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ABSTRACT 

 

HARSHA SATYANARAYANA. Compensation of frequency response function 

measurements by inverse RCSA (Under the direction of DR.TONY SCHMITZ) 

. 

The stability lobe diagram is a graphical device used to select stable cutting 

conditions in machining. The generation of the stability lobe diagram requires the tool-

holder-spindle-machine frequency response function (FRF). Therefore, the accuracy of the 

stability lobe diagram depends on the accuracy of the measured FRF. Impact testing is a 

widely used technique to measure FRFs. Due to its setup simplicity, an accelerometer is 

often used to measure the structure’s response that corresponds to the force impact. 

However, the use of an accelerometer causes mass loading, which leads to a shift in the 

measured natural frequency of the system.     

The objective of this study is to understand the effect of accelerometer mass loading 

and cable damping on FRF measurements and to compensate it using the inverse 

receptance coupling substructure analysis (IRCSA) approach. Impact testing was 

completed for: 1) two steel rods of different diameters at multiple overhang lengths with 

clamped-free boundary conditions; and 2) two thin aluminum ribs of different lengths and 

thicknesses with clamped-clamped-clamped-free boundary conditions. The FRFs were 

measured using both accelerometers and a vibrometer, where the latter provided a non-

contact measurement reference with no mass loading. Using IRCSA, a model of the 

accelerometer-cable FRF was decoupled from the measured FRF to compensate for mass 

loading and cable damping. The resultant IRCSA FRF was then compared against the 



iv 
 

vibrometer FRF to verify the compensation technique. The natural frequency agreement 

after compensation was shown to be at the tenths of a percent level in all cases.  
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CHAPTER 1: INTRODUCTION 

 

One of the challenges during machining is to avoid chatter, a self-excited vibration. 

Chatter is caused by process instability and results in poor surface finish and low material 

removal rate. One of the ways to avoid chatter during machining is with the help of stability 

lobe diagrams. Figure 1.1 shows a schematic representation of an end milling operation 

where the axial depth of cut is denoted by b and spindle speed by Ω. For the operation to 

be stable at a given spindle speed the axial depth of cut should not exceed certain value.  

Stability lobe diagrams enable stable depth of cut and spindle speed combinations to be 

selected. Figure 1.2 shows the stability lobe diagram for a milling operation. Any region 

below the curve indicates stable cutting and the region above the line defines unstable 

cutting conditions   

FIGURE 1.1. Schematic representation of a typical End milling operation [48]. 
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FIGURE 1.2. Stability lobe diagram of a milling process. 

 

 

Although there are different methods to generate stability lobe diagram, all these 

methods require the tool point frequency response function (FRF), which provides the ratio 

of vibration response to a harmonic force input as a function of excitation frequency; see 

chapter 2 for additional discussion. FRFs can be determined experimentally by impact 

testing. This involves striking the tool with an impact hammer, which measures the force 

and recording the response with an accelerometer (contact measurement), laser vibrometer 

(non-contact measurement), or another transducer. Although it is known that 

accelerometer-based measurements have an inherent error source, the ease of setup for the 

accelerometer has made it a popular choice in industry. The error in the accelerometer 

measurements is due to the mass loading effect of the accelerometer and can be neglected 

if the modal mass of the tool is much larger than the mass of the accelerometer. However, 

UNSTABLE 

STABLE 
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for small modal masses (such as a small diameter cutting tool), the mass loading error can 

cause a non-negligible frequency shift.  

Figure 1.3 shows the comparison of the FRF obtained by an accelerometer and a 

laser vibrometer, which is non-contact and therefore does not include mass loading. It is 

seen that the accelerometer FRF is shifted by 123 Hz. 

 

FIGURE 1.3. Accelerometer and vibrometer FRFs for 6.35 mm diameter rod with an 

overhang length of 55 mm. 

 

The comparison of stability lobe diagram generated by FRFs from an accelerometer 

and vibrometer is presented in figure 1.4. It is seen that the stability lobe generated using 

the accelerometer-based FRF identifies different stable speeds and allowable depths of cut. 

Selecting cutting parameters using the mass loaded FRF can lead to unstable cutting 

conditions. 
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FIGURE 1.4. Comparison of stability lobe diagram generated using laser vibrometer and 

accelerometer FRFs. 

 

The objective of this research is to compensate for the accelerometer mass loading 

effect and associated FRF frequency shift and magnitude change. Inverse receptance 

coupling substructure analysis (RCSA) is used to compensate the FRF.  
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CHAPTER 2: FREQUENCY RESPONSE FUNCTION 

 

 Consider a single degree of freedom, lumped parameter spring mass damper system 

as shown in figure 2.1, where 𝑚 is the mass, 𝑘 is the spring stiffness, 𝑐 is the viscous 

damping coefficient, and 𝑥 is the displacement. 𝐹𝑒𝑖𝜔𝑡 is the harmonic force applied to the 

spring mass damper, where t is the time and 𝜔 is the forcing frequency. The free body 

diagram is shown in figure 2.2, where 𝑚𝑥̈ is the inertial force, 𝑐𝑥̇ is the damping force, and 

𝑘𝑥 is the spring force. 

FIGURE 2.1. Spring-mass-damper model with harmonic input force [45]. 
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FIGURE 2.2. Free body diagram of spring-mass-damper system [45]. 

