggregated excess demand is used as,

pt+1 = pt ∗ (1 + a ∗ (Dt − St)) + δ (3.7)

where, a is a positive coefficient, which can be explained as the speed of price adjust-

ment. Dt and St are the number of buy and sell orders at time t, respectively. Since

this model only provides a simple representation of real financial markets, a random

term, δ (a normal, IID noise process with zero mean and constant standard deviation

σδ) is also added to the equation to account for unknown facts, contributing to price

change.

3.4 Social Interaction, Adaptation and Learning

Local interactions and learning is a key factor in the proposed model and the

simulations. The macro dynamics of the market as a whole is the result of endogenous

switching between there groups of agents defined in the previous section. Switching

or adaptive belief dynamics that enables agents to shift between different strategies

is considered to be a necessary source for creation of many stylized facts observed in

the real financial markets [1].

3.4.1 Logit Switching Models

In the N-type models, learning is encapsulated in the switching method. The

fitness measure that drives agents to change their opinion and switch to a new trading
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strategy is considered to be the temporal realized profits from each trader’s actions,

which is formulated as follow:

St =


(1−m) ∗ (pt+1 − pt) +m ∗ St−1, if agent was buyer

(1−m) ∗ (pt − pt+1) +m ∗ St−1, if agent was seller

where, m ∈ [0, 1] is the normalization of memory parameter T , and is used to account

for the past performance of each rule.

In this model, agents are able to switch between chartist and fundamentalist strat-

egy as well as switching between optimist and pessimist within the chartist group.

Since in the latter case agents can only choose between two rules, the switching pro-

cess is modeled using the Logit binary choice model [33]. At the beginning of each

trading day, agents meet and exchange information with their neighbors. Given the

uniqueness of each fundamentalist,optimist and pessimist, the average utility associ-

ated with each type in the neighborhood is calculated and compared. The probability

that an agent chooses optimist over pessimist trading rule is:

P (X = o) =
exp[λS̄o]

exp[λS̄o] + exp[λS̄p]
(3.8)

where, P (X = o) + P (X = p) = 1.

In the first case, where there is switching between fundamentalists, optimists and

pessimists, the adaptation part of the switching mechanism is extended from the orig-

inal Logit model (3.8) into the multinomial Logit model. Following is the probability

that an agent chooses fundamental over optimist and pessimist trading rules:

P (X = f) =
exp[λS̄f ]

exp[λS̄o] + exp[λS̄p] + exp[λS̄f ]
(3.9)

where, P (X = f) + P (X = o) + P (X = p) = 1. λ is the intensity of choice,

which measures how quickly agents switch if there are additional profits gained from
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choosing fundamental over chartist trading rule. If λ = 0, there is no switching

between strategies, while for λ = +∞ all agents immediately switch to the most

profitable strategy.

3.4.2 Herding

In the proposed model, herding is investigated from two different aspects. The first

side lies in the agent based design portion of the work. An imitation component is

introduced to account for the herding behavior observed in real markets and docu-

mented by a number of studies (e.g. [67]). Such behavior arises when traders observe

the choices of others and, regardless of their private information and knowledge, start

to imitate them. To model this process, an imitation threshold, γ is defined. The

trader will change his action (buy/sell) if less than γ percent of its neighbors chose

the action similar to him. The incentive behind an investors decision to discard his

own beliefs and information to follow the crowd varies by different factors. For exam-

ple, while trying to maximize their profit, traders may anticipate that others know

something about the return on investment that they do not. An investor may think

that the action of others reveals true information about the value of an asset, so they

start imitating them. On the other hand, there are less sophisticated reasons behind

herding, such as the intrinsic need of individuals to match their beliefs and behaviors

to group norms.

In the second phase of studying herding, a simple function is defined to capture

herding phenomena and its intensity at each time-step:

Herdt =
|Dt − St|

N
(3.10)

When Herdt is close to zero, the number of buy and sell orders are close and no

herding is taking place in the market, and vice versa for whenHerdt gets closer to one.

The relationship of herding parameter with other market parameters and phenomena
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will be investigated in Section 5.



CHAPTER 4: CALIBRATION AND VALIDATION

4.1 Introduction

A crucial stage in building an agent-base model of a complex system, such as stock

market, is validation, and the first step in validation is to calibrate the model. In

this work, the approach to solve the calibration and validation processes is done by

decreasing the distance between the statistical properties of empirical and model gen-

erated time series. The proposed model is characterized by a large number of traders,

each with different behavioral parameters, whose interactions and developments give

rise to the global dynamics of the system. On the other hand, even the smallest

change in model variables may cause a substantial shift in emergent macro properties

of the market, hence finding the right solution space can be a very long and tedious

process. To address these difficulties, the approach suggested in this research is to

regard the calibration procedure as an optimization problem. Hence, Genetic Algo-

rithm (GA) is used as optimization technique to traverse the search space and find

the best combination of parameter values, based on the specified objective function.

4.2 Stylized Facts

As it was explained in Section 2.4, the statistical properties that are observed in

a wide range of markets and time periods, also known as "stylize facts", are used to

calibrate and validate the financial market models. In this research, the three impor-

tant stylized facts used to validate the proposed model are: heavy-tails in distribution

of stock returns, non normality of stock returns, absence of autocorrelation in raw

returns and volatility clustering.

In order to detect the aforementioned properties in model generated time series
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and evaluate the goodness of the model with respect to empirical observations, the

following four criteria are used:

• Excess kurtosis: The fat-tail property of stock returns in the model and BAC

time series is explored by excess kurtosis. It should be larger than zero, which

is the excess kurtosis of a normal distribution.

• Hill estimator: The kurtosis measure is somewhat ambiguous for measuring the

fat-tail in a distribution. Hence, an estimator suggested by Hill [51] is used,

which ranges approximately between 2 to 5 for empirical return distributions,

and lower values express heavier tails [68].

• Return autocorrelation: The autocorrelation coefficients of raw returns are ba-

sically zero for all lags in real world financial time series.

• Absolute return autocorrelation: This feature describes the fact that high-

volatile events tend to cluster in time. Different measures of volatility display

positive autocorrelation over several days [49]. A common proxy for volatility

is the absolute return.

4.2.0.1 Hill Estimate

The estimator proposed by Hill [51] has become an standard tool to study the

exponent of the tails of distributions, mostly due to its simplicity and efficiency. The

Hill tail index in most of the financial time series takes values from 5 to 2, and lower

values usually point to a heavier tails [68]. The Hill estimator is calculated as follows:

αH =
1∑nk−1

i=0 (log(rn−i)− log(rn−nk))/nk
(4.1)

where, n is the number of observations, k is the tail fraction, which makes nk the

number of observations located in the tail, and r is the return. To calculate this
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estimator, the data points are required to be sorted descendingly, and ordered as:

rn > rn−1 > ... > rn−nk > ... > r1

This formula calculates the right tail exponent, and can be reversed to calculate

the left tail. Although the implementation of the Hill estimator is easy and straight-

forward, it is very sensitive to the choice of k, which also depends on the sample size.

If k is chosen too high, then the extreme value region of the distribution might be

missed. It is a common practice in applied economics for k to be set to 10%, 5%,

2.5% and 0.5% of the tail.

