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ABSTRACT 

 

 

ALEKHYA VADDIRAJ. Investigations on enhanced power flow controller. (Under the 

direction of Dr. MADHAV MANJREKAR) 

 

 

   Series Flexible AC Transmission Systems (FACTS) devices have been employed to 

increase power transfer capability of transmission networks and to provide direct control 

of power flow over designated transmission routes. However, high costs and reliability 

concerns associated with implementing one large FACTS device capable of altering the 

power flow in a wide transmission network have limited widespread deployment of 

FACTS solutions. Recently, concept of Distributed FACTS (D-FACTS) was proposed as 

an alternative approach to realize cost-effective power flow control through multiple, 

small, fixed series impedance injections. This thesis extends the functionality of D-

FACTS concept by introducing variability in impedance injection of D-FACTS devices, 

thereby improving their controllability. Furthermore, this thesis presents a more detailed 

analytical treatment of such a topology termed enhanced Power Flow Controller (ePFC). 

It is shown that employing 1st order (assumes sinusoidal voltage across compensation 

capacitor) and 2nd order (assumes sinusoidal current in the transmission line) fundamental 

impedance model are inaccurate methods to analyze effective impedance inserted by 

ePFC. Instead, a new mathematical model that is based on sinusoidal voltage difference 

between two end buses is proposed. The efficacy of this approach and its advantages as 

compared to provide more accurate steady state impedance over existing models are 

presented.  

   Likewise, to analyze the stability of this system, Poincare mapping of entire bus-to-bus 

system is employed and the resultant dynamic model of an ePFC is systematically 
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derived in this paper. Finally, eigen values of this system are mapped as a function of 

conduction angle and regions of instability are identified for the enhanced Power Flow 

Controller.
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CHAPTER 1 : INTRODUCTION AND REVIEW 

 

 

1.1. Introduction  

   The electricity transmission system is one of the greatest engineering achievements of 

the 20th century. It is an extensive system of interconnected networks in which high-

voltage power lines transport electricity from generators to customers [1]. A critical early 

decision to rely on alternating current (AC) technologies for high-voltage transmission 

has led to the construction of three major interconnected power systems: the Eastern and 

Western Interconnections, and the Electric Reliability Council of Texas (ERCOT), as 

shown in FIGURE 1.1. This transmission system was built by vertically integrated 

utilities that produced electricity at large generation stations and this interdependence 

leads to reliability [1]. 

   On the other hand, as power transfers grow the power system becomes increasingly 

more complex to operate and the system can become less secure for riding through the 

major outages [1]. Increasing demand of electricity has put unprecedented pressure on the 

US power-grid. 
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FIGURE 1.1: North American Electricity Transmission Systems [1] 

The conventional method of reinforcing network capacity through building additional 

lines has become difficult to implement with long delays in siting and approval process. 

It may lead to large power flows with inadequate control, excessive reactive power in 

various parts of the system, large dynamic swings and bottlenecks, and thus the full 

potential of transmission interconnections cannot be utilized [1]. 

1.2. Power Delivery Infrastructure 

   Transmission bottlenecks and congestion have become a frequent sight for the network 

operators [2]. Substantial changes and capital investments are required to modify it for 

deregulated market needs. Thus it presents a major infrastructural obstacle for the 

continuing growth of the U.S. $ 224 billion U.S. electricity market [2]. Electricity 

demand has increased 25% over the last decade and continues to increase. Overall, 

adequate generation capacity now exists, or is planned to meet projected needs in the US. 

At the same time, annual investment in transmission facilities has declined over the last 
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decade [1]. As a result of load growth, deregulation, and limited investment in new 

facilities, transmission congestion has rapidly increased. Over 50 transmission corridors 

in the US are routinely congested, causing high economic impact. According to the New 

York Independent System Operator (NYISO), congestion on the T&D system cost over 

$1 billion per year [3]. 

   Uncontrolled ‘loop flow’ causes congestion and reliability problems, and reduces the 

ability to fulfill energy contracts. Loop flows also impact the ability to fully utilize 

certain transmission lines, even as other lines suffer congestion, further limiting available 

transfer capacity under normal and contingency conditions. New transmission lines could 

relieve congestion, but are expensive to build (US$0.5–2 million/mile typically, but costs 

can exceed $10M/mile) and require several years for approval and construction [2]. Thus, 

one of the problems of smart grid is to have an ability to control power flow on 

transmission lines has been through the use of Flexible AC Transmission Systems 

(FACTS). FACTS devices allow control of power flows on ac power systems through the 

use of large power converters (10–300MW) [2]. While several FACTS installations are 

operating worldwide, wide scale deployment has not occurred. FACTS typically costs 

$120–$150 per kVAr, compared to $15–$20/kVAr for static capacitors. 

1.3. Power Flow Control 

   As explained in the previous section, one of the desired objectives of smart power 

grids is to have precise control of power flow over a designated power route.  In an 

emerging power ecosystem with multiple parallel paths between sources and loads, the 

actual route that carry real power can have an important impact on system operation 

during both steady-state and post-contingency conditions [2]. 
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FIGURE 1.2: Real power flow in a fundamental two-bus system  

   FIGURE 1.2 shows two buses connected with a reactance Xline. Consider a two bus 

system consisting of sending voltage (Vs), line reactance (Xline), receiving voltage (Vr).  

Therefore, 

Vs = Vs  cos(ωt)                                                            (1.1) 

Vr⌊𝛿 =  Vr  cos(ωt + δ)                                             (1.2) 

 Using Kirchhoff’s Current Law (KCL), the current in the system is given by 

I =
Vs− Vr⌊δ

jXline
                                                              (1.3) 

I =
Vs cos(ωt)−Vr cos(ωt+δ)

jXline
                                                (1.4) 

=
Vs cos(ωt)

jXLine
−

Vr cos(ωt+δ)

jXline
                                               (1.5) 

Therefore,                            I =
VS

jXline
sin(ωt) −

VR

jXline
sin(ωt + δ)                               (1.6)  

Now power in the circuit is given by, 

Power = Voltage ∗ Current                                    (1.7) 

 

Xline

Vs 
Vr ∠  

P

I
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 From (1.7) we have, 

 P =  Vs cos(ωt) ∗ I                                       (1.8) 

P = Vs cos(ωt) ∗ [
Vs

Xline
sin(ωt) −

Vr

Xline
sin(ωt + δ)]            (1.9) 

we get, 

P =  
Vs

2

Xline
sin(ωt) cos(ωt + δ) −

VsVr

Xline
sin(ωt + δ) cos(ωt)          (1.10) 

Reducing equation (1.10), 

P =  
Vsrms

2

Xline
sin 2(ωt) −

VsrmsVrrms

Xline
[sin(2ωt + δ) + sin(δ)]                  (1.11) 

Now extending the power equation (1.11) from a single phase to a three phase system, we 

have 

Pa = 
Vsrms

2

Xline
sin 2(ωt) −

VsrmsVrrms

Xline
[sin(2ωt + δ) + sin(δ)]                     (1.12) 

Pb = 
Vsrms

2

Xline
sin 2(ωt + 120) −

VsrmsVrrms

Xline
[sin(2ωt + δ + 240) + sin(δ)]   (1.13) 

Pc = 
Vsrms

2

Xline
sin 2(ωt − 120) −

VsrmsVrrms

Xline
[sin(2ωt + θR − 240) + sin(δ)]     (1.14) 

Hence total power (P) is given by, 

P = Pa + Pb + Pc                                                    (1.15) 

From equations (1.12), (1.13) and (1.14) 

P = 3 
VrrmsVsrms

Xline
sin(𝛿)                                            (1.16) 
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P =  
√3Vrrms√3 Vsrms

Xline
sin(δ)                                             (1.17) 

The real power flow between these two buses is given by 

P =
Vr(l−l)rms∗Vs(l−l)rms

Xline
sin(δ)                                             (1.18) 

   As is evident from equation (1.18), real power can be controlled either by varying line-

line voltages at sending (Vs,) or receiving (Vr) ends, or by varying the phase angle  

between these voltages (), or by varying impedance of the line (Xline) [4]. Power flow 

control has traditionally relied mostly on control of generators, network switching, and 

phase shifting transformers. Passive elements such as series reactors and capacitors have 

also been used to vary the effective line impedance, thereby altering the power flow 

through a given line [4]. Power electronic converters have been augmented with these 

passive methods to improve the controllability and to provide a faster response [5]. 

    A Phase Shifting Transformer (PST) is a special form of three-phase regulating 

transformer and is realized by combining a series-connected transformer with a thyristor 

controlled tap-changing voltage transformer [5]. The windings of the voltage transformer 

are so connected that on its secondary side, phase-quadrature voltages are generated and 

fed into the secondary windings of the series transformer. Thus the addition of small, 

phase-quadrature voltage components to the phase voltages of the line creates phase-

shifted output voltages without any appreciable change in magnitude. A phase shifting 

transformer is therefore able to introduce a phase shift in a transmission line. When a 

phase-shifting transformer employs an on load tap changer, controllable phase-shifting is 
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achieved. But this is an expensive solution and does not allow dynamic control capability 

[5], [6]. 

   Another option is to decrease the total effective reactance, X, of the transmission line 

by adding series capacitors such that jX = jXL – jXC. This action increases the current 

flow through the line, and thus increases both the real and reactive power flow [5].  

1.4. Thesis Motivation 

   On contrary to the increase in demand and generation on the grid, there has been a 

sustained decrease in transmission infrastructure investments. Increasing congestion and 

loop flows on the transmission have dramatically decreased the capacity of existing lines 

and are forced to operate under their thermal limits [7]. One of the accepted and 

technically proven approach for enabling the smart distribution grid in particular 

achieving control of active power flow on the grid, has been through the use of Flexible 

AC Transmission Systems or FACTS [2]–[4]. Even though FACTS technology is 

technically proven, it has not seen widespread commercial acceptance due to high cost. In 

this thesis, concept of Distributed FACTS (D-FACTS) was proposed as an alternative 

approach to realize cost-effective power flow control through multiple, small, fixed series 

impedance injections [2], [7]. The functionality of D-FACTS concept is extended by 

introducing variability in impedance injection of D-FACTS devices, thereby improving 

their controllability. Furthermore, a detailed analytical treatment of such a topology 

termed enhanced Power Flow Controller (ePFC) is presented [8]. It is shown that 

employing 1st order (assumes sinusoidal voltage across compensation capacitor) and 2nd 

order (assumes sinusoidal current in the transmission line) fundamental impedance model 

are inaccurate methods to analyze effective impedance inserted by ePFC. Instead, a new 
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mathematical model that is based on sinusoidal voltage difference between two end buses 

is proposed [8]. The efficacy of this approach and its advantages as compared to existing 

models and also its stability analysis are presented.  

1.5. Organization of Thesis 

This thesis is organized in the following format.   

 chapter 1: Introduction and Review  

   A brief introduction to the transmission system operation and interconnection and the 

power delivery infrastructure is provided in the first part. The later part describes the 

power flow control on the transmission grid and motivation for the thesis.  

chapter 2: Flexible AC Transmission Systems (FACTS) 

   This chapter describes the concept of Flexible AC Transmission Systems (FACTS). 

The basic types of FACTS controllers are briefly outlined. The topologies of different 

types of FACTS controllers are explained. And a brief review on leading FACTS 

suppliers and installation of FACTS solutions are also presented.  

chapter 3: Distributed FACTS (D- FACTS) 

   Limitations of the existing FACTS devices are documented. The Series Injected 

Transformer is explained using the equivalent impedance offered by a transformer. The 

concept of D-FACTS is introduced. DSR and DSI controllers are explained and analyzed. 

chapter 4: Enhanced Power Flow Controller (ePFC) 

   The concept of D-FACTS in Chapter 3 is extended with conduction angle control. 

Three approximations are explained to determine the functionality of an ePFC system. A 

mathematical expression is derived to obtain the effective fundamental impedance 



9 

 

offered by the proposed controller. Detailed comparison of the effective fundamental 

impedance for three approximations is tabulated.  

chapter 5: Modeling and Simulation Results 

   In this chapter DSR, DSI and ePFC devices are modeled in MATLAB Simulink. 

Simulation results of the controllers are compared with the calculated results from 

Chapter 3 and Chapter 4. The operations of the proposed ePFC system in transmission 

line are discussed with the help of control block schematic. A components of the 

controlled system are modeled in MATLAB Simulink and the results are presented. 

chapter 6: Stability Analysis of ePFC 

   In this chapter the stability analysis of an ePFC system is presented. The dynamic state 

equations and projection matrix for the proposed system are explained. Poincare’ 

mapping is used to determine the stability using the Eigen values of the Jacobian matrix.  

chapter 67: Future Work and Conclusion 

   This chapter includes an overview of the thesis with conclusions are drawn and the 

assumptions are presented. The thesis concludes with a discussion on the future scope 

with regards to realizing an ePFC in hardware. 



 

 

   

 

 

 

CHAPTER 2 : FLEXIBLE AC TRANSMISSION SYSTEMS (FACTS) 

 

 

2.1. Introduction 

   The increase in demand on the power grid, a sustained decrease in transmission 

infrastructure investments over the last two decades, has increased the power flow 

congestion problem [1]. Many transmission facilities face inability to direct power flow 

at will, resulting in limited system reliability and constrained ability to provide interested 

customers with low-cost power [1]. There is general consensus that the future power grid 

will need to be smart and aware, fault tolerant and self-healing, dynamically and 

statically controllable, and asset and energy efficient [2]. The accepted and technically 

proven approach for realizing a smart grid, in particular achieving control of active power 

flow on the grid, has been through the use of Flexible AC Transmission Systems 

(FACTS).  
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FIGURE 2.1: General symbol for FACTS Controller. 

 

   FIGURE 2.1 shows the general symbol for a FACTS controller [5]. Broadly, FACTS 

Controllers are divided into four categories: 

 Shunt Controllers 

 Series Controllers 

 Combined Series-Series Controllers 

 Combined Series-Shunt Controllers 

2.2. Shunt Controllers  

   In principle, a shunt controller injects current into the system at the point of connection 

[5]. A simplified schematic of a shunt controller is shown in FIGURE 2.2. A shunt 

controller may be a variable impedance, variable source or a combination of these. As 

shunt controllers act like current source they can control voltage at, and around the point 

of connection through the injection of reactive current. Static Synchronous Compensator 

(STATCOM) and Static VAr Compensator (SVC) are the commonly used shunt 

controllers. 

 

FIGURE 2.2: General symbol for shunt controller. 

 

 Static Synchronous Compensator (STATCOM): A Static Synchronous Compensator 

(STATCOM) can be defined as a static synchronous generator operated as a shunt-

 
Transmission Line

i
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connected static VAr compensator whose capacitive or inductive output current can 

be controlled independent of the ac system voltage [4]. This is shown in FIGURE 

2.3.  

 

FIGURE 2.3: Simplified Schematic of Static Synchronous Compensator (STATCOM) based on voltage 

sourced converter 

 

   STATCOM instantly and continuously provides variable reactive power in response to 

voltage transients, supporting the stability of the grid voltage. The STATCOM acts as a 

stiff voltage source and is controlled by Pulse Width Modulation (PWM) control of 

power electronics devices. Installing a STATCOM in a grid increases power transfer 

capability by enhancing voltage stability and maintaining a smooth voltage profile under 

different network conditions [5]. STATCOM also enables improvement of power 

quality, when designed as an active filter to absorb system harmonics [4]. 

 Transmission  Line

C
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 Static VAr Compensator (SVC): An electrical device for providing fast-acting 

reactive power on high-voltage electricity transmission networks. The term "static" 

refers to  

the fact that the SVC has no moving parts (other than circuit breakers and 

disconnects, which do not move under normal SVC operation). Prior to the invention 

of the SVC, power factor compensation was the preserve of large rotating machines 

such as synchronous condensers [12]. FIGURE 2.4 shows the schematic of a SVC.  

 
 

FIGURE 2.4: Schematic of Static Var Compensator. 