  

From the free body diagram, the equation of motion for the system can be written 

as, 

 𝑚𝑥̈ + 𝑐𝑥̇ +  𝑘𝑥 =  𝐹𝑒𝑖𝜔𝑡. (2.1) 

Equation (2.1) has both a homogenous and a particular solution. The homogenous solution 

𝑚𝑥̈ + 𝑐𝑥̇ +  𝑘𝑥 = 0 is the free vibration response and the particular solution represents the 

steady-state response (after the transient response attenuates). Given the force 𝑓(𝑡) =

𝐹𝑒𝑖𝜔𝑡, the displacement can be written as 𝑥(𝑡) = 𝑋𝑒𝑖𝜔𝑡, velocity as 𝑥̇(𝑡) = 𝑖𝜔𝑋𝑒𝑖𝜔𝑡, and 

acceleration as 𝑥̈(𝑡) = −𝜔2𝑋𝑒𝑖𝜔𝑡. Substituting in equation (2.1) gives,  

 −𝑚𝜔2𝑋𝑒𝑖𝜔𝑡 + 𝑖𝜔𝑐𝑋𝑒𝑖𝜔𝑡 +  𝑘𝑋𝑒𝑖𝜔𝑡 =  𝐹𝑒𝑖𝜔𝑡. (2.2) 

Grouping and rearranging the terms yields, 

 
𝑋

𝐹
(𝜔) = 1

−𝑚𝜔2+𝑖𝜔𝑐+  𝑘
.  (2.3) 

Equation (2.3) represents the frequency response function (FRF) for the model in figure 

(2.1).  

 
𝑋

𝐹
(𝜔) = G(ω) = 1

−𝑚𝜔2+𝑖𝜔𝑐+  𝑘
   (2.4) 
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Using the relations 
𝑘

𝑚
=  𝜔𝑛

2 (natural frequency),  
𝑐

𝑚
= 2𝜁𝜔𝑛 ( is the dimensionless 

damping ratio), and 𝑟 =  
𝜔

𝜔𝑛
   (frequency ratio), equation (2.4) is rewritten as: 

 𝐺(𝑟) =  
1

𝑘
(

1

(1−𝑟2)+𝑖2𝜁𝑟
).   (2.5) 

Multiplying the numerator and denominator by the complex conjugate of the denominator 

gives, 

 𝐺(𝑟) =  
1

𝑘
(

(1−𝑟2)−𝑖2𝜁𝑟

(1−𝑟2)2+(2𝜁𝑟)2
).  (2.6) 

This equation contains both real and imaginary parts. The real part of the FRF is given by, 

 𝑅𝑒(𝐺(𝑟)) =  
1

𝑘
(

(1−𝑟2)

(1−𝑟2)2+(2𝜁𝑟)2) . (2.7) 

The imaginary part of the FRF is given by,  

 𝐼𝑚(𝐺(𝑟)) =  
1

𝑘
(

−𝑖2𝜁𝑟

(1−𝑟2)2+(2𝜁𝑟)2). (2.8) 

If a constant force with zero frequency is applied, the system follows Hooke’s law where 

the response is directly proportional to the magnitude of the force i.e.,  𝐹 = 𝑘𝑋.  

 
𝑋

𝐹
(0) = 𝐺(0) =  

1

𝑘
(

(1−(0)2)−𝑖2𝜁(0)

(1−(0)2)2+(2𝜁(0))2) =
1

𝑘
 . (2.9) 

When the frequency of the force matches the natural frequency of the system, the 

frequency ratio is unity, = 1 . By substituting in equations (2.7) and (2.8), 𝑅𝑒(𝐺(𝑟)) = 0 

and 𝐼𝑚(𝐺(𝑟)) =
1

2𝜁𝑘
 are obtained.   

This can be observed in the typical FRF plots provided in figures 2.3 and 2.4.  
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FIGURE 2.3. A typical plot of the real part of a single degree of freedom FRF versus r 

with key quantities identified [45]. 

 

FIGURE 2.4. A typical plot of the imaginary part of a single degree of freedom FRF 

versus r with key quantifies identified [45]. 

 

Equation (2.5) can also be expressed in terms of magnitude and phase. The 

magnitude of the FRF is given by, 

 |𝐺(𝑟)| = √(𝑅𝑒(𝐺(𝑟))2 + (𝐼𝑚(𝐺(𝑟))2 =
1

𝑘
√

1

(1−𝑟2)2+(2𝜁𝑟)2.  (2.10) 

The phase provides a relationship between the real and imaginary parts of FRF. It also 

describes how much the system response lags the excitation. The phase is given by,  
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 𝜙(𝑟) = 𝑡𝑎𝑛−1 (
𝐼𝑚(𝐺(𝑟))

𝑅𝑒(𝐺(𝑟))
) = 𝑡𝑎𝑛−1 (

−2𝜁𝑟

1−𝑟2).   (2.11) 

The relation between real and imaginary parts, and the magnitude and phase is shown in 

figure (2.5).  

 

FIGURE 2.5. Vector representation of magnitude of FRF with phase angle [45].  

 

FIGURE 2.6. FRF magnitude versus r plot for a single degree of freedom system [45].  
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At zero frequency, the magnitude of the system response is equal to 
1

𝑘
 . As shown 

in a FRF magnitude versus r plot (figure 2.6), when the excitation frequency becomes equal 

to the natural frequency of the system, r = 1, resonance is observed and the magnitude is 

maximum. As the excitation frequency increases above the natural frequency, the 

magnitude decreases.  

As seen in figure 2.7, for the static condition where r = 0, the system response and 

the excitation force occur simultaneously (i.e., the phase is zero). The phase lag becomes 

−𝜋

2
 rad (90o) at r = 1, as illustrated in figure 2.8. As r becomes large, the phase lag 

approaches -π rad (180o).  

 

FIGURE 2.7. Phase versus r plot for a single degree of freedom system [45]. 
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FIGURE 2.8. Vector representation of excitation and system response – the displacement 

lags the force by 900 for r = 1 [45]. 
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CHAPTER 3: LITERATURE REVIEW 

 

Receptance coupling is a method for predicting the FRF of an assembly by 

combining the FRFs of individual components. Substucturing has become a predominant 

technique in the analysis of the vibration characteristics of complex assemblies, where the 

assembly is separated into smaller components which are modelled individually and then 

analytically connected to form a complete model of the original assembly. Receptance 

coupling, first introduced by Bishop and Johnson in 1960 [1], has been an important tool 

in the study and prediction of vibrating systems. Since this early work, there has been a 

significant research done in the field. The following paragraphs summarize the relevant 

research and findings. 

