

AUTOMATIC GENERATION OF INTELLIGENT TUTORING CAPABILITIES VIA
EDUCATIONAL DATA MINING

by

John Carroll Stamper

A dissertation submitted to the faculty of
The University of North Carolina at Charlotte

in partial fulfillment of the requirements
for the degree of Doctor of Philosophy in

Information Technology

Charlotte

2010

Approved by:

Dr. Tiffany Barnes

Dr. Zbigniew W. Ras

Dr. G. Michael Youngblood

Dr. Marvin Croy

Dr. Dawson R. Hancock

 ii

© 2010
John Carroll Stamper

ALL RIGHTS RESERVED

 iii

ABSTRACT

JOHN CARROLL STAMPER. Automatic generation of intelligent tutoring capabilities
via educational data mining. (Under the direction of DR. TIFFANY BARNES)

Intelligent Tutoring Systems (ITSs) that adapt to an individual student’s needs

have shown significant improvement in achievement over non-adaptive instruction

(Murray 1999). This improvement occurs due to the individualized instruction and

feedback that an ITS provides. In order to achieve the benefits that ITSs provide, we

must find a way to simplify their creation. Therefore, we have created methods that can

use data to automatically generate hints to adapt computer-aided instruction to help

individual students. Our MDP method uses data from past student attempts on given

problem to generate a graph of likely paths students take to solve a problem. These

graphs can be used by educators to clearly understand how students are solving the

problem or to provide hints for new students working the problem by pointing them down

a successful path to solve the problem. We introduce the Hint Factory which is an

implementation of the MDP method in an actual tutor used to solve logic proofs. We

show that the Hint Factory can successfully help students solve more problems and show

that students with access to hints are more likely to attempt harder problems than those

without hints. In addition, we have enhanced the MDP method by creating a “utility”

function that allows MDPs to be created when the problem solution may not be labeled.

We show that this utility function performs as well as the traditional MDP method for our

logic problems. We also created a Bayesian Knowledge Base to combine the information

from multiple MDPs into a single corpus that will allow the Hint Factory to provide hints

on new problems where no student data exists. Finally, we applied the MDP method to

 iv

create models for other domains, including Stoichiometry and Algebra. This work shows

that it is possible to use data to create ITS capabilities, primarily hint generation,

automatically in ways that can help students solve more and more difficult problems, and

builds a foundation for effective visualization and exploration of student work for both

teachers and researchers.

 v

TABLE OF CONTENTS

CHAPTER 1: INTRODUCTION 1

 1.1 Motivation 1

 1.2 Research Questions 2

CHAPTER 2: RELATED WORK 6

 2.1 Learning 6

 2.2 Intelligent Tutoring Systems 10

 2.2.1 Cognitive Tutors 13

 2.2.2 Constraint Based Tutors 14

 2.2.3 Authoring Tools 16

 2.2.4 ITSs for Logic 18

 2.3 Using Data in Intelligent Tutors 20

 2.4 Summary 21

CHAPTER 3: MARKOV MODELS FOR HINT GENERATION 23

 3.1 Background 24

 3.2 Method 24

 3.3 Hint Generator 29

 3.4 Summary 31

CHAPTER 4: MARKOV MODELS AS A VISUALIZATION TOOL 32

 4.1 Background 33

 4.2 Experiment 34

 4.3 Results and Discussion 36

 4.4 Summary 41

 vi

CHAPTER 5: AUTOMATIC HINT GENERATION VALIDATION 43

 5.1 Background 43

 5.2 Experiments 47

 5.2.1 Comparing Classes 47

 5.2.2 Exploring the “cold start” problem 51

 5.3 Summary 53

CHAPTER 6: THE HINT FACTORY – PILOT STUDY 55

 6.1 Background 55

 6.2 Experiment 57

 6.3 Results and Discussion 59

 6.4 Summary 62

CHAPTER 7: EXPERIMENTAL EVALUATION OF AUTOMATIC HINT
 GENERATION 64

 7.1 Background 64

 7.2 Experiment 64

 7.3 Results and Discussion 66

 7.4 Summary 69

CHAPTER 8: UNSUPERVISED MDP VALUE SELECTION FOR HINTS 71

 8.1 Background 71

 8.2 Method 74

 8.3 Experiment 75

 8.3.1 Data 76

 8.3.2 Utility Process 76

 vii

 8.3.3 Comparing Utility Method to MDP Method 78

 8.4 Summary 80

CHAPTER 9: EXPERT SEEDING OF MDPS 82

 9.1 Background 82

 9.2 Method 83

 9.3 Revisiting the Cold Start 87

 9.4 Summary 89

CHAPTER 10: USING A BAYESIAN KNOWLEDGE BASE FOR HINT
 SELECTION ON DOMAIN SPECIFIC PROBLEMS 91

 10.1 Background 92

 10.2 Method 96

 10.3 Experiment 100

 10.4 Discussion of Results and Summary 108

CHAPTER 11: EXTENDING METHOD TO OTHER TUTORS 110

 11.1 Carnegie Mellon Algebra Tutor 110

 11.2 Stoichiometry Tutor 115

 11.3 Summary 119

CHAPTER 12: CONTRIBUTIONS, IMPACT, AND FUTURE WORK 120

 12.1 Contributions 122

 12.2 Impact 123

 12.3 Future Work 126

REFERENCES 129

APPENDIX A: DERIVED PUBLICATIONS 136

APPENDIX B: PROBLEM DESCRIPTIONS AND SYMBOL NOTATION 138

 viii

APPENDIX C: GENERATED MARKOV GRAPHS 141

APPENDIX D: SAMPLE LOG DATA 207

APPENDIX E: TERM DOCUMENT MATRIX 210

APPENDIX F: EXAMPLE MODEL COMPONENTS 219

CHAPTER 1: INTRODUCTION

1.1 Motivation

Our main goal is to improve the usefulness of computers for learning. In college

and K-12 education, computer aided instruction (CAI) has become a mainstay in

education today. In addition, intelligent tutoring systems (ITSs) that adapt to an

individual student’s needs have been shown to provide significant learning gains of one

standard deviation over traditional computer based training (Conati et al. 2002)

(Heffernan & Koedinger 2002) (Murray 1999). However, the adoption of ITSs in

classrooms has been slow because these adaptive systems are extremely difficult to

create. Studies have shown it takes between 100-1000 work hours to create 1 hour of

content for an ITS (Murray 1999), and most of this time is spent on creating domain-

specific cognitive models. Our work allows developers to add some adaptive

capabilities to CAI with minimal work, by utilizing past student CAI data to

automatically generate intelligent tutoring capabilities. Our methods are domain

independent, and can be readily applied in procedural domains. We demonstrate the

extensive use of our methods in the domain of logic, and also show potential applications

in Algebra and Stoichiometry. We believe that our data-driven methods may also be

useful in ill-defined domains where it is difficult to automatically determine if a student

solution is correct or not.

 2

1.2 Research Questions

In this section we present our research hypotheses, that all center around our

primary hypothesis, given in Figure 1.1. Our central method, the MDP method for hint

generation (fully described in Chapter 3), builds a “map” of steps in past student

solutions and assigns a value to each step that determines how “good” the step is in

terms of solving a problem. This map is used to guide new students by giving them

Figure 1.1: Statement of the Primary Hypothesis

hints on which step to take. Visualizing these maps, as shown in Chapter 4, can help

educators better understand student learning and problem-solving. Our hypotheses for

visualization are given in Figure 1.2.

Figure 1.2: Hypotheses for Visualization Research (Chapter 4)

As we show in Chapter 4, MDP visualizations help show the ways students solve

individual problems. In Chapter 5, we hypothesize, as shown in Figure 1.3, that the MDP

provides enough coverage of student work to allow hint generation for over 50% of

student problem-solving steps in historical data sets. To generate a hint, we trace a

Hypothesis 1: The generated MDPs can be useful to educators to
identify student strategies for solving a problem.

Hypothesis 2: Educators will be able to better identify trouble spots
using the MDPs.

Primary Hypothesis: We can automatically generate ITS capabilities
using educational data mining methods on past student data.

 3

student’s steps in the MDP where a past student worked the problem exactly the same

way. Then, we look ahead in the MDP to see which future steps were most likely to lead

to the solution, and use these to generate context-specific hints. In Chapter 5, we show

that there is sufficient coverage to provide hints to a majority of students as an important

step in verifying the MDP method as a potential source for generating intelligent tutoring

capabilities. We also determine baseline measures for how much data is needed to attain

different levels of coverage (e.g. percent of the time we predict hints will be available).

Figure 1.3: Hypothesis of Validation Research (Chapter 5)

 We test the hint generator with students in real classes in Chapters 6 and 7. Our

first experiment in Chapter 6 is a pilot study to investigate how students use hints, and

shows that hints help students solve more problems than past classes without hints. In

Chapter 7, a second experiment tests the hypotheses shown in Figure 1.4. The results of

the experiment show that the hints not only help students solve the problems, but that

students who have access to the hints in the first level tutor problems are more likely to

attempt and complete the harder third level problems.

 The remaining research in Chapters 8 through 11 describes work to enhance the

MDP method to provide hints when full information about the problems is not known. In

Chapter 8, we devise and test a method to generate hints when a problem solution is not

Hypothesis: We will be able to generate hints, from one semester of
data, which would have been available 50% of the time if past
students could have had hints on every problem step they took.

 4

known. We show that the utility work compares positively to our traditional method. The

hypothesis is shown in Figure 1.5.

Figure 1.4: Hypothesis of Experiments (Chapter 7)

Figure 1.5: Hypothesis of Utility Research (Chapter 8)

In Chapter 9, we show that our ability to give hints can be quickly enhanced by

having experts complete a small number of problem attempts to provide an initial seeding

to the MDP. In fact, we were able to prove our hypothesis, shown in Figure 1.6, and

achieve over 50% coverage of student states in the set with just three to four example

solutions.

Figure 1.6: Hypothesis of Seeding Experiment (Chapter 9)

In Chapter 10, we present a method to generalize the domain knowledge from

individual MDPs to help provide hints for problems where we have no data. This BKB

Hypothesis: : Experts will be able to get significant coverage (over
50%) for hints with just a small amount of time devoted to solving a
problem by working examples.

Hypothesis: We will be able to generate hints, without knowing if
students correctly solved the problem with accuracy that matches our
traditional MDP method.

Hypothesis 1: System generated hints will help in overall learning of
the material.

Hypothesis 2: Hints will improve students’ ability to solve the proof
problems.

 5

method breaks down several MDPs into smaller model components to create a Bayesian

Knowledge Base (BKB). This BKB can then be used to provide hints for new problems

for which no student data exists. In Chapter 11, we show how our approach can be

applied to other domains. Specifically, we generate MDPs for Algebra and Stoichiometry

tutors. Finally, in Chapter 12, we discuss the main contributions of this work in terms of

the Cascading Hint Factory which is a theoretical framework for implementing our

methods of automatic hint generation. We also describe the impact of this work by

exploring research that has referenced this work, and chart our future directions.

CHAPTER 2: RELATED WORK

Our goals to provide an automated, data driven approach to building intelligent

tutors are necessary in order to make the effectiveness of ITSs widespread. In order to

understand where we are headed we present related work that deals with how ITSs are

currently implemented. First, we discuss the ideas of learning that have been the

foundations of ITS development. Then we explore the state of the art in ITSs including

the cognitive tutors and constraint based tutors. Several existing attempts at logic tutors

are explored since most of our work is done in this domain. Finally, we look at some of

the tutors that have relied on machine learning techniques that also use data to build

student models.

2.1 Learning

Within the field of cognitive science, which seeks to understand learning, much

work has focused on how best to optimize knowledge acquisition. Work has been done

on how to encode information in the computer in the way that the brain stores knowledge,

like the declarative and procedural knowledge representations of Adaptive Character of

Thought (ACT Theory (Anderson et al 1984). In the field of intelligent tutoring several

works on learning have made an enormous impact. These include Bloom’s work on

tutoring (1984), Vygotsky’s zone of proximal development (1984), and ACT-R theory

(Anderson et al 1995), and we will discuss these here.

 7

Bloom’s work focused on traditional classroom instruction compared to one-on-

one tutoring (Bloom 1984). In this work he showed that one-on-one tutoring could

increase student achievement by two standard deviations. This means that if a traditional

lecture format class has a normal distribution of student achievement scores with the

mean at the 50% percentile (of the curve not the class), one-on-one tutoring would have a

mean two standard deviations better or close to the 98% percentile compared to the

traditional class as seen in figure 2.1.

Figure 2.1: Difference in normal learning curve distributions of tutored vs. traditional
classroom instruction. Modified from Bloom 1984.

Bloom suggested that this work clearly showed that traditional classroom teaching

was not reaching all students and new methods such as mastery learning and tutoring

were needed. Although this work did not focus on computer aided instruction or

intelligent tutors the ITS field has used this work as a benchmark, trying to achieve

 8

results as good as a human tutor. Current ITS research has shown that intelligent tutors

can achieve learning gains of better than one standard deviation (Koedinger et al. 1997).

Vygotsky’s zone of proximal development (ZPD) states that students have the

greatest chance at succeeding in material that is close to their current level (Vygotsky

1984). This concept is used to argue against standardized tests to measure intelligence,

because of the “one test fits all” approach that is used. In teaching, proponents of ZPD

believe that scaffolding can help students get closer to their individual zone. Scaffolding

provides a learner with some framework of help, such as a partially worked problem or a

worked example, which is similar to the construction use of the term where scaffolding

means building a framework to support a structure. For example, for a math problem to

find the area of a house composed of a triangle on a square, a scaffolding step would

include the addition of a table to accept the intermediate areas of the triangle and the

square. Scaffolding has been studied as a useful feature built into intelligent tutors

(Rienburg and VanLehn 2006).

Since the early 1990’s, some of the most effective ITSs have used a cognitive

model based on Adaptive Character of Thought – Rational (ACT-R) theory (Anderson et

al 1995), including the Carnegie Learning algebra tutor, (www.carnegielearning.com),

the LISP tutor (Anderson and Skwarecki 1986), and the Ms. Lindquist algebra tutor

(Heffernan and Koedinger 2002) to name a few. ACT-R theory makes a distinction

between declarative and procedural types of knowledge. Declarative knowledge is

composed of specific facts (such as 1+1=2) while procedural knowledge is composed of a

list of steps required to accomplish a task. In designing an ITS, the use of declarative

knowledge is simple to implement. Facts can easily be represented and programmed.

 9

Procedural knowledge is much more complex because the same task can often be

accomplished in many different ways. While people can generally state the declarative

knowledge they have, they find it much more difficult to express procedural knowledge.

ACT-R uses production rules to describe procedural knowledge. Production rules are

statements that describe actions which should be taken if conditions are met (referred to

as a condition-action pair). An example production rule is shown here:

If the goal is
to classify a shape
and the shape has three sides

Then
classify the shape as a triangle

This simple example is a production rule that describes a problem where the student is

classifying shapes.

Model Tracing tracks a student’s progress through a particular problem. Its main

use in an ITS is to keep a student on a successful path through the problem by giving

them feedback to return to a good path if they proceed down an unsuccessful path or

provide help if the student is stuck. With tutors that use the ACT-R framework,

production rules are used to model student problem solutions or paths. These production

rules can be “good” rules that are correctly applied, or “bad” rules, which generally

signify a student misconception. The development of these production rules requires

time and expert knowledge to create. Below are examples of a good and bad production

rules (Mitrovic et al. 2003):

Good production rule:

IF goal is to find an angle in an isosceles triangle ABC and AC = AB and angle A
is known
THEN set the value of angle B to A.

 10

Bad production rule:

IF goal is to find an angle in an isosceles triangle ABC
and angle A and C are at the bottom of the triangle and angle A is known
THEN set the value of angle C to A.

2.2 Intelligent Tutoring Systems

The multidisciplinary field of intelligent tutoring systems has grown primarily out

of the fields of Computer Science, Psychology, and Education and is at the convergence

of computer aided instruction, human computer interaction, and learning theory (Wolfe

2009). Very early in the development of computers, people saw the potential for their use

in teaching. Some of the first work to appear in the CAI field included the PLATO

system developed at the University of Illinois in 1956 (Molnar 1990), and the drill and

practice system developed at Stanford University starting in 1968 (Suppes 1981). Some

of the first CAI to incorporate artificial intelligence were those based on expert systems

such as MYCIN (Buchanan and Shortliffe 1984) and GUIDON (Clancey 1979) which

both dealt with teaching medical cases. Anderson followed these systems in the early

1980’s with his work on the LISP tutor (Anderson and Skwarecki 1986) which laid the

framework of ACT-Star (Anderson 1983) which eventually became ACT-R (Anderson

and Corbett 1995). These works became known as intelligent tutors and are now

primarily referred to as cognitive tutors.

Intelligent Tutoring Systems are computer aided instruction systems that adapt to

an individual student. Van Lehn described two loops that CAI can implement in order to

be considered an ITS, the outer and inner loops (Van Lehn 2006). The outer loop refers to

overall problem selection, ie. determining which problem the student should see next to

optimize learning. The inner loop refers to helping the student solve individual problems.

 11

According to Van Lehn, to be considered an intelligent tutor a system must, at a

minimum, provide the inner loop. The adaptive features of an ITS during problem-

solving (inner loop) consist primarily of help and feedback. Other adaptive features that

could help in the inner loop of an ITS include reflection, debriefing, gaming detection,

and tracking affect. Reflection is a step that asks the student to stop and justify the step

that was just made. Using reflection in one on one human tutoring shows significant

learning gains even when the tutor is not a subject expert (Graesser et al 1995). Several

ITSs, such as AutoTutor (Craig et al 2007) incorporate reflection into tutoring process.

Debriefing is a form of feedback given after a student has completed an entire problem or

set of problem, which strives to allow the student to take away points to apply to a similar

problem in the future (Bass 1998). Gaming is behavior where students try to out-smart

the system and is often a sign of boredom. Gaming detectors have been built into several

ITSs, and have been shown to effectively predict gaming and keep students on task

(Baker 2007). Tracking affect is similar to gaming detection, but even more ambitious.

The affect tracking tutors try to gauge how a student is feeling, and provide motivators to

keep a student on task (D'Mello et al 2008).

Marking student work as “correct” or “wrong”, as is done in most CAI, is a

simple form of feedback. Although help can be considered a type of feedback, giving

students help is a much more complex problem. Studies of help seeking behiaviors in the

classroom have been done (Karabenick, 1998), where the habits of help seeking students

were studied, and strategies to improve help seeking were implemented. These studies

showed that help seeking led to better student outcomes and that offering help to students

on demand would increase the overall usage of help by students. Additional studies on

 12

help and feedback have shown that in order to positively affect learning outcomes the

help and feedback must be directly relevant to the current situation that the student is

facing (Shute 2008). The hints that our methods provide do provide context specific help

that is relevant to the specific step and problem that a student is working on.

Help seeking behaviors have also been studied in the context of intelligent tutors

with a number of tutors including the LISP tutor (Anderson et al 1989), and this research

showed that tutors containing intelligent help messages improved the time students were

able to complete the work by 30% with no loss in accuracy. Additional work on help and

feedback with a cognitive tutor to teach Geometry showed that immediate goal directed

help and feedback helped more than higher level conceptual feedback when learning

gains were measured (McKendree1990). More recently, developers have sought to build

more effective tutors by increasing good help seeking behaviors in students (Aleven and

Koedinger 2000). This work showed that although students who asked for help had

higher learning gain on average, there were behaviors that limited the usefulness of the

help messages. These behaviors included, help abuse, help avoidance, and trying help too

fast. The results of their initial model suggest that 72% of help seeking behavior is

unproductive (Aleven et al 2004), and these bad help seeking behaviors could be

mitigated, although their model has not yet been implemented into a live tutor in a

classroom setting. Based on the hint and help research our implemented method provides

the right type of help at the right time when a student needs it.

In order to give appropriate help when a student requests it, the software must

have an adequate model of the problem as well as information on what the student

knows. To give help, an ITS will generally include a domain model for solving problems

 13

and a student model to track what the system believes a student knows. The domain

model will usually include details to identify both correct and incorrect problem

solutions. The student model often consists of knowledge components (KCs) and some

number or probability representing the percent chance that the student has mastered the

KC (Anderson, 1982). Tracking changes in student knowledge is called Knowledge

Tracing in the cognitive tutors. This knowledge tracing can be a simple as counters of

problems correct and incorrect or more complex cognitive models that use Bayesian

techniques modeling probabilities of slips and guesses (Chang et. al, 2006).

2.2.1 Cognitive Tutors

The cognitive tutors based on ACT-R theory (Taatgen, and Anderson 2008),

which were originally developed at Carnegie Mellon University, have the largest user

base and have collected the most publicly available data including over 25 million

student actions as of June 2009 (available at www.learnlab.org). ACT-R models

knowledge by assigning production rules to model problem-solving steps. While

students work in a cognitive tutor, problem-solving steps are matched to production rules

in a process called model tracing. Each production rule has been hand tagged with

individualized feedback for incorrect steps, and when a student solution is matched to a

production rule, this feedback is given to the student. It is the creation of production

rules and their accompanying annotations that take the greater part of time needed to

construct cognitive tutors. The first cognitive tutor was a tutor to teach LISP

programming (Anderson and Skwarecki 1986). Students using the LISP tutor completed

problems 30% faster and scored 43% better than the non tutored students (Anderson et al

1985). Since then a number of successful tutors based on the ACT-R cognitive

 14

architecture have been created including the PAT tutor for algebra (Koedinger and

Sueker 1996), the geometry tutor (Matsuda and VanLehn 2004), and the Ms. Lindquist

web based algebra tutor (Heffernan and Koedinger 2002). The PAT tutor and geometry

tutor were extensively studied in the classroom and shown to be effective (Koedinger et

al 1997). These tutors became the basis of the spin off company called Carnegie Learning

(www.carnegielearning.com), which currently provides full curriculms integrated with

the intelligent tutors and is used by over 500,000 students per year. The Ms. Lindquist

tutor is available free online for use in algebra, and is important to our work in the way it

implements scaffolding. The Ms. Lindquist system implements scaffolding in the form of

hints. Several hints per step are given followed by a “bottom out” hint that gives the

student the answer to the particular problem or step. We followed this approach in the

implementation of our methods in the Deep Thought logic tutor (Chapter 5 and 9).

Because of the success of the cognitive tutors and the scaffolding strategy in Ms.

Lindquist, we are adopting the ACT-R model as a basic framework, and our methods

seek to achieve model tracing and provide scaffolding hints while students work

problems.

2.2.2 Constraint Based Tutors

Another successful type of intelligent tutors are Constraint Based Tutors. These

tutors do not track a student’s path through a particular problem and are only concerned

with the student’s current state. Within this state, constraint-based tutors look for

violations of problem constraints, requiring less time to construct and work well for less

procedural problems (Mitrovic and Martin 2002). This work is based on Ohlsson’s work

on knowledge representation as constraints at the Univeristy of Illinois (Ohlsson 1994)

 15

and the ITS Research group in New Zealand led by Mitrovic. A typical constraint takes

the form of: If <relevance condition> is true, then <satisfaction condition> had better also

be true, otherwise something has gone wrong. One of the constraint based tutors is the

SQL Tutor (Mitrovic and Martin 2002). An example constraint for this tutor is: If <Table

name exists in SELECT Clause> is true, then <Table name exists in FROM Clause> had

better also be true. If this constraint is not met in a student attempt, the tutor would let

them know, meaning that if a column is selected from a specific table the table must be

referenced. This tutor has been extensively used and today is supplied as a free web based

supplement to Addison Wesley’s SQL textbooks since 2006. Studies of the SQL tutor

have shown that students using the tutor scored 11.5% points higher than those not using

the tutor, and this result was statistically significant (t= 2.68, p = .01) (Mitrovic and

Ohlsson 1999).

Although they have been shown to be effective, constraint based tutors suffer

from several limitations. First, unlike a cognitive tutor that matches production rules at

any state, constraint based tutors can only give feedback on what is correct in current

problem state based on the what is known in the final solution state. If part of the current

state is unknown to the constraints the tutor assumes it is correct while a cognitive tutor

would assume the unknown portion of the state is incorrect. This means that constraint

based tutors can only provide condition violation feedback, but may not be able to direct

a student from their current state to the goal, as a cognitive tutor is built to do.

In a comparison of cognitve and constraint based tutors the KERMIT SQL

constraint based tutor was rewritten using production rules like a cognitive tutor

(Mitrovic et al 2003). The constraint based tutor was quicker to build but the feedback it

 16

provided to students was less specific (Mitrovic et al 2003). With these issues in mind,

there are certain domains where constraint based tutors work well (such as formulating

SQL queries), and other domains where other approaches are preferable. We implement

our method in the logic domain. Since a solution is always possible from a given state if

the problem is solvable, a constraint-based logic tutor would have a difficult time

providing any strategies for solving the problem. Our method shrinks the overall solution

space based on paths that previous students used to solve the problem, and seeks to

provide hints like those in a cognitive tutor, to guide students to the solution.

2.2.3 Authoring Tools

As stated previously, one major problem with the adoption of ITSs into

mainstream education is the difficultly in creating them. The major thrust so far to

alleviate this difficulty has been to create authoring tools to simplify ITS creation.

One of the first successful authoring tools is REDEEM, which was built to reduce

the time needed to create an ITS and allow teachers to apply their own teaching strategies

in an existing computer-based training (CBT) system, in a variety of domains from

mathematics to biology to learning how to operate machinery. The authoring tool has

been used in secondary education (Aisworth et al 2000) and also by the Royal Navy

(Ainsworth et al 2001). REDEEM has been shown to be more effective than a non-expert

human tutor in improving student test scores (Ainsworth 2003), but does not have a

detailed model of the domain like the more complex production rules systems. REDEEM

instead focuses on improving the student-tutor interactions in order to increase student

involvement with the tutor. REDEEM claims to not be as effective as cognitive tutors

with complex production rules systems (Ainsworth 2004).

 17

Another tool, the Cognitive Tutor Authoring Tool (CTAT), is based on

production rules and ACT-R. CTAT has both a flash and java interface and can be used

to quickly design a tutor interface. In addition to providing tools to build the tutor

interface, CTAT allows users to create production rules that can be applied to specific

problems. CTAT can also automatically extract production rules based on worked

examples (Koedinger et al. 2004). Finally, CTAT allows teachers to work problems, in

the interface that they have created, and annotate each step with hints and feedback

messages. In this way, they predict frequent correct and incorrect steps in student

solutions, and then annotate individual steps with appropriate hints and feedback in a

behavior recording tool seen in figure 2.2. This is similar to the method we use in Chapter

9, although our method is automated. A variety of tutors have been created with CTAT,

including a middle school math tutor (Koedinger et al. 2004).

The authors of the constraint-based tutors created the ASPIRE authoring tool to

speed the development of constraint based tutors (Mitrovic et al 2006). ASPIRE provides

an interface for the creation of constraints that can be applied to one or more problems. It

has been used to create the current version of the SQL tutor and is the primary tool being

used to create constraint based tutors. The SQL tutor developed using ASPIRE was

shown to be effective in four separate studies where students using the constraint based

tutors outperformed students not exposed to the tutor (Mitrovic et al 2007).

 18

Figure 2.2: An example of the CTAT behavior recorder interface. The white rectangle
shows the student problem step. On this screen, a teacher is annotating the step to mark it

wrong. Other options allow for adding hint and success messages as shown on the
selection box.

Although these authoring tools provide a quicker way to develop ITSs, there are

two major hurdles to their mainstream acceptance in the CAI field. First, each of these

tools has a significant learning curve that requires developers to devote time that many

would prefer to spend creating their own software. Second, since these tools are all

academic based they lack the polished qualities of off the shelf software and in practice

require assistance from the authoring tool team to create a finished product. Because of

these hurdles authoring tools have not lived up to the promise of providing quick and

easy adaptive features.

2.2.4 ITSs for logic

Our work with tutors has primary focused on the domain of solving propositional

logic proofs. There are several other tutors that have been created for logic including

 19

Carnegie Mellon Proof Tutor (CPT) (Scheines and Sieg 1994) and the Logic-ITA

(Intelligent Teaching Assistant) (Merceron and Yacef 2005). Of these, the Logic-ITA is

the most intelligent, verifying proof statements as a student enters them, and providing

feedback after the proof is complete on student performance. Logic-ITA also has

facilities for considerable logging and teacher feedback to support exploration of student

performance (Merceron and Yacef 2005), but does not offer students help in planning

their work. In the Logic-ITA tutor, student data from the log files of past classes was

mined to create counter examples that showed student errors that were likely to be made

on problems that used specific groups of rules. These examples were added to the tutors

and incorporated into the lectures (Merceron and Yacef 2005). Logic-ITA as of this

writing is no longer being used or available.

The CPT used production rules aimed at directing students down a correct

solution path via a method the authors called “strategic thinking”. The goal was to limit

the total search space that a student solving a proof could use. The CPT tutor is no longer

used, but was the foundation for the Automated Proof Search (APros) proof tutor that is

part of the online course offered by Carnegie Mellon (oli.web.cmu.edu/openlearning).

APros implements a proof solver with the production rules from CPT that support

strategic thinking (Sieg 2007). To date, there has not been an empirical study done on the

effectiveness of APros.

In this research, we apply educational data mining from two existing logic tutors,

the Proofs Tutorial and Deep Thought, to create domain models using MDPs to develop a

method of model tracing to build problem specific cognitive models that can provide

students context specific hints based on their current approach.

 20

2.3 Using Data in Intelligent Tutors

In recent years the field of Educational Data Mining (EDM) has emerged from the

Intelligent Tutoring and Artificial Intelligence in Eduction communities. EDM as a field

uses raw data from educational systems to understand student learning and improve

learning systems. In 2008, the 1st International Conference on Educational Data Mining

was held in Montreal Canada, followed in 2009 with the 2nd International Educational

Data Mining Conference held in Cordoba Spain. In one EDM approach, data from the

ADVISOR reading tutor was used with reinforcement learning to build agents to

represent students and the pedagogical model (tutor). These agents were used predict the

amount of time students took to solve arithmetic problems, and to adapt instruction to

minimize this time while meeting teacher-set instructional goals (Beck and Wolfe 2000).

Another system called SimStudent uses data collected from CTAT to student models

based on production rules (Matsuda et al 2007). Although SimStudent could be used like

our methods to provide hints, it is being used to predict future student performance for

the purpose of evaluating CTAT tutors. When SimStudent was trained on 15 problems,

the system correctly predicted correct student responses over 80% of the time, but the

current implementation of SimStudent does not correct student errors.

Student data has been used with CTAT to build initial models for an ITS, in an

approach called Bootstrapping Novice Data (BND) (McClaren et al. 2004). In this

approach, each student attempt from student log data is read in through a behavior

recorder and then added to a large graph. The graph includes information on whether a

path is good or bad based on information provided from the log data. Instructors can then

view these graphs and add hints and feedback using the example tracing tutor interface in

 21

CTAT. Although the BND approach saves time in entering example problems, it still

requires expert instructors and programmers to create a tutor interface and annotate the

extracted production rules with appropriate hints. Similar to the goal of BND, we seek to

use student data to directly create student models for an ITS. However, instead of feeding

student behavior data into CTAT to build a production rule system, our method uses data

to generate Markov Decision Processes that represent all student approaches to a

particular problem, and use these MDPs directly to generate hints. We further apply

reinforcement learning via value iteration to the MDPs to give a specific value to each

student state. This value incorporates knowledge from all past student attempts on the

specific problem and can be used to direct student to best next state for solving the

problem. Our work with Bayesian Knowledge Bases (Chapter 10) breaks our MDPs into

their constituent parts to provide more general problem-solving steps that can be used for

problems where no data are available.

2.4 Summary

Although ITSs have been shown to improve student learning, their use has not

caught on at the same level of CAI in the classroom. The main reason for this is the

difficulty in building these adaptive systems. Research has shown that it takes developers,

educators, and subject experts 100-1,000 hours to build just one hour of adaptive

instruction for a ITS (Murray, 1999). Adoption into schools is difficult for a number of

reasons cited by Koedinger, et al (1997). One is that ITSs are self-contained with many

of the teaching decisions already built in, meaning that in order to use these systems

educators are locked in to using the approaches they give. Distribution and support of the

software are important issues. Many tutoring systems are available, but are not well

 22

documented or supported. Installing and using them can be difficult. A number of tutors

like Ms. Lindquist are available online to make access easier (Heffernan and Koedinger

2002). However, approaches are still needed to make new tutors and make them so that

teachers can use them as they wish.

In this thesis we have shown that a Markov Decision Process derived from data

can be used to represent procedural domain knowledge in several domains, that we can

combine this MDP with instructor knowledge to automatically generate effective,

context-specific hints adapted to individual students, and that applying a Bayesian

Knowledge Base to these MDPs across multiple problems can be used to create hints for

problems where no data yet exists. We believe that our work provides a basis for adding

more adaptive support for students to CAI. Our work also provides a foundation for

building a tool for teachers to understand student work and modify hints and feedback to

adapt a tutor for their own uses.

CHAPTER 3: MARKOV MODELS FOR HINT GENERATION

In this chapter, we explore our novel application of Markov decision processes

(MDPs) for building and visualizing student knowledge models, and integrating these

models into existing computer-aided instructional tools to automatically generate context

specific hints. The MDP method is straightforward to implement in many educational

domains where computer aided instruction exists. We have focused on improving

existing CAI to teach logic proofs. This is a domain with multiple solutions paths to most

problems, and based on the rule set available it is likely impossible to cover all possible

steps a student might take. For example, students might use the “addition” rule to create a

new statement by adding new variables to an existing true statement, leading to infinite

possible variations that students can derive.

In this chapter, we first demonstrate how to create a Markov model including

defining the state and actions. From this Markov model, a learning algorithm is applied to

generate a value for each state. Then, we visually explore student responses combined

into a MDP that represents the variety of observed solutions to a problem. Next, we

discuss how to construct a hint generator using the MDP and how to construct a

feasibility study to determine the probability of hint availability. This feasibility

technique is a valuable contribution that can be used to make decisions about the

appropriateness of MDPs for hint generation in a particular problem domain. Finally, we

 24

describe how a MDP hint generator has been integrated into a logic tutor and discuss its

effects on student learning.

3.1 Background

The initial goal for our method was to speed the extraction of production rules

from student log files using Markov Decision Processes (MDPs). Since initial

conception, we have modified our MDP approach to allow creation of hints without the

intermediate creation of production rules. We also leverage existing computer-aided

instruction (CAI) tools and data to reduce time to build an intelligent tutor, using the

already-built CAI problem-solving interface along with student data to create MDPs for

model tracing, and have reduced the hint annotation time by creating an automatic hint

generator.

MDP-based tutors work best in situations where CAI already exists, problems

consist of a series of related steps most often solved using similar strategies, and log data

is readily available. Many CAI tools exist for math and science problems, which often

have multiple related steps but involve a limited number of problem-solving strategies.

For the best hint generation, it is best if errors and correct solutions are labeled or

detected. However, the MDP approach can be used to analyze problems and build

probabilistic MDP tutors without correct and incorrect labels.

3.2 Method

The process of creating an MDP analysis or tutor has several phases. In the first

phase, we use log data to create a directed graph of student work. We convert each step

of a student solution attempt to a state, and states are joined to each other by the actions a

student took to move from one state (problem step) to the next. We combine all states

 25

and actions to create a graph of all student work, by taking the union of all states and

actions, and mapping identical states to one another. In the second phase, we convert this

graph of student work into a Markov Decision Process (MDP), where state-transition

probabilities are set and reward values are assigned to each state-action pair. Once

constructed, this MDP can be used to visualize all student work, with reward values in

the MDP representing a measure of the value of each state in reaching a correct or

common pattern in problem-solving.

As part of creating an automatic hint generator, we constructed a matching

function that behaves as a model tracer that matches student work to states in the MDP.

We also construct a hint template in collaboration with domain experts. Together, the

MDP, hint template, and matching function combine to create the hint generator which

provides individualized hints for a particular problem. When the hint generator is added

to a CAI, we create an MDP-tutor.

Formally, a Markov decision process (MDP) is defined by its state set S, action

set A, transition probabilities P, and a reward function R (Sutton and Barto 1998)

(Russell and Norvig 1995). On executing action a in state s the probability of

transitioning to state s′′′′ is denoted P(s′′′′ | s, a) and the expected reward associated with

that transition is denoted R(s′′′′| s, a). States and transitions in the MDP must be

constructed to adhere to the Markov property, which states that the probabilities of

reaching future states depend only on the current state, regardless of past states. This

means that states do not have memory, so they must contain all information, or features,

needed to fully describe each step taken in a problem until the current moment.

 26

The most difficult aspects of MDP problem-solving analysis are feature selection

and granularity for defining state and actions, and assigning appropriate values that

accurately reflect both successful and incorrect solutions. If a state contains too many

features, such as every key or mouse press in a solution, it is likely that too many states

will be created, and matching a students’ current state to these states will be more

difficult. Creating states that contain too few features could result in less specific hints.

The state features can be collected in an ordered or unordered fashion. Ordered states

retain information on how the student worked the problem and may be particularly

important in some domains, but preserving order will increase the state granularity.

Actions are the transitions between states. In the context of CAI, an action is anything

that changes the problem state. Depending on how states and actions are defined it is

possible and acceptable for the same action to lead to multiple different states. For

example, when a rule such as DeMorgan’s is applied to a logic statement, it could be

applied to different parts of the statement, yielding different states. A rule/action might

also be misapplied, giving incorrect states in one application and correct ones in another.

Similar to state descriptions, the granularity of action descriptors determines whether this

type of overlap can occur.

 Figure 3.1 shows how we have applied our technique to turn the Deep Thought

Logic CAI into an MDP-tutor, which provides hints while students solve logic proofs

(Croy 1999). In Deep Thought, state features include the premises, statements, and

conclusion visible on the screen. For example, the state in Figure 3.1 could be described

as [not(T and L), if not T then not N, not (E or T), if N then T, not E and not T, not T, not

N]. Logic tutor “actions” occur when a student clicks on a rule button, shown on the left

 27

in Figure 3.1. This granularity allows students to attempt partial steps without invasive

feedback during their exploratory step construction.

Figure 3.1: An example of the Deep Thought Interface, with problem 3.6 partially
completed. The statements at the top are “premises” which are given at the problem start,
and the student is trying to prove the statement “not N”, as denoted with a question mark.

It is important to consider errors and how they will be recorded into states. When

a student makes an error during a problem attempt, a state should be created, but then it

must be decided if the student will remain in the error state or will be moved back to the

last non-error state. Often this decision will be made based on the way the CAI works

when the student makes an error. Does the error remain on the screen, or is a message

provided and the student is returned to the state before the error occurred? If errors are

persistent in the CAI, they should remain part of the state. When the reward values are

 28

assigned, as described below, it is important to penalize only the states in which an error

originally occurs, and not those that follow on. In Deep Thought, errors are detected and

are not retained on the screen, so in our MDP, error states are recorded, but these states

connect back to the preceding problem state.

 Once all student attempts are combined into a single graph, we need a way to

evaluate states in the MDP and find optimal solutions to complete a problem. In a

traditional sense, an optimal solution is a shortest path that takes a student from the start

to the correct completion of a problem. If we can determine values for whole student

attempts, corresponding to leaves in the student work graph, then we can use

reinforcement learning to assign values to intermediate problem states. The simplest way

to assign values to valid solutions is to create an artificial “goal” state and connect the last

state in a successful problem solution to this goal state.

We set a large reward for the goal state(s) and negative rewards for incorrect

states. A small negative reward is assigned to each transition. Setting a negative reward

on actions causes the MDP to penalize longer solutions. Next, value iteration, a

reinforcement learning technique using Bellman backup, is used to assign values to all

states in the MDP (Sutton and Barto 1998). The equation for calculating values V(s) for

each state s, where R(s) is the reward for the state, γγγγ is the discount factor, and Pa(s,s′′′′) is

the probability that action a will take state s to state s′′′′ is:

V (s) = R(s) + γ max
a

 Pa (s, ′ s) V (′ s)
′ s

�

For value iteration, V is calculated for each state until there is little change in the function

over the entire state space. Once this is complete, the optimal solution in the MDP

 29

corresponds to taking a greedy traversal approach in the MDP (Barnes and Stamper

2007). The reward values for each state then indicate how close to the goal a state is,

while probabilities of each transition reveal the frequency of taking a certain action in a

certain state.

The actual reward values may need to be modified to fit a certain domain. In our

tests with the logic tutor we initially used a large reward for the goal, +100, and a

negative reward, or penalty of -10, for errors. As we analyzed the data it was apparent

that our error penalty was too high and caused the best path through the MDP to reflect

an error avoidance policy. To correct this issue a smaller error penalty can be used, which

will give errors less weight and more weight to a shorter path. In order to determine the

best policy to use for a particular domain and group of users it is important to work with

domain experts and review several problem MDPs before using them in a live

environment.