   SVC is an automated impedance matching device, designed to bring the system closer 

to unity power factor. If the power system's reactive load is capacitive (leading), the 

SVC will use reactors (usually in the form of Thyristor-Controlled Reactors) to consume 

VARs from the system, lowering the system voltage. Under inductive (lagging) 

conditions, the capacitor banks are automatically switched in, thus providing a higher 

system voltage. SVCs can control transmission line voltages and can also mitigate active 

 

TCR TSC Filter

Transmission Line

C
L

MSC MSR

MV
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power oscillations because of their ability to modulate voltage amplitude [5]. They also 

may be placed near high and rapidly varying loads, such as arc furnaces, where they can 

smooth flicker voltage.  Most common SVCs employee the following: 

1. TCR (Thyristor Controlled Reactor) : A reactor connected in series with a bidirectional 

thyristor valve. The thyristor valve is phase-controlled. Equivalent reactance is varied 

continuously. 

2. TSR (Thyristor Switched Reactor) : It is same as TCR but thyristor is either in zero- or full- 

conduction. Equivalent reactance is varied in stepwise manner. 

3. TSC (Thyristor Switched Capacitor): A Capacitor is connected in series with a bidirectional 

thyristor valve. Thyristor is either in zero- or full- conduction. Equivalent reactance is 

varied in stepwise manner. 

4. MSC (Mechanically Switched Capacitor) : A capacitor is switched by circuit-breaker. It 

aims at compensating steady state reactive power. It is switched only a few times a day. 

 Mechanically Switched Capacitors with Damping Networks (MSCDN): A 

technology to provide a switchable source of reactive power to stabilize low 

frequency voltage variations [13]. It consists in large shunt capacitor banks, arranged 

as a C-type harmonic filter, connected to the high voltage system to provide reactive 

compensation and harmonic control and can be connected directly to the high 

voltage busbar system or via a coupling transformer as shown in FIGURE 2.5. 
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FIGURE 2.5: Schematic of Mechanically Switched Capacitors with Damping Networks. 

 

   MSCDNs are a simple and low-cost, but low-speed solution for voltage control 

and network stabilization under heavy load conditions. Their utilization has almost 

no effect on the short-circuit power but it supports the voltage at the point of 

connection. An advanced form of mechanically switched capacitor is the MSCDN 

(Mechanically Switched Capacitor with Damping Network) for avoidance of system 

resonances. 

2.3. Series Controllers  

   The series controllers alter effective voltage in series with the transmission line. These 

controllers impact the driving voltage and hence vary the current and power flow. The 

series controller could be a variable impedance, such as capacitor, reactor etc., or a power 

electronics based variable source or both. This is shown in FIGURE 2.6. 

 Transmission Line
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FIGURE 2.6: General symbol for series controller 

 

   As long as the voltage is in phase quadrature with the line current, the series controller 

only supplies or consumes variable reactive power [5]. They are designed to ride through 

contingency and dynamic overloads, and through or bypass short circuit currents. SSSC, 

TCSC and TCSR are commonly used series connected FACTS devices [5]. 

 Static Synchronous Series Compensator (SSSC): Static Synchronous Series 

Compensator (SSSC) is a type of series connected FACTS device. This is shown in 

FIGURE 2.7. A SSSC is a static synchronous generator operated without an external 

electrical energy source. As a series compensator the output voltage is controllable 

independently of, the line current to control the overall reactive voltage drop across 

the line, thereby controlling the transmitted power. SSSC has identical properties as 

STATCOM except for the output voltage is in series with the line. 

 

FIGURE 2.7: Simplified Schematic of Static Synchronous Series Compensator (SSSC). 

 

Transmission Line

e

  Transmission 

Line

C
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 Thyristor Controlled Series Capacitor (TCSC): Thyristor Controlled Series Capacitor 

(TCSC) is composed of a variable reactor such as a Thyristor Controlled Reactor 

(TCR), which is connected across a series capacitor. This is shown in FIGURE 2.8. 

FIGURE 2.8: Simplified Schematic of Thyristor Controlled Switched Capacitor (TCSC). 

    Series compensation with TCSC enables rapid dynamic modulation of the inserted 

reactance. At interconnection points between transmission grids, this modulation 

will provide strong damping torque on inter-area electromechanical oscillations [11]. 

As a consequence, a TCSC rated at around 100 MVAr makes it possible to 

inteconnect grids having generating capacity in many thousands of megawatts. 

TCSC as expalined is combined with fixed series compensation to increase transient 

stability and also mitigate subsynchronous resonance (SSR). FIGURE 2.9 shows the 

circuit of a practical TCSC. 

 

L

C

Transmission  Line
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FIGURE 2.9: Schematic of Thyristor Controlled Switched Capacitor (TCSC). 

    Series compensation with TCSC enables rapid dynamic modulation of the inserted 

reactance [4]. At interconnection points between transmission grids, this modulation 

provides strong damping torque on inter-area electromechanical oscillations. As a 

consequence, a TCSC rated at around 100 MVAr makes it possible to interconnect 

grids having generating capacity in many thousands of megawatts [5].  

 Fixed Series Compensation (FSC): The simplest, cost-effective and one of the 

preferred solution for optimizing performance in very large bulk transmission 

systems [11]. FSC comprise of a capacitor banks and parallel arresters metal oxide 

varistors, (MOVs) spark gaps and a bypass switch as shown in FIGURE 2.10. 

Installing a capacitive reactance in series in long (typically more than 200km) 

transmission line reduces both the angular deviation and the voltage drop, which 

increases the load ability and stability of the line.  
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FIGURE 2.10: Schematic of Fixed Series Capacitor (FSC). 

 Thyristor Protected Series Capacitor (TPSC): TPSCs are modified version of TCSCs 

with direct-light-triggered thyristors, instead of conventional spark gaps or surge 

arresters as shown in FIGURE 2.11. Due to the very short cooling times of the light-

triggered thyristor valves, TPSCs return to service after a failure, allowing the 

transmission lines to operate at their maximum capacity [11]. 

 
 

FIGURE 2.11: Schematic of Thyristor Protected Series Capacitor. 
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2.4. Combined Series-Shunt Controllers  

   Combined series-shunt controllers inject voltage in series in the line with the series 

part of the controller and current into the system with the shunt part of the controller. The 

general symbol of the combined shunt and series controller is shown in FIGURE 2.12. 

 
FIGURE 2.12: General symbol for unified series-shunt controller. 

   Unified Power Flow Control (UPFC) and Thyristor Controlled Phase shifting 

Transformer (TCPST) are the commonly used series-shunt controllers. When the shunt 

and series controllers are unified, there can be a real power exchange between the series 

and shunt controllers via the power link [5]. 

 Unified Power Flow Controller (UPFC): Unified Power Flow Controller (UPFC) is a 

combination of static synchronous compensator (STATCOM) and a static series 

compensator (SSSC) coupled via a common dc link, to allow bidirectional flow of 

real power between the series and shunt output terminals of SSSC and STATCOM 

respectively, and are controlled to provide real and reactive series line compensation 

without an external electric energy source [5]. This is shown in FIGURE 2.13. This is 

a complete controller for controlling active and reactive power control through the 

line, as well as line voltage control. 

 

Transmission Line

e

i
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FIGURE 2.13: Simplified Schematic of Unified Power Flow Controller (UPFC) 

 Thyristor-Controlled Phase Shifting Transformer (TCPST): A Thyristor-Controlled 

Phase Shifting Transformer (TCPST) is a phase-shifting transformer adjusted by 

thyristor switches to provide a rapidly variable phase angle [5]. This is shown in 

FIGURE 2.14. A perpendicular series voltage, (obtained by adding a perpendicular 

voltage vector in series with a phase voltage) is made variable using the conduction 

angle control of the power electronic topologies. 

 
 

FIGURE 2.14: Simplified Schematic of Thyristor-Controlled Phase-Shifting Transformer (TCPST). 
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2.4.1. FACTS Benefits 

   IEEE defines FACTS as "a power electronic based system and other static equipment 

that provide control of one or more AC transmission system parameters to enhance 

controllability and increase power transfer capability [5]. The installation of FACTS 

started during mid-1970s with static VAr compensators (SVC). In 1986, Electric Power 

Research Institute (EPRI) introduced the concept, of FACTS based on then available 

power electronic devices. In 1990’s General Electric (GE) in collaboration with EPRI, 

installed one of the first FACTS devices at the C.J. Slatt Substation in Northern Oregon 

which was a 500 kV, 3-phase 60 Hz substation [9].  FACTS controllers help mitigate 

stability and power congestion issues in interconnected systems. FACTS devices can also 

improve the synchronous operation and influence the load flow conditions [4]. Some of 

the benefits of FACTS devices are given as follows. 

 Enhanced Static Performance - FACTS controllers provide increased loading, 

congestion management, reduced system losses and economic operation. They reduce 

transmission congestion costs from increased transmission transfer capability without 

building additional transmission capacity. 

 Improved Dynamic Performance - FACTS controllers provide increased stability 

limits and damping of power system oscillation. They reduce or eliminate voltage 

violations on transmission lines. FACTS also provide reactive power support for 

transmission/distribution bus. 

 Cost Savings – FACTS devices increases the amount of power that can be imported 

over existing transmission lines. They minimize cost of energy, kWh consumption at 

voltages beyond given voltage quality limit, and ensure standard voltages at customer 
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terminals. FACTS conserve energy via voltage reduction. They also reduce the need 

for construction of new capacitors, reactors, etc which mitigate environmental and 

regulatory concerns, and improves aesthetics by reducing the need for construction of 

new facilities. 

 Dynamic Reactive Power Compensation- FACTS devices controls real and reactive 

power flow. 

 Steady-State and Transient Stability Enhancement - FACTS devices mitigates 

potential Sub-Synchronous Resonance problems. 

   FACTS controllers also provide voltage regulation, power transfer capacity increase, 

three-phase voltage balancing, reduce transmission losses, flicker mitigation and 

oscillation damping [10]. Table 2.1 gives the steady state applications of FACTS devices 

and Table 2.2 gives dynamic applications of FACTS devices [5]. 

 

Table 2.1: List of Steady State Applications of FACTS. 

 

Issues Problems 
Corrective 

action 

Conventional 

Solution 

FACTS 

devices 

Voltage 

Limits 

Low voltage at 

heavy load 

Supply reactive 

power 

Shunt capacitor, 

series capacitor 

SVC, 

STATCOM 

High voltage at 

light load 

Remove reactive 

power supply 

Switch EHV 

and/or shunt 

capacitor 

SVC, TCSC, 

STATCOM 

High voltage 

following outage 

Absorb reactive 

power 

Switch shunt 

capacitors, series 

capacitor 

SVC, 

STATCOM 

Thermal 

limits 

Line or 

transformer over 

load 

Reduce load 

Add line or 

transformer 

TCSC, UPSC, 

TCPAR 

Add series reactor SVC, TCSC 

Tripping of 

parallel circuits 
Limit line loading 

Add series reactor, 

capacitor 
UPSC, TCSC 

Short 

Circuits 

Excessive breaker 

Fault current 

Limit short circuit 

breaker 

Add series reactor, 

new circuit 

breaker 

UPFC, TCSC 
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Issues Problems 
Corrective 

action 

Conventional 

Solution 

FACTS 

devices 

Sub-

synchronous 

resonance 

Potential turbine/ 

generator shaft 

damage 

Mitigate 

oscillations 

Series 

compensation 
NGH, TCSC 

Loop flows 

Post fault sharing 
PAR, series 

capacitor/ reactor 

PAR, series 

capacitor/ reactor 

TCSC, UPSC, 

SVC, TCPAR 

Parallel line load 

sharing 

Adjust series 

reactance/ phase 

reactance 

rearrange network 

or use thermal 

limit actions 

Add series 

capacitor and PAR 

TCSC, 

TCPAR 

Flow directional 

reversal 

Adjust phase 

angle 
PAR 

TCPAR, 

UPFC 

 

 

Table 2.2: List of Dynamic Applications of FACTS. 

 

Issues Problems 
Corrective 

action 

Conventional 

Solution 

FACTS 

devices 

Transient 

Stability 

Remote generation/ 

Interconnected 

areas/ loosely 

meshed network 

Increase 

synchronizing 

torque 

High response 

exciter, series 

capacitor 

TCSC, TSSC. 

UPFC 

Remote generation/ 

loosely meshed 

network 

Absorb kinetic 

energy 

Breaking resistor, 

Fast Valuing 

Turbine 

TCBR, 

SMES, BESS 

Interconnected 

areas/ loosely 

meshed network/ 

tightly meshed 

network 

Dynamic load 

flow control 
HVDC 

TCPAR. 

UPFC, TCSC 

Dampening 

Remote generation 
Dampen 1Hz 

oscillations 

Exciter, Power 

system stabilizer 

SVC, UPFC, 

TCSC, 

STATCOM 

Interconnected 

areas/ loosely 

meshed network 

Dampen low 

frequency 

oscillations 

Power system 

stabilizer 

SVC, UPFC, 

TCSC, 

STATCOM 

Post 

contingency 

voltage 

control 

Remote generation/ 

Interconnected 

areas/ loosely 

meshed network 

Dynamic voltage 

support 
----- 

SVC, UPFC, 

STATCOM 

Post 

contingency 

voltage 

control 

Remote generation/ 

Interconnected 

areas/ loosely 

meshed network 

Dynamic flow 

support 
----- SVC, UPFC 

Dynamic voltage 

support and flow 

control 

----- 
SVC, UPFC, 

TCSC 
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   FACTS high-voltage AC transmission solutions are widely recognized by network 

suppliers and industrial energy managers. Grid operators can gain accurate control of 

reactive network power, maximize power flow along existing lines and improve steady-

state and dynamic stability with the system.  

     Since AC transmission systems are prevalent in the transmission industry, the 

installation of FACTS solutions will continue, both to replace existing aging 

infrastructure and to support the trouble-free interconnection of wind and renewable 

generation. Thus, FACTS technologies can be used to creatively solve demanding 

problems in transmission all over the world. Table 2.3 gives the major Industry suppliers 

of FACTS in the market and Table 2.4 gives installions of key FACTS devices. 

Table 2.3: List of major suppliers and FACTS in the market.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Supplier FSC TCSC SVC STATCOM MSCDN TPSC 

SIEMENS Yes Yes Yes No Yes Yes 

ABB Yes Yes Yes Yes No No 

ALSTOM Yes Yes Yes Yes Yes No 

GE Yes No No No No No 

AMSC No No Yes Yes No No 

S & C 
Electric 

No No No Yes No No 
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Table 2.4: List of key FACTS installations.  

 

FACTS 

Device 
Manufacture Customer Location Rating 

Fixed 

Series 

Capacitor/ 

Compensa

tor (FSC) 

 

SIEMENS 

Powergrid 

Corporation of India, 

Ltd. 

Lucknow -  

Bareilly- 

Unnao 

2 x 189 Mvar 

2 x 187 Mvar 

2 x 311 Mvar 

Brazilian Electricity 

Regulatory Agency 

(ANEEL) 

Colinas, 

Miracema and 

Gurupi 

200 MVAr 

2 x 194 MVAr 

130 MVAr 

State Grid 

Corporation of China 

Fengile  County, 

Chongquing City 

35.3 Ohm/2 x 

610 MVAr 

Dominion Virginia 

Power 

Rockbridge Bath,  

And near 

Weyers Cave, 

Virginia 

13.1 Ohm / 355 

MVAr at 3 kA  

18.7 Ohm / 505 

MVAr at 3 kA 

ABB 

Transmission grid of 

Hydro-Québec 

Des Hêtres - 

Canada 

36 Ohm/ 108 

MVAr 

Finnish 

transmission system 

operator, Fingrid 

Asmunti, Finland 

 

38 Ohm/ 369 

MVAr 

Fixed 

Series 

Capacitor/ 

Compensa

tor (FSC) 

 

GE 

Cross Texas 

Transmission 

Turkey, Texas – 

Cross Station 1,2 
2 x 716 MVAr 

Electricity of 

Vietnam 

DakNong 1 & 2, 

Di Linh 1 & 2, 

Pleiku 1 & 2 

6 X 366 MVAr 

BPA (Bonneville 

Power 

Administration) 

Bakeoven 1 &2, 

California-

Oregon 

2 X 675 MVAr 

Static Var 

Compensa

tor (SVC) 

 

SIEMENS 

Powerlink 
Greenbank and 

South Pine 

1 x TCR 2 xTSC 

3 Filters 

SEAS-NVE, 

Denmark 

Radsted, 

Denmark 

12-pulse 

configuration  

2 x TCR  

2 x Filters 

SCE, USA 
Palm Springs, 

California 

2 x TCR 

3 x TSC 

2 x Filters 

Entergy, USA 
Ninemile and 

Porter 
3 x TSC 

ESKOM, South 

Africa 

Impala and 

Illovo, SA 

2 x TCR  

3 x Filters 

ABB 

Société Nationale 

d’Electricité 

Karavia, 

Democratic 

Republic of 

Congo 

75 Mvar  

inductive to 75 

Mvar capacitive, 

continuously 

variable 

(-75/+75 Mvar) 

Chesf, a Brazilian 

transmission and 

generation utility 

Rio Grande do 

Norte, NE Brazil 

75Mvar induc-

150Mvar cap 

continuous 

FACTS 

Device 
Manufacture Customer Location Rating 
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Static Var 

Compensa

tor (SVC) 

ALSTOM 

Saudi Electricity 

Company (SEC) 

Quwayyah 

substation in 

Saudi Arabia 

-50/+170 MVAr 

Energy Company of 

Minas Gerais 

Minas Gerais in 

Brazil 

-200/300 MVAr 

 

Thyristor 

Controlled 

Switched 

Capacitor 

(TCSC) 

 

SIEMENS 
FURNAS – Centrais 

Elétricas S.A. 