As mentioned in chapter 1, the FRF is a key input to stability lobe diagrams. The 

typical process of FRF generation requires an experimental measurement for each spindle-

holder-tool combination. When a variety of tool-holder-spindle configurations are used in 

a machining facility, this method is time consuming and can be inaccurate if performed 

without adequate knowledge of dynamic testing procedures. To overcome this problem and 

to reduce the repetitive FRF tests for each tool-holder-spindle configuration, Schmitz used 

Receptance Coupling Substructure Analysis (RCSA) to predict tool point dynamics [2]. 

Schmitz et al. measured the FRF of the spindle-holder assembly and combined it with an 

analytical model of the tool FRF using RCSA. As the tool FRF was readily available from 

the analytical model, this method required only one FRF measurement at the holder free 

end to obtain the FRF of tool-holder-spindle assembly for different tool overhang lengths. 

Further, Schmitz et al. extended the concept of RCSA for chatter stability prediction during 
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high speed machining in milling [2-4]. Duncan et al. used RCSA to develop models for a 

stacked flexure setup and a spindle-holder-tool assembly to predict the interactions 

between the substructures and study the ‘dynamic absorber effect’ which would improve 

the dynamic stiffness of the assembly and critical stability limit and, therefore, increase the 

material removal rate in high speed machining. [5]. This work was further extended by 

Albertelli et al. [6].  The work done by Schmitz et al. [2-4] was refined by Kivanc et al. 

where the spindle-holder, tool, and the elements that connect the tool and holder were 

considered as three separated subsystems. A numerical beam model was suggested to 

evaluate the tool dynamics while a fitting procedure performed on experimental 

measurements was used to compute stiffness and damping coefficients of connecting 

elements [7].   

Schmitz et al. initially considered only translational degrees of freedom and 

assumed rotational rigidity. Movahhedy et al. presented the importance of considering 

rotation dynamics and proposed a genetic algorithm to estimate tool holder connection 

parameters [8]. Park and Chae used finite element analysis and experimental techniques 

involving gauge tools to identify the rotational dynamics between substructures to improve 

the classic RCSA technique to identify the tool point receptance [9]. Further, Park et al. 

improved the ability of RCSA approach to predict the FRF of assemblies by including the 

rotational degrees of freedom at the joints in the assemblies. An algorithm was created to 

analytically extract the dynamics of the angular displacements from the linear cross and 

direct FRF measurements and these rotational dynamic parameters were included in 

generating the FRF of spindle-holder-tool assemblies [10]. This technique was adopted in 

other works [11]. Similar techniques where experiments with calibration tools were 
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performed to identify the rotational FRFs were also developed [12,13]. The application of 

RCSA in predicting torsional and axial receptances was also investigated by Schmitz [14].  

Building on their previous work, Schmitz and Duncan developed a three component 

model which predicted tool point receptance by coupling modeled translational and 

rotational receptances (receptances of tool and extended holder) with that of standard 

measurements (receptances of the spindle holder base) using RCSA with the aim to 

perform just one experiment at the spindle-holder base and obtain the FRF at different 

overhang lengths. Schmitz and Duncan further extended the RCSA approach to coupling 

of holders enabling the use of different types of holders [15,16]. A modified version of this 

approach was proposed by Ahmadian et al. where the contacts between the substructures 

are coupled through continuous damped-elastic layer interfaces for a more realistic 

representation of the joint dynamics [17]. 

Namazi et al. modeled the holder-spindle taper contact by uniformly distributed 

translational and rotational springs to identify the contact stiffness and damping at the 

interface and coupled it with the holder-tool stick out which was modeled by Timoshenko 

beam elements using RCSA [18]. The effect of connection between components with 

coincident neutral axes on the receptance of the assembly was demonstrated by Schmitz et 

al. [19] who further extended the analysis by proposing a finite element modelling 

approach [20]. A new modelling technique based on the Timoshenko beam was proposed 

by Filiz et al. which limited both the modelling and computational efforts [21]. Erturk et 

al. combined RCSA and structural modification techniques to predict tool point FRF by 

modelling all the components of the spindle-holder-tool assembly using Timoshenko beam 

theory [22]. This technique was experimentally verified to efficiently predict chatter 
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stability when combined with the analytical stability lobe model put forth by Budak and 

Altintas [23,24]. Duarte et al. used a finite difference approach to obtain rotational 

dynamics in structural coupling analysis [25].  

Rezaei et al. used a different approach based on RCSA to find the tool point FRF. 

Using inverse RCSA (IRCSA) the receptance of the tool was subtracted from the assembly 

receptance in order to obtain the receptance of the spindle and holder assembly [26]. This 

facilitated identification of the receptance of the new system when the tool was changed 

by finding the receptance of the changed tool analytically and coupling it with the spindle 

and holder assembly. Mehrpouya et al. investigated the deviations caused by the 

assumptions in IRCSA when used in joint dynamics modelling by comparing the results of 

a point mass model, a numerical approach, and experiments. The IRCSA proved to be very 

efficient requiring less computational efforts and experimentation to arrive at similar 

results [27]. Mehrpouya et al. further extended the inverse receptance coupling approach 

to a 3D model of tool-holder-spindle assembly with six degrees of freedom to obtain the 

FRFs of the joint between the substructures which would improve accuracy of modelling 

predictions [28].  

Montevecchi et al. proposed a method based on IRCSA that requires FRF 

measurements of a single machine setup to obtain rotational responses that reduces the 

number of experiments required [29]. Matthias et al. proposed a technique that employs 

IRCSA to identify contact parameters at holder-tool interface using analytically calculated 

and experimentally obtained end point FRFs of the assembly at free-free end conditions 

[30].  
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Kumar et al. emphasized the importance of spindle-machine dynamics and 

compared three approaches to determine them. The predictions obtained by an analytical 

Euler-Bernoulli model fit to each mode was preferred over a finite difference approach 

based on multiple measurements as it required only one direct measurement at the free end 

of the spindle [31].  