3.3 Hint Generator

Once MDPs are created they can be used with a matching function and hint

template to automatically generate individualized hints. In order to prepare the MDP for

hint generation, we first remove error states from the MDP, since we would never want to

lead students to an error. At this point, when a hint is required the first step is to match

the student’s current state to a state in the MDP, and we describe several matching

functions in Chapter 5. If found, the hint generator can compare that state’s successor

states, and use the successor with the highest reward value to generate a hint. The hint

can suggest the action to take, the state features in the next state, or the state features in

the current state that are used to get to the next state. Educators who are using the CAI

 30

will be invaluable in determining which state features and actions are important and how

they can be generalized into a hint template. Typically a hint sequence will be provided

for a given state. A hint sequence refers to hints that are all derived from the same current

state, and would be sequentially given to the students each time the hint button was

pressed while the problem remained in the same state. A hint sequence for the tutor might

consist of four types of hints: 1) indicate a goal expression to derive from the next state,

2) indicate the next action, 3) indicate what parts of the current state are used to reach the

next state, and 4) a bottom-out hint combining 1-3. For the problem state seen in Figure

3.1 from the Deep Thought logic tutor, the hint sequence given in Table 3.1 would be

generated. These hints are based on the best next action and state from the student’s

current state. For each state, four distinct hints are generated. If a student requests a hint,

then makes an error, and requests a hint again, the next hint generated is the next one in

the current sequence. Once a student performs a correct step, the hint sequence is reset.

Table 3.1 Hint sequence derived from example student solution. The best successor state
is decomposed into parts to generate each of the hints.

Hint # Hint Text
1 Try to derive not N working forward
2 Highlight if not T then not N and not T to derive it
3 Click on the rule Modus Ponens (MP)
4 Highlight if not T then not N and not T and click on Modus Ponens (MP) to get not N

One additional consideration is what to do when no match to the current state

exists in the MDP. In this case when a specific hint is not available the hint generator can

either return that a hint is not available or the hint generator can always seek backwards

in the student’s path until a state is reached where a hint can be given.

 31

Our hypothesis was that we could provide hints a majority of the time using just

one semester of data to train an MDP (Barnes and Stamper 2008). In order to validate this

hypothesis, we performed a cross-validation study on four semesters of data, checking to

see how many hints were available using different semesters and different matching

functions for hint generation. This analysis is shown in detail in Chapter 5. We have

added a hint generator to the Deep Thought CAI to create an MDP-tutor for several Deep

Thought problems, and in Chapters 6 and 7 we discuss two experiments to evaluate the

generated hints in an actual classroom.

3.4 Summary

In this chapter we have shown how to use student data gathered from CAI to

create MDPs to analyze problems and provide context-specific hints. The MDP method

for generating hints was applied to a data from tutors for teaching logic proofs, but the

method is straightforward to implement in many educational domains where computer

aided instruction exists for problem solving in procedural domains. The implementation

of our method on three additional domains is in fully shown in Chapter 11.

CHAPTER 4: MARKOV MODELS AS A VISUALIZATION TOOL

Once a MDP is generated, it can be used by educators to provide a visualization

of student solutions to a problem. These visualizations show the many different ways in

which students solve a problem. In this chapter we test the following hypotheses:

Hypothesis 1: The generated MDPs can be useful to educators to identify student
strategies for solving a problem.

Hypothesis 2: Educators will be able to better identify trouble spots using the
MDPs.

Each step of the problem is represented by a state and a reward value that reflect the

step’s frequency, correctness, and nearness to the solution. This visualization allows

educators insight into student learning, revealing correct approaches and student

behaviors that can indicate areas for further instruction. A sample problem is shown in

Table 4.1 and Figure 4.1, and the visualization of the most frequent valid states in the

MDP created for this problem is given in Figure 4.2. The key to the states and actions in

this graph are explained in Table 4.2. Figure 4.2 shows the aggregate MDP restricted to

only valid states and frequent state-action pairs. Without knowing any information about

the domain for the example, the graph still shows interesting information. An observer

can see that there is only one frequent successful path – and this solution is also a

concise, expert solution. Very quickly, educators can identify the strategies most students

 33

are using to solve a problem, and they can also identify paths in which students appear to

be having trouble solving the problem.

4.1 Background

In this chapter, we explore all student attempts at proof solutions, including partial

proofs and incorrect rule applications, and use visualization tools to learn how this work

can be extended to automatically extract a production rule system to add to our logic

proof tutorial. In our first work (Stamper 2006), we performed a pilot study to extract

Markov decision processes for a simple proof from three semesters of student data from

Deep Thought, and verified that the rules extracted by the MDP conformed to expert-

derived rules and generated buggy rules that surprised experts. In this chapter, we apply

the technique and extend it with visualization tools to new data from the Proofs Tutorial.

 The Proofs Tutorial is a computer-aided learning tool implemented on NovaNET

(http://www.pearsondigital.com/novanet/). This program has been used for practice and

feedback in writing proofs in university discrete mathematics courses taught by several

instructors at North Carolina State University since 2002. In the Proofs Tutorial, students

are assigned a set of 10 problems that range from simpler logical equivalence

applications to more complex inference proofs. (The tutorial can check arbitrary proofs,

but it is used for a standard set of exercises). In the tutorial, students type in consecutive

lines of a proof, which consist of 4 parts: the statement, reference lines, the axiom used,

and the substitutions which allow the axiom to be applied. After the student enters these

4 parts to a line, the statement, reference lines, axiom, and substitutions are verified. If

any of these are incorrect, a warning message is shown, and the line is deleted (but saved

for later analysis).

 34

Table 4.1 lists an example student solution. Figure 4.1 is a graphical

representation of this proof, with givens as white circles, errors as orange circles, and

premises as rectangles.

Table 4.1: Sample Proof 1 Solution (red lines are errors)

Figure 4.1: Graph of Proof 1 Solution (Red lines are errors)

4.2 Experiment

The experiment presented in this chapter uses data from the four fall semesters of

2003-2006, where an average of 120 students take the discrete math course at NC State

Statement Line Reason
1. a � b Given
2. c � d Given
3. ¬ (a � d) Given
 ¬ a v d 3 rule IM (error)
4. a ^ ¬ d 3 rule IM implication
5. a 4 rule S simplification
 b 4 rule MP (error)
 b 1 rule MP (error)
6. b 1,5 rule MP modus ponens
7. ¬ d 4 rule S simplification
8. ¬c 2,7 rule MT modus tollens
9. b ^ ¬c 6,8 rule CJ conjunction

 35

University each fall. Students in this course are typically engineering and computer

science students in their second or third year of college, but most have not been exposed

to a course in logic. Students attend several lectures on propositional logic and complete

an online homework where students complete truth tables and fill in the blanks in

partially-completed proofs. Students then use the Proofs Tutorial to solve 10 proofs as

homework, directly or using proof by contradiction. The majority of students used direct

proof to solve proof 1. We extracted 429 of students’ first attempts at direct solutions to

proof 1 from the Proofs Tutorial. We then removed invalid data (such as proofs with

only one step to reach the conclusion), resulting in 416 student proofs. Of these, 283

(70%) were complete and 133 (30%) were partial proofs. Due to storage limitations, a

few (6) of these proofs may have been completed by students but not fully recorded. The

average lengths were 13 and 10 lines, respectively, for completed and partial proofs.

This indicates that students did attempt to complete the proof.

After cleaning the data, we load the proofs into a database and build an MDP for

the data. We then set a large reward for the goal state (100) and penalties for incorrect

states (10) and a cost for taking each action (1). Setting a non-zero cost on actions causes

the MDP to penalize longer solutions (but we set this at 1/10 the cost of taking an

incorrect step). These values may need to be adjusted for different sizes of MDPs. We

apply the value iteration with a Bellman backup (reinforcement learning technique) to

assign reward values to all states in the MDP.

As previously explained in Chapter 3, we use value iteration to generate a value,

V, that is calculated for each state until there is little change in the value function over the

entire state space. Once this is complete, the optimal solution in the MDP corresponds to

 36

taking a greedy traversal approach in the MDP (Sutton and Barto 1998). The rewards for

each state then indicate how close to the goal a state is, while probabilities of each

transition reveal the frequency of taking a certain action in a certain state. For generating

a visualization, just one step of value iteration was performed to cascade goal values

through the MDP.

We created MDPs for each semester of data, and one for the aggregate. This

resulted in a set of states, reward values, and actions for each MDP. On average, the four

semesters yielded MDPs with158 states (ranging from 95-226 states in a semester). The

most frequent approaches to problems were very similar across semesters, and the most

frequent errors were also repeated. Therefore, in the remainder of this paper, we examine

the aggregate MDP. Using Excel, we assigned labels to each state in the MDP (just

using the latest premise added), colors for errors, state values, and action frequencies, and

prepared the data for display. We used GraphViz (www.graphviz.org) to display the

output and convert into pictures. Table 2 shows the legend for nodes and edges. After

graphing each MDP, we continually refined the data being displayed to explore questions

about the student data. We present our findings in the following section.

Table 2: Legend for MDP edges and nodes
Edges (Values=Frequency) Nodes (Values=Rewards)

4.3 Results and Discussion

The aggregate MDP run on all four semesters of data has a total of 547 states

(individual semester MDPs each contained 95-226 unique states). The MDP can be seen

 37

in Appendix B. From interactive exploration, the course instructor found that 90% of all

student errors related to explaining their actions, and a great majority of these were on the

simplification rule. This indicates a need to improve the interface for students to perform

this explanation. The instructor also found that students commit a great number of errors

in the first step but less as they progress, indicating that students have the most trouble

getting started but after that don’t get stuck as often as the instructor thought they might.

This work provides the foundation for building a tool for teacher visualization that will

allow for pruning nodes below a certain reward or frequency, and also for highlighting all

the correct or incorrect applications of a particular action. We demonstrate some of these

views in Figures 4.2-4.3.

Figure 4.2 shows the aggregate MDP restricted to only valid states and frequent

state-action pairs. Shaded or yellow nodes indicate states where students were likely to

make errors in the next step. The graph shows only one frequent successful path –

indicating an optimal solution that students can perform. This path also corresponds to an

expert solution. On this path, it seems that errors are occurring in going from state (a^-d)

to (a), demonstrating our observation that applying simplification is difficult for students.

As in the overall MDP, this restricted view also shows many errors at the start, indicating

that students have trouble getting started. Following the shaded path, second from the

lowest in Figure 4.2, we observe that several (20-49) students apply IM (implication) in

various ways; this path is very error-prone and does not (frequently) lead to a solution.

This indicates a need to help students plan proof strategies. In future work we could

detect this type of path in the MDP and offer hints to help avoid it.

 38

Figure 4.2: View of MDP restricted to valid states and frequent actions

To further examine student approaches, we expand this graph to include error

states in Figure 4.3. In most errors, students find the correct premise (e.g. –d, which is

correct) but have trouble explaining how the rule was applied to get the premise. For

example, the rule for S (simplification) states (p^q)�p, so to obtain (a^-d)�-d the

student must show that we substitute p=-d and q=a. From this information, the course

instructor could conclude that students need a better interface for explaining rule

applications. For example, in another logic tutor called Deep Thought, students are not

required to perform substitutions if the program can detect them itself, and for

simplification, the program asks: Right or Left? Anecdotally and intuitively, students

seem to have less trouble with this approach. All but two of the remaining error states

(indicated with darker shading and a double border) are due to substitution errors. (Start)

� (–(a^-d)) is an incorrect application of IM (it’s missing a not), while Contrapositive

(CP) was frequently applied to obtain –c from c>d and –d (which needs Modus Tollens,

MT). To course instructors, these findings indicate that more practice might be needed

with these rules in the context of negated variables.

 39

Figure 4.3: View of MDP restricted to frequent states and actions

These visualizations are useful in understanding what states will be used to

generate hints based on frequent responses that are closest to the problem solution.

However, this does not yield insight into a more general application of MDPs to proofs

and what types of production rules might be generated for general problems. To make

more general production rules for proof problems, we will take MDPs from several

problems and attempt to learn general rules. For instance, a production rule often applied

by experts is, “if (p � q) and (p) are statements then apply MP to obtain the new

statement (q)”. One solution to this issue is to break MDP states down into their problem

steps, which can be seen in Chapter 10.

We created Figure 4.4, (which is a directed graph, not a MDP), by mapping all

correct states with a common last statement into a single node, which corresponds to

grouping unique action/statement pairs. We then eliminated all low-frequency actions

(taken less than 9 times) and the simplification rule (since we plan to change the interface

to improve usage of this rule). This new visualization of the paths of student solutions

 40

allows us to track frequent solution attempts regardless of order. In other words, our

previous MDP views correspond to unique paths, while this graph shows us relationships

between consecutive steps in the proof regardless of what was done before.

Figure 4.4: Graph showing inferences, unique premises and frequent (>9) actions

In Figure 4.4, there are some dead-end paths, meaning that several students

started proofs in these directions but few students were able to reach the solution this

way. These dead-end paths can be used to derive feedback to students that their

approach may not be productive. We can also use Figure 4.4 to derive most frequent

orderings of student solutions. To do so, we start at the (top) start node and choose a

frequent (wide) edge, and repeat without visiting nodes twice, until we reach the solution,

as in Figure 4.5.

 41

Figure 4.5: Most frequent proof solution sequences, derived from Figure 5

Some secondary approaches are shown in Figure 4.6, demonstrating how a

teacher could use Figure 4.4 by following particular paths but not repeating any nodes

visited, to find unique solutions to the proof. These approaches demonstrate students’

frequent preference to use Disjunctive Syllogism (DS), even though these solutions are

longer.

Figure 4.6: Secondary proof approaches derived from Figure 5

In both Figures 4.5 and 4.6, there are errors (on the double edges) leading to and

from states containing negated variables. This observation reflects instructors’ experience

that students need more practice in using rules when variables are of negated, and in

applying rules in sequence to achieve a goal.

4.4 Summary

This chapter describes the basis of our approach to mining Markov decision

processes from student work to automatically support model tracing and discussed how

 42

this approach can be applied to a particular computer-aided instructional system. This

approach differs from prior work in authoring tutoring systems by mining actual student

data, rather than relying on teachers to add examples the system can learn from. In this

chapter, we have explored visualizations of the Markov decision processes extracted from

solutions to a formal logic proof to determine how to improve the tutor and how we

might proceed in building useful production rules and feedback. We believe that the

process we have applied to creating problem visualizations can be useful in learning

about other problem-solving processes from student data, instead of creating expert

systems by hand. From these visualizations, instructors learned:

1) Although instructors hypothesized that students need help in planning, this did
not seem to be the case. Instead, students needed help on getting started.

2) As expected, students need more practice with negation.

3) The overwhelming majority of student errors were in explaining rule
applications. A better interface is needed for this step.

We have also concluded that the extracted MDPs will be useful in generating

student feedback. The extracted MDP does contain a frequent expert-like path and

contains a significant number of correct paths and student errors. The proofs and Depp

Thought tutors can already classify many errors students make. Adding the MDP to these

tutors will enable them to provide hints. This MDP can constantly learn from new

student data. We note that on cold start for a new problem that has no student data, the

system will still act as a problem-solving environment, but after even one semester of

data is collected, good feedback can be generated as shown in Chapter 5. As more data is

added, more automated feedback can be generated.

CHAPTER 5: AUTOMATIC HINT GENERATION VALIDATION

 The goal of this chapter is to use historical data to verify that we can generate a

sufficient number of hints to support students while working problems in the the NCSU

Proofs Tutorial. Our hypothesis is:

Hypothesis: We will be able to generate hints, from one semester of data, which
would have been available 50% of the time if past students could have had hints
on every problem step they took.

The hints we generate will help students focus their attention on an appropriate next sub-

goal.

5.1 Background

Giving students hints has been shown to improve learning and skill transfer over

minimal and condition violation feedback (McKendree 1990). Since the Proofs Tutorial

has been used for several years, we have a large corpus of data to use in building student

models from historical data. We create a student model for each problem, and use it to

generate intelligent hints. As a new student works a problem, we record his or her

sequence of actions as a state. If the current state is matched in the model, and the

matched state has a successor closer to the goal, we will enable a Hint Button, as

discussed in the next chapter, to give contextual help. From the successor state with the

highest reward value, we derive a hint sequence: 1) indicate a goal expression to derive,

2) indicate the rule to apply next, 3) indicate the premises (lines) where the rule can be

used, and 4) a bottom-out hint combining 1-3. An example of this hint sequence was

 44

previously described in Table 3.1. If a student’s state is not found in the model, the Hint

Button will be disabled. Such a student will not get goal feedback. However, we can add

the student’s action and its correctness to our database, and periodically run value

iteration to update the reward function values. Before an update is applied, we could test

the update by examining new MDP states to ensure that unusual solutions have not

superseded existing good solutions as hint sources.

The method of automatic hint generation using previous student data we propose

in this chapter reduces the expert knowledge needed to generate intelligent, context-

dependent hints. The system is capable of continued refinement as new data is provided.

In this chapter, we demonstrate the feasibility of our hint generation approach through

simulation experiments on existing student data. We show that our approach is

appropriate for generating hints for specific problems with existing prior data, while we

show in Chapter 10 that machine learning applied to MDPs may be used to create

automated hints for new problems in the same domain.

In this chapter, we use historical data to estimate the availability of hints using

different types of state-matching functions and differing datasets for training. We use

data from the four fall semesters of 2003-2006 (denoted f3-f6), where an average of 220

students take the discrete math course each fall. Students in this course are typically

engineering students in their 2nd or 3rd years, but most have not been exposed to a

course in logic. Students attend several lectures on logic and then use the Proofs Tutorial

to solve 10 proofs. Sixty percent of students used direct proof when solving proof 1. We

extracted 537 of students’ first attempts at direct solutions to proof 1.

 45

The data were validated by hand, by extracting all premises generated by students,

and removing those that 1) were false or unjustifiable, or 2) were of improper format. We

also remove all student steps using axioms Conjunction, Double Negation, and

Commutative, since students are allowed to skip these steps in the tutorial. After cleaning

the data, there were 523 attempts at proof 1. Of these, 381 (73%) were complete and 142

(27%) were partial proofs, indicating that most students completed the proof. The average

lengths, including errors, were 13 and 10 steps, respectively, for completed and partial

proofs. When excluding errors and removed steps, the average number of lines in each

student proof is 6.3 steps. The validation process took about 2 hours for an experienced

instructor, and could be automated using the existing truth and syntax-checking program

in our tutorial. We realized that on rare occasions, errors are not properly detected in the

tutorial (less than 10 premises were removed).

We performed two experiments to explore the capability of our method to

generate automated hints. In each experiment, we isolated the data into training and test

sets, where the training set was used to generate the Markov Decision Process (MDP) as

described in Chapter 3, and the test set was used to explore hint availability. The process

for comparing the test set to the MDP consists of several steps. Because of the structure

of the tutorial, we first removed all error states from the MDP and from student attempts

before comparison, since the tutorial provides error messages and deletes the

corresponding error from the student proof. Then, each attempt in the test set is mapped

onto a sequence of states. For each test state, there are two requirements for a hint to be

available: 1) there must be a “matching” state in the MDP, and 2) the “matching” state

must have a successor state in the MDP (i.e. it cannot be a dead end). The closer the

 46

match between a test state and the corresponding MDP state, the more context-specific

the hint based on that match will be.

To maximize the probability that our generated hints are in line with a student’s

current strategy, we seek to give hints based on states very similar to the current state.

We considered four matching functions: 1) ordered (exact), 2) unordered, 3) ordered

minus the latest premise, and 4) unordered minus the latest premise. An ordered, or

exact, state match means that another student has taken the same sequence of steps in

solving the proof. An unordered state match means that there is a state with exactly the

same premises, but they were not necessarily reached in the same order. An “ordered-1”

match looks for an exact match between the student’s previous state and an MDP state.

An “unordered-1” match looks for an unordered match between the student’s previous

state and an MDP state. Once a match is made, we generate a hint using the optimal

successor state from the matching state. The more specific the match, the more

contextualized the hint. Hints generated using unordered matches will reveal steps taken

by other students in the same problem state, but who might be using a different approach

to problem solving, so these hints may differ from hints based on ordered matches.

To determine hint availability, we calculated two numbers for each match type.

The first is “move matches”: the percentage of test states, or “moves”, including

duplicates, with matches in the MDP. The second is the “unique matches”: the

percentage of unique test states that have matches in the MDP. These move matches give

us a measure of the probability that a hint is available for each move. Unique matches

reflects the percent overlap in test and training sets, and could indicate if one class is

particularly different from the training set.

 47

5.2 Experiments

We performed two experiments to test the hypothesis that the MDP method can

be used to provide hints on at least 50% of the steps students took on solving this

problem in our historical data sets using just one semester of student data. The first

experiment compares several semesters of data by identifying the number of overlapping

states created which shows how often a hint would be available. In the second experiment

we explore how much data is needed before hints can be reliably provided by simulating

how continuous updates of our MDP would affect hint availability.

5.2.1 Comparing classes

In this experiment, we explored the ability of our system to provide hints using

one, two, three, or four semesters of data to build MDPs. Similar to a cross-validation

study, each semester is used as a test set while all the remaining semesters are used as

training sets for MDPs. This experiment provides us insight into the number of semesters

of data we might need to provide hints a reasonable percentage of the time while students

are solving proofs. Table 5.1 presents the data for each semester. Semester f5 was

unusual: there were a small number of states, but a large number of moves, suggesting

that students solved this proof in very similar ways.

Table 5.1. Semester data, including attempts, moves, and states in the MDP for each
semester

Semester # Attempts MDP states # Moves
f3 172 206 711
f4 154 210 622
f5 123 94 500
f6 74 133 304

 48

We hypothesized that we could provide hints a majority of the time (e.g. at least

50% of the time) using just one semester as our MDP training data. Table 5.2 shows the

percent ordered matches between each semester and the remaining combinations of

training sets. We were very encouraged by these data, suggesting that our system would

provide highly contextualized hints over sixty-six percent of the time, in the worst case,

after just one semester of training. In all cases, adding more data increased the probability

of providing hints, though we do see diminishing returns when comparing the marginal

increase between 1-2 (6.8%) and 2-3 (2.8%) semesters of data.

Table 5.2. Avg % move matches across semesters using the ordered test sets and MDPs

Test set 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
f3 68.73% 75.67% 78.62%
f4 69.77% 77.71% 81.03%
f5 86.33% 90.80% 92.00%
f6 66.34% 74.12% 77.63%

Average 72.79% 79.57% 82.32%

Table 5.3. Avg % move matches across semesters using the unordered test sets and
MDPs

Test set 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
f3 76.62% 82.16% 84.37%
f4 75.35% 81.99% 84.41%
f5 91.93% 94.40% 95.40%
f6 74.56% 82.35% 84.87%

Average 79.62% 85.22% 87.26%

Table 5.4. Avg % move matches across semesters using the ordered-1 test sets and MDPs

Test set 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
f3 76.92% 85.14% 89.00%
f4 76.26% 85.69% 90.35%
f5 90.78% 96.19% 97.80%
f6 75.55% 84.32% 89.14%

Average 79.88% 87.84% 91.57%

 49

Table 5.5. Avg % move matches across semesters using the unordered-1 test sets and
MDPs

Test set 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
f3 82.63% 89.19% 91.99%
f4 81.73% 90.14% 93.41%
f5 94.60% 97.00% 98.00%
f6 81.03% 89.69% 92.43%

Average 85.00% 91.50% 93.96%

Our experiments using the remaining matching techniques (unordered, ordered-1

and unordered-1) showed consistent increases going from 1-semester MDPs up to 2-

semester MDPs as seen in Table 5.3, 5.4, and 5.5. However, the increases between 2- and

3-semester MDPs are decreasing, suggesting consistent diminishing returns for adding

more data to the MDPs. Table 5.6 lists the average percent matches for each of our

experiments using the four matching functions. This table gives an indication of the

tradeoffs between using multiple semesters of data versus multiple techniques for

matching. Here, we see that, on average, for 72% of moves, we can provide highly

contextualized (ordered) hints using just one semester of data. With two semesters of

data, we can provide these hints almost 80% of the time, but this only increases to 82%

for three semesters of data. If we wished to provide hints after collecting just one

semester of data, we could provide less contextualized hints for those who don’t have

ordered matches in the MDP. There is a nearly identical increase in the match rate, to

almost 80%, by providing hints using either unordered or ordered-1 searches. We can

provide hints an additional five percent of the time if we add the unordered-1 match

function.

 50

Table 5.6. Comparison of % move matches across multiple semesters and matching
techniques

Matching 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
Ordered 72.79% 79.57% 82.32%

Unordered 79.62% 85.22% 87.26%
Ordered-1 79.88% 87.84% 91.57%

Unordered-1 85.00% 91.50% 93.96%

Table 5.7. Comparison of % move matches, excluding f5 from all sets

Test set 1-sem. MDPs 2-sem. MDPs
Ordered 70.97% 78.05%

Unordered 78.69% 83.59%
Ord-1 79.02% 87.99%

Unord-1 85.77% 91.86%

When analyzing these data, we observed a skew in all statistics because of the

unusual distribution of states and moves in f5. We therefore repeated all experiments

excluding f5, and the results are given in Table 5.7. The differences caused by skew in f5

had a smaller effect moving from top left to bottom right, suggesting that more data or

less sensitive matching can mitigate the effect of unusual training data.

Table 5.8 shows the marginal increase, with ordered as a baseline, of each

matching technique for each MDP size, to illustrate the tradeoffs between additional data

and matching technique. When considering matching functions, the easiest technical

change is from ordered to ordered-1, where one premise is removed from the test state

before comparison with the MDP states. In all cases, the probability of providing these

hints is higher than that of providing hints based on unordered matches. This is probably

because there is some inherent partial ordering in proofs, so only limited benefit is seen

from reordering premises. When an ordered hint cannot be matched, it is perhaps more

likely that the student has just performed a step that no one else has done before, rather

than generating a new ordering of steps, so the benefit of ordered-1 can exceed that of

 51

unordered. Providing the unordered search requires us to maintain 2 separate MDPs to

make the search more efficient, so there are both time and space tradeoffs to using

unordered matching. However, adding unordered-1 after adding unordered provides a

very large difference in our capability to provide hints, with little investment in time.

As part of this study we also compared the unique states across semesters, as shown in

Table 5.9. This gives us a measure of the percent overlap between MDPs. Using 3

semesters of data with ordered matching, or using 1 semester of data with unordered-1

matching, both give us over 50% matching of states across MDPs. When compared with

the much higher move matches, this suggests that although a new semester may bring

many more different solution steps, the ones actually used for complete solutions already

exist and are those most often used by students.

Table 5.8. Marginal increases when comparing matching techniques to ordered

Technique 1-sem. ordered 2-sem. ordered 3-sem. ordered
Unordered 6.83% 5.65% 4.94%
Ordered-1 7.09% 8.27% 9.25%

Unordered-1 12.21% 11.93% 11.64%

Table 5.9. Unique state % matches across semesters and techniques

Test set 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
Ordered 34.55% 45.84% 51.93%

Unordered 43.62% 55.23% 59.90%
Ordered-1 48.25% 63.07% 71.39%

Unordered-1 57.28% 71.98% 77.87%

5.2.2 Exploring the “cold start” problem

One critique of using data to generate hints has been the expected time needed for

the method to be applied to a new problem, or in other words, the “cold start” issue. Our

 52

hypothesis was that a relatively low number of attempts would be needed to build an

MDP that could provide hints to a majority of students. One method for building our hint

MDP would be to incrementally add MDP states as students solve proofs. This

experiment explores how quickly such an MDP is able to provide hints to new students,

or in other words, how long it takes to solve the cold start problem. For one trial, the

method is given in Table 5.10.

Table 5.10: Method for one trial of the cold-start simulation.

For this experiment, we used the ordered and unordered matching functions, and

plotted the resulting average matches over 100,000 trials, as plotted in Figure 5.1. These

graphs show a very quick rise in ability to provide hints to students, that can be fit using

power functions, whether using ordered or unordered MDP states and matching.

Clearly, the availability to give hints ramps up very quickly. Table 5.11 lists the number

of attempts needed in the MDP versus target hint percentages. For the unordered

matching function, the 50% threshold is reached at just 8 student attempts and the 75%

threshold at 49 attempts. For ordered matching, 50% occurs on attempt 11 and 75% on

attempt 88. These data are encouraging, suggesting that instructors using our MDP hint

generator could seed the data to jump-start new problems. Based on these results, we

hypothesized that, by allowing the instructor to enter as few as 8 to 11 example solutions

1. Let Test = {all 523 student attempts}
2. Randomly choose and remove the next attempt a from the Test set.
3. Add a’s states and recalculate the MDP.
4. Randomly choose and remove the next attempt b from the Test set.
5. Compute the number of matches between b and MDP.
6. If Test is non-empty, then let a:=b and go to step 3. Otherwise, stop.

 53

to a problem, the method might already be capable of automatically generating hints for

50% of student moves. This was investigated in Chapter 9.

Figure 5.1. Percent hints available as attempts are added to the MDP, over 100,000 trials

 Table 5.11. Number of attempts needed to achieve threshold % hints levels

 50% 55% 60% 65% 70% 75% 80% 85% 90%
Un-Ordered 8 11 14 20 30 46 80 154 360
Ordered 11 15 22 33 55 85 162 362 ?

5.3 Summary

In this chapter, we have proposed and explored the feasibility of an approach to

creating Markov decision processes from student work to automatically generate hints.

We show that the method is able to give hints for an average of over 72% of student

moves using just one semester of student data. Further our experiments clearly show the

method quickly ramps up, but after several semesters of data are used more data offers a

limited increase in the percentage of moves covered, indicating valuable tradeoffs

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

100%

0 50 100 150 200 250 300 350 400 450 500

Student Attempts Unordered Ordered

 54

between hint specificity and the amount of data used to create an MDP. This approach

differs from prior work in authoring tutoring systems by mining actual student data,

rather than relying on teachers to add examples the system can learn from. In addition,

the generated hints are not created by hand as in example-based tutors, but created based

on past student work. Our novel MDP-based approach enables us to automatically

provide highly contextual hints, and also allow our knowledge model to learn from new

student data. We note that on cold start for a new problem that has no student data, the

system will still act as a problem-solving environment, but after even one semester of

data is collected, a significant amount of hints can be generated.

CHAPTER 6: THE HINT FACTORY – PILOT STUDY

 After developing and validating our methods, the next step was to implement the

MDPs into an actual tutor. In this chapter we describe a pilot study to investigate how

students use hints, and show that hints help students solve more problems than past

classes using the tutor without hints.

6.1 Background

The Hint Factory consists of the MDP generator and the hint provider. The MDP

generator is an offline process, but the hint provider must be integrated with the CAI. In

this experiment we modify the deductive logic Deep Thought tutor to provide hints while

students work problems. The modifications are minimal, including creating a hint

generator template, tracking the student actions into a state, passing them to the hint

provider, and adding a hint button. All of these modifications need only be done once for

a particular CAI.

6.1.1 The MDP Generator

The MDP Generator uses historical student data to generate a Markov Decision

Process (MDP) that represents a student model, containing all previously seen problem

states and student actions. This approach was outlined previously in Chapter 3. Our

method takes the current premises and the conclusion as the state, and the student’s input

as the action. Therefore, each proof attempt can be seen as a graph with a sequence of

states (each describing the solution up to the current point), connected by actions.

 56

Specifically, a state is represented by the list of premises generated in the student attempt,

and actions are the axioms (rules) used at each step.

6.1.2 Deep Thought

Deep Thought is a custom CAI tool that allows students to practice solving logic

proofs (Croy 1999). As shown in Figure 3.1, Deep Thought’s graphical interface allows

the students to visually connect premises and apply logic rules. Our new hint button

appears, as shown at the lower right in Figure 1, when a student loads a problem that has

available hints. The button is bright yellow to make it more visible. When a new problem

with hints is selected, the hint provider loads the entire hint file into memory.

6.1.3 The Hint Provider

When the hint button is pressed, the hint provider searches for the current state in

the MDP and checks that a successor state exists. If it does, the successor state with the

highest value is used to generate a hint sequence. When attaching the hint provider to an

existing CAI, we work with instructors to determine the wording and order of hints.

However, these variables are easily changed, and experiments can verify the

appropriateness and effectiveness of the generated hints.

We worked jointly with two logic instructors to construct an appropriate sequence

of hints to generate from successor states. Our choices were based on one-on-one

tutoring strategies, research on hint strategies, and consistency with existing tutors. In

one-on-one tutoring, both instructors prefer hints that help students set intermediate

goals, as has been shown to be effective in (McKendree 1990). Existing tutors use

several additional types of hints, including pointing hints and bottom-out hints. Pointing

hints help focus user attention, while bottom-out hints essentially tell students the answer

 57

(VanLehn 2006). In this experiment, a hint sequence refers to hints that are all derived

based on the same current state. Our logic proofs hint sequence consists of four types of

hints: 1) indicate a goal expression to derive, 2) indicate the rule to apply next, 3) indicate

the premises where the rule can be used, and 4) a bottom-out hint combining 1-3. For the

problem state seen in Chapter 3, Figure 3.1, the hint sequence seen in Table 3.1 would be

generated. For each state, four distinct hints are generated. If a student requests a hint,

then makes an error, and requests a hint again, the next hint generated is the next one in

the current sequence. Once a student performs a correct step, the hint sequence is reset.

Whenever the hint button is pressed the hint provider records the time, the hint sequence

number and text, and the total number of hints requested so far in the problem.

6.2 Experiment

The main goal of this experiment was to test the capability of the Hint Factory to

generate hints for actual students. Our secondary goal was exploratory, to determine how

students used the provided hints, to inform our future work. Once the Hint Factory was

added to Deep Thought, we generated MDPs and hint files for several Deep Thought

problems. Since the current semester was already underway, we chose four level 3

problems from Deep Thought, 3.2, 3.5, 3.6, and 3.8. In case of unexpected errors, we

enabled the instructor to quickly disable hints in Deep Thought. Fortunately, the software

worked well and this was not necessary. Table 6.1 shows the problems used and the

minimum number of rules needed to solve them (as determined by logic instructors).

MDPs were generated using data extracted from Deep Thought solutions from

two 2007 Deductive Logic courses (PHIL 2105) taught in the philosophy department:

spring (30 students) and summer (20 students). The data were cleaned by removing all

 58

incomplete proofs and log files with missing data. Table 6.2 shows the number of

student attempts used to create the MDPs for each problem, the average length of the

attempt with minimum and maximum lengths. Based on these and the expert data in

Table 6.1, the problems can be listed in order of difficulty from 3.6, 3.8, 3.2, 3.5.

Table 6.1: Deep Thought problems where hints were added (> is implies)

Prob. Problem Description
Expert
length Rules used; features

3.6 -(T&L), -T>-N, -(EvT)/-N 3 steps DEM,SIMP, MT

3.8 Y=P, -Y>-C, -P=-C /Y>C 6 steps EQUIV(2), SIMP(2), TRANS, HS

3.2 (A>-B)vC, -C, DvB/-D>-A 6 steps DS, TRANS, DN, DN, IMPL, HS

3.5 K>M, Z>R, -(K>R)/M&-Z 8 steps IMPL, DEM, DN, SIMP, SIMP, MP, MT, CONJ

Table 6.2: Characteristics of spring and summer 2007 data used to create MDPs.
Attempts include only completed proofs. Length includes correct and incorrect steps.

Problem 3.6 3.8 3.2 3.5
Complete Proofs 26 25 16 22
Average Length 8.0 11.9 11.3 18.8
Std Dev Length 5.9 3.1 4.0 12.4
Avg. Correct Steps 5.5 11.2 9.0 16.7
Average Errors 1.1 1.1 0.9 3.1
Time 3:23 6:14 4:25 9:58

Forty students in the spring 2008 course were assigned to work these four

problems (as many times as desired). We hypothesized that, with hints, a higher

percentage of students would complete the given proofs. This can be measured in two

ways: by class and by attempts. Class participation and completion rates for the

experimental class were much higher than the source class. For 2008, the attempt and

completion rates were 88 and 83%, respectively, out of 40 students. For 2007, these rates

 59

were at most 48%, out of 50 students. This may be due to a novelty effect, since the 2008

class was asked to test hints.

6.3 Results and Discussion

����
����

�����

����	

���	

����

����

����

���	

	���

�

�

��

��

��

��

��

��

�

�

��

������� ��������

�������

������

�����

�����

������

Figure 6.1: Comparison of behavior between complete and partial solutions

Figure 6.2 shows the percent of solution attempts that are complete for the source

(2007) and hints (2008) groups. For all problems but 3.5, there was a slightly higher

percent complete with hints available. Problem 3.5 showed much higher completion rates

for the hints group. Figure 6.1 shows a comparison in behavior during complete and

partial solutions. Partial problems were longer by both time and the number of actions.

Complete solutions have fewer errors and deletions and more hint usage. These results

suggest that some scaffolding may help identify unhelpful behaviors and be used to train

students to more effectively learn and use help (Aleven et al, 2004).

 60

Figure 6.2: Percent attempt completion between the source and hints groups

Figure 6.3 Number of steps after a hint that are correct (good) steps, hints, or errors

Figure 6.3 shows the number of hints for each problem, broken down by color

into the distribution of hint sequence length. We hypothesized that, as learning occurs,

the usage of shorter hint sequences should increase. We do not have reliable data on the

sequence of problems that students performed, so we have ordered problems by

difficulty. We see here that students did use more hints as we move from less to more

difficult problems, and the number and proportion of hint sequences of length 1 seems to

go up from 3.6 to 3.8 and from 3.2 to 3.5. Another way to measure the effectiveness of

hints is to examine behavior just after receipt of a hint. We therefore investigated the

�

��

���

���

���

���

���

���

��

��

��	 ��� ��� ���

�������

��������

 ��!����

�"

��"

��"

��"

�"

��"

	�"

��"

��"

��"

���"

��	 ��� ��� ���

��#�$�

�����

 61

number of errors, correct or good steps, and hint requests immediately following a hint,

as shown in Figure 6.3. The proportion of good steps just after a hint goes consistently

up, while there is a jump in the number hints and errors requested between problems 3.8

and 3.2. When we examine the difference between 3.2 and 3.5, we see more good steps,

and slightly more hints and fewer errors just after a hint. Along with its higher

completion rate, this suggests that the hints may be more effective for 3.5.

 Table 6.3 shows the hint usage and availability for all 2008 completed and partial

attempts. “Moves” is the total number of non-error student actions in the interface. In our

prior feasibility study, we built a model to predict the probability that we could provide a

hint based on the size of the MDP. In that study, we predicted that proof MDPs built

using 16-26 attempts on problem 3.5 have a probability of providing hints 56-62% of the

time (Chapter 5). In our current experiment, if a student had pressed the hint button after

every move taken, a hint would have been available about 48% of the time. This is lower

than our prediction. This difference in the prediction ay be due to student differences in

the classes or that the existence of the hint button may have changed student behavior.

Table 6.3: Hint usage and availability by problem, including all solution attempts in
Spring 2008

Problem 3.2 3.5 3.6 3.8 Total
Attempts 69 57 44 46 216
Moves 999 885 449 552 2885
Moves w/ Avail. Hints 442 405 230 269 1346
% Moves w/ Avail. Hints 44.2% 45.8% 51.2% 48.7% 47.9%
Hint1 Requests 236% 232% 70% 154% 692
Hint1 Delivered 213% 212% 66% 142% 633
% Hint1s Delivered 90.3%� 91.4%� 94.3%� 92.2%� 91.5%

 62

We were encouraged by the comparison of this rate with the hint availability

when students requested hints. In Table 6.3, Hint1 Requests counts the number of times a

first hint was requested (since hints beyond the first in a sequence are all available if the

first one is). Hint1 Delivered shows the number of times a first hint was provided. “%

Hint1s Delivered” shows that, over 91% of the times a hint was requested, a hint was

available. This percentage quite exceeded our expectations. This suggests that hints are

needed precisely where we have data in our MDPs from previous semesters. It is

possible that the new paths that were created where hints were not available represent

exploratory strategies where students have already determined the apporoach that they

are going to take, and therefore they may have high confidence in these steps and need no

help.

Figure 6.4: Distribution of hint sequences by sequence length.

6.4 Summary

Our tutor can already classify many errors students make, but adding the MDP to

this tutor enables it to provide hints. This MDP can constantly learn from new student

�

��

�

	�

��

���

���

�
�

�	�

���

���

��	 ��� ��� ���

&���������

&�������'�

&�������'�

&�������'�

 63

data. This chapter represents the implementation and a pilot study for our hint generation

method in an actual classroom setting. We achieved our main goals, which were to verify

that the software would work in a class setting, students would request hints, and hints

would be available when requested.

CHAPTER 7: EXPERIMENTAL EVALUATION OF AUTOMATIC HINT
GENERATION

7.1 Background

Our spring 2008 pilot study, discussed in Chapter 6, demonstrated that we could

successfully use the Hint Factory with the Deep Thought Tutor to automatically deliver

context specific hints to students solving four logic proofs. In spring 2009, we added

hints to 4 more problems, for 8 total, and examined their use in three deductive logic

classes, some with and some without hints. Below are the hypotheses that we tested.

