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ABSTRACT

WEDIGE SANDESH KUSHANTHA FERNANDO. American Options Pricing
Using HJM Approach. (Under the direction of Dr. Mingxin Xu)

With the development of financial markets and increasing demand for managing

risk exposure, researchers and practitioners have developed various financial instru-

ments over the years. Options, Futures, Forwards, Swaps are few examples of such

instruments. There are many financial models design to price such derivatives and

almost all of them have one thing in common: arbitrage free valuation of these deriva-

tive contracts.

In this thesis we focus on pricing mechanism of one the widely traded derivatives:

American option. We employ HJM forward modeling approach introduced by Heath,

Jarrow and Morton (1992). HJM model is originally introduced as an alternative

method to bond pricing. Traditional bond pricing is done via short rate modeling

while HJM method attempt to price bonds via modeling the evolution of entire yield

curve.

In recent years, Schweizer and Wissel (2008) and Carmona and Nadtochiy (2009)

extend the forward modeling idea to equity market by modeling forward volatility

allowing researchers to look at a dynamic curve which relax the Black - Scholes

constrain of constant volatility. This modeling paradigm also allows easy calibration

to market data. Here we propose an alternative approach to value American type

options in the spirit of HJM approach. Since American option is essentially an optimal

stopping problem, it’s value given by the Snell envelop of the value process. By

adapting HJM method method using forward drift we formulate a new value process of

American option. We propose a new value function, a new stopping criteria and a new

stopping time. We investigate this new method in both additive and multiplicative
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model settings using the forward modeling approach. Then we use American put as

an example to show the forward model that corresponds to Black - Scholes model.

Numerical investigation of the additive and multiplicative models is carried out

for Option Matrix data for August 2007 to August 2015 using three methods: princi-

pal component analysis, robust principal component analysis and Karhunen - Loeve

transformation. We further observed that eigen components obtained through PCA

for American options market are different from known eigen shapes of implied volatil-

ity surface and yield curve.
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CHAPTER 1: INTRODUCTION TO HJM APPROACH FOR FIXED INCOME

AND EQUITY MARKET

Assume that we are interested in finding the fair value of contingent claim Vt. Arbi-

trage free value of the contingent claim is given by discounted expected payoff under

risk neutral measure. Goal of this thesis is to use forward rate approach to find

arbitrage free price of American options under forward modeling. As a pretext, we

first discuss the fixed income market and then the equity market in the spirit of HJM

forward modeling methodology.

1.1 Fixed income market

The fixed income security is generally known as an investment that provides periodic

income to the investor at predefined intervals. Bonds, Swaps, Caps, Floors, Swaptions

are few examples of fixed income instruments. The key risk of fixed income market

is the interest rate risk. Therefore, ability to model and capture the movement of

interest rate is very important in fixed income instruments pricing.

1.1.1 Short rate

Short rate rt is a realization from yield curve such that interest rate applicable for

infintely small maturity time. Short rate is fundamental to interest rate modeling

since many fixed income market instruments have been based on the dynamics of

the short rate. Typically short rate dynamics is given by the following stochastic
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differential equation

drt = a(t, T )dt+ b(t, T )dWt (1.1)

Where Wt is the Brownian motion, a(t, T ), b(t, T ) are coefficient of the drift and the

volatility respectively. Despite their shortcomings and limitations that we will discuss

later, short rate models are still used in practice and remain popular mainly because

of their easy implementation and existence of closed form solution for many liquid

assets.

1.1.2 Bond

Definition: A T- maturity zero coupon bond (pure discount bond) is a contract

that guarantees it’s holder the payment of one unit of currency at time T, with no

immediate payments. Contract value at time t < T is denoted by B(t, T ). Clearly

B(T, T ) = 1.

Bond price is usually done through modeling the interest dynamics. The most com-

mon choice is the short rate model. Let us illustrate how bond pricing is done via

one of the common short rate models: Vasicek model.

1.1.3 Vasicek model

On the probability space (Ω, F, P ), equipped with filtration Ft, the risk neutral pricing

formula for bond price is given by

B(t, T ) = E
[
e−

∫ T
t ruduB(T, T ) |Ft

]
= E

[
e−

∫ T
t rudu |Ft

]
.

It is important to note that discounted bond price is a martingale under the risk

neutral measure, hence assuring the price B(t, T ) is arbitrage free. Recall that under

Vasicek ( 1977), the model dynamics is given by
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drt = a(b− rt)dt+ σdWt. (1.2)

Vasicek is an example of Ornstein-Uhlenbeck (O-U) processes with a constant

volatility σ. Solving this equation we get:

rt = e−btr0 + (1− e−bt)a
b

+

∫ t

0

e−b(t−u)dWu (1.3)

Using the fact that
∫ T
t
rudu is Gaussian, hence calculating it’s expected value and

variance we are able to represent the bond price as:

B(t, T ) = eA(T−t)+C(T−t)r0 (1.4)

Where A(T − t) = 4ab−3σ2

4b2
+ σ2−2ab

2b2
(T − t) + σ2−ab

b3
e−b(T−t) − σ2

4b3
e−2b(T−t) and

C(T − t) = −1
b
(1− e−b(T−t)).

1.1.4 Yield Curve

Yield curve is a graph which depicts the average rate of return implied by bonds

over time. This curve is also known as term structure of interest rate. Let t ≥ 0. Let

T1, T2....Tn be the maturities. Let Y (t, Ti) where i = 1, 2, 3....n. Then yield curve is

given by T → Y (t, T ). In general, yield curve can take many shapes, most common

one is being upward slope with higher rates for higher maturities. Although inverted

yield curve is also theoretically possible and have occurred practically in the past.

Denote B̂(0, Ti) as the market prices for zero coupon bonds with different maturities

T1, T2...Tn. The yield curve T → Y (0, T ) can be calculated as

Y (0, Ti) =
1

T i
ln
B̂(Ti, Ti)

B̂(0, Ti)
⇔ B̂(0, Ti) = B̂(Ti, Ti)e

−TiY (0,Ti)
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Figure 1.1: YIELD CURVE

Where B̂(Ti, Ti) = 1.

The yield Y (0, T ) over time period [0, T ] is known as the long rate. The yield

curve created for U.S treasures rates for February 13, 2017 is given in figure 1.1.

1.2 Calibration issues of short rate approach

whenever the functions A(T, t) and C(T, t) are calculable, bond price can be evalu-

ated by closed form solution given by the equation (1.2). Vasicek model belongs to

a general class of interest rate models known as affine models. Advantage of such

models is that they are easy to calibrate. This is usually done by fitting the model

parameters to the actual market data. This process is known as the calibration. As

mentioned earlier, in order to tune the Vasicek bond price to market data, we need
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to estimate a, b, σ. Theoretically, this would only require bond prices for three dif-

ferent maturities T1, T2, T3 from the market. But the issue is, bond prices calculated

using such a model tend to deviate vastly from the actual observed bond prices. In

other words, term structure implied by this model is different from the actual market

evolution. We may employ frequent calibration but then the pricing model becomes

many frequently re-calibrated single period models rather than single, dynamic model

over the maturity of the instruments we intend to price. As Carmona (2009) pointed

out, frequency of re-calibration and when it is optimal to re-calibrate needs to be ad-

dressed. In a nutshell, short rate does not provide a clear picture of forward evolution

the interest rate dynamics. This highlights the need of having a dynamic dynamic

model which is consistent with market data.

Heath, Jarrow and Morton (1992) proposed a method to solve above mentioned

shortcomings. They addressed the issues of calibration of short rate models and be

consistent with market instruments through so called forward modeling approach.

According to HJM approach, the bond price B(t, T ) is given by

ft(T ) = − ∂

∂T
ln B̂(t, T ) (1.5)

Note that from equation (1.5) and initial bond price B̂(0, T ) observed at time t = 0,

we can calculate the initial forward rate curve

f0(T ) = − ∂

∂T
ln B̂(0, T ) (1.6)

Let ft(T ) is govern by dft(T ) = αt(T )dt + βt(T )dWt. Dynamics of the forward rate

is given by

ft(T ) = f0(T ) +

∫ t

0

αu(T )du+

∫ t

0

σu(T )dWu (1.7)
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Calibration under forward rate approach only require knowing the initial forward

curve f(0, T ) as it is considered as an input to the evolution of forward curve given

by ft(T ). There is no need of frequent re-calibration.

One of the key components in forward modeling approach is given by it’s spot

consistency condition. Spot consistency condition under forward interest rate mod-

eling is given by ft(t) = rt. In other words, spot consistency condition tells us that

instantaneous forward rate is equal to the short rate at t. Another important aspect of

the forward modeling approach is no arbitrage drift condition. Heath-Jarrow-Morton

(1992) showed that this model achieve no arbitrage by imposing restrictions on the

model drift αt(T ). This condition is given by αt(T ) = βt(T )
∫ T
t
βt(u)du.

1.3 HJM Forward modeling approach and it’s importance

We discussed the short rate approach and it’s limitations until now. Here we will

present the differences of two modeling paradigms. For any given time t, short rate

models represent a single value in it’s state space, rt. As Carmona (2009) pointed

out, forward rate at time t, model represent an entire evolution of term structure of

interest rate or it’s distribution. This allows HJM approach to price forward starting

financial instruments as well.