North of Brasilia, 

Brazil 

Cap. rating: 

13.27 Ohm 

(blocked valve) 

and 15.92 Ohm 

(TCSC)/107.46 

MVAr at 1.5 kA, 

TCR rating : 

23.9 kV nominal 

valve voltage at 

3.55 kA 

ABB 

Power Grid 

Corporation of India 

Ltd 

Rourkela-Raipur 

TCSC segment: 

6.83 Ω/ 71 Mvar 

Fixed segment : 

54.7 Ω/ 394 

Mvar 

Thyristor 

Controlled 

Switched 

Capacitor 

(TCSC) 

 

SIEMENS 

State Power South 

Company 

PingGuo 

substation, 

Guangxi 

Province, P.R. 

China 

Fixed segment: 

29.2Ohm, 2000 

A, 350 MVAr 

Controlled 

segment: 4.15 

Ohm to 12.45 

Ohm, 2000 A, 

operated at 4.57 

Ohm, 55 MVAr 

TCR rating : 

Thyristor valve 

10 kV, 2000 A 

WAPA (Western 

Area Power 

Administration) 

north-eastern 

Arizona, USA 

 

Cap. :   55 

Ohm/165 MVAr 

40 Ohm/120 

MVAr 

15 Ohm/45 

MVAr (ASC) 

TCR : 100 mm 

thyristors 3.5kA, 

5.5 kV blocking 

voltage 

Thyristor 

Protected 

Series 

Capacitor 

(TPSC) 

SIEMENS 
Southern California 

Edison (SCE) 

Near Boulder 

City, NV, USA 

199 Mvar / 

segment1  

162 Mvar / 

segment2 

FACTS 

Device 

Manufacture Customer Location Rating 

Thyristor 

Protected 

Series 

Capacitor 

(TPSC) 

SIEMENS Southern California 

Edison (SCE) 

Near 

Buttonwillow, 

north of 

Los Angeles, 

CA, USA  

 

23.23 Ohm/401 

MVAr at 2.4 kA 
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Static 

Compensa

tor 

(STATCO

M) 

ABB 

 

 

 

 

Austin Energy 

 

 

Holly, Austin 

Dynamic Var : 

80 Mvar 

inductive to 110 

Mvar capacitive 

VSC: 95 MVA, 

3-level, neutral 

point clamping 

converter, IGBT 

based, PWM. 

MSCs, each 

rated at 138 kV, 

31 Mvar. 

S&C 
Single-turbine wind 

farm 

Dounby,  

Scotland 

±1.25 MVAR  

Continuous into 

11-kV bus,  

 

Mechanica

l Switched 

Capacitor 

(MSC) 

SIEMENS 
TNB (Tenaga 

National Berhard) 

Kuala Lumpur 

North 

3 x 60 MVAr 

Mechanica

l Switched 

Capacitor 

(MSC) 

SIEMENS 
SEC Saudi Electric 

Company 

Baish, Saudi 

Arabia 
2 x 20 MVAr 

ALSTOM 
TransnetBW, 

subsidiary of EnBW 

Engstlatt (Baden-

Württemberg), 

Germany 

250 MVAr 

Mechanica

lly 

Switched 

Capacitor 

Damping 

Network 

(MSCDN) 

SIEMENS 

RTE 
Five stations, 

France 

4x80 MVAr + 

1x8 MVAr 

RED Electrica de 

Espana 

Benejama and 

Saladas near the 

Costa Blanca in 

Spain 

2x100 MVAr 

National Grid 

Company, U.K. 
Beddington, U.K. 45 MVAr 

ALSTOM 

German transmission 

grid operator TenneT 

TSO GmbH 

Frankfurt, 

Germany 
300 MVAr 

TransnetBW, 

subsidiary of EnBW 

Engstlatt (Baden-

Württemberg), 

Germany 

250 MVAr 



 

 

   

 

 

 

CHAPTER 3 : DISTRIBUTED FACTS (D-FACTS) 

 

 

3.1. Introduction 

   FACTS devices have proved to increase the transfer capacity and the utilization of the 

power-system [2]. However, their commercial success has been limited due to the 

following difficulties in convincing the utilities for making investments in FACTS 

technology [14]. 

1. High Cost: Converter complexity and semiconductor ratings make FACTS devices an 

expensive solution. Moreover, the maintenance and repair calls for skilled labor, which 

further increase the cost. 

2. Low Reliability: A single component failure can lead to reduced overall performance 

of the module.  

3. Custom Engineering: Most FACTS devices are custom-designed and have long build 

times. They further require additional infrastructure such as mounting platforms and 

isolation transformers. 

   The limitations listed can be attributed to the lumped nature of FACTS devices [14]. 

The reliability of the technology can be increased and the cost can be decreased, if the 

same control objective is served by replicating a lumped controller into smaller 

controllers and distributing them over the grid. Thus, the concept of Distributed FACTS 

(D-FACTS) has been proposed by Divan, et al. [2].  
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   D-FACTS consist of single phase devices that can clamp onto existing conductors, 

providing easy installation procedure and the possibility for on-site repairs. The cost of 

D-FACTS is lower, as off-the-shelf components can be used to meet the rating of the 

individual controllers/devices and can be further scaled down with volume production 

[7]. The reliability of the solution is also improved as the failure of a single component or 

even a complete device is seen to have limited impact on the overall functionality of the 

solution [14]. 

3.2. Equivalent Impedance Offered by Transformer 

   Towards understanding the principle of D-FACTS devices, let us analyze, the 

equivalent impedance offered by a basic transformer shown in FIGURE 3.1. Let the 

source voltage applied to the primary side of the transformer be V1, and the primary: 

secondary turns ratio be N1:N2 [24]. Let there be a switch SM connected across the 

secondary side and V2 be the voltage across the switch. 

 

FIGURE 3.1: Basic circuit of an Ideal Transformer. 

 

   Under ideal conditions, 1) winding losses and leakage flux are neglected and 2) 

permeability of the core is assumed to infinity. Therefore, when the switch SM is closed, 

current I1 flows through the turns of the primary coil, producing flux Φm which links with 

 

V1 SM V2

N1 : N2

I1
I2
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secondary coils and induces voltage in the secondary side, by Faraday’s law of 

electromagnetic induction.  This gives  

          V1 = N1
dΦm

dt
                                                             (3.1) 

where Φm = Φmax sinωt                                                    (3.2) 

we get,                                            V1 = N1ω Φmax  cosωt                                              (3.3)               

Similarly  

for secondary turns N2 , we get   

                                  V2 = N2ω Φmax  cosωt                                                  (3.4) 

From (3.3) and (3.4), we get                 
V1

V2
=

N1

N2
                                                             (3.5)                                                                     

Let us consider a load ZL across the secondary terminal, current I2 flows in the circuit, 

produces flux Φ2 , which acts in opposition to the flux produced by primary turns Φ1 

(where Φm = Φ1 – Φ2). Hence, the relation between I1 and I2 is given by 

                                                   I1 =
N1

N2
 I2                                                          (3.5) 

   Now, consider that the transformer windings have losses. Let R1 and R2 be resistances 

of the primary windings and secondary windings. Secondly, let us consider that the core 

of the transformer is no longer infinitely permeable. Therefore, there is some leakage flux 

ΦL1 and ΦL2 which does not link the secondary and primary turns. Hence, let L1 and L2 be 

the leakage reactance of primary and secondary coils respectively. Also, at no load 

condition, the transformer draws a magnetizing current Im. Thus, a magnetizing 

inductance Lm is introduced across the primary winding. Finally, due to core losses 
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(hysteresis and eddy current losses), a resistance R0 is introduced across the primary 

windings. Therefore, such a non-ideal transformer with losses is shown in FIGURE 3.2. 

 

        FIGURE 3.2: Equivalent circuit of transformer with leakage, winding, core and magnetizing losses. 

From FIGURE 3.2, applying Kirchhoff’s Voltage law on the primary side, we get,            

       V1 = R1I1 + jXL1I1 + E1                                                              (3.6) 

Similarly, applying KVL on the secondary side, we get, 

  E2 = R2I2 + jXL2 + V2                                                                    (3.7) 

Also, V2 can be expressed as 

   V2 = ZLI2                                                                                       (3.8) 

Finally, applying Kirchhoff’s Current Law, we get, 

                I1 = I2
′ + Im + Ic                                                                         (3.9) 

Referring the secondary side of the transformer with reference to primary side, results in 

transformer the equivalent parameters as 

        R2
′ = (

N1

N2
)
2

 R2                                                                    (3.10) 

        XL2
′ = (

N1

N2
)
2

XL2                                                                  (3.11) 

         ZL
′ = (

N1

N2
)
2

ZL                                                                    (3.12) 

 

V1

R2

SM

R1

XL1

V2

I2

XL2

I1

ZL

Im

IC

Ro
Xm
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Therefore, the approximate equivalent parameters of the transformer, can be given as 

shown in the FIGURE 3.3. 

Req

XmRo

I1

IC
Im

I2
’

XL2
'

Z
L

’ V2
'V1

 

        FIGURE 3.3: Equivalent circuit of transformer  

where                  Req = R1 + R2
′                                                                                (3.13) 

                              Xeq = X1 + X2
′                                                                               (3.14) 

 

3.3. Series Injected Transformer 

   The transformer analyzed in previous section can be used to control the power flow by 

introducing it in series in the transmission system. This technique is termed as Single 

Turn Transformer (STT). STT uses the line conductor itself as the primary winding of the 

transformer. A single turn transformer is used to magnetically couple and mechanically 

attach the module to the line. It is designed with a large number of secondary turns, say 

1:50. This unit enables, the controller to be used with line voltages ranging from 13kV to 

500kV and line current varying from 500 A to 1500 A [14], [7]. The transmission line 

representation with a STT is shown in FIGURE 3.4.   
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        FIGURE 3.4: Transmission line with Single Turn Transformer (STT) 

3.3.1. Distributed Series Reactance 

   The concept of D-FACTS, introducing a variable equivalent reactance into the 

transmission line by means of a series connected transformer is termed as Distributed 

Series Reactance (DSR) [7]. A DSR consists of a Single Turn Transformer (STT) where 

the transmission line itself acts as the primary winding. The secondary winding is 

connected to back-to-back thyristors, which when closed creates a short circuit across the 

secondary winding thereby varying the effective reactance introduced into the power line.      

   A simplified schematic of the DSR is shown in FIGURE 3.4. An equivalent circuit of 

DSR consists of sending voltage (Vs), line reactance (Xline), receiving voltage (Vr), 

leakage reactance (Xleak) and magnetizing reactance (Xmag) as shown in FIGURE 3.5.  

 

        FIGURE 3.5: Simplified Schematic of a Distributed Series Reactance (DSR) 
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Analysis of the DSR circuit 

   When switch S is open across the secondary winding, magnetizing reactance of the 

STT is injected into the circuit. The equivalent circuit of DSR with switch S open [7], [8] 

is shown FIGURE 3.6.  

 

        FIGURE 3.6: Equivalent circuit of DSR when switch S is open 

Therefore the equivalent impedance on the line is given by 

                                   jXeq ≈ jXmag + jXline                                               (3.16) 

   Similarly, when switch S is closed across the secondary winding, leakage reactance of 

the STT is connected in shunt with magnetizing reactance. But because leakage reactance 

(Xleak) << magnetizing reactance (Xmag), the effective reactance that gets injected is more 

closer leakage reactance [24], [7]. The equivalent circuit of DSR with switch S closed is 

shown FIGURE 3.7.  

 

        FIGURE 3.7: Equivalent circuit of DSR when switch S is closed 

 Xmag

VS Vr

IS

Xline

 

Xleak

Xmag

VS Vr

IS

Xline
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Therefore, the equivalent impedance is given by 

 jXeq ≈ jXleak + jXline                                                                   (3.17)   

A DSR circuit is designed with following transmission system parameters: Vr = Vs = 

230kVL-L, S = 100 MVA, 𝜹 = 30∘ lag, Xline= 8.46 Ω, Xleak= 0.033 Ω, Xmag = 162.11 Ω 

Vph =
VL−L

√3
                                                                     (3.18) 

Vph =
230 kV

√3
= 132.791 kV 

Vpeak = √2 Vph                                                            (3.19) 

Vpeak = √2 ∗ 132.791 kV = 187.794 kV 

When switch S is open, from equation (3.16), we get 

jXeq = j162.11 + j0.03 + j8.46 

                                                      = j170.6 Ω           

Using Ohms law, we get current I in the circuit  

                                                      I =
Vs−Vr

jXeq
                                                                (3.20) 

I =  
187794(1 − 1∠30)

j170.6
= 550.40A 

When switch S is closed, from equation (3.17), we get 

jXeq = j8.46 + (jXmag‖jXleak ) 
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                                                      = j8.46 + j0.033 Ω = j8.49 Ω           

Using Ohms law, we get current I in the circuit  

                                                      I =
Vs−Vr

jXeq
                                                                (3.20) 

Therefore the current in the system is  

I =  
187794(1−1∠30)

j8.49
= 11055.58A                

Table 3.1 presents analytical results. Simulation results for these scenarios are presented 

FIGUREs 7.1 and 7.2  

Table 3.1: Calculated Currents of DSR system  

 

S Xeff Calculated Current 

Open 170.6 Ω 550.40 A 

Closed 8.49 Ω 1.11e4 A 

 

 

3.3.2. Distributed Series Impedance 

   The power flow control can be improved by extending the principle of DSR by adding 

an L-C impedance network to the secondary side of the transformer. This topology is 

called Distributed Series Impedance (DSI) [7], [8], [14]. A simplified schematic of the 

DSI is shown in FIGURE 3.8.  
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        FIGURE 3.8: Simplified schematic of a Distributed Series Impedance (DSI) 

   A Distributed Series Impedance (DSI) can control active power flow by realizing 

variable line impedance. The transfer capacity and consequently the grid utilization can 

be improved by routing the power flow from overloaded lines to underutilized parts of 

the network [7]. Capacitive compensation on under-utilized lines makes them more 

receptive to the inflow of current, while inductive compensation on over-loaded lines 

makes them less attractive to current flow [14]. In both the cases, the throughput of the 

system is increased by diverting additional power flow from the congested parts of the 

network to the lines with available capacity.  

   In addition to the series connected STT and its switch S on the secondary side, inductor 

L and capacitor C are inserted along with their switches SL and SC respectively. The 

equivalent circuit now consists of source voltage (Vs), line reactance (Xline), receiving 

voltage (Vr), leakage reactance (Xleak), magnetizing reactance (Xmag), and additional 

compensation reactances XL and XC as shown in FIGURE 3.9. 
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        FIGURE 3.9: Equivalent circuit of a Distributed Series Impedance (DSI) 

   As may be seen from FIGURE 3.10, when the switch S is closed, leakage impedance of 

the STT is injected, whereas when all switches S, SL and SC are open, magnetizing 

reactance is inserted into the line. These two modes are similar to that of DSR and the 

effective line reactance [8] is given by equations (3.16) and (3.17). 