4.2.1 Volatility Clustering

As it was described in previous sections, measures of volatility in financial markets

have positive autocorrelation and decay slowly as a function of the time lag. In other

words, high-volatility events of either signs tend to cluster in time. A common proxy

for volatility in financial data analysis is given by the absolute return, which is also

used in this research granted that it has the advantage of considering the extreme

negative and positive returns at the same time. Autocorrelation function or ACF is

the correlation between a variable and lagged versions of it, and for the jth order (j

lags) of absolute returns, it is defined as:

ACF (j) =
Cov(|rt|, |rt−j|)

V ar(|rt|)
, (4.2)

where

Cov(|rt|, |rt−j|) =
1

n− 1

∑n

t=j+1
(|rt| − ¯|r|)(|rt−j| − ¯|r|), (4.3)

and

V ar(|rt|) =
1

n− 1

∑n

t=1
(|rt| − ¯|r|)2 (4.4)
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where, t = 1, ..., n, n is the number of observations, r and ¯|r| are the returns and the

mean of absolute returns (volatility).

4.3 Genetic Algorithm

As it was mentioned earlier in this Chapter, agent-based models are characterized

by their unpredictable, emergent behaviors that are the product of many parameters

interacting and evolving over the course of simulation. In this work, to better ex-

plore the parameters space towards the simulation goal, validation of the model is

considered as an optimization problem solved by Genetic Algorithm.

John H. Hollands invented Genetic Algorithm (GA), describing how mathematical

and optimization problems can be solved by applying the concept of evolutionary

processes [69]. GA attempts to find a good (or the best) solution and improve the

model by breeding individuals (chromosomes) in a population using biologically in-

spired operators (selection, mutation and recombination) over a series of generations.

One of the crucial aspects of GA is choosing a proper fitness criterion, one to eval-

uate the quality of each candidate solution with regards to a certain goal. The GA

then selects, combines and mutate individuals based on this fitness in a cycle called

generation, to breed new children. The fittest new individuals then replace the older

ones and are passed to the next generation. The flow of GA is shown in Figure 4.1.

During the selection process, individuals are chosen to be recombined, and the like-

lihood of each individual to be chosen as a parent depends on how fit they are. Here,

recombination (crossover) is done by choosing random crossover point in two parents

chromosomes (intuitively the best parts, in order obtain a better chromosome), and

join them to create new off-springs. Mutation is changing a part of chromosome with

a random probability, and avoids the prematurely converge to a local solution. As

the generations go on, the population keeps getting improved, until a sufficiently fit

individual is discovered or the time is exhausted.

GA, as an optimization technique, offers several key advantages. First, it is capable



39

Population

Gene

Chromosome

Fitness Evaluation Selection

Crossover

Mutation

Figure 4.1: Flowchart of GA.

of parallelism from a population of points at once during each search process, hence

avoids premature coverage to a local solution space. Second, GAs outperform tra-

ditional optimization techniques with their probabilistic rules, allowing them to act

better on large, discontinuous problems and offer a reduced sensibility to noise. In

addition, GAs use fitness score obtained from objective functions, and do not require

other derivative or auxiliary information, which may not be available [70].

4.3.1 Fitness Function, GA Parameters and Optimization Results

The fitness function is a measure that rates the quality of a chromosome as a

solution with respect a particular problem. As it was mentioned above, the choice

of fitness function is a delicate and crucial aspect in tuning models with Genetic

Algorithms. This task becomes even more challenging in the case of agent based

models of financial markets, due to their dynamic nature and emergent properties

that more often than not arise in their simulations. Provided that, one can end up

with model characteristics and simulation results other than the initial goal if not

careful with the choice and criteria of the fitness function.
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In the case of proposed model, there are two approaches that can be taken to

develop fitness function with the intention of decreasing the distance between model

and real financial markets, the quantitative and the qualitative approaches [71].

In quantitative approach, the model generated time series is compared with the

empirical and benchmark time series, and the Euclidean distance between two data

vectors are computed and minimized.

In the second qualitative approach, which is adopted in this research, the stylized

facts observed in real financial time series, that are desired to be reproduced in the

model, are translated into a mathematical function (fitness function). In some cases,

this approach may not be as simple as the first one, considering that its takes more

effort, and some times its impossible, to characterize and formulate the observed

emergent phenomena.

Earlier in this section, the stylized facts and their criteria that would help assess

the model’s validity and closeness to real financial market were explained. The same

criteria are used to form a fitness function, which is a weighted sum of square distances

measured between statistical moments of BAC and model generated time-series data:

Fitness(θ) =
J∑
i=1

wi(m
model −mbac)2 (4.5)

where, J is the number of criteria used in validation, i.e. number of model generated

return moments (mmodel) compared to empirical ones (mbac), and w is the weight of

each criteria, which is computed and set experimentally. θ is the parameter vector of

statistics used to validate the model with respect to the empirical statistics of stock

returns.

Most of the criteria considered here directly target the stylized facts that are desired

to be observed it the model. The fat tail of the return distribution is measured by

calculating the excess kurtosis of the returns, and the Hill estimate for 0.5% of the

upper quantiles of the right tail. The volatility clustering is considered by calculating
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the autocorrelation of absolute returns for 1, 5, 10 and 20 lags. The other two

moments considered in the fitness function are the standard deviation and mean of

returns.

Finally, a simple Genetic Algorithm was used to solve the optimization problem.

One of the crucial factors in running a successful GA is to have the right balance

between exploration and exploitation, which includes the choice of population size,

selection, and the rates of cross-over and mutation [72]. Many studies have explored

and came up with different optimum parameter setting for GAs, since the task is

hugely dependent on the problem at hand. Based on different experiments with

different parameter settings, the GA is applied with generating an initial population of

size 50, evaluating the mean fitness of each individual from 10 independent replications

of the simulation, which reduces the fluctuations arise from stochastic nature of the

model. At this point, the tournament selection schema with tournament size of 2 is

adopted, and mutation and crossover are performed with probabilities of 0.05 and

0.7, respectively. Figure 4.2 illustrates two search progresses of GA minimizing the

fitness function.

Table 4.1 provides the list of fitness function statistics and their empirical and

model generated values for 3000 observations, covering the period of 03/22/2006 to

02/22/2018. Table 4.2 details the optimal parameter values suggested by GA along

with the range of values allowed for each parameter, and Table 4.3 presents the values

attributed to rest of the parameters used in the simulations. More details on why

and how to calculate return from price time series and the process of obtaining and

comparing the mentioned statistics are explained in Chapter 5.

As it can be seen from the first row of the table, Hill estimates over 0.5% of the

right tail for both BAC and model return distributions are fairly close, and both sup-

port the existence of heavy tail. Also, the model’s excess kurtosis of 8.2, though not

as high as the BAC benchmark, is still a solid sign of fat tails in return distribution.
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Figure 4.2: GA search process.

Table 4.1: Statistic criteria used in GA fitness function.

Statistic Description BAC Model

Hill tail index
Hill estimate on 0.5% of
right tail of return distribu-
tion

3.657255 3.461575

Kurtosis Excess kurtosis of returns 22.1655 8.202247
Mean Mean of returns -0.000128233 -0.000486729

Standard-deviation Standard deviation of re-
turns 0.03422454 0.03243146

1st Autocorrelation
ACF of absolute returns at
lags 1 0.462 0.450

2nd Autocorrelation ACF of absolute returns at
lags 5 0.420 0.460

3rd Autocorrelation ACF of absolute returns at
lags 10 0.415 0.390

4th Autocorrelation ACF of absolute returns at
lags 20 0.363 0.349

In fact, as it was explained earlier in the section, anything larger than zero point to

departure of distribution from normal. The fat tail of the returns can also be con-

firmed from the quantile-quantile or q-q plots in Figures 4.3a and 4.3b. They compare
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Table 4.2: Model parameter settings suggested by GA.