Another difference of two models can be seen in their bond pricing equations. Under

the risk neutral measure, bond price B(t, T ) using short rate is given by

B(t, T ) = E[e−
∫ T
t rudu |Ft]. (1.8)

According to Heath, Jarrow and Morton (1992), same bond price is given by

B(t, T ) = e−
∫ T
t ft(u)du (1.9)
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Note that in forward modeling approach there is no risk neutral expectation. There-

fore model must be inherently arbitrage free under forward modeling. This is achieved

via imposing a drift restriction on the dynamics of ft(u).

1.4 Equity market

The equity market consists of stocks and it’s associated derivative products which

are traded through exchanges or over the counter. The key risk component in equity

market is the volatility of the underlying stock. It is well known that the Black -

Scholes formula provides a closed form solution for European type derivatives. For

stock price dynamics given by dSt = rStdt + σStdWt, interest rate r and constant

volatility σ, European call option price can be calculated by

Vt = E[e−r(T−t)(ST −K)+|Ft] (1.10)

Where K is the strike price. Price of the call option is explicitly given by Black -

Scholes formula as follows

V (t, T ) = BS(St, T, t,K, r, σ) = StN(d1)−Ker(T−t)N(d2) (1.11)

Where d1 =
ln(St

K
) + (r + σ2

2
)(T − t)

σ
√
T − t

and d2 = d1 − σ
√
T − t.

Black - Scholes model still serves as the backbone for options pricing although

model operates under some strong assumptions. These assumptions seems to con-

tradict actual market observations. Constant volatility assumption is one of them.

Upon this realization, researchers and practitioners focused on more realistic volatil-

ity models that resonate the actual market volatility. These models treat volatility

as a stochastic process and not a constant anymore.
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1.5 Implied Volatility and forward implied volatility

Definition: Implied volatility σ̂t of an option is implicitly defined as the param-

eter σ̂t that yields the actual observed option price when it is substituted into the

Black-Scholes formula. i.e BS(St, T, t, σ̂t, K, r) = V̂ (t, T ), where V̂ (t, T ) option prices

observed from the market.

When the option prices are observed in market place, by inverting Black-Scholes for-

mula, we may calculate implied volatility.

Then we can construct the implied volatility curve using observed σ̂. But histori-

cal evidence suggests that the derivative price, V̂ (t, T ) varies with K and T contrary

to the Black-Scholes assumptions. This result in a frequent mismatch between Black-

Scholes implied volatility model and actual volatility implied by the market data.

In order to address calibration issue faced by the implied volatility surface, Schweizer

and Wiessel ( 2008 ) proposed forward implied volatility modeling in the spirit of HJM

methodology. They denoted the forward implied volatility as

X(t, T ) =
∂

∂T
((T − t)σ̂2

t (T )) (1.12)

Which follows,

σ̂2
t (T ) =

1

T − t

∫ T

t

X(t, u)du (1.13)

Also the dynamics of X(t, T ) is given by

dXt(u) = αt(u)dt+ βt(u)dWt (1.14)
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Calibration carried out for forward implied volatility by replacing σ by σt(T ) in

Black-Scholes model. For an example, calibrated call option price is given by

CT
t = BS(St, T, t,

√
1

T − t

∫ T

t

X(t, u)du,K, r) (1.15)

Calibration is not an issue sinceX(0, T ) is an input forward volatility curve. Therefore

this is an improvement of traditional implied volatility model. No arbitrage for the

model is achieved by imposed conditions on αt(u) and it is given in proposition 2.2 of

Schweizer and Wiessel (2008). Another key feature of forward modeling philosophy is

the spot consistency condition. Spot consistency condition for forward local volatility

id given by X(t, t) = σ2
t .

Let’s turn our attention to the local volatility model.

1.6 Local volatility and forward local volatility

Consider the governing equation

dSt = rtStdt+ σ(t, St)StdWt (1.16)

The diffusion coefficient defined as σt = σ(t, St) is known as local volatility. In other

words, the local volatility is a function of t and St. Note that randomness is caused

by St in the local volatility model. Therefore it is easy to calibrate to local volatility

model than to implied volatility model.

Local volatility can also be viewed as the current expected variance of σt. Considering

the fact that local volatility can be expressed as a function of relative maturity τ and

strike price K, Dupire (1994) defined the local volatility as

σt(τ,K)2 =
2∂τCt(τ,K)

K2∂2KKCt(τ,K)
(1.17)
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Note that Ct(τ,K) is the call option price on St. Advantage of the local volatility

model is that calibration is not an issue since we can observe σ0(T,K) as Ĉ0(T,K)

available in the market for any trading day.

Using the Dupire local volatility function defined in equation (1.17), Carmona and

Nadtochiy ( 2009 ) modeled the forward local volatility as

dσt(τ,K) = αt(τ,K)dt+ βt(τ,K)dWt (1.18)

Where τ = T − t. No arbitrage condition imposed on α̃t and the spot consistency

condition for the forward local volatility model is given by theorem 4.1 of Carmona

and Nadtochiy (2009).



CHAPTER 2: FORWARD MODELING APPROACH

We reviewed the bond pricing and it’s HJM modeling approach by identifying for-

ward interest rate is the key. This was stated in sections 1.1 − 1.3 of chapter 1. In

sections 1.4 − 1.6, we reviewed the importance of forward volatility modeling as the

key to European options pricing in the equity market. In this chapter, we will discuss

American option pricing in the spirit of HJM forward modeling approach.

American Option is a financial derivative which allows the option holder to exer-

cise the option at any time during it’s lifetime.

For risk free interest rate r > 0, the value of the American option with payoff Gt and

maturity T is given by

V0 = sup
0≤τ≤T

E[e−rτGτ ]

where τ is a stopping time. Note that this is an optimal stopping problem. We first

review the classical solution then we try to model the value function in HJM setting.

We will identify forward drift modeling is the key in to solve the problem. We will

provide an alternative value function to traditional value function. Then we will give

a new stopping criteria and a new stopping time to this new approach. Further we

provide spot consistency condition, no arbitrage drift condition for our model using

HJM philosophy. Finally we will discuss calibration. We carry out our analysis under

two models: additive model and multiplicative model.
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2.1 Optimal stopping problem under traditional approach

In this section, we will introduce the optimal stopping problem. According to Peskir

& Shiryaev, we let (Ω, F, P ) be the probability space equipped with complete and

right continuous filtration Ft. Let Gt be the gain process adapted to the filtration Ft

and

E( sup
0≤t≤T

|Gt|) <∞ (2.19)

When r = 0, main optimal stopping problem for the gain process Gt is given by

V0 = sup
0≤τ≤T

E[Gτ ] (2.20)

where τ is the stopping time. Since T < ∞ this is a finite time horizon optimal

stopping problem.

Solution to the above problem is given by the Snell envelop or essential supremum

of Gt. It is defined by

Vt = ess sup
t≤τ≤T

E[Gτ |Ft] (2.21)

with the optimal stopping time τ ∗ is defined by

τ ∗t = inf {t ≤ s ≤ T : Vs = Gs} (2.22)

For the sake of simplicity, we denote τ ∗t by τ ∗ from now on.
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2.2 Additive model for forward modeling

We are trying to solve the above optimal stopping problem in HJM setting. As a

motivation, let’s recall forward modeling in fixed income and equity market. Forward

interest rate is the key in bond pricing. Similarly, forward volatility modeling is the

key in the equity market. We state that forward drift is the key in American option

pricing. Therefore, we will attempt to solve the above problem in an alternative

approach using forward modeling of the drift.

2.2.1 Motivation for forward drift

Assume the dynamics of Gt is given by

dGt = µtdt+ σtdWt (2.23)

where ∫ T

t

|µu|du <∞ P − a.s. (2.24)

and ∫ T

t

σ2
udu <∞ P − a.s (2.25)

Since τ ∗ is the optimal stopping time, τ ∗ defined in (2.22) is optimal. From the

definition of Snell envelop (2.21) we have Vt = E[Gτ∗|Ft].

Therefore, consider Vt = E[Gτ∗|Ft]. Notice that,

E[Gτ∗|Ft] = Gt + E[

∫ τ∗

t

(µudu+ σudWu)|Ft]

= Gt + E[

∫ τ∗

t

µudu|Ft] + E[

∫ τ∗

t

σudWu|Ft]
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But
∫ τ∗
t
σudWu is a martingale since it is an Ito integral. Therefore by optional sam-

pling theorem, E[
∫ τ∗
t
σudWu|Ft] = 0. This implies

Vt = Gt + E[
∫ T
t
µu1{τ∗≥u}du|Ft]. By Fubini theorem,

Vt = Gt +

∫ T

t

E[µu1{τ∗≥u}du|Ft] (2.26)

We can see that the volatility of the gain process does not contribute to the value

function. In other words, only the drift of the gain process matters for modeling Vt.

2.2.2 HJM approach to American option pricing under additive model

Let Vt be the price of American option with payoff Gt. For the sake of simplicity, we

let r = 0 to demonstrate the forward drift. For r > 0 refer to the example given in

section 2.5.

For American option price Vt and the gain process Gt we define the forward rate

ft(T ) = ∂
∂T

(Vt −Gt)

This is equivalent to

Vt = Gt +

∫ T

t

ft(u)du (2.27)

Assume the dynamics of the forward drift process, ft(u) is given by the diffusion

process

dft(u) = αt(u)dt+ βt(u)dWt (2.28)

Where ∫ T

t

|αt(u)|du <∞ P -a.s (2.29)

∫ T

t

β2
t (u)du <∞ P - a.s (2.30)
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We define the forward drift to satisfy (2.27). Therefore,

ft(u) = E[µu1{τ∗≥u}|Ft] (2.31)

By the forward drift ft(u) defined in equation (2.27) and comparing it to the equation

(2.26) we get (2.31) under the assumption (2.23) and r = 0.