Hypothesis 1: Hints will improve students’ ability to solve the proof problems.

Hypothesis 2: System generated hints will help in overall learning of the material.

We tested Hypothesis 1 by examining the completion rate of each of the three levels of

problems, as well as success on two “no hint” problems given at the end of the third

level. We tested Hypothesis 2 by measuring differences between each student’s

performance on pre and post tests.

7.2 Experiment

We created MDPs using value iteration with the goal state assigned a value of

100, errors a value of -10, and transitions -1, to generate hints for 4 new DT level one

problems: 1-1, 1-2, 1-4, and 1-5. We created a “DT-hints” version of DT with hints for

these and problems 3-2, 3-5, 3-6, and 3-8, and a “DT-nohints” version without.

 65

We refer to the 3 Spring 2009 classes in this study Online-Hint, Hint, and Non-

Hint. The number of students in each class can be seen in Table 7.2. The Online-Hint and

Hint classes received unlimited hints on the hint problems and the Non-Hint class

received no hints. Online-Hint was an asynchronous online course while Hint and Non-

Hint were traditional courses that met on campus. All classes were assigned the problems

shown in Table 7.1 (explanation of the symbol notation for these problems is available in

Appendix B). In addition to the hint problems there were six additional problems without

hints for any classes. Of the six problems without hints, we were especially interested in

problems 3-9 and 3-10 since these would represent the last problems the students would

have to work, and therefore would provide data to compare learning gains between hints

and no-hints classes. Students completed the problems, in order, over the course of the

semester. Students accessed the Deep Thought tutor via the learning management system

used to administer the course. All three classes used the same system and had the same

problems.

Table 7.1. Descriptions for DT problems assigned to the Spring 2009 classes (see
Appendix B for symbol descriptions)

Problem Givens Conclusion Hints
1-1 A>(B&C), AvD, ~D&E B Yes
1-2 (FvG)>H, IvF, ~I&J H Yes
1-3 (~KvL)>(M&N),K>O,~O N No
1-4 (~T&S)>~R, ~T, (~QvP)>S, Q>T ~RvN Yes
1-5 Z>(~Y>X), Z&~W, Wv(T>S), ~YvT XvS Yes
1-6 B>(A>J),D&~(A>~C),Bv(A>~C),J>~C A>~C No
2-1 (F&I)>M, ~M&(~V>R), (J>K)v(F&I), K>~V J>R No
3-1 V>D, ~~~D ~(VvD) No
3-2 (A>~B)vC, ~C,DvB ~D>~A Yes
3-5 K>M, Z>R, ~(K>R) M&~Z Yes
3-6 ~(T&L), ~T>~N, ~(EvT) ~N Yes
3-8 Y=P, ~Y>~C, ~P=~C Y>C Yes
3-9 SvB, B>D, S>G DvG No

3-10 J>H, ~W>(~H&~F), J W No

 66

7.3 Results and Discussion

After the semester was completed, we analyzed data from the Deep Thought log

files. Table 7.2 shows a summary of the number of students in each class, the number of

students who completed at least one problem in each of the three DT levels, the number

of students who completed the post test, and the number of students who completed the

class. All the students who completed the course attempted level 1 problems, but the

Non-Hint class had many more students who did not attempt any level 3 problems or who

did not take the post test. This result suggests that having hints keep struggling students

engaged enough with the tutor to attempt the level 3 problems.

Table 7.2. Profile of number of students in each deductive logic class with level attempts,
and course and posttest completion

Class Hints Enrolled Tried

Level 1
Tried

Level 2
Tried

Level 3
Completed

Post test
Completed

Course
Online Hint Hints 46 38 32 35 37 38

Hint Hints 37 28 22 25 28 28
Non-Hint No hints 37 28 16 18 21 28

Next, we tested Hypothesis 1, by measuring the average number of completed

problems for each of the three DT levels, L1-L3, for the hint group (Online Hint and

Hint) and the non-hint group (Non-Hint). Table 7.3 shows the average and standard

deviation of the number of problems completed by students in each class, in each DT

level and also for the separate problems 3-9 and 2-10 which did not have hints for any

students. We used two-tailed t-tests to compare the results of the Hint (Online Hint and

Hint) group with the Non-Hint group. There were no significant difference in level 2

performance, but level 2 only included one problem assigned. The Hint group performed

 67

significantly better, t(N=44) = 2.85, p = 0.007, on L3. This is expected since L3 includes

4 problems with hints, that students are more likely to be able to complete. The Hint

group also performed better on the last two questions of level 3, which had no hints,

t(N=92) = 1.9, p = 0.06.

Table 7.3. Average Number & Standard Deviation of Completed Problems for DT Levels
L1-L3 and Problems 3-9 & 3-10 for each Spring 2009 class

Class N L1 Avg. L1 SD L2 Avg. L2 SD L3 Avg. L3 SD 3-9 & 3-10 Avg. 3-9 & 3-10 SD

Online Hint 38 4.13 1.80 1.16 1.51 4.13 2.90 1.05 0.98
Hint 28 4.46 1.50 0.89 1.10 5.30 2.81 1.21 0.96

Non-Hint 28 3.54 2.13 1.04 1.73 2.96 3.35 0.71 0.9

Since the online class may have other factors influencing behavior, we performed

a comparison between both on-campus courses. Again, there were no significant

differences in level 2 performance. The hint group performed significantly better on L3

overall, t (N=54) = 2.80, p = .007, and on the last two L3 problems, t (N=54) = 2.01, p =

.049.

We then looked at the likelihood that a student would complete a level 3 problem.

Table 7.4 shows the number of students who attempted and did not attempt level 3 for the

hint and non-hint groups. This data only consisted of the traditional classes (online class

was removed, although adding the online class only increases the likelihood). Based on

this information the 89.28% of the hint group attempted level three while only 64.28% of

the non-hint group attempted level three. Additionally, holding all other values constant

the likelihood of the hint group attempting level 3 is 4.6 times the likelihood of the non-

hint group. Regressing level three attempts and no attempts as a binary value onto hint-

 68

group in a binary logistic regression showed hint-group to be a significant predictor, Χ-

square(1) = 5.12, p=.024. This means that students who have hints in level 1 are more

likely to attempt level 3.

Table 7.4. Overview of Student attempts on Level 3 (traditional classes only)

Group
Number of Students

who Attempt
Number of Students
who do not attempt

Percentage that
Attempted

Hint 25 3 89.28

Non-Hint 18 10 64.28

We hypothesized (H2) that students with hints would have higher pre- to post-test

learning gains. The post test consisted of material from the entire course, including

problems in logic. There were five logic proof problems in the post test were screenshots

from the Deep Thought tutor where the student needed to fill in the next step.

Unfortunately, we were not able to show a significant increase in the post-test results of

the hint group vs. non-hint group. We believe one reason for lack of increase was the

high attrition rate in the non-hint group. Because of the attrition, these students in the

non-hint group did not that complete the post-test and we believe they would have scored

lower since these students were also the students who did not attempt level three. The

pre and post tests also contained material for the entire course and not just logic proof

problems. We had hoped to look at just the post test data for just the proof section, but

due to the data collection from the learning management system it was not possible.

 Several limitations of our study may have affected our results. The syllabus was

the same for all three classes, so the intended teaching objectives and assignments were

all identical. However, there can be significant differences between professors, between

 69

different classes, and between online and traditional on-campus classes. The pre- and

post-tests were not specific enough to help us understand the effects of hints, since they

included questions from the entire course. To improve the design of the experiment we

are performing a crossover of the hint and non-hint groups using the same professors, but

switching which professors are using hints in their classes. This will mitigate the

differences between professors. Additionally, we will also isolate the proof questions on

the pre and post tests to more fully analyze the effect of hints on proofs as well as the

entire class.

7.4 Summary

Our main hypothesis in this study was to show that adding hints to Deep Thought

would increase logic proof learning outcomes. Although our tests did not show

significant differences in pre- to post-test learning gains in the course overall, our results

showed that students who received hints on Deep Thought level 1 (L1) were more likely

to attempt problems in level 3. This result is important because students who are able to

solve the proofs in level 3 are more likely to complete the course and understand the

overall material presented in the logic course. We believe this is because the hints during

level 1 allowed students who might otherwise give up to continue through the tutor

problems. The post-test results did not show any significant results across the hints and

no-hints groups, but 25% of the non-hint group did not complete the post-test. Of these

25% who completed the course but did not complete the post-test, only one student

attempted level 3 problems. We believe this result shows that only the higher level

students in the non-hint group were able to complete the DT problems successfully since

 70

most of the students who had difficulty in DT did not reach level 3 and did not take the

post test.

CHAPTER 8: UNSUPERVISED MDP VALUE SELECTION FOR HINTS

8.1 Background

In Chapters 6 and 7, we have shown that we can successfully generate context-

specific hints for a logic tutor using a Markov decision process (MDP) built from

historical student data. The core element of this work that makes automated hint

generation possible is the assignment of relative values or “rewards” to each step in a

problem solution, since this allows the tutor to identify the action that will lead to the

next state with the highest value. Therefore, the value of the state could also be called the

expected utility of the state. While a straightforward implementation of value iteration on

a MDP has been successful in generating valid hints, there have been instances where the

hint was not directly helpful in solving the problem. Therefore, alternate rewards may be

needed to avoid “non-helpful” states, or allow for hints tailored to specific student needs

or readiness to learn.

As in a recommender system that makes purchase suggestion based on frequent

behaviors, we believe that hints generated based on the frequency of a particular step

represent those that the majority of students would understand and be able to apply.

Vygotsky’s theory of the zone of proximal development states that students are able to

learn new things that are closest to what they already know (Vygotsky 1987).

Presumably, frequent actions could be those that more students feel fluent using.

 72

Therefore, paths based on typical student behavior may be more helpful than optimal or

expert solutions, which may be above a student’s current ability to understand.

Based on this idea, and the observation that our MDP method sometimes

generates a hint that a typical student would not do, or one that is technically correct but

was not necessary to the problem solution, we hypothesized that we may be able to

generate hints based on “usefulness” and frequency for a particular step in a student’s

attempt. As explained in Chapter 3, when we construct our MDP, we connect all correct

student attempts to a synthetic goal state, assign this state a high value and errors negative

values, and rely on value iteration to assign high values to states that are close to the goal,

and lower values to those further away. Using this approach results in high values for

expert-like solutions, which are short and have few errors. However, in a few instances

our tutor gives hints that suggest a less popular path with additional, unnecessary steps.

Close inspection of the MDP showed that the states derived from a single, error-free

student’s solution could get higher values than a more popular route, but that had a

significant number of errors. A metric that more heavily emphasizes frequency can

mitigate this issue.

The overall goal of our work is to derive domain-independent ways to add

intelligence to tutors. However, our typical MDP approach requires that we can label all

data as correct or incorrect. In the logic proofs domain, this is simple but in other

domains, especially ill-defined domains, hand grading of all student solutions might be

required. For example, it is often difficult to determine if a computer program is

complete and correct, but it is possible to extract features that many attempts contain,

such as variables or loop structures. It seems reasonable to propose that the more student

 73

attempts that contain a particular feature, the more likely it is that this feature is a

necessary part of a correct program. To lay the foundation for hint generation in such ill-

defined domains, we performed an experiment to verify that we could use an

unsupervised utility metric to label and value states in an MDP for logic. We

hypothesized that this metric would result in similar hints in the logic domain to those we

derive using our MDP method.

In our logic proof data, a subset of statements that students use in problem

solutions could be considered necessary for problem completion, and therefore all correct

attempts will contain these necessary statements. Therefore, it makes sense that a

frequency metric that determines how often a statement is used across a student data set

might point to necessary steps.

Research on ill-defined domains such as medical diagnosis, computer

programming and legal reasoning has shown that it is difficult to generate feedback in

environments where there are many possible ways to solve a problem (Lynch et al 2006).

For example, in the domain of computer programming, it can be difficult to determine if

a program is complete and correct, but it is possible to extract features that many attempts

contain such as variables or loop structures. We could suppose that the more student

attempts that contain a particular feature, the more likely this feature is a necessary part

of the completed program.

Sequential Pattern Matching (SPM) is a data-mining method used in ill-defined

domains to extract frequent actions into plans. SPM has been used in a tutor to teach

astronauts to use a robotic arm, where the tutor suggested a plan based on their current

location in the problem (Nkambou et al 2008). Like our approach, this method only uses

 74

good solutions and takes into account how often different actions occur, but is specific to

the robotic arm control domain.

8.2 Method

The utility method that we present here shows a capable method for determining

the “goodness” of a state by taking into account the state features contained in the state.

In our original MDP method, all paths which solved the problem were directed to a goal

state which was given a high reward value. The use of a single goal state works well

unless we do not know if the student solved the problem in the attempt. So unlike our

original method where the goal state was known, the utility method has no known goal

states so all terminal, non-error states are treated as a possible goal.

We derive our utility metric using techniques related to Latent Semantic Indexing

(LSI), which are used to search large databases of text documents (Landauer et al 1998).

In LSI, terms refer to words, while for logic proofs, we define a term, or feature, as the

statement a student derives in a single problem-solving step. Therefore, each attempt is

composed of a sequence of statements. As in LSI, we use a term-document matrix, as

shown in Table 8.2, to show the occurrence of each statement or term in each student

attempt, marking a 1 for terms that occur and 0 that do not occur. We then compute the

frequency by summing the columns. We set a percentage frequency threshold such that

all state features above the threshold had a good potential of being a part of the solution.

Setting this threshold can be done automatically or with the help of a domain expert.

Once a list of frequent statements is determined, we calculate initial utility values

for all terminal states (leaves) in the MDP. This replaces our original approach of

creating a goal state with a single positive value. Valid terminal states are therefore

 75

candidate goal states. The utility value of a terminal state is the sum of the value for each

step (or feature) in the student attempt. The value of each step is positive if it was

frequent and negative otherwise. Error states receive a high negative start value, and all

other states start at zero. After the initial values are set, value iteration is applied until the

state values stabilize resulting in a value for every state.

8.3 Experiment

We applied the utility method to our NCSU-Proof1 problem and dataset as

described in section 4.2. We compared the results of both our traditional and utility

methods to assign values to terminal states for this problem, paying special attention to

states that had different best values. For these states, we hypothesized that the hints

resulting from the utility method would be at least as good as those using the traditional

method.

Table 8.1. Sample states derived from example student attempt in Figure 4.1

State State Description Error Action Result State

1 a � b, c � d, -(~(a � d) IM 2

2 a � b, c � d, -(~(a � d), -~a v d Yes 1

1 a � b, c � d, -(~(a � d) IM 3

3 a � b, c � d, -(~(a � d), a ^ -~d S 4

4 a � b, c � d, -(~(a � d), a ^ -~d, a MP 5

5 a � b, c � d, -(~(a � d), a ^ -~d, a, b Yes 4

4 a � b, c � d, -(~(a � d), a ^ -~d, a MP 6

6 a � b, c � d, -(~(a � d), a ^ -~d, a, b S 7

7 a � b, c � d, -(~(a � d), a ^ -~d, a, b, -~d MT 8

8 a � b, c � d, -(~(a � d), a ^ -~d, a, b, -~d, -~c CJ 9

9 a � b, c � d, -(~(a � d), a ^ -~d, a, b, -~d, -~c, b ^ -~c

 76

8.3.1 Data

An MDP was created from the NCSU-Proof 1 data as using the MDP method as

described in section 4.2, resulting in 821 unique states. Table 8.1 shows the states created

in our MDP for the student attempt shown in Figure 4.1. In the logic domain, a step in the

solution is considered to be a new statement added to the previous state. For example, in

state 2, the statement ~a v d is the next “step” in the problem, however, since it is an error

detected by the software, this statement is deleted and the problem is returned to state 1.

8.3.2 Utility Process

If our data are labeled, we simply connect all valid solutions to a synthetic goal

state. However, when goal states are unknown, we need a way to label or measure correct

attempts. The utility metric is one way that assumes that frequent features are important

in the problem solution.

Table 8.2. Sample matrix showing the occurrence of elements in student solution
attempts.

Terms

 a � b* c � d* -(~(a � d)* a ^ -~d a b -~d -~c b ^ -~c

Attempt 1 1 1 1 1 1 1 1 1 1

Attempt 2 1 1 1 0 0 1 1 1 1

Attempt 3 1 1 1 1 0 0 1 0 0

From our 523 attempts, we extracted 50 unique statements (including 3 given

statements) and calculated their frequencies. A partial sample of the statement

frequencies is shown in Table 8.2. Note that only the first three attempts are shown and

only the statements appearing in those three attempts. The complete term-document

 77

matrix, given in Appendix E, contains all 50 statements on the x-axis and all 523 attempts

on the y-axis. To determine statement frequency, we sum each column.

Figure 8.2. Frequency of Statements in Proof 1

To determine a threshold for which steps should be considered “useful,” we

graphed the frequency of each step (numbered 1 through 47) by their frequency shown in

Figure 8.2. Note that the 3 given statements were not included since all attempts had

those statements.

Statements 1-22 occurred only once in the data, while statements 43-47 occur in

over 370 unique student attempts. Since there is variation in correct solutions, we

consider somewhat frequent steps may be useful, so in this case we set a threshold

frequency of 8 which is true for statements 29 and higher. We had a logic instructor

verify that all the statements at this level could reasonably be expected to occur in student

solutions, while those with fewer were not as useful or productive. This threshold value

could also be chosen automatically using the frequency profile.

Next we calculate the starting values for states in the MDP. For the possible goal

states (terminal, non-error states), the initial value was a sum of the individual scores

0
50

100
150
200
250
300
350
400
450

22 23 24 25 26 27 28 29 30 31 32 33 34 35 36 37 38 39 40 41 42 43 44 45 46 47

 78

given to the component statements or “features.” Each statement score was +5 if its

frequency was above the threshold and was -1 for those below, and the state value is the

sum of its component scores. Error states received a value of -2, and all other states

started at zero. Finally, after the initial values were set we applied to the terminal states

we ran a value iteration algorithm until the state values stabilized. Note that during value

iteration, a -1 transaction cost was associated with each action taken.

8.3.3 Comparing Utility Method to MDP Method

We use an MDP along with its state values to generate hints that provide students

with details of the best next state reachable from their current state. To compare the

utility method to our traditional MDP method we compared the effects of state values on

the choice of the “best” next state. Both methods create the same 821 states, of which 384

were non-error states. From the non-error states, 180 states had more than one action

resulting in new state. These 180 states are the ones that we focused on since these are the

only states that could lead to different hints between the two methods. Comparing the two

methods, they agree on the next best state in 163 states out of 180 (90.56%). For the

remaining 17 states where the two methods disagreed, logic instructor experts identified 4

states where the MDP method identified the better choice, 9 states where the utility

method identified the better choice, and 4 states that were essentially equivalent. These

17 states can be seen in Table 8.3, with the highlighted cells marking the expert choice.

These results show that the utility method does at least as good a job as the

traditional MDP method in determining state values even when it is not known if the

student attempt was successful. According to our logic experts, in all cases, the hints that

would be delivered with either method would be helpful and appropriate. We believe that

 79

the utility metric provides a strong way to bias hint selection toward statements derived

by a majority of students, which may give students hints at a more appropriate level.

Table 8.3. States where the methods disagree (17 total states)

State State Description
of
Possible
Actions

MDP next
Statement

MDP
Value

Utility
next
Stmt

Utility
Value

1 a>b,c>d,-(a>d) 14 -d>-c 49.91 -(-a+d) 10.57
2 a>b,c>d,-(a>d),-(-a+d) 9 b 98.00 (a*-d) 14.00
3 a>b,c>d,-(a>d),-(-a+d),a*-d 8 -(a*-b) 93.00 -(a*-b) 29.00
4 a>b,c>d,-(a>d),-(-a+d),a*-d,b 4 -c 87.72 -d>-c 38.74
7 a>b,c>d,-(a>d),-a+b 6 -d>-c 29.00 -d>-c 18.00
8 a>b,c>d,-(a>d),-a+b,-c+d 2 b+-c 99.00 -(-a+d) 18.02

19 a>b,c>d,-(a>d),-(-d>-a) 2 -(d+-a) 27.13 a*-d 7.67
36 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d 2 -c 24.33 b 6.04
53 a>b,c>d,-(a>d),-d>-c 5 -(-a+d) 96.00 -b>-a 21.00
82 a>b,c>d,-(a>d),(a*-d),-c 3 b 99.00 -(a*-b) 14.00
91 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c 3 (a*-d)>(b*-c) 99.00 b 19.33

119 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c 3 -c+d 98.00 -c 42.71
156 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b 2 -d>-c 98.00 b 29.60
228 a>b,c>d,-(a>d),a*-d,-d>-c 2 -c 76.20 b 14.00
333 a>b,c>d,-(a>d),a*-d,-c+d 2 -a+b 99.00 -c 19.00
337 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b 2 -c+d 61.67 -c 20.20
522 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c 2 -c 99.00 -c+d 30.00

Before we derived the utility metric presented here, we considered modifying

MDP values by combining them in a weighted sum with a utility factor after value

iteration had been completed. In our first attempt to integrate frequency and usefulness

into a single metric, we analyzed all of our attempts to find derived statements that were

necessary to complete the proof, by doing a recursive search for reference lines starting

from the conclusion back through a student’s proof. For each attempt, this “used again”

value was set to 1 if a derived statement could be reached backward from the goal, and

zero otherwise. We summed the total times a statement was used again, and compared

 80

this with the total times a statement occurred in attempts. Table 8.4 shows the comparison

of the frequency and used again values for all statements where used again was more than

1. The values have no real correlation, but most items that were used again had high (>7)

frequencies, so we decided that frequency was a relatively good indictor of usefulness in

the logic proof domain. The “used again” calculation is possible in the logic domain

because students must provide a justification for the current statement using rules and

references to prior statements. In other domains, this may not be possible but we believe

that frequency of occurrence in student solutions indicates that a step is either needed, or

is a very common step that will only skew state values in a consistent way.

Table 8.4. Comparison of the frequency and the number of times used again for
statements used in proof 1

Statement Number Statement Frequency Used Again

30 (a+c)>(b+d) 8 2
31 -(a*c)+(b*d) 9 2
32 -(d+-a) 9 7
33 (a*-d)>(b*-c) 10 10
34 -(-d>-a) 15 7
35 -b>-a 16 5
36 -(c*-d) 17 6
37 (a*c)>(b*d) 20 4
38 -(a*-b) 23 8
39 (a*-d) 53 44
40 -d>-c 93 71
41 -a+b 145 69
42 -c+d 155 80
43 -(-a+d) 334 300
44 -c 367 344

8.4 Summary

The most important feature of the MDP method is the ability to assign a “value”

to the states. This allows the tutor to identify the action that will lead to the next state

 81

with the highest value. In this chapter we have shown that, in our logic proof domain, the

utility metric for assigning values to terminal states is better than assigning a single goal

value to all goal states.

The main contribution of this chapter is to show how this new utility metric can

be used to generate MDP values based on features of student solution attempts. Our

results show that the utility metric could be used to achieve equivalent or better hints than

our prior single-goal MDP approach. This is significant because the utility metric does

not require a known goal state, so it can be applied in domains where the correctness of

the student attempts is unknown, or difficult or costly to compute. The method of using

term-document matrix to determine utility could also be extended into using more

complicated Latent Semantic Indexing techniques which would be a natural fit for tutors

using textual answers such as essay response questions. Text based answers are prevalent

in legal reasoning and medical diagnosis tutors.

CHAPTER 9: EXPERT SEEDING OF MDPS

One goal of our data-driven methods is to be effective quickly. One criticism of

data-driven techniques is the amount of time it takes to be able to achieve results for a

new problem with no data. Although we addressed this issue with the cold start analysis

in Chapter 5, in this chapter we provide an additional method to speed up hint giving

capabilities. An expert “seeds” the dataset by completing examples to new problems and

we use these examples to create initial MDPs. This process is similar to that used by the

example-tracing Cognitive Tutor Authoring Tool, where teachers work example

problems that are used as a source to extract problem-specific rules that model how

students solve problems. We hypothesize that we can provide significant coverage (over

50%) for hints with just a small amount of time devoted to experts solving a problem by

working examples.

In addition to the seeding experiment, this analysis examines additional problems

in logic domain order to further validate the work done in chapter 5. We show that three

additional problems show similar hint coverage to the problem (NCSU Proof 1)

previously studied.

9.1 Background

Historically, the research and development of intelligent tutors have relied on

subject area experts to provide the background knowledge to give hints and feedback.

Both the cognitive tutors and constraint based tutors that have been the most successful

 83

rely on “rules” that the experts create (Mitrovic et al, 2003). This is a time consuming

process, and requires the experts to not only understand the subject material, but also to

understand the underlying processes used to give help and feedback.

Recently, the makers of the CTAT authoring tools have implemented an “example

tracing” tutor (Salden et al, 2008). This type of tutor allows experts to enter in example

problems into a tutor and annotate hints as they step through a solution. In many ways

this is similar to the seeding approach that we are proposing. There are a number of

differences in the approach, the most important is that the expert need not supply the

specific hint in our tutor and only needs to provide completed example problems.

Additionally, the example tracing tutors will only have the knowledge that the expert has

added, while our methods would allow the tutor to continue to improve with additional

expert or student problem attempts. Finally, our method still computes a value for the

states automatically, and this value allows the tutor to make decisions on which path to

suggest even when multiple choices are reasonable. This ability to differentiate between

several good solutions based on the specific context of student’s current state remains the

strong point of the Hint Factory.

9.2 Method

We performed this experiment using problems 1-4 from the NCSU dataset from

fall semesters 2003, 2004, 2005, and 2006 as described in section 4.2. We generated an

MDP for each semester of data separately, and Table 9.1 shows the number of states

generated and number of total moves generated from each problem during each of the

four semesters. Note that problem 1 was used in the original validation experiments that

were reviewed in Chapter 5. In Table 9.1, note that the total number of attempts, states,

 84

and moves are lower in the Fall 2005 and significantly lower in Fall 2006 semesters. We

note that problem 4 has significantly fewer attempts than other problems in every

semester, and according to the instructor this is because the problem is more difficult than

the others.

Table 9.1. Semester data, including attempts, moves, and states in the MDP for each
semester

Problem Semester # Attempts MDP states # Moves
1 f3 172 206 711
1 f4 154 210 622
1 f5 123 94 500
1 f6 74 133 304
2 f3 138 162 628
2 f4 142 237 752
2 f5 105 122 503
2 f6 63 103 279
3 f3 139 145 648
3 f4 145 184 679
3 f5 113 103 577
3 f6 71 94 372
4 f3 103 46 166
4 f4 59 63 103
4 f5 34 30 48
4 f6 33 20 41

We analyzed these problems using the class cross-validation as in Chapter 5 to

see how much coverage the expert seeding provided. Table 9.2 shows the average move

matches for each problem when one, two, and three semesters of data are used. The

results are similar to those in Chapter 5. With one semester of data the MDP covers an

average of 71.46% of all the valid moves seen in a new semester of data. With two

semesters of data the average move coverage reaches 77.32% for a 5.86% marginal

increase. Adding a third semester of data results in an average move coverage of 79.57%,

 85

a 2.25% marginal increase over two semesters. For each individual problem the marginal

return on adding another semester decreases as we add each subsequent semester.

Problem 4 is interesting in that the total percentage of move matches is approximately 15-

20% lower than the other problems. Further investigation of this problem show that the

fewer number of attempts to be the main cause of the lower percentages. Our experts note

that this problem seems to be more challenging for students.

Table 9.2. Average % move matches across problems using the ordered test sets and
MDPs

Problem 1-sem. MDPs 2-sem. MDPs 3-sem. MDPs
1 72.79% 79.57% 82.32%
2 75.08% 80.58% 82.96%
3 79.01% 83.35% 84.89%
4 58.94% 65.77% 68.09%

Average 71.46% 77.32% 79.57%

The seeding data was provided by two subject area experts (Tiffany Barnes and

Marvin Croy) who spent less than one hour on each problem making several attempts to

solve them. Table 9.3 shows the expert problem attempts used to seed the MDPs for each

problem. These problems can be seen in Appendix B. MDP states are unique steps that

were seen across all solutions, while the number of moves represents all student steps and

counts states multiple times. Between two and four attempts were used to generate

problem-specific MDPs with between 8 and 15 total states. When compared to the

semester data, these states were clearly “high impact” states since these states included

such high coverage of the moves, as seen in Table 9.5, especially for problems 1 and 3.

These states included the most used paths to solve the problems by the students.

 86

Table 9.3. Seeding data, including attempts, moves, and states in the MDP for each
semester

Problem # Attempts MDP states # Moves
1 3 10 19
2 4 12 27
3 2 15 21
4 3 8 20

Table 9.4 shows the average number of unique state matches that seeding gives

compared to MDPs made from one semester of data. Table 9.5 shows this comparison for

average move matches, which is more indicative of the percent hint coverage we can

provide. Comparing Tables 9.4 and 9.5 shows that although only a small percentage of

the seeded states appeared in all of the semesters of class data, they could be used to

provide hints for a large percentage of the moves (42.95% on average).

Table 9.4. Average % state matches for seeded MDPs and 1-semester MDPs using
ordered matching

Problem Seeds 1-sem. MDPs
1 6.22% 34.55%
2 11.40% 34.60%
3 7.69% 33.36%
4 12.46% 23.45%

Average 9.44% 31.49%

Table 9.5. Average % move matches for seeded MDPs and 1-semester MDPs using
ordered matching

Problem Seeds 1-sem. MDPs
1 62.08% 72.79%
2 29.82% 75.08%
3 53.33% 79.01%
4 26.57% 58.94%

Average 42.95% 71.46%

 87

It is interesting to note the move matches for seeded MDPs vary much more than

those for an MDP derived from 1 semester of student data. This should be expected since

there are only a few attempts used for seeding. In fact, with further analysis of the

individual problems we see for problems 1 and 3 there are two common solutions, and

these common solutions were also present in the expert seeds, resulting in high move

coverage percent rates (62.08% and 53.33% respectively). On the other hand, problems 2

and 4 have many common solutions (neither problem had a solution that was used in

more than 15% of the solutions), which results in much lower, but still promising move

coverage considering the small number of expert seed attempts.

9.3 Revisiting the Cold Start

 In Chapter 5, our cold start experiment explored how quickly an MDP is able to

provide hints to new students, or in other words, how long it takes to solve the cold start

problem. In this section, we repeat the cold start experiment for problems 1-4 to compare

the results from a cold start to those for problems with an MDP seeded with expert

solutions. Table 9.6 lists the method for one cold start experiment trial for one problem.

Table 9.6: Method for one trial of the cold-start simulation.

In this experiment, we plotted the percent of moves each consecutive student

could receive with MDPs derived from both student and expert-seeded MDPs using the

ordered matching function. To smooth the curve we took the average move matches over

1. Let Test = {all student attempts}
2. Randomly choose and remove the next attempt a from the Test set.
3. Add a’s states and recalculate the MDP.
4. Randomly choose and remove the next attempt b from the Test set.
5. Compute the number of matches between b and MDP.
6. If Test is non-empty, then let a:=b and go to step 3. Otherwise, stop.

 88

100,000 trials. The graph of MDP and seeded MDP move matches for problem 3 is given

in Figure 9.1. The graph shows how the seeding shifts the initial starting point giving a

boost over 50% at the start and then converges back towards the non-seeded curve as the

number of attempts increases. By 50 attempts the seeded set is just a few attempts ahead

and by 100 attempts the 2 graphs are the same. This shows that over time the seeding

loses its effect, but as a boost to the startup of new problems, seeding is very effective.

The cold start compared with seeded MDPs is similar for the remaining problems, as

shown in Table 9.6. Table 9.7 lists the number of attempts needed in the cold start MDP

and seeded MDPs to achieve target hint percentages. Again we see that the seeding of

each problem gives an initial boost that fades over time as more student attempts are

added, which confirms our hypothesis that seeded MDPs can help provide hints early on

when little data is available.

0%

10%

20%

30%

40%

50%

60%

70%

80%

90%

0 50 100

Student Attempts Seeded Ordered

Figure 9.1. Percent hints available as attempts are added to the MDP, over 100,000 trials

for Problem 3

 89

Table 9.6. Number of attempts needed to achieve threshold % hints levels

Problem 50% 55% 60% 65% 70% 75% 80% 85% 90%
1 Ordered 8 11 14 20 30 46 80 154 360
1 Seeded/Ordered 0 0 4 8 21 46 80 155 360
2 Ordered 9 15 24 36 59 88 149 286 *
2 Seeded/Ordered 2 3 16 22 46 80 146 286 *
3 Ordered 5 7 10 16 27 50 110 266 *
3 Seeded/Ordered 0 1 3 8 20 48 110 266 *
4 Ordered 25 31 54 82 * * * * *
4 Seeded/Ordered 12 22 53 80 * * * * *

9.4 Summary

Although we believe that our method already ramps up quickly as shown in

Chapter 5, seeding using expert examples enhances our ability to give hints. For the

seeding problems 100% of all the seeded states appeared in each semester of data.

Obviously, the educators know the most common solutions to the problems and by

seeding the MDPs they can quickly get this data included to help jump start the hint

giving process.

Although this experiment showed positive results with historical data, there are

some caveats to applying expert seeding to provide hints in practice. The most important

caveat here is that hints based on expert solutions may bias students towards trying one of

only a few expert solutions. This can result in students not working hard enough to find a

solution on their own. It can also limit the variability in the student problem solution

space, a characteristic of the type of data we use for constructing effective MDPs that can

provide hints for a wide variety of student approaches. Seeding would likely reinforce the

expert solution for a long time to come even as additional data is acquired, so the curves

shown here for percent move matches may rise much more slowly in practice. To

 90

alleviate this problem, instructors can vary which problems get hints each semester so

that clean data with no hints can be collected on every problem at some point.

Another potential drawback of using expert seeding is that experts may not

include some common or important ways of working a problem in their seeding set.

Then, some students would get hints while others with perfectly good solutions might not

have hints available. Since we’ve anecdotally observed that students sometimes modify

their proof approaches based on whether hints are available, we believe that the change in

hint availability may give the unintentional message to some students that their solutions

are not viable or correct and cause them to change course.

CHAPTER 10: USING A BAYESIAN KNOWLEDGE BASE FOR HINT SELECTION
ON DOMAIN SPECIFIC PROBLEMS

The major goal of our research has been to provide hints to students with as little

human intervention as possible. Our hint generation methods using MDPs have been

successful in fulfilling this goal, but are limited to individual problems with previously

collected data. To address this issue we have explored a number of additional methods to

decrease the ramp up time needed to give hints. One method we explored is “expert

seeding” of the MDP (Chapter 9). With experts adding a few problem examples we were

able to get an initial set of states that would allow for hints on what the experts thought

were good solutions. The drawback of this method is that it does not take into account

student preferences for solving the problem and does add an amount of bias towards

provided expert solutions. In some domains, logic included, it would be possible to use a

proof solver to obtain a solution at any point in the problem. It would be difficult,

however, to achieve the context specificity that our method provides by generating hints

through exact matches to student attempt sequences, since the proof solver would have to

take into account student work in its own solution. We believe that extracting information

from multiple problem MDPs and creating a corpus of knowledge that can be used to

solve new problems would inherently incorporate student preferences and bias hints

toward the rules that students actually use. This may benefit students by providing more

easily understood problem solutions and hints.

 92

To accomplish this solution we extracted individual model components (MCs)

from each of the MDPs to create a large Bayesian Knowledge Base (BKB) that can then

be applied to any problem in the domain. A MC represents a piece of knowledge in the

BKB, and in our case this will contain all or part of a student step. MCs are different from

Knowledge Components (KCs) as described in Intelligent Tutoring Systems research

(Anderson, 1982). A knowledge component in this context represents a concept that a

student is learning. Knowledge components are an integral part of knowledge tracing

which is used to model student learning and knowledge. Model Components (MCs), on

the other hand, are used for model tracing to track what processes students are applying

on individual problem steps. A model component could correspond to one or more

knowledge components (KCs), and could be tagged with these associated KCs to

facilitate knowledge tracing. In the logic domain, some knowledge components represent

the ability to apply specific logic rules, and our most specific extracted model

components often correspond to individual rule applications.

In the remainder of this chapter, we give an overview of Bayesian Knowledge

Bases, explain how our data can be structured in a BKB, and show the results of

experiments to test the capabilities of our BKB.

10.1 Background

The main hypothesis of this chapter is that we will be able to combine MDPs on

problems with data to create new knowledge in a way that can be used to provide hints

for problems with no prior data. Therefore, we need ways to analyze our MDPs and prior

data in ways that allow us to aggregate knowledge across these structures. Techniques

built on Latent Semantic Analysis (LSA) (Landauer et al 1998) can be applied to domains

 93

such as algebra, geometry, and logic to extract individual features of problems and

solutions in those domains. In our utility work (see chapter 8), we used term-document

matrices as part of the formula for calculating state-action utility.

The use of more complex MDPs such as Hidden Markov Models (HMMs) and

Partially Observable Markov Models (POMDPs) have also shown good results in natural

language processing (Rabiner 1989) Similar to our MDP method, these techniques apply

values to various speaking states in order to determine probabilistically what was said.

An HMM can be described as a MDP where some state information is unknown or

hidden. In our case, we create our MDPs at a point in time where we assume that the past

represents entire possible space even though we know this is not true. It would be

possible to use a HMM to include hidden states to model states that we may see in the

future but have no information at the current time.

Research into more advanced Bayesian Networks such as Dynamic Bayes Nets

(Murphy 2002) or probabilistic Bayesian Knowledge Bases (Antal and Millinghoffer

2005) can provide a basis for extracting parts of the MDP allowing the individual state

action pairs to be reused and potentially allow for the emergence of production rules.

These production rules could be applied to any problem, including new problems where

no previous data had been collected. For this research, we chose to use the Bayesian

Knowledge Base (BKB) method to expand our individual MDPs into a full corpus of

domain knowledge, since the breakdown of the MDP states into if-then steps closely

resembled the individual nodes in a BKB.

Bayesian networks (BN) have been extensively used in intelligent tutoring

systems for knowledge tracing, to model the probability of knowing a certain skill (Baker

 94

et al. 2008) (Arroyo and Woolf, 2005). Bayesian knowledge tracing incorporates

probabilities that a student sometimes gets a problem correct when they do not know the

skill by guessing, and conversely sometimes gets a problem wrong when they know the

skill (called slipping). Bayesian networks have also been used in model tracing in the

Andes physics tutor, which predicts which strategy a student is using by using a solver to

create all possible solution paths and then applies probabilities to those paths using likely

sequences (Conati et al. 1997). This was possible due to the small number of steps

required to solve a problem in the Andes tutor. In the logic proof domain it would not be

feasible to compute all possible solution paths.

A BKB is a generalization of a BN where each node has independence from the

others (Santos and Santos, 1996). This independence is important because, without it, no

problem-solving steps could be separated from the others. BKBs have been used with

success in areas where complete knowledge is not available and a full BN cannot be

constructed such as in natural language processing (Haddawy, 1994). Figure 10.2 shows

an example of a partial BN on the left and the resulting BKB records on the right, which

are subgraphs of the BN. The BKB can be thought of as a group of small Bayes Nets

where each Bayes Net consists of a parent node and its children connected by actions that

have probability distributions. By matching nodes and edges in a particular problem state

to those in one or more of our BKB components we can use the Bayesian relationships in

the best components to suggest a next step. In other words, given a certain state and its

matched model components, probabilities can be calculated within each model

component to determine the next action-state pair with the highest likelihood of success.

In our implementation the BKB is a group of model components where each component

 95

consists of a state, actions, and new resulting states, and we compute a BKB value for

each resulting state that will be used for hint selection.

Figure 10.2. Partial Bayesian Network (left) and extracted BKB Model Components

(right) (state labels are the same for both)

We know that our data contains certain patterns that we can exploit to create

general domain knowledge that could be used to predict new problem solutions and

perhaps help in hint generation. The logic domain is a good candidate for study since

there are actual rules that we can discover, so we can compare the derived rules with

those used in the domain, such as those used in logic proof solvers (e.g. McCune &

Shumsky, 2000). However, the best available theorem provers are not easily exploited to

provide appropriate help, especially to beginning students, because the proofs they

generate do not correspond to the reasoning patterns commonly deployed in "natural

deduction" proof systems. Our goal is to use the derived model components to determine

 96

the next best state for a student and provide context specific hints that would lead

students to that state.

10.2 Method

BKB model components (MCs) can be constructed at three different levels of

granularity, as shown in Table 10.1. Level 3 MCs correspond to creating a new MC for

each “parent” state in the MDP – consisting of that state, and all the successive action-

state pairs that can be taken from that state. Level 2 MCs are level 3 MCs split up so that

they contain only one type of action, but can contain multiple new states if the same

action is used to derive them. Level 1 MCs contain the smallest knowledge component

that can be extracted and consist of the specific part of a state used by an action, the

action, and the resulting part of the new state. In practice in the logic domain, a level 1

MC usually represents a logic rule application. Level 3 MCs contain the most context

specific information, but will be the hardest to match to student problem states since the

MCs describe a specific situation and include multiple premises and logic statements.