Analysis of the DSI circuit 

   When switch S is open and switch SL is closed, the DSI injects inductance L and 

operates into “inductance (L) mode” [8]. The equivalent circuit of DSI in inductance 

mode is shown FIGURE 3.10.  

 

        FIGURE 3.10: Equivalent circuit of DSI in inductance mode 

The effective line reactance in this mode is given by 
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           Xeff(inductance mode) ≅ jXline + jXleak + jXL                            (3.21)                                     

where                    XL = ωL                                                         (3.22) 

   When switch S is open and switch SC is closed, the DSI injects capacitance C and 

operates into “capacitance (C) mode” [8]. The equivalent circuit of DSI in inductance 

mode is shown FIGURE 3.11.  

 

        FIGURE 3.11: Equivalent circuit of DSI in capacitance mode 

The effective line reactance in this mode is given by 

             jXeff(capacitance mode) ≅ jXline + jXleak − jXC                  (3.23)                                     

where                           XC = 
1

ωC
                                                      (3.24) 

   When switch S is open and both switches SL and SC are closed, the DSI injects 

impedance and operates into “impedance (Z) mode” [8]. The equivalent circuit of DSI in 

inductance mode is shown FIGURE 3.13.  
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        FIGURE 3.12: Equivalent circuit of DSI in impedance mode 

The effective line reactance in this mode is given by 

      jXeff(impedance mode) ≅ jXline + jXleak + jXL||(−jXC)                 (3.25)     

   A DSI circuit is designed with following transmission system parameters: Vr = Vs = 

230kVL-L, S = 100 MVA, 𝜹 = 30∘ lag, Xline= 8.46 Ω, Xleak= 0.033 Ω, Xmag = 162.11 Ω, XL 

= 152.3 Ω, XC = 566 Ω 

   Vph =
VL−L

√3
                                                                      (3.26) 

Vph =
230 kV

√3
= 132.791 kV 

 Vpeak = √2 Vph                                                            (3.27) 

Vpeak = √2 ∗ 132.791 kV = 187.794 kV 

When switch SL is closed and SC is open, i.e., in inductance mode, as shown in FIGURE 

3.11. The equivalent impedance offered by DSI is            

             jXeff(inductance mode) ≅ jXline + jXleak + jXL                                    (3.28) 

= j8.46 + j0.03 + j152.3 = j160.79 Ω 

Using Ohms law, we get current I in the circuit  

                                                      I =
Vs−Vr

Xeq
                                                                (3.29) 

I =  
187794(1 − 1∠30)

j160.79
= 583.96 A 

When switch SL is open and SC is closed i.e., in capacitance mode, as shown in FIGURE 

3.12. The equivalent impedance offered by DSI is            

                        jXeff(capacitance mode) ≅ jXline + jXleak − jXC                           (3.30) 

                                        = j8.46 + j0.033 − 566 = −j557.50 Ω 
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Using Ohms law, we get current I in the circuit  

                                                      I =
Vs−Vr

Xeq
                                                                (3.31) 

                                                 I =  
187794(1−1∠30)

−j5574.50
= −168.42 A 

When switch S is open and both switches SL and SC are closed i.e., in impedance mode, 

as shown in FIGURE 3.13. The equivalent impedance offered by DSI is            

jXeff(impedance mode) ≅ jXline + jXleak + jXL||(−jXC)                (3.32) 

                            = j8.46 + j0.033 + (
−j566∗j152.3

j152.3−j566
) = j216.45 Ω 

Using Ohms law, we get current I in the circuit  

                                                      I =
Vs−Vr

Xeq
                                                                (3.33) 

                                          I =  
187794(1−1∠30)

j128.50
= 433.79 A               

Table 3.2 presents analytical results. FIGUREs 7.1 and 7.2 illustrate the waveforms for 

the cases when switch S is open and closed respectively. 

Table 3.2: Calculated Currents of DSI system  

 

Mode Xeff Calculated Current 

Inductance 160.79 Ω 583.96 A 

Capacitance -557.50 Ω 168.42 A 

Impedance 216.45 Ω 433.79 A 



 

 

   

 

 

 

CHAPTER 4 : ENHANCED POWER FLOW CONTROLLER (EPFC) 

 

 

4.1. Introduction 

   Due to increased demands of power, ability to control power flow in the transmission 

system can be improved by Flexible AC Transmission Systems (FACTS) devices such as 

Thyristor Controlled Switched Capacitor (TCSC) and Unified Power Flow Controller 

(UPFC). However, such devices require a break in the line and a high volatges platform, 

thus adding to the cost and complexity. The solution to this problem is proposed to be as 

Distributed FACTS (D-FACTS) [2], explained in chapter 3. D-FACTS are deployed 

without breaking the existing transmission line.  But, D-FACTS provide only on/off 

control limiting the variable effective impedance on the line, therefore the controllability 

of power flow. Hence a concept of conduction angle (σ) control is proposed in this 

chapter [8]. Conduction angle (σ) control can provide continuous variation of impedance 

offered by inductor (L) and Capacitor (C) in combination with the line inductance   

(LLine). In this Chapter 4, the concept of enhanced Power Flow Controller (ePFC) is 

explained in detail with its mathematical model. The effective fundamental impedance of 

ePFC for the following three approximations is presented in sections 4.1 through 4.3. 

4.2. Principle of operation of ePFC  

   A simplified schematic of the proposed enhanced Power Flow Controller (ePFC) with 

conduction angle control is shown in FIGURE 4.1. As may be seen, the circuit schematic 
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of ePFC closely resembles that of a Distributed Series Impedance (DSI). However, the 

control mechanisms are significantly different in these two approaches. In a DSI, 

inductance L is either injected entirely, or not injected at all (switch SL is either closed or 

open). Thus XLinjected = XL or XLinjected = 0. Whereas in an ePFC, the amount of inductance 

injection is controlled continuously by varying the conduction angle () of thyristors 

(switch SL is operated under conduction angle control) [8]. 

 

FIGURE 4.1: Simplified schematic of the proposed enhanced Power Flow Controller (ePFC)  

   Thus XLinjected = XL(). Also in an ePFC, capacitance C is injected entirely in a normal 

operating mode (switch SC is normally closed). Thus XCinjected = XC. However, this 

capacitance is so sized in an ePFC that, XC combined with XL() offers a continuously 

variable effective impedance XLC() injected into the transmission line which results in a 

precise power flow control. This is illustrated in Table 4.1. 

   To derive a mathematical expression for X(Xline, XL, XC)|σ, three approaches are 

considered. The first approach adopts a 1st order approximation method [5] by assuming 

that the voltage across the capacitor is sinusoidal, as explained in section 4.3. The second 

approach adopts a 2nd order approximation method [5], [15] by assuming that the current 

 Transmission Line
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end
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endσ 
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Normally 

Close
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in the transmission line is sinusoidal and devoid of any harmonic components, given in 

section 4.4. 

Table 4.1: Modes of Operation in the Proposed Enhanced Power Flow Controller 

S SL SC 
Effective transmission line impedance 

(neglecting effects of Xmag and Xleak in 

STT) 

Closed - - jXeff no compensation = jXline 

Open  control Close 

jXeff compensation = jX(Xline, XL, XC)| 

Note: for  =  

jXeff min comp = jXline  + (jXL||(-jXC)) 

Note: for  = 0 

jXeff max comp = jXline - jXC 

 

   Finally, the proposed approach is based on the principle that only the end bus voltages 

are sinusoidal and all associated harmonics generated by series injection of ePFC are 

absorbed in the transmission line itself, derived in section 4.5. 

4.3. 1st Order Approximation 

   The 1st order approximation method assumes that the voltage across the capacitor is 

sinusoidal. The voltage and current waveforms of such a system is shown in FIGURE 4.2.  
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FIGURE 4.2: Operating waveforms for 1st order approximation towards derivation of fundamental 

impedance of enhanced Power Flow Controller. 

 

An equivalent circuit is shown in FIGURE 4.3. As shown, this reduces X(Xline, XL, XC)|σ 

to a simple parallel combination of XC and XL(σ) that is connected in series with line 

reactance X

 

FIGURE 4.3: Equivalent circuit of ePFC using 1st order approximation. 

Analytical expression for XL(σ) has been amply documented in literature [4], [5], [8] as 

“equivalent average inductance model” and derived as follows: 

Let VS be the voltage across the capacitor 

VS = Vm cosωt = Vm cos θ (4.1) 

VS − L
dIL
dt

= 0 
(4.2) 

 

σ α 
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L

C IS
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VC    is sinusoidal 
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iL(t) =  
1

ωL
 ∫VS 

(4.3) 

=
1

ωL
∫VS cos θ dθ 

(4.4) 

iL(t) =  
1

ωL
 (VS sin θ) + C 

(4.5) 

Since at θ = α and i(α) = 0, where α is firing angle 

iL(α) =  
1

ωL
 (VS sin α) + C = 0 

(4.6) 

C =  −
1

ωL
 (VS sin α) 

(4.7) 

Therefore,        

iL(t) =  
Vm

ωL
 (sin θ − sin α) 

(4.8) 

Fundamental component of iL is given by 

    iLfunda =
2

π
∫ iL sin θ dθ 

(4.9) 

iL funda = 
2

π
∫

Vm

ωL

π

0

 (sin θ − sin α) sin θ dθ 
(4.10) 

iL funda = 
2

π
∫

Vm

ωL

π−α

α

 (sin θ − sin α) sin θ dθ 
(4.11) 

iL funda = 
2

π

Vm

ωL
[∫ (sin θ − sin α)

π−α

α

 sin θ dθ] 
(4.12) 

iL funda = 
2

π

Vm

ωL
[∫ (sin θ sin θdθ − sin θ sin αdθ)

π−α

α

] 
(4.13) 

iL funda = 
2

π

Vm

ωL
[∫ (

(1 − cos 2θ)

2
 dθ− sin θ sin αdθ)

π−α

α

] 
(4.14) 

iL funda =
2

π

Vm

ωL
[
θ

2
−

sin 2θ

4
+ sin α cos θ]

α

π−α

 
(4.15) 
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iL funda =
2

π

Vm

ωL
[
π − α

2
−

α

2
−

sin 2(π − α)

4
+

sin 2α

4

+ sin α cos(π − α) − sin α cos(α)] 

(4.16) 

iL funda =
2

π

Vm

ωL
[
π

2
− α −

sin(2π − 2α)

4
+

sin 2α

4
− 2sin α cos(α)] 

(4.17) 

iL funda =
2

π

Vm

ωL
[
π

2
− α +

sin 2α

2
− sin 2α] 

(4.18) 

Therefore, 

iL funda =
Vm

ωL
[1 −

2α

π
−

sin 2α

π
] 

(4.19) 

Let ‘σ’ be the conduction angle,  

where      2π − 2α = σ (4.20) 

⟹ (
2π − σ

2
)  =  α 

(4.21) 

Substituting equation (4.21) in equation (4.19). We get, 

iL funda =
Vm

ωL
[1 −

2
(π − σ)

2
π

−
sin 2

(π − σ)
2

π
] 

(4.20) 

iL funda =
Vm

ωL
[1 −

(π − σ)

π
−

sin(π − σ)

π
] 

(4.21) 

 

iL funda =
Vm

ωL
[1 − 1 +

σ

π
−

sin σ

π
] 

(4.22) 

iL funda =
Vm

ωL
[
σ − sin σ

π
] 

(4.23) 
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    Hence effective fundamental impedance is 

XL(σ) =
|VS|

|iL funda|
=

|Vm|

|
Vm

ωL| [
σ − sin σ

π ]
 

(4.24) 

XL(σ) = XL

π

σ − sin σ
 

(4.25) 

   Because the effective fundamental impedance (XL(σ)) is in parallel with the capacitor 

impedance (XC) and in series with the line inductance (Xline), the effective fundamental 

impedance assuming the 1st order approximation, X(sigma-1) or X(Xline, XL, XC)| is given 

by  

jX(sigma−1) = jX(Xline, XL, XC)ǀσ−1 = (jXL

π

σ − sin σ
||(−jXC)) + jXline 

(4.26) 

It may be verified that, when  = , 

jX(Xline, XL, XC)ǀσ−1 ≅ jXL||(−jXC) + jXline (4.27) 

and when  = 0, 

jX(Xline, XL, XC)ǀσ−1 ≅ −jXC + jXline (4.28) 

4.4. 2nd Order Approximation 

   Although the expression (4.26) accurately confirms with the boundary conditions (4.27) 

and (4.28), it has been shown in [10] that the capacitor voltage does indeed contain 

harmonic content, specifically during the conduction period of thyristors as shown in 

FIGURE 4.4. 

   This phenomenon introduces an error in calculating fundamental effective impedance 

X(Xline, XL, XC)|σ of this circuit over the operating range of conduction angle (σ). 

Furthermore, this also leads to anomalies in determining the region of resonance for the 

L-C parallel circuit. To resolve these issues, a 2nd order approximation has been presented 
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[10], [11] by assuming that the current in the transmission line is sinusoidal and devoid of 

any harmonic components. This leads to construction of a second order cross-coupled 

differential equation [11], the solution for which has been derived as follows: 

Let the fundamental current in the power line be given by, 

Is = Im sinωt      (4.30) 

 

FIGURE 4.4: Operating waveforms for 2nd order approximation towards derivation of fundamental 

impedance of ePFC 

 

 

FIGURE 4.5: Equivalent circuit of ePFC using 2nd order approximation 

 

When thyristor switches are open, entire line current flows through the capacitor. Hence  

C
dVC

dt
= Is 

(4.31) 

dVC

dt
=

1

C
Is 

(4.32) 
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VC =
1

C
∫ Im sinωt dt 

(4.33) 

VC = −
1

ωC
Im cosωt 

(4.34) 

Thus VC can be expressed as 

VC = −
1

ωC
Im cosωt 

(4.35) 

where                       

 K= −
1

ωC
Im (4.36) 

  This is the expression for VC during the interval ωt = (0,
π

2
−

σ

2
) 

To find VC at ωt =
π

2
−

σ

2
 

 VC(
π

2
−

σ

2
) =

1

C
∫ Im sinωt dt

π

2
−

σ

2
0

 
(4.37) 

VC(
π

2
−

σ

2
) =

1

ωC
Im(1 − sin

σ

2
) 

(4.38) 

When thyristor switches are closed, current is distributed between inductor and capacitor. 