2.2.3 Spot consistency condition

Let us introduce one of the integral part of HJM modeling philosophy known as the

spot consistency condition. Recall that in bond pricing, spot constancy condition

explains the instantaneous forward rate. This is equal to short rate rt given at time t.

In the forward implied volatility model, spot consistency condition tells us that spot

forward implied volatility X(t, t) equal to σt. Where σt is the instantaneous volatility

of the gain process. Similarly, we will identify a different spot consistency condition

for American option. This new spot consistency condition tell us that instantaneous

forward drift is equal to µt. This is one of the key features in our model.

Theorem 2.1. Let the dynamics of ft(u) be given by (2.28) under the conditions

(2.29) and (2.30). Then the spot consistency condition of forward drift model as

ft(t) = limT→t ft(T ). Then ft(t) = µt.

Proof. Recall that ft(u) = E[µu1{τ∗≥u}|Ft].

Therefore,

ft(t) = limT→t ft(T ) = limT→tE[µT1{τ∗≥T}|Ft]. But by dominated convergence theo-

rem,

ft(t) = E[limT→t µT1{τ∗≥T}|Ft] = µt. This completes the proof.

Therefore we affirm that spot consistency condition for American option pricing

under the additive forward drift model is given by µt. Which is the drift of the gain

process.
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2.2.4 Stopping time

So far we have proposed a new model to solve the optimal stopping problem and

associated spot consistency condition. We will address the new stopping time for the

additive model in this subsection.

Let’s recall familiar stopping time under the traditional model as in equation

(2.22)

τ ∗ = inf{t ≤ s ≤ T : Gs = Vs}

According to (2.27), the value function is given by

Vs = Gs +
∫ T
s
fs(u)du

Since the value function Vs ≥ Gs in continuation region, we can conclude that∫ T
s
fs(u)du ≥ 0. Therefore, we observe that optimal time to stop the value pro-

cess is when
∫ T
s
fs(u)du ≤ 0. In other words, the optimal stopping time for the value

process under the additive model is

τ ∗ = inf{t ≤ s ≤ T :

∫ T

s

fs(u)du ≤ 0} (2.32)

2.2.5 No arbitrage drift condition

Let’s recall that model must be inherently arbitrage free under the HJM philosophy

because there is no risk neutral expectation of the payoff. Heath - Jarrow - Mor-

ton(1992) proved that no arbitrage can be achieved by imposing conditions on the

drift of the forward rate. Following theorem states the no arbitrage theorem for the

additive model.

Theorem 2.2. Let dynamics of Gt given by (2.23) under the conditions (2.24) and

(2.25). Let dynamics of ft(u) be given by (2.28) under the conditions (2.29) and

(2.30). Then the no arbitrage drift condition is given by αt(T ) = 0 a.e on [0, τ ∗].
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Proof.

V (t) = Gt +

∫ T

t

ft(u)du

dV (t) = dGt + d(

∫ T

t

ft(u)du)

= µtdt+ σtdWt +

∫ T

t

dft(u)du− f(t, t)
∂t

∂t
dt

= µtdt+ σtdWt − f(t, t)dt+ (

∫ T

t

αt(u)du)dt+ (

∫ T

t

βt(u)du)dWt

Note that f(t, t) = µt by spot consistency condition. Therefore

dVt = (
∫ T
t
αt(u)du)dt+ (

∫ T
t
βt(u)du+ σt)dWt.

Recall that V (t, T ) is a martingale in continuation region.

Therefore
∫ T
t
αt(u)du = 0 for 0 ≤ t ≤ τ ∗. By differentiating above integral with

respect to T we have αt(T ) = 0 a.e on [0, τ ∗].

This completes the proof.

2.2.6 Difference between additive model and traditional solution

For the model Vt = Gt +
∫ T
t
ft(u)du given in (2.27), Vt is modeled by the drift

of the gain process. But under the traditional approach, value function is given

by Vt = ess sup
t≤τ≤T

E[Gτ |Ft]. It requires a conditional expectation to model the value

function under traditional approach. This is the difference in modeling aspect of our

model and the traditional value process. We have proposed a new value function to

American option problem, it’s spot consistency condition, a new stopping criteria and

a new stopping time. This completes the theoretical discussion about additive model.

We will present the multiplicative counterpart of forward modeling approach in the
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next section.

2.3 Multiplicative model

In this section, we will propose multiplicative type model for value function Vt to

solve the optimal stopping problem.

Let’s recall the value function under the additive model is given by

Vt = Gt +
∫ T
t
ft(u)du

and the corresponding optimal stopping time under the additive model is given by

τ ∗ = inf{t ≤ s ≤ T :
∫ T
s
fs(u)du ≤ 0}

Now let’s recall the traditional value process of optimal stopping process and it’s

optimal stopping time when r = 0. When for r > 0, same value process is given by

Vt = ess sup
t≤τ≤T

E[e−r(τ−t)Gτ |Ft]

τ ∗ = inf {t ≤ s ≤ T : Vs = Gs}

Let the dynamics of Gt be given by

dGt = µtGtdt+ σtGtdWt (2.33)

where the dynamics of dGt satisfies the conditions

∫ T
t
|µu|du <∞ P − a.s

and

∫ T
t
σ2
udu <∞ P − a.s
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Note that unlike in equation (2.23), Gt is an exponential now. Note that equation

(2.33) implies,

Gt = G0e
∫ t
0 (µu−

1
2
σ2
u)du+

∫ t
0 σudWu (2.34)

2.3.1 HJM approach for American option pricing under multiplicative model

Recall that forward drift under the additive model is given by (2.27). We define the

multiplicative counterpart of the additive model as

ft(T ) = ∂
∂T
lnVt(T )

Gt

Therefore, the value function is given by

Vt = Gte
∫ T
t ft(u)du (2.35)

Where the dynamics of ft(u) is given by

dft(u) = αt(u)dt+ βt(u)dWt

under the conditions

∫ T
t
|αt(u)|du <∞ P -a.s

∫ T
t
β2
t (u)du <∞ P - a.s

and the dynamics of Gt is given by

dGt = µtGtdt+ σtGtdWt

where the dynamics of dGt satisfies the conditions

∫ T
t
|µu|du <∞ P − a.s
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and

∫ T
t
σ2
udu <∞ P − a.s

Again under the multiplicative model, we model Vt using the drift while under the

traditional model Vt requires a conditional expectation.

2.3.2 Spot consistency condition

We will present the corresponding spot consistency condition for multiplicative model

in the following theorem.

Theorem 2.3. Let the value process Vt be given by (2.35) and the dynamics of Gt

be given by (2.33) under the conditions (2.24) and (2.25). Let the dynamics of ft(u)

be given by (2.28) under the conditions (2.29) and (2.30). Then the spot consistency

condition as ft(t) = limT→t ft(T ). Then ft(t) = µt − r a.e on [0, τ ∗]. Where r is the

risk free interest rate.

Proof. Note that ft(T ) = ∂
∂T
ln Vt

Gt
. This implies

ft(T ) = limh→0
1
h
(lnVt(T+h)

Gt
− lnVt(T )

Gt
)

This is equivalent to

ft(T ) = limh→0
1
h
lnVt(T+h)

Vt(T )

So the spot consistency condition

ft(t) = limT→t ft(T ) = limT→t limh→0
1
h
lnVt(T+h)

Vt(T )

Hence

ft(t) = limh→0
1
h
lnVt(t+h)

Vt(t)

But Vt(t) = Gt. Therefore
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ft(t) = limh→0
1
h
lnVt(t+h)

Gt

. Let’s revisit Vt(t+ h). Under the multiplicative model when t ≤ τ ∗ ≤ t+ h

Vt(t+ h) = E[e−r(τ
∗−t)Gτ∗|Ft]

.

Vt(t+ h) = E[e−r(τ
∗−t)Gte

∫ τ∗
t (µu−

σ2u
2
)du+

∫ τ∗
t σudWu|Ft]

This is equivalent to

Vt(t+ h) = GtE[e
∫ τ∗
t (µu−r− 1

2
σ2
u)du+

∫ τ∗
t σudWu|Ft]

Define Zs = e
∫ s
t (µu−r−σ

2
u)du+

∫ s
t σudWu . Where t ≤ s and Zt = 1.

By taking the differential of Xt we get
dZs = Xs((µu − r)ds+ σsdWs) for t≤ s

Zt = 1 for s=t

Using the definition of Xt, we may rewrite Vt(t+ h) as

Vt(t+ h) = GtE[Xτ∗ |Ft]

This follows

ft(t) = limh→0
1
h
[E[Zt +

∫ τ∗
t

(µu − r)Zudu|Ft]− 1]

ft(t) = limh→0
1
h
E[

∫ τ∗
t

(µu − r)Zudu|Ft] + limh→0
1
h
(Zt − 1)

Since Zt = 1,

ft(t) = limh→0
1
h
E[

∫ τ∗
t

(µu − r)Zudu|Ft]

ft(t) = limh→0
1
h
E[

∫ t+h
t

(µu − r)Zu1{τ∗≤u}du|Ft]

This is equivalent to
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ft(t) = (µt − r) + limh→0
1
h
E[

∫ t+h
t

(µu − r)Zu1{τ∗≤u}du−
∫ t+h
t

(µt − r)du|Ft]

Let Xu = ((µu − r)Zu1{τ∗≤u} − (µt − r)). We claim that E[Xu|Ft] converge to 0.