Before use, all states in the BKB are normalized by replacing problem-specific letters

with variables so that they represent more general problem structures.

For the experiments in this chapter, we determine the effectiveness of our BKBs

by determining how many states in an unseen problem can be matched with model

components in the BKB for hint generation, similar to the cold start experiment. To do

this we use only the level 1 MCs since they are the most general and the level 2 and 3

MCs would be redundant in terms of problem space coverage (since level 2 and 3 MCs

are composed of level 1 MCs).

 97

Table 10.1. Levels of Model Components and Description

Level Description
1 The smallest component of knowledge in our BKB. It is just the needed statements, an action, and new statements.
2 Intermediate step, can contain multiple actions.
3 The most robust. It is an entire MDP state and actions

Table 10.2 shows an example state and its successive action-state pairs from Deep

Thought problem 3-6 (see Appendix B for more detail on this problem), from solutions

students derived in Spring 2009. The MDP Values for the successor states in the table are

the same as those in the Spring 2009 MDP. These values are retained as each MC is

broken down into smaller parts. This table also represents a single level 3 MC: a

normalized copy of the state from the original MDP. This MC is then broken down into 3

level 2 MCs, which can be represented by separating the table into three parts, one for

each type of action from state 2 to another state. The level 2 MCs are further broken

down to the four level 1 MCs shown in Table 10.3. Level 2 and 3 MCs encode full sets of

states, actions, and new states, including all features of the individual problem, even

those that are not relevant to the current actions. On the other hand, level 1 MCs contain

only the state features used for the given action and those new ones resulting from the

action. In the logic domain, correct level 1 MCs correspond to application of standard

logic rules, while level 2 and level 3 MCs correspond to full problems with partial steps

worked.

Note that one of the Level 1 MCs in Table 10.3 has a MDP value of -10,

indicating that its action results in an error state. Although it can be useful for analysis to

keep errors in the BKB, we remove them when using the BKB for hint generation. We

 98

don’t remove them before MDP derivation because the error states are important in the

formulation of the MDP values for all the non-error states as well.

Table 10.2. Level 3 Model Component derived from State 2 from the Spring 2009 MDP
for Deep Thought problem 3-6

State Description Actions
New

States
MDP

Values
F-SIMP 3 84.00
F-DEM 6 96.33

F-TRANS 63 -10.00
2

~(T&L),
~T>~N,
~(EvT),
~E&~T

/~N F-TRANS 64 68.25

When constructing a BKB from multiple MDPs, we break each MDP into Level 3

MCs, and break these further down until we have level 1 node-action-node triplets, where

the node descriptions are those that are relevant to the current action, as shown in Figure

10.3, and combine all of these level 1 MCs into a BKB. There will be a one to one

mapping from the level 3 BKB records and the states in the MDP, however the number of

level 1 MCs corresponds to the number of rule applications that have been seen in the

student data. We compute BKB values for each successor state in an MC from the MDP

values, and these BKB values will be used to select the best action for the student to take

in hint generation.

Since we’re going to create a BKB from MCs derived from different MDPs, it is

important to normalize their parameters so the MCs from one MDP do not dominate the

derived BKB because its values are in a different range than another’s. To maintain this

needed consistency, the same parameters for the goal, errors, and state transitions were

used to generate each MDP. These values were 100, -10, and -1 respectively. We then

 99

save each MDP state with its successors (e.g. the state, its actions and resulting new

states) as a Level 3 model component. We give each of these MCs in the BKB their state

values and transition probabilities from the initial MDP. A level 3 component will only

be seen once in an MDP so the values can just be transferred. The initial BKB values and

transition probabilities for level 1 and 2 MCs are the average value and transition

probabilities of all the Level 3 MCs that contain them.

Table 10.3. Level 1 Model Components derived from State 2, Problem 3-6 of DT dataset.

State Features Action
New State
Features Value

~A&~B F-SIMP ~B 84.00
~(A&B) F-DEM ~Av~B 96.33
~A>~B F-TRANS ~B>~A -10.00
~A>~B F-TRANS B>A 68.25

We combine two BKBs by taking the union of all of their MCs, and modifying

their BKB values using a weighted sum, discounting the MCs in one BKB by an alpha

between 0 and 1. For our experiment we chose alpha=0.5 for the older problem in the

BKB (but this parameter can be empirically tuned for individual problems or domains).

We then recalculate the transition probablilities based on the combined MCs. If the

problems in a set are ordered from easier to harder, as many problem sets are, this means

that MCs used in later and therefore harder problems will have higher weights in the

BKB. This makes it so that using a BKB for a harder problem will be skewed toward

giving hints related to MCs used in the most recent problems. If this is not appropriate

for a problem set, the alpha values can be modified for appropriate weightings, either

 100

through consulting with domain experts, or by empirical evaluation (e.g. using different

alpha values and testing the hint coverage and appropriateness for the resulting BKB).

10.3 Experiment

We hypothesized that we can derive meaningful MCs from problems using the

BKB method. The features in a MC can be matched to the features in a students current

state and the transition probabilities and values allow us to determine the next best state

the student can reach. We can then generate a hint that will take the student towards this

state. To test this we create a BKB from problems in our logic data sets and verify that

the level 1 MCs correspond to valid rules in the logic domain, and can be used to

generate hints for different problems. Also, different problems will have different

MCs that are of varying importance to each problem. This will be shown by the

distribution of MCs across different problems. This means that some problems will favor

BKB items higher than others, but the distribution will be smoother as a variety of

different problems are added. Even though these are different, they can be combined to

make a general rule set that can be used to solve a new proof problem. We show this by

deriving a BKB from a set of problems and testing the MCs on a new problem to see if

we could select rules in such a way that the problem can be solved by applying the hints

it suggests in succession. In domains that have clear and definable rule sets, the BKB can

be used to extract these rules from individual problems and generalize them to be used on

new problems. Most mathematics domains would be candidates for this method. In fact,

any domain that could be implemented with a production rule system should also work

with this method, since the effect of breaking out the individual MCs is to create

components that are similar to production rules. In the logic domain this will show how

 101

well the rule set gets covered. The experiment is a leave-one-out cross validation where

all but one problem is used to make the BKB and then the remaining problem is the test

case for the BKB.

We used MDPs derived from the NCSU dataset (1,2,3,4) and the DT dataset (1-

1,1-2,1-4,1-5, 3-2, 3-5,3-6,3-8). Problem descriptions for these are given in Table 10.4

and information on the notation is given in Appendix B. We note that problems 1-4 in the

NCSU dataset are similar in difficulty to level 3 problems in Deep Thought.

From these data we transformed the Deep Thought data into a format compatible

with the NCSU data. We note that although both of these data represent solving logic

problems there are differences in the way the two CAIs work. Deep Thought has a

graphical interface and allows students to work forwards or backwards to solve proofs

(Croy 1999), while the NCSU CAI allows only forwards actions. Deep Thought also

allows students to delete steps in their problems. To make sure that the hints would be

acceptable for both data sets we eliminated student attempts in the Deep Thought data

that used backwards solving and we removed all delete actions. Using the MDP files we

extract the individual states as level 3 model components and place them into a Bayesian

Knowledge Base (BKB). The steps are further broken down into level 1 model

components that are represented by statements, an action applied to the statements, and

resulting statements. The level 3 model components represent the specific problem while

the level 1 MCs represent the generalized knowledge from the problem.

 102

Table 10.4. Problem Descriptions for NCSU and DT Datasets

Problem Givens Conclusion
1 A>B, C>D, ~(A>D) B&~C
2 A>B, ~C>D, ~Bv~D A>C
3 (BvA)>C A>(B>C)
4 Av(B>C), BvC, C>A A

1-1 A>(B&C), AvD, ~D&E B
1-2 (FvG)>H, IvF, ~I&J H
1-4 (~T&S)>~R, ~T, (~QvP)>S, Q>T ~RvN
1-5 Z>(~Y>X), Z&~W, Wv(T>S), ~YvT XvS
3-2 (A>~B)vC, ~C,DvB ~D>~A
3-5 K>M, Z>R, ~(K>R) M&~Z
3-6 ~(T&L), ~T>~N, ~(EvT) ~N
3-8 Y=P, ~Y>~C, ~P=~C Y>C

After creating level 1 MCs, we immediately noticed that the NCSU dataset

resulted in many more MCs than were derived from the Deep Thought data. Some of the

discrepancy was due to invalid data in the NCSU dataset. 16 attempts had invalid items,

and the entire attempts containing these were removed. The resulting number of MCs for

each of the problems in our BKB (excluding error states) can be seen in Table 10.5 and a

list of the MCs is available in Appendix F.

The NCSU dataset still has more MCs, and the remaining discrepancy can be

explained partly due to the interfaces and partly due to the specific problems. The NCSU

interface is text based while DT is graphical. The graphical interface in DT is more

structured allowing students to use the mouse to select rows and create statements. The

text-based interface of the NCSU proof tutor is more general, allowing students to enter

new statements via the keyboard. This allows students to enter a much wider range of

 103

erroneous data when solving the proofs. Also, the DT interface has an overall smaller rule

set. Additionally, the rule sets in DT are clearly broken down by inference rules and

replacement rules in the interface such that students are unlikely to try rules outside of the

ones they are studying for a particular problem. These differences do affect our ability to

give hints between the two tutors; this is further discussed in the results section.

Table 10.5. Model Components generated from problems.

Problem Data Set
Level 3

MCs
Level 1

MCs
1 NCSU 302 58
2 NCSU 428 47
3 NCSU 366 44
4 NCSU 522 78

1-1 DT 248 15
1-2 DT 139 9
1-4 DT 261 12
1-5 DT 342 20
3-2 DT 217 33
3-5 DT 277 40
3-6 DT 246 14
3-8 DT 193 31

Problem 4 in the NCSU dataset has the most states and the most total MCs.

According to the instructor, this was the most difficult of the 4 NCSU problems,

prompting more exploration in student attempts to solve it. In order to create a Level 1

MC, a rule does not have to be essential to the solution, only it needs to be applied

correctly in a problem attempt, and then later the solution needs to be reached. It turns out

that many unnecessary rules do get applied correctly in some problem attempts, but then

the resulting statements are not used to reach the final solution. Again, this type of

 104

behavior was seen much more in the NCSU data compared to DT. This behavior was

likely due to the built in scaffolding that DT provides where students can graphically see

the connections between the statements. Although the NCSU proof tutor requires students

to justify each statement with the line number of a previous statement that was used, it is

harder to see the overall structure of the proof solution graph.

After converting the problem MDPs into model components, we compared the

coverage of level 1 MCs for each problem. In other words, we use the level 1 MCs from

one problem as the source for hints and compute what percentage of the level 1 MCs in

the target problem exist in the source. This gives us an idea of the probability that an

individual step (corresponding to a single action) will have an available hint using the

source problem to derive a BKB, as in the cold start experiment.

Table 10.6 shows this analysis for each problem where source problems are listed

in the rows and their level 1 MC percent overlap is given for all the other problems used

as targets, given in columns. There was a wider range for the percentage of overlap than

we expected. We had expected problems that contained the same rule applications to

match at a very high rate; however this was not the case. Further investigation showed

that the level 1 MCs for a problem still included specific features of the problem which

made the same rule application appear different in another problem. For example, the two

level 1 MCs for the application of Simplification in DT problem 1-1 appeared as:

A&B SIMP A
A&B SIMP B

While in DT problem 1-2, the application of Simplification looked like:

~A&B SIMP ~A
~A&B SIMP B

And in NCSU problem 4, the application of Simplification looked like:

 105

(A&B) & (A& C) SIMP (A&B)
(A&B) & (A& C) SIMP (A&C)

Essentially, all of the MCs are equivalent, but our matching function did not match them

as the same, because we are simply doing a straight match. This raises the question of

whether we should further generalize our MCs. This is certainly possible in the logic

domain, but would require additional domain knowledge. The cumulative effect of

adding many problems to the BKB, which is described next, mitigates this issue and the

detail of our level 1 MCs. When we offer help, this will cause help messages to be more

tailored to what students do in a particular problem, and will add more context specificity

to the BKB method. This is important because these small differences in rule

applications and whether a negation occurs in a statement can make a big difference in

students’ ability to apply a rule (Newell et al 1957).

 Some similar source problems do have much higher match rates as seen in the

lower right hand corner of Table 10.6. The level 3 DT problems show a relatively higher

match rate with the other level 3 DT problems than with the NCSU Proofs tutorial

problems as seen in Table 10.7. Also note that DT problem 1-2 had the overall highest

match rate. DT 1-2 had the fewest number of MCs and was the most straightforward

problem in the set, and this may mean that its MCs reflect general rules that apply to

many problems. On a high level this match rate shows the number of low level features

that are present in each of the problems. In the logic domain these level 1 MCs translate

into the overlap in the rule set usage among problems.

 106

Table 10.6. Comparison of Match % of problems on Level 1 MCs. (Rows are sources,
Columns targets)

Table 10.7. Comparison of Match % of problems on Level 1 MCs and complete problem
sets.

Problem NCSU Deep Thought All Problems
1 8.40 10.03 9.58
2 11.03 9.83 10.15
3 9.57 4.99 6.24
4 5.77 5.03 5.23

1-1 25.00 26.70 26.08
1-2 29.98 32.37 31.50
1-4 20.30 21.40 21.00
1-5 23.33 24.73 24.22
3-2 11.25 13.57 12.73
3-5 17.13 17.89 17.61
3-6 26.03 32.87 30.38
3-8 11.45 15.31 13.91

To provide hints with the BKB method, the current state in the new problem will

be broken down into its own MCs and then these will be matched against the BKB. The

current state’s MCs are matched using a straight, ordered matching function. All

matching model components will be returned, and the BKB values will be compared for

Target: 1 2 3 4 1-1 1-2 1-4 1-5 3-2 3-5 3-6 3-8
Source

1 NA 7.4 4.4 13.4 8.9 8.9 8.9 8.9 5.9 20.9 13.4 4.4
2 8.7 NA 8.7 15.7 10.5 8.7 5.2 17.5 7.0 12.2 7.0 10.5
3 5.7 9.6 NA 13.4 5.7 1.9 0.0 5.7 7.6 7.6 5.7 5.7
4 6.2 6.2 4.9 NA 6.2 4.2 2.8 6.2 4.2 6.9 5.5 4.2

1-1 25.0 25.0 12.5 37.5 NA 33.3 16.6 29.1 25.0 37.5 29.1 16.6
1-2 40.0 33.3 6.6 40.0 53.3 NA 20.0 40.0 20.0 40.0 33.3 20.0
1-4 37.5 18.7 0.0 25.0 25.0 18.7 NA 25.0 6.2 43.7 25.0 6.2
1-5 20.0 33.3 10.0 30.0 23.3 20.0 13.3 NA 26.6 36.6 23.3 30.0
3-2 10.0 10.0 10.0 15.0 15.0 7.5 2.5 20.0 NA 17.5 17.5 15.0
3-5 27.4 13.7 7.8 19.6 17.6 11.7 13.7 21.5 13.7 NA 27.4 19.6
3-6 39.1 17.3 13.0 34.7 30.4 21.7 17.3 30.4 30.4 60.8 NA 39.1
3-8 7.6 15.3 7.6 15.3 10.2 7.6 2.5 23.0 15.3 25.6 23.0 NA

 107

all action-state pairs, and the one with the highest BKB value will be selected for hint

generation, as in original MDP method. To test if the BKB method is able to give hints

we use the 11 other problems as source and the current problem as a target, and compute

how many MCs in the current problem are matched in the source MCs. If all of the MCs

in the current problem are matched, then that means we can generate hints on 100% of

the states in the new, unseen problem.

We found MC matches for all problems except DT 3-8. This is the only problem

in the set that requires the “Equivalence” rule in order to reach a solution. When we used

source BKBs derived only from the same tutor (NCSU or DT), all MCs for each problem

were matched, except for problem DT 3-8. This shows that we would be able to give

hints using the BKB with most new problems unless they contained rules that had not

previously occurred in a problem data set.

We hypothesized that the MDP method of generating hints will be more context-

specific and more valuable for students, but that the BKB method will generate some of

the same hints, or at least ones of comparable quality. To test the BKB’s hint generating

ability, we compared the hint-generating states from a BKB to those with an MDP for

problem 1-5. In other words, we made a BKB with all the other problems in the set, and

compared which model components would be used to generate hints with those in the 1-5

MDP that would be used to generate hints. Out of the 158 states that had more than one

choice for hints, the BKB and MDP method agreed on 139 (87.97%). Of the 19 states

remaining, 14 suggested the “Delete” action, which was not included in the BKB. The

remaining 5 items that disagreed are shown in Table 10.8. In all cases, the instructor

indicated that both hints were equally appropriate.

 108

Table 10.8. States where the BKB and MDP methods disagree; in all cases experts agree
that either hint is appropriate.

State State Description
MDP Action

MDP
resulting

component MC to apply
MC resulting
component

1 Z>(~Y>X), Z&~W,
Wv(T>S), ~YvT / XvS Simplification ~W A&~B, SIMP, A Z

13
Z>(~Y>X), Z&~W,
Wv(T>S), ~YvT, Z /

XvS

Modus
Ponens ~Y>X A&~B, SIMP,

~B ~W

16
Z>(~Y>X), Z&~W,
Wv(T>S), ~YvT, Z,

~Y>X / XvS

Double
Negation ~~Wv(T>S) A&~B, SIMP,

~B ~W

22
Z>(~Y>X), Z&~W,
Wv(T>S), ~YvT, Z,

~Y>X, ~W, T>S / XvS
Conjunction (~Y>X)&

(T>S)
~AvB, IMPL,

A>B
Y>T

48
Z>(~Y>X), Z&~W,

Wv(T>S), ~YvT, ~W /
XvS

Dysjunctive
Syllogism T>S A&~B, SIMP, A Z

10.4 Discussion of Results and Summary

The primary findings of this research suggest that we can generalize the MDP

method into a Bayesian Knowledge Base, which contain MCs that can be used to solve

new problems. We also showed that a BKB composed of our logic proof problems could

be used to provide hints in all but one of the other problems. The structure of the MCs

can be stated in an “if-then” format that is very similar to the production rules used in the

cognitive tutors. For example, the MC’s listed here:

A&B SIMP A
A&B SIMP B

could be be turned into the following production rules:

 If you have A&B
and your goal is to get A
then use SIMP

If you have A&B
and your goal is to get B
then use SIMP

 109

This is encouraging since the ability to automatically create some or all production rules

for a cognitive tutor would save a tremendous amount of time in cognitive tutor

development. This type of BKB could be integrated with an authoring tool such as

CTAT, to provide non-expert developers a way to generate feedback without manually

creating production rules.

There were some issues that we saw with our MCs. First, we expected the level 1

MCs to generalize down to the specific rule applications. This did occur, but leaving in

negations and compound statements caused for more level 1 MCs to be created for many

of the problems. This affected our ability to match level 1 MCs across problems, even

when the same rules were used. This issue was mitigated when enough problems were

used to generate the BKB, allowing for MC matches for almost all the problems in our

set. Another issue is that in its current form the BKB will always prefer certain rules

much like a production rule system does. In our datasets, the BKB has higher values for

Simplification MCs. This is not necessarily bad, but this means that sometimes hints from

the BKB would suggest simplifying a statement even if the new statement created was

not used again for the solution.

CHAPTER 11: EXTENDING METHOD TO OTHER TUTORS

 In this chapter, we show how the MDP method and Hint Factory would work in

other domains. We have performed validation experiments on two additional domains.

The first is the Algebra tutor from Carnegie Mellon University (Koedinger & Sueker,

1996). This tutor is one of the most studied and refined examples of an ITS, having been

in use for almost 15 years. This gives us an excellent opportunity to compare its existing

hints to our automatically generated hints. The second is a CAI used to teach a type of

Chemistry called Stoichiometry. This CAI currently does not have any adaptive tutoring

capabilities.

11.1 Carnegie Mellon Algebra Tutor

Data for the Algebra tutor is publicly available from the Pittsburgh Science of Learning

Center’s (PSLC) DataShop repository. The DataShop is the largest repository of ITS

based data and contains nearly one billion transactions. With over 500,000 students

currently using tutors connected to this database the number of transactions is expected to

grow at an exponential rate (Koedinger et al 2008). We used the Hampton data set that

includes work done in middle school algebra using the tutor during the 2005-2006 school

year. An example of the tutor can be seen in Figure 11.1. The data set contains the work

of 59 students over an entire school year and includes 8,978 problems with 62,223 unique

steps.

 111

Figure 11.1. Screen Shot of the Algebra Tutor where student is asked to simplify an
algebraic equation, the student can enter the simplified expression, ask for a hint via the

hint button or complete the problem with the done button.

Upon investigating the data from the algebra tutor, we noted the problems tend to

be shorter and more specific to individual skills than in our previous domain (logic).

Many of the problems have a single successful path to a solution. While it is possible to

apply the MDP method to these problems only one successful attempt would be needed.

We do believe that the MDPs generated from these problems could be useful in looking

at the possible errors that students make by showing educators how often a particular

error occurs at each step. There are a number of problems that are prime candidates for

the MDP method. These problems require simplifying equations and have several

different paths to the solution. Figure 11.2 shows a problem to which the MDP method

was applied. To complete a problem, students select from a dropdown menu what action

to perform on the equation (Table 11.1 contains a list of actions that are available in this

problem), and then enter the correct numbers for the completed action. Table 11.2 shows

 112

three solutions seen for this problem. Solution 1 is the most common solution seen and

comprises 70% of the solutions. Solution 2 just changes the order and was seen 12% of

the time, while solution 3 is a complex approach that is acceptable by the tutor, but was

only seen once.

Figure 11.2. Example Problem from the Algebra Tutor, Unit 09-EG3.

The MDP computed from the student attempts consisted of 42 non-error states. Of

these 42, the most common solution (solution 1 in Table 11.2) accounted for 6 of the

states. This solution was the shortest path, and also had the highest values in the MDP.

Table 11.1. Actions available for problem EG3

Actions
Simplification – Add/Subtract Terms
Simplification – Perform Multiplication
Simplification – Simplify Fractions
Simplification – Simplify Signs
Simplification – Distribute
Transformation – Add to both Sides
Transformation – Subtract from both Sides
Transformation – Multiply both Sides
Transformation – Divide both Sides

From the data generated for the MDP, we have devised 2 types of hints per step.

The first hint would tell the student the best action to take (e.g. simplification-

Solve for x
-42-30x-44x = -32

 113

add/subtract terms), and the second hint would tell the student what they needed to make

the equation look like (e.g. -74x = -32+42), which would be the description of the next

state in the MDP. In our logic tutor we gave a third type of hint based on what features

from the current state could be used to advance to the new state. We cannot offer this

type of hint based on the current state features since the features that are used to arrive at

the next state are not stored out in the log file for this tutor. The current tutor offers two

hints per step as well, but both hints refer specifically to the action to take. The first hint

is the more general action (e.g. “Put the equation in its simplest form”), and the second

hint tells the more specific action to take (e.g. “Add or subtract terms from both sides”).

In the Algebra tutor, some problem states further into the solution, the hints do tell

the student which items to apply the action to. Because students do not indicate what

parts of an expression they are modifying in a step, the raw data does not reflect this

information. It could be derived using domain knowledge about algebra. This is an

example where some domain specific knowledge would be needed in order to format the

automatically generated hints. The hints from our MDP and the tutor’s hints for the initial

state can be seen in Table 11.3.

The results of our analysis show that the MDP method is applicable for some

problems in a domain like the Algebra tutor. Specifically, these problems have multiple

steps and multiple solution paths which allows for the creation of MDPs with values that

can be used to direct problem solving. These problems, in general, have less steps and a

more structured solution which leads to MDPs with fewer states, but this only increases

the effectiveness of the MDP with fewer student attempts. Although these problems have

the state-action-next state format that our method uses, the individual problems are not as

 114

structured as in the logic domain. This can make it more difficult to provide a general

format for hints, and may require annotation or review by educators. However,

considering the time that was taken to write out two hints for every step of every problem

in the tutor, the MDP method could at least be used to give the educators a list of the

possible hints that could be used, and shorten the overall time to annotate solutions with

hints.

Table 11.2. Example Solutions from the Algebra Tutor

Solution Description Action
-42-30x-44x = -32 Simplification – Add/Subtract Terms

-42-74x = -32 Transformation – Add to both Sides
-42-74x+42 = -32+42 Simplification – Add/Subtract Terms

-74x = -32+42 Simplification – Add/Subtract Terms
-74x = 10 Transformation – Divide both Sides

1

-74x/-74 = 10/-74 Simplification – Simplify Fractions
 x = -5/37

-42-30x-44x = -32 Transformation – Subtract from both Sides
-42-30x-44x-(-42) = -32-(-42) Simplification – Add/Subtract Terms

-74x = -32-(-42) Transformation – Divide both Sides
-74x/-74 = (-32-(-42))/-74 Simplification – Simplify Fractions

x = (-32-(-42))/-74 Simplification – Simplify Signs
x = -(-32+42)/74 Simplification – Distribute

x = (-(-32)-42)/74 Simplification – Simplify Signs
x = (32-42)/74 Simplification – Add/Subtract Terms

2

x = -5/37
-74x+74 = 10+74 Transformation – Divide both Sides

-74x = 10 Transformation – Divide both Sides
-42-30x-44x = -32 Simplification – Add/Subtract Terms

-42-74x = -32 Transformation – Divide both Sides
(-42-74x)/-74 = -32/-74 Simplification – Simplify Fractions
-(-42-74x)/74 = -32/-74 Simplification – Simplify Fractions

-(-42-74x)/74 = 16/37 Simplification – Distribute
(-(-42)-(-74x))/74 = 16/37 Simplification – Simplify Signs

-42-30x-44x = -32 Simplification – Add/Subtract Terms
-42-74x = -32 Transformation – Add to both Sides

-42-74x+42 = -32+42 Simplification – Add/Subtract Terms
-74x = -32+42 Simplification – Add/Subtract Terms

-74x = 10 Transformation – Divide both Sides
-74x/-74 = -5/37 Simplification – Simplify Fractions

3

x = -5/37

 115

 Table 11.3. Example Hints Comparison for State 0 (starting State)

Hint Type Description
Algebra Tutor – Hint 1 Put the equation in its simplest form
Algebra Tutor – Hint 2 Add/Subtract Terms
MDP Method – Hint 1 Perform Action - Simplification –

Add/Subtract Terms
MDP Method – Hint 2 Derive -42 – 74x = -32

11.2 Stoichiometry

The Stoichiometry tutor is a browser based tutor and consists of problems where

students have to fill in text boxes and use dropdowns to balance Chemistry equations. A

screen shot of the Stoichiometry tutor is given in Figure 11.3, which is available online

at: http://learnlab.web.cmu.edu/~pact/chemstudy/learn/tutor1.html. The data for the

Stoichiometry tutor was also from the PSLC DataShop, and is available for download

with permission. The data set consisted of 1,929 problems, and we analyze problem 1

here. There were 498 student attempts of problem 1 of which 120 were completed and

378 were partial attempts.

Figure 11.3. Screen shot of the Stoichiometry tutor where students enter values to
complete the equations.

 116

As we discussed in Chapter 3, the most challenging part of implementing the

MDP method is deciding how to describe the states and actions. The stoichiometry tutor

records a label for each interactive element of the interface, as shown in Figure 11.3,

along with what data is selected or entered in that element.. Therefore, it is logical that

our MDP states should consist of label-value pairs for each interface element, as shown

by the sample state in Table 11.4. Actions in the tutor correspond to a change in values

for any element, such as “Numerator1Value.”

Table 11.4. Example State Description for Stoichiometry Problem

State Feature Value
Numerator1Units mg
Numerator1Value 10.6
Denominator2Units mg
Denominator2Value 1000
Numerator2Units g
Numerator1Value 1

In this tutor, errors are flagged, but remain on the screen until the student changes

the value. In the logic tutors, errors never remain as part of a good state that is in the

solution path. Errors are terminal nodes and the problem state is returned to its previous

state just after the error is made and a message is shown to the student. This simplifies

hint generation, since good states never contain errors. We replicate this for

stoichiometry. When an error occurs we add the error state, but then revert back to the

pre-error state even though the error still exists on the screen.

 After the state description and actions were defined we created an MDP for both

ordered and unordered states. Ordered states keep the order that the items were filled in

 117

as part of the state, while unordered considers all moves with the same items filled in the

same state. Table 11.5 shows the number of states generated for the MDPs, which is

considerably higher than the logic problems. This difference makes sense since there are

42 separate interactive elements for the students to complete in the stoichiometry tutor.

Table 11.5. MDP States Generated for Problem 1

Type Total States Good States Error States
Ordered 4052 1978 2074

UnOrdered 1798 854 944

 Next, we replicated the cold start experiment with this MDP to see how quickly

we could generate hints in this domain. Figure 11.4 shows the graph of how quickly the

ordered and unordered MDPs can give hints. Table 11.6 shows the number of attempts to

reach the percentage thresholds. The resulting curves look very similar to those from the

logic data but the ramp up takes significantly more attempts and the highest percentage of

hints we can give is at 65% instead of the 95% values we could achieve with enough data

in the logic domain. It is possible that, with more data, we could achieve this amount for

Stoichiometry, but the curves imply that we may not be able to do better than 70% hints.

We believe this has to do with the complexity of the states and the large number of partial

attempts.

 118

0%

10%

20%

30%

40%

50%

60%

70%

80%

0 100 200 300 400

Student Attempts Ordered UnOrdered

Figure 11.4. Percent hints available as attempts are added to the MDP, over
100,000 trials for Problem 1

Table 11.6. Number of attempts needed to achieve threshold % hints levels

Type 40% 45% 50% 55% 60% 65%
Ordered 52 60 101 189 422 *

UnOrdered 44 51 68 108 192 397

Finally, we looked at the types of hints that could be supplied for this domain. We

propose a hint sequence that can be seen in Table 11.7, which would consist of 3 hints.

This hint sequence is based on the information that we have about the current state, the

actions taken, and the next state. The first tells the student which interactive element to

fill in. The second tells the student the correct value to enter. The third hint restates the

first two hints together.

Based on the analysis we have performed here, we believe this domain is a good fit for

the MDP method. Creating hints for all possible steps in these problems would be

extremely difficult for experts to do by hand, since there are so many possible items on

 119

each screen. We have offered the MDP method to the developers of this tutor and they

are interested in performing experiments to determine the effectiveness of hints in this

domain.

Table 11.7 Proposed Hint Sequence for Stoichiometry tutor.

11.3 Summary

The primary research goal of this chapter is to show that our methods can be

applied to a variety of domains. We have shown two additional and different domains

that could benefit from our method. Additional work by Fossati, et al (2009) shows that

others have seen the potential uses of MDP for providing adaptive feedback and are

starting to apply our methods in their work. Looking at the similarities of the MDP

generation process between these very different domains gives support that we can reach

our longer term goal of creating a “black box” version of the MDP software that could be

easily used to add intelligent hints and feedback to any existing CAI for multi-step

problem solving.

Hint # Hint
1 State which interactive element to fill in (based on best action)
2 Give the correct value to enter (based on next state)
3 Give the interactive element and value to complete (combination of the above)

CHAPTER 12: CONTRIBUTIONS, IMPACT, AND FUTURE WORK

The main contribution of this work is the automation of the creation of context-

specific hints similar to those in intelligent tutors. In the past five years, there has been a

trend for colleges to offer more and more instruction online, and now we see this trend

continuing to the K-12 level (my kindergarten daughter is using a learning management

system and CAI). In, 1993-94, a curriculum designed around the algebra tutor was

introduced in the Pittsburgh Public School District and showed impressive results

(Koedinger and Anderson 1995). From this success, the cognitive tutors, now distributed

through Carnegie Learning, (www.carnegielearning.com), are now being used by more

than 500,000 students per year. By automating a portion of the process of creating ITSs

from CAI we will be able to take advantage of and promote this trend. The MDP method

is the foundation to the proposed “Cascading Hint Factory” which can be seen in Figure

12.1.

The idea of the cascading hint factory is to provide a framework for the automatic

generation of hints. Starting with our MDP method, which is the most context specific,

the system can try and produce a hint from the student model if it exists. If the current

student state does not exist in our model the MDP method is unable to give a hint, so our

framework looks to the expert generated “seeded MDP” which has many of the common

 121

solutions that experts predict will be seen, but may not support student thought processes

as well as the MDP method. If a hint is still not available with the seeded MDP, the

framework passes the state on to the BKB method where the features of the current state

are matched against the records in a Bayesian knowledge base that was created from

similar problems. If appropriate BKB records exist, they can be used to point to the next

best action and a hint can be given. If, however, the BKB fails to match any records for a

given state, the cascading hint factory can still give a hint using a low level solver.

Solvers exist and can be used in a number of domains such as logic (McCune & Shumsky

2000) and Geometry (Bouma et al 1995). Although the solver can provide a solution path

that can be used to give a hints, these hints will be the least context specific and least

likely to correspond to the way students learn and solve problems.

In the proposed cascading system, one or more of our hint generating methods

could be employed to generate hints for any encountered student states. Combined with

the ability for teachers to annotate the MDP, this implementation would provide

intelligent hints with a much smaller time investment that that needed for cognitive

tutors. We envision this cascading hint factory attaching to existing computer aided

instruction, collecting student data, building student models, and delivering hints, with

little expert human involvement. This is a tremendous contribution to the ITS field:

automatic hint generation allows for the quick addition to context-specific hints to

existing CAI tools, and the cascading hint factory can also serve as a repository to collect

empirical data about learning in the CAI’s content domain. This can be used to better

understand how students solve problems in the given domain through the implicit domain

models being created through the MDP andBKBs.

 122

Figure 12.1. Cascading Hint Factory framework for automatically generating hints

12.1 Contributions

In this dissertation, we have presented a novel method of automatic hint

generation using past student data. These hints are highly contextualized for a specific

problem state. This method which is implemented using Markov Decision Processes, as

presented in chapter 3, forms the foundation of the Hint Factory. Using the hint factory

we can automatically generate hints for students in a number of domains. The majority of

the research here focused on tutors for solving logic proofs. In chapter 3, we introduced

the MDP method for generating hints. We have validated the MDP method for hint

generation (chapter 5 and 9) and implemented it in a live classroom (chapter 6 and 7).The

MDP method represents the most context specific way to automatically generate hints.

We discussed the need for data and showed that in the logic domain the method quickly

ramped up with a minimal number of student attempts (chapter 5 and 9). However, to

improve the hint giving capabilities, we introduced the addition of a utility metric

 123

(chapter 8). The utility metric allows for the creation of MDPs with less knowledge of the

domain. In chapter 9, we showed that experts can give the MDP method a boost by

attempting the problems themselves, thereby “seeding” the MDP. We further loosened

the problem knowledge constraints by introducing the BKB method (chapter 10), which

allows hints to be generated from completely different problems. Finally, the method has

been shown to be generalizable enough to be used with multiple tutors in different math

and science domains (chapters 11). Specifically, we showed a tutor for Algebra and

another for Stoichiometry. This means the door is open for others to automate ITS

capabilities for CAI. In fact, we have already started to see this happening with other

researchers citing and implementing our method, such as with the iList Linked List tutor

(Fossati et al., 2009).

12.2 Impact

As more educational systems are being developed and more courses are moving

online, a tremendous amount of data is being collected. The field of educational data

mining (EDM) has begun to branch from the fields of intelligent tutoring and AI in

education. With this new field of EDM our work is recognized as having a major impact.

Our paper in the 9th International Conference on Intelligent Tutoring Systems in 2008

that covered the validation of the MDP method (Appendix A), was selected as a best

paper nominee. Further, the MDP method has been included in the first Educational Data

Mining Handbook, which is expected to be published in 2010 (Appendix A).

More importantly others have recognized our contribution and we have begun to

see its impact in their work. Our work has been cited by three major ITS and EDM

research groups (Chi 2009) (Fossati et al. 2009) (Fournier-Viger et al. 2009), and one of

 124

them implemented the MDP method into their tutor to successfully generate hints. The

iList tutor is used to teach the computer science concept of linked lists (Fossati et al.

2009). The tutor represents linked lists in a graphical form that students can manipulate in

order to gain a better understanding of the concepts without the need for large amounts of

programming.

A screen shot of the tutor can be seen in Figure 12.2. Differing from our goal of

providing hints, the group working on iList is using the method to deliver what they call

“proactive feedback.” This is essentially a forced hint message that appears when the

student enters a certain state. The proactive feedback is positive or negative depending on

the “goodness” value of the state the student has entered. If the MDP value is low the

feedback may say that the student has a very low probability of solving the problem from

where they are while a highly-valued state may deliver a message saying that the student

is on the right track. This feedback was based on their experiments with human tutors and

the feedback they provide to students working with linked lists.

Figure 12.2. A screen shot of the iList tutor where the student is given a proactive hint
based on a move made.

 125

Fossati, et al., performed a ramp up experiment to see how well the method

would be able to match states in various problems. Figure 11.6 shows the results of

Problems 1 and 4. Problem 1 was the quickest learned problem and problem 4 was the

slowest. Problem 1 hit 80% at just 4 attempts, 85% at 14 attempts, and 90% after 40

attempts. Problem 4 reached 80% after 52 attempts. These curves look very similar to the

other problems we have seen, and show that the complexity of the problem and solution

can affect the number of attempts needed to provide quality hints (or in this case

proactive feedback). A classroom experiment was run to test learning gain. The five

groups represent a human tutored group, three groups using the different versions of

iList, and a control group that did an unrelated activity between the pre and post tests. Of

the 3 versions of iList, only version 3 had the MDP method incorporated. The ANOVA

results showed a significant difference across the five groups. The control group showed

no significant learning and the human tutored group showed a 14% average gain.

Although the difference between the 3 versions of iList was not significant, the MDP

version was only marginally lower than the human tutored group with a 12% average

learning gain compared to 8% and 10% in the other two iList groups. The authors

believe that with a larger sample they may be able to show the version using the MDP

method does lead to superior learning gain. They plan to run additional experiments with

more students.

As adaptive computer aided instruction becomes more prevalent, techniques to

automate the generation of these adaptive features will become more important. Due to

the needs of the ITS community and the growth of data collection from computer aided

instruction, we fully expect that in the next few years the methods described here will

 126

become common in the ITS field. The continued growth of the EDM community will

also provide additional opportunities for these methods.

12.3 Future Work

We suggest extensions to our hint generation techniques to provide knowledge

assessment, varied hint types, and user adaptation. This chapter concludes with a

discussion of the future of using MDPs and other data-derived models for learning about

and supporting student learning and problem solving.

There are a number of new directions we are exploring with the general MDP

method (chapter 3). While we created only one MDP from a specific problem date set, it

is possible to cluster different types of students and then create separate MDPs with

different reward functions for each cluster. MDPs could be generated for 1) expert, 2)

typical, and 3) least error-prone groups of students. The reward function we have

described herein reflects an expert reward function, where the value for a state reflects

the shortest path to the goal state. Alternatively, when the Hint Button is pressed, we

could select a personalized reward function for the current student based on their student

profile. If we have identified the student as an at-risk student, we may select the “least

error-prone” reward function for generating hints. On the other hand, high-performing

students would likely benefit from expert hints, while students between these two

extremes may benefit from hints reflecting typical student behavior. If there is sufficient

data, we can create separate MDPs for students in particular groups, such as high, low,

and medium performers on a previous exercise, learning styles, GPA, or other factors,

and use these to generate personalized hints. These hints would be contextualized both

within the problem and by student characteristics.

 127

The research on utility (chapter 8) introduced the idea of providing feedback

based on a metric that measured the most frequent approach to a problem rather than the

optimal solution that a teacher or proof solver might provide. It is often the case that

students are not ready to apply optimal solutions to a problem. However, detecting this

readiness is a challenging user modeling problem. It may be possible that student

feedback based on frequency rather than optimality can provide most students with the

help they need. Testing the standard MDP method, the utility method, seeded MDP

method, and a solver all in a classroom setting could show interesting results. We believe

that different type of hints may encourage differences in student reflection and

engagement with the tutor.

The BKB method (chapter 10) can help increase the applicability of the hint

factory set of tools. In the future we plan to incorporate the BKB into our existing MDP

based tutor and perform experiments to see how often the two methods agree on hints,

and how often the BKB can give hints that are not available via the traditional MDP

method. We envision creating a framework for the Hint Factory that could be

incorporated by other developers of existing CAI. This framework could be linked to a

large data store of educational data such as the Pittsburgh Science of Learning Center’s

DataShop which could eventually allow for larger pooling of knowledge across multiple

systems in the same domain.

This BKB work also lays the foundation for our research in automatic question

generation. Generating questions for CAI is a very time consuming and difficult task.

One of the most difficult aspects of question generation is the creation of different

problems that are of the same difficulty and require the same skills. We believe that the

 128

use of our “values” with respect to the the novel model components (MCs) that we

developed will provide a solution to this question generation problem. We plan to create

an interface to allow educators to create several “equal” questions by using our BKB,

then we will test with real students to see if these questions truly are equal based on

expert and statistical analysis of students work.