Hence, 

Is = C
dVC

dt
+ IL 

(4.39) 

C
dVC

dt
= Is − IL 

(4.40) 

C
d2VC

dt2
=

dIs
dt

−
dIL
dt

 
(4.41) 

C
d2VC

dt2
=

dIs
dt

−
VC

L
 

(4.42) 
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d2VC

dt2
+ 

1

LC
VC =

1

C

dIs
dt

 
(4.45) 

d2VC

dt2
+ 

1

LC
VC =

1

C
ωIm cosωt 

(4.46) 

rewriting, 

d2VC

dt2
+ ω0

2VC =
1

C
ωIm cosωt 

(4.47) 

  where                     
ω0 =

1

√LC
 

(4.48) 

Let the solution of this differential equation be, 

VC = C1 sinω0t + C2 cosω0t + A cosωt (4.49) 

ω0
2VC = C1ω0

2 sinω0t + C2ω0
2 cosω0t + Aω0

2 cosωt (4.50) 

dVC

dt
= C1ω0 cosω0t − C2ω0 sinω0t − Aω sinωt 

(4.51) 

d2VC

dt2
= −C1ω0

2 sinω0t − C2ω0
2 cosω0t − Aω2 cosωt 

(4.52) 

d2VC

dt2
+ ω0

2VC = A(ω0
2 − ω2) cosωt 

(4.53) 

Hence,                       A(ω0
2 − ω2) cosωt =

1

C
ωIm cosωt (4.54) 

Therefore    
A =

1

C

ω

ω0
2 − ω2

Im 
(4.55) 

Thus the solution for Vc is, 

   
VC = C1 sinω0t + C2 cosω0t +

1

C

ω

ω0
2 − ω2

Im cosωt 
(4.56) 

As determined earlier, at ωt =
π

2
−

σ

2
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VC(

π

2
−

σ

2
) =

1

ωC
Im(1 − sin

σ

2
) 

(4.57) 

and at ωt =
π

2
   

   VC(
π

2
) = 0 (4.58) 

So now, at ωt =
π

2
−

σ

2
 

   VC(
π

2
−

σ

2
) = C1 sin

ω0

ω
(
π

2
−

σ

2
) + C2 cos

ω0

ω
(
π

2
−

σ

2
)

+
1

C

ω

ω0
2 − ω2

Im cos(
π

2
−

σ

2
) 

(4.59) 

   VC (
π

2
−

σ

2
) = C1 sin

ω0

ω
(
π

2
−

σ

2
) + C2 cos

ω0

ω
(
π

2
−

σ

2
)

+
1

C

ω

ω0
2 − ω2

Im sin
σ

2
=

1

ωC
Im(1 − sin

σ

2
) 

(4.60) 

Thus 

   
C1 sin

ω0

ω
(
π

2
−

σ

2
) + C2 cos

ω0

ω
(
π

2
−

σ

2
) =

1

ωC
Im(1 −

ω0
2

ω0
2 − ω2

sin
σ

2
) 

(4.61) 

Also, at ωt =
π

2
 

   Vc (
π

2
) = C1 sin

ω0

ω

π

2
+ C2 cos

ω0

ω

π

2
= 0 (4.62) 

Thus                               

C1 = −C2

cos
ω0

ω
π
2

sin
ω0

ω
π
2

 

(4.63) 

Substituting, 

−C2

cos
ω0
ω

π

2

sin
ω0
ω

π

2

sin
ω0

ω
(
π

2
−

σ

2
) + C2 cos

ω0

ω
(
π

2
−

σ

2
) =

1

ωC
Im(1 −

ω0
2

ω0
2−ω2 sin

σ

2
)  

(4.64) 
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C2 =
1

ωC
Im(1 −

ω0
2

ω0
2−ω2

sin
σ

2
)

sin
ω0
ω

π

2

sin
ω0
ω

σ

2

  
(4.65) 

C1 = −
1

ωC
Im(1 −

ω0
2

ω0
2 − ω2

sin
σ

2
)
cos

ω0

ω
π
2

sin
ω0

ω
σ
2

 
(4.66) 

Therefore, 

   
VC = −

1

ωC
Im(1 −

ω0
2

ω0
2−ω2

sin
σ

2
)

cos
ω0
ω

π

2

sin
ω0
ω

σ

2

sinω0t +
1

ωC
Im(1 −

ω0
2

ω0
2−ω2

sin
σ

2
)

sin
ω0
ω

π

2

sin
ω0
ω

σ

2

cosω0t +
1

C

ω

ω0
2−ω2

Im cosωt  
(4.67) 

This is the expression for VC during the interval ωt = (
π

2
−

σ

2
,
π

2
) 

To find fundamental component of VC, which is 

VC = Kcosωt during ωt = (0,
π

2
−

σ

2
), and 

VC = C1 sinω0t + C2 cosω0t + A cosωt during, ωt = (
π

2
−

σ

2
,
π

2
),    

 Let  VC = Mcosωt (4.68) 

where VC = Mcosωt (4.69) 

M =
4

π
∫ VC cosωt dt

π
2
−

σ
2

0

+
4

π
∫ VC cosωt dt

π
2

π
2
−

σ
2

 

M =
4

π
∫ Kcosωt cosωt dt

π
2
−

σ
2

0

+
4

π
∫ [C1 sinω0t + C2 cosω0t + A cosωt] cosωt dt

π
2

π
2
−

σ
2

 
(4.70) 

M =
4

π
K∫ cosωt cosωt dt

π

2
−

σ

2
0

+
4

π
C1 ∫ sinω0t cosωt dt

π

2
π

2
−

σ

2

+
(4.71) 
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4

π
C2 ∫ cosω0t cosωt dt

π

2
π

2
−

σ

2

+
4

π
A∫ cosωt cosωt dt

π

2
π

2
−

σ

2

  

M =
2

π
K∫ [1 + cos 2ωt]dt

π

2
−

σ

2
0

+
2

π
C1 ∫ [sin(ω0 + ω)t + sin(ω0 − ω)t]dt

π

2
π

2
−

σ

2

+

2

π
C2 ∫ [cos(ω0 + ω)t + cos(ω0 − ω)t] dt

π

2
π

2
−

σ

2

+
2

π
A∫ [1 + cos 2ωt]dt

π

2
π

2
−

σ

2

  
(4.72) 

M =
1

ωπ
K[π − σ + sin σ] +

2

π
C1 ∫ [sin(ω0 + ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C1 ∫ [sin(ω0 − ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C2 ∫ [cos(ω0 + ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C2 ∫ [cos(ω0 − ω)t] dt

π
2

π
2
−

σ
2

+
1

ωπ
A[σ − sin σ] 

(4.73) 

 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} +

2

π
C1 ∫ [sin(ω0 + ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C2 ∫ [cos(ω0 + ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C1 ∫ [sin(ω0 − ω)t]dt

π
2

π
2
−

σ
2

+
2

π
C2 ∫ [cos(ω0 − ω)t] dt

π
2

π
2
−

σ
2

 
(4.74) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} +

2

(ω0 + ω)π
{−C1 cos

ω0 + ω

ω

π

2

+ C1 cos
ω0 + ω

ω

π − σ

2
+ C2 sin

ω0 + ω

ω

π

2

− C2 sin
ω0 + ω

ω

π − σ

2
} +

2

(ω0 − ω)π
{−C1 cos

ω0 − ω

ω

π

2

+ C1 cos
ω0 − ω

ω

π − σ

2
+ C2 sin

ω0 − ω

ω

π

2

− C2 sin
ω0 − ω

ω

π − σ

2
} 

(4.75) 
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M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

ωpπ
{C1 cos

ωp

ω

π

2

− C1 cos
ωp

ω

π − σ

2
− C2 sin

ωp

ω

π

2
+ C2 sin

ωp

ω

π − σ

2
}

−
2

ωnπ
[C1 cos

ωn

ω

π

2
− C1 cos

ωn

ω

π − σ

2
− C2 sin

ωn

ω

π

2

+ C2 sin
ωn

ω

π − σ

2
] 

(4.76) 

where ωp = ω0 + ω and ωn = ω0 − ω 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]}

+
4

ωpπ
sin

ωp

ω

σ

4
{C1 sin

ωp

ω

2π − σ

4
+ C2 cos

ωp

ω

2π − σ

4
}

+
4

ωnπ
sin

ωn

ω

σ

4
[C1 sin

ωn

ω

2π − σ

4
+ C2 cos

ωn

ω

2π − σ

4
] 

 

 

 

 

 

(4.77) 

C2 =
1

ωC
Im (1 −

ω0
2

ω0
2 − ω2

sin
σ

2
)

sin
ω0

ω
π
2

sin
ω0

ω
σ
2

= D
sin

ω0

ω
π
2

sin
ω0

ω
σ
2

 

 

(4.78) 

  

C1 = −
1

ωC
Im (1 −

ω0
2

ω0
2 − ω2

sin
σ

2
)

cos
ω0

ω
π
2

sin
ω0

ω
σ
2

= −D
cos

ω0

ω
π
2

sin
ω0

ω
σ
2

 

 

(4.79) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} +

4

ωpπ
D

sin
ωp

ω

σ

4

sin
ω0
ω

σ

2

{− cos
ω0

ω

π

2
sin

ωp

ω

2π−σ

4
+ sin

ω0

ω

π

2
cos

ωp

ω

2π−σ

4
} +

4

ωnπ
D

sin
ωn
ω

σ

4

sin
ω0
ω

σ

2

{− cos
ω0

ω

π

2
sin

ωn

ω

2π−σ

4
+ sin

ω0

ω

π

2
cos

ωn

ω

2π−σ

4
}  

 

 

 

(4.80) 
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M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} +

4

ωpπ
D

sin
ωp

ω

σ

4

sin
ω0
ω

σ

2

{sin
ω0

ω

π

2
−

ωp

ω

2π−σ

4
} +

4

ωnπ
D

sin
ωn
ω

σ

4

sin
ω0
ω

σ

2

{sin
ω0

ω

π

2
−

ωn

ω

2π−σ

4
}  

 

 

 

(4.81) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

4

ωpπ
D

sin
ωp

ω
σ
4

sin
ω0

ω
σ
2

cos
ωp

ω

σ

4

+
4

ωnπ
D

sin
ωn

ω
σ
4

sin
ω0

ω
σ
2

cos
ωn

ω

σ

4
 

 

 

 

(4.82) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

ωpπ
D

sin
ωp

ω
σ
2

sin
ω0

ω
σ
2

+
2

ωnπ
D

sin
ωn

ω
σ
2

sin
ω0

ω
σ
2

 

 

 

 

(4.83) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

πsin
ω0
ω

σ

2

D[
sin

ωp

ω

σ

2

ωp
−

sin
ωn
ω

σ

2

ωn
]  

(4.84) 

 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

πsin
ω0
ω

σ

2

D[
ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2

ω0
2−ω2

]  

 

(4.85) 

M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

πsin
ω0
ω

σ

2

1

ωC
Im (1 −

ω0
2

ω0
2−ω2 sin

σ

2
) (

ωn sin
ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2

ω0
2−ω2 )  

 

 

(4.86) 
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M =
1

ωπ
{K[π − σ + sin σ] + A[σ − sin σ]} −

2

π sin
ω0
ω

σ

2

1

ωC
Im

(ω0
2−ω2−ω0

2 sin
σ

2
)(ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2
)

(ω0
2−ω2)2

  

 

(4.87) 

 

M =
1

ωπ
{−

1

ωC
Im[π − σ + sin σ] +

1

C

ω

ω0
2−ω2 Im[σ − sin σ]} −

2

π sin
ω0
ω

σ

2

1

ωC
Im

(ω0
2−ω2−ω0

2 sin
σ

2
)(ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2
)

(ω0
2−ω2)2

  

 

 

 

(4.88) 

 

M =
Im

πωC
{−

1

ω
[π − σ + sin σ] +

ω

ω0
2−ω2

[σ − sin σ] −

2

sin
ω0
ω

σ

2

(ω0
2−ω2−ω0

2 sin
σ

2
)(ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2
)

(ω0
2−ω2)2

}  

 

 

 

(4.89) 

M =
Im

πωC
{−

π

ω
+

ω0
2

ω0
2−ω2

[σ − sin σ] −

2

sin
ω0
ω

σ

2

(ω0
2−ω2−ω0

2 sin
σ

2
)(ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2
)

(ω0
2−ω2)2

}                                                   

 

 

 

(4.90) 

Thus, fundamental component of voltage VC is 

VCfunda =
Im

πωC
{−

π

ω
+

ω0
2

ω0
2−ω2

[σ − sin σ] −

2

sin
ω0
ω

σ

2

(ω0
2−ω2−ω0

2 sin
σ

2
)(ωn sin

ωp

ω

σ

2
−ωp sin

ωn
ω

σ

2
)

(ω0
2−ω2)2

} cosωt  

 

 

(4.91) 

  

As stated, line current is 
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Is = Im sin ωt (4.92) 

Therefore, fundamental effective reactance of this circuit is 

jX(sigma−2) = jX(Xline, XL, XC)ǀσ−2 = jXC [1 +

2 

π
 

k2

k2−1
[
2cos(

σ

2
) cos(

σ

2
)

(k2−1)
(k (tan (k

σ

2
)) − tan

σ

2
) −

[sinσ+σ]

2
]] + jXline  

 

 

(4.94) 

 

      where                                                   k =
ω0

ω
 (4.95) 

            and           

ω0
2 =

1

LC
 

 

(4.96) 

It may again be verified that, when σ = π, 

jX(Xline, XL, XC)ǀσ−2 ≅ jXL||(−jXC) + jXline (4.97) 

and when σ = 0, 

jX(Xline, XL, XC)ǀσ−2 ≅ −jXC + jXline (4.98) 

   However, it may be observed that series insertion of ePFC affects the transmission line 

current as well. Thus, once an ePFC is inserted, this current is no longer sinusoidal, and 

contains elements of resonant components caused by switching of the thyristors. Hence, 

although expression (4.5) also confirms with the boundary conditions (4.8) and (4.9), this 

calls for a further extension of the analysis, where one can no longer assume the 

transmission line current to be sinusoidal. 
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4.5. Equivalent Fundamental Impedance of ePFC 

   To construct this mathematical problem, let us consider an equivalent circuit of the 

ePFC in compensation mode which now consists of sending voltage (Vline), line reactance 

(Lline), receiving voltage (Vline∠-𝜹), compensation reactances L and C. The schematic 

waveform as shown in FIGURE 4.6 and the equivalent circuit is shown in FIGURE 4.7.  

From the main diagram, under all conditions, we observe,    

 

FIGURE 4.6: Operating waveforms for 3rd order approximation towards derivation of fundamental 

impedance of ePFC 

 

FIGURE 4.7: Equivalent circuit of the proposed enhanced Power Flow Controller (ePFC) 

Under all conditions   

                                            ∆V = Vline cosωT − Vline cos(ωT − δ)   (4.99) 

 

a
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    ∆V = −2Vline sin
δ

2
sin(ωT −

δ

2
)                  (4.100) 

∆V = −A sinωt     (4.101) 

where     A = 2Vline sin
δ

2
      (4.102) 

and     ωt = ωT −
δ

2
      (4.103) 

For the circuit shown in FIGURE 4.2,  

                                        ∆V = Lline
dIs

dt
+ VC                      (4.104) 

This gives    −Asinωt = Lline
dIs

dt
+ VC                                           (4.105) 

When thyristors are open 

C
dVc

dt
= Is                     (4.106) 

Differentiating,   C
d2Vc

dt2
=

dIs

dt
                 (4.107) 

From (4.16)   C
d2Vc

dt2
= −

A

Lline
sinωt −

Vc

Lline
    (4.108) 

Rearranging,   
d2Vc

dt2
+ 

1

LlineC
Vc = −

A

LlineC
sinωt   (4.109) 

Solution for (4.20) is   Vc = F sinω1t + G cosω1t + H sinωt  (4.110) 

where    ω1
2 =

1

LlineC
      (4.110) 

Differentiating (4.21) twice 

   
d2Vc

dt2
= −ω2

1F sinω1t − ω2
1G cosω1t − ω2H sinωt          (4.111) 

Multiplying (4.21) by 
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   ω2
1Vc = ω2

1F sinω1t + ω2
1G cosω1t + ω2

1Hsinωt           (4.112) 

From (4.20), (4.23), (4.24)   

(ω2
1 − ω2)H sinωt = −

A

LlineC
sinωt  (4.113) 

So    H = −
A

LlineC

1

(ω2
1−ω2)

     (4.114) 

Thus    Vc = F sinω1t + G cosω1t −
A

LlineC

1

(ω2
1−ω2)

sinωt (4.115) 

Now, because of symmetry Vc (
−θ

ω
) = −Vc(

θ

ω
)     (4.116) 

Thus 

F sin(−
ω1

ω
θ) + G cos(−

ω1

ω
θ) −

A

LlineC

1

(ω2
1−ω2)

sin(−θ) = −F sin
ω1

ω
θ − G cos

ω1

ω
θ +

A

LlineC

1

(ω2
1−ω2)

sin θ  (4.117) 

This gives    G = 0       (4.118) 

Hence    Vc = F sinω1t −
A

LlineC

1

(ω2
1−ω2)

sinωt  (4.119) 

Now    IC = C
dVC

dt
      (4.120) 

From (4.30) and (4.31)  

 IC = ω1CF cosω1t −
ωA

Lline

1

(ω2
1−ω2)

cosωt  (4.121) 

However, because thyristors are open 

  IS = IC     (4.122) 

This leads to   IS = ω1CF cosω1t −
ωA

Lline

1

(ω2
1−ω2)

cosωt  (4.123) 