Note that as h tends to 0, ((µu − r)Zu1{τ∗≤u} − (µt − r)) tends to 0 because

µu − r → µt − r

Zu → Zt

1{τ∗≤u} → 1

By dominated convergence theorem E[((µu − r)Zu1{τ∗≤u} − (µt − r))du|Ft]→ 0

For sufficiently small ε > 0

−ε ≤ E[((µu − r)Zu1{τ∗≤u} − (µt − r))du|Ft] ≤ ε

Therefore

− 1
h

∫ t+h
t

εdu ≤ 1
h
E[

∫ t+h
t

((µu − r)Zu1{τ∗≤u} − (µt − r))du|Ft] ≤ 1
h

∫ t+h
t

εdu

−ε ≤ E[
∫ t+h
t

((µu − r)Zu1{τ∗≤u} − (µt − r))du|Ft] ≤ ε

Since ε is arbitrarily small, we claim that

E[
∫ t+h
t

((µu − r)Zu1{τ∗≤u} − (µt − r))du|Ft]→ 0

Finally we affirm that ft(t) = µt − r. This completes the proof.
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2.3.3 Stopping time

In this subsection, we will discuss the new stopping time associated with multiplicative

model.

Assume Vt is given by (2.35). Let the forward drift process f(t, T ) be given by

(2.28) under the conditions (2.29) and (2.30). Let the dynamics of Gt be given by

(2.33) under the conditions (2.24) and(2.25). Note that Vt ≥ Gt in continuation

region. Therefore, e
∫ T
t ft(u)du ≥ 1. Hence,∫ T

t
ft(u)du ≥ 0. Therefore, it is optimal time to stop the value process is when∫ T

t
ft(u)du ≤ 0. In other words,the optimal stopping time of the value process is

τ ∗ = inf{t ≤ s ≤ T :

∫ T

s

fs(u)du ≤ 0} (2.36)

2.3.4 No arbitrage drift condition

Now let’s take a look at the no arbitrage drift restriction for the multiplicative model.

Theorem 2.4. Assume Vt defined by (2.35), the forward drift process f(t, T ) is given

by (2.28) under the conditions (2.29) and (2.30). Let the dynamics of Gt be given by

(2.33) under the conditions (2.24) and (2.25). Then no arbitrage drift condition for

the multiplicative model is αt(T ) = −βt(T )(
∫ T
t
βt(u)du+ σt) a.e on [0, τ ∗].

Proof. Let’s consider the discounted value process {e−rtVt}, where t ≥ 0. Therefore,

e−rtVt = Gte
∫ T
t ft(u)du−rt. Let A(t) = e

∫ T
t ft(u)du−rt.

so we have,

d(e−rtVt) = d(Gte
A(t))

= Gtd(eA(t)) + eA(t)dGt + dGtde
A(t)

= eA(t)Gt((

∫ T

t

αt(u)du− f(t, t)− r)dt+ (

∫ T

t

βt(u)du)dWt +
1

2
(

∫ T

t

βt(u)du)2dt+ µtdt+
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σtdWt + σt(

∫ T

t

βt(u)du)dt)

= eA(t)Gt((

∫ T

t

αt(u)du− ft(t)− r + µt + σt

∫ T

t

βt(u)du+
1

2
(

∫ T

t

βt(u)du)2)dt+

(

∫ T

t

βt(u)du+ σt)dWt)

Since e−rtVt is a martingale on continuation region,∫ T
t
αt(u)du = ft(t)−µt− r− (σt

∫ T
t
βt(u)du+ 1

2
(
∫ T
t
βt(u)du)2). But ft(t) = µt− r by

theorem 3. Therefore,∫ T
t
αt(u)du = −(σt

∫ T
t
βt(u)du+ 1

2
(
∫ T
t
βt(u)du)2).

By taking the differential with respect to T

αt(T ) = −βt(T )(
∫ T
t
βt(u)du+ σt) a.e on [0, τ ∗]. This completes the proof.

2.4 Calibration

Main advantage of forward modeling approach is calibration. HJM method facilitate

calibration via taking the initial forward curve as an input to the model dynamics.

Given initial option price V̂ (0, T ) and initial stock price G0, we can obtain the initial

forward rate curve under the additive model as

f0(T ) = ∂
∂T

(V̂ (0, T )−G0)

Similarly calibration for multiplicative model is given by

f0(T ) = ∂
∂T
ln V̂ (0,T )

G0

Detailed implementation of calibration will be discussed in chapters 3 and 4.
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2.5 Put option price using additive model

In this section, we will demonstrate American put option pricing using proposed addi-

tive model. We will derive the associated forward drift model ft(u) that corresponds

to the Black - Scholes model. value of the option Vt under additive model and the

optimal stopping time. Note that equation (2.31) gives the forward drift ft(u) when

risk free interest rate r = 0. Following lemma give the corresponding forward drift

hen r > 0.

Lemma 2.5. Let r > 0. Let Vt be given by (2.35). Let dynamics of forward drift

ft(u) be given by (2.28) under the conditions (2.29) and (2.30). Let dynamics of Gt be

given by (2.33) under the conditions (2.24) and (2.25). Then the forward drift ft(u)

is given by ft(u) = E[e−r(u−t)(µu − rGu)1{τ∗≥t}du|Ft].

Proof. Recall the fact that discounted value process of finite horizon optimal stopping

problem can be found by solving

Vt = ess sup
t≤τ≤T

E[e−r(τ−t)(K − Sτ )+|Ft]

τ ∗ = inf {t ≤ s ≤ T : Vs = Gs}

where E( sup
0≤t≤T

|Gt|) <∞ and τ ∗ is the optimal stopping time.

Since τ ∗ is the optimal stopping time, τ ∗ defined in (2.22) is optimal. Therefore by

the definition of the Snell envelop we have Vt = E[e−r(τ
∗−t)Gτ∗ |Ft]

Let’s consider the following calculation of

e−rτ
∗
Gτ∗ − e−rtGt =

∫ τ∗

t

d(e−ruGu)

=

∫ τ∗

t

(−re−ruGudu+ e−rudGu)
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=

∫ τ∗

t

e−ru(−rGu + µudu+ σudWu)

=

∫ τ∗

t

e−ru((µu − rGu)du+ σudWu)

Now consider the value function Vt = E[e−r(τ
∗−t)Gτ∗|Ft]. This can be simplified

as

E[e−r(τ
∗−t)Gτ∗|Ft] = ertE[e−rτ

∗
Gτ∗|Ft]

= ert(e−rtGt + E[

∫ τ∗

t

e−ru(µu − rGu)du|Ft] + E[

∫ τ∗

t

e−ruGudWu|Ft])

= Gt + ertE[

∫ τ∗

t

e−ru(µu − rGu)|Ft]

= Gt + E[

∫ T

t

e−r(u−t)(µu − rGu)1{τ∗≥t}|Ft]

= Gt +

∫ T

t

E[e−r(u−t)(µu − rGu)1{τ∗≥t}|Ft]

Therefore we have Vt = Gt +
∫ T
t
E[e−r(u−t)(µu − rGu)1{τ∗≥t}|Ft]. By comparing this

to the equation (2.31), we can see that the forward drift when r > 0 is given by

ft(u) = E[
∫ T
t
e−r(u−t)(µu − rGu)1{τ∗≥t}|Ft]

Now we will calculate the forward drift for an American put option. American

put problem can be formulated as follows

V0 = sup
0≤τ≤∞

E[(K − St)+]

where K is the strike price and dynamics of St is given by dSt = St(rdt+bdWt) where

r is the risk free interest rate and b is the volatility.

Solution to the above problem is given by

Vt = ess sup
t≤τ≤T

E[e−r(τ−t)(K − St)+|Ft]
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τ ∗ = inf {t ≤ s ≤ T : Vs = (K − Ss)+}

Following theorem will give the forward drift associated with the American put,

associated stopping time and the value function in terms of forward drift.

Theorem 2.6. Let dynamics of the forward drift ft(u) be given by (2.28) under the

conditions (2.29) and (2.30). Let dynamics of Gt be govern under the conditions (2.24)

and (2.25). Then the forward drift for American put with payoff Gt = (K − St)+ is

given by

ft(u) = −rC(t, St, l)− rKN( l
∗−ρt√
u−s)− e

2ρl∗N(−l
∗−ρt√
u−s )

Stopping time is given by

τ ∗ = inf{t ≤ s ≤ T :
∫ T
s

(−rC(s, Ss, l)− rKN( l
∗−ρs√
u−t)− e

2ρl∗N(−l
∗−ρs√
u−t ))du ≤ 0} where

C(t, St, l) = E[e−r(u−t)(Su − K)+1{Mu<l}|Ft] is the barrier call price. According to

Shreve (2000) barrier call price can be computed as C(t, St, l) = StI1−KI2+StI3−KI4

with I1, I2, I3 and I4 given as

I1 = N(δ+(T,
St
K

))−N(δ+(T,
St
l

))

I2 = e−rT (N(δ−(T,
St
K

))−N(δ−(T,
St
l

)))

I3 = (
St
l

)
2r
b2
−1(N(δ+(T,

l2

KSt
))−N(δ+(T,

l

St
)))

I4 = e−rT (
St
l

)
2r
b2

+1(N(δ−(T,
l2

KSt
))−N(δ−(T,

l

St
)))

also barrier for the call option is l and N(.) is the normal probability density function.