Finally, we plan to team with other researchers in the EDM field, including the

Pittsburgh Science of Learning Center DataShop (Koedinger et al 2008), to connect our

methods automatically to large data sets that are currently being collected from a wide

variety of domains. We plan not only to use our MDPs to provide hints, but also to give

educators a visual tool to explore their problem spaces and understand the “value” of the

individual steps in their problems. We believe that our work, along with the future

directions we plan, will advance the cause of providing personalized learning to a much

broader audience within a more diverse set of learning domains.

 129

REFERENCES

Ainsworth, S. and Grimshaw, S. (2004) ‘Evaluating the REDEEM authoring tool: can
teachers create effective learning environments?’, International Journal of Artificial
Intelligence in Education, Vol. 14, pp.279–312.

Ainsworth, S.E., Major, N., Grimshaw, S.K., Hayes, M., Underwood, J.D., Williams, B.
& Wood, D.J. (2003). REDEEM: Simple Intelligent Tutoring Systems From Usable
Tools, In T. Murray, S. Blessing & S.E. Ainsworth (eds). Advanced Tools for Advanced
Technology Learning Environments. pp. 205-232. Amsterdam: Kluwer Academic
Publishers.

Ainsworth, S.E., Williams, B.C & Wood, D.J. (2001) Using the REDEEM ITS Authoring
Environment in Naval Training. IEEE International Conference on Advanced Learning
Technologies.

Ainsworth, S.E. Underwood, J.D. & Grimshaw, S.K. (2000) Using an ITS Authoring
Tool to Explore Educators' Use of Instructional Strategies. In G. Gauthier, C. Frasson and
K. VanLehn (Eds.) Intelligent Tutoring Systems: Proceedings of the 5th International
Conference ITS 2000. pp 182-191.

Aleven, V., McLaren, B.M., Sewall, J., & Koedinger, K.R. (2009). A new paradigm for
intelligent tutoring systems: Example-tracing tutors. International Journal of Artificial
Intelligence in Education, 19(2), 105-154.

Aleven, V., McLaren, B. M., Sewall, J., & Koedinger, K. (2006). The Cognitive Tutor
Authoring Tools (CTAT): Preliminary evaluation of efficiency gains. In M. Ikeda, K. D.
Ashley, & T. W. Chan (Eds.), Proceedings of the 8th International Conference on
Intelligent Tutoring Systems (ITS 2006), (pp. 61-70). Berlin: Springer Verlag.

Aleven, V., McLaren, B., Roll, I., & Koedinger, K. (2004). Toward tutoring help seeking:
Applying cognitive modeling to meta-cognitive skills. In J. C. Lester, R. M. Vicari, & F.
Paraguaçu (Eds.), Proc. 7th Intl. Conference on Intelligent Tutoring Systems, ITS 2004
(pp. 227-239). Berlin: Springer Verlag.

Aleven, V., & Koedinger, K. R. (2000). Limitations of Student Control: Do Student
Know when they need help? In G. Gauthier, C. Frasson, & K. VanLehn (Eds.),
Proceedings of the 5th International Conference on Intelligent Tutoring Systems,(ITS
2000) (pp. 292-303). Berlin: Springer Verlag.

Anderson A., Skwarecki, (1986). The Automated Tutoring of Introductory Computer
Programming. Communications of the ACM 29: pp. 842-849.

Anderson, J. R,, Boyle, C. F., & Reiser, B. J. (1985). Intelligent tutoring systems.
Science, 228, 456-462.

 130

Anderson, J. (1983). The Architecture of Cognition. Harvard University Press,
Cambridge, MA.

Anderson, J. R., Corbett, A. T., Koedinger, K. R., & Pelletier, R. (1995). Cognitive
tutors: Lessons learned. The Journal of the Learning Sciences, 4, 167-207.

Anderson, J. R., F. G. Conrad, and A. T. Corbett, (1989). Skill Acquisition and the LISP
Tutor. Cognitive Science, 13, 467-505.

Antal P., Millinghoffer A. (2005). A probabilistic knowledge base using annotated
Bayesian network features. In Proceedings of the 6th International Symposium of
Hungarian Researchers on Computational Intelligence, pages 1–12.

Arroyo, I.,Woolf, B. (2005) Inferring learning and attitudes from a Bayesian Network of
log file data. In C.K. Looie, G. McCalla, B. Bredeweg, and J. Breuker (eds) Proceedings
of the 12th International Conference on Artificial Intelligence in Education. Amsterdam:
IOS Press. pp 33-40.

Baker, R. (2007). Modeling and understanding students’ off-task behavior in Intelligent
Tutoring Systems. CHI 2007 Proceedings. San Jose, CA, USA.

Baker, R., Corbett, A.T., Aleven, V. (2008) More Accurate Student Modeling through
Contextual Estimation of Slip and Guess Probabilities in Bayesian Knowledge Tracing.
In E. Aimeur, & B. Woolf (Eds.) Proceedings of the 9th International Conference on
Intelligent Tutoring Systems (ITS 2008), pp. 406-415. Berlin, Germany: Springer Verlag.

Bass, E. J. (1998). “Towards an Intelligent Tutoring System for Situation
AwarenessTraining in Complex, Dynamic Environments”, In B. Goettl, H.M. Halff, C.L.
Redfield, and J.V. Shute (Eds) Proceed-ings of the 4th International Conference on
Intelligent Tutoring Systems (ITS1998). pp. 26-35. Springer., Berlin.

Beck, J., Woolf, B. P., and Beal, C. R. (2000). ADVISOR: A Machine Learning
Architecture for Intelligent Tutor Construction. In: 7th National Conference on Artificial
intelligence, pp. 552—557. AAAI Press / The MIT Press.

Bouma, W., Fudos, I., Hoffmann, C. M., Cai, J., AND Paige, R. (1995). A geometric
constraint solver. Computer Aided Design. 27, 6 (June), 487–501.

Boyan, J., Freitag, D., Joachims, T. (1996). A machine learning architecture for
optimizing web search engines. In AAAI Workshop on Internet Based Information
Systems, August 1996. AAAI Press.

Buchanan, B.G. and Shortliffe, E.H. (eds) (1984). Rule-Based Expert Systems: The
MYCIN Experiments of the Stanford Heuristic Programming Project. Reading, MA:
Addison-Wesley,.

 131

Burke, L.A. & Hutchins, H.M. (2007) Training transfer: An integrative literature review,
Human Resource Development Review, 6, 3, 263-296.

Chang, K., Beck, J., Mostow, J., & Corbett, A. (2006). Does Help Help? A Bayes Net
Approach to Modeling Tutor Interventions. Proceedings of the AAAI2006 Workshop on
Educational Data Mining, 21st National Conference on Artificial Intelligence, Boston,
MA.

Clancey, W. (1979). Transfer of Rule-Based Expertise through a Tutorial Dialogue.
Intelligent Tutoring Systems, D. Sleeman and J. Brown. London, Academic Press: 201-
225.

Conati, C., Gertner, A., VanLehn, K., and Druzdzel, M. (1997). Online student modeling
for coached problem solving using Bayesian networks. In Proceedings of the Sixth
International Conference on User Modeling, Sardinia, Italy, pages 231-242. User
Modeling, Springer-Verlag.

Conati, C. Gertner, A. S. and VanLehn, K. (2002). Using Bayesian Networks to Manage
Uncertainty in Student Modeling. In User Model. User-Adapt. Interact, volume 12 (4).

Craig S., D'Mello S., Witherspoon A., & Graesser A, (2007). Emote-Aloud during
learning with AutoTutor: Applying the facial action coding system to cognitive-affective
states during learning. Cognition and Emotion, 22, 777–788.

Croy, M. (1999). Graphic Interface Design and Deductive Proof Construction. Journal of
Computers in Mathematics and Science Teaching, 18 (4):371–386.

D'Mello, S.K., Craig, S.D., Witherspoon, A., McDaniel, B., & Graesser, A.C. (2008).
Automatic detection of learner’s affect from conversational cues. User Modeling and
User-Adapted Interaction, 18(1-2), 45-80.

Fossati, D., Di Eugenio, B., Ohlsson, S., Brown, c., Chen, L., Cosejo, D. (2009) I learn
from you, you learn from me: How to make iList learn from students. In V. Dimitrova, R.
Mizoguchi, B. Du Boulay and A. Graesser (Eds.), Proceedings of the 14th International
Conference on Artificial Intelligence in Education (AIED 2009). Springer-Verlag.

Fournier-Viger, P., Nkambou, R., Nguifo, E. (2009) Exploiting Partial Problem Spaces
Learned from Users' Interactions to Provide Key Tutoring Services in Procedural and Ill-
Defined Domains. In V. Dimitrova, R. Mizoguchi, B. Du Boulay and A. Graesser (Eds.),
Proceedings of the 14th International Conference on Artificial Intelligence in Education
(AIED 2009). Springer-Verlag.

Graesser, A.C., Person, N.K. and Magliano, J.P., (1995). Collaborative dialogue patterns
in naturalistic one-to-one tutoring. Applied Cognitive Psychology 9, pp. 495–522.

 132

Haddawy, P. (1994) Generating Bayesian Networks from Probability Logic Knowledge
Bases. In Proceeding of the 10th Annual Conference on Uncertainty in Artificial
Intelligence (UAI 1994). pp 262-269.

Heffernan, N.T. and Koedinger, K.R. (2002). An Intelligent Tutoring System
Incorporating a Model of an Experienced Human Tutor. In Intelligent Tutoring Systems,
pages 596–608.

Karabenick, S. A. (Ed.) (1998). Strategic help seeking. Implications for learning and
teaching. Mahwah: Erlbaum.

Koedinger, K., Cunningham, K., Skogsholm A., and Leber, B. (2008). An open
repository and analysis tools for fine-grained, longitudinal learner data. In R. Baker, T.
Barnes, J. Beck (Eds.) Proceedings of the 1st International Conference on Educational
Data Mining (EDM 2008), pp. 157-166. Montreal, Canada.

Koedinger, K. R., Aleven, V., Heffernan. T., McLaren, B. & Hockenberry, M. (2004).
Opening the door to non-programmers: Authoring intelligent tutor behavior by
demonstration. In Proceedings of the 7th Intelligent Tutoring Systems Conference, pp.
162-173.

Koedinger, K. R., Anderson, J.R., Hadley, W.H., & Mark, M . A. (1997). Intelligent
tutoring goes to school in the big city. International Journal of Artificial Intelligence in
Education, 8, 30-43.

Koedinger, K. R ., & Sueker, E. L. F. (1996). PAT goes to college: Evaluating a
cognitive tutor for developmental mathematics. In Proceedings of the Second
International Conference on the Learning Sciences, (pp. 180-187). Charlottesville, VA:
Association for the Advancement of Computing in Education.

Koedinger, K., and Anderson, J. (1995). Intelligent tutoring goes to the big city. Proc. of
the International Conference on Artificial Intelligence in Education, Jim Greer (Ed).
AACE: Charlottesville, VA pp. 421-428.

Landauer, T. K., Foltz, P. W., and Laham, D. (1998). Introduction to Latent Semantic
Analysis. Discourse Processes, 25, 259-284.

Lynch, C., Ashley, K., Aleven, V., & Pinkwart, N. (2006). Defining Ill-Defined
Domains; A literature survey. In V. Aleven, K. Ashley, C. Lynch, & N. Pinkwart (Eds.),
Proceedings of the Workshop on Intelligent Tutoring Systems for Ill-Defined Domains at
the 8th International Conference on Intelligent Tutoring Systems (p. 1-10).

Matsuda, N., & VanLehn, K. (2004). GRAMY: A geometry theorem prover capable of
construction. Journal of Automated Reasoning, 32(1), 3-33.

Matsuda, N., Cohen, W. W., Sewall, J., Lacerda, G., & Koedinger, K. R. (2007).
Predicting students performance with SimStudent that learns cognitive skills from

 133

observation. In R. Luckin, K. R. Koedinger & J. Greer (Eds.), Proceedings of the
international conference on Artificial Intelligence in Education (pp. 467-476).
Amsterdam, Netherlands: IOS Press.

McCune, W. and Shumsky, O. (2000) "Ivy: A Preprocessor and Proof Checker for First-
order Logic". Chapter 16 in Computer-Aided Reasoning: ACL2 Case Studies (ed. M.
Kaufmann, P. Manolios, and J Moore), Kluwer Academic Publishers.

McLaren, B., Koedinger, K., Schneider, M., Harrer, A., & Bollen, L. (2004).
Bootstrapping Novice Data: Semi-automated tutor authoring using student log files, In
Proc. Workshop on Analyzing Student-Tutor Interaction Logs to Improve Educational
Outcomes, In Proceedings of the 7th Intl. Conf. Intelligent Tutoring Systems (ITS-2004)
pp199-207.

McKendree, J. (1990). Effective Feedback Content for Tutoring Complex Skills. Human-
Computer Interaction 5(4), pp. 381—413. Lawrence Earlbaum.

Merceron, A. and Yacef, K. (2005). Educational Data Mining: a Case Study. In 12th
International Conference on Artificial Intelligence in Education (AIED 2005), IOS Press.

Mitrovic, A., Martin, B., Suraweera, P. (2007). Constraint-based tutors: past, present and
future. IEEE Intelligent Systems, special issue on Intelligent Educational Systems, vol.
22, no. 4, pp. 38-45.

Mitrovic, A., Suraweera, P., Martin, B., Zakharov, K., Milik, N., Holland, J. (2006).
Authoring constraint-based tutors in ASPIRE. M. Ikeda, K. Ashley, and T.-W. Chan
(Eds.) Proceedings of the 8th International Conference on Intelligent Tutoring Systems
(ITS 2006), LNCS 4053, pp. 41-50.

Mitrovic, A., Koedinger, K. & Martin, B. (2003). A comparative analysis of cognitive
tutoring and constraint-based modeling. User Modeling. pp 313-322.

Mitrovic, A., Martin, B., (2002). Evaluating the Effects of Open Student Models on
Learning. Second International Conference on Adaptive Hypermedia and Adaptive Web-
Based Systems. Berlin, Springer-Verlag: 296-305.

Mitrovic, A., Ohlsson, S. (1999). Evaluation of a Constraint-Based Tutor for Database
Language. International Journal of Artificial Intelligence in Education 11(2): pp 238-
256.

Molnar, A. (1990). Computers in Education: A Historical Perspective of the Unfinished
Task. T.H.E. Journal 18 (4).

Mostow, J., Beck, J. (2007). When the Rubber Meets the Road: Lessons from the In-
School Adventures of an Automated Reading Tutor that Listens. In B. Schneider & S.-K.
McDonald (Eds.), Conceptualizing Scale-Up: Multidisciplinary Perspectives (Vol. 2, pp.
183-200). Lanham, MD: Rowman & Littlefield.

 134

Murphy, K., (2002). Dynamic Bayesian Networks: Representation, Inference and
Learning. PhD thesis, UC Berkeley, Computer Science Division.

Murray, T. (1999). Authoring intelligent tutoring systems: An analysis of the state of the
art. Intl. J. Artificial Intelligence in Education, pp10: 98-129.

Newell, Shaw and Simon (1957). "Empirical Explorations with the Logic Theory
Machine", Allen Newell, J. C. Shaw, Herbert Simon, Proceedings of the Western Joint
Computer Conference 15. pp. 218-329.

Nkambou, R., Mephu Nguifo, E., Fournier-Viger, P.(2008) Using Knowledge Discovery
Techniques to Support Tutoring in an Ill-Defined Domain. In E. Aimeur, & B. Woolf
(Eds.) Intelligent Tutoring Systems (ITS 2008), pp. 395-405. Berlin: Springer Verlag.

Ohlsson, S. (1994). Constraint-Based Student Modeling. Student Modeling: The Key to
Individualized Knowledge Based Instruction. JE Greer and G. McCalla: pp167-189.

Pavlik, P. I., Jr., & Anderson, J. R. (2004). An ACT-R model of memory applied to
finding the optimal schedule of practice. In Proceedings of the sixth International
Conference on Cognitive Modeling (pp. 376-377). Pittsburgh, PA: Carnegie Mellon
University/University of Pittsburgh.

Rabiner. L. (1989). A tutorial on hidden markov models and selected applications in
speech recognition. Proceedings of IEEE, pp. 257-286.

Ringenberg, M., VanLehn, K., (2006). "Scaffolding Problem Solving with Annotated
Worked-Out Examples to Promote Deep Learning." In Intelligent Tutoring Systems:
Eighth International Conference (ITS 2006), Jhongli, Taiwan. Springer-Verlag Lecture
Notes in Computer Science.

Russell, S. and Norvig, P. (1995). Artificial Intelligence: A Modern Approach, Prentice
Hall, Englewood Cliffs, NJ.

Salden, R., Aleven, V., Renkl, A., & Schwonke, R. (2008). Worked examples and tutored
problem solving: redundant or synergistic forms of support? In C. Schunn (Ed.)
Proceedings of the 30th Annual Meeting of the Cognitive Science Society, CogSci 2008
(pp. 659-664). New York, NY: Lawrence Earlbaum.

Santos, E., Jr., & Santos, E. (1996) Bayesian Knowledge-bases. Technical report
AFIT/EN/TR96-05, Department of Electrical and Computer Engineering, Air Force
Institute of Technology.

Scheines, R., & Sieg, W. (1994). Computer environments for proof construction.
Interactive Learning Environments, 4(2), 159-169.

 135

Shute, V. J. (2008). Focus on formative feedback. Review of Educational Research,
78(1),153-189.

Sieg, W. (2007). The AProS project: Strategic thinking & computational logic. Logic
Journal of the IGPL, 15(4):359–368.

Suppes, P. (1982). Future educational uses of interactive theorem proving. University-
Level Computer-Assisted Instruction at Stanford: 1968-1980. Stanford Institute for
Mathematical Studies in the Social Sciences: 339-430.

Sutton, S. and Barto, A.(1998). Reinforcement Learning: An Introduction. Cambridge:
MIT Press,

Taatgen, N.A. & Anderson, J.R. (2008). ACT-R. In R. Sun (ed.), Constraints in Cognitive
Architectures. Cambridge University Press, pp 170-185.

VanLehn, K. (2006). The behavior of tutoring systems, International Journal of Artificial
Intelligence in Education, 16, pp: 227-265.

Vygotsky, L. (1986). Thought and language. Cambridge, MA: MIT Press.

 136

APPENDIX A: DERIVED PUBLICATIONS

 The following works were published by the author in conjunction with research in

this thesis.

Barnes, T., Stamper, J. (2008). Toward Automatic Hint Generation for Logic Proof
Tutoring Using Historical Student Data. In E. Aimeur, & B. Woolf (Eds.) Proceedings of
the 9th International Conference on Intelligent Tutoring Systems (ITS 2008), pp. 373-
382. Berlin, Germany: Springer Verlag.

Barnes, T., Stamper, J., Croy, M., Lehman, L. (2008). A Pilot Study on Logic Proof
Tutoring Using Hints Generated from Historical Student Data. In R. Baker, T. Barnes, J.
Beck (Eds.) Proceedings of the 1st International Conference on Educational Data Mining
(EDM 2008), pp. 197-201. Montreal, Canada.

Barnes, T., Stamper, J. (2007). Toward the extraction of production rules for solving
logic proofs. In C. Heiner, T. Barnes, & N. Heffernan (Eds.) Proceedings of the 13th
International Conference on Artificial Intelligence in Education, Educational Data
Mining Workshop (AIED2007), pp. 11-20. Los Angeles, CA.

Barnes, T., Stamper, J., Madhyastha (2006). T. Comparative Analysis of Concept
Derivation Using the Q-matrix Method and Facets. In J. Beck and T. Barnes (Eds.)
Proceedings of the AAAI 21th National Conference on Artificial Intelligence Educational
Data Mining Workshop (AAAI2006), pp. 21-30. Menlo Park, CA: AAAI Press.

Croy, M., Barnes, T., and Stamper, J. (2008). Towards an Intelligent Tutoring System for
Propositional Proof Construction. In A. Briggle, K. Waelbers, & E. Brey (Eds.) Current
Issues in Computing and Philosophy, IOS Press: Amsterdam, Netherlands.

Stamper, J., Barnes, T. (2009). An Unsupervised, Frequency-based Metric for Selecting
Hints in an MDP-based Tutor. In Barnes, T., Desmarais, M., Romero, C., & Ventura, S.
(Eds.) Educational Data Mining 2009: 2nd International Conference on Educational
Data Mining, �Proceedings. pp. 180-189.Cordoba, Spain. July 1-3, 2009.

Stamper, J., Barnes, T. (2009). Utility in hint generation: Selection of hints from a corpus
of student work. In V. Dimitrova, R. Mizoguchi, B. Du Boulay and A. Graesser (Eds.),
Proceedings of the 13th International Conference on Artificial Intelligence in Education
(AIED 2009). Brighton, England: IOS Press.

Stamper, J., Barnes, T. (2008). The Hint Factory: Automatic Generation of
Contextualized Help for Existing Computer Aided Instruction. In G. Gouarderes, & R.M.
Vicari (Eds.) Proceedings of the 9th International Conference on Intelligent Tutoring
Systems Young Researchers Track, pp. 71-78. Montreal, Canada.

 137

Stamper, J., Barnes, T., Croy, M., Lehmann, L. (2008). The Validity of Providing
Automated Hints in an ITS Using a MDP. In Proceedings of the 23nd AAAI Conference on
Artificial Intelligence (AAAI 2008), pp. 1830-1831. Menlo Park, CA: AAAI Press.

Stamper, J., Barnes, T., Croy, M. (2007). Extracting Student Models for Intelligent
Tutoring Systems. In Proceedings of the 22nd AAAI Conference on Artificial Intelligence
(AAAI 2007), pp. 1900-1901. Menlo Park, CA: AAAI Press.

Stamper, J. (2007). Automating the Generation of Student Models for Intelligent Tutoring
Systems. In R. Luckin, K. Koedinger, & J. Greer (Eds.), Proceedings of the 13th
International Conference on Artificial Intelligence in Education (AIED 2007). pp. 701-
702. Amsterdam, the Netherlands: IOS Press.

Stamper, J. (2006). Automating the Generation of Production Rules for Intelligent
Tutoring Systems. In Proceedings of the 9th International Conference on Interactive
Computer Aided Learning (ICL2006), Kassel University Press.

 138

APPENDIX B: PROBLEM DESCRIPTIONS AND SYMBOL NOTATION

 Many different forms of notation exist in logic. In this research we use a symbol

notation. The notation and English equivalents can be seen in Figure A.1.

Table A.1. Symbol notation and English Eqivalents

Symbol English Symbolic Example English Example
~ Not ~A Not A
> If/Then A>B If A then B
v Or AvB A or B
& And A&B A and B
= Implies A=B A Implies B

 As described in the main chapters, the logic proof problems in this research are

from two different computer aided instruction used to teach logic. The NCSU proof tutor

is a text based system where students are given a list of premises and a conclusion. The

students input new statements and actions along with justifications of each line. A list of

the NCSU problem set can be seen in A.2 and a list of the actions available for use in the

NCSU problem set can be seen in A.3.

Table A.2. Problem Descriptions for NCSU Dataset

Problem Givens Conclusion
1 A>B, C>D, ~(A>D) B&~C
2 A>B, ~C>D, ~Bv~D A>C
3 (BvA)>C A>(B>C)
4 Av(B>C), BvC, C>A A

 139

Table A.3. Actions in NCSU Proof Tutor

Action Description
Number Used in

Tutor

1 [(p � q) (q � r)] (p � r)
Hypothetical
Syllogism

2 [(p q) ¬p] q Disjunctive Syllogism

3 [p (p � q)] q Modus Ponens

4 [(p � q) ¬q] ¬p Modus Tollens

5 (p � 0) ¬p Absurdity

6 (p q) p Simplification

7 [(p � q) (r � s)] [(p r) � (q s)]
Constructive Dilemma
()

8 [(p � q) (r � s)] [(p r) � (q s)]
Constructive Dilemma
()

9 p (p q) Addition

10 [p q] (p q) Conjunction

11 ¬ ¬p p Double Negation

12 (p q) (q p) Commutative Laws

13 (p q) (q p) Commutative Laws

14 [(p q) r] [p (q r)] Associative Laws

15 [(p q) r] [p (q r)] Associative Laws

16 [p (q r)] [(p q) (p r)] Distributive Laws

17 [p (q r)] [(p q) (p r)] Distributive Laws

18 (p p) p Idempotent Laws

19 (p p) p Idempotent Laws

20 (p 0) p Idempotent Laws

21 (p 1) 1 Idempotent Laws

22 (p 0) 0 Identity Laws

23 (p 1) p Identity Laws

24 (p � p) 1 Identity Laws

25 (p ¬p) 1 Tautology

26 (p ¬p) 0 Contradiction

27 ¬(p q) (¬p ¬q) DeMorgans

28 ¬(p q) (¬p ¬q) DeMorgans

29 (p � q) (¬q � ¬p) Contrapositive

30 (p � q) (¬p q) Contrapositive

31 (p � q) ¬ (p ¬q) Implication

32 [(p � r) (q � r)] [(p q) � r] Implication

33 [(p � q) (p � r)] [p � (q r)] Implication

 The Deep Thought tutor has a graphical interface which was described in detail in

chapter 3. This tutor can be set to display the problems using the symbol or English

notation. The default is set based on the instructor preference, although students can

change the notation type at the beginning of a problem. The problems used in this

 140

research from Deep Thought can be seen in A.4, and a list of actions available in Deep

Thought can be seen in A.5.

Table A.4. Problem Descriptions for DT Dataset

Problem Givens Conclusion
1-1 A>(B&C), AvD, ~D&E B
1-2 (FvG)>H, IvF, ~I&J H
1-4 (~T&S)>~R, ~T, (~QvP)>S, Q>T ~RvN
1-5 Z>(~Y>X), Z&~W, Wv(T>S), ~YvT XvS
3-2 (A>~B)vC, ~C,DvB ~D>~A
3-5 K>M, Z>R, ~(K>R) M&~Z
3-6 ~(T&L), ~T>~N, ~(EvT) ~N
3-8 Y=P, ~Y>~C, ~P=~C Y>C

Table A.5. Actions available for DT Dataset

Action Description
MP Modus Ponens
MT Modus Tollens
DS Disjunctive Syllogism
HS Hypothetical Syllogism

ADD Addition
SIMP Simplification
CONJ Conjunction

CD Constructive Dilema
DN Double Negation

DEM Demorgan’s
IMPL Implication

TRANS Transitive
COM Communication

ASSOC Association
DIST Distribution
ABS Absorption
EXP Exportation

TAUT Tautology

 141

APPENDIX C: GENERATED MARKOV GRAPHS

 The following is an example Markov Descision Processes created for the research

from the NCSU data set problem number 1. Additional MDPs are available from the

author who can be contacted at john@stamper.org.

State: S1 a>b,c>d,-(a>d)
 Action: 1 To State: 769 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 653 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 603 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 537 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 467 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 325 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 122 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 114 Prob: 0.169204737732657 Times: 1
 Action: 1 To State: 113 Prob: 1.52284263959391 Times: 9
 Action: 2 To State: 571 Prob: 0.169204737732657 Times: 1
 Action: 2 To State: 311 Prob: 0.169204737732657 Times: 1
 Action: 2 To State: 33 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 811 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 785 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 783 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 573 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 528 Prob: 0.676818950930626 Times: 4
 Action: 3 To State: 466 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 462 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 303 Prob: 0.169204737732657 Times: 1
 Action: 3 To State: 236 Prob: 0.50761421319797 Times: 3
 Action: 4 To State: 570 Prob: 0.169204737732657 Times: 1
 Action: 4 To State: 569 Prob: 0.169204737732657 Times: 1
 Action: 4 To State: 529 Prob: 0.338409475465313 Times: 2
 Action: 4 To State: 33 Prob: 0.169204737732657 Times: 1
 Action: 5 To State: 770 Prob: 0.169204737732657 Times: 1
 Action: 5 To State: 149 Prob: 0.169204737732657 Times: 1
 Action: 7 To State: 588 Prob: 0.169204737732657 Times: 1
 Action: 7 To State: 402 Prob: 0.846023688663283 Times: 5
 Action: 7 To State: 330 Prob: 0.169204737732657 Times: 1
 Action: 7 To State: 150 Prob: 0.676818950930626 Times: 4
 Action: 8 To State: 331 Prob: 0.50761421319797 Times: 3

 Action: 8 To State: 72 Prob: 1.69204737732657
Times:
10

 Action: 9 To State: 615 Prob: 0.169204737732657 Times: 1
 Action: 10 To State: 527 Prob: 0.169204737732657 Times: 1
 Action: 27 To State: 180 Prob: 1.01522842639594 Times: 6
 Action: 27 To State: 108 Prob: 0.169204737732657 Times: 1
 Action: 28 To State: 290 Prob: 0.676818950930626 Times: 4

 142

 Action: 29 To State: 761 Prob: 0.169204737732657 Times: 1
 Action: 29 To State: 672 Prob: 0.169204737732657 Times: 1
 Action: 29 To State: 362 Prob: 0.169204737732657 Times: 1
 Action: 29 To State: 252 Prob: 0.676818950930626 Times: 4
 Action: 29 To State: 246 Prob: 1.35363790186125 Times: 8

 Action: 29 To State: 53 Prob: 2.7072758037225
Times:
16

 Action: 29 To State: 19 Prob: 1.86125211505922
Times:
11

 Action: 30 To State: 826 Prob: 0.169204737732657 Times: 1
 Action: 30 To State: 807 Prob: 0.169204737732657 Times: 1
 Action: 30 To State: 705 Prob: 0.169204737732657 Times: 1
 Action: 30 To State: 694 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 658 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 583 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 564 Prob: 0.169204737732657 Times: 1
 Action: 30 To State: 543 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 540 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 536 Prob: 0.676818950930626 Times: 4
 Action: 30 To State: 494 Prob: 0.676818950930626 Times: 4
 Action: 30 To State: 239 Prob: 1.01522842639594 Times: 6

 Action: 30 To State: 236 Prob: 1.86125211505922
Times:
11

 Action: 30 To State: 191 Prob: 0.338409475465313 Times: 2
 Action: 30 To State: 148 Prob: 0.169204737732657 Times: 1
 Action: 30 To State: 128 Prob: 0.50761421319797 Times: 3
 Action: 30 To State: 81 Prob: 0.169204737732657 Times: 1

 Action: 30 To State: 34 Prob: 1.69204737732657
Times:
10

 Action: 30 To State: 33 Prob: 0.676818950930626 Times: 4

 Action: 30 To State: 7 Prob: 14.2131979695431
Times:
84

 Action: 30 To State: 2 Prob: 38.917089678511
Times:
230

 Action: 31 To State: 784 Prob: 0.169204737732657 Times: 1
 Action: 31 To State: 716 Prob: 0.169204737732657 Times: 1
 Action: 31 To State: 468 Prob: 0.169204737732657 Times: 1
 Action: 31 To State: 345 Prob: 0.338409475465313 Times: 2
 Action: 31 To State: 302 Prob: 0.169204737732657 Times: 1
 Action: 31 To State: 281 Prob: 0.169204737732657 Times: 1
 Action: 31 To State: 280 Prob: 0.169204737732657 Times: 1

 Action: 31 To State: 210 Prob: 1.69204737732657
Times:
10

 Action: 31 To State: 143 Prob: 0.846023688663283 Times: 5

 Action: 31 To State: 115 Prob: 4.23011844331641
Times:
25

 Action: 31 To State: 85 Prob: 0.338409475465313 Times: 2
 Action: 31 To State: 40 Prob: 0.169204737732657 Times: 1

 Action: 31 To State: 16 Prob: 7.27580372250423
Times:
43

 Action: 32 To State: 753 Prob: 0.169204737732657 Times: 1
 Action: 32 To State: 210 Prob: 0.169204737732657 Times: 1

 143

 Action: 37 To State: 535 Prob: 0.169204737732657 Times: 1

State: S2 a>b,c>d,-(a>d),-(-a+d)
 Action: 1 To State: 126 Prob: 0.3690036900369 Times: 1
 Action: 2 To State: 126 Prob: 0.3690036900369 Times: 1
 Action: 3 To State: 501 Prob: 0.3690036900369 Times: 1
 Action: 3 To State: 266 Prob: 0.738007380073801 Times: 2
 Action: 27 To State: 636 Prob: 0.3690036900369 Times: 1
 Action: 27 To State: 541 Prob: 0.3690036900369 Times: 1
 Action: 27 To State: 484 Prob: 0.3690036900369 Times: 1
 Action: 27 To State: 475 Prob: 1.1070110701107 Times: 3
 Action: 27 To State: 127 Prob: 1.4760147601476 Times: 4

 Action: 27 To State: 71 Prob: 5.16605166051661
Times:
14

 Action: 27 To State: 51 Prob: 0.738007380073801 Times: 2

 Action: 27 To State: 3 Prob: 71.5867158671587
Times:
194

 Action: 28 To State: 3 Prob: 14.0221402214022
Times:
38

 Action: 29 To State: 710 Prob: 0.3690036900369 Times: 1
 Action: 29 To State: 3 Prob: 0.738007380073801 Times: 2
 Action: 30 To State: 616 Prob: 0.3690036900369 Times: 1
 Action: 30 To State: 64 Prob: 1.1070110701107 Times: 3
 Action: 31 To State: 794 Prob: 0.3690036900369 Times: 1

State: S3 a>b,c>d,-(a>d),-(-a+d),a*-d
 Action: 1 To State: 504 Prob: 0.304878048780488 Times: 1
 Action: 1 To State: 502 Prob: 0.609756097560976 Times: 2
 Action: 1 To State: 26 Prob: 0.609756097560976 Times: 2
 Action: 2 To State: 27 Prob: 0.304878048780488 Times: 1
 Action: 3 To State: 611 Prob: 0.609756097560976 Times: 2
 Action: 3 To State: 399 Prob: 1.52439024390244 Times: 5
 Action: 3 To State: 183 Prob: 0.609756097560976 Times: 2

 Action: 3 To State: 27 Prob: 15.2439024390244
Times:
50

 Action: 3 To State: 4 Prob: 43.5975609756098
Times:
143

 Action: 4 To State: 610 Prob: 1.21951219512195 Times: 4
 Action: 4 To State: 182 Prob: 0.609756097560976 Times: 2

 Action: 4 To State: 171 Prob: 9.14634146341463
Times:
30

 Action: 4 To State: 170 Prob: 5.18292682926829
Times:
17

 Action: 4 To State: 27 Prob: 0.609756097560976 Times: 2
 Action: 5 To State: 399 Prob: 0.304878048780488 Times: 1
 Action: 7 To State: 26 Prob: 0.609756097560976 Times: 2
 Action: 8 To State: 164 Prob: 1.21951219512195 Times: 4
 Action: 10 To State: 508 Prob: 0.609756097560976 Times: 2
 Action: 27 To State: 182 Prob: 0.304878048780488 Times: 1
 Action: 28 To State: 26 Prob: 0.304878048780488 Times: 1

 Action: 29 To State: 91 Prob: 3.35365853658537
Times:
11

 144

 Action: 30 To State: 685 Prob: 0.609756097560976 Times: 2
 Action: 30 To State: 605 Prob: 0.304878048780488 Times: 1
 Action: 30 To State: 6 Prob: 0.304878048780488 Times: 1
 Action: 30 To State: 269 Prob: 0.304878048780488 Times: 1

 Action: 30 To State: 173 Prob: 4.57317073170732
Times:
15

 Action: 30 To State: 140 Prob: 3.65853658536585
Times:
12

 Action: 31 To State: 782 Prob: 0.304878048780488 Times: 1
 Action: 31 To State: 709 Prob: 0.304878048780488 Times: 1
 Action: 31 To State: 469 Prob: 0.304878048780488 Times: 1
 Action: 31 To State: 332 Prob: 0.609756097560976 Times: 2
 Action: 31 To State: 268 Prob: 0.914634146341463 Times: 3
 Action: 31 To State: 49 Prob: 0.304878048780488 Times: 1
 Action: 32 To State: 27 Prob: 0.304878048780488 Times: 1
 Action: 33 To State: 163 Prob: 0.304878048780488 Times: 1

State: S4 a>b,c>d,-(a>d),-(-a+d),a*-d,b
 Action: 2 To State: 52 Prob: 0.50251256281407 Times: 1
 Action: 3 To State: 52 Prob: 2.01005025125628 Times: 4

 Action: 4 To State: 52 Prob: 16.5829145728643
Times:
33

 Action: 4 To State: 5 Prob: 52.2613065326633
Times:
104

 Action: 5 To State: 28 Prob: 0.50251256281407 Times: 1
 Action: 10 To State: 400 Prob: 1.50753768844221 Times: 3
 Action: 29 To State: 405 Prob: 1.00502512562814 Times: 2

 Action: 29 To State: 119 Prob: 11.0552763819095
Times:
22

 Action: 29 To State: 118 Prob: 3.51758793969849 Times: 7

 Action: 29 To State: 52 Prob: 6.03015075376884
Times:
12

 Action: 30 To State: 198 Prob: 5.0251256281407
Times:
10

State: S5 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c
 Action: 2 To State: 408 Prob: 0.854700854700855 Times: 1
 Action: 10 To State: 631 Prob: 0.854700854700855 Times: 1
 Action: 10 To State: 403 Prob: 0.854700854700855 Times: 1
 Action: 10 To State: 274 Prob: 7.69230769230769 Times: 9

 Action: 10 To State: 6 Prob: 89.7435897435898
Times:
105

State: S6 b*-c
 Action: 10 To State: 361 Prob: 9.09090909090909 Times: 1
 Action: 10 To State: 356 Prob: 18.1818181818182 Times: 2
 Action: 10 To State: 6 Prob: 72.7272727272727 Times: 8

State: S7
a>b,c>d,-(a>d),-
a+b

 Action: 2 To State: 601 Prob: 2.08333333333333 Times: 2
 Action: 27 To State: 376 Prob: 1.04166666666667 Times: 1

 145

 Action: 28 To State: 377 Prob: 1.04166666666667 Times: 1
 Action: 29 To State: 627 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 745 Prob: 2.08333333333333 Times: 2
 Action: 30 To State: 563 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 559 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 558 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 275 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 137 Prob: 3.125 Times: 3
 Action: 30 To State: 123 Prob: 2.08333333333333 Times: 2

 Action: 30 To State: 43 Prob: 13.5416666666667
Times:
13

 Action: 30 To State: 42 Prob: 1.04166666666667 Times: 1
 Action: 30 To State: 41 Prob: 1.04166666666667 Times: 1

 Action: 30 To State: 8 Prob: 65.625
Times:
63

 Action: 31 To State: 291 Prob: 2.08333333333333 Times: 2

State: S8 a>b,c>d,-(a>d),-a+b,-c+d
 Action: 3 To State: 435 Prob: 1.33333333333333 Times: 1
 Action: 4 To State: 827 Prob: 1.33333333333333 Times: 1
 Action: 10 To State: 655 Prob: 1.33333333333333 Times: 1
 Action: 10 To State: 654 Prob: 1.33333333333333 Times: 1
 Action: 27 To State: 168 Prob: 1.33333333333333 Times: 1
 Action: 28 To State: 353 Prob: 1.33333333333333 Times: 1
 Action: 29 To State: 436 Prob: 2.66666666666667 Times: 2
 Action: 29 To State: 168 Prob: 1.33333333333333 Times: 1
 Action: 30 To State: 516 Prob: 1.33333333333333 Times: 1
 Action: 30 To State: 31 Prob: 1.33333333333333 Times: 1
 Action: 30 To State: 30 Prob: 1.33333333333333 Times: 1
 Action: 30 To State: 29 Prob: 1.33333333333333 Times: 1

 Action: 30 To State: 10 Prob: 70.6666666666667
Times:
53

 Action: 30 To State: 9 Prob: 4 Times: 3
 Action: 31 To State: 641 Prob: 2.66666666666667 Times: 2
 Action: 31 To State: 213 Prob: 5.33333333333333 Times: 4

State: S9 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+b) 0

State: S10 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d)
 Action: 1 To State: 728 Prob: 1.58730158730159 Times: 1
 Action: 27 To State: 354 Prob: 3.17460317460317 Times: 2
 Action: 27 To State: 129 Prob: 7.93650793650794 Times: 5

 Action: 27 To State: 12 Prob: 76.1904761904762
Times:
48

 Action: 27 To State: 11 Prob: 6.34920634920635 Times: 4
 Action: 28 To State: 12 Prob: 4.76190476190476 Times: 3

State: S11 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d 0

State: S12 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d
 Action: 1 To State: 228 Prob: 1.26582278481013 Times: 1

 146

 Action: 1 To State: 227 Prob: 1.26582278481013 Times: 1
 Action: 1 To State: 226 Prob: 1.26582278481013 Times: 1
 Action: 1 To State: 130 Prob: 2.53164556962025 Times: 2
 Action: 2 To State: 138 Prob: 8.86075949367089 Times: 7
 Action: 2 To State: 124 Prob: 8.86075949367089 Times: 7