Hence state equations are Vc = F sinω1t + H sinωt    (4.124) 

and   IS = ω1CF cosω1t + ωCH cosωt    (4.125) 

where     H = −
A

LlineC

1

(ω2
1−ω2)

     (4.126) 
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When thyristors are closed 

C
dVc

dt
= Is − IL      (4.127) 

Differentiating,   

 C
d2Vc

dt2
=

dIs

dt
−

dIL

dt
     (4.128) 

From (4.16)   

 C
d2Vc

dt2
= −

A

Lline
sinωt −

Vc

Lline
−

dIL

dt
                (4.129) 

 C
d2Vc

dt2
= −

A

Lline
sinωt −

Vc

Lline
−

Vc

L
     (4.130) 

Rearranging,   

 
d2Vc

dt2
+ 

1

C
(

1

Lline
+

1

L
) Vc = −

A

LlineC
sinωt   (4.131) 

Solution for (4.42) is   

 Vc = P sinω2t + Q cosω2t − R sinωt   (4.132) 

where    ω2
2 =

1

C
(

1

Lline
+

1

L
)     (4.133) 

Differentiating (4.43) twice  

 
d2Vc

dt2
= −ω2

2P sinω2t − ω2
2Q cosω1t + ω2R sin ωt (4.134) 

Multiplying (4.46) by ω2
2   

  ω2
2Vc = ω2

2P sinω2t + ω2
2Q cosω2t − ω2

2R sinωt (4.135) 

From (4.45), (4.48), (4.49)  

(−ω2
2 + ω2)R sinωt = −

A

LlineC
sinωt   (4.136) 

So    R = +
A

LlineC

1

(ω2
2−ω2)

     (4.137) 

Thus   Vc = P sinω2t + Q cosω2t −
A

LlineC

1

(ω2
2−ω2)

sinωt  (4.138) 
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Inductor current (IL)  

    IL =
1

L
∫ VCdt

t
−σ

2ω

                     (4.139) 

From (4.52)   

IL =
1

L
∫ (P sinω2t + Q cosω2t −

A

LsC

1

(ω2
2−ω2)

sinωt)dt
t
−σ

2ω

 (4.140) 

Solving the integral  

IL =
1

L
(−

P

ω2
cosω2t +

Q

ω2
sinω2t +

A

ωLsC

1

(ω2
2−ω2)

cosωt +
P

ω2
cos

ω2

ω

σ

2
+

Q

ω2
sin

ω2

ω

σ

2
−

A

ωLsC

1

(ω2
2−ω2)

cos
σ

2
)                                     (4.141) 

Now     IL (
σ

2ω
) = 0                                 (4.142) 

Hence  

IL (
σ

2ω
) =

1

L
(−

P

ω2
cos

ω2

ω

σ

2
+

Q

ω2
sin

ω2

ω

σ

2
+

A

ωLsC

1

(ω2
2−ω2)

cos
σ

2
+

P

ω2
cos

ω2

ω

σ

2
+

Q

ω2
sin

ω2

ω

σ

2
−

A

ωLsC

1

(ω2
2−ω2)

cos
σ

2
) = 0                           (4.143) 

This gives    Q = 0       (4.144) 

Thus, from (4.52)  Vc = P sinω2t −
A

LsC

1

(ω2
2−ω2)

sinωt   (4.145) 

And, from (4.55) 

IL =
1

L
(−

P

ω2
cosω2t +

A

ωLsC

1

(ω2
2−ω2)

cosωt +
P

ω2
cos

ω2

ω

σ

2
−

A

ωLsC

1

(ω2
2−ω2)

cos
σ

2
) (4.146) 

Now    IC = C
dVC

dt
      (4.147) 

From (4.59) and (4.61) IC = ω2CP cosω2t −
ωA

Ls

1

(ω2
2−ω2)

cosωt  (4.148) 
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However, because thyristors are closed  

 IS = IC + IL    (4.149) 

Thus, from (4.60), (4.62), and (4.63) 

IS = ω2CP cosω2t −
ωA

Ls

1

(ω2
2−ω2)

cosωt +
1

L
(−

P

ω2
cosω2t +

A

ωLsC

1

(ω2
2−ω2)

cosωt +

P

ω2
cos

ω2

ω

σ

2
−

A

ωLsC

1

(ω2
2−ω2)

cos
σ

2
)                             (4.150) 

Simplifying 

IS = ω2CP cosω2t −
ωA

Ls

1

(ω2
2−ω2)

cosωt −
P

ω2

1

L
cosω2t +

A

ωLLsC

1

(ω2
2−ω2)

cosωt +

P

ω2

1

L
cos

ω2

ω

σ

2
−

A

ωLLsC

1

(ω2
2−ω2)

cos
σ

2
                             (4.151) 

IS = −( 
1

ω2L
− ω2C) P cosω2t + (−ω +

1

ωLC
)

1

(ω2
2−ω2)

A

Ls
cosωt +

P

ω2

1

L
cos

ω2

ω

σ

2
−

A

ωLLsC

1

(ω2
2−ω2)

cos
σ

2
                                         (4.152) 

IS = −(1 − ω2
2LC)

P

ω2L
cosω2t + (1 − ω2LC)

1

(ω2
2−ω2)

A

ωLLsC
cosωt +

P

ω2

1

L
cos

ω2

ω

σ

2
−

A

ωLLsC

1

(ω2
2−ω2)

cos
σ

2
                                         (4.153) 

IS = −(1 − ω2
2LC)

P

ω2L
cosω2t + (1 − ω2LC)

R

ωL
cosωt +

P

ω2

1

L
cos

ω2

ω

σ

2
−

R

ωL
cos

σ

2
 

                                                                                                                                    (4.154) 

IS = −((1 − ω2
2LC) cosω2t − cos

ω2

ω

σ

2
)

P

ω2L
+ ((1 − ω2LC) cosωt − cos

σ

2
)

R

ωL
 

                                                                                                                                    (4.155) 

Hence state equations are  

             Vc = P sinω2t − R sinωt                                       (4.156) 

and  
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 IS = −((1 − ω2
2LC) cosω2t − cos

ω2

ω

σ

2
)

P

ω2L
+ ((1 − ω2LC) cosωt − cos

σ

2
)

R

ωL
 (4.157) 

where     R =
A

LlineC

1

(ω2
2−ω2)

            (4.156) 

Equating capacitor voltages from (22) and (48) at  t =
σ

2ω
  

                  F sin
ω1

ω

σ

2
+ H sin

σ

2
= P sin

ω2

ω

σ

2
− Rsin

σ

2
              (4.158) 

Similarly, equating line currents from (4.37) and (4.71) at t =
σ

2ω
  

ω1CF cos
ω1

ω

σ

2
+ ωCH cos

σ

2
= −

P

ω2L
((1 − ω2

2LC) cos
ω2

ω

σ

2
− cos

ω2

ω

σ

2
) +

R

ωL
((1 −

ω2LC) cos
σ

2
− cos

σ

2
)               (4.159) 

ω1CF cos
ω1

ω

σ

2
+ ωCH cos

σ

2
= ω2CP cos

ω2

ω

σ

2
− ωCR cos

σ

2
                              (4.160) 

ω1F cos
ω1

ω

σ

2
+ ωHcos

σ

2
= ω2P cos

ω2

ω

σ

2
− ωR cos

σ

2
                         (4.161) 

Rearranging (4.73),  F sin
ω1

ω

σ

2
− P sin

ω2

ω

σ

2
= (−H − R) sin

σ

2
            (4.162) 

Rearranging (4.76), ω1F cos
ω1

ω

σ

2
− ω2P cos

ω2

ω

σ

2
= (−H − R)ωcos

σ

2
            (4.163) 

This is of the form 

[
K L
M N

] [
F
P
] = [

(−H − R) sin
σ

2

(−H − R)ω cos
σ

2

]    (4.164) 

where     K = sin
ω1

ω

σ

2
       (4.165) 

     L = −sin
ω2

ω

σ

2
      (4.166) 

     M = ω1 cos
ω1

ω

σ

2
      (4.167) 

     N = −ω2 cos
ω2

ω

σ

2
      (4.168) 

Solution of (4.78) is    [
F
P
] =

1

KN−ML
[

N −L
−M K

] [
(−H − R) sin

σ

2

(−H − R)ωcos
σ

2

]   (4.169) 
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Hence  

F =
1

−ω2 sin
ω1
ω

σ

2
 cos

ω2
ω

σ

2
+ω1 sin

ω2
ω

σ

2
 cos

ω1
ω

σ

2

(H + R) (ω2 sin
σ

2
cos

ω2

ω

σ

2
− ωcos

σ

2
sin

ω2

ω

σ

2
)

 (4.170) 

and   P = −
1

−ω2 sin
ω1
ω

σ

2
 cos

ω2
ω

σ

2
+ω1 sin

ω2
ω

σ

2
 cos

ω1
ω

σ

2

(H + R) (ω1 sin
σ

2
cos

ω1

ω

σ

2
+

ωcos
σ

2
sin

ω1

ω

σ

2
)                                                                                                (4.171) 

Thus, when thyristors are closed, 0 ≤ t ≤
σ

2ω
  

   Vc = P sinω2t − R sinωt     (4.172) 

 

and IS = −((1 − ω2
2LC) cosω2t − cos

ω2

ω

σ

2
)

P

ω2L
+ ((1 − ω2LC) cosωt − cos

σ

2
)

R

ωL
           

                                                                                                                                    (4.173) 

where     R = −
A

LlineC

1

(ω2
2−ω2)

      (4.174) 

and   P = −
1

−ω2 sin
ω1
ω

σ

2
 cos

ω2
ω

σ

2
+ω1 sin

ω2
ω

σ

2
 cos

ω1
ω

σ

2

(H + R) (ω1 sin
σ

2
cos

ω1

ω

σ

2
+

ωcos
σ

2
sin

ω1

ω

σ

2
)                                                                                                 (4.175) 

And when thyristors are open, i.e. 
σ

2ω
≤ t ≤

π

2ω
  

  Vc = F sinω1t + H sinωt                (4.176) 

and  IS = ω1CF cosω1t + ωCH cosωt                (4.177) 

where    H = −
A

LlineC

1

(ω2
1−ω2)

                 (4.178) 

and  F =
1

−ω2 sin
ω1
ω

σ

2
 cos

ω2
ω

σ

2
+ω1 sin

ω2
ω

σ

2
 cos

ω1
ω

σ

2

(H + R) (ω2 sin
σ

2
cos

ω2

ω

σ

2
− ωcos

σ

2
sin

ω2

ω

σ

2
) 

                                                                                                                             (4.179) 

Fundamental component of capacitor voltage is 
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    VCfunda =
4

π
∫ VC sin θ dθ

π

2
0

    (4.180) 

   VCfunda =
4

π
∫ VC sin θ dθ

σ

2
0

+
4

π
∫ VC sin θ dθ

π

2
σ

2

          (4.181) 

VCfunda =
4

π
∫ (P sin

ω2

ω
θ − R sin θ) sin θ dθ

σ

2
0

+
4

π
∫ (F sin

ω1

ω
θ + Hsin θ) sin θ dθ

π

2
σ

2

 (4.182) 

VCfunda =
4

π
∫ P sin

ω2

ω
θ sin θ dθ

σ

2
0

−
4

π
∫ R(sin θ)2dθ

σ

2
0

+
4

π
∫ F sin

ω1

ω
θ sin θ dθ

π

2
σ

2

+

4

π
∫ H(sin θ)2dθ

π

2
σ

2

                                                                                                 (4.183) 

VCfunda =
2

π
∫ P cos(
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Fundamental component of line current is 
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Finally, the equivalent fundamental impedance of enhanced Power Flow Controller 

(ePFC) is, 

jXePFC =
VCfunda

ISfunda
      (4.193) 

    

Therefore, the equation (4.193) gives a more generalized and complete expression of the 

effective fundamental impedance inserted by an ePFC. Furthermore, it may also be noted 

that, this same mathematical expressions is equally applicable in determining the 

fundamental impedance of other series FACTS devices such as Thyristor Controlled 

Switched Capacitor (TCSC). 

4.6. Comparison of Methods of Impedance Calculation 

   The proposed ePFC circuit is modeled with transmission system and compensation L 

and C parameters, Vline = 230kV,  =30o, Xline = 8.46Ω, XL = 152.3Ω, XC = 566Ω taken 

from [17]. FIGURE 4.8 presents comparison of analytical results for the effective 

equivalent impedance obtained by 1st order approximation, i.e. X(sigma-1) from equation 

(4.27), 2nd order approximation, i.e. X(sigma-2) from equation (4.94), and proposed 

approach, i.e. XePFC from equation (4.193). 

Table 4.2. Comparison between the effective fundamental impedance 

Conduction angle X(sigma-1) X(sigma-2) XePFC 

1 574.46 10.0 -50.0529 

20 579.22 590.35 618.3387 

40 614.14 596.7 565.5254 

60 729.00 845.96 973.9234 

80 1111.96 1002.546 918.9605 

100 5683.94 5483.96 -5325.49 

120 -1238.20 -1637.58 -1938.53 

140 -491.85 -394.04 -496.717 

160 -289.40 -226.19 -301.588 

180 -199.79 -208.68 -208.258 
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FIGURE 4.8: Comparison of effective fundamental impedance versus conduction angle, i.e. X ǀσ v/s σ, 

obtained by three approaches 

 

   As may be seen, not only the fundamental impedance is different over the operating 

range of conduction angle (σ), but also there is a difference in the resonance zone 

determined by three approaches. As shown in [17], resonance zone obtained by 

fundamental current model (2nd order approximation) is different from the fundamental 

voltage model (1st order approximation). The proposed model is close to this 2nd order 

approximation, however introduces a further correction in calculated impedance, 

accounting for line reactance as well. 

   Furthermore, one may also note that the proposed analysis method reveals that such 

systems exhibit two resonance zones. The first one (Resonance 1 in FIGURE 4.8) is 

similar to the two approaches documented in literature [17], [18] where the compensating 

capacitance has been known to resonate with compensating reactance. However, there is 

also an additional resonance (Resonance 2) between compensating capacitance and line 

reactance as illustrated in FIGURE 4.8. 
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   The proposed ePFC circuit equations are also modeled using Matlab. The effective 

fundamental impedance with conduction angle (σ) control is calculated for two sets of line 

inductance (Xline), compensation inductance (XL), and compensation capacitance (XC). 

Parameters for ePFC on transmission line:   

a. S3phase =100 MVA, Vline =230kV, 𝜹 =30o, Xline =8.46Ω, XL =152.3Ω, XC =566Ω. 

 

FIGURE 4.9: Effective fundamental impedance offered by Xline =8.46Ω, XL =152.3Ω, XC =566Ω  

System 

 

b. S3phase =100 MVA, Vline =230kV, 𝜹 =30o, Xline =0.0735Ω, XL =0.0735Ω, XC = 

1.77Ω [19]. 

 

FIGURE 4.10: Effective fundamental impedance offered by Xline =0.0735Ω, XL =0.0735Ω, XC = 
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1.77Ω system 

 

   FIGURE 4.9 and FIGURE 4.10 exhibit an additional resonance between 

compensating capacitance and line reactance. Thus, the proposed treatment based 

on the principle that only the end bus voltages are sinusoidal illustrates all 

associated harmonics generated by series injection of ePFC are absorbed in the 

transmission line itself. To further explain, the majority of the harmonic voltage 

drop occurs in the line and that the source impedance behind the bus is very small 

compared to the line impedance and thus has small harmonic voltage drops. This 

approach further generalizes the state of the art (2nd order approximation) model 

that has been employed to analyze series FACTS devices such as TCSC. The 

proposed ePFC analytical model is superior to the 2nd order approximation in 

terms of predicting an additional resonance zone.



 

 

   

 

 

 

CHAPTER 5 : MODELING AND SIMULATION RESULTS 

 

 

5.1. Introduction 

   This chapter describes the modeling of Distributed Series Reactance (DSR), Distributed 

Series Impedance (DSI) and proposed enhanced Power Flow Controller (ePFC) using 

MATLAB-Simulink. And also the simulation results of Distributed Series Reactance 

(DSR), Distributed Series Impedance (DSI) and enhanced Power Flow Controller (ePFC) 

are shown. The simulations are conducted for different modes of operation of DSR and 

DSI and also for various conduction angles (σ) of ePFC. The simulation results 

demonstrate the desired operation of the system, through different modes of operation. 