Parameter Range Optimized value
Fundamentalists trade threshold [0,30] 14%
Optimist trade threshold [0,30] 4%
Pessimist trade threshold [0,30] 6%
Mean of fundamentalist reverting coefficient (f) [0.01,0.8] 0.11
Mean of optimist reaction coefficient (co) [0.01,0.8] 0.11
Mean of pessimist reaction coefficient (cp) [-0.8,-0.01] -0.15
Imitation switch threshold (γ) [0,100] 55%
Intensity of choice (λ) [0,300] 272

the distributions of the returns against a standard normal distribution, and as it can

be seen, both returns distributions are non-normal at the tails of the distribution.

The non-Gaussian character of both distributions is clear from density plots, and the

proposed model was successful in replicating the fat tail phenomena.

Table 4.3: Parameters of the stock market model.

Parameter Value
Number of traders (N) 1000
Price adjustment-Positive excess demand (a) 0.41× 10−4

Price adjustment-Negative excess demand (a) 0.56× 10−4

Pareto exponent for wealth (power law) distribution (α) 1.5
Initial cash distribution [100, 1000]
EWMA smoothing parameter (φ ) [0.3,0.99]
Standard deviation of random factor in price process (σδ) 0.025
Standard deviation of random factor in fundamental price
process (ση)

0.026

Standard deviation of random factor in fundamental trad-
ing (στ )

0.01

Reverting coefficient (f) N(µf : 0.11, σf : 0.02)
Reaction coefficient (co) N(µco : 0.11, σco : 0.03)
Reaction coefficient (cp) N(µcp : −0.15, σcp : 0.04)
Standard deviation of random factor in optimistic trading
(σβ1)

0.05

Standard deviation of random factor in pessimistic trad-
ing (σβ2)

0.05

Memory of traders (T ) U (1,50)
Normalized memory (m) [0,1]

Figures 4.3e and 4.3f, as well as the last four rows of Table 4.1, examine the presence
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(a) BAC return q-q plot for nor-
mality comparison.

(b) Model return q-q plot for nor-
mality comparison.

(c) BAC return density plot. (d) Model return density plot.

(e) BAC autocorrelation plot for
volatility measure(absolute return)

(f) Model autocorrelation plot for
volatility measure(absolute return)

Figure 4.3: Normality and volatility clustering test results for BAC and model returns.

of volatility clustering in the market and demonstrates the autocorrelation of absolute

returns in BAC and model. In Figures 4.3e and 4.3f, the dotted blue lines indicate

the 95 percent confidence intervals of no autocorrelation. It should be noted that

the absolute returns exhibit a slow decay of the autocorrelation in both BAC and

model, and even stay positive for more than 100 lags. This is a clear sign of volatility

clustering and can be observed in many real world financial markets.



CHAPTER 5: RESULTS AND ANALYSIS

5.1 Statistical Analysis

Having obtained a validated model, the extent of effects of different market phe-

nomena on each other can now be investigated. These investigations can help enhance

the understanding of dynamics and structure of financial markets and paves the way

for further explorations on causes and effects of the traders characteristics on market

phenomena.

The Bank of America (BAC) daily stock price is used as benchmark in this research.

Data covers the period between March 2006 to February 2018 and is collected from

the [73]. Therefore, for each model simulation run, 3000 observations are generated,

which corresponds to the same time span of about 12 years.

5.1.1 Stationarity

Before starting any analysis on empirical and model generated time series, it is

essential to check the stationarity of them. Non-stationary data are unpredictable;

therefore they cannot give meaningful sample statistics and correlations with other

variables. In non-stationary time series, the mean and variance change over time

and series do not have tendency to come back towards their average. In this work,

following the standard econometric practice to examine for stationarity, Dickey-Fuller

(DF) and Augmented Dickey-Fuller (ADF) unit root tests are conducted on all the

variables of interest [74].

The DF tests for the most specific model of zero mean and no trend:

Xt = αXt−1 + εt (5.1)
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with the null hypothesis of α = 1. Failing to reject the null hypothesis indicates that

the series is characterized by a "unit root" and is non-stationary. However, DF test

is not adequate in the cases where the data has "drift" or a time trend, in which case

the ADF tests are used to allow for such variations.

In the case of non stationary time series, the autocorrelation function (ACF), which

is the correlation between a variable and the lagged version of it, decreases very slowly,

and its coefficients remain significance for large number of lags.

In the case of non-stationary time-series, the difference transformation can be taken

to try and make the time series stationary. If a variable proves to be stationary after

the first difference, then it is integrated of order one or I(1), and in the case where

stationarity is gained in their Kth differences, they are said to be integrated of order

K.

5.1.2 Data Description and Preparation

As the first step to analyze the empirical and model generated time series, a series

of tests are conducted to check the stationarity of price, which is the core variable

to study the market and validate the model. Figure 5.1 shows the daily development

of price for BAC and model stock. Both series appear to have obvious trends. In

non-stationary time series, the mean and variance change over time and prices do

not have tendency to come back towards their average, which appears to be the case

here.

Following the instructions in Section 5.1.1, ADF unit root tests are conducted on

both price time series. Tables 5.1 and 5.2 provides the results, which tests the null

hypothesis of non-stationarity. Zero Mean, Single Mean and Trend tests correspond

to checking for no underlying time component, constant increase over time and accel-

eration over time respectively. The test statistics along with corresponding p-values

indicate that the null hypothesis cannot be rejected, which confirms that BAC and

model generated prices are in fact non-stationary. In addition, ACF plots for both
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(a) BAC price.

(b) Model price.

Figure 5.1: Daily development of BAC and model generated price.

model and BAC prices in Figures 5.3a and 5.4a demonstrate that the correlation be-

tween the time series and its lags fall outside the 95% of confidence interval of no auto

correlation, even for more that 100 lags. This is another proof of non stationarity of

the price time series in both case, and also demonstrates that the model price is in

agreement with empirical price.

In order to induce stationarity, first differences of logs of the price series, also known

as the stock returns, are derived as:

returnt = ln[pt]− ln[pt−1] (5.2)

Figure 5.2 depicts the plots of stock returns for BAC and model time series. They

both appear to have constant mean and variance change over time. The ADF test is
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Table 5.1: Augmented Dickey-Fuller unit root test for BAC price

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1.741 0.3628 -1.34 0.1673
1 -1.7203 0.3654 -1.35 0.1638

Single Mean 0 -4.2468 0.5126 -1.77 0.3937 1.68 0.6414
1 -4.1559 0.5225 -1.77 0.3944 1.68 0.6402

Trend 0 -2.6785 0.9497 -0.96 0.948 2.16 0.744
1 -2.528 0.955 -0.92 0.952 2.23 0.7303

Table 5.2: Augmented Dickey-Fuller unit root test for model price

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -0.9263 0.486 -1.39 0.1523
1 -0.9259 0.486 -1.53 0.1195

Single Mean 0 -4.2753 0.5096 -1.9 0.3302 2.19 0.5084
1 -4.0173 0.5378 -1.96 0.305 2.41 0.4522

Trend 0 -4.4101 0.8614 -1.31 0.885 1.81 0.8142
1 -3.5759 0.9102 -1.16 0.9167 1.94 0.7894

repeated on both return time series and the results are presented in Tables 5.3 and

5.4. The test statistics along with their p-value confirm that the null hypothesis of

series being non-stationary can be rejected. Again, ACF plots for both model and

BAC returns in Figures 5.5d and 5.6j show no sign of significant autocorrelation for

return time series of both BAC and model, meaning that the price series became

stationarity after first differences and also point to the fact that the model returns is

in agreement with empirical observations.

5.1.3 Other Time-Series Variables

In order to investigate the relationship between market states and herding, volatil-

ity and other market phenomena, a dummy variable, bull, is created. One of the

common descriptions of bull and bear market is that they correspond to the periods

of increasing and decreasing stock prices, respectively [75]. In this analysis, bullt takes

the value of 1 if the return on day t is positive and market is bullish, and 0 when the

return is negative, meaning that the market is bearish.