Proof. Recall that the put option payoff is given by Gt = (K − St)+.

By Meyer-Tanaka formula we have,

(K − Su)+ = (K − S0)
+ −

∫ u
0

1{Sx<K}dSx + 1
2
LKu (Sx), where 0 ≤ x ≤ u.

Since American put has an early exercise boundary l where l ≤ K, local time spent

at level K, LKu (Sx) is zero on the event {τ ∗ ≥ u}.
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Therefore,

d(K − Su)+ = −d
∫ u

0

1{K>Sx}dSx

= −1{K>Su}(rSudu+ bSudWu)

= −rSu1{K>Su}du− bSu1{K>Su}dWu

We will use the differential d(K − St)+ to calculate ft(u).

Recall from the lemma 1, the forward drift ft(u) for payoff Gt is given by

ft(u) = E[e−r(u−t)(µu − rGu)1{τ∗≥t}du|Ft]

Since Gt = (K − St)+ for American put option, we have the following for ft(u)

ft(u) = E[e−r(u−t)(−rSu1{K>Su}du− r(K − Su)+)1{τ∗≥u}|Ft].

Let A = E[e−r(u−t)(K − Su)+1{τ∗>u}|Ft] and B = E[e−r(u−t)Su1{K>Su}1{τ∗>u}|Ft] for

the sake of simplicity. So ft(u) = −rA − rB. Let’s try to calculate A and B sepa-

rately. Note that dSu = St(rdt+ bdWt) =⇒ Gt = Sue
(r− 1

2
b2)(u−t)+bWu−t .

Let Max
t≤m≤u

Sm = Mu. Then {τ ∗ > u} ⇔ {Mu < l}.

This follows,

1{τ∗>u} ⇔ 1{l>Mu}.

Consider, Su = Ste
bŴu−t where Ŵ = ρt+Wt, ρ = r

b
− b

2
.

Let Mu = Max
t≤m≤u

Ste
bŴu−t = Ste

bŴu−t . Also M̂u = Max
t≤m≤u

Ŵm.

Lets calculate A first. Recall,
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A = E[e−r(u−t)(K − Su)+1{τ∗>u}|Ft]

= E[e−r(u−t)(K − Su)+1{Mu<l}|Ft]

Notice that A is a barrier put option. Let’s calculate it using barrier call option price

and put - call parity. Let C(t, St, l) be the barrier call price.Then

C(t, St, l) = E[e−r(u−t)(Su −K)+1{Mu<l}|Ft] (2.37)

Also consider the following

{Mu < l} ⇔ {M̂u < l∗}, where l∗ = 1
b
ln( l

St
).

{Su > K} ⇔ {Ŵu > K∗}, where K∗ = 1
b
ln(K

St
). According to Shreve (2000), the

joint density function under risk neutral measure for (M̂u, Ŵu) is given by

f(M̂u,Ŵu)
(m,w) =

1

T
√

2πT
= eρw−

1
2
ρ2T− 1

2T
(2m−w)2 (2.38)

where w ≤ m, m ≥ 0 and T = u− t.

Let’s recall the barrier call price (2.37),

C(t, St, l) = E[e−r(u−t)(Su −K)+1{Mu<l}|Ft]

= E[e−r(u−t)(Su −K)1{M̂u<l∗,Ŵ>K∗}|Ft]

Shreve (2000), formulation of barrier call option price and it’s solution are given by

C(t, St, l) =

∫ l∗

K∗

∫ l∗

w∨0
e−rT (K − Stebw)

2(2m− w)

T
√

2πT
eρw−

1
2
ρ2T− 1

2T
(2m−w)2dmdw (2.39)
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Where T = u− t.

C(t, St, l) = StI1 −KI2 + StI3 −KI4 (2.40)

I1 = N(δ+(T,
St
K

))−N(δ+(T,
St
l

))

I2 = e−rT (N(δ−(T,
St
K

))−N(δ−(T,
St
l

)))

I3 = (
St
l

)
2r
b2
−1(N(δ+(T,

l2

KSt
))−N(δ+(T,

l

St
)))

I4 = e−rT (
St
l

)
2r
b2

+1(N(δ−(T,
l2

KSt
))−N(δ−(T,

l

St
)))

Using put - call parity,

e−rT (Su −K)+ − e−rT (K − Su)+ = e−rT (Su −K)

e−rT (Su −K)+1{τ∗>u} − e−rT (K − Su)+1{τ∗>u} = e−rT (Su −K)1{τ∗>u}

E[e−rT (Su −K)+1{τ∗>u}|Ft]− E[e−rT (K − Su)+1{τ∗>u}|Ft] = E[e−rT (Su −K)1{τ∗>u}|Ft]

Therefore, C(t, St, l) − E[e−rT (Su − K)1{τ∗>u}|Ft] = A. Plugging A and B into

forward drift ft(u) = −rA− rB we have,

ft(u) = −rC(t, St, l) + rE[e−rT (Su −K)1{τ∗>u}|Ft]− rE[e−r(u−t)Su1{K>Su}1{τ∗>u}|Ft]

= −rC(t, St, l) + rE[e−rT (Su −K)1{τ∗>u}|Ft]− rE[e−rTSu1{M̂<l∗}|Ft]

= −rC(t, St, l)− rKE[e−rT1{M̂<l∗}|Ft]

= −rC(t, St, l)− rKP{M̂ < l∗}

By corollary 7.2.2 Shreve (2000),

P{M̂ < l∗} = N( l
∗−ρt√
u−t)− e

2ρl∗N(−l
∗−ρt√
u−t ), where l∗ ≥ 0.

Therefore we have forward drift process calculated as



31

ft(u) = −rC(t, St, l)− rKN(
l∗ − ρt√
u− t

)− e2ρl∗N(
−l∗ − ρt√
u− t

) (2.41)

where C(t, St, l) is the barrier call option price. Therefore, we can express American

put value process in terms of forward drift explicitly as Vt = Gt +
∫ T
t
ft(u)du where

Gt = (K−St)+ and ft(u) is given by (2.41). Let’s take a look at the the new stopping

time associated with additive model. Let’s recall the optimal stopping time of the

additive model is given by equation (2.36). By substituting ft(u) to equation (2.36)

we have

τ ∗ = inf{t ≤ s ≤ T :
∫ T
s

(−rC(s, Ss, l) − rKN( l
∗−ρs√
u−t) − e2ρl

∗
N(−l

∗−ρs√
u−t ))du ≤

0}(2.42)

This completes the example for American put option under additive model.



CHAPTER 3: IMPLEMENTATION OF ADDITIVE MODEL

In this chapter, we will implement additive model for the American put option on

IBM stock index. We analyze the market data under three main techniques. Car-

mona, Ma, Nadtochiy (2015) implemented the forward modeling approach for implied

volatility surface. We follow their forward model dynamics for forward drift modeling.

As Carmona, Ma, Nadtochiy (2015) we will use principal component analysis as one

of the techniques for our analysis. Further we analyze data using robust principal

component analysis and Karhunen - Loeve decomposition. First, we will introduce

solution method to the additive model.

3.1 Solution method

Recall the forward drift for the additive model is given by

ft(u) = ∂(Vt−Gt)
∂T

Therefore we have

dft(u) =
∂

∂t
(
∂(Vt −Gt)

∂T
) (3.43)

Also note that the dynamics of ft(u) is given by dft(u) = αt(u)dt+βt(u)dWt as in equa-

tion (2.28) under the conditions (2.29) and (2.30). As in Carmona, Ma, Nadotchiy

(2015), we will try to model ft(u) directly as

ft(u) = f0(T ) +

∫ t

0

αu(T )du+
m∑
n=1

∫ t

0

βnu (T )dW n
u (3.44)
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Where n is the number of Brownian factors. Also αu(t) and βnu (t) satisfy conditions

(2.29) and (2.30).

3.1.1 Dynamics of additive model

Note that in additive model
∫ t
0
αt(u)du = 0. Therefore, dynamics of the forward drift

that we seek to model is given by

ft(u) = f0(T ) +
m∑
n=1

∫ t

0

βnu (T )dW n
u (3.45)

We seek to model the volatility βnt (u) by applying principal component analysis for

dft(u) of the additive model. Which is given in equation (3.43)

dft(u) = ∂
∂t

(∂(Vt−Gt)
∂T

)

3.1.2 Market data and data preparation

Our model requires both American type option prices Vt and corresponding index pay-

off Gt. Market data of the American put option prices on IBM index prices is obtained

through Option Matrix database. Stock prices of IBM index is obtained through Crisp

database. Access to these databases is provided through WRDS database. Our data

streams consider options and index data from 08/01/2007 to 08/31/2015. First step

of the data preparation process is the calculation the payoff of the IBM index value

Gt, since it is not readily available to us. Then we matched Vt and Gt according to

the date for available data from 08/01/2007 to 08/31/2015. Our next step was to

calculate forward drift ft(u) according to equation (3.43).