The obtained simulation results are compared with the mathematical calculations, 

presented in chapter 3. Finally, an overview of the model and the functional block 

diagram of the system is discussed in section 5.8.  

5.2. Modeling of Distributed Series Reactance  

   The Distributed Series Reactance (DSR) system is modelled in MATLAB-Simulink 

software [20]. The schematic of the DSR model is shown in FIGURE 5.1. As explained 

in the earlier chapter, DSR consists of a Single Turn Transformer (STT) where the 

transmission line itself acts as the primary winding. The secondary winding is connected  
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to back-to-back thyristors, which when closed creates a short circuit across the secondary 

winding thereby varying the effective reactance introduced into the power line. 

When switch S is open across the secondary winding, magnetizing reactance (Xmag) of 

the STT is injected into the circuit. Similarly, when switch S is closed across the 

secondary winding, leakage reactance (Xleak) of the STT is injected into the circuit. Thus, 

controlling the effective impedance on the line. 

   The simulation is performed in the MATLAB-Simulink software. The results obtained 

for different positions of the switch S are presented in the following Section 5.3. 

5.3. Simulated Results of Distributed Series Reactance 

   A single phase Distributed Series Reactor (DSR) circuit is modeled using Matlab-

Simulink. The transmission system parameters: Vr = Vs = 230kVL-L, S = 100 MVA, 𝜹 = 

30∘ lag, Xline= 8.46 Ω, Xleak= 0.033 Ω, Xmag = 162.11 Ω. From chapter 3 and FIGURE 3.5, 

it can be seen that DSR operates in two modes, depending upon the position of the switch 

S.  

   When switch S is open across the secondary winding, magnetizing reactance of the 

STT is injected into the circuit. This mode of operation is modelled in MATLAB-

SIMULINK and the current IS in the system is determine. FIGURE 5.2 shows the 

simulation results of a DSR when switch S is open. 
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FIGURE 5.2: Sending Voltage (Vs), Line Current (Is) and Receiving Voltage (Vr) in a DSR system with S 

open. 

 

   When switch S is closed across the secondary winding, leakage reactance of the STT is 

injected into the circuit. This mode of operation is modelled in MATLAB-SIMULINK 

and the current IS in the system is determine. FIGURE 5.3 shows the simulation results of 

a DSR when switch S is closed.  
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FIGURE 5.3: Sending Voltage (Vs), Line Current (Is) and Receiving Voltage (Vr) in a DSR system with S 

closed. 

 

   Table 5.1 presents comparison of analytical and simulation results. FIGURE 5.2 and 

FIGURE 5.3 shows the waveforms for the cases when switch S is open and closed 

respectively. It is observed that the analytical results and simulated results are in 

agreement. 

Table 5.1: Comparison of calculated and simulated parameters of single phase DSR system 

 

S  Xeff Calculated Current Simulated Current 

Open 170.6 Ω 
550.40 A  

570 A 

Closed 8.49 Ω 1.11e4 A 1.43e4 A 
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5.4. Modeling of Distributed Series Impedance 

   The Distributed Series Reactance (DSI) system is modelled in MATLAB-Simulink 

software [21]. The schematic of the DSI model is shown in FIGURE 5.4. As explained in 

the earlier chapter, a DSI is an extension of a DSR by adding an L-C impedance network 

to the secondary side of the transformer. In addition to the series connected STT and its 

switch S on the secondary side, inductor L and capacitor C are inserted along with their 

switches SL and SC respectively.   

A DSI operates in 3 modes of operation.  

1) Inductance (L) mode: - When switch S is open and switch SL is closed, injecting 

inductance L. 

2) Capacitance (C) mode:-When switch S is open and switch SC is closed, injecting 

capacitance C. 

3) Impedance (Z) mode: - When switch S is open and both switches SL and SC are 

closed, injecting impedance. 

   Thus, controlling the effective impedance on the line. The simulation is performed in 

the MATLAB-Simulink software. The results obtained for different positions of the 

switch S are presented in the following Section 5.5. 
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5.5. Simulation Results of Distributed Series Impedance  

 

   A single phase Distributed Series Impedance (DSI) circuit is modeled using Matlab-

Simulink. The transmission system parameters: Vr = Vs = 230kVL-L, S = 100 MVA, 𝜹 = 

30∘ lag, Xline= 8.46 Ω, Xleak= 0.033 Ω, Xmag = 162.11 Ω, XL = 152.3 Ω, XC = 566 Ω. From 

chapter 3 and FIGURE 3.9, it can be seen that DSI operates in three modes, depending 

upon the position of the switches S, SL and SC.  

   When switch S is open and switch SL is closed, the DSI injects inductance L and 

operates in “inductance (L) mode”. FIGURE 5.5 shows the simulation results of a DSI in 

inductance mode. 

 

FIGURE 5.5: Sending Voltage (Vs), Line Current (Is) and Receiving Voltage (Vr) in inductance-mode DSI 

system. 

   When switch S is open and switch SC is closed, the DSI injects capacitance C and 

operates into “capacitance (C) mode”. FIGURE 5.6 shows the simulation results of a DSI 

in capacitance mode. 
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FIGURE 5.6: Sending Voltage (Vs), Line Current (Is) and Receiving Voltage (Vr) in capacitance-mode DSI 

system. 

When switch S is open and both switches SL and SC are closed, the DSI injects 

impedance and operates into “impedance (Z) mode”.  
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FIGURE 5.7: Sending Voltage (Vs), Line Current (Is) and Receiving Voltage (Vr) in impedance -mode DSI 

system. 

   Table 5.2 presents comparison of analytical and simulation results. FIGURE 5.5, 

FIGURE 5.6. and FIGURE 5.7 show the waveforms for the inductance, capacitance and 

impedance modes respectively. It is observed that the simulation and analytical results 

are in agreement 

Table 5.2: Comparison of calculated and simulated parameters of single phase DSI system 

Mode Xeff Calculated Current Simulated Current 

Inductance 160.79 Ω 583.96 A 676.4 A 

Capacitance -557.50 Ω 168.42 A 97.02 A 

Impedance 216.45 Ω 449.11 A 534.8 A 

5.6. Modeling of enhanced Power Flow Controller 
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   The proposed enhanced Power Flow Controller (ePFC) system is modelled in 

MATLAB-Simulink software [23]. The schematic of the ePFC model is shown in 

FIGURE 5.8. 

   As explained, an ePFC consists of a DSI with thyristor conduction angle control. The 

back to back thyristor switches operate on synthesized triggers, by the firing angle pulses 

with respect to the conduction angle (σ). The operation of these switches (in discrete 

steps), when connected to the compensator L and C, inserts a wide range of impedances 

in combination with the line inductance Lline.  Therefore, the effective impedance on the 

line can be used effectively to control the power flow on the transmission system.  

   The model described in this chapter is used to simulate the enhanced Power Flow 

Controller (ePFC) system with impedance control strategy. The simulation is performed 

in MATLAB-Simulink software. The results obtained from these simulations are 

presented in the following section 5.7. 
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5.7. Simulation Results of enhanced Power Flow Controllers 

   A single phase enhanced Power Flow Controller (ePFC) circuit is modeled using 

Matlab-Simulink. The transmission system parameters: Vr = Vs = 230kVL-L, S = 100 

MVA, 𝜹 = 30∘ lag, Xline= 8.46 Ω, Xleak= 0.033 Ω, Xmag = 162.11 Ω, XL = 152.3 Ω, XC = 566 

Ω. From chapter 4 and FIGURE 4.1, it can be seen that ePFC operates as a function of 

conduction angle (σ). Depending upon the angle of conduction in combination with XC 

and Xline, ePFC primarily operates in 3 regions. 

   When conduction angle (σ) is operating before resonance. This mode of operation is 

modelled in MATLAB-SIMULINK and the current IS in the system is determine. 

FIGURE 5.9 shows the simulation results of an ePFC in inductive region. 

 

FIGURE 5.9: Capacitor Voltage (Vc), Line Current (Is) in inductive-region ePFC system. 
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   When conduction angle (σ) is operating after resonance. This mode of operation is 

modelled in MATLAB-SIMULINK and the current IS in the system is determine. 

FIGURE 5.10 shows the simulation results of an ePFC in capacitive region. 

 
 

FIGURE 5.10: Capacitor Voltage (Vc), Line Current (Is) in capacitive-region ePFC system. 

   When conduction angle (σ) is operating in resonance. This mode of operation is 

modelled in MATLAB-SIMULINK and the current IS in the system is determine. 

FIGURE 5.11 shows the simulation results of an ePFC in resonance region. 
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FIGURE 5.11: Capacitor Voltage (Vc), Line Current (Is) in resonance-region ePFC system. 

 FIGURE 5.9, FIGURE 5.10 and FIGURE 5.11 show the waveforms for the inductive, 

capacitive and resonance regions respectively. 

5.8. Block Diagram Representation of ePFC 

   As explained in the previous section, the proposed ePFC consist of a Distributed 

Series Impedance (DSI) with a thyristor based conduction angle (σ) control. The system 

primary functionality, to control the power flow is achieved by continuously varying the 

impedance on the transmission line. The functional block diagram is illustrated in 

FIGURE 5.12.  
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FIGURE 5.12: Functional block diagram of the proposed ePFC system 

 

   As depicted in the FIGURE 5.12, a control strategy to direct power flow is obtained by, 

measuring a reference power (P*
ref) with respect to the bus voltages V1, V2 and phase 

angle (𝜹). The new effective impedance (Xref) is calculated from the reference power 

(P*
ref), bus voltages V1, V2 and phase angle (𝜹). Thus, the required conduction angle (σ*) 

as a function of effective impedance (Xref), compensator reactance (XL), capacitance (XC) 

and line inductance (Xline) is obtained from the look-up table. In turn, a required firing 

pulse is generated to trigger the switches of the ePFC system. This is accomplished by 

computing the firing angle (α*) with the respective conduction angle (σ*). Therefore by 

varying the firing angle of the thyristors, which in effect varies the equivalent impedance 

of the ePFC system and enables to control the power flow on the transmission line.  

 

 

 

 

Xref  =  V1 V2 sin  

P
*
ref

σ
*
=

f 
-1

(XL,XC,XePFC,Xline)

XrefP
*
ref

V1

V2

  

XL

XC

Xline

σ
*

α 
*

α 
* 
=  π - σ

*
/2

Thyristor Firing 

Angle ePFC



 

 

   

 

 

 

CHAPTER 6 : STABILITY ANALYSIS OF EPFC 

 

 

6.1. Introduction 

    In this chapter, the aspect of stability in ideal enhanced Power Flow Controller (ePFC) 

is discussed. The chapter includes useful simplifications in computing stability of the 

nonlinear dynamical systems. Thyristors constrain their currents to zero when they are 

off. This important constraint is accounted for by changing the state space dimension as 

thyristors, switch on and off. The inhibition of thyristor turn on until a firing pulse is 

present has a significant effect on the system dynamics. 

   The stability of the ePFC system is determined using Poincaré map. The Poincaré map 

is a standard tool from dynamical systems theory to study the dynamics of periodic 

systems [23, 24]. In this case, the stability of the periodic orbit is usually determined by 

the Jacobian and particularly by the eigenvalues. If all the eigenvalues of lie inside the 

unit circle of the complex plane, then the periodic orbit is asymptotically stable. This 

stability result applies generally to conventional smooth nonlinear systems. Section 6.2 

describes the ePFC system, followed by the determination of state equations and Poincaré 

Map in the subsequent sections. Finally, the stability of the proposed ePFC system is 

given by the eigen values of the Jacobian. The results are simulated.  
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6.2. System Description 

   A simplified schematic of an enhanced Power Flow Controller (ePFC) [25] is shown in 

FIGURE 6.1. This system consists of sending end voltage (Vline), receiving end voltage 

(Vline∠-δ), line reactance (Ls) and compensation reactances L and C. The switching 

element of the ePFC consists of two back to back thyristors which conduct on alternate 

half cycles of the supply voltage. The thyristors are assumed to be ideal switches and any 

turn on/off time lags or switching losses are ignored. The firing pulses for both thyristors 

are assumed to be supplied periodically at their respective gates. 

 

FIGURE 6.1: Simplified circuit schematic of the proposed enhanced Power Flow Controller (ePFC). 

6.3. Dynamic State Equations 

   As may be seen from FIGURE 6.1, there are two modes of operation for the back-to-

back connected thyristor switch, S, closed and open. Also, the number of states of the 

system is different in these two modes. Hence, we obtain two sets of state equations for 

the entire ePFC system. 
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FIGURE 6.2: Simplified schematic of the equivalent ePFC system when back-to-back thyristor switch is 

closed. 

   First let us consider the case when the switch is closed. The equivalent ePFC system is 

as shown in FIGURE 6.2.  

The state equations are 

         
dIL

dt
=

1

L
VC                                                            (6.1) 

               
dVc

dt
=

1

C
Is −

1

C
IL                                                  (6.2) 

         
dIs

dt
=

1

Ls
∆V −

1

Ls
Vc                                                (6.3) 

where                        ∆V = −2 Vline sin
δ

2
 sinωt                                                       (6.4) 

This is of the form, 

                 
dx

dt
= Aclosedx + Bclosedu                                         (6.5)        

where,                                       x = [
IL
VC

IS

]                                                                (6.6) 

Aclosed = 

[
 
 
 
 0

1

L
0

−1

C
0

1

C

0
−1

LS
0]
 
 
 
 

                                               (6.7) 
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  Bclosed = [

0
0
1

LS

]                                                               (6.8) 

and                            u =  [∆V]                                                                    (6.9) 

   Similarly, when the thyristor switch, S, is open, ePFC system reduces to the circuit as 

shown in FIGURE 6.3. Now the state equations are, 

             
dVc

dt
=

IS

C
                                                              (6.10) 

        
dIs

dt
=

1

Ls
∆V −

1

Ls
Vc                                               (6.11) 

 

FIGURE 6.3: Simplified schematic of the equivalent ePFC system when back-to-back thyristor switch is 

open 

This is of the form, 

                                
dy

dt
= Aopeny + Bopenu                                       (6.12) 

where,                       y = [
VC

IS
]                                                            (6.13) 

  Aopen = [
0

1

C
−1

LS
0
]                                                        (6.14) 

  Bopen = [
0
1

LS

]                                                               (6.15) 

and                               u =  [∆V]                                                             (6.16) 

 

Xline

Vline Vline<-XC

IS

IC

VC

DV
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6.4. Projection Matrix 

   Thus we have two sets of state equations as given in equations (6.5) and (6.12) and 

their solutions are interdependent. That means, the states for the case when the switch is 

closed are dependent on the states for the case when the switch is open and vice versa. 

Hence, in order to assist in the analysis, the states in these two cases are related by a 

matrix termed as projection matrix. The equation (6.12) can be expressed as 

                         
dy

dt
= πAclosedπ

Ty + πBclosedu                                       (6.17) 

where,                         π =  [
0 1 0
0 0 1

]                                                            (6.18) 

This π is called the projection matrix. 