The parameters fundamentalistt, optimistt and pessimistt are the number of
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(a) BAC return.

(b) Model return.

Figure 5.2: Daily development of BAC and model generated return.

fundamentalists, optimist and pessimist present in the modeled market at each time

step, t. As it was mentioned before, volatilityt is the absolute return and volumet is

the number of shares traded in the market at each time step t. Finally, buyerst and

sellerst are the number of buyers and sellers that are present in the market at each

time step, t.

Again, the standard econometric practice of ADF unit root test is conducted on

all variables of interest. The price and return stationary test was covered earlier

in this Section. In Figures 5.3 and 5.4, a series of ACF plots of BAC and model

variables are shown. These plots clearly illustrate that except for bull variable of

both BAC and model, the estimated autocorrelations for all the other variables fall
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Table 5.3: Augmented Dickey-Fuller unit root test for BAC return.

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3028.52 0.0001 -55.29 <.0001
1 -2787.72 0.0001 -37.32 <.0001

Single Mean 0 -3028.56 0.0001 -55.28 <.0001 1527.82
1 -2787.84 0.0001 -37.32 <.0001 696.26 0.001

Trend 0 -3030.58 0.0001 -55.31 <.0001 1529.35 0.001
1 -2793.36 0.0001 -37.35 <.0001 697.4 0.001

Table 5.4: Augmented Dickey-Fuller unit root test for model return.

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3263.32 0.0001 -59.86 <.0001
1 -3638.68 0.0001 -42.74 <.0001

Single Mean 0 -3264.08 0.0001 -59.87 <.0001 1792.15 0.001
1 -3641.84 0.0001 -42.75 <.0001 913.75 0.001

Trend 0 -3266.06 0.0001 -59.9 <.0001 1794.04 0.001
1 -3650.25 0.0001 -42.79 <.0001 915.69 0.001

outside the 95% confidence interval for at lease 20 lags, which is a sign of long-memory

(non-stationary) time series.

The result of ADF test of the bull variable of BAC can be rejected, at 1% level

significance, pointing to stationarity of it. This result can be backed up by its ACF

plot in Figure 5.3d that shows no autocorrelation for the variable passed first lag. As

for the other variables, it is a little more complicated than that. The ADF test can

be rejected at 1% level significance, for both volume and volatility that the series are

non-stationary, but the ACF plots in Figures 5.3b and 5.3c show that autocorrelation

is decaying very slowly, and remains well above the significance range (dotted blue

lines) for more than 100 lags, which is indicative of a non-stationary series.

Finally, the results of ADF tests on model variables is made it clear that the non-

stationarity of the null hypothesis for the variables price, fundamentalist, optimist

and pessimist cannot be rejected. Together with their significant, slow decaying

ACF plots in Figures 5.4a, 5.4h, 5.4i and 5.4j the non-stationarity of these variables

is confirmed. As for the bull variable, the null hypotheses can be rejected and the



51

(a) Price (b) Absolute returns

(c) Volume (d) Bull market

Figure 5.3: The autocorrelation plots for BAC variables in their levels.

ACF plots shows no significant autocrrelation passed the first lag, indication the

stationarity of the time series. The ADF test for remaining variables (volatility,

volume, herd, buyers and sellers) can be rejected at 1% level significance, however,

as it was also the case for some BAC variables, the ACF function decreases slowly,

and falls outside the 95% confidence interval for at lease 20 lags, suggesting non-

stationarity. Appendix A provides the details of the ADF test results.

As explained earlier in this Section, to induce stationarity, the first differences the

non-stationary time series are derived for both Model and BAC, and the tests are

repeated. As it is illustrated in Figures 5.5 and 5.6, ACF plots demonstrate that

there is no significant correlation between the time series and their lags after the first

few lags. In addition, the results of ADF test statistic for all the time series reject

the null hypothesis that the series are non-stationary, showing that all of the BAC

and model non-stationary variables appear to be I(1) variables.
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(a) Price (b) Absolute returns

(c) Volume (d) Bull market

(e) Herd (f) Buyers

(g) Sellers (h) Fundamentalists

(i) Optimists (j) Pessimists

Figure 5.4: The autocorrelation plots for Model variables in their levels.
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(a) dPrice (b) dAbsolute returns

(c) dVolume (d) Returns

Figure 5.5: The autocorrelation plots for BAC variables in their first differences.

5.2 Trader’s Characteristics Influence on Market Phenomena

In this section, some of the parameters related to trader’s choices and behaviors,

and their effects on emergent properties of the market is explored.

5.2.1 Intensity of Belief

First, the intensity of beliefs for fundamentalists, optimists and pessimists are going

to be analyzed. As it was explained in previous sections, to introduce more hetero-

geneity and get closer to real world, each fundamentalist, optimist and pessimist are

unique in intensity of belief in their trading strategies. For fundamentalists, this

specifies different opinions in the speed with which they expect the price to return to

fundamental value (f). As for the chartists, it conveys different sensitivity levels to

price changes and trends (co, cp). Henceforth, at the beginning of each simulation,

unique f , co and cp are drawn from Gaussian distributions and assigned to each agent.

It was illustrated in Chapter 4 that to achieve the emergence of stylized facts in the

model, the shape of the aforementioned distributions are as follow:
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(a) dPrice (b) dAbsolute returns

(c) dVolume (d) dHerd

(e) dBuyers (f) dSellers

(g) dFundamentalists (h) dOptimists

(i) dPessimists (j) Return

Figure 5.6: The autocorrelation plots for model variables in their first differences.
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• f ∼ N(0.11, 0.02)

• co ∼ N(0.11, 0.03)

• cp ∼ N(−0.15, 0.04)

Figure 5.7 displays the overlapping distributions of each trader’s intensity of belief

in their trading regime.

Figure 5.7: Traders intensity of belief.

5.2.2 Intensity of Choice

In the next set of simulations, the effects of trader’s intensity of choice (λ), which

measures how fast agents switch between different trading strategies, on generated

stylized facts is studied. Figure 5.8 shows the changing simulation results for volatility

clustering and fat tail of the returns as we increase the intensity of choice for traders.
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The presented results are averaged over 10 simulation runs for each instance of λ to

provide converged results.

As it can be seen from the plots, λ = 260 provides the closest results with respect

to the empirical statistics, which can be found in third column of Table 4.1, for all

three cases.

5.2.3 Wealth Distribution

Next, the distribution of money held by agents in the beginning and end of the

simulations are investigated. As was explained in Section 3.3.1 of Chapter 3, the

distribution of money held by agents provides valuable information on how wealth is

distributed. As per the discovery of power-law distribution of wealth across several

countries [64, 65], the agents were initially assigned different amount of cash drawn

from a power-law distribution. Figure 5.9 exhibits the cash distribution between

agents at the beginning and end of simulation. As it can bee seen, both distributions

demonstrate power-law behavior, meaning only a few number of agents hold most

of the cash in model, even after the course of simulation. This is in agreement with

wealth inequality of human population.
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(a) Hill tail estimate of the return distri-
bution.

(b) Kurtosis of returns.

(c) Autocorrelation of absolute return for
lags 1,5,10,20(volatility clustering).

Figure 5.8: Observed stylized facts with increasing the intensity of choice (λ).
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Figure 5.9: Wealth distribution.