There were significant amount of missing data in our data set. We will use python

software package to impute missing data using it’s interpolate function. We carry out

our analysis on different buckets of moneyness. Moneyness of the option is defined as

m = K
St

where K is the strike price and St is the IBM index price. Then We will carry
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out our analysis when option is in the money, on the money and out of the money

categories.

3.1.3 Model implementation

Let observation dates of ft(u) denoted by tj and tj < tj+1 where j = 1, 2, 3...J . Let

forward rates were observed for relative maturities τm = Tm − tj where Tm is the

maturities with m = 1, 2, 3..M .

Now we introduce ftj(τm) as the forward rate observed at tj for relative maturity τk.

We calculate the difference matrix of forward drift In the next step as in equation

(3.31). Here δ > 0 such that tj + δ < tj+1.

∆ft(τm) = ftj+δ(τm)− ftj(τm) = yj,m (3.46)

For J number of observations over K different relative maturities, we can repre-

sent the data matrix Y calculated according to (3.46).

Y =



y1,1 y2,1 yj,1

y2,1
. . . . . . . . .

yj,1
. . . . . . . . . . . .

. . . . . . . . . . . .

yJ,1
. . . . . . J,M


, where Y ∈ RJ×M .

We set δ to be one trading day. Observation dates tj to be the first day of each

week of trading. Same as Carmona, Ma, Nadtochiy (2015), our goal is to choose the

volatility terms βnt to match the covariance matrix of Y . This is achieved by applying

principal component analysis to the covariance matrix of Y .
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3.1.4 Principal component decomposition and data analysis

principal component decomposition of covariance matrix of Y is the decomposition

cov(Y ) = CDCT (3.47)

Where C is M ×M eigen vector and D is the diagonal matrix of size M ×M which

comprise of eigen values of the decomposition. Principal component decomposition is

a statistical technique that attempt to uncover the variance in high dimensional data.

This procedure is designed to project multidimensional data into orthogonal axis’s

which are linear combinations of original dimensions of the given data set. Eigen value

gives the variation of original data along these new axis’s. This procedure is useful

for extracting information such as variance from high dimensional data. Another

advantage of Principal component analysis is that it reduces the dimension of high

dimensional data. In depth discussion of the principal component decomposition can

be found in Abidi, Williams (2010). Applying principal component analysis to the

covariance matrix of the difference matrix Y , we found that first three eigen modes

explain over 92% of the variance.

Table 3.1: VARIANCE EXPLAINED BY EIGEN COMPONENTS

Eigen mode Variance

1 53.44%
2 20.65%
3 18.54%

Therefore, we use only three Brownian factors in further analysis. Researchers and

practitioners have noticed that first three eigen components describe special charac-

teristics of the yield curve. These shapes have an interpretative meaning. They tell

us how the yield curve react to different market shocks in interest rate modeling.

Historical researches suggest that the first component typically represents a parallel

shift in the yield curve. Second and third components represent a twist and a bend
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in the yield curve. As an example, Svensson (1994) noticed that first eigen mode

shows a parallel shift in yield curve and second eigen component shows an inverted

or twisted shape.

Similar effects can be observed for eigen mode analysis of the implied volatility sur-

face. Historical observations suggest that first eigen component represents a parallel

shift, second eigen component represents a twist in the volatility curve. Skiadopou-

los,Hodges, Clewlow (1999) have observed similar results for the first two eigen modes

in their analysis of S&P 500 implied volatility surface of American options. Cont and

Fonseca (2006) have observed similar behavior for first two eigen modes same as Ski-

adopoulos, Hodges, Clewlow (1999). They used Karhunen - Loeve transformation

to investigate the behavior of implied volatility surface. They further observed that

the third eigen mode shows butterfly effect. Butterfly effect is a result of change in

convexity of the implied volatility surface . Cont and Fonseca (2006).

We will analyze the shapes of the first three eigen components for the forward drift

process in this section. Our goal is to investigate the shapes of first three eigenmodes

and their inferences for additive model. Skiadopoulos, Hodges and Clewlow (1999)

and Cont and Fonseca (2006) noticed that there is a variation of shapes of the eigen

components according to the moneyness. Therefore we consider three maturity buck-

ets in this analysis. Let .8 ≤ m ≤ 1.2 be the on the money bucket. Let .4 ≤ m < .8

be the out of the money bucket and let 1.2 < m ≤ 1.5 be the on the money bucket.

3.1.5 Eigen component analysis for out of the money bucket

First three eigenmodes given by the principal decomposition of the covariance matrix

for out of the money bucket is depicted in the following graph. Solid line represents

the second eigen component. Solid line with circles is the first eigen component and

the solid line with squares is for the third eigen component.
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Figure 3.2: EIGEN COMPONENTS FOR OUT OF THE MONEY BUCKET

We can see that the first eigen component is given by the solid line with circles

show neither a constant nor a butterfly shape. It does tend to move in opposite

direction of other two eigen components. But the second eigen component given by

the solid line tends to shows a higher variation for shorter maturities but it tends

to vary less for larger maturities. It looks like that the second eigen component is

converging to a constant value. Our calculations show that value to be 0.00079. This

suggests that parallel shift in drift curve of 0.00079. This observation of parallel shift

of the second eigen component is consistent with known historical observations for

yield curve and implied volatility surface. Third eigen component is given by the

solid line with squares. This line shows a butterfly shape just as in the third eigen

component of implied volatility surface observed by Cont, Fonseca (2006).

3.1.6 Eigen component analysis for on the money bucket

Following graph shows the behavior of first three eigen components of the covariance

matrix of Y for on the money bucket.
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Figure 3.3: EIGEN COMPONENTS FOR ON THE MONEY BUCKET

It can be seen that first eigen component given by the line with circles, tend to

move in opposite direction of other two eigen components. Implication is that the

first component is highly uncorrelated to the other two components. Second eigen

component is given by the solid line is close to being constant. Butterfly effect in the

third eigenmode is not apparent for on the money bucket.

3.1.7 Eigen component analysis for in the money bucket

We dedicate this subsection to the analysis of in the money bucket. Graphical repre-

sentation of eigen component is given in the following graph.

Just as in out of the money bucket, second eigen component given by the solid line

tends to be a constant over time. This is not apparent for shorter maturities but the



39

Figure 3.4: EIGEN COMPONENTS FOR IN THE MONEY BUCKET

curve tends to vary less for larger maturities. Similarly, the third eigen component

given by the solid line with squares tends to show a butterfly effect. First eigen

component tend to move in opposite direction of the first two components for T > 2.5

years.

3.1.8 Overview of eigen component behavior for additive model for PCA

We have shown the behavior of the eigen components according to each maturity

bucket. Our analysis carried out using principal component analysis. Previous re-

search from Skiadopoulos, Hodges and Clewlow (1999) suggests that the first eigen

component shows a parallel shift in yield curve analysis. Cont and Fonseca (2006)

also observed similar behavior for the first eigen component for implied volatility

surface. We have observed the second eigen component, not the first one shows a

parallel shift for forward drift curve. This is consistent over all moneyness buckets.

The third eigen component of the forward drift curve takes a butterfly effect for all

three buckets considered in our analysis. This observation is consistent with what



40

Cont and Fonseca (2006) and Skiadopoulos, Hodges and Clewlow (1999). Main dif-

ference between our results and the historical observations lie in the behavior of the

first eigen mode. First eigen component in our model move in the opposite direction

of other two eigen modes, especially for larger maturities.

Another observation is that second and third eigen modes move similar to each other.

This implies a higher degree of correlation among them.

Also Cont and Fonseca (2006) also noticed a mean reverting behavior of eigen

modes of volatility surface. Similar behavior is apparent for eigen modes of forward

drift process under all three maturity buckets.

3.2 Eigen mode analysis using robust principal component analysis

Robust principal component analysis is similar to principal component analysis but

it can be applied to corrupt or missing data. Algorithm takes the data matrix with

or without missing data while preserving the original dimensions. Note that regular

principal component analysis requires the data matrix to be complete. Regular prin-

cipal component analysis does not allow to have missing values in the data matrix.

There are several ways to deal with the missing data. One method is imputation

through regression function or interpolation. Another method is to replace the miss-

ing data with the mean value of the available data or simply discard the missing

values. Missing data needs to be dealt with careful attention because it can leads to

misleading conclusions. Since our data consists of over 10% percent of missing data,

it is very important that we do not overlook the effect of missing data. Note that

even though we impute the missing data, it is better to analyze the effect of missing

data if there is any. Further discussion about robust principal component analysis

can be found in Candes, Li, Ma and Wright (2009).
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3.2.1 Robust principal component analysis for out of the money bucket

We use robust principal component analysis for out of the money maturity bucket.

Eigen components plot is given by the following graph.

Figure 3.5: EIGEN COMPONENTS FOR OUT OF THE MONEY BUCKET FOR
ROBUST PCA

First eigen component given by the solid line with circles tends to move against the

other two for larger maturities. Second eigen component given by the solid line tends

to converge to a constant as we observed in regular principal component analysis.

Moreover, third eigen component shows a butterfly effect as we would expect. Curves

for eigen components under the robust principal component analysis is very similar to

the curves under regular principal component analysis. This suggest that the effect

of missing data and imputation has minimal effect.
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3.2.2 Robust principal component analysis for on the money bucket

Plots of first three eigen components under on the money bucket is given in the

following graph.