 Action: 2 To State: 14 Prob: 20.253164556962
Times:
16

 Action: 2 To State: 13 Prob: 20.253164556962
Times:
16

 Action: 3 To State: 14 Prob: 12.6582278481013
Times:
10

 Action: 4 To State: 167 Prob: 1.26582278481013 Times: 1
 Action: 5 To State: 758 Prob: 1.26582278481013 Times: 1
 Action: 7 To State: 131 Prob: 1.26582278481013 Times: 1
 Action: 8 To State: 258 Prob: 1.26582278481013 Times: 1
 Action: 8 To State: 257 Prob: 1.26582278481013 Times: 1
 Action: 8 To State: 13 Prob: 1.26582278481013 Times: 1
 Action: 9 To State: 125 Prob: 1.26582278481013 Times: 1
 Action: 10 To State: 6 Prob: 1.26582278481013 Times: 1
 Action: 10 To State: 470 Prob: 2.53164556962025 Times: 2
 Action: 27 To State: 758 Prob: 2.53164556962025 Times: 2
 Action: 27 To State: 169 Prob: 2.53164556962025 Times: 2
 Action: 27 To State: 155 Prob: 1.26582278481013 Times: 1
 Action: 27 To State: 154 Prob: 1.26582278481013 Times: 1
 Action: 29 To State: 471 Prob: 1.26582278481013 Times: 1
 Action: 31 To State: 156 Prob: 1.26582278481013 Times: 1

State: S13 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b 0

State: S14 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b

 Action: 2 To State: 15 Prob: 51.6129032258064
Times:
16

 Action: 3 To State: 15 Prob: 3.2258064516129 Times: 1
 Action: 4 To State: 719 Prob: 3.2258064516129 Times: 1
 Action: 4 To State: 718 Prob: 3.2258064516129 Times: 1
 Action: 4 To State: 240 Prob: 9.67741935483871 Times: 3
 Action: 4 To State: 15 Prob: 22.5806451612903 Times: 7
 Action: 7 To State: 59 Prob: 3.2258064516129 Times: 1
 Action: 9 To State: 721 Prob: 3.2258064516129 Times: 1

State: S15 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,-c
 Action: 2 To State: 550 Prob: 4.16666666666667 Times: 1
 Action: 9 To State: 32 Prob: 4.16666666666667 Times: 1

 Action: 10 To State: 6 Prob: 91.6666666666667
Times:
22

State: S16 a>b,c>d,-(a>d),(a*-d)
 Action: 1 To State: 622 Prob: 1.58730158730159 Times: 1
 Action: 1 To State: 364 Prob: 1.58730158730159 Times: 1
 Action: 1 To State: 109 Prob: 1.58730158730159 Times: 1
 Action: 3 To State: 706 Prob: 1.58730158730159 Times: 1

 147

 Action: 3 To State: 110 Prob: 7.93650793650794 Times: 5

 Action: 3 To State: 17 Prob: 31.7460317460317
Times:
20

 Action: 4 To State: 517 Prob: 1.58730158730159 Times: 1
 Action: 4 To State: 82 Prob: 11.1111111111111 Times: 7
 Action: 5 To State: 720 Prob: 1.58730158730159 Times: 1
 Action: 5 To State: 364 Prob: 1.58730158730159 Times: 1
 Action: 8 To State: 392 Prob: 1.58730158730159 Times: 1
 Action: 8 To State: 286 Prob: 3.17460317460317 Times: 2
 Action: 8 To State: 285 Prob: 3.17460317460317 Times: 2
 Action: 8 To State: 93 Prob: 3.17460317460317 Times: 2
 Action: 9 To State: 312 Prob: 1.58730158730159 Times: 1
 Action: 27 To State: 420 Prob: 1.58730158730159 Times: 1
 Action: 29 To State: 368 Prob: 6.34920634920635 Times: 4
 Action: 30 To State: 802 Prob: 1.58730158730159 Times: 1
 Action: 30 To State: 690 Prob: 1.58730158730159 Times: 1
 Action: 30 To State: 312 Prob: 1.58730158730159 Times: 1
 Action: 31 To State: 481 Prob: 3.17460317460317 Times: 2
 Action: 31 To State: 111 Prob: 1.58730158730159 Times: 1
 Action: 31 To State: 94 Prob: 6.34920634920635 Times: 4
 Action: 35 To State: 109 Prob: 1.58730158730159 Times: 1

State: S17 a>b,c>d,-(a>d),(a*-d),b
 Action: 3 To State: 50 Prob: 3.44827586206897 Times: 1
 Action: 4 To State: 50 Prob: 13.7931034482759 Times: 4

 Action: 4 To State: 18 Prob: 51.7241379310345
Times:
15

 Action: 5 To State: 365 Prob: 3.44827586206897 Times: 1
 Action: 9 To State: 578 Prob: 3.44827586206897 Times: 1
 Action: 10 To State: 578 Prob: 6.89655172413793 Times: 2
 Action: 10 To State: 6 Prob: 3.44827586206897 Times: 1
 Action: 29 To State: 397 Prob: 3.44827586206897 Times: 1
 Action: 29 To State: 396 Prob: 3.44827586206897 Times: 1
 Action: 30 To State: 779 Prob: 3.44827586206897 Times: 1
 Action: 31 To State: 579 Prob: 3.44827586206897 Times: 1

State: S18 a>b,c>d,-(a>d),(a*-d),b,-c
 Action: 9 To State: 366 Prob: 5.88235294117647 Times: 1

 Action: 10 To State: 6 Prob: 94.1176470588235
Times:
16

State: S19 a>b,c>d,-(a>d),-(-d>-a)
 Action: 29 To State: 434 Prob: 10 Times: 1
 Action: 29 To State: 298 Prob: 10 Times: 1
 Action: 29 To State: 297 Prob: 10 Times: 1
 Action: 30 To State: 20 Prob: 70 Times: 7

State: S20 a>b,c>d,-(a>d),-(-d>-a),-(d+-a)
 Action: 27 To State: 581 Prob: 12.5 Times: 1
 Action: 27 To State: 458 Prob: 25 Times: 2
 Action: 27 To State: 21 Prob: 62.5 Times: 5

 148

State: S21 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d
 Action: 29 To State: 22 Prob: 100 Times: 5

State: S22 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d,-d>-c
 Action: 3 To State: 90 Prob: 28.5714285714286 Times: 2
 Action: 3 To State: 23 Prob: 71.4285714285714 Times: 5

State: S23 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d,-d>-c,-c
 Action: 3 To State: 25 Prob: 62.5 Times: 5
 Action: 3 To State: 24 Prob: 25 Times: 2
 Action: 10 To State: 24 Prob: 12.5 Times: 1

State: S24 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d,-d>-c,-c,b 0

State: S25 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d,-d>-c,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 5

State: S26 a>b,c>d,-(a>d),-(-a+d),a*-d,a 0

State: S27 a>b,c>d,-(a>d),-(-a+d),a*-d,b 0

State: S28 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d 0

State: S29 a>b,c>d,-(a>d),-a+b,-c+d,a*-b 0

State: S30 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d) 0

State: S31 a>b,c>d,-(a>d),-a+b,-c+d,--a+d 0

State: S32 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,-c,b*-c 0

State: S33 a>b,c>d,-(a>d),-(-a+d) 0

State: S34
a>b,c>d,-(a>d),-
c+d

 Action: 9 To State: 748 Prob: 9.09090909090909 Times: 1
 Action: 28 To State: 669 Prob: 9.09090909090909 Times: 1
 Action: 30 To State: 184 Prob: 18.1818181818182 Times: 2
 Action: 30 To State: 35 Prob: 63.6363636363636 Times: 7

State: S35 a>b,c>d,-(a>d),-c+d,-(-a+d)
 Action: 27 To State: 36 Prob: 85.7142857142857 Times: 6
 Action: 28 To State: 36 Prob: 14.2857142857143 Times: 1

State: S36 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d
 Action: 1 To State: 750 Prob: 8.33333333333333 Times: 1
 Action: 2 To State: 193 Prob: 8.33333333333333 Times: 1
 Action: 3 To State: 363 Prob: 16.6666666666667 Times: 2
 Action: 3 To State: 216 Prob: 33.3333333333333 Times: 4
 Action: 4 To State: 749 Prob: 8.33333333333333 Times: 1

 149

 Action: 7 To State: 192 Prob: 8.33333333333333 Times: 1
 Action: 28 To State: 38 Prob: 8.33333333333333 Times: 1
 Action: 28 To State: 37 Prob: 8.33333333333333 Times: 1

State: S37 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-(d+-a) 0

State: S38 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-(d+-a)
 Action: 30 To State: 39 Prob: 100 Times: 1

State: S39 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-(d+-a),-(-d>-a)

State: S40 a>b,c>d,-(a>d),a*-b 0

State: S41 a>b,c>d,-(a>d),-a+b,-(a+-d) 0

State: S42 a>b,c>d,-(a>d),-a+b,-a+d 0

State: S43 a>b,c>d,-(a>d),-a+b,-(-a+d)
 Action: 27 To State: 44 Prob: 85.7142857142857 Times: 6
 Action: 28 To State: 357 Prob: 14.2857142857143 Times: 1

State: S44 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d
 Action: 1 To State: 6 Prob: 6.25 Times: 1
 Action: 1 To State: 747 Prob: 6.25 Times: 1
 Action: 1 To State: 746 Prob: 6.25 Times: 1
 Action: 1 To State: 409 Prob: 6.25 Times: 1
 Action: 2 To State: 358 Prob: 12.5 Times: 2
 Action: 3 To State: 358 Prob: 18.75 Times: 3
 Action: 3 To State: 86 Prob: 6.25 Times: 1
 Action: 4 To State: 45 Prob: 6.25 Times: 1
 Action: 5 To State: 45 Prob: 6.25 Times: 1
 Action: 28 To State: 602 Prob: 6.25 Times: 1
 Action: 30 To State: 560 Prob: 6.25 Times: 1
 Action: 30 To State: 87 Prob: 12.5 Times: 2

State: S45 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c
 Action: 3 To State: 47 Prob: 50 Times: 2
 Action: 3 To State: 46 Prob: 50 Times: 2

State: S46
a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c,b
0

State: S47 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c,b
 Action: 9 To State: 48 Prob: 60 Times: 3
 Action: 10 To State: 6 Prob: 40 Times: 2

State: S48 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c,b,b*-c 0

State: S49 a>b,c>d,-(a>d),-(-a+d),a*-d,d>a 0

State: S50 a>b,c>d,-(a>d),(a*-d),b,-c 0

 150

State: S51 a>b,c>d,-(a>d),-(-a+d),--a*d 0

State: S52 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c 0

State: S53 a>b,c>d,-(a>d),-d>-c
 Action: 8 To State: 754 Prob: 11.7647058823529 Times: 2
 Action: 8 To State: 254 Prob: 47.0588235294118 Times: 8
 Action: 29 To State: 739 Prob: 5.88235294117647 Times: 1
 Action: 29 To State: 645 Prob: 5.88235294117647 Times: 1
 Action: 30 To State: 762 Prob: 5.88235294117647 Times: 1
 Action: 30 To State: 54 Prob: 5.88235294117647 Times: 1
 Action: 31 To State: 673 Prob: 11.7647058823529 Times: 2
 Action: 31 To State: 518 Prob: 5.88235294117647 Times: 1

State: S54 a>b,c>d,-(a>d),-d>-c,a*-d
 Action: 3 To State: 55 Prob: 33.3333333333333 Times: 1
 Action: 8 To State: 647 Prob: 33.3333333333333 Times: 1
 Action: 8 To State: 646 Prob: 33.3333333333333 Times: 1

State: S55 a>b,c>d,-(a>d),-d>-c,a*-d,b
 Action: 30 To State: 56 Prob: 100 Times: 1

State: S56 a>b,c>d,-(a>d),-d>-c,a*-d,b,-c+d
 Action: 2 To State: 58 Prob: 50 Times: 1
 Action: 3 To State: 57 Prob: 50 Times: 1

State: S57 a>b,c>d,-(a>d),-d>-c,a*-d,b,-c+d,-d 0

State: S58 a>b,c>d,-(a>d),-d>-c,a*-d,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State: S59 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,(a+c)>(b+d)
 Action: 3 To State: 60 Prob: 50 Times: 1
 Action: 9 To State: 61 Prob: 50 Times: 1

State: S60 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,(a+c)>(b+d),b+d 0

State: S61 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,(a+c)>(b+d),a+c
 Action: 3 To State: 62 Prob: 100 Times: 1

State: S62 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,(a+c)>(b+d),a+c,b+d
 Action: 4 To State: 63 Prob: 100 Times: 1

State: S63 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,(a+c)>(b+d),a+c,b+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State: S64 a>b,c>d,-(a>d),-(-a+d),-a+b
 Action: 2 To State: 598 Prob: 33.3333333333333 Times: 1
 Action: 27 To State: 65 Prob: 33.3333333333333 Times: 1

 151

 Action: 30 To State: 102 Prob: 33.3333333333333 Times: 1

State: S65 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d
 Action: 30 To State: 66 Prob: 100 Times: 1

State: S66 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d,-c+d
 Action: 2 To State: 68 Prob: 33.3333333333333 Times: 1
 Action: 2 To State: 67 Prob: 66.6666666666667 Times: 2

State: S67 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d,-c+d,-c 0

State: S68 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d,-c+d,-c
 Action: 2 To State: 70 Prob: 50 Times: 1
 Action: 2 To State: 69 Prob: 50 Times: 1

State: S69 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d,-c+d,-c,b 0

State: S70 a>b,c>d,-(a>d),-(-a+d),-a+b,a*-d,-c+d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State: S71 a>b,c>d,-(a>d),-(-a+d),a*d 0

State: S72 a>b,c>d,-(a>d),(a*c)>(b*d)
 Action: 1 To State: 656 Prob: 18.1818181818182 Times: 2
 Action: 30 To State: 757 Prob: 9.09090909090909 Times: 1
 Action: 30 To State: 447 Prob: 9.09090909090909 Times: 1
 Action: 30 To State: 73 Prob: 36.3636363636364 Times: 4
 Action: 31 To State: 772 Prob: 9.09090909090909 Times: 1
 Action: 31 To State: 771 Prob: 9.09090909090909 Times: 1
 Action: 31 To State: 73 Prob: 9.09090909090909 Times: 1

State: S73 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d)
 Action: 27 To State: 74 Prob: 60 Times: 3
 Action: 28 To State: 74 Prob: 40 Times: 2

State: S74
a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-
d

 Action: 3 To State: 632 Prob: 12.5 Times: 1
 Action: 3 To State: 486 Prob: 37.5 Times: 3
 Action: 3 To State: 485 Prob: 12.5 Times: 1
 Action: 5 To State: 485 Prob: 12.5 Times: 1
 Action: 30 To State: 676 Prob: 12.5 Times: 1
 Action: 30 To State: 75 Prob: 12.5 Times: 1

State: S75 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d
 Action: 3 To State: 77 Prob: 25 Times: 1
 Action: 27 To State: 76 Prob: 50 Times: 2
 Action: 28 To State: 76 Prob: 25 Times: 1

State: S76 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d,c*-d 0

 152

State: S77 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d,b
 Action: 29 To State: 78 Prob: 100 Times: 1

State: S78 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d,b,-d>-c
 Action: 30 To State: 79 Prob: 100 Times: 1

State: S79 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d,b,-d>-c,-c+d
 Action: 3 To State: 80 Prob: 100 Times: 1

State: S80 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-c+d,b,-d>-c,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State: S81 a>b,c>d,-(a>d),-a*d 0

State: S82 a>b,c>d,-(a>d),(a*-d),-c
 Action: 3 To State: 84 Prob: 66.6666666666667 Times: 6
 Action: 3 To State: 83 Prob: 11.1111111111111 Times: 1
 Action: 29 To State: 584 Prob: 11.1111111111111 Times: 1
 Action: 31 To State: 342 Prob: 11.1111111111111 Times: 1

State: S83 a>b,c>d,-(a>d),(a*-d),-c,b 0

State: S84 a>b,c>d,-(a>d),(a*-d),-c,b
 Action: 10 To State: 6 Prob: 100 Times: 6

State: S85 a>b,c>d,-(a>d),a+-b 0

State: S86
a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,c*-d
0

State: S87 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c+d
 Action: 3 To State: 88 Prob: 33.3333333333333 Times: 1
 Action: 9 To State: 410 Prob: 33.3333333333333 Times: 1
 Action: 10 To State: 6 Prob: 33.3333333333333 Times: 1

State: S88 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c+d,b
 Action: 2 To State: 89 Prob: 100 Times: 1

State: S89 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c+d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State: S90 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),a*-d,-d>-c,-c 0

State: S91 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c
 Action: 1 To State: 679 Prob: 6.25 Times: 1
 Action: 1 To State: 609 Prob: 6.25 Times: 1
 Action: 3 To State: 530 Prob: 18.75 Times: 3
 Action: 3 To State: 253 Prob: 18.75 Times: 3
 Action: 3 To State: 202 Prob: 25 Times: 4
 Action: 8 To State: 800 Prob: 12.5 Times: 2
 Action: 8 To State: 92 Prob: 6.25 Times: 1

 153

 Action: 29 To State: 476 Prob: 6.25 Times: 1

State: S92 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,(a*-d)>(b*-c)
 Action: 3 To State: 6 Prob: 100 Times: 1

State: S93 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d) 0

State: S94 a>b,c>d,-(a>d),(a*-d),-(a*-b)
 Action: 28 To State: 96 Prob: 66.6666666666667 Times: 4
 Action: 28 To State: 95 Prob: 33.3333333333333 Times: 2

State: S95 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b 0

State: S96 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b
 Action: 9 To State: 112 Prob: 25 Times: 1
 Action: 28 To State: 97 Prob: 25 Times: 1
 Action: 30 To State: 383 Prob: 25 Times: 1
 Action: 31 To State: 97 Prob: 25 Times: 1

State: S97 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-(c*-d)
 Action: 28 To State: 98 Prob: 100 Times: 2

State: S98 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-(c*-d),-c+d
 Action: 2 To State: 100 Prob: 25 Times: 1
 Action: 2 To State: 99 Prob: 75 Times: 3

State: S99 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-(c*-d),-c+d,-c 0

State:
S100 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-(c*-d),-c+d,-c
 Action: 2 To State: 101 Prob: 100 Times: 1

State:
S101 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-(c*-d),-c+d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S102 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d
 Action: 27 To State: 103 Prob: 100 Times: 1

State:
S103 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d,a*-d
 Action: 2 To State: 106 Prob: 20 Times: 1
 Action: 2 To State: 104 Prob: 40 Times: 2
 Action: 5 To State: 105 Prob: 20 Times: 1
 Action: 7 To State: 104 Prob: 20 Times: 1

State:
S104 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d,a*-d,b 0

State:
S105 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d,a*-d,a 0

 154

State:
S106 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d,a*-d,b
 Action: 2 To State: 107 Prob: 100 Times: 1

State:
S107 a>b,c>d,-(a>d),-(-a+d),-a+b,-c+d,a*-d,b,-c

State:
S108 a>b,c>d,-(a>d),-a=-d 0

State:
S109 a>b,c>d,-(a>d),(a*-d),b*-d 0

State:
S110 a>b,c>d,-(a>d),(a*-d),b 0

State:
S111 a>b,c>d,-(a>d),(a*-d),-b*a 0

State:
S112 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,(-a+b)+a

State:
S113 a>b,c>d,-(a>d),a>d 0

State:
S114

a>b,c>d,-(a>d),-d
0

State:
S115

a>b,c>d,-(a>d),a*-
d

 Action: 1 To State: 572 Prob: 1.61290322580645 Times: 1
 Action: 1 To State: 145 Prob: 1.61290322580645 Times: 1
 Action: 1 To State: 144 Prob: 1.61290322580645 Times: 1

 Action: 3 To State: 272 Prob: 17.741935483871
Times:
11

 Action: 3 To State: 116 Prob: 33.8709677419355
Times:
21

 Action: 4 To State: 412 Prob: 8.06451612903226 Times: 5
 Action: 4 To State: 272 Prob: 1.61290322580645 Times: 1
 Action: 5 To State: 272 Prob: 1.61290322580645 Times: 1
 Action: 8 To State: 808 Prob: 1.61290322580645 Times: 1
 Action: 10 To State: 326 Prob: 1.61290322580645 Times: 1
 Action: 29 To State: 346 Prob: 3.2258064516129 Times: 2
 Action: 29 To State: 181 Prob: 1.61290322580645 Times: 1
 Action: 29 To State: 158 Prob: 11.2903225806452 Times: 7
 Action: 29 To State: 157 Prob: 1.61290322580645 Times: 1
 Action: 30 To State: 532 Prob: 1.61290322580645 Times: 1
 Action: 30 To State: 132 Prob: 3.2258064516129 Times: 2
 Action: 31 To State: 432 Prob: 1.61290322580645 Times: 1
 Action: 31 To State: 431 Prob: 1.61290322580645 Times: 1
 Action: 32 To State: 430 Prob: 3.2258064516129 Times: 2

 155

State:
S116 a>b,c>d,-(a>d),a*-d,b
 Action: 3 To State: 273 Prob: 14.2857142857143 Times: 4
 Action: 4 To State: 273 Prob: 10.7142857142857 Times: 3

 Action: 4 To State: 117 Prob: 60.7142857142857
Times:
17

 Action: 29 To State: 659 Prob: 3.57142857142857 Times: 1
 Action: 30 To State: 314 Prob: 10.7142857142857 Times: 3

State:
S117 a>b,c>d,-(a>d),a*-d,b,-c
 Action: 10 To State: 759 Prob: 10 Times: 2

 Action: 10 To State: 6 Prob: 90
Times:
18

State:
S118 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c>-d 0

State:
S119 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c
 Action: 1 To State: 120 Prob: 4.76190476190476 Times: 1

 Action: 3 To State: 120 Prob: 85.7142857142857
Times:
18

 Action: 9 To State: 339 Prob: 4.76190476190476 Times: 1
 Action: 30 To State: 828 Prob: 4.76190476190476 Times: 1

State:
S120 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c,-c
 Action: 1 To State: 6 Prob: 4.76190476190476 Times: 1
 Action: 3 To State: 121 Prob: 4.76190476190476 Times: 1
 Action: 9 To State: 121 Prob: 9.52380952380952 Times: 2

 Action: 10 To State: 6 Prob: 80.9523809523809
Times:
17

State:
S121 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c,-c,b*-c 0

State:
S122 a>b,c>d,-(a>d),-a+b 0

State:
S123 a>b,c>d,-(a>d),-a+b,-c+b 0

State:
S124 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-c 0

State:
S125 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,d 0

State:
S126 a>b,c>d,-(a>d),-(-a+d),a 0

State: a>b,c>d,-(a>d),-(-a+d),a+-d 0

 156

S127

State:
S128 a>b,c>d,-(a>d),-(-a+b) 0

State:
S129

a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*d
0

State:
S130 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b*-d 0

State:
S131 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b*-d
 Action: 7 To State: 6 Prob: 100 Times: 1

State:
S132 a>b,c>d,-(a>d),a*-d,-c+d
 Action: 2 To State: 134 Prob: 25 Times: 1
 Action: 2 To State: 133 Prob: 50 Times: 2
 Action: 30 To State: 355 Prob: 25 Times: 1

State:
S133 a>b,c>d,-(a>d),a*-d,-c+d,-c 0

State:
S134 a>b,c>d,-(a>d),a*-d,-c+d,-c
 Action: 30 To State: 135 Prob: 100 Times: 1

State:
S135 a>b,c>d,-(a>d),a*-d,-c+d,-c,-a+b
 Action: 2 To State: 136 Prob: 100 Times: 1

State:
S136 a>b,c>d,-(a>d),a*-d,-c+d,-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S137 a>b,c>d,-(a>d),-a+b,-c+d 0

State:
S138 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-c
 Action: 2 To State: 197 Prob: 16.6666666666667 Times: 2
 Action: 2 To State: 139 Prob: 41.6666666666667 Times: 5
 Action: 3 To State: 139 Prob: 41.6666666666667 Times: 5

State:
S139 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-c,b

 Action: 10 To State: 6 Prob: 100
Times:
10

State:
S140 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d
 Action: 2 To State: 649 Prob: 5 Times: 1

 157

 Action: 2 To State: 214 Prob: 30 Times: 6
 Action: 2 To State: 141 Prob: 30 Times: 6
 Action: 3 To State: 650 Prob: 5 Times: 1
 Action: 9 To State: 566 Prob: 5 Times: 1
 Action: 29 To State: 695 Prob: 5 Times: 1
 Action: 30 To State: 822 Prob: 5 Times: 1
 Action: 30 To State: 538 Prob: 5 Times: 1
 Action: 30 To State: 414 Prob: 10 Times: 2

State:
S141 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c
 Action: 3 To State: 142 Prob: 33.3333333333333 Times: 2
 Action: 30 To State: 224 Prob: 66.6666666666667 Times: 4

State:
S142 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,b
 Action: 10 To State: 215 Prob: 33.3333333333333 Times: 1
 Action: 10 To State: 6 Prob: 66.6666666666667 Times: 2

State:
S143 a>b,c>d,-(a>d),-(a*-d) 0

State:
S144 a>b,c>d,-(a>d),a*-d,-(c>b) 0

State:
S145 a>b,c>d,-(a>d),a*-d,-(c>b)
 Action: 29 To State: 147 Prob: 33.3333333333333 Times: 1
 Action: 29 To State: 146 Prob: 66.6666666666667 Times: 2

State:
S146 a>b,c>d,-(a>d),a*-d,-(c>b),-b>-c 0

State:
S147 a>b,c>d,-(a>d),a*-d,-(c>b),-(-b>-c)

State:
S148 a>b,c>d,-(a>d),a+b 0

State:
S149 a>b,c>d,-(a>d),-(-a>d) 0

State:
S150 a>b,c>d,-(a>d),(a+c)>(b+d)
 Action: 2 To State: 589 Prob: 25 Times: 2
 Action: 28 To State: 590 Prob: 12.5 Times: 1
 Action: 30 To State: 661 Prob: 12.5 Times: 1
 Action: 30 To State: 592 Prob: 12.5 Times: 1
 Action: 30 To State: 316 Prob: 12.5 Times: 1
 Action: 31 To State: 591 Prob: 12.5 Times: 1
 Action: 31 To State: 151 Prob: 12.5 Times: 1

 158

State:
S151 a>b,c>d,-(a>d),(a+c)>(b+d),a*-d
 Action: 3 To State: 152 Prob: 100 Times: 1

State:
S152 a>b,c>d,-(a>d),(a+c)>(b+d),a*-d,b
 Action: 4 To State: 153 Prob: 100 Times: 1

State:
S153 a>b,c>d,-(a>d),(a+c)>(b+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S154 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,c+-d 0

State:
S155 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,c*d 0

State:
S156 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,a>d 0

State:
S157 a>b,c>d,-(a>d),a*-d,-d> 0

State:
S158 a>b,c>d,-(a>d),a*-d,-d>-c
 Action: 1 To State: 680 Prob: 4.76190476190476 Times: 1
 Action: 2 To State: 159 Prob: 4.76190476190476 Times: 1
 Action: 3 To State: 681 Prob: 4.76190476190476 Times: 1
 Action: 3 To State: 160 Prob: 23.8095238095238 Times: 5

 Action: 3 To State: 159 Prob: 61.9047619047619
Times:
13

State:
S159 a>b,c>d,-(a>d),a*-d,-d>-c,-c 0

State:
S160 a>b,c>d,-(a>d),a*-d,-d>-c,-c
 Action: 3 To State: 162 Prob: 80 Times: 4
 Action: 3 To State: 161 Prob: 20 Times: 1

State:
S161 a>b,c>d,-(a>d),a*-d,-d>-c,-c,b 0

State:
S162 a>b,c>d,-(a>d),a*-d,-d>-c,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 4

State:
S163 a>b,c>d,-(a>d),-(-a+d),a*-d,a>-(b*d) 0

State:
S164

a>b,c>d,-(a>d),-(-a+d),a*-
d,(a*c)>(b*d)

 159

 Action: 4 To State: 165 Prob: 25 Times: 1
 Action: 30 To State: 505 Prob: 75 Times: 3

State:
S165 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-c
 Action: 3 To State: 166 Prob: 100 Times: 1

State:
S166 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S167 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,a

State:
S168 a>b,c>d,-(a>d),-a+b,-c+d,-d>-a 0

State:
S169 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,a*-b 0

State:
S170 a>b,c>d,-(a>d),-(-a+d),a*-d,-c 0

State:
S171 a>b,c>d,-(a>d),-(-a+d),a*-d,-c

 Action: 3 To State: 172 Prob: 75
Times:
24

 Action: 5 To State: 341 Prob: 3.125 Times: 1
 Action: 10 To State: 6 Prob: 6.25 Times: 2
 Action: 10 To State: 604 Prob: 3.125 Times: 1
 Action: 10 To State: 188 Prob: 6.25 Times: 2
 Action: 30 To State: 185 Prob: 6.25 Times: 2

State:
S172 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,b
 Action: 9 To State: 304 Prob: 6.25 Times: 2
 Action: 10 To State: 304 Prob: 15.625 Times: 5
 Action: 10 To State: 219 Prob: 6.25 Times: 2

 Action: 10 To State: 6 Prob: 71.875
Times:
23

State:
S173 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b
 Action: 2 To State: 482 Prob: 16.6666666666667 Times: 3
 Action: 29 To State: 237 Prob: 5.55555555555556 Times: 1

 Action: 30 To State: 175 Prob: 61.1111111111111
Times:
11

 Action: 30 To State: 174 Prob: 16.6666666666667 Times: 3

State:
S174 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d 0

State: a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d

 160

S175
 Action: 2 To State: 265 Prob: 47.3684210526316 Times: 9
 Action: 2 To State: 176 Prob: 5.26315789473684 Times: 1
 Action: 3 To State: 177 Prob: 10.5263157894737 Times: 2
 Action: 7 To State: 686 Prob: 5.26315789473684 Times: 1
 Action: 7 To State: 264 Prob: 5.26315789473684 Times: 1
 Action: 7 To State: 204 Prob: 5.26315789473684 Times: 1
 Action: 10 To State: 687 Prob: 5.26315789473684 Times: 1
 Action: 10 To State: 633 Prob: 5.26315789473684 Times: 1
 Action: 10 To State: 229 Prob: 5.26315789473684 Times: 1
 Action: 29 To State: 230 Prob: 5.26315789473684 Times: 1

State:
S176 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,b 0

State:
S177 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,b
 Action: 2 To State: 179 Prob: 37.5 Times: 3
 Action: 2 To State: 178 Prob: 50 Times: 4
 Action: 4 To State: 179 Prob: 12.5 Times: 1

State:
S178 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,b,-c 0

State:
S179 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 4

State:
S180 a>b,c>d,-(a>d),-a>-d 0

State:
S181 a>b,c>d,-(a>d),a*-d,-d=-c 0

State:
S182 a>b,c>d,-(a>d),-(-a+d),a*-d,-d 0

State:
S183 a>b,c>d,-(a>d),-(-a+d),a*-d,b*-c 0

State:
S184 a>b,c>d,-(a>d),-c+d,-a+b
 Action: 10 To State: 6 Prob: 50 Times: 1
 Action: 31 To State: 282 Prob: 50 Times: 1

State:
S185 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,-a+b
 Action: 2 To State: 187 Prob: 66.6666666666667 Times: 2
 Action: 2 To State: 186 Prob: 33.3333333333333 Times: 1

State:
S186

a>b,c>d,-(a>d),-(-a+d),a*-d,-c,-a+b,b
0

 161

State:
S187 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S188 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,a*-c
 Action: 30 To State: 189 Prob: 100 Times: 1

State:
S189 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,a*-c,-a+b
 Action: 2 To State: 190 Prob: 100 Times: 1

State:
S190 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,a*-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S191 a>b,c>d,-(a>d),-c+d 0

State:
S192 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-d 0

State:
S193 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-c
 Action: 30 To State: 194 Prob: 100 Times: 1

State:
S194 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-c,-a+b
 Action: 2 To State: 196 Prob: 33.3333333333333 Times: 1
 Action: 2 To State: 195 Prob: 66.6666666666667 Times: 2

State:
S195 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-c,-a+b,b 0

State:
S196 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S197 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-c,b 0

State:
S198 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d
 Action: 2 To State: 200 Prob: 50 Times: 6
 Action: 4 To State: 200 Prob: 16.6666666666667 Times: 2
 Action: 4 To State: 199 Prob: 8.33333333333333 Times: 1
 Action: 29 To State: 575 Prob: 8.33333333333333 Times: 1
 Action: 29 To State: 574 Prob: 8.33333333333333 Times: 1
 Action: 30 To State: 820 Prob: 8.33333333333333 Times: 1

State:
S199 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-c 0

 162

State:
S200 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-c
 Action: 9 To State: 201 Prob: 12.5 Times: 1
 Action: 10 To State: 830 Prob: 12.5 Times: 1
 Action: 10 To State: 6 Prob: 75 Times: 6

State:
S201 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-c,b+-c 0

State:
S202 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-c
 Action: 3 To State: 203 Prob: 75 Times: 3
 Action: 30 To State: 444 Prob: 25 Times: 1

State:
S203 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 3

State:
S204 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d)
 Action: 30 To State: 205 Prob: 100 Times: 1

State:
S205 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d),-(a+c)+(b+d)
 Action: 8 To State: 208 Prob: 25 Times: 1
 Action: 8 To State: 207 Prob: 25 Times: 1
 Action: 27 To State: 206 Prob: 50 Times: 2

State:
S206 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d),-(a+c)+(b+d),(-a*-c)+(b+d) 0

State:
S207 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d),-(a+c)+(b+d),(a*c)>(b*d) 0

State:
S208 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d),-(a+c)+(b+d),(a*c)>(b*d)
 Action: 30 To State: 209 Prob: 100 Times: 1

State:
S209

a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d),-(a+c)+(b+d),(a*c)>(b*d),-
(a*c)+(b*d)

State:
S210 a>b,c>d,-(a>d),-(a*-b)
 Action: 28 To State: 211 Prob: 36.3636363636364 Times: 4
 Action: 30 To State: 211 Prob: 9.09090909090909 Times: 1
 Action: 31 To State: 220 Prob: 54.5454545454545 Times: 6

State:
S211 a>b,c>d,-(a>d),-(a*-b),-a+b
 Action: 29 To State: 212 Prob: 20 Times: 1
 Action: 30 To State: 763 Prob: 20 Times: 1
 Action: 31 To State: 241 Prob: 60 Times: 3

 163

State:
S212 a>b,c>d,-(a>d),-(a*-b),-a+b,-b>-a

State:
S213 a>b,c>d,-(a>d),-a+b,-c+d,a*-d
 Action: 2 To State: 327 Prob: 57.1428571428571 Times: 8
 Action: 3 To State: 328 Prob: 7.14285714285714 Times: 1
 Action: 4 To State: 606 Prob: 14.2857142857143 Times: 2
 Action: 4 To State: 327 Prob: 7.14285714285714 Times: 1
 Action: 10 To State: 608 Prob: 7.14285714285714 Times: 1
 Action: 10 To State: 607 Prob: 7.14285714285714 Times: 1

State:
S214 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c 0

State:
S215 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,b,b*-c 0

State:
S216 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b
 Action: 2 To State: 218 Prob: 40 Times: 4
 Action: 2 To State: 217 Prob: 60 Times: 6

State:
S217 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b,-c 0

State:
S218 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b,-c
 Action: 3 To State: 565 Prob: 20 Times: 1
 Action: 10 To State: 6 Prob: 80 Times: 4

State:
S219 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,b,b+-c 0

State:
S220 a>b,c>d,-(a>d),-(a*-b),-(c*-d)
 Action: 28 To State: 348 Prob: 50 Times: 4
 Action: 28 To State: 347 Prob: 12.5 Times: 1
 Action: 29 To State: 367 Prob: 12.5 Times: 1
 Action: 31 To State: 221 Prob: 25 Times: 2

State:
S221 a>b,c>d,-(a>d),-(a*-b),-(c*-d),a*-d
 Action: 3 To State: 222 Prob: 100 Times: 2

State:
S222 a>b,c>d,-(a>d),-(a*-b),-(c*-d),a*-d,b
 Action: 4 To State: 223 Prob: 100 Times: 2

State:
S223 a>b,c>d,-(a>d),-(a*-b),-(c*-d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

 164

State:
S224 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,-a+b
 Action: 2 To State: 340 Prob: 37.5 Times: 3
 Action: 2 To State: 225 Prob: 37.5 Times: 3
 Action: 3 To State: 225 Prob: 12.5 Times: 1
 Action: 5 To State: 567 Prob: 12.5 Times: 1

State:
S225 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,-a+b,b
 Action: 3 To State: 568 Prob: 20 Times: 1
 Action: 10 To State: 6 Prob: 80 Times: 4

State:
S226 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-(b>d) 0

State:
S227 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-(a>c) 0

State:
S228 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-(c>a) 0

State:
S229 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a*-d)+(-a*b) 0

State:
S230 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c
 Action: 3 To State: 232 Prob: 33.3333333333333 Times: 1
 Action: 30 To State: 231 Prob: 66.6666666666667 Times: 2

State:
S231 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c,-a>-d 0

State:
S232 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c,b
 Action: 3 To State: 234 Prob: 50 Times: 1
 Action: 3 To State: 233 Prob: 50 Times: 1

State:
S233 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c,b,-d 0

State:
S234 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c,b,-c
 Action: 10 To State: 235 Prob: 100 Times: 1

State:
S235 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d>-c,b,-c,b*-c 0

State:
S236 a>b,c>d,-(a>d),-a+d 0

State:
S237 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-d>-c

 165

 Action: 30 To State: 238 Prob: 100 Times: 1

State:
S238 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-d>-c,-c+d
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S239 a>b,c>d,-(a>d),-(a+d) 0

State:
S240 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,-c 0

State:
S241 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d)
 Action: 28 To State: 242 Prob: 50 Times: 2
 Action: 30 To State: 242 Prob: 25 Times: 1
 Action: 31 To State: 495 Prob: 25 Times: 1

State:
S242

a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-
c+d

 Action: 7 To State: 243 Prob: 25 Times: 1
 Action: 27 To State: 496 Prob: 25 Times: 1
 Action: 30 To State: 497 Prob: 25 Times: 1
 Action: 31 To State: 455 Prob: 25 Times: 1

State:
S243 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a+c)>(b+d)
 Action: 31 To State: 244 Prob: 100 Times: 1

State:
S244 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a+c)>(b+d),-(a+c)+(b+d)
 Action: 2 To State: 245 Prob: 100 Times: 1

State:
S245 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a+c)>(b+d),-(a+c)+(b+d),b+d 0

State:
S246 a>b,c>d,-(a>d),-b>-a
 Action: 5 To State: 671 Prob: 10 Times: 1
 Action: 29 To State: 671 Prob: 10 Times: 1
 Action: 29 To State: 305 Prob: 30 Times: 3
 Action: 30 To State: 786 Prob: 10 Times: 1
 Action: 30 To State: 551 Prob: 30 Times: 3
 Action: 30 To State: 247 Prob: 10 Times: 1

State:
S247 a>b,c>d,-(a>d),-b>-a,a*-d
 Action: 3 To State: 249 Prob: 33.3333333333333 Times: 1
 Action: 3 To State: 248 Prob: 66.6666666666667 Times: 2

State:
S248 a>b,c>d,-(a>d),-b>-a,a*-d,b 0

 166

State:
S249 a>b,c>d,-(a>d),-b>-a,a*-d,b
 Action: 4 To State: 251 Prob: 33.3333333333333 Times: 1
 Action: 4 To State: 250 Prob: 66.6666666666667 Times: 2

State:
S250 a>b,c>d,-(a>d),-b>-a,a*-d,b,-c 0

State:
S251 a>b,c>d,-(a>d),-b>-a,a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S252 a>b,c>d,-(a>d),d>a 0

State:
S253 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b 0

State:
S254 a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c)
 Action: 30 To State: 755 Prob: 12.5 Times: 1
 Action: 30 To State: 255 Prob: 37.5 Times: 3
 Action: 31 To State: 255 Prob: 50 Times: 4

State:
S255

a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c),a*-
d

 Action: 3 To State: 6 Prob: 87.5 Times: 7
 Action: 3 To State: 256 Prob: 12.5 Times: 1

State:
S256 a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c),a*-d,b*-c 0

State:
S257 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b>d) 0

State:
S258 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d)
 Action: 30 To State: 259 Prob: 100 Times: 1

State:
S259 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d)
 Action: 28 To State: 260 Prob: 100 Times: 1

State:
S260 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),-a+-c+(b*d)
 Action: 2 To State: 262 Prob: 50 Times: 1
 Action: 28 To State: 261 Prob: 50 Times: 1

State:
S261 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),-a+-c+(b*d),c*-d 0

State: a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),-a+-c+(b*d),b

 167

S262
 Action: 2 To State: 263 Prob: 100 Times: 1

State:
S263 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),-a+-c+(b*d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S264 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-d 0