5.2.4 Herding

The imitation threshold or herding threshold γ was explained in details in Section

3.4.2. Agents have connections with other agents on their eight neighboring patches.

Traders observe the choices of their neighbors, and if less than γ percent have chosen

the same action as them, disregard their information to follow the decision of the

neighbors. In Chapter 4, GA has considered different imitation thresholds with re-

spect to the fitness function. The results revealed that the best value for γ in order

for model to more accurately replicate stylized facts and falls closer to the behavior

of real markets was 55%. In other words, traders would change their decisions if more

that 45% of their neighbors decide differently.
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5.2.5 Trade Threshold

Fundamentalist, optimist and pessimist become active and trade (buy or sell) one

share of the risky asset if the difference between the current price and the price they

expect for the next period is above their trade threshold. These three thresholds were

determined through model calibration by GA in Chapter 4. As it can be seen in Table

4.2, the fundamentalist, optimist and pessimist trade threshold were estimated to be

14%, 4% and 6% respectively. This is in agreement with real-world market traders,

where the frequency at which fundamentalists trade is not as often as chartists or

trend followers.

5.3 Causality Analysis

5.3.1 Definition and Method

The notion of causality used in this research is the one introduced by Granger [76]

(Nobel Winner 2003). Although the concept of causality is, in many ways, a philo-

sophical one, however, Granger proposed a practical and widely accepted definition

of it between two or more time-series variables. This test goes beyond the classical

regression model and correlation, which examine a relationship but not how one vari-

able causes movement in another. Consider the process X, Granger causality (GC)

assumes that only the past can help predict the present, therefore X can be written

as an autoregressive process in which its current value can be explained (partially and

under a certain lag length, l) by the past values:

Xt = α +
∑l

j=1
βjXt−j + εt (5.3)

Another time-series variable, e.g. Y , is said to Granger cause X if the past values

of Y offer additional information for the forecast of current value of X, beyond what

was provided by past values of X alone.
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Xt = α +
∑l

j=1
βjXt−j +

∑l

j=1
δjYt−j + εt (5.4)

where, X is the dependent variable and Y is the independent variable. The test is an

F-test on the δ’s being jointly equal to zero. If the null hypothesis is rejected, then

Y is said to Granger cause X. It is also possible to do this test reversely, checking

where X Granger causes Y .

As Stock and Watson [77] noted, Granger causality tests should only be undertaken

on stationary variables since the existence of unit roots would typically result in

nonstandard F-distributions and spurious correlation problem, where the variables

that are not related seem to be correlated with each other. Therefor, the variables

need to have time-invariant mean and variance and can be adequately represented

by a linear autoregressive process AR(l) of order l, with l chosen by an appropriate

criterion.

5.3.2 Lag Length Selection

The choice of lag length l plays a critical role as causality test is very sensitive to

it. There are different approaches to find the appropriate lag, from arbitrary, ad hoc

methods, to testing VAR equation of (5.4) in both directions with different lag lengths,

and some criteria such as Akaike Information Criterion and Bayesian Information

Criterion (AIC/BIC) [78,79], where l is chosen by minimizing their functions. Here a

combination of F-test from VAR models and minimizing AIC/BIC criteria was used

to test and select the proper lag length for each model.

5.3.3 Experiments and Results

5.3.3.1 Causal Relationships Between Herding and Other Market Phenomena

In this section, the causes and effects of herding behavior in financial market is

investigated. It should be noted that all these tests and results are from the model

generated time series, and the causality analysis on BAC data will be presented later
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in this section. As it was explained in previous sections, herding is an important

emergent property of financial markets, often leading to the creation of speculative

bubbles that inevitably make markets unstable and prone to major crashes, which

makes it crucial to understand the origins and driving forces of such phenomena. The

causal models tested here are as follow:

• Does volatility Granger causes herding in the market? Does herd Granger cause

volatility? Is the relationship bi-variate?

dherdt = α +
∑lh

j=1
βhj dherdt−j +

∑lh

lh
δvj dvolatilityt−j + εt (5.5)

dvolatilityt = α +
∑lv

j=1
βvj dvolatilityt−j +

∑lv

j=1
δhj dherdt−j + εt (5.6)

• Does herd Granger causes bull market? Does bull market Granger cause herd?

Is the relationship bi-variate?

• Does herd Granger causes the volume, or vice versa? Is the relationship bi-

variate?

• Does herd Granger causes the number of fundamentalists, optimists or pes-

simists in market? Or vice versa? are the relationships bi-variate?

The above tests are conducted by the series of F-tests determining whether the

lagged values of independent variables significantly contribute to explaining the cur-

rent value of dependent variables. For any model that the null hypothesis of no

Granger causality (δ1 = δ2 = ... = δl = 0) can be rejected, it can be concluded that

the independent variable Granger causes the dependent variable. The model struc-

ture of all the other tests are in the same fashion of first set of tests between herd

and volatility, and each case is conducted in both directions.

The lag-length (l) selection results based on different criteria are reported in Ta-

ble 5.5. Numbers presented here are optimum lag lengths determined by the AIC,
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BIC, and a series of F-tests on decreasing lags. Figure 5.10 depicts a sample lag

selection for herd and volatility relations by minimizing AIC and BIC functions. It

can be observed that BIC usually selects a shorter lag structures than those selected

by the AIC. For causality tests, the largest lag length from Table 5.5 is selected, and

tests move on to a shorter length if no significant relationship is found. The results

of the tests are presented in Table 5.6.

Table 5.5: Lag length selection for investigating variable herd by different criteria.

Dependent variable-Independent variable AIC BIC F-test
herd-volatility 7 7 7
volatility-herd 8 8 8

herd-bull 7 7 7
bull-herd 1 1 1

herd-volume 7 7 7
volume-herd 8 8 8

herd-fundamentalist 8 7 8
fundamentalist-herd 8 6 8

herd-optimist 7 7 7
optimist-herd 8 8 8
herd-pessimist 8 7 8
pessimist-herd 8 6 8
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(a) Herd GC volatility.

(b) Volatility GC herd.

Figure 5.10: AIC and BIC lag length selection for herd volatility causal relationship.

The results indicate that F -test fail to reject the hypothesis of volatility not cause

herding at 5% significance level, while rejecting it at 1% significance the other way

around. These results imply that herd behavior may cause and enhance volatility in

the market, but not the other way around. The results also show no significant causal

relationship between herding and bullish/bearish market states in any directions.

On the other hand, there is a significant bi-directional causal relationship between

the volume traded in the market and herding, indicating that the past values of

volume in the market can help predict and cause the herding behavior, and vice

versa. Finally, there are positive bi-directional causal relationships between number

of fundamentalists, optimists and pessimists in the market and herding.
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Table 5.6: Causality test between herd and other market variables of the model.

H0 # of lags F -value p-value
Volatility does not cause herding 8 1.51 0.1486
Herding does not cause volatility 7 3.91 0.0003**
Bull market does not cause herding 1 1.50 0.2209
Herding does not cause bull market 7 0.43 0.8871
Volume does not cause herding 8 11.89 <.0001**
Herding does not cause volume 7 9.70 <.0001**
# of fundamentalists does not cause herding 8 14.56 <.0001**
Herding does not cause # of fundamentalists 8 30.40 <.0001**
# of optimists does not cause herding 8 5.02 <.0001**
Herding does not cause # of optimists 7 11.88 <.0001**
# of pessimists does not cause herding 8 7.60 <.0001**
Herding does not cause # of pessimists 8 25.96 <.0001**
** Significant at 99%
* Significant at 95%

5.3.3.2 Causal Relationships Between Volume and Price

Next, the causality between model generated price and trading volume is inves-

tigated, and the results are compared with those of empirical results for BAC time

series. The relationship of stock price and volume has been getting noticeable atten-

tion in economics and finance, provided that investigating the dynamics of the price

in conjunction with traded volume gives a more comprehensive picture of stock mar-

ket nature [80]. The lag length selection based on AIC, BIC and a series of F-tests

are presented in Table 5.7

Table 5.7: Lag length selection for investigating volume and price relationship for
BAC and Model.