Erturk et al. studied the effects of bearing and interface dynamics on tool point FRF 

in spindle-holder-tool assemblies and observed that the variations in bearing dynamic 

properties affect the rigid body modes, variations in contact parameters of spindle-holder 

interface affect the first elastic mode, and the contact parameter variations in the holder-

tool interface mainly affect the second elastic mode of the assembly. It was also observed 

that rotational dynamics are not negligible, but the average values of these properties at the 

interfaces can be used as they do not affect the tool point FRFs as much as the translational 

dynamics [32].   

Yang et al. investigated the effect of collet geometry on the tool-point FRF 

predictions by modelling a spindle-holder-collet-tool assembly with two distributed joint 

interfaces of varying stiffness, collet-holder and collet-tool interfaces, and the dynamics of 

tool and collet were analyzed using Euler-Bernoulli beam theory. A computing procedure 

using RCSA was proposed to reduce the experimentation required to obtain the dynamics 

of spindle-holder assemblies of different sizes. This method reduced the prediction errors 

in natural frequencies to less than 5% for any collet geometry [33].  

Tool point FRFs are generally identified in stationary conditions which results in 

reduced accuracy of chatter prediction techniques at high spindle speeds. To improve the 
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reliability of chatter prediction Grossi et al. presented a comprehensive experimental-

analytical approach that allows to compute speed varying FRFs for a specific tool and then 

used a customized RCSA technique to predict speed varying tool tip FRFs of any other 

tools [34].   

Zhang et al. proposed a new technique to use RCSA effectively to solve the 

constantly changing assembly responses in bi-rotary head five-axis machine tools in which 

a swivel model for holder tip receptances in swivel motion and a rotational model for the 

same in rotary motion were derived and then combined to get the tool point FRF at any 

posture of the bi-rotary head [35]. Apart from the modelling the tool pint FRFs, RCSA was 

also successfully utilized in a high-order position dependent dynamic modelling and 

analysis of ball screw feed drives in machine tools [36]. 

Yang et al. proposed a four component RCSA technique that included torsional and 

axial receptances along with bending receptances to develop a generalized method to 

predict and analyze tool point FRFs in milling, drilling, and boring operations [37]. RCSA 

proved very effective in obtaining tool point FRFs for chatter prediction in micro milling 

operations where the accurate measurement of tool tip dynamics is not possible through 

direct impact test measurements due to the miniature size of the tools. [38-41].  

Although there are different methods to generate assembly receptances, at some 

point during the process it is necessary that at least one measurement be completed. This 

requires the conventional tests, such as the impact test discussed in chapter 4. These tests 

are generally carried out with the help of an accelerometer to measure the response of the 

system. As mentioned in chapter 1, the FRF measured using an accelerometer will have a 
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frequency shift due to mass loading of the structure by the addition of the accelerometer. 

In prior work, Ozsahin et al. [42] successfully compensated for the mass loading effect 

using the structural modification method put forward by Ozguven [43]. However, Ozahin 

et al. did not account for the mass of the cable, the mass of the adhesive holding the 

accelerometer, and the damping caused by the cable. 
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CHAPTER 4: RCSA 

 

RCSA is used to predict an assembly’s receptances by coupling receptances from 

the individual components. To predict the assembly receptance, the component receptances 

at the coupling location and the type of connection are needed. The connection between 

components can be rigid or flexible with or without energy dissipation (damping). An 

example for rigid coupling of two components is displayed in Fig. 4.1. 

FIGURE 4.1. Two component RCSA model: I and II are individual components and III is 

the assembly. Component coordinates and forces are lower case; assembly coordinates 

and forces are upper case [47]. 

 

For this example, the direct receptance of component I can be described as   

 h1a1a=
𝑥1𝑎

𝑓1𝑎
   (4.1) 

and the direct receptance of component II can be described as 

 h1b1b=
𝑥1𝑏

𝑓1𝑏
. (4.2) 
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The compatibility condition for rigid coupling is given by Eq. 4.3 and substituting 

for displacements from Eq. 4.1 and Eq. 4.2 results in Eq 4.4.  

 𝑥1𝑎 −  𝑥1𝑏 = 0 (4.3) 

 ℎ1𝑏1𝑏𝑓1𝑏 − ℎ1𝑎1𝑎𝑓1𝑎 = 0 (4.4) 

The equilibrium condition, 𝑓1𝑎 + 𝑓1𝑏 = 𝐹1, relates the internal (component, lower case 

variable) forces to the external (assembly, upper case variable) forces. Using this condition 

and solving for 𝑓1𝑏 results in Eq 4.5, which is rearranged in Eq. 4.6.  

 ℎ1𝑏1𝑏𝑓1𝑏 − ℎ1𝑎1𝑎𝐹1 + ℎ1𝑎1𝑎𝑓1𝑏 = 0 (4.5) 

          𝑓1𝑏 = (ℎ1𝑎1𝑎 + ℎ1𝑏1𝑏)−1ℎ1𝑎1𝑎𝐹1 (4.6) 

Substituting for 𝑓1𝑏 in the equilibrium condition and solving for 𝑓1𝑎 gives 

 𝑓1𝑎 = (1 − (ℎ1𝑎1𝑎 + ℎ1𝑏1𝑏)−1ℎ1𝑎1𝑎)𝐹1. (4.7) 

Using these equations, the assembly (III) direct receptance, H11, at assembly coordinate X1 

can be expressed as shown in Eq. 4.8. 