 

FIGURE 6.4: Poincaré map fp 

Table 6.1: State Description of ePFC 

    

     As shown in Table 6.1, the system parameters at a particular instance of time can be 

described by the respective states in that particular time slot. The interdependence of the 

states can be expressed with the projection matrix as follows, 

The state at the instance when switch S closes Φ0,                

 
open closed

Φ0 τ0 τ1/2Φ1/2 Φ1

open openclosed

s1 s2 s3

t0

y0

t1=t0+T

fp(y0)

From To Switch ‘S’ State Matrices 

Φ0 τ0 Closed x Aclosed, Bclosed 

τ0 Φ1/2 Open y πAclosedπ
T, πBclosed 

Φ1/2 τ1/2 Closed x Aclosed, Bclosed 

τ1/2 Φ1 Open y πAclosedπ
T, πBclosed 
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                                       x(Φ0) =  πTy(Φ0)                                        (6.19) 

The state at the instance when switch S opens τ0,          

                                y(τ0) = πx(τ0)                                           (6.20)  

6.5. Poincaré Mapping 

The Poincaré mapping fp is defined as, 

                    fp = fp[initial state, tinitial, tfinal]                                 (6.21) 

Thus, required 

             y(Φ1) = fp[y(Φ0),Φ0, Φ1]                                       (6.22) 

   Now, one can map the state parameters to the instance τ0with the knowledge of the 

state at Φ0 using this kind of Poincaré mapping. From Table 6.1 and FIGURE 6.4, state x 

is given by 

              x(τ0) =  fclosed[x(Φ0), Φ0, τ0]                            (6.23) 

Substituting for x(Φ0) from equation (6.19) 

        x(τ0) =   fclosed[π
Ty(Φ0),Φ0, τ0]                      (6.24) 

Also, from FIGURE 6.4 and Table 6.1, state y is given by, 

 

               y(Φ1/2) =  fopen[y(τ0), τ0, Φ1/2 ]                            (6.25) 

Substituting for y(τ0) from equation (6.20) 

               y(Φ1/2) =  fopen[πx(τ0), τ0, Φ1/2]               (6.26) 

From equation (6.24), inserting value for x(τ0) 
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    y(Φ1/2) =  fopen[πfclosed[π
Ty(Φ0),Φ0, τ0], τ0, Φ1/2 ]           (6.27) 

Because it is half the period, y(Φ1/2) can also be denoted as 

           y(Φ1/2) = fp−half[y(Φ0),Φ0, Φ1/2 ]                     (6.28) 

Hence, to map y(Φ0) to y(Φ1/2), required Poincaré map for the half cycle, fp−half is, 

               fp−half = fopenπfclosedπ
T                                    (6.29) 

Now, to find (Φ1), 

   y(Φ1) =  fp[y(Φ0),Φ0, Φ1]                                           (6.30) 

   y(Φ1) =   fp−half[y(Φ1/2),Φ1/2, Φ1]                             (6.31) 

From (6.28) and (6.29), 

y(Φ1) =    fp−half[fopen[πfclosed[π
Ty(Φ0), Φ0, τ0], τ0, Φ1/2],Φ1/2, Φ1]        (6.32) 

 y(Φ1) =     fp−half[fp−half[y(Φ0),Φ1/2, Φ1]]                       (6.33) 

 y(Φ1) =  fopenπfclosedπ
Tfopenπfclosedπ

T[y(Φ0),Φ1/2, Φ1]             (6.34) 

Hence, to map y(Φ0) to y(Φ1), the required Poincaré map for the entire full cycle fp is 

fp = fopenπfclosedπ
Tfopenπfclosedπ

T                                     (6.35) 

   The physical equivalence of the Poincaré mapping can be described as sampling of the 

states after a definite period of time. So, if the system is periodic and has the time period 

T (as the ePFC system under consideration has), the Poincaré map would be a single 

point.  
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6.6. Stability Analysis 

   As described in the last section, the Poincaré map of a periodic system reduces to a 

point. So, the stability of such a system can be evaluated by analyzing the stability of that 

point. To determine this stability, the Jacobian of the Poincaré map with respect to the 

state is obtained and its Eigen values are inspected. If all the Eigen values fall within the 

unit circle on the complex plane, then the system is said to be asymptotically stable [15]. 

   To derive the Jacobian of a periodic orbit, let us divide one period into subintervals. 

Each interval contains one thyristor switching which advances the state from the 

beginning to the end and then the chain rule is used to compute the Jacobian of the 

Poincaré map. It is assumed that there are no thyristor misfires, within the interval of 

interest. 

   For Interval containing a switch on, let [s2,s3] be a time interval which includes a 

thyristor switch closing event at time ϕ1/2 and no other switching. Therefore the final state 

x(s3) from y(s2) is given by 

x(s3) =  fs3,s2
(y(s2))                                            (6.36) 

the thyristor switch S is open in [s2, ϕ1/2], which yields 

y(Φ1/2) =  fΦ1/2,s2

open
(y(s2)) = eAopen(Φ1/2−s2) (y(s2) + ∫ eAopen(s2−s)Bopen u(s))ds

Φ1/2

s2
                                      

(6.37) 

the thyristor switch S is closed in [ϕ1/2, s3], 



98 

fs3,s2
(y(s2)) =  fs3,Φ1/2

closed (x(Φ1/2)) = eAclosed(s2−Φ1/2) πTy(Φ1/2) +

 ∫ eAclosed(s3−s)Bclosed u(s)ds
s3

Φ1/2
                                                                                (6.38) 

Substituting (6.37) in (6.38), we get 

 fs3,s2
(y(s2)) =  gs3,s2

(y(s2),Φ1/2)                                     (6.39) 

= eAclosed(s2−Φ1/2) πTeAopen(Φ1/2−s2) (y(s2) + ∫ eAopen(s2−s)Bopen u(s))ds
Φ1/2

s2
+

∫ eAon(s3−s)Bclosed u(s)ds
s3

Φ1/2
                                         (6.40)  

Differentiating (49) with respect to y(s2) gives 

Dfs3,s2
=  Dgs3,s2

+
∂gs3,s2

∂Φ1/2
DΦ1/2                                    (6.41) 

DΦ1/2 is the derivative of the switch off time with respect to y(s2). Since the thyristor is 

fired regularly, Φ1/2 is constant and hence DΦ1/2 = 0 

Dfs3,s2
=  𝐷gs3,s2

= eAclosed(s2−Φ1/2) π𝑇eAopen(Φ1/2−s2)               (6.42) 

   Similarly, for the time interval [s1, s2] containing an instance when the thyristor switch, 

S, is opened at time τ0. The thyristor is on in [s1,τ0], which yields 

x(τ0) =  fτ0,s1
closed(x(s1)) = eAclosed(τ0−s1) (x(s1) + ∫ eAclosed(s1−s)Bclosedu(s))ds

τ0

s1
  (6.43)       

the thyristor switch S is open in [τ0, s2], 

fs2,s1
(x(s1)) =  fs2,τ0

open
(y(τ0)) = eAopen(s2−τ0) πx(τ0) + ∫ eAopen(s2−s)Bopen u(s)ds

s2

τ0
                              

(6.44) 
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Substituting (6.43) in (6.44), we get 

 fs2,s1
(x(s1)) =  gs2,s1

(x(s1), τ0)                                            (6.45) 

= eAopen(s2−τ0) PeAclosed(τ0−s1) (x(s1) + ∫ eAclosed(s1−s)Bclosedu(s))ds
τ0

s1
+

∫ eAopen(s2−s)Bopen u(s)ds
s2

τ0
                                            (6.46) 

Differentiating (6.46) with respect to x(s1) gives 

Dfs2,s1
=  Dgs2,s1

+
∂gs2,s1

∂τ0
Dτ0                                                (6.47) 

Differentiating  
𝜕gs2,s1

𝜕τ0
 , we get 

∂gs2,s1

∂τ0
= eAopen(s2−τ0) (πAclosed − Aopenπ)eAclosed(τ0−s1) (x(s1) +

∫ eAclosed(s1−s)Bclosedu(s))ds
τ1/2

s1
+ eAopen(s2−τ0)(RBclosed − Bopen)u(τ0)              (6.48) 

∂gs2,s1

∂τ0
= eAopen(s2−τ0) (πAclosed − Aopenπ) x(τ0) + eAopen(s2−τ0)(πBclosed −

Bopen )u(τ0)                                                                                                                 (6.49) 

Since           πBclosed = Bopen                                                                        (6.50) 

 and                        Aopen = πAclosedπ
T.                                                     (6.51) 

 We get, 

∂gs2,s1

∂τ0
= eAoff(s2−τ0)πAon(I − ππT)x(τ0)                                      (6.52) 

Since       (I − ππT) = cTc 



100 

where  c = (1 0 0) and  I is  an identity matrix. 

∂gs2,s1

∂τ0
= eAopen(s2−τ0)πAclosedc

Tc x(τ0) = 0                               (6.53) 

Since the thyristor switch off condition is  

0 = IL(τ0) = (1 0 0) x(τ0) = c x(τ0)                                (6.54) 

Therefore,  

Dfs2,s1
=  Dgs2,s1

= eAopen(s2−τ0) πeAclosed(τ0−s1)                       (6.55) 

Now, assembling the Jacobian from the Poincaré formula we get.  

fp(y0) = fopenπfclosedπ
Tfopenπfclosedπ

Tfopen y0                 (6.56) 

Choose times s3 in the interval (ϕ1/2, τ1/2), s2 in the interval (τ0, ϕ1/2) and s1 in (ϕ0, τ0). 

Then 

fp(y0) = ft1s3
fs3s2

fs2s1
fs1t0 y0                                         (6.57) 

Dfp(y0) = Dft1s3
Dfs3s2

Dfs2s1
Dfs1t0                             (6.58) 

Dfp(y0) = (e
Aopen(t1−τ1

2

)
 πe

Aon(τ1
2

−s3)
)(e

Aclosed(s3−ϕ1
2

)
 πTe

Aopen(ϕ1
2

−s2)
)            

(eAopen(s2−τ0) πeAclosed(τ0−s1))(eAclosed(s1−ϕ0) πTeAopen(ϕ0−t0))    (6.59) 

 = (e
Aopen(t1−τ1

2

)
 πe

Aclosed(τ1
2

−ϕ1
2

)
πTe

Aopen(ϕ1
2

−τ0)
 

         eAclosed(τ0−ϕ0)πTeAopen(ϕ0−t0))                                          (6.60) 

 When t0 = ϕ0-, then the Jacobian becomes 
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Dfp(y0) = e
Aopen(t1−τ1

2

)
 πe

Aclosed(τ1
2

−ϕ1
2

)
πTe

Aopen(ϕ1
2

−τ0)
πeAclosed(τ0−ϕ0)πT          (6.61) 

If the periodic orbit is assumed to be half wave symmetric, then ϕ1/2 =  ϕ0 +
T

2
 and 

τ1/2 = τ0 +
T

2
 and (6.61) simplifies to, 

Dfp(y0) = (e
Aopen(ϕ1

2

−τ0)
πeAclosed(τ0−ϕ0)πT)

2

                       (6.62) 

which can also be expressed in terms of the thyristor conduction time σ = τ0 − Φ0 

Dfp(y0) = (eAopen(
T

2
−σ)πeAclosedσπT)

2

                             (6.63) 

Dfp(y0) = ([
1 e

1

C
(
T

2
−σ)

e
−

1

LS
(
T

2
−σ)

1

] [
0 1 0
0 0 1

] [

1 e
1

L
σ 1

e−
1

C
σ 1 e

1

C
σ

1 e
−

1

LS
σ

1

] [
0 0
1 0
0 1

])

2

         (6.64) 

Dfp(y0) = ([
1 e

1

C
(
T

2
−σ)

e
−

1

LS
(
T

2
−σ)

1

] [
0 1 0
0 0 1

] [

1 e
1

L
σ 1

e−
1

C
σ 1 e

1

C
σ

1 e
−

1

LS
σ

1

] [
0 0
1 0
0 1

])

2

        (6.65) 

 

Dfp(y0) = ([
0 1 e

1

C
(
T

2
−σ)

0 e
−

1

LS
(
T

2
−σ)

1

] [

1 e
1

L
σ 1

e−
1

C
σ 1 e

1

C
σ

1 e
−

1

LS
σ

1

] [
0 0
1 0
0 1

])

2

       (6.66) 

Dfp(y0) = ([ e
1

C
(
T

2
−σ) + e−

1

C
σ 1 + e

1

C
(
T

2
−σ). e

−
1

LS
σ

e
1

C
σ + e

1

C
(
T

2
−σ)

1 + e
−

1

LS
(
T

2
−σ)

. e−
1

C
σ e

−
1

LS
(
T

2
−σ)

+ e
−

1

LS
σ

1 + e
1

C
σ. e

−
1

LS
(
T

2
−σ)

] [
0 0
1 0
0 1

])

2

   

(6.67) 
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Dfp(y0) = ([1 + e
1

C
(
T

2
−σ). e

−
1

LS
σ

e
1

C
σ + e

1

C
(
T

2
−σ)

e
−

1

LS
(
T

2
−σ)

+ e
−

1

LS
σ

1 + e
1

C
σ. e

−
1

LS
(
T

2
−σ)

])

2

                              (6.68) 

As may be observed, this Jacobian does not contain any term related to compensating 

reactance L. Only terms that appear in this Jacobian are compensating capacitance C and 

line reactance LS. Thus, the eigen values can be calculated by 

|[1 + e
1

C
(
T

2
−σ)

. e
−

1

LS
σ

e
1

C
σ + e

1

C
(
T

2
−σ)

e
−

1

LS
(
T

2
−σ)

+ e
−

1

LS
σ

1 + e
1

C
σ. e

−
1

LS
(
T

2
−σ)

]

2

− λ [
1 0
0 1

] | = 0                       (6.69) 

 

FIGURE 6.5. Eigen Values (as a function of σ) of the Jacobian of the Poincare map for the ePFC system 

 

   FIGURE 6.5 presents the eigen values of the Jacobian as a function of conduction angle 

(σ). As can be seen, the eigen vectors are in and on the unit circle, for sigma from 45∘ to 

135∘ highlights the region of marginal stability.



 

 

   

 

 

 

CHAPTER 7 : CONCLUSIONS AND FUTURE SCOPE 

 

 

7.1. Introduction 

   A methodology to accomplish smoother power flow control in a transmission line by 

employing enhanced Power Flow Controller (ePFC) is proposed. ePFC is an extension of 

D-FACTS devices recently presented in literature, however it offers superior 

performance attributes in terms of controllability and precision. 

   Extensive mathematical analysis is presented and a new expression is derived for 

effective fundamental impedance of a series connected L-C network where equivalent L 

is continuously varied through thyristor control. 

   The proposed treatment is based on the principle that only the end bus voltages are 

sinusoidal and all associated harmonics generated by series injection of ePFC are 

absorbed in the transmission line itself. To further explain, the majority of the harmonic 

voltage drop occurs in the line and that the source impedance behind the bus is very small 

compared to the line impedance and thus has small harmonic voltage drops. This 

approach further generalizes the state of the art (2nd order approximation) model that has 

been employed to analyze series FACTS devices such as TCSC. The proposed ePFC 

analytical model is superior to the 2nd order approximation in terms of predicting an 

additional resonance zone. 

   It is expected that when line reactance dominates, transmission line current can be 

treated as near sinusoidal (thus lacking harmonic content), and the expression for 
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effective fundamental impedance would degenerate into 2nd order approximation. The 

proposed model would further reduce into classical average inductance model (1st order 

approximation) when the compensating capacitance dominates, which makes voltage 

across this capacitance near sinusoidal and devoid of harmonics.  

   The stability of such an enhanced Power Flow Controller (ePFC) system is also 

presented. This particular type of network is challenging to analyze in power systems. 

The inherent non-linearity and discontinuity makes the system incomprehensible for 

standard mathematical tools like Lyapunov Stability Analysis etc. The study first 

describes the modeling of network which takes into account, the distortion across the 

capacitor voltage as well as the distortion line current. Then, an analytical study of the 

Poincare map is done on the system under consideration. This shows the regions of 

marginal stability for the ePFC system.   

7.2. Contributions 

The major contributions of this thesis are: 

 Simulations of D-FACTS: Distributed Series Reactance (DSR) and Distributed 

Series Impedance (DSI).  

 Mathematical analysis for effective fundamental impedance of a series connected 

L-C network where equivalent L is continuously varied through thyristor control 

using 1st order, 2nd order approximations and proposed enhanced Power Flow 

Controller (ePFC) model. 

 Simulations of enhanced Power Flow Controller (ePFC). 

 Stability of inherent non-linear and discontinuous L-C system. 
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 Effect of compensation reactance in determining stability of thyristor based L-C 

networks. 

7.3. Recommendations for Future Work 

    The future work may account for the leakage reactance of the single turn transformer 

(STT) in modeling of enhanced Power Flow Controller (ePFC). Stability analysis work 

can be expanded to generalized thyristor switched L-C circuits. Experimental verification 

would help in providing the concepts which are explained and verified through 

simulations in this thesis.   
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