Dependent variable-Independent variable AIC BIC F-test
BAC volume-price 8 8 8

price-volume 5 1 5
Model volume-price 7 7 7

price-volume 8 8 8

The results of the tests are presented in Table 5.8. The tests are done in both di-

rections using first differences, and as it can be seen, there appears be a bi-directional
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Table 5.8: Causality test between volume and price.

H0 # of lags F -value p-value
BAC price does not cause trading volume 8 3.10 0.0018**
BAC trading volume does not cause price 5 1.10 0.3575
BAC trading volume does not cause price 1 3.04 0.0816
Model price does not cause trading volume 7 7.42 <.0001**
Model trading volume does not cause price 8 6.77 <.0001**
** Significant at 99%
* Significant at 95%

causal relationship between price and volume in the model generated data. This result

is significant in the sense that the data on past trading volume can be used to help

predict stock returns, in agreement with an old Wall Street adage that says "it takes

volume to make prices move". On the other hand, the direction of BAC causality

shows that only return Granger causes volume, and not the other way around, not

even for 1 lag. There are many empirical studies that have found the evidence for

existence of either uni- or bi-directional causality between price and volume [81,82].

5.3.3.3 Causal Relationships Between Volatility and Other Market Phenomena

In this section, the bi-directional causal relationships between volatility and bull/bear

markets, returns, volume and number of different types of traders in the market are

explored. Volatility is an important variable in financial markets, and it is one of the

key inputs to many investment decision. Being able to predict volatility of prices and

know the causes and effects of it would be of a great value for any market risk as-

sessment. Table 5.9 presents the results of lag length selection using different criteria

and Table 5.10 gives the results on bi-directional causality tests.

As before, the tests are first run with the highest number estimated lags, and if no

significant causality was detected, they are repeated the the next largest number of

lags.

The F -test and p-values for causal relationship between volatility and price confirm

that the results of both BAC and model are in agreement, and point to a significant
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Table 5.9: Lag length selection for investigating volatility causal relationships for
BAC and model.

Dependent variable-Independent variable AIC BIC F-test

BAC

volatility-price 8 5 8
price-volatility 8 8 8
volatility-bull 1 1 5
bull-volatility 8 8 8

volatility-volume 8 8 8
volume-volatility 8 8 8

Model

volatility-price 8 8 8
price-volatility 8 8 8
volatility-bull 1 1 1
bull-volatility 8 8 8

volatility-volume 7 7 7
volume-volatility 8 8 8

volatility-fundamentalist 6 4 6
fundamentalist-volatility 8 8 8

volatility-optimist 6 4 6
optimist-volatility 8 8 8
volatility-pessimist 8 6 8
pessimist-volatility 8 8 8

bi-directional causal relationship between the two variables.

There are also bi-directional causalities between volatility and volume, for both

BAC and model generated data.

One of the interesting results is the causality between bullish/bearish market and

volatility. The test result for BAC stock show that bull market can cause or help

predict volatility in the market at 5% significance level for 8 lags, while rejecting

it for the other way around. However, there are no evidence of causal relationship

between these two market variables in the model generated data, and F -tests fail to

reject the null hypothesis of no causality.

Finally, the results indicate that there are significant bi-directional causal relation-

ships between number of fundamentalists, optimists and pessimists in the market and

volatility.
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Table 5.10: Causality test between volatility and other market variables.

H0 # of lags F -value p-value
BAC volatility does not cause price 8 10.25 <.0001**
BAC price does not cause volatility 8 7.38 <.0001**
BAC volatility does not cause bull mar-
ket

1 0.10 0.7513

BAC bull market does not cause
volatility

8 2.42 0.0134*

BAC volatility does not cause volume 8 3.61 0.0003**
BAC volume does not cause volatility 8 5.58 <.0001**
Model volatility does not cause price 8 3.05 0.0020**
Model price does not cause volatility 8 5.55 <.0001**
Model volatility does not cause bull
market

1 2.23 0.1355

Model bull market does not cause
volatility

8 0.68 0.7118

Model volatility does not cause volume 7 2.27 0.0201*
Model volume does not cause volatility 8 2.56 0.0088**
Model volatility does not cause # of
fundamentalists

6 39.56 <.0001**

Model # of fundamentalists does not
cause volatility

8 5.70 <.0001**

Model volatility does not cause # of
optimists

6 2.12 0.0479*

Model # of optimists does not cause
volatility

8 3.39 0.0007**

Model volatility does not cause # of
pessimists

8 9.60 <.0001**

Model # of pessimists does not cause
volatility

8 2.68 0.0061**

** Significant at 99%
* Significant at 95%



CHAPTER 6: CONCLUSIONS

In this research, we have developed an agent-based model of a stock market. As

was argued in Chapter 1, financial markets are characterized by their complex and

dynamic nature, making it nearly impossible for them to be modeled by traditional

theoretical and experimental economic models. Much of these conventional models,

with their top-down approach, assume all market participants are perfectly rational

and homogeneous, and market price movements incorporate all information ratio-

nally and instantaneously. However, with the assumption of perfect rationality and

information, they have lacked the means to properly explain or reproduce financial

market in its complete dynamic complexity [6].

This research was built on the recognition that financial markets consist of bound-

edly rational participants, whose interactions and adaptive behaviors give rise to

unique and unexpected (emergent) macroscopic properties. This has led us to Agent-

based Modeling (ABM), which is the methodology followed in this work. We model

a simple, yet rich, stock market in an incremental bottom-up fashion, as an evolving

adaptive system of autonomous interacting agents.

We have aimed to provide an accurate, yet generic, representation of real financial

markets and traders, with the goal of exploring market phenomena under different

trading, decision-making and behavioral strategies. Since we believed the source

of most emergent properties of financial markets is the behavior and interaction of

its traders, a simple market mechanism with no strong assumptions is maintained

throughout the design and implementation of the model.

To allow for a better tractability of the parameters, we started the model with the

simple setting of two types of traders, fundamentalists and chartists. As the work
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proceeded, we have introduced further heterogeneity in various aspects of the model,

and move on to N-typed design. Heterogeneity has shown to be one of the important

properties for the model to be able to generate the desired empirical statistical prop-

erties that are often observed in financial time-series. This study suggests that local

interactions, rational and irrational decision-making approaches and heterogeneity

are among the key elements in modeling financial markets.

We have incorporated two processes of rational and irrational decision making in

the model. In first case, agents try and predict the future of the price, relying on the

information they have(either fundamental value of the stock, or past prices and trend)

and their intensity of belief in their trading strategy and make a decision weather to

buy, sell or hold. On the other hand, the irrational process is when they observe the

choice of people around them, and if more than some percentage are doing the same

action, decide to follow them. We have tested and observed that better results can

be obtained when this imitation component is added to the model.

After calibrating the model with a standard Genetic Algorithm, we have conducted

a series of statistical tests to investigate the behaviour of our market with respect to

empirical benchmark and stylized facts. The model was able to reproduce some of the

most important stylized facts of financial time series, such as heavy tail in distribution

of returns, volatility clustering, and absence of autocorrelation in raw returns, solely

from interactions, learning and evolution between traders. As a result, we arrived

to a particular configuration that is considered the platform to further explore the

characteristics of our market.