 𝐻11 =
𝑋1

𝐹1
=

𝑥1𝑎

𝐹1
=

ℎ1𝑎1𝑎𝑓1𝑎

𝐹1
= ℎ1𝑎1𝑎 −ℎ1𝑎1𝑎(ℎ1𝑎1𝑎 + ℎ1𝑏1𝑏)−1ℎ1𝑎1𝑎   (4.8) 

4.1. Inverse RCSA approach for mass loading compensation 

A tool point FRF may be measured by impact testing; see chapter 5 for more 

information. The experimental FRF differs, at some level, from the actual FRF due to the 

accelerometer and cable mass for this contact-type measurement. A reduction in the natural 
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frequency(s) and FRF magnitude may be observed, depending on the amount of mass 

loading and its ratio to the modal mass(es) for the system under test. 

FIGURE 4.2. a) FRF measurement b) RCSA model [47]. 

 

The accelerometer-cable mass can be compensated using inverse RCSA, where the 

corresponding RCSA model is depicted in Fig. 2b. In this model, it is assumed that the 

accelerometer is rigidly coupled to the tool point (using modal wax or other connection 

strategy). The measurement provides the assembly receptance, 𝐻11 =
𝑋1

𝐹1
. The 

accelerometer-cable receptance is h1a1a=
𝑥1

𝑓1
, while the unknown tool point receptance is 

h1b1b=
𝑥2

𝑓2
. The tool point receptance can be determined by rearranging Eq.4.7 as shown in 

Eq. 4.8. This approach is referred to as inverse RCSA since Eq. 4.9 represents a decoupling, 

rather than a coupling, operation. 

 ℎ1𝑏1𝑏 = −ℎ1𝑎1𝑎  +ℎ1𝑎1𝑎(ℎ1𝑎1𝑎 − 𝐻11)−1ℎ1𝑎1𝑎   (4.9) 
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For mass compensation only (i.e., mass loading of the structure under test by the 

accelerometer-cable), the accelerometer-cable may be defined as a point mass. The 

corresponding receptance (m/N) is provided in Eq. 4.10, where m is the mass (kg) and  is 

the frequency (rad/s). 

 ℎ1𝑎1𝑎 =
−1

𝑚𝜔2      (4.10) 

However, when there is a decrease in the measurement magnitude due to cable 

energy dissipation, then it becomes necessary to compensate for the damping. For this 

study, a viscous damping model is considered and Eq. 4.10 can be rewritten as to include 

the viscous damping coefficient, c. 

 ℎ1𝑎1𝑎 =
−1

𝑚𝜔2+𝑖𝑐𝜔
       (4.11) 
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CHAPTER 5: MEASUREMENT TECHNIQUE 

 

As mentioned in chapter 1, impact testing may be used to determine the FRF of a 

structure. In this approach, an impact hammer is used to apply a force impulse, excite the 

structure over a broad range of frequencies, and record the applied force. A transducer is 

used to record the vibration response of the structure. The time domain response from the 

hammer and the transducer is input to a dynamic signal analyzer (DSA), which computes 

the Fourier transform of these signals to convert them into the frequency domain. The DSA 

then calculates the ratio of frequency domain vibration signal to the frequency domain 

force signal to give the FRF. Figure 5.1 shows a schematic of the FRF measurement. Here, 

𝑓(𝑡) is the hammer force and 𝑥(𝑡), 𝑥́̇(𝑡), and 𝑥̈(𝑡) are the displacement, velocity or 

acceleration depending on the type of transducer used. 

FIGURE 5.1. Schematic of FRF measurement setup [45]. 
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5.1. Impact hammer 

 Impact hammers consists of a force sensor, located behind the tip of the hammer, 

which measures the force input during the hammer strike. The tip of the hammer may be 

soft or stiff depending on the desired frequency range. Hard plastic and metal tips with 

higher stiffness are used to excite a larger frequency range, while softer rubber tips are used 

to excite a lower frequency range. The energy input given to the structure is also a function 

of the hammer mass. Therefore, hammers are available in different size. An example of 

different hammer sizes is show in figure 5.1.1. 

FIGURE 5.1.1. Example of impact hammers [45]. 
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5.2. Accelerometer  

 An accelerometer measures the vibration response by generating a signal 

proportional to the acceleration of the structure. An accelerometer consists of a seismic 

mass and a piezoelectric material which produces a charge when strained. This 

accelerometer is mounted on the structure as shown in figure 5.2.1. When the structure 

moves, the seismic mass applies an inertial force on the piezoelectric material which strains 

the material and produces a charge. The charge is proportional to the acceleration and the 

corresponding voltage is used as the measurement signal.  

FIGURE 5.2.1. Schematic representation of an accelerometer [45]. 

  

The DSA receives acceleration (A) of the structure and excitation force (F) as input. 

It calculates the frequency domain ratio 
A

𝐹
(𝜔), referred to as inertance or accelerance. If  

𝑥(𝑡) = 𝑋𝑒𝑖𝜔𝑡 represents the displacement of harmonic vibration, then the acceleration is 

given by 𝑥̈(𝑡) = (𝑖𝜔)2𝑋𝑒𝑖𝜔𝑡 = −𝜔2𝑋𝑒𝑖𝜔𝑡.  Using this relation, the conversion from 

accelerance, 
A

𝐹
(𝜔), to receptance, 

X

𝐹
(𝜔), is 
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𝑋

𝐹
(𝜔) =

𝑋

𝐴

𝐴

𝐹
= −

1

𝜔2

𝐴

𝐹
.   (5.2.1) 

FIGURE 5.2.2. Different sizes of accelerometer [45].  

 

5.3. Laser Vibrometer 

 A laser vibrometer is a non-contact type vibration measuring instrument which 

works on the principle of the Doppler shift. The operation is shown in figure 5.3.1. A laser 

beam with a single frequency 𝑓0 is emitted by the laser head. This beam is passed through 

a beam splitter, which redirects a portion of the light towards the photo detector to serve as 

a reference beam and the rest continues towards the acoustic-optic modulator (AOM) 

which upshifts the laser to a frequency  𝑓0 + 𝑓1 . When the light from the AOM strikes the 

moving target surface and is reflected back, it is Doppler shifted and the shift is directly 

proportional to the velocity. This frequency shifted light is recombined with the refence 
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light at the photo detector and the current from the photo detector is used to determine the 

time-dependent target velocity. This signal is then passed to the DSA. 