Figure 3.6: EIGEN COMPONENTS FOR ON THE MONEY BUCKET FOR RO-
BUST PCA

Similar behavior of eigen components compared to regular principal component

analysis can be seen here. Graphs are almost identical as well. Second eigen compo-

nent curve which is given by the solid line tends to look like a constant. Butterfly

effect is not clearly visible here as we saw in regular principal component analysis

case. Movement of the first component is clearly in the opposite directions of the

other two suggesting that they are highly uncorrelated.
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3.2.3 Robust principal component analysis for in the money bucket

Eigen modes plots for in the money bucket is given in the following graph. Robust

principal component yields an almost identical graph for same moneyness bucket

under regular principal component analysis. We already observed this pattern over

other two moneyness buckets as well.

Figure 3.7: EIGEN COMPONENTS FOR IN THE MONEY BUCKET FOR RO-
BUST PCA

Note that the second eigen component given by the solid line tends to be a constant

over time. Butterfly effect of the third component which is given by the solid line

with squares is also clearly visible. First eigen component show a movement against

the other two components especially for larger maturities.
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3.2.4 Overview of robust principal component analysis

Missing data in the original data set led us to use robust principal component analy-

sis. We used interpolate function in python numpy package to impute missing data.

Regular principal component decomposition results were closely matched by the ro-

bust principal component analysis. This suggests that the effect of missing data is

minimal for the data set we considered.

3.3 Karhunen-Loeve (KL) transformation

KL transformation is a data analysis technique widely used in signal processing and

machine learning. It is similar to principal component analysis but it tends to explain

variation within data for higher dimensional random fields. Considering the fact that

the data matrix of daily volatility differences as a random field, Cont and Fonseca

(2006) applied Karhunen-Loeve transformation to the implied volatility surface given

by SP index and FTSE data. Since our data matrix of forward differences can be

thought of as a random field, we employ Karhunen-Loeve transformation for our

analysis. More details about the eigen surface, KL transform and it’s implementation

can be found in sections 3.3 and 3.4 of Cont and Fonseca (2006). We apply our

data to eigen surface given by equation 21 in their paper. Eigen surface is given

by It(m, τ) = I0(m, τ)e
∑n
k=1 xk(t)fk where fk is the eigen component and xt(k) is the

projection of daily volatility on fk, m is the moneyness and τ is the relative maturity.

We also use the implementation of KL transformation of random fields by Dubourg

(2013) to aid our analysis. We use Python version 3.5 and packages Numpy, Scipy,

Matplotlib for the implementation of the surface. Resulting surface for forward drift

is given by following graph.
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Figure 3.8: EIGEN SURFACE FOR FORWARD DRIFT PROCESS UNDER AD-
DITIVE MODEL

3.4 Forward drift simulation for additive model

We will simulate the forward drift for the additive model in this section. Initial for-

ward vector f0(T ) is given by the following vector observed by market data. Data

available for 13 maturities. Initial vector is given by

f0(T ) = [0.020058, 0.010608, 0.001523, 0.000265, 0.001108,−0.010265, 0.000115,−0.000221,

0.001095,−0.0002112, 0.000431,−0.000220, 0.000332]

Here we consider the simulation for T = 1 year or 252 trading days for our demon-

stration. Let’s recall the forward drift curve is given by (3.45) as

ft(u) = f0(T ) +
m∑
n=1

∫ t
0
βnu (T )dW n

u
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We established that over 92% of the variation in the data set is captured by the

first three eigen components. Therefore, we will use three Brownian factors in our

analysis. These factors βnu (T ) are estimated by the corresponding eigen components

as deterministic functions.

3.4.1 Estimation of volatility functions

Second eigen component of principal component decomposition consistently showed

a constant shape with time across the three maturity buckets. Therefore, we can

estimate the second eigen component by a constant function by taking the average

across three buckets. Estimation of exact functional form of first and the third eigen

component is difficult since they do not appear to take a simple functional form.

However they both tend to show a mean reverting behavior. This is consistent for

all three maturities we considered. Therefore, we may estimate them by their mean

value. Estimated volatility functions are given in the following table.

Table 3.2: ESTIMATION OF VOLATILITY FUNCTIONS FOR THE ADDITIVE
MODEL

Eigen mode Variance

β1
u(T ) -0.00043
β2
u(T ) 0.00081
β3
u(T ) 0.000232

Simulation of the forward drift curve was carried out using above volatility func-

tions. Initial forward drift f0(T ) and the simulation equation given by (3.45). For-

mally,

ft(u) = f0(T )−
∫ t

0

0.00043dW 1
u +

∫ t

0

0.00081dW 2
u +

∫ t

0

0.000232dW 3
u (3.48)

Where dW 1
u , dW 2

u , dW 3
u are uncorrelated Brownian motions.
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Figure 3.9: SIMULATION OF THE FORWARD DRIFT PROCESS

Next, we will demonstrate how to numerically estimate the optimal stopping time

for the additive model for above simulation run. Let’s recall the optimal stopping

time τ ∗, which is given by the equation (2.36)

τ ∗ = inf{t ≤ s ≤ T :
∫ T
s
fs(u)du ≤ 0}.

Above simulation run contain one sample path of ft(u). Then
∫ T
s
fs(u)du was

calculated for the path. Our calculations of integral yields the following graph.
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Figure 3.10: INTEGRAL OF THE FORWARD DRIFT PROCESS AND THE STOP-
PING TIME

In this plot, red curve is one simulation path of drift, green curve is the integral∫ T
s
fs(u)du and blue curve is the zero threshold. Our simulation suggests that at time

index s = 51 is the first time
∫ T
s
fs(u)du ≤ 0. Therefore τ ∗ = 51 for this simulated

scenario.

We discussed the eigen component analysis for data matrix under three different

methods: principal component analysis, robust principal component analysis and

Karhunen-Loeve transformation. We observed some distinct behavior in eigen com-

ponents for forward drift process compared to yield curve or implied volatility surface.

We will investigate the multiplicative model in the next chapter.



CHAPTER 4: IMPLEMENTATION OF MULTIPLICATIVE MODEL

In this chapter, we will implement the multiplicative model for the American put

option on IBM stock index. We analyze the market data under principal component

analysis, robust principal component analysis and Karhunen-Loeve transformation as

in additive model.

4.1 Solution method

Recall that forward drift under the multiplicative model is given by

ft(u) = ∂
∂T

(ln Vt
Gt

)

This leads to

dft(u) =
∂

∂t
(
∂

∂T
(ln

Vt
Gt

)) (4.49)

Also note that the dynamics of ft(u) is given by dft(u) = αt(u)dt + βt(u)dWt as in

equation (2.28) under the conditions (2.29) and (2.30).

Since we already have discussed the data preparation and general overview of

the principal component analysis in chapter 3, we will begin our discussion of eigen

component analysis here. Let’s turn our focus on variation in the data and how

much of it is explained by the eigen components. Eigen decomposition suggests

that over 93 percent of the variation explained by the first three eigen components.

Therefore we only retain three eigen components in our analysis just as in additive

model implementation.

Just as in the additive model, we will analyze the eigen components under three
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Table 4.3: VARIANCE EXPLAINED BY EIGEN COMPONENTS

Eigen mode Variance

1 51.44%
2 28.65%
3 12.54%

maturity buckets. Maturity buckets considered here is the same as in the additive

model.

4.1.1 Eigen component analysis for out of the money bucket

We will investigate the first three eigen components in this subsection under out of

the money bucket. Graph of these components is shown below.

Figure 4.11: EIGEN COMPONENTS FOR OUT OF THE MONEY BUCKET

Note that the first eigen component is given by the line with circles, second eigen

component is given by the line with squares and the third component is given by the

solid line. We can clearly see that the third eigen component tends to be a constant
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over time suggesting a parallel shift in the drift curve for market shocks. Second eigen

component shows a butterfly effect. This suggest a change in convexity of the forward

drift curve. First eigen component tend to move in opposite direction for the shorter

maturities but it tends to move in the same direction with the other two components

as maturity increases.

4.1.2 Eigen component analysis for on the money bucket

Let’s take look at the eigen components for on the money bucket. Graph of those

eigen components is shown below.

Figure 4.12: EIGEN COMPONENTS FOR ON THE MONEY BUCKET

Just as in out of the money case, third eigen component represented by the solid

line is very close to being a constant. Butterfly shape of the second component is not

apparent for the second component. First eigen component moves opposite to the

other two for shorter maturities but it tends to move on the same direction as other

two for larger maturities.
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4.1.3 Eigen component analysis for in the money bucket

Let’s take look at the eigen components for in the money bucket. Eigen plots are

shown as below.

Figure 4.13: EIGEN COMPONENTS FOR IN THE MONEY BUCKET

As we observed for out of the money and on the money buckets, third eigen compo-

nent shows a constant movement. Butterfly effect was not very clear for the second

eigen component shown by the line with squares. First eigen component shows a

lower correlation with other two components for shorter maturities but again shows

a higher correlation with other components for higher maturities. This can be con-

sistently observed for all three moneyness buckets.

We can observe some important distinctions between the shapes of eigen compo-

nents of multiplicative model compared to additive model. Third eigen component in

the multiplicative model shows a constant movement over time. Constant movement
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of the eigen components of the additive model is given by the second component.

The additive model shows a butterfly effect in the third eigen component while the

second eigen component shows a butterfly effect for the multiplicative model. First

eigen component shows a lower correlation with other two components for shorter

maturities. First component shows a higher correlation with other two components

for higher maturities in the multiplicative model. We observed the opposite for move-

ment of the first eigen component in additive model: First eigen component shows

a higher correlation with other two components for smaller maturities, while corre-

lation is lower with other two components for larger maturities. This concludes the

discussion of multiplicative model under regular principal component analysis.