Volatility and volume are among the critical variables in financial markets, and play

important roles in many risk assessments and investment decisions. The investigations

on these parameters from both modeled generated and empirical time-series revealed

that bullish market can cause or help predict volatility in the market. There are also

significant bi-directional causal relationships between volatility and volume in the
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market. In addition, the significant causality between price and volume reveals that

the data on past trading volume can be used to help predict stock returns, and its in

agreement with an old Wall Street adage that says "it takes volume to make prices

move". These results could prove highly relevant in achieving a better understanding

of market structure and dynamics, and serve both academics and practitioners by

understanding how volatility and volume are affected in the market.

This research also contributes to the body of literature that studies herding behav-

ior, as it uniquely investigates the relationships of different herding measures with

other market parameters and properties, and advances the understanding of the phe-

nomenon. Our results suggest that herd behavior may cause and enhance volatility

in the market, but not the other way around. The results also reveal significant bi-

directional causal relationship between the volume traded in the market and herding,

indicating that the past values of volume in the market can help predict and cause

the herding behavior, and vice versa.

Although the financial data are available plentifully and accurately in different

frequencies, there still are a number of limitations we are currently facing:

• In trying to distinguish herding in the market, one needs to know if the trader

is discarding his private information to follow the crowd. However, there are no

data on the private information available to traders and, therefore, it is difficult

to know when traders decide not to follow it.

• It is very difficult, if not impossible, to differentiate between true and spurious

herding due to unknown motives behind a trade and lack of data on the private

information.

• The price in the model in determined as a function of excess demand in the

market. However, in the long run, economic factors other than short-term

excess demand may influence the evolution of the asset price, resulting in more
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complex types of behavior.
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APPENDIX A: AUGMENTED DICKEY-FULLER TEST RESULTS

Table A.1: Augmented Dickey-Fuller Unit Root Tests for Model Variable-price

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -0.9263 0.486 -1.39 0.1523
1 -0.9259 0.486 -1.53 0.1195

Single Mean 0 -4.2753 0.5096 -1.9 0.3302 2.19 0.5084
1 -4.0173 0.5378 -1.96 0.305 2.41 0.4522

Trend 0 -4.4101 0.8614 -1.31 0.885 1.81 0.8142
1 -3.5759 0.9102 -1.16 0.9167 1.94 0.7894

Table A.2: Augmented Dickey-Fuller Unit Root Tests for Model Variable-absreturn

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -839.39 0.0001 -22.13 <.0001
1 -338.836 0.0001 -13.08 <.0001

Single Mean 0 -1710.96 0.0001 -34.63 <.0001 599.77 0.001
1 -902.455 0.0001 -21.29 <.0001 226.68 0.001

Trend 0 -1794.94 0.0001 -35.81 <.0001 641.03 0.001
1 -974.801 0.0001 -22.11 <.0001 244.36 0.001

Table A.3: Augmented Dickey-Fuller Unit Root Tests for Model Variable-herd

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -212.283 0.0001 -10.64 <.0001
1 -91.9827 <.0001 -6.94 <.0001

Single Mean 0 -224.99 0.0001 -10.94 <.0001 59.9 0.001
1 -97.4081 0.0019 -7.11 <.0001 25.31 0.001

Trend 0 -252.328 0.0001 -11.57 <.0001 66.94 0.001
1 -109.166 0.0001 -7.47 <.0001 27.94 0.001
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Table A.4: Augmented Dickey-Fuller Unit Root Tests for Model Variable-buyers

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1514.81 0.0001 -31.98 <.0001
1 -663.168 0.0001 -18.39 <.0001

Single Mean 0 -1582.42 0.0001 -32.92 <.0001 541.91 0.001
1 -707.142 0.0001 -18.97 <.0001 179.92 0.001

Trend 0 -1705.34 0.0001 -34.63 <.0001 599.59 0.001
1 -791.792 0.0001 -20.03 <.0001 200.61 0.001

Table A.5: Augmented Dickey-Fuller Unit Root Tests for Model Variable-sellers

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -2206.89 0.0001 -41.77 <.0001
1 -1211.3 0.0001 -24.6 <.0001

Single Mean 0 -2255.08 0.0001 -42.49 <.0001 902.65 0.001
1 -1262.61 0.0001 -25.11 <.0001 315.33 0.001

Trend 0 -2353.94 0.0001 -43.99 <.0001 967.53 0.001
1 -1374.78 0.0001 -26.2 <.0001 343.3 0.001

Table A.6: Augmented Dickey-Fuller Unit Root Tests for Model Variable-
fundamentalist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -6.2327 0.0858 -1.8 0.0691
1 -2.2775 0.3001 -1.12 0.2385

Single Mean 0 -418.756 0.0001 -15.02 <.0001 112.83 0.001
1 -158.611 0.0001 -8.94 <.0001 39.98 0.001

Trend 0 -443.764 0.0001 -15.48 <.0001 119.87 0.001
1 -168.641 0.0001 -9.2 <.0001 42.31 0.001

Table A.7: Augmented Dickey-Fuller Unit Root Tests for Model Variable-optimist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -8.6962 0.0411 -2.07 0.0373
1 -2.8785 0.2441 -1.16 0.2236

Single Mean 0 -543.725 0.0001 -17.29 <.0001 149.53 0.001
1 -213.247 0.0001 -10.33 <.0001 53.4 0.001

Trend 0 -574.12 0.0001 -17.81 <.0001 158.63 0.001
1 -226.697 0.0001 -10.65 <.0001 56.67 0.001
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Table A.8: Augmented Dickey-Fuller Unit Root Tests for Model Variable-pessimist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -9.4383 0.0331 -2.16 0.0296
1 -3.5002 0.1989 -1.3 0.1791

Single Mean 0 -1140.9 0.0001 -26.55 <.0001 352.51 0.001
1 -585.33 0.0001 -17.13 <.0001 146.75 0.001

Trend 0 -1172.3 0.0001 -26.99 <.0001 364.21 0.001
1 -606.836 0.0001 -17.43 <.0001 151.86 0.001

Table A.9: Augmented Dickey-Fuller Unit Root Tests for Model Variable-bull

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1508.93 0.0001 -31.76 <.0001
1 -742.124 0.0001 -19.28 <.0001

Single Mean 0 -3038.15 0.0001 -55.45 <.0001 1537.6 0.001
1 -3033.39 0.0001 -38.92 <.0001 757.57 0.001

Trend 0 -3038.39 0.0001 -55.45 <.0001 1537.34 0.001
1 -3034.23 0.0001 -38.92 <.0001 757.53 0.001

Table A.10: Augmented Dickey-Fuller Unit Root Tests for Model Variable-volume

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -205.269 0.0001 -10.46 <.0001
1 -89.8345 <.0001 -6.86 <.0001

Single Mean 0 -217.844 0.0001 -10.76 <.0001 57.89 0.001
1 -95.2415 0.0019 -7.03 <.0001 24.76 0.001

Trend 0 -243.915 0.0001 -11.36 <.0001 64.58 0.001
1 -106.514 0.0001 -7.38 <.0001 27.27 0.001

Table A.11: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dabsreturn

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4520.51 0.0001 -95.77 <.0001
1 -9001.84 0.0001 -67.11 <.0001

Single Mean 0 -4520.51 0.0001 -95.76 <.0001 4584.52 0.001
1 -9001.9 0.0001 -67.09 <.0001 2250.85 0.001

Trend 0 -4520.52 0.0001 -95.74 <.0001 4583.02 0.001
1 -9002.19 0.0001 -67.08 <.0001 2250.18 0.001
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Table A.12: Augmented Dickey-Fuller Unit Root Tests for Model Variable-return

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3263.32 0.0001 -59.86 <.0001
1 -3638.68 0.0001 -42.74 <.0001

Single Mean 0 -3264.08 0.0001 -59.87 <.0001 1792.15 0.001
1 -3641.84 0.0001 -42.75 <.0001 913.75 0.001