FIGURE 5.3.1. Laser vibrometer schematic [45]. 

 

Similar to the accelerometer, the DSA receives the velocity (V) of the structure and 

the excitation force (F) as input. The DSA calculates the frequency domain ratio 
V

𝐹
(𝜔), 

referred to as mobility. If  𝑥(𝑡) = 𝑋𝑒𝑖𝜔𝑡 represents the displacement of harmonic vibration, 

then the velocity is given by 𝑥̇(𝑡) = 𝑖𝜔𝑋𝑒𝑖𝜔𝑡.  Using this relation, the conversion from 

mobility, 
V

𝐹
(𝜔), to receptance, 

X

𝐹
(𝜔), is 

 
𝑋

𝐹
(𝜔) =

𝑋

𝑉

𝑉

𝐹
=

1

𝑖𝜔

𝑉

𝐹
.   (5.3.1) 

5.3.1. FRF phase correction 

 When using a laser vibrometer for FRF measurements, a time delay between the 

measured response and the actual system response can be introduced by the signal 

conditioning electronics that convert the incoming optical signal into a voltage proportional 

to velocity. Figure 5.3.1.1 shows a sample time delay between the actual (blue line) and 

measured (red line) vibration response.   
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FIGURE 5.3.1.1. Representation of time delay between actual and measured vibration 

signal [46]. 

 

Schmitz and Ganguly studied this time delay when using a capacitive sensor [46] 

and pointed out that a constant time delay results in a phase error which increases linearly 

with increasing frequency. Figure 5.3.1.2 show the phase error of {-18, -36, and -54} deg 

for oscillating frequencies of {1, 2, and 3} Hz with a 50 ms time delay; 𝑥𝑎  and 𝑥𝑚 represent 

the actual and measured signals, respectively.  
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FIGURE 5.3.1.2. Effect of frequency on phase for a fixed time delay [46]. 

 

 

FIGURE 5.3.1.3. Phase error between accelerometer and the capacitive sensor [46]. 

 

Figure 5.3.1.3 shows the frequency-dependent phase error for a constant time delay 

between two sensors, an accelerometer and a capacitive sensor, as reported in [46]. The 
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phase error is calculated using ∆𝛷𝑓 = 𝑐𝑜𝑠−1(
𝑥𝑎𝑥𝑚

|𝑥𝑎||𝑥
𝑚

|
). The slope of the best fit line in the 

figure is -12.9 deg/kHz. The effect of the time delay can be removed by subtracting the 

phase error ∆Φ, which is a product of the slope (𝑠) and frequency (𝑓), from the measured 

phase (Φ𝑚).  The corrected phase, 𝛷𝑐 =  𝛷𝑚 − ∆𝛷 =  𝛷𝑚 − 𝑠𝑓 , is used to modify the real 

and imaginary parts of the FRF. This compensation strategy was applied in this research. 
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CHAPTER 6: EXPERIMENTAL SETUP 

 

The tool point FRF is a measure of the vibration response of the tool to a harmonic 

force input as a function of excitation frequency 

 𝐻(𝜔) =
𝑋(𝜔)

𝐹(𝜔)
, (6.1) 

where 𝑋(𝜔) and 𝐹(𝜔) are the discrete Fourier transforms of the vibration response and 

input force signals. This tool point FRF can be obtained by using impact test as explained 

in chapter 5. When measuring the FRF of a tool using an accelerometer, there is a frequency 

shift due to the mass loading effect of the accelerometer. This effect is significant when the 

structural modal mass is small, such as small diameter cutting tools. To correct this mass 

loading effect, a model of the accelerometer FRF is subtracted from the experimental FRF 

(measured with the accelerometer) using the inverse RCSA method described in chapter 4. 

This decoupling is represented by Eq. 6.2, 

 ℎ1𝑏1𝑏 = −ℎ1𝑎1𝑎  +ℎ1𝑎1𝑎(ℎ1𝑎1𝑎 − 𝐻11)−1ℎ1𝑎1𝑎, (6.2) 

where h1b1b=
𝑥1𝑏

𝑓1𝑏
 is the compensated tool point receptance, H11=

𝑋1

𝐹1
  is the mass loaded 

assembly receptance (measured), and h1a1a=
𝑥1𝑎

𝑓1𝑎
 is the analytical accelerometer-cable 

receptance. The accelerometer-cable receptance is modeled using Eq 6.3 (no damping) or 

Eq. 6.4 (with damping), where m is the mass (kg), c is the viscous damping coefficient (N-

s/m), and  is the forcing frequency (rad/s). 

 ℎ1𝑎1𝑎 =
1

−𝑚𝜔2
 (6.3) 
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 ℎ1𝑎1𝑎 =
1

−𝑚𝜔2 + 𝑖𝑐𝜔
 (6.4) 

Two different setups were used to perform the experiments. The first setup had a 

12.7 mm diameter steel rod clamped onto an aluminum base with a split clamp as shown 

in figure 6.1. The second setup, shown in figure 6.2, had a 6.35 mm diameter steel rod 

clamped in an ER 16 collet holder with a CAT-40 spindle interface. For this study, the 

collet was secured in a spindle nose attached to a large steel block (i.e., the spindle test 

stand) using a manual draw bolt. Both rods had clamped-free boundary conditions.   

FIGURE 6.1. 12.7 mm diameter steel rod setup. 

 

Impact testing was performed at multiple overhang lengths for both rods using a miniature 

modal hammer (PCB 084A17) with a steel tip. Two accelerometers, a medium size 

Split clamp 

12.7 mm 

diameter steel 

rod 

Aluminum 

base 
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accelerometer (PCB 352A21) and a small size accelerometer (PCB 352C23), were attached 

to the free end of the rods to measure their vibration responses.   