State:
S265 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,-c 0

State:
S266 a>b,c>d,-(a>d),-(-a+d),b
 Action: 4 To State: 267 Prob: 100 Times: 2

State:
S267 a>b,c>d,-(a>d),-(-a+d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S268 a>b,c>d,-(a>d),-(-a+d),a*-d,a>d 0

State:
S269 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a>d)

 Action: 1 To State: 270 Prob: 91.6666666666667
Times:
11

 Action: 3 To State: 271 Prob: 8.33333333333333 Times: 1

State:
S270 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a>d),-(a>c) 0

State:
S271 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a>d),- 0

State:
S272 a>b,c>d,-(a>d),a*-d,b 0

State:
S273 a>b,c>d,-(a>d),a*-d,b,-c 0

State:
S274 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c,b*-c 0

State:
S275 a>b,c>d,-(a>d),-a+b,a*-d
 Action: 4 To State: 670 Prob: 50 Times: 1
 Action: 30 To State: 276 Prob: 50 Times: 1

State:
S276 a>b,c>d,-(a>d),-a+b,a*-d,-c+d
 Action: 2 To State: 278 Prob: 50 Times: 1

 168

 Action: 2 To State: 277 Prob: 50 Times: 1

State:
S277 a>b,c>d,-(a>d),-a+b,a*-d,-c+d,-c 0

State:
S278 a>b,c>d,-(a>d),-a+b,a*-d,-c+d,-c
 Action: 2 To State: 279 Prob: 100 Times: 1

State:
S279 a>b,c>d,-(a>d),-a+b,a*-d,-c+d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S280 a>b,c>d,-(a>d),--(a+-d) 0

State:
S281 a>b,c>d,-(a>d),-d>-a 0

State:
S282 a>b,c>d,-(a>d),-c+d,-a+b,a*-d
 Action: 2 To State: 283 Prob: 100 Times: 1

State:
S283 a>b,c>d,-(a>d),-c+d,-a+b,a*-d,-c
 Action: 2 To State: 284 Prob: 100 Times: 1

State:
S284 a>b,c>d,-(a>d),-c+d,-a+b,a*-d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S285 a>b,c>d,-(a>d),(a*-d),(a*b)>(c*d) 0

State:
S286 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d)
 Action: 3 To State: 623 Prob: 25 Times: 1
 Action: 29 To State: 625 Prob: 25 Times: 1
 Action: 29 To State: 624 Prob: 25 Times: 1
 Action: 29 To State: 287 Prob: 25 Times: 1

State:
S287 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-(b*d)>-(a*c)
 Action: 31 To State: 288 Prob: 100 Times: 1

State:
S288 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-(b*d)>-(a*c),-(-(b*d)*(a*c))
 Action: 28 To State: 289 Prob: 100 Times: 1

State:
S289 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-(b*d)>-(a*c),-(-(b*d)*(a*c)),-((-b+-d)*a*c) 0

State: a>b,c>d,-(a>d),-a+-d 0

 169

S290

State:
S291 a>b,c>d,-(a>d),-a+b,(a*-d)
 Action: 2 To State: 737 Prob: 33.3333333333333 Times: 1
 Action: 4 To State: 736 Prob: 33.3333333333333 Times: 1
 Action: 28 To State: 292 Prob: 33.3333333333333 Times: 1

State:
S292 a>b,c>d,-(a>d),-a+b,(a*-d),a*-d
 Action: 3 To State: 293 Prob: 100 Times: 1

State:
S293 a>b,c>d,-(a>d),-a+b,(a*-d),a*-d,b
 Action: 4 To State: 295 Prob: 50 Times: 1
 Action: 4 To State: 294 Prob: 50 Times: 1

State:
S294 a>b,c>d,-(a>d),-a+b,(a*-d),a*-d,b,-c 0

State:
S295 a>b,c>d,-(a>d),-a+b,(a*-d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 50 Times: 1
 Action: 10 To State: 296 Prob: 50 Times: 1

State:
S296 a>b,c>d,-(a>d),-a+b,(a*-d),a*-d,b,-c,b*-c 0

State:
S297 a>b,c>d,-(a>d),-(-d>-a),-d*a 0

State:
S298 a>b,c>d,-(a>d),-(-d>-a),a*-d
 Action: 2 To State: 299 Prob: 33.3333333333333 Times: 1
 Action: 29 To State: 300 Prob: 66.6666666666667 Times: 2

State:
S299 a>b,c>d,-(a>d),-(-d>-a),a*-d,-d>-c 0

State:
S300 a>b,c>d,-(a>d),-(-d>-a),a*-d,-d>-c
 Action: 30 To State: 301 Prob: 100 Times: 2

State:
S301

a>b,c>d,-(a>d),-(-d>-a),a*-d,-d>-c,-
c+d

 Action: 10 To State: 411 Prob: 50 Times: 1
 Action: 10 To State: 6 Prob: 50 Times: 1

State:
S302 a>b,c>d,-(a>d),-(b>c) 0

State:
S303 a>b,c>d,-(a>d),-(a>d) 0

 170

State:
S304 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,b,b*-c 0

State:
S305 a>b,c>d,-(a>d),-b>-a,-d>-c
 Action: 27 To State: 306 Prob: 33.3333333333333 Times: 1
 Action: 30 To State: 306 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 488 Prob: 33.3333333333333 Times: 1

State:
S306 a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d)
 Action: 27 To State: 308 Prob: 66.6666666666667 Times: 2
 Action: 29 To State: 307 Prob: 33.3333333333333 Times: 1

State:
S307 a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d),-a>-d 0

State:
S308

a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d),a*-
d

 Action: 3 To State: 309 Prob: 66.6666666666667 Times: 2
 Action: 30 To State: 404 Prob: 33.3333333333333 Times: 1

State:
S309 a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d),a*-d,b
 Action: 4 To State: 310 Prob: 100 Times: 2

State:
S310 a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S311 a>b,c>d,-(a>d),a*-d 0

State:
S312 a>b,c>d,-(a>d),(a*-d),-(-a+d)
 Action: 27 To State: 313 Prob: 50 Times: 1
 Action: 30 To State: 509 Prob: 50 Times: 1

State:
S313 a>b,c>d,-(a>d),(a*-d),-(-a+d),a*-d

State:
S314 a>b,c>d,-(a>d),a*-d,b,-c+d
 Action: 2 To State: 752 Prob: 33.3333333333333 Times: 1
 Action: 4 To State: 315 Prob: 66.6666666666667 Times: 2

State:
S315 a>b,c>d,-(a>d),a*-d,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 3

State:
S316 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d)

 171

 Action: 27 To State: 317 Prob: 100 Times: 1

State:
S317 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d
 Action: 3 To State: 318 Prob: 100 Times: 1

State:
S318 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b
 Action: 4 To State: 319 Prob: 100 Times: 1

State:
S319 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c
 Action: 9 To State: 321 Prob: 50 Times: 2
 Action: 9 To State: 320 Prob: 25 Times: 1
 Action: 30 To State: 322 Prob: 25 Times: 1

State:
S320 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c,b*-c 0

State:
S321 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c,b+-c 0

State:
S322 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c,-a+b
 Action: 27 To State: 323 Prob: 100 Times: 1

State:
S323 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c,-a+b,-(c+a)+(-c*b)
 Action: 10 To State: 6 Prob: 50 Times: 1
 Action: 31 To State: 324 Prob: 50 Times: 1

State:
S324 a>b,c>d,-(a>d),(a+c)>(b+d),-(-a+d),a*-d,b,-c,-a+b,-(c+a)+(-c*b),(c>-a)+(-c*b) 0

State:
S325 a>b,c>d,-(a>d),-(b>d) 0

State:
S326 a>b,c>d,-(a>d),a*-d,a 0

State:
S327 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,b 0

State:
S328 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,b
 Action: 2 To State: 778 Prob: 20 Times: 1
 Action: 2 To State: 777 Prob: 20 Times: 1
 Action: 2 To State: 329 Prob: 40 Times: 2
 Action: 3 To State: 329 Prob: 20 Times: 1

State:
S329 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 3

 172

State:
S330 a>b,c>d,-(a>d),(a*c)>(b*d) 0

State:
S331 a>b,c>d,-(a>d),(a*b)>(c*d) 0

State:
S332 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b)
 Action: 8 To State: 333 Prob: 100 Times: 1

State:
S333 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d)
 Action: 31 To State: 334 Prob: 100 Times: 1

State:
S334 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d),-(a*c)+(b*d)
 Action: 28 To State: 335 Prob: 100 Times: 1

State:
S335 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d)
 Action: 28 To State: 336 Prob: 100 Times: 1

State:
S336 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-a+b
 Action: 2 To State: 337 Prob: 100 Times: 1

State:
S337 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-a+b,b
 Action: 4 To State: 338 Prob: 100 Times: 1

State:
S338 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a*-b),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-a+b,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S339 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c,-c 0

State:
S340 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,-a+b,b 0

State:
S341 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,b 0

State:
S342 a>b,c>d,-(a>d),(a*-d),-c,-(a*-b)
 Action: 28 To State: 343 Prob: 100 Times: 1

State:
S343 a>b,c>d,-(a>d),(a*-d),-c,-(a*-b),-a+b
 Action: 10 To State: 6 Prob: 50 Times: 1
 Action: 10 To State: 344 Prob: 50 Times: 1

 173

State:
S344 a>b,c>d,-(a>d),(a*-d),-c,-(a*-b),-a+b,b*-c 0

State:
S345 a>b,c>d,-(a>d),-a*-d 0

State:
S346 a>b,c>d,-(a>d),a*-d,-c=-d 0

State:
S347 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a*--b 0

State:
S348 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b
 Action: 28 To State: 349 Prob: 100 Times: 4

State:
S349

a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-
c+d

 Action: 3 To State: 388 Prob: 25 Times: 1
 Action: 30 To State: 350 Prob: 75 Times: 3

State:
S350 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d)
 Action: 2 To State: 351 Prob: 11.1111111111111 Times: 1
 Action: 5 To State: 351 Prob: 11.1111111111111 Times: 1
 Action: 28 To State: 352 Prob: 11.1111111111111 Times: 1
 Action: 29 To State: 352 Prob: 22.2222222222222 Times: 2
 Action: 29 To State: 351 Prob: 44.4444444444444 Times: 4

State:
S351 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a+-d 0

State:
S352 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a*-d
 Action: 2 To State: 751 Prob: 80 Times: 4
 Action: 3 To State: 389 Prob: 20 Times: 1

State:
S353 a>b,c>d,-(a>d),-a+b,-c+d,-a>-d 0

State:
S354 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),--a*d 0

State:
S355 a>b,c>d,-(a>d),a*-d,-c+d,-a+b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S356 b*-c,b*-c 0

State:
S357 a>b,c>d,-(a>d),-a+b,-(-a+d),a*d 0

 174

State:
S358 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b
 Action: 4 To State: 360 Prob: 50 Times: 3
 Action: 4 To State: 359 Prob: 16.6666666666667 Times: 1
 Action: 30 To State: 634 Prob: 33.3333333333333 Times: 2

State:
S359 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,c 0

State:
S360 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,-c
 Action: 10 To State: 776 Prob: 40 Times: 2
 Action: 10 To State: 6 Prob: 60 Times: 3

State:
S361 b*-c,(b*-c)>(b*-c) 0

State:
S362 a>b,c>d,-(a>d),-d>-c 0

State:
S363 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b 0

State:
S364 a>b,c>d,-(a>d),(a*-d),a 0

State:
S365 a>b,c>d,-(a>d),(a*-d),b,-d 0

State:
S366 a>b,c>d,-(a>d),(a*-d),b,-c,b*-c 0

State:
S367 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-d>-a 0

State:
S368 a>b,c>d,-(a>d),(a*-d),-d>-c
 Action: 1 To State: 677 Prob: 12.5 Times: 1
 Action: 1 To State: 422 Prob: 12.5 Times: 1
 Action: 3 To State: 424 Prob: 37.5 Times: 3
 Action: 9 To State: 423 Prob: 12.5 Times: 1
 Action: 10 To State: 369 Prob: 12.5 Times: 1
 Action: 30 To State: 370 Prob: 12.5 Times: 1

State:
S369 a>b,c>d,-(a>d),(a*-d),-d>-c,a*-c 0

State:
S370 a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d)
 Action: 27 To State: 371 Prob: 100 Times: 1

State:
S371

a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d),a*-
d

 175

 Action: 4 To State: 372 Prob: 100 Times: 1

State:
S372 a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d),a*-d,-c
 Action: 30 To State: 373 Prob: 100 Times: 1

State:
S373 a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d),a*-d,-c,-a+b
 Action: 28 To State: 374 Prob: 100 Times: 1

State:
S374 a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d),a*-d,-c,-a+b,-(a*-b)
 Action: 3 To State: 375 Prob: 100 Times: 1

State:
S375 a>b,c>d,-(a>d),(a*-d),-d>-c,-(-a+d),a*-d,-c,-a+b,-(a*-b),b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S376 a>b,c>d,-(a>d),-a+b,-(a*-b) 0

State:
S377 a>b,c>d,-(a>d),-a+b,-(a*-b)
 Action: 30 To State: 378 Prob: 100 Times: 2

State:
S378 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d
 Action: 30 To State: 379 Prob: 50 Times: 1
 Action: 31 To State: 522 Prob: 50 Times: 1

State:
S379 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(-a+d)
 Action: 27 To State: 380 Prob: 100 Times: 1

State:
S380 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(-a+d),a*-d
 Action: 3 To State: 381 Prob: 100 Times: 1

State:
S381 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(-a+d),a*-d,b
 Action: 4 To State: 382 Prob: 100 Times: 1

State:
S382 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S383 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-c+d
 Action: 7 To State: 384 Prob: 100 Times: 1

State:
S384 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-c+d,(a+c)>(b+d)
 Action: 2 To State: 386 Prob: 50 Times: 1

 176

 Action: 2 To State: 385 Prob: 50 Times: 1

State:
S385 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-c+d,(a+c)>(b+d),b 0

State:
S386 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-c+d,(a+c)>(b+d),b
 Action: 2 To State: 387 Prob: 100 Times: 1

State:
S387 a>b,c>d,-(a>d),(a*-d),-(a*-b),-a+b,-c+d,(a+c)>(b+d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S388 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,a 0

State:
S389 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a*-d,b
 Action: 2 To State: 390 Prob: 100 Times: 1

State:
S390 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a*-d,b,-c
 Action: 9 To State: 391 Prob: 50 Times: 1
 Action: 10 To State: 6 Prob: 50 Times: 1

State:
S391 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a*-d,b,-c,b*-c 0

State:
S392 a>b,c>d,-(a>d),(a*-d),-((a*c)*-(b*d))
 Action: 28 To State: 394 Prob: 50 Times: 1
 Action: 28 To State: 393 Prob: 50 Times: 1

State:
S393 a>b,c>d,-(a>d),(a*-d),-((a*c)*-(b*d)),-(a*c)+-(b*d) 0

State:
S394 a>b,c>d,-(a>d),(a*-d),-((a*c)*-(b*d)),-(a*c)+(b*d)
 Action: 28 To State: 395 Prob: 100 Times: 1

State:
S395 a>b,c>d,-(a>d),(a*-d),-((a*c)*-(b*d)),-(a*c)+(b*d),(-a+-c)+(-b+-d) 0

State:
S396 a>b,c>d,-(a>d),(a*-d),b,-d>-c 0

State:
S397 a>b,c>d,-(a>d),(a*-d),b,-d>-c
 Action: 3 To State: 398 Prob: 100 Times: 1

State:
S398 a>b,c>d,-(a>d),(a*-d),b,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

 177

State:
S399 a>b,c>d,-(a>d),-(-a+d),a*-d,b*-d 0

State:
S400 a>b,c>d,-(a>d),-(-a+d),a*-d,b,b*-d
 Action: 29 To State: 401 Prob: 100 Times: 3

State:
S401 a>b,c>d,-(a>d),-(-a+d),a*-d,b,b*-d,-d>-c
 Action: 1 To State: 707 Prob: 25 Times: 1
 Action: 3 To State: 407 Prob: 50 Times: 2
 Action: 10 To State: 406 Prob: 25 Times: 1

State:
S402 a>b,c>d,-(a>d),(a+c)>(b+d) 0

State:
S403 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c,b*-b 0

State:
S404 a>b,c>d,-(a>d),-b>-a,-d>-c,-(-a+d),a*-d,-a>-d 0

State:
S405 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c 0

State:
S406 a>b,c>d,-(a>d),-(-a+d),a*-d,b,b*-d,-d>-c,-c 0

State:
S407 a>b,c>d,-(a>d),-(-a+d),a*-d,b,b*-d,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S408 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c,c 0

State:
S409 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b 0

State:
S410 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-c+d,b*-c 0

State:
S411 a>b,c>d,-(a>d),-(-d>-a),a*-d,-d>-c,-c+d,b*-c 0

State:
S412 a>b,c>d,-(a>d),a*-d,-c
 Action: 3 To State: 614 Prob: 12.5 Times: 1
 Action: 3 To State: 413 Prob: 62.5 Times: 5
 Action: 8 To State: 612 Prob: 12.5 Times: 1
 Action: 33 To State: 613 Prob: 12.5 Times: 1

State: a>b,c>d,-(a>d),a*-d,-c,b

 178

S413
 Action: 7 To State: 819 Prob: 20 Times: 1
 Action: 10 To State: 6 Prob: 80 Times: 4

State:
S414 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b
 Action: 2 To State: 417 Prob: 20 Times: 1
 Action: 2 To State: 416 Prob: 20 Times: 1
 Action: 3 To State: 416 Prob: 20 Times: 1
 Action: 10 To State: 415 Prob: 20 Times: 1
 Action: 30 To State: 539 Prob: 20 Times: 1

State:
S415 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,a 0

State:
S416 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,b 0

State:
S417 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,b
 Action: 2 To State: 419 Prob: 28.5714285714286 Times: 2
 Action: 2 To State: 418 Prob: 71.4285714285714 Times: 5

State:
S418 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,b,-c 0

State:
S419 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S420 a>b,c>d,-(a>d),(a*-d),a*-d
 Action: 3 To State: 421 Prob: 100 Times: 1

State:
S421 a>b,c>d,-(a>d),(a*-d),a*-d,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S422 a>b,c>d,-(a>d),(a*-d),-d>-c,a>-c 0

State:
S423 a>b,c>d,-(a>d),(a*-d),-d>-c,b*-c 0

State:
S424 a>b,c>d,-(a>d),(a*-d),-d>-c,b
 Action: 3 To State: 678 Prob: 16.6666666666667 Times: 2
 Action: 3 To State: 429 Prob: 25 Times: 3
 Action: 3 To State: 425 Prob: 16.6666666666667 Times: 2
 Action: 8 To State: 427 Prob: 8.33333333333333 Times: 1
 Action: 8 To State: 426 Prob: 25 Times: 3
 Action: 9 To State: 428 Prob: 8.33333333333333 Times: 1

 179

State:
S425 a>b,c>d,-(a>d),(a*-d),-d>-c,b,b*-d 0

State:
S426 a>b,c>d,-(a>d),(a*-d),-d>-c,b,b*-c 0

State:
S427 a>b,c>d,-(a>d),(a*-d),-d>-c,b,b>d 0

State:
S428 a>b,c>d,-(a>d),(a*-d),-d>-c,b,(a>b)+(c>d) 0

State:
S429 a>b,c>d,-(a>d),(a*-d),-d>-c,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 3

State:
S430 a>b,c>d,-(a>d),a*-d,-c 0

State:
S431 a>b,c>d,-(a>d),a*-d,-(-a+b) 0

State:
S432 a>b,c>d,-(a>d),a*-d,-(a*-b)
 Action: 28 To State: 433 Prob: 100 Times: 1

State:
S433 a>b,c>d,-(a>d),a*-d,-(a*-b),-a+b

State:
S434 a>b,c>d,-(a>d),-(-d>-a),-d>-c

State:
S435 a>b,c>d,-(a>d),-a+b,-c+d,-c 0

State:
S436 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a)
 Action: 4 To State: 437 Prob: 25 Times: 1
 Action: 30 To State: 643 Prob: 25 Times: 1
 Action: 30 To State: 642 Prob: 25 Times: 1
 Action: 30 To State: 438 Prob: 25 Times: 1

State:
S437 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),d> 0

State:
S438 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d)
 Action: 27 To State: 440 Prob: 50 Times: 1
 Action: 27 To State: 439 Prob: 50 Times: 1

State:
S439 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d),a*-d 0

 180

State:
S440 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d),a*-d
 Action: 9 To State: 441 Prob: 50 Times: 1
 Action: 29 To State: 442 Prob: 50 Times: 1

State:
S441 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d),a*-d,-d 0

State:
S442 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d),a*-d,-d>-c
 Action: 3 To State: 443 Prob: 100 Times: 1

State:
S443 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(-a+d),a*-d,-d>-c,-c 0

State:
S444 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-c,-a+b
 Action: 2 To State: 446 Prob: 50 Times: 1
 Action: 2 To State: 445 Prob: 50 Times: 1

State:
S445 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-c,-a+b,b 0

State:
S446 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S447

a>b,c>d,-(a>d),(a*c)>(b*d),-
(a*c)+(b*d)

 Action: 28 To State: 448 Prob: 100 Times: 1

State:
S448 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d)
 Action: 30 To State: 449 Prob: 100 Times: 1

State:
S449 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d)
 Action: 27 To State: 450 Prob: 100 Times: 1

State:
S450 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d),a*-d
 Action: 2 To State: 452 Prob: 20 Times: 1
 Action: 2 To State: 451 Prob: 20 Times: 1
 Action: 4 To State: 453 Prob: 20 Times: 1
 Action: 4 To State: 451 Prob: 40 Times: 2

State:
S451 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d),a*-d,-c 0

State:
S452 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d),a*-d,b*-c 0

 181

State:
S453 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d),a*-d,-c
 Action: 3 To State: 454 Prob: 100 Times: 1

State:
S454 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d),-(-a+d),a*-d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S455 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a*-d)
 Action: 28 To State: 457 Prob: 33.3333333333333 Times: 1
 Action: 28 To State: 456 Prob: 66.6666666666667 Times: 2

State:
S456 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a*-d),-(-a+d) 0

State:
S457 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,(a*-d),a+-d 0

State:
S458 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d*a
 Action: 3 To State: 460 Prob: 66.6666666666667 Times: 2
 Action: 3 To State: 459 Prob: 33.3333333333333 Times: 1

State:
S459

a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d*a,b
0

State:
S460 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d*a,b
 Action: 4 To State: 461 Prob: 50 Times: 1
 Action: 30 To State: 582 Prob: 50 Times: 1

State:
S461 a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d*a,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S462 a>b,c>d,-(a>d),-(b>d)
 Action: 3 To State: 464 Prob: 50 Times: 1
 Action: 3 To State: 463 Prob: 50 Times: 1

State:
S463 a>b,c>d,-(a>d),-(b>d),-(b>c) 0

State:
S464 a>b,c>d,-(a>d),-(b>d),-(b>c)
 Action: 30 To State: 465 Prob: 100 Times: 1

State:
S465 a>b,c>d,-(a>d),-(b>d),-(b>c),-(-b+c)
 Action: 27 To State: 6 Prob: 100 Times: 1

State: a>b,c>d,-(a>d),b>c 0

 182

S466

State:
S467 a>b,c>d,-(a>d),b 0

State:
S468 a>b,c>d,-(a>d),--(a>-d) 0

State:
S469 a>b,c>d,-(a>d),-(-a+d),a*-d,-(c*-d)

State:
S470 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,a 0

State:
S471 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-d>-c
 Action: 30 To State: 472 Prob: 100 Times: 1

State:
S472 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-d>-c,-c+d
 Action: 1 To State: 473 Prob: 50 Times: 1
 Action: 4 To State: 474 Prob: 50 Times: 1

State:
S473 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-d>-c,-c+d,a*-c 0

State:
S474 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,-d>-c,-c+d,b*-c 0

State:
S475 a>b,c>d,-(a>d),-(-a+d),--a+-d 0

State:
S476

a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-b>-
a

 Action: 30 To State: 478 Prob: 50 Times: 1
 Action: 32 To State: 477 Prob: 50 Times: 1

State:
S477 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-b>-a,-b*-d 0

State:
S478 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-b>-a,b+-a
 Action: 3 To State: 479 Prob: 20 Times: 1
 Action: 27 To State: 479 Prob: 40 Times: 2
 Action: 28 To State: 480 Prob: 40 Times: 2

State:
S479 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-b>-a,b+-a,--b*-a 0

State:
S480 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,-b>-a,b+-a,-(-b*a) 0

State: a>b,c>d,-(a>d),(a*-d),a*-b 0

 183

S481

State:
S482 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,b
 Action: 30 To State: 483 Prob: 100 Times: 3

State:
S483 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,b,-c+d
 Action: 2 To State: 760 Prob: 40 Times: 2
 Action: 2 To State: 717 Prob: 40 Times: 2
 Action: 10 To State: 6 Prob: 20 Times: 1

State:
S484 a>b,c>d,-(a>d),-(-a+d),a*-b 0

State:
S485 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,b 0

State:
S486 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,b
 Action: 4 To State: 487 Prob: 100 Times: 3

State:
S487 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,b,-c
 Action: 9 To State: 657 Prob: 25 Times: 1
 Action: 10 To State: 6 Prob: 75 Times: 3

State:
S488 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d)
 Action: 28 To State: 489 Prob: 50 Times: 1
 Action: 30 To State: 490 Prob: 50 Times: 1

State:
S489 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d),-a+d 0

State:
S490 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d),-a+b
 Action: 30 To State: 491 Prob: 100 Times: 1

State:
S491 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d),-a+b,-c+d
 Action: 3 To State: 492 Prob: 100 Times: 1

State:
S492 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d),-a+b,-c+d,b
 Action: 4 To State: 493 Prob: 100 Times: 1

State:
S493 a>b,c>d,-(a>d),-b>-a,-d>-c,(a*-d),-a+b,-c+d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S494 a>b,c>d,-(a>d),a+-d 0

 184

State:
S495 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-a*b 0

State:
S496 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,-a>-d 0

State:
S497 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,a*-d
 Action: 4 To State: 498 Prob: 100 Times: 1

State:
S498 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,a*-d,-c
 Action: 29 To State: 500 Prob: 40 Times: 2
 Action: 29 To State: 499 Prob: 60 Times: 3

State:
S499 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,a*-d,-c,a>d 0

State:
S500 a>b,c>d,-(a>d),-(a*-b),-a+b,-(c*-d),-c+d,a*-d,-c,d>a 0

State:
S501 a>b,c>d,-(a>d),-(-a+d),a*-d 0

State:
S502 a>b,c>d,-(a>d),-(-a+d),a*-d,b*-d
 Action: 1 To State: 6 Prob: 50 Times: 1
 Action: 7 To State: 503 Prob: 50 Times: 1

State:
S503 a>b,c>d,-(a>d),-(-a+d),a*-d,b*-d,b*-c 0

State:
S504 a>b,c>d,-(a>d),-(-a+d),a*-d,-(b>d) 0

State:
S505 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d)
 Action: 3 To State: 684 Prob: 40 Times: 2
 Action: 3 To State: 506 Prob: 40 Times: 2
 Action: 27 To State: 542 Prob: 20 Times: 1

State:
S506 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),b
 Action: 4 To State: 507 Prob: 100 Times: 2

State:
S507 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S508 a>b,c>d,-(a>d),-(-a+d),a*-d,--a 0

 185

State:
S509 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d)
 Action: 27 To State: 510 Prob: 100 Times: 1

State:
S510 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d
 Action: 30 To State: 511 Prob: 100 Times: 1

State:
S511 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d,-a+b
 Action: 4 To State: 512 Prob: 100 Times: 1

State:
S512 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d,-a+b,b
 Action: 2 To State: 513 Prob: 100 Times: 1

State:
S513 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d,-a+b,b,b
 Action: 30 To State: 514 Prob: 100 Times: 1

State:
S514 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d,-a+b,b,b,-c+d
 Action: 2 To State: 515 Prob: 100 Times: 1

State:
S515 a>b,c>d,-(a>d),(a*-d),-(-a+d),-(-a+d),a*-d,-a+b,b,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S516 a>b,c>d,-(a>d),-a+b,-c+d,a+-d 0

State:
S517 a>b,c>d,-(a>d),(a*-d),c 0

State:
S518 a>b,c>d,-(a>d),-d>-c,-(-a+d)
 Action: 27 To State: 519 Prob: 100 Times: 2

State:
S519 a>b,c>d,-(a>d),-d>-c,-(-a+d),a*-d
 Action: 3 To State: 639 Prob: 50 Times: 1
 Action: 3 To State: 520 Prob: 50 Times: 1

State:
S520 a>b,c>d,-(a>d),-d>-c,-(-a+d),a*-d,b
 Action: 3 To State: 521 Prob: 100 Times: 1

State:
S521 a>b,c>d,-(a>d),-d>-c,-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S522

a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(c*-
d)

 186

 Action: 31 To State: 525 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 524 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 523 Prob: 33.3333333333333 Times: 1

State:
S523 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(c*-d),--(a*-d) 0

State:
S524 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(c*-d),--(a*d) 0

State:
S525 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(c*-d),(a*-d)
 Action: 30 To State: 526 Prob: 100 Times: 1

State:
S526 a>b,c>d,-(a>d),-a+b,-(a*-b),-c+d,-(c*-d),(a*-d),b*-c 0

State:
S527 a>b,c>d,-(a>d),(a>b)+-(a>d) 0

State:
S528 a>b,c>d,-(a>d),b*-d 0

State:
S529 a>b,c>d,-(a>d),b*-c 0

State:
S530 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b
 Action: 3 To State: 531 Prob: 66.6666666666667 Times: 2
 Action: 4 To State: 531 Prob: 33.3333333333333 Times: 1

State:
S531 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b,-c
 Action: 10 To State: 801 Prob: 33.3333333333333 Times: 1
 Action: 10 To State: 6 Prob: 66.6666666666667 Times: 2

State:
S532 a>b,c>d,-(a>d),a*-d,-a+b
 Action: 2 To State: 533 Prob: 100 Times: 1

State:
S533 a>b,c>d,-(a>d),a*-d,-a+b,b
 Action: 4 To State: 534 Prob: 100 Times: 1

State:
S534 a>b,c>d,-(a>d),a*-d,-a+b,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S535 a>b,c>d,-(a>d),-a>-d

State:
S536 a>b,c>d,-(a>d),-(-a*d) 0

 187

State:
S537 a>b,c>d,-(a>d),b

State:
S538

a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a*b
0

State:
S539 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-a+b,-a>-d 0

State:
S540 a>b,c>d,-(a>d),-(-a+-d) 0

State:
S541 a>b,c>d,-(a>d),-(-a+d),--a+d 0

State:
S542 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),(-a+-c)+(b*d)

State:
S543 a>b,c>d,-(a>d),-(a>d)
 Action: 30 To State: 544 Prob: 100 Times: 2

State:
S544 a>b,c>d,-(a>d),-(a>d),-(-a+d)
 Action: 27 To State: 545 Prob: 100 Times: 2

State:
S545 a>b,c>d,-(a>d),-(a>d),-(-a+d),a*-d
 Action: 3 To State: 547 Prob: 50 Times: 2
 Action: 3 To State: 546 Prob: 50 Times: 2

State:
S546 a>b,c>d,-(a>d),-(a>d),-(-a+d),a*-d,b 0

State:
S547 a>b,c>d,-(a>d),-(a>d),-(-a+d),a*-d,b
 Action: 4 To State: 549 Prob: 40 Times: 2
 Action: 4 To State: 548 Prob: 60 Times: 3

State:
S548 a>b,c>d,-(a>d),-(a>d),-(-a+d),a*-d,b,-c 0

State:
S549 a>b,c>d,-(a>d),-(a>d),-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S550 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,-c,-c

State:
S551 a>b,c>d,-(a>d),-b>-a,-a+b
 Action: 27 To State: 781 Prob: 50 Times: 1

 188

 Action: 30 To State: 552 Prob: 50 Times: 1

State:
S552 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d
 Action: 7 To State: 553 Prob: 100 Times: 1

State:
S553 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d,(-b+c)>(-a+d)
 Action: 5 To State: 555 Prob: 33.3333333333333 Times: 1
 Action: 5 To State: 554 Prob: 33.3333333333333 Times: 1
 Action: 30 To State: 556 Prob: 33.3333333333333 Times: 1

State:
S554 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d,(-b+c)>(-a+d),-b+c 0

State:
S555 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d,(-b+c)>(-a+d),-(-b+c) 0

State:
S556 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d,(-b+c)>(-a+d),-(-a+d)
 Action: 4 To State: 557 Prob: 100 Times: 1

State:
S557 a>b,c>d,-(a>d),-b>-a,-a+b,-c+d,(-b+c)>(-a+d),-(-a+d),-(-b+c)
 Action: 28 To State: 6 Prob: 100 Times: 1

State:
S558 a>b,c>d,-(a>d),-a+b,-c+-d 0

State:
S559 a>b,c>d,-(a>d),-a+b,c-+d 0

State:
S560 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-b>-a
 Action: 27 To State: 562 Prob: 66.6666666666667 Times: 2
 Action: 30 To State: 561 Prob: 33.3333333333333 Times: 1

State:
S561 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-b>-a,-a>-d 0

State:
S562 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-b>-a,-a+d 0

State:
S563 a>b,c>d,-(a>d),-a+b,-c>d 0

State:
S564 a>b,c>d,-(a>d),--(-a+d) 0

State:
S565 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b,-c,b*-d 0

State: a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-d 0

 189

S566

State:
S567 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,-a+b,a 0

State:
S568 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-c,-a+b,b,b*-c 0

State:
S569 a>b,c>d,-(a>d),c>-d 0

State:
S570 a>b,c>d,-(a>d),c>-a 0

State:
S571 a>b,c>d,-(a>d),b>-d 0

State:
S572 a>b,c>d,-(a>d),a*-d,b*-d 0

State:
S573 a>b,c>d,-(a>d),--(a*d) 0

State:
S574 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-c>-d 0

State:
S575 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c
 Action: 3 To State: 821 Prob: 50 Times: 1
 Action: 30 To State: 576 Prob: 50 Times: 1

State:
S576 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c,-c+d
 Action: 3 To State: 577 Prob: 100 Times: 1

State:
S577 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S578 a>b,c>d,-(a>d),(a*-d),b,b*-d 0

State:
S579 a>b,c>d,-(a>d),(a*-d),b,-(c*-d)
 Action: 30 To State: 580 Prob: 100 Times: 1

State:
S580 a>b,c>d,-(a>d),(a*-d),b,-(c*-d),-c+d

State:
S581

a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d+--a
0

State: a>b,c>d,-(a>d),-(-d>-a),-(d+-a),-d*a,b,-c+d

 190

S582

State:
S583 a>b,c>d,-(a>d),-(a+-d) 0

State:
S584 a>b,c>d,-(a>d),(a*-d),-c,-b>-a
 Action: 4 To State: 587 Prob: 11.1111111111111 Times: 1
 Action: 4 To State: 586 Prob: 11.1111111111111 Times: 1
 Action: 4 To State: 585 Prob: 77.7777777777778 Times: 7

State:
S585 a>b,c>d,-(a>d),(a*-d),-c,-b>-a,--b 0

State:
S586 a>b,c>d,-(a>d),(a*-d),-c,-b>-a,b 0

State:
S587 a>b,c>d,-(a>d),(a*-d),-c,-b>-a,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S588 a>b,c>d,-(a>d),a+c 0

State:
S589 a>b,c>d,-(a>d),(a+c)>(b+d),(a+c)>b 0

State:
S590 a>b,c>d,-(a>d),(a+c)>(b+d),-a+-d 0

State:
S591 a>b,c>d,-(a>d),(a+c)>(b+d),a+-d 0

State:
S592 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d
 Action: 29 To State: 593 Prob: 50 Times: 1
 Action: 30 To State: 594 Prob: 50 Times: 1

State:
S593 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d,-a+-d 0

State:
S594 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d,-(-a+d)
 Action: 30 To State: 595 Prob: 100 Times: 1

State:
S595 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d,-(-a+d),-a+b
 Action: 2 To State: 596 Prob: 50 Times: 1
 Action: 30 To State: 597 Prob: 50 Times: 1

State:
S596 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d,-(-a+d),-a+b,b 0

 191

State:
S597 a>b,c>d,-(a>d),(a+c)>(b+d),-c+d,-(-a+d),-a+b,-(a+c)+(b+d)

State:
S598 a>b,c>d,-(a>d),-(-a+d),-a+b,b
 Action: 30 To State: 599 Prob: 100 Times: 1

State:
S599 a>b,c>d,-(a>d),-(-a+d),-a+b,b,-c+d
 Action: 2 To State: 600 Prob: 100 Times: 1

State:
S600 a>b,c>d,-(a>d),-(-a+d),-a+b,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S601 a>b,c>d,-(a>d),-a+b,c>d 0

State:
S602

a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,a*-b
0

State:
S603

a>b,c>d,-(a>d),-b
0

State:
S604 a>b,c>d,-(a>d),-(-a+d),a*-d,-c,-c*a 0

State:
S605 a>b,c>d,-(a>d),-(-a+d),a*-d,-a*b 0

State:
S606 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,-c 0

State:
S607 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,d*-d 0

State:
S608 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,-a*a 0

State:
S609 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b*-d 0

State:
S610 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c 0

State:
S611 a>b,c>d,-(a>d),-(-a+d),a*-d,a>b 0

State:
S612 a>b,c>d,-(a>d),a*-d,-c,b*-c 0

State:
S613 a>b,c>d,-(a>d),a*-d,-c,a>(b*-c) 0

 192

State:
S614 a>b,c>d,-(a>d),a*-d,-c,b 0

State:
S615 a>b,c>d,-(a>d),b+c 0

State:
S616 a>b,c>d,-(a>d),-(-a+d),-(-a+d)
 Action: 27 To State: 617 Prob: 100 Times: 1

State:
S617 a>b,c>d,-(a>d),-(-a+d),-(-a+d),a*-d
 Action: 3 To State: 619 Prob: 50 Times: 1
 Action: 3 To State: 618 Prob: 50 Times: 1

State:
S618 a>b,c>d,-(a>d),-(-a+d),-(-a+d),a*-d,b 0

State:
S619 a>b,c>d,-(a>d),-(-a+d),-(-a+d),a*-d,b
 Action: 29 To State: 620 Prob: 100 Times: 1

State:
S620 a>b,c>d,-(a>d),-(-a+d),-(-a+d),a*-d,b,-d>-c
 Action: 3 To State: 621 Prob: 100 Times: 1

State:
S621 a>b,c>d,-(a>d),-(-a+d),-(-a+d),a*-d,b,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S622 a>b,c>d,-(a>d),(a*-d),b*-c 0

State:
S623

a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),a>d
0

State:
S624 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-c>-d 0

State:
S625

a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-b>-
a

 Action: 29 To State: 626 Prob: 100 Times: 1

State:
S626 a>b,c>d,-(a>d),(a*-d),(a*c)>(b*d),-b>-a,-d>-c

State:
S627 a>b,c>d,-(a>d),-a+b,-d>-c
 Action: 31 To State: 628 Prob: 100 Times: 1

State:
S628 a>b,c>d,-(a>d),-a+b,-d>-c,a*-d
 Action: 3 To State: 629 Prob: 100 Times: 1

 193

State:
S629 a>b,c>d,-(a>d),-a+b,-d>-c,a*-d,-c
 Action: 3 To State: 630 Prob: 100 Times: 1

State:
S630 a>b,c>d,-(a>d),-a+b,-d>-c,a*-d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S631 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c,b+-c 0

State:
S632 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-d 0

State:
S633 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,b*-c 0

State:
S634 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,-c+d
 Action: 2 To State: 635 Prob: 66.6666666666667 Times: 2
 Action: 5 To State: 708 Prob: 33.3333333333333 Times: 1

State:
S635 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S636 a>b,c>d,-(a>d),-(-a+d),(a*-d)
 Action: 3 To State: 637 Prob: 100 Times: 1

State:
S637 a>b,c>d,-(a>d),-(-a+d),(a*-d),b
 Action: 4 To State: 638 Prob: 100 Times: 1

State:
S638 a>b,c>d,-(a>d),-(-a+d),(a*-d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S639 a>b,c>d,-(a>d),-d>-c,-(-a+d),a*-d,-c
 Action: 3 To State: 640 Prob: 100 Times: 1

State:
S640 a>b,c>d,-(a>d),-d>-c,-(-a+d),a*-d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S641 a>b,c>d,-(a>d),-a+b,-c+d,-(a*-d) 0

State:
S642 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(d>-a) 0

 194

State:
S643 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(d+-a)
 Action: 31 To State: 644 Prob: 100 Times: 3

State:
S644 a>b,c>d,-(a>d),-a+b,-c+d,-(-d>-a),-(d+-a),-(-d*a) 0

State:
S645 a>b,c>d,-(a>d),-d>-c,-a>-d 0

State:
S646 a>b,c>d,-(a>d),-d>-c,a*-d,(-d*a)>(-c*b) 0

State:
S647

a>b,c>d,-(a>d),-d>-c,a*-d,(a*-d)>(b*-
c)