Trend 0 -3266.06 0.0001 -59.9 <.0001 1794.04 0.001
1 -3650.25 0.0001 -42.79 <.0001 915.69 0.001

Table A.13: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dvolume

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4255.54 0.0001 -85.65 <.0001
1 -6011.19 0.0001 -54.99 <.0001

Single Mean 0 -4255.57 0.0001 -85.64 <.0001 3666.95 0.001
1 -6011.58 0.0001 -54.99 <.0001 1511.73 0.001

Trend 0 -4255.64 0.0001 -85.63 <.0001 3665.89 0.001
1 -6012.45 0.0001 -54.98 <.0001 1511.51 0.001

Table A.14: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dherd

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4267.77 0.0001 -86.1 <.0001
1 -5781.77 0.0001 -53.94 <.0001

Single Mean 0 -4267.8 0.0001 -86.08 <.0001 3705.31 0.001
1 -5782.15 0.0001 -53.93 <.0001 1454.41 0.001

Trend 0 -4267.87 0.0001 -86.07 <.0001 3704.24 0.001
1 -5782.98 0.0001 -53.93 <.0001 1454.19 0.001

Table A.15: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dbuyers

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4644.43 0.0001 -101.46 0.0001
1 -9550.22 0.0001 -69.44 <.0001

Single Mean 0 -4644.44 0.0001 -101.44 0.0001 5145.23 0.001
1 -9550.33 0.0001 -69.43 <.0001 2410.41 0.001

Trend 0 -4644.46 0.0001 -101.43 0.0001 5143.61 0.001
1 -9550.55 0.0001 -69.42 <.0001 2409.62 0.001
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Table A.16: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dsellers

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4654 0.0001 -101.89 0.0001
1 -10176.3 0.0001 -71.88 <.0001

Single Mean 0 -4654 0.0001 -101.87 0.0001 5188.99 0.001
1 -10176.3 0.0001 -71.87 <.0001 2582.38 0.001

Trend 0 -4654 0.0001 -101.86 0.0001 5187.26 0.001
1 -10176.3 0.0001 -71.85 <.0001 2581.56 0.001

Table A.17: Augmented Dickey-Fuller Unit Root Tests for Model Variable-
dfundamentalist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4471.6 0.0001 -93.71 <.0001
1 -7085.83 0.0001 -59.5 <.0001

Single Mean 0 -4471.6 0.0001 -93.7 <.0001 4389.58 0.001
1 -7085.91 0.0001 -59.49 <.0001 1769.33 0.001

Trend 0 -4471.62 0.0001 -93.68 <.0001 4388.16 0.001
1 -7086.04 0.0001 -59.48 <.0001 1768.78 0.001

Table A.18: Augmented Dickey-Fuller Unit Root Tests for Model Variable-doptimist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4463.07 0.0001 -93.36 <.0001
1 -7871.03 0.0001 -62.7 <.0001

Single Mean 0 -4463.07 0.0001 -93.35 <.0001 4356.96 0.001
1 -7871.07 0.0001 -62.69 <.0001 1965.11 0.001

Trend 0 -4463.07 0.0001 -93.33 <.0001 4355.51 0.001
1 -7871.11 0.0001 -62.68 <.0001 1964.46 0.001

Table A.19: Augmented Dickey-Fuller Unit Root Tests for Model Variable-dpessimist

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4353.35 0.0001 -89.08 <.0001
1 -7698.93 0.0001 -61.99 <.0001

Single Mean 0 -4353.35 0.0001 -89.07 <.0001 3966.45 0.001
1 -7698.97 0.0001 -61.98 <.0001 1920.73 0.001

Trend 0 -4353.36 0.0001 -89.05 <.0001 3965.15 0.001
1 -7699.03 0.0001 -61.97 <.0001 1920.11 0.001
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Table A.20: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-price

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1.741 0.3628 -1.34 0.1673
1 -1.7203 0.3654 -1.35 0.1638

Single Mean 0 -4.2468 0.5126 -1.77 0.3937 1.68 0.6414
1 -4.1559 0.5225 -1.77 0.3944 1.68 0.6402

Trend 0 -2.6785 0.9497 -0.96 0.948 2.16 0.744
1 -2.528 0.955 -0.92 0.952 2.23 0.7303

Table A.21: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-absreturn

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1109.42 0.0001 -26.08 <.0001
1 -536.848 0.0001 -16.38 <.0001

Single Mean 0 -1603.31 0.0001 -33.06 <.0001 546.63 0.001
1 -912.746 0.0001 -21.35 <.0001 227.95 0.001

Trend 0 -1650.46 0.0001 -33.73 <.0001 568.74 0.001
1 -955.981 0.0001 -21.85 <.0001 238.82 0.001

Table A.22: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-bull

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -1539.11 0.0001 -32.17 <.0001
1 -721.274 0.0001 -18.99 <.0001

Single Mean 0 -3149.62 0.0001 -57.56 <.0001 1656.37 0.001
1 -3139.22 0.0001 -39.58 <.0001 783.43 0.001

Trend 0 -3151.99 0.0001 -57.59 <.0001 1658.33 0.001
1 -3147.02 0.0001 -39.62 <.0001 785.06 0.001

Table A.23: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-Volume

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -209.63 0.0001 -10.42 <.0001
1 -132.846 0.0001 -8.14 <.0001

Single Mean 0 -455.386 0.0001 -15.7 <.0001 123.22 0.001
1 -310.366 0.0001 -12.46 <.0001 77.62 0.001

Trend 0 -456.195 0.0001 -15.71 <.0001 123.45 0.001
1 -311.038 0.0001 -12.47 <.0001 77.8 0.001
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Table A.24: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-dprice

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3064.11 0.0001 -55.96 <.0001
1 -3202.65 0.0001 -40 <.0001

Single Mean 0 -3064.32 0.0001 -55.95 <.0001 1565.25 0.001
1 -3203.33 0.0001 -40 <.0001 800.01 0.001

Trend 0 -3067.84 0.0001 -56.01 <.0001 1568.41 0.001
1 -3214.93 0.0001 -40.07 <.0001 802.63 0.001

Table A.25: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-return

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3028.52 0.0001 -55.29 <.0001
1 -2787.72 0.0001 -37.32 <.0001

Single Mean 0 -3028.56 0.0001 -55.28 <.0001 1527.82
1 -2787.84 0.0001 -37.32 <.0001 696.26 0.001

Trend 0 -3030.58 0.0001 -55.31 <.0001 1529.35 0.001
1 -2793.36 0.0001 -37.35 <.0001 697.4 0.001

Table A.26: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-dabsreturn

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -4403.36 0.0001 -90.99 <.0001
1 -7974.77 0.0001 -63.12 <.0001

Single Mean 0 -4403.36 0.0001 -90.97 <.0001 4137.86 0.001
1 -7974.77 0.0001 -63.11 <.0001 1991.69 0.001

Trend 0 -4403.36 0.0001 -90.96 <.0001 4136.48 0.001
1 -7974.79 0.0001 -63.1 <.0001 1991.04 0.001

Table A.27: Augmented Dickey-Fuller Unit Root Tests for BAC Variable-dVolume

Type Lags Rho Pr < Rho Tau Pr < Tau F Pr > F

Zero Mean 0 -3751.94 0.0001 -70.77 <.0001
1 -5262.22 0.0001 -51.28 <.0001

Single Mean 0 -3751.94 0.0001 -70.76 <.0001 2503.17 0.001
1 -5262.22 0.0001 -51.27 <.0001 1314.23 0.001

Trend 0 -3751.95 0.0001 -70.74 <.0001 2502.35 0.001
1 -5262.29 0.0001 -51.26 <.0001 1313.81 0.001