FIGURE 6.2. 6.35 mm diameter steel rod setup. 

 

An Ohaus AV264C Adventurer ProAnalytical Balance (0.1 mg resolution) was 

used to measure the accelerometer-cable masses. A laser vibrometer (Polytec OFV-534) 

was used to provide a non-contact measurement reference with no mass loading. The laser 

vibrometer was set up such that the laser beam pointed at the same location where the 

accelerometer was attached. It was placed at a stand-off distance of approximately 300 

mm, which is in accordance with the standard specified by the manufacturer.  

6.35 mm 

diameter steel 

rod 

ER16 collet 

CAT-40 

interface 
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  TXF™, a commercial software, served as the dynamic signal analyzer. The time 

delay that arises due to lack of synchronization between the measured response and the 

actual system response induced a frequency dependent phase error into the FRF for the 

vibrometer measurements. The phase correction algorithm explained in chapter 5 was used 

to remove this phase error from the FRF.  

6.1. Experimental procedure: 

The outline of the experimental procedure follows. 

Step 1: The small accelerometer was attached to the free end of the rod with modal wax 

and the cable was secured to prevent any external disturbances of the cable from reaching 

the accelerometer end. 

Step 2: Impact testing was performed on the rod using the miniature modal hammer. The 

vibration response of the rod as measured by the accelerometer was recorded and processed 

by TXF™ to output the FRF.  

Step 3: The accelerometer was removed from the rod and the laser vibrometer was switched 

on. The rod is struck by the same hammer again and the vibration response of the system 

as measured by the laser vibrometer was recorded and processed by TXF™ to output the 

FRF. This receptance was compensated for phase error.  

Step 4: The accelerometer-cable receptance, based on the mass, was obtained analytically. 

Step 5: Using IRCSA, the mass loading effect of the accelerometer was removed by 

subtracting the accelerometer-cable receptance from the receptance of rod measured by the 

accelerometer; see chapter 4 for more details.   
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Step 6: The mass loading correction was validated by comparing the IRCSA rod receptance 

to the rod receptance measured by the laser vibrometer.  

Step 7: The medium accelerometer was then attached to the rod as described in step 1. The 

same procedure, from step 2 through step 6, was repeated. 

This experimental procedure was followed for four different cases to validate the 

mass loading correction and to understand the damping effect caused by the accelerometer 

cable. These cases are described in the following sections.  

6.2. Case 1: 12.7 mm rod with clamped-free boundary condition 

The 12.7 mm diameter steel rod was secured with a split clamp onto an aluminum 

base which was, in turn, attached to a workbench using toe clamps. This represents a 

clamped-free boundary condition. The accelerometers, one at a time, were attached to the 

free end of the rod using modal wax and the cable was taped down to the aluminum base 

as shown in the figure 6.2.1.  

FIGURE 6.2.1. Small accelerometer attached to the 12.7 mm diameter rod using modal 

wax. 
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The experiments were then carried out at three different overhang lengths, 102 mm, 

111 mm, and 124 mm, to obtain the receptance measurements and the results were 

analyzed. 

6.3. Case 2: 6.35 mm rod with clamped-free boundary condition 

The 6.35 mm diameter steel rod was clamped in an ER 16 collet holder that was 

secured in the spindle test stand with a CAT-40 interface using a manual draw bolt. This 

approximately represents a clamped-free boundary condition. The accelerometers, one at 

a time, were attached to the free end of the rod using modal wax and the cable was taped 

down to the workbench supporting the setup as shown in figure 6.3.1. 

 
FIGURE 6.3.1. Medium accelerometer attached to the 6.35 mm diameter rod using modal 

wax. 
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The experiments were then carried out at two different over hang lengths of 79 mm 

and 89 mm to obtain the receptance measurements and the results were analyzed. 

6.4. Case 3: 6.35 mm rod with clamped-free boundary condition without accelerometer 

cable 

The accelerometers, one at a time, were attached to free end of the 6.35 mm 

diameter rod using modal wax. The cable was disconnected from the accelerometer. The 

accelerometers were not used to record the measurements, but just to simulate the mass 

loading effect. The experiments were then carried out at two different overhang lengths, 

79 mm and 89 mm. The laser vibrometer was used to record the FRFs with and without the 

accelerometer as shown in figure 6.4.1. The results were then compared with the 

measurements from case 2 to determine if the cable had a damping effect on the rod.  

FIGURE 6.4.1. Small accelerometer attached to the 6.35 mm diameter rod using modal 

wax. 
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6.5. Case 4: 6.35 mm rod with clamped-free boundary condition and varying accelerometer 

cable length  

The accelerometers, one at a time, were attached to free end of the 6.35 mm 

diameter rod using modal wax. The cable was supported by a miniature metal stand as 

shown schematically in figure 6.5.1. The experiments were then carried out for two 

different overhang lengths of the rod, 55 mm and 65 mm, with three different catenary 

lengths of the cable, i.e., 304 mm, 608 mm and 912 mm, to understand the dependence of 

cable length on the damping effect of cable on the rod.  

FIGURE 6.5.1. Schematic representation of 6.35 mm diameter rod setup with varying 

catenary cable lengths [47]. 

 

6.6. Case 5: Thin ribs with clamped-clamped-clamped-free boundary condition   

Along with the 12.7 mm and 6.35 mm diameter rods, experiments were also carried 

out on two thin metal ribs with clamped-clamped-clamped-free boundary conditions. Two 

thin ribs made of 6061-T6 aluminum were used. Impact testing was carried out using the 

same miniature modal hammer and the vibration response was measured at the center of 
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the unsupported edge using the small accelerometer and the laser vibrometer. The ribs were 

clamped on the sides and the bottom edge was fixed to the workbench using cyanoacrylate 

as shown in figure 6.6.1. 