4.2 Eigen component analysis under robust principal component analysis

We will analyze the eigen component behavior using robust principal component

analysis in this section. We will consider the same three maturity buckets as before.

4.2.1 Eigen component analysis under out of the money bucket

Eigen components plot is given in the next page. Note that the third eigen compo-

nent given by the solid line shows a constant movement. Second eigen component,

which is given by the line with squares shows a butterfly shape. Which is consistent

with what we have observed for out of the money bucket under the regular principal

component analysis. First eigen component move in opposite direction to the first

two components for shorter maturities. First eigen component is moving in the same

direction of the other two components for larger maturities. We also noticed that the

plots are very similar to those under the regular principal component analysis. This

suggest that the missing data has a little effect on covariance matrix.
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Figure 4.14: EIGEN COMPONENTS FOR OUT OF THE MONEY BUCKET FOR
ROBUST PCA

4.2.2 Eigen component analysis for on the money bucket

We will analyze the eigen component behavior using the robust principal component

analysis for on the money bucket in this subsection. Plot of the eigen curves given in

the next page. We can observe similar behavior for eigen components to the on the

money bucket case under regular principal component analysis. Third eigen compo-

nent shows a constant movement for on the money bucket. Second eigen component

is showing a butterfly shape just as we observed under the out of the money bucket.

First eigen component shows a low correlation with the other two components for

shorter maturities. It shows a higher correlation with the other two components for

larger maturities.
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Figure 4.15: EIGEN COMPONENTS FOR ON THE MONEY BUCKET FOR RO-
BUST PCA

4.2.3 Eigen component analysis for in the money bucket

We focus on analyzing the eigen component behavior for in the money bucket in

this subsection. The plot given in next page is very similar to in the money case

under regular principal component analysis. Just as in the previous two moneyness

buckets, third eigen component shows a constant movement. Second eigen component

which is given by the line with squares shows a butterfly shape over time. First eigen

component given by the line with circles shows a higher degree of correlation to the

second eigen component over time. Similar behavior of eigen components in same

category of buckets for principal component analysis and robust principal component

analysis suggests that the effect caused by missing data is minimal. This is crucial to

our analysis, otherwise we need to make take the effect of missing data into account.

Since we only see minor changes in principal component plots, we will not analyze

the missing data effect. Detailed discussion of missing data analysis can be found in

machine learning literature.
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Figure 4.16: EIGEN COMPONENTS FOR IN THE MONEY BUCKET FOR RO-
BUST PCA

4.2.4 Overview of robust principal component analysis

We analyzed the shapes of eigen components under robust principal component anal-

ysis for three maturity buckets. We noticed that the third eigen component shows

parallel shift in the drift curve for all buckets. Which is consistent with what we

observed under regular principal component analysis. Similarly, the second eigen

component shows a butterfly effect for all buckets under consideration. This is also

consistent with what we have observed for the third eigen mode under regular princi-

pal component analysis. First eigen component consistently shows a lower correlation

to the other two modes for lower maturities while correlation tend to increase for larger

maturities. Overall behavior of three eigen components seems to be consistent with

regular principal component analysis. We analyzed the shapes of eigen components

for both additive and multiplicative model under two methods: principal compo-

nent analysis and robust principal component analysis. With this, we conclude our
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investigation of eigen components.

4.3 Karhunen-Loeve (KL) transformation

We introduced KL transformation under additive model. Cont and Fonseca (2006)

applied KL transformation to the difference matrix of implied volatility. We will

apply the same technique for our data matrix under the multiplicative model. Just

as in additive model, eigen surface is given by It(m, τ) = I0(m, τ)e
∑n
k=1 xk(t)fk where

fk is the eigen component and xt(k) is the projection of daily volatility on fk, m is

the moneyness and τ is the relative maturity. We also use the implementation of

KL transformation of random fields by Dubourg (2013) to aid our analysis. Cont

and Fonseca (2006) modeled the eigen modes as a surface using equation 21 in their

paper. Similar eigen surface for multiplicative model is given by the following surface

plot.

Figure 4.17: EIGEN SURFACE FOR FORWARD DRIFT PROCESS UNDER MUL-
TIPLICATIVE MODEL
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4.4 Simulation of forward drift curve for multiplicative model

We will demonstrate the simulation of the forward drift curve under the multiplica-

tive model. Initial forward vector f0(T ) is the same as for the additive model. Let’s

recall

f0(T ) = [0.020058, 0.010608, 0.001523, 0.000265, 0.001108,−0.010265, 0.000115,−0.000221,

0.001095,−0.0002112, 0.000431,−0.000220, 0.000332]

Let’s recall the simulation function for multiplicative model. We model the dy-

namics by

ft(u) = f0(T ) +

∫ T

t

αt(u)du+
m∑
n=1

∫ t

0

βnu (T )du (4.50)

where
∫ T
t
αt(u)du = −(σt

∫ T
t
βt(u)du + 1

2
(
∫ T
t
βt(u)du)2) as given in the theorem 4.

Here we simulate the forward curve for 252 days. Also it’s worth noticing that we only

retain three Brownian factors since over 93 percent of the total variance is explained

by first three eigen vectors. We will discuss how to estimate the volatility function in

next subsections.

4.4.1 Estimation of volatility functions

Note that
∫ T
t
αt(u)du in equation (4.50) involves σ0. For the sake of simplicity we

let σ0 = 1. We will estimate βnu (T ) values using eigen components. Third eigen

component shows a constant movement over three maturity buckets. Therefore, we

estimate third eigen component by the average value of the third component across

three buckets. First and second eigen components do not appear to be fit into a

simple deterministic function. But just as we saw under the additive model, those

components seem to reflect mean reversion. Therefore, we estimate the first and
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the second eigen components by taking mean across given three buckets. Calculated

volatility functions are given in the following table.

Table 4.4: ESTIMATION OF VOLATILITY FUNCTIONS FOR MULTIPLICA-
TIVE MODEL

Eigen mode Variance

β1
u(T ) -0.00091
β2
u(T ) 0.00073
β3
u(T ) -0.000127

Simulation of the forward drift curve is carried out using the volatility functions

given in table 4.4 and σ0 = 1. Simulation function is given by the equation (4.32).

Simulation of 100 paths are shown in the plot below.

Figure 4.18: FORWARD DRIFT SIMULATION

Now we will discuss how to estimate the optimal stopping time for the multiplica-

tive model using the forward drift. Let’s recall the optimal stopping time τ ∗ under
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the multiplicative model is given by

τ ∗ = inf{t ≤ s ≤ T :
∫ T
s
fs(u)du ≤ 0}.

Just as in drift simulation for the additive model, we simulate the forward drift curve

ft(u) and then we estimate it’s integral
∫ T
s
fs(u)du. Obtained graphs as given below

Figure 4.19: INTEGRAL OF FORWARD DRIFT AND STOPPING TIME
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In this plot, red curve is one simulation path of drift, green curve is the integral∫ T
s
fs(u)du and blue curve is the zero threshold. Our numerical simulation of the for-

ward drift integral suggests that time index s = 75 is the first time
∫ T
s
fu(s)du ≤ 0.

Therefore, the optimal stopping time is the index s = 75.

Here we did analyze the eigen modes for three maturity buckets for the multiplica-

tive model. We employed traditional principal component analysis, robust principal

component analysis since our data contained missing values. Further we used KL

transformation to construct the eigen surface. We observed that the third eigen com-

ponent shows a parallel shift in the forward drift curve. Second eigen component

shows a butterfly effect. First eigen component shows a low correlation with other

two eigen components for shorter maturities.



CHAPTER 5: CONCLUSION AND FUTURE WORK

In this thesis, we proposed a new method to price American type derivatives using

forward modeling approach. We introduced a new value function Vt as an alterna-

tive solution to the optimal stopping problem. Then we introduced a new stopping

criteria and the new stopping time associated with it. later we carried out numerical

investigation of eigen components according to three methods: principal component

analysis, robust principal component analysis and Karhunen-Loeve transformation.

Historical studies on yield curve suggests that first eigen component shows a paral-

lel shift in the yield curve. Similar behavior can be seen for volatility surface analysis

as well. We analyzed the forward drift curve under two models: additive model and

multiplicative model. The additive model yields that the second eigen component

shows a parallel shift in the drift surface. Our multiplicative model analysis sug-

gests that the third eigen component shows a parallel shift. Similarly Skiadopoulos,

Hodges and Clewlow (1999) observed that the second eigen component in the yield

curve shows a bend or a twist. Cont and Fonseca (2006) found similar behavior for

the second eigen component by studying a cross section of volatility surface. They

also noticed that second eigen component shows a higher correlation to moneyness.

Our analysis of drift surface shows that under the both additive and multiplicative

models, there is a correlation between the first eigen component and the other two

when time to maturity varies. Cont and Fonseca (2006) found that the butterfly

effect is apparent for third eigen component for implied volatility surface. Further-

more, we observed that the second eigen component shows a butterfly effect under
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both additive model and multiplicative model.

One direction of improvement of this work is to estimate the parameters of the

surface given by KL transformation and model the surface in dynamic manner. An-

other area of development is to estimate eigen modes as a time series model as in

Cont and Fonseca (2006).
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