 Action: 3 To State: 6 Prob: 33.3333333333333 Times: 1
 Action: 3 To State: 648 Prob: 66.6666666666667 Times: 2

State:
S648 a>b,c>d,-(a>d),-d>-c,a*-d,(a*-d)>(b*-c),b*-c 0

State:
S649 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,b 0

State:
S650 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,b
 Action: 4 To State: 652 Prob: 50 Times: 1
 Action: 4 To State: 651 Prob: 50 Times: 1

State:
S651 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,b,-c 0

State:
S652 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S653 a>b,c>d,-(a>d),c>b 0

State:
S654 a>b,c>d,-(a>d),-a+b,-c+d,b+-c 0

State:
S655 a>b,c>d,-(a>d),-a+b,-c+d,b+-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S656 a>b,c>d,-(a>d),(a*c)>(b*d),(a*d)>(b*d) 0

State:
S657 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,b,-c,b*-c 0

State: a>b,c>d,-(a>d),-(a+-b) 0

 195

S658

State:
S659 a>b,c>d,-(a>d),a*-d,b,-d>-c
 Action: 3 To State: 660 Prob: 100 Times: 1

State:
S660 a>b,c>d,-(a>d),a*-d,b,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S661 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d)
 Action: 30 To State: 662 Prob: 100 Times: 1

State:
S662 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d)
 Action: 27 To State: 664 Prob: 50 Times: 1
 Action: 27 To State: 663 Prob: 50 Times: 1

State:
S663 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a+-d 0

State:
S664 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a*-d
 Action: 3 To State: 666 Prob: 50 Times: 1
 Action: 3 To State: 665 Prob: 50 Times: 1

State:
S665 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a*-d,b 0

State:
S666 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a*-d,b
 Action: 4 To State: 668 Prob: 50 Times: 1
 Action: 4 To State: 667 Prob: 50 Times: 1

State:
S667 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a*-d,b,c 0

State:
S668 a>b,c>d,-(a>d),(a+c)>(b+d),-(a+c)+(b+d),-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S669 a>b,c>d,-(a>d),-c+d,-(a*-b)

State:
S670 a>b,c>d,-(a>d),-a+b,a*-d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S671 a>b,c>d,-(a>d),-b>-a,b*-a 0

State: a>b,c>d,-(a>d),-c>-d 0

 196

S672

State:
S673 a>b,c>d,-(a>d),-d>-c,(a*-d)
 Action: 3 To State: 727 Prob: 60 Times: 3
 Action: 3 To State: 674 Prob: 40 Times: 2

State:
S674 a>b,c>d,-(a>d),-d>-c,(a*-d),b
 Action: 3 To State: 675 Prob: 100 Times: 2

State:
S675 a>b,c>d,-(a>d),-d>-c,(a*-d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S676 a>b,c>d,-(a>d),(a*c)>(b*d),-(-a+d),a*-d,-(a*c)+(b*d)

State:
S677 a>b,c>d,-(a>d),(a*-d),-d>-c,b*-d 0

State:
S678 a>b,c>d,-(a>d),(a*-d),-d>-c,b,-c 0

State:
S679 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b>-c 0

State:
S680 a>b,c>d,-(a>d),a*-d,-d>-c,b>d 0

State:
S681 a>b,c>d,-(a>d),a*-d,-d>-c,b
 Action: 3 To State: 682 Prob: 100 Times: 1

State:
S682 a>b,c>d,-(a>d),a*-d,-d>-c,b,-c
 Action: 9 To State: 6 Prob: 50 Times: 1
 Action: 10 To State: 683 Prob: 50 Times: 1

State:
S683 a>b,c>d,-(a>d),a*-d,-d>-c,b,-c,b*-c 0

State:
S684 a>b,c>d,-(a>d),-(-a+d),a*-d,(a*c)>(b*d),-(a*c)+(b*d),b 0

State:
S685 a>b,c>d,-(a>d),-(-a+d),a*-d,-(a+b) 0

State:
S686 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,(a+c)>(b+d) 0

State:
S687 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,a*-d

 197

 Action: 9 To State: 689 Prob: 50 Times: 1
 Action: 30 To State: 688 Prob: 50 Times: 1

State:
S688 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,a*-d,d>a 0

State:
S689 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,-c+d,a*-d,-d+a 0

State:
S690 a>b,c>d,-(a>d),(a*-d),-c+d
 Action: 2 To State: 691 Prob: 100 Times: 1

State:
S691 a>b,c>d,-(a>d),(a*-d),-c+d,-c
 Action: 30 To State: 692 Prob: 100 Times: 1

State:
S692 a>b,c>d,-(a>d),(a*-d),-c+d,-c,-a+b
 Action: 2 To State: 693 Prob: 100 Times: 1

State:
S693 a>b,c>d,-(a>d),(a*-d),-c+d,-c,-a+b,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S694 a>b,c>d,-(a>d),a+d 0

State:
S695 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a
 Action: 27 To State: 696 Prob: 100 Times: 1

State:
S696 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d
 Action: 29 To State: 699 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 698 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 697 Prob: 33.3333333333333 Times: 1

State:
S697 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,a>d 0

State:
S698 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>a) 0

State:
S699 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a)
 Action: 1 To State: 700 Prob: 50 Times: 1
 Action: 29 To State: 701 Prob: 50 Times: 1

State:
S700 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a),-(-d>b) 0

State: a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a),-d>-c

 198

S701
 Action: 3 To State: 703 Prob: 50 Times: 1
 Action: 4 To State: 702 Prob: 50 Times: 1

State:
S702 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a),-d>-c,-(b>d) 0

State:
S703 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a),-d>-c,-c
 Action: 3 To State: 704 Prob: 100 Times: 1

State:
S704 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-b>-a,a*-d,-(-d>-a),-d>-c,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S705 a>b,c>d,-(a>d),-b>c 0

State:
S706 a>b,c>d,-(a>d),(a*-d),-c 0

State:
S707 a>b,c>d,-(a>d),-(-a+d),a*-d,b,b*-d,-d>-c,b*-c 0

State:
S708 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,-c+d,-d 0

State:
S709 a>b,c>d,-(a>d),-(-a+d),a*-d,-(-d>a) 0

State:
S710 a>b,c>d,-(a>d),-(-a+d),-d>-c
 Action: 27 To State: 711 Prob: 100 Times: 1

State:
S711 a>b,c>d,-(a>d),-(-a+d),-d>-c,a*-d
 Action: 3 To State: 714 Prob: 20 Times: 1
 Action: 3 To State: 713 Prob: 60 Times: 3
 Action: 10 To State: 712 Prob: 20 Times: 1

State:
S712 a>b,c>d,-(a>d),-(-a+d),-d>-c,a*-d,b*-c 0

State:
S713 a>b,c>d,-(a>d),-(-a+d),-d>-c,a*-d,b 0

State:
S714 a>b,c>d,-(a>d),-(-a+d),-d>-c,a*-d,b
 Action: 3 To State: 715 Prob: 100 Times: 1

State:
S715 a>b,c>d,-(a>d),-(-a+d),-d>-c,a*-d,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

 199

State:
S716 a>b,c>d,-(a>d),-(a+b) 0

State:
S717 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 2

State:
S718 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c 0

State:
S719 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,-d 0

State:
S720 a>b,c>d,-(a>d),(a*-d),-d 0

State:
S721 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d
 Action: 2 To State: 722 Prob: 33.3333333333333 Times: 1
 Action: 29 To State: 724 Prob: 33.3333333333333 Times: 1
 Action: 30 To State: 723 Prob: 33.3333333333333 Times: 1

State:
S722 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d,-c 0

State:
S723 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d,d>c 0

State:
S724 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d,-c>-d
 Action: 29 To State: 725 Prob: 100 Times: 1

State:
S725 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d,-c>-d,-d>-c
 Action: 3 To State: 726 Prob: 100 Times: 1

State:
S726 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,b,c+-d,-c>-d,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S727 a>b,c>d,-(a>d),-d>-c,(a*-d),b*-d 0

State:
S728 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c)
 Action: 27 To State: 731 Prob: 33.3333333333333 Times: 1
 Action: 27 To State: 730 Prob: 33.3333333333333 Times: 1
 Action: 27 To State: 729 Prob: 33.3333333333333 Times: 1

State:
S729 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*c 0

 200

State:
S730 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*d 0

State:
S731 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*-d
 Action: 29 To State: 732 Prob: 100 Times: 1

State:
S732 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*-d,-d>-c
 Action: 3 To State: 733 Prob: 100 Times: 1

State:
S733 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*-d,-d>-c,-c
 Action: 3 To State: 734 Prob: 33.3333333333333 Times: 1
 Action: 10 To State: 6 Prob: 33.3333333333333 Times: 1
 Action: 10 To State: 735 Prob: 33.3333333333333 Times: 1

State:
S734 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*-d,-d>-c,-c,b 0

State:
S735 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),-(-a+-c),a*-d,-d>-c,-c,b*-c 0

State:
S736 a>b,c>d,-(a>d),-a+b,(a*-d),b 0

State:
S737 a>b,c>d,-(a>d),-a+b,(a*-d),b
 Action: 4 To State: 738 Prob: 100 Times: 1

State:
S738 a>b,c>d,-(a>d),-a+b,(a*-d),b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S739 a>b,c>d,-(a>d),-d>-c,-b>-a
 Action: 30 To State: 740 Prob: 100 Times: 1

State:
S740 a>b,c>d,-(a>d),-d>-c,-b>-a,-(-a+d)
 Action: 27 To State: 741 Prob: 100 Times: 1

State:
S741

a>b,c>d,-(a>d),-d>-c,-b>-a,-(-a+d),a*-
d

 Action: 3 To State: 742 Prob: 100 Times: 1

State:
S742 a>b,c>d,-(a>d),-d>-c,-b>-a,-(-a+d),a*-d,b
 Action: 4 To State: 743 Prob: 100 Times: 1

State:
S743 a>b,c>d,-(a>d),-d>-c,-b>-a,-(-a+d),a*-d,b,-c
 Action: 10 To State: 6 Prob: 50 Times: 1

 201

 Action: 10 To State: 744 Prob: 50 Times: 1

State:
S744 a>b,c>d,-(a>d),-d>-c,-b>-a,-(-a+d),a*-d,b,-c,b*-c 0

State:
S745 a>b,c>d,-(a>d),-a+b,-(-a+b) 0

State:
S746 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,-d+b 0

State:
S747 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,--d+b 0

State:
S748 a>b,c>d,-(a>d),-c+d,b*-c 0

State:
S749 a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,$- 0

State:
S750

a>b,c>d,-(a>d),-c+d,-(-a+d),a*-d,b*-d
0

State:
S751 a>b,c>d,-(a>d),-(a*-b),-(c*-d),-a+b,-c+d,-(-a+d),a*-d,b 0

State:
S752 a>b,c>d,-(a>d),a*-d,b,-c+d,-c 0

State:
S753

a>b,c>d,-(a>d),-a
0

State:
S754 a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c) 0

State:
S755 a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c),-(-a+d)
 Action: 27 To State: 756 Prob: 100 Times: 1

State:
S756 a>b,c>d,-(a>d),-d>-c,(a*-d)>(b*-c),-(-a+d),a*-d
 Action: 3 To State: 6 Prob: 100 Times: 1

State:
S757 a>b,c>d,-(a>d),(a*c)>(b*d),-c+d

State:
S758 a>b,c>d,-(a>d),-a+b,-c+d,-(-a+d),a*-d,c*-d 0

State:
S759 a>b,c>d,-(a>d),a*-d,b,-c,b*-c 0

State:
S760 a>b,c>d,-(a>d),-(-a+d),a*-d,-a+b,b,-c+d,-c 0

 202

State:
S761 a>b,c>d,-(a>d),-b>-(a*-c) 0

State:
S762 a>b,c>d,-(a>d),-d>-c,-a*b 0

State:
S763 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d
 Action: 30 To State: 764 Prob: 100 Times: 1

State:
S764 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d,-(-a+d)
 Action: 31 To State: 765 Prob: 100 Times: 1

State:
S765 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d,-(-a+d),a*-d
 Action: 1 To State: 766 Prob: 50 Times: 1
 Action: 2 To State: 767 Prob: 50 Times: 1

State:
S766 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d,-(-a+d),a*-d,a 0

State:
S767 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d,-(-a+d),a*-d,-c
 Action: 2 To State: 768 Prob: 100 Times: 1

State:
S768 a>b,c>d,-(a>d),-(a*-b),-a+b,-c+d,-(-a+d),a*-d,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S769 a>b,c>d,-(a>d),$ 0

State:
S770 a>b,c>d,-(a>d),(b>c)=-(b*-c) 0

State:
S771 a>b,c>d,-(a>d),(a*c)>(b*d),-(a*-d) 0

State:
S772 a>b,c>d,-(a>d),(a*c)>(b*d),a*-d
 Action: 4 To State: 773 Prob: 100 Times: 1

State:
S773 a>b,c>d,-(a>d),(a*c)>(b*d),a*-d,-c
 Action: 3 To State: 775 Prob: 50 Times: 1
 Action: 3 To State: 774 Prob: 50 Times: 1

State:
S774 a>b,c>d,-(a>d),(a*c)>(b*d),a*-d,-c,b 0

State: a>b,c>d,-(a>d),(a*c)>(b*d),a*-d,-c,b

 203

S775

State:
S776 a>b,c>d,-(a>d),-a+b,-(-a+d),a*-d,b,-c,b*-c 0

State:
S777 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,b,- 0

State:
S778 a>b,c>d,-(a>d),-a+b,-c+d,a*-d,b,-c 0

State:
S779 a>b,c>d,-(a>d),(a*-d),b,-c+d
 Action: 2 To State: 780 Prob: 100 Times: 1

State:
S780 a>b,c>d,-(a>d),(a*-d),b,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S781 a>b,c>d,-(a>d),-b>-a,-a+b,-(-b*a)

State:
S782 a>b,c>d,-(a>d),-(-a+d),a*-d,a*-b 0

State:
S783 a>b,c>d,-(a>d),a 0

State:
S784 a>b,c>d,-(a>d),a>-d 0

State:
S785 a>b,c>d,-(a>d),-d>a 0

State:
S786 a>b,c>d,-(a>d),-b>-a,-(-a+d)
 Action: 27 To State: 788 Prob: 50 Times: 1
 Action: 27 To State: 787 Prob: 50 Times: 1

State:
S787 a>b,c>d,-(a>d),-b>-a,-(-a+d),--a+-d 0

State:
S788 a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d
 Action: 29 To State: 790 Prob: 50 Times: 1
 Action: 33 To State: 789 Prob: 50 Times: 1

State:
S789 a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d,a 0

State:
S790

a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d,-d>-
c

 Action: 3 To State: 792 Prob: 50 Times: 1

 204

 Action: 3 To State: 791 Prob: 50 Times: 1

State:
S791 a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d,-d>-c,-c 0

State:
S792 a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d,-d>-c,b
 Action: 3 To State: 793 Prob: 100 Times: 1

State:
S793 a>b,c>d,-(a>d),-b>-a,-(-a+d),a*-d,-d>-c,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S794 a>b,c>d,-(a>d),-(-a+d),-(c*-d)
 Action: 29 To State: 795 Prob: 100 Times: 1

State:
S795 a>b,c>d,-(a>d),-(-a+d),-(c*-d),-b>-a
 Action: 2 To State: 798 Prob: 25 Times: 1
 Action: 2 To State: 797 Prob: 25 Times: 1
 Action: 4 To State: 796 Prob: 50 Times: 2

State:
S796

a>b,c>d,-(a>d),-(-a+d),-(c*-d),-b>-a,b
0

State:
S797 a>b,c>d,-(a>d),-(-a+d),-(c*-d),-b>-a,-c 0

State:
S798 a>b,c>d,-(a>d),-(-a+d),-(c*-d),-b>-a,-c
 Action: 3 To State: 799 Prob: 100 Times: 1

State:
S799 a>b,c>d,-(a>d),-(-a+d),-(c*-d),-b>-a,-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S800 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,(a*-d)>(b*-c) 0

State:
S801 a>b,c>d,-(a>d),-(-a+d),a*-d,-d>-c,b,-c,b*-c 0

State:
S802 a>b,c>d,-(a>d),(a*-d),-a+b
 Action: 2 To State: 803 Prob: 100 Times: 1

State:
S803 a>b,c>d,-(a>d),(a*-d),-a+b,b
 Action: 30 To State: 804 Prob: 100 Times: 1

State:
S804 a>b,c>d,-(a>d),(a*-d),-a+b,b,-c+d

 205

 Action: 2 To State: 805 Prob: 100 Times: 1

State:
S805 a>b,c>d,-(a>d),(a*-d),-a+b,b,-c+d,-c
 Action: 9 To State: 806 Prob: 66.6666666666667 Times: 2
 Action: 10 To State: 6 Prob: 33.3333333333333 Times: 1

State:
S806 a>b,c>d,-(a>d),(a*-d),-a+b,b,-c+d,-c,b*-c 0

State:
S807 a>b,c>d,-(a>d),--a+-d 0

State:
S808 a>b,c>d,-(a>d),a*-d,(a*c)>(b*d)
 Action: 4 To State: 809 Prob: 100 Times: 1

State:
S809 a>b,c>d,-(a>d),a*-d,(a*c)>(b*d),-c
 Action: 3 To State: 810 Prob: 100 Times: 1

State:
S810 a>b,c>d,-(a>d),a*-d,(a*c)>(b*d),-c,b
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S811 a>b,c>d,-(a>d),-(c+-d)
 Action: 31 To State: 812 Prob: 100 Times: 1

State:
S812 a>b,c>d,-(a>d),-(c+-d),-(c*-d)
 Action: 29 To State: 813 Prob: 100 Times: 1

State:
S813 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c
 Action: 1 To State: 814 Prob: 33.3333333333333 Times: 1
 Action: 9 To State: 814 Prob: 33.3333333333333 Times: 1
 Action: 31 To State: 815 Prob: 33.3333333333333 Times: 1

State:
S814 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c,-(b>d) 0

State:
S815 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c,(a*-d)
 Action: 30 To State: 816 Prob: 100 Times: 1

State:
S816 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c,(a*-d),-(-a+d)
 Action: 27 To State: 817 Prob: 100 Times: 1

State:
S817 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c,(a*-d),-(-a+d),a*-d
 Action: 9 To State: 818 Prob: 100 Times: 1

 206

State:
S818 a>b,c>d,-(a>d),-(c+-d),-(c*-d),-d>-c,(a*-d),-(-a+d),a*-d,(a>b)+(c>d) 0

State:
S819 a>b,c>d,-(a>d),a*-d,-c,b,(a+c)>(b+d)
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S820 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,d+-c 0

State:
S821 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-d>-c,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S822 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-d>-c
 Action: 1 To State: 823 Prob: 50 Times: 1
 Action: 3 To State: 824 Prob: 50 Times: 1

State:
S823 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-d>-c,a>-c 0

State:
S824 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-d>-c,b
 Action: 3 To State: 825 Prob: 100 Times: 1

State:
S825 a>b,c>d,-(a>d),-(-a+d),a*-d,-c+d,-d>-c,b,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S826 a>b,c>d,-(a>d),-a+c 0

State:
S827 a>b,c>d,-(a>d),-a+b,-c+d,-a>-d

State:
S828 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c,-c+d
 Action: 3 To State: 829 Prob: 100 Times: 1

State:
S829 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-d>-c,-c+d,-c
 Action: 10 To State: 6 Prob: 100 Times: 1

State:
S830 a>b,c>d,-(a>d),-(-a+d),a*-d,b,-c+d,-c,b*-c 0

 207

APPENDIX D: SAMPLE LOG DATA

 Deep Thought Log File Sample. The log is generated on the web server where the

instance of Deep Thought is running. The data includes the following columns:

Column 1: Student number (an encrypted id)
Column 2: Mode (English or Symbolic)
Column 3: Direction (Forward or Backwards)
Column 4: Rule (See Appendix B)
Column 5: Application (Contains old and new statements)
Column 6: Arg (The problem description)
Column 7: Level Number
Column 8: Problem Number
Column 9: Time on Step
Column 10: Server Time
Column 11: Server Date

 The NCSU log files show the final steps submitted for each student attempt. The

header line of each logged attempt lists the student, problem, and whether the student

completed the proof. A completed proof is listed as “Direct” and incomplete proofs are

listed as “PartDirect”. The log file has the following format:

Column 1: Step number
Column 2: Statement (a zero after the statement means the step was an error)

 208

Column 3: Justification (Given or line numbers to justify)
Column 4: Reason (the rule or rules used. Rules are the actions seen in Appendix B)

Proof 1 stud: 81 prob: 1 PartDirect
 STATEMENTS REASONS
 1 a>b GIVEN
 2 c>d GIVEN
 3 -(a>d) GIVEN
 4 d>a 0 3 29
 4 -(-a+d) 3 30
 5 a*d 0 4 27
 5 a*-d 4 27
 6 -d>-c 2 29
 7 b 0 1, 5 3

 Proof 1 stud: 161 prob: 2 Direct
 STATEMENTS REASONS
 1 a>b GIVEN
 2 c>d GIVEN
 3 -(a>d) GIVEN
 4 --(a*-d) 3 31
 5 a*-d 4 11
 6 a 5 6
 7 -d 5 6
 8 b 6, 1 3
 9 -c 7, 2 4
 10 b*-c 8, 9 10

Proof 1 stud: 201 prob: 3 PartDirect
 STATEMENTS REASONS
 1 a>b GIVEN
 2 c>d GIVEN
 3 -(a>d) GIVEN
 4 (a>c)*(b>d) 0 1, 2 8
 4 -a*-d 0 3 28
 4 -(a*-b) 1 32
 5 -c-d 0 2 31
 5 -(c*-d) 2 31
 6 -d>-a 0 3 29
 6 -a+b 4 28
 7 -c+d 5 28

Proof 1 stud: 2 prob: 1 Direct
 STATEMENTS REASONS
 1 a>b GIVEN
 2 c>d GIVEN

 209

 3 -(a>d) GIVEN
 4 -a+d 0 1 30
 4 a*-d 3 27
 5 a 4 6
 6 b 0 3 3
 6 b 0 3 3
 6 b 0 1 3
 6 b 1, 5 3
 7 -d 4 6
 8 -c 2, 7 30
 9 b*-c 6, 8 10

Proof 1 stud: 5 prob: 2 Direct
 STATEMENTS REASONS
 1 a>b GIVEN
 2 c>d GIVEN
 3 -(a>d) GIVEN
 4 -(-a+d) 3 30
 5 a*-d 4 27
 6 -c+d 2 30
 7 -d 5 6
 8 -c 0 6, 7 2
 8 d+-c 0 6 12
 8 d+-c 6 12
 9 -c 0 8 6
 9 -c 7, 8 2
 10 -a+b 1 30
 11 a 5 6
 12 b 10, 11 2
 13 b*-c 9, 12 10

 210

APPENDIX E: TERM DOCUMENT MATRIX

Example of Terms from term document matrix from Ch. 8 utility calculations.

Attempt -(-d>-a) -(d+-a) a*-d a>b c>d -(a>d) -(-a+d) -c

1 1 1 1 1 1

2 1 1 1 1 1 1

3 1 1 1 1 1 1

4 1 1 1 1 1 1

5 1 1 1 1 1

6 1 1 1 1 1 1

7 1 1 1 1 1

8 1 1 1 1 1 1

9 1 1 1 1 1 1

10 1 1 1 1

11 1 1 1 1 1 1

12 1 1 1 1 1 1

13 1 1 1 1 1 1

14 1 1 1 1 1 1

15 1 1 1 1 1 1

16 1 1 1 1 1 1

17 1 1 1 1 1 1

18 1 1 1 1 1 1 1

19 1 1 1 1 1 1 1

20 1 1 1 1 1 1

21 1 1 1 1 1

22 1 1 1 1

23 1 1 1 1 1 1

24 1 1 1 1

25 1 1 1 1 1 1

26 1 1 1 1 1 1

27 1 1 1 1 1

28 1 1 1 1 1 1

29 1 1 1 1 1 1

30 1 1 1 1

31 1 1 1 1 1 1

32 1 1 1 1 1 1

33 1 1 1 1 1

34 1 1 1 1 1

35 1 1 1 1 1 1

36 1 1 1 1 1 1

37 1 1 1 1 1 1

38 1 1 1 1 1 1

 211

39 1 1 1 1 1 1

40 1 1 1 1 1 1

41 1 1 1 1 1 1

42 1 1 1 1 1 1

43 1 1 1 1

44 1 1 1 1 1 1

45 1 1 1 1 1

46 1 1 1 1 1 1

47 1 1 1 1

48 1 1 1 1 1 1

49 1 1 1 1 1 1

50 1 1 1 1 1 1

51 1 1 1 1 1 1

52 1 1 1 1 1

53 1 1 1 1 1 1

54 1 1 1 1 1 1

55 1 1 1 1 1

56 1 1 1 1 1 1

57 1 1 1 1 1 1

58 1 1 1 1 1 1

59 1 1 1 1 1 1

60 1 1 1 1 1 1

61 1 1 1 1 1 1

62 1 1 1 1 1 1

63 1 1 1 1 1

64 1 1 1 1 1 1

65 1 1 1 1 1 1

66 1 1 1 1 1 1

67 1 1 1 1 1 1

68 1 1 1 1 1 1

69 1 1 1 1 1 1

70 1 1 1 1 1 1

71 1 1 1 1

72 1 1 1 1 1 1

73 1 1 1 1 1 1

74 1 1 1 1 1 1

75 1 1 1 1 1 1

76 1 1 1 1 1 1

77 1 1 1 1

78 1 1 1 1 1

79 1 1 1 1 1

80 1 1 1 1 1

81 1 1 1 1 1

82 1 1 1 1

 212

83 1 1 1 1 1 1

84 1 1 1 1 1 1

85 1 1 1 1 1 1

86 1 1 1 1

87 1 1 1 1 1 1

88 1 1 1 1 1

89 1 1 1 1

90 1 1 1 1 1 1

91 1 1 1 1 1 1

92 1 1 1 1 1 1

93 1 1 1 1 1 1 1

94 1 1 1 1

95 1 1 1 1 1 1

96 1 1 1 1 1 1

97 1 1 1 1 1 1

98 1 1 1 1 1 1

99 1 1 1 1 1 1

100 1 1 1

101 1 1 1 1

102 1 1 1 1

103 1 1 1 1 1 1

104 1 1 1 1

105 1 1 1 1 1 1

106 1 1 1 1 1

107 1 1 1 1 1

108 1 1 1 1 1

109 1 1 1 1 1 1

110 1 1 1 1 1 1

111 1 1 1 1 1

112 1 1 1 1 1 1 1

113 1 1 1 1 1 1

114 1 1 1 1 1

115 1 1 1 1 1

116 1 1 1 1 1

117 1 1 1 1 1

118 1 1 1 1 1

119 1 1 1 1 1 1

120 1 1 1 1 1

121 1 1 1 1 1 1

122 1 1 1 1 1 1

123 1 1 1 1 1 1

124 1 1 1 1 1 1

125 1 1 1 1

126 1 1 1 1

 213

127 1 1 1

128 1 1 1 1 1 1

129 1 1 1 1

130 1 1 1 1 1 1

131 1 1 1 1

132 1 1 1 1

133 1 1 1 1 1 1

134 1 1 1 1 1 1

135 1 1 1 1 1 1

136 1 1 1 1 1 1

137 1 1 1 1 1 1

138 1 1 1 1 1 1

139 1 1 1 1 1 1

140 1 1 1 1 1 1

141 1 1 1 1 1 1

142 1 1 1 1 1 1

143 1 1 1 1 1 1

144 1 1 1 1 1 1

145 1 1 1 1 1 1

146 1 1 1 1 1 1

147 1 1 1 1 1 1

148 1 1 1 1 1 1

149 1 1 1 1 1 1

150 1 1 1 1 1 1

151 1 1 1 1

152 1 1 1 1 1 1

153 1 1 1 1 1 1

154 1 1 1 1 1 1

155 1 1 1 1 1 1

156 1 1 1 1 1 1

157 1 1 1 1 1 1

158 1 1 1 1 1

159 1 1 1 1 1 1

160 1 1 1 1 1 1

161 1 1 1 1

162 1 1 1 1 1 1

163 1 1 1 1 1

164 1 1 1 1 1 1

165 1 1 1 1 1

166 1 1 1 1 1 1

167 1 1 1 1 1 1

168 1 1 1 1 1 1

169 1 1 1 1 1 1

170 1 1 1 1 1 1

 214

171 1 1 1 1 1 1

172 1 1 1 1 1

173 1 1 1

174 1 1 1 1 1 1

175 1 1 1 1 1 1

176 1 1 1 1 1 1

177 1 1 1 1 1

178 1 1 1 1 1 1

179 1 1 1 1 1 1

180 1 1 1 1 1 1

181 1 1 1 1

182 1 1 1 1 1

183 1 1 1 1 1 1

184 1 1 1 1 1 1

185 1 1 1 1 1 1

186 1 1 1 1 1 1

187 1 1 1 1

188 1 1 1 1 1 1

189 1 1 1 1

190 1 1 1 1 1 1

191 1 1 1 1

192 1 1 1 1

193 1 1 1 1 1 1

194 1 1 1 1 1 1

195 1 1 1 1 1 1

196 1 1 1 1 1 1

197 1 1 1 1 1 1

198 1 1 1 1 1 1 1

199 1 1 1 1

200 1 1 1 1 1 1

201 1 1 1 1 1

202 1 1 1 1 1 1

203 1 1 1 1 1 1

204 1 1 1 1 1 1

205 1 1 1 1

206 1 1 1 1 1 1

207 1 1 1 1

208 1 1 1 1 1 1

209 1 1 1 1 1 1

210 1 1 1 1 1

211 1 1 1 1

212 1 1 1 1 1 1

213 1 1 1 1 1 1

214 1 1 1 1 1

 215

215 1 1 1 1

216 1 1 1 1 1 1

217 1 1 1 1 1 1

218 1 1 1 1 1 1

219 1 1 1 1 1 1

220 1 1 1 1 1 1

221 1 1 1 1 1 1

222 1 1 1 1 1 1

223 1 1 1 1 1

224 1 1 1 1 1 1

225 1 1 1 1 1

226 1 1 1 1 1 1

227 1 1 1 1 1 1

228 1 1 1 1

229 1 1 1 1 1 1

230 1 1 1 1 1

231 1 1 1 1 1 1

232 1 1 1 1 1 1

233 1 1 1 1 1 1

234 1 1 1 1

235 1 1 1 1 1 1

236 1 1 1 1 1 1

237 1 1 1 1

238 1 1 1 1

239 1 1 1 1 1 1

240 1 1 1 1 1

241 1 1 1 1 1 1

242 1 1 1 1 1 1

243 1 1 1 1 1 1

244 1 1 1 1 1 1

245 1 1 1 1

246 1 1 1 1 1 1

247 1 1 1 1 1 1

248 1 1 1 1 1 1

249 1 1 1 1 1 1

250 1 1 1 1 1 1

251 1 1 1 1 1 1 1

252 1 1 1 1

253 1 1 1 1 1 1

254 1 1 1 1 1

255 1 1 1 1 1 1

256 1 1 1 1 1 1

257 1 1 1 1 1

258 1 1 1 1 1

 216

259 1 1 1 1 1 1

260 1 1 1 1 1 1

261 1 1 1 1 1 1

262 1 1 1 1 1 1

263 1 1 1 1 1 1

264 1 1 1 1 1 1

265 1 1 1 1 1

266 1 1 1 1

267 1 1 1 1 1 1

268 1 1 1 1 1

269 1 1 1 1 1 1

270 1 1 1 1 1 1

271 1 1 1 1 1 1

272 1 1 1 1 1 1

273 1 1 1 1 1

274 1 1 1 1 1 1

275 1 1 1 1 1 1

276 1 1 1 1

277 1 1 1 1 1 1

278 1 1 1 1 1 1

279 1 1 1 1 1

280 1 1 1 1 1 1

281 1 1 1 1 1 1

282 1 1 1 1 1

283 1 1 1 1 1 1

284 1 1 1 1 1

285 1 1 1 1 1 1

286 1 1 1 1 1 1

287 1 1 1 1 1

288 1 1 1 1 1 1

289 1 1 1 1 1

290 1 1 1 1 1 1

291 1 1 1 1 1 1

292 1 1 1 1 1 1

293 1 1 1 1

294 1 1 1 1 1 1

295 1 1 1 1 1 1

296 1 1 1 1 1

297 1 1 1 1 1 1

298 1 1 1 1 1 1

299 1 1 1 1 1 1

300 1 1 1 1 1 1

301 1 1 1 1 1 1

302 1 1 1 1 1

 217

303 1 1 1 1 1 1

304 1 1 1 1 1 1

305 1 1 1 1 1 1

306 1 1 1 1 1 1

307 1 1 1 1 1 1

308 1 1 1 1 1 1

309 1 1 1 1 1 1

310 1 1 1 1 1 1

311 1 1 1 1 1 1

312 1 1 1 1 1 1

313 1 1 1 1 1 1

314 1 1 1 1 1 1

315 1 1 1 1

316 1 1 1 1 1 1

317 1 1 1 1 1 1

318 1 1 1 1 1 1

319 1 1 1 1 1 1

320 1 1 1 1 1 1

321 1 1 1 1 1

322 1 1 1 1 1 1

323 1 1 1 1 1 1

324 1 1 1 1 1 1

325 1 1 1 1 1 1

326 1 1 1 1 1

327 1 1 1 1 1 1

328 1 1 1 1 1

329 1 1 1 1 1 1

330 1 1 1 1 1

331 1 1 1 1 1 1

332 1 1 1 1 1 1

333 1 1 1 1 1

334 1 1 1 1 1 1

335 1 1 1 1 1 1

336 1 1 1 1 1 1

337 1 1 1 1 1 1

338 1 1 1 1 1 1

339 1 1 1 1 1 1

340 1 1 1 1 1 1

341 1 1 1 1 1 1

342 1 1 1 1 1 1

343 1 1 1 1 1 1

344 1 1 1 1 1

345 1 1 1 1

346 1 1 1 1 1 1

 218

347 1 1 1 1

348 1 1 1 1 1 1

349 1 1 1 1

350 1 1 1 1 1 1

351 1 1 1 1 1 1

352 1 1 1 1 1

353 1 1 1 1 1 1

354 1 1 1 1 1 1

355 1 1 1 1 1 1

356 1 1 1 1 1

357 1 1 1 1 1 1

358 1 1 1 1 1 1

359 1 1 1 1 1 1

360 1 1 1 1 1 1

361 1 1 1 1 1 1

362 1 1 1 1 1 1

363 1 1 1 1 1 1

364 1 1 1 1 1 1

365 1 1 1 1 1 1

366 1 1 1 1 1 1

367 1 1 1 1 1 1

368 1 1 1

369 1 1 1 1 1 1

370 1 1 1 1 1 1

371 1 1 1 1 1

372 1 1 1 1 1 1

373 1 1 1 1 1 1

374 1 1 1 1 1

375 1 1 1 1 1 1

376 1 1 1 1 1 1

377 1 1 1 1

378 1 1 1 1 1

379 1 1 1 1 1 1

380 1 1 1 1

381 1 1 1 1 1

Totals 8 6 333 381 381 381 276 356

 219

APPENDIX F: EXAMPLE MODEL COMPONENTS

Level 1 MC computed from NCSU Problems.

Action Stmts New Stmt
ADD -A+B (-A+B)+A
ADD -A -A+B
ADD A A*(A>B)
ADD A A*-B
ADD A A+B
CD (A>B)*(C>D) (A*C)>(B*D)
CD A>B,-C>-D (A*-C)>(B*-D)
CD A>B,C>D (A*C)>(B*D)
CONJ (A*(A>B))*-C,D>C (B*-C)*(D>C)
CONJ -A+B,(-A+B)*-B (-A+B)*-B
CONJ -A+B,(C*-B)*(-A*B) (C*-B)*(-A*B)
CONJ -A+B,(C*-B)*(-A+B) (C*-B)*(-A+B)
CONJ -A+B,-A+B B*-C
CONJ -A+B,-B (-A+B)*-B
CONJ -A+B,-B -B*(-A+B)
CONJ -A+B,-B B*-B
CONJ -A+B,-C+D (-A+B)*(-C+D)
CONJ -A+B,-C+D B*-C
CONJ -A+B,-C+D B+-C
CONJ -A+B,A (-A+B)*A
CONJ -A+B,A A*(-A+B)
CONJ -A+B,B*-C B*-C
CONJ -A,-A>-B -A*(-A>-B)
CONJ -A,-B+A (-B+A)*-A
CONJ -A,-B+A -A*(-B+A)
CONJ -A,-B C*-B
CONJ -A,B*-A B*-A
CONJ -A,B -A*B
CONJ -A,B B*-A
CONJ -A,B B*-C
CONJ -A,B>A -A*(B>A)
CONJ -A>-B,-A (-A>-B)*-A
CONJ -A>-B,-A -A*(-A>-B)
CONJ -A>-B,-B C*-B
CONJ A*-B,(-A+C)*(-D+B) (A*-B)*((-A+C)*(-D+B))
CONJ A*-B,(-A+C)*A (-A+C)*A
CONJ A*-B,-A+C (A*-B)*(-A+C)
CONJ A*-B,-B A*-B
CONJ A*-B,A A*-B
CONJ A*-B,A C*-D
CONJ A*-B,C C*-B
CONJ A+-B,-A (A+-B)*-A
CONJ A+-B,-A -A*(A+-B)
CONJ A,-A+B (-A+B)*A

 220

CONJ A,-A+B A*(-A+B)
CONJ A,-B -B*A
CONJ A,-B A*-B
CONJ A,-B C*-B
CONJ A,-B C*-D
CONJ A,A*-B A*-B
CONJ A,A>B A*(A>B)
CONJ A,B*-C B*-C
CONJ A,B B*-C
CONJ A>B,-(A>C) (A>B)*-(A>C)
CONJ A>B,-B (A>B)*-B
CONJ A>B,A*-C (A>B)*(A*-C)
CONJ A>B,A (A>B)*A
CONJ A>B,A A*(A>B)
CONJ A>B,C+-D B*-D
CONJ A>B,C (A>B)*-B
CONJ A>B,C C*(A>B)
CONJ A>B,C>D (A>B)*(C>D)
DEM (A>B)*-(-A+C) (A>B)*(A*-C)
DEM (A>B)=(-A+B) -(A*-B)
DEM A+-B -(-A*B)
DEM A>B -(A*-B)
DS (-A+B)*-B -A
DS (-A+B)*A B
DS (A+-B)*-A -B
DS -A+B,-A -A
DS -A+B,-B -A
DS -A+B,A B
DS -A,-A*(A+-B) -B
DS -A,-B+A -B
DS -A,-B -B
DS -A,A+-B -B
DS A*(-A+B) B
DS A*-B -B
DS A+-B,-A -B
DS A+-B,B A
DS A,-A+B B
DS A,B B
DS A>B,-C>-D (-C+A)>(-D+B)
DS A>B,C>D (A+C)>(B+D)
HS A>B,-(-A+C) B*-C
HS A>B,C>D B*-C
HS A>B -A+B
HS A>B -C
HS A>B B
HS A>B C*(-B>-A)
IMPL (-A+B)*(-C+D) (A>B)*(C>D)
IMPL (-A+B)*A (A>B)*A
IMPL (A*B)>(C*D) -(A*B)+(C*D)
IMPL (A+B)>(C+D) -(A+B)+(C+D)

 221

IMPL (A>B)*-(A>C) (A>B)*-(-A+C)
IMPL A*(-A+B) A*(A>B)
IMPL A>B,-B -A
IMPL A>B,C>D B*-C
IMPL A>B (A>B)=(-A+B)
IMPL A>B -(A*-B)
IMPL A>B -A+B
MP (-A>-B)*-A -B
MP (A*-B)>(C*-D),A*-B C*-D
MP (A>B)*A B
MP -A+B,-C -D
MP -A+B,A B
MP -A,-A>-B -B
MP -A>-B,-A -B
MP A*(A>B) B
MP A*-B,(A*-B)>(C*-D) C*-D
MP A*-B,A C
MP A+B,(A+B)>(C+D) C+D
MP A,A*(A>B) B
MP A,A>B B
MP A>B,-(A>C) -(B>C)
MP A>B,-(A>C) B
MP A>B,-(C>B) -(C>A)
MP A>B,-B -A
MP A>B,-C B
MP A>B,A B
MP A>B,B B
MP A>B -(A+-B)
MT (-A+B)>(-C+D),-(-C+D) -(-A+B)
MT (A>B)*-B -A
MT -A,B>A -B
MT -A>-B,--B --A
MT A*-B -C
MT A>B,(C*A)>(D*B) -A
MT A>B,-B -A
MT A>B -A
MT A>B B
MT A>B C