FIGURE 6.6.1. Setup for thin rib measurements [47]. 
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CHAPTER 7: RESULTS AND DISCUSSION 

 

The vibration responses of the 12.7 mm and 6.35 mm diameter steel rods were 

measured by impact testing using both accelerometers and a laser vibrometer. The 

accelerometer and the cable were removed from the rods along with the modal wax and 

their total mass was measured after every experiment. The accelerometer-cable FRF was 

modelled using Eq 6.3 (no damping) or Eq 6.4 (with damping). FRF data form the 

accelerometer and vibrometer measurements and modelling was processed in MATLAB®. 

Using IRCSA, the mass loading effect of the accelerometer was removed by subtracting 

the accelerometer-cable receptance from the rod receptance measured using the 

accelerometer.  The IRCSA rod receptances were then compared with the rod receptances 

measured by laser vibrometer (no mass addition) to validate the effectiveness and accuracy 

of the mass loading compensation. The results for four cases are presented.  

7.1. Case 1: 12.7 mm rod with clamped-free boundary condition 

The measurements were recorded for the 12.7 mm diameter rod setup at overhang 

lengths of 102 mm, 111 mm, and 124 mm with both the accelerometers and vibrometer. 

For each overhang length and accelerometer combination, the FRF obtained by the IRCSA 

method was compared with the FRF obtained from the accelerometer and vibrometer 

measurements and these plots are shown in figures 7.1.1 through 7.1.6. It is observed in 

these plots that the natural frequency of the accelerometer FRF is lower than that of 

vibrometer FRF and the FRF obtained after correcting for mass loading matches closely 

with the vibrometer FRF. It can also be observed that the shift in the natural frequency is 

higher as the accelerometer mass increases.  The effect of the cable on the amplitude of the 
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FRF is minimal. A summary of the 12.7 mm diameter rod measurement results for both 

accelerometers at three different overhang lengths is provided in Table 7.1.1. The average 

percent error in natural frequency was 1.02% for the medium accelerometer and 0.38% for 

the small accelerometer. The error reduced to 0.03% for the compensated results from all 

tests.  

FIGURE 7.1.1. Results for 12.7 mm diameter rod with an overhang length of 102 mm 

using the medium accelerometer. 
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FIGURE 7.1.2. Results for 12.7 mm diameter rod with an overhang length of 102 mm 

using the small accelerometer. 

FIGURE 7.1.3. Results for 12.7 mm diameter rod with an overhang length of 111 mm 

using the medium accelerometer. 
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FIGURE 7.1.4. Results for 12.7 mm diameter rod with an overhang length of 111 mm 

using the small accelerometer. 

FIGURE 7.1.5. Results for 12.7 mm diameter rod with an overhang length of 124 mm 

using the medium accelerometer. 

. 
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FIGURE 7.1.6. Results for 12.7 mm diameter rod with an overhang length of 124 mm 

using the small accelerometer. 

 

TABLE 7.1.1: Results of mass loading correction for 12.7 mm diameter rod. 

Overhan

g length 

(mm) 

Vibrometer 

natural frequency 

(Hz) 

Accelerometer 

natural frequency 

(Hz)  

% error Compensated 

natural 

frequency (Hz) 

% 

error 

Medium accelerometer (706 mg) 

102 695.4 687.4 1.10 695.8 -0.05 

111 597.8 592 0.97 598.5 -0.11 

124 492.1 487.1 1.01 492.1 0 

Small accelerometer (275 mg) 

102 698.1 695 0.44 698.1 0 

111 613.8 611.5 0.37 614.2 -0.06 

124 503 501.3 0.33 502.8 0.03 
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7.2. Case 2: 6.35 mm rod with clamped-free boundary condition 

Measurements were completed for the 6.35 mm diameter rod setup at overhang 

lengths of 79 mm and 89 mm with both accelerometers and the vibrometer. For each 

overhang length and accelerometer combination, the FRF obtained by the IRCSA method 

was compared with the FRF obtained from the accelerometer and vibrometer 

measurements. It was observed that when the accelerometer FRF was modelled using Eq 

6.3 (no damping), the natural frequency of the accelerometer reading was compensated, 

but the amplitude did not match the vibrometer. This is shown in figure 7.2.1. So, Eq 6.4 

was applied which considered the viscous damping effect of the cable. The value of viscous 

damping coefficient was varied until the amplitudes of the mass loading compensated FRF 

and the vibrometer FRF matched. These results are shown in figures 7.2.2 through 7.2.5. 

As it can be observed in these plots, the natural frequency of the accelerometer FRF is 

lower than that of vibrometer FRF and the FRF obtained after correcting for mass loading 

matches closely with the vibrometer FRF. It can also be observed that the shift in the natural 

frequency is higher as the accelerometer mass increases. The cable damping caused a 

significant change in the amplitude and the damping values used for correction are 1) c = 

0.07 N-s/m for the small accelerometer; and 2) c=0.13 N-s/m and 0.15N-s/m for the 

medium accelerometer. A summary of the 6.35 mm diameter rod measurement results for 

both accelerometers at both overhang lengths is provided in Table 7.2.1. The average 

percent error in natural frequency was 5.8% for the medium accelerometer and 2.4% for 

the small accelerometer. The percent error reduced to 0.09% for the compensated results 

from all tests.  
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FIGURE 7.2.1. Results for 6.35 mm diameter rod with an overhang length of 89mm 

using the medium accelerometer without compensating for cable damping. 

FIGURE 7.2.2. Results for 6.35 mm diameter rod with an overhang length of 79 mm 

using the medium accelerometer after compensating for cable damping. 

 



 
 

47 

 

 

 

FIGURE 7.2.3. Results for 6.35 mm diameter rod with an overhang length of 79 mm 

using the small accelerometer after compensating for cable damping. 

FIGURE 7.2.4. Results for 6.35 mm diameter rod with an overhang length of 89 mm 

using the medium accelerometer after compensating for cable damping. 
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FIGURE 7.2.5.  Results for 6.35 mm diameter rod with an overhang length of 89 mm 

using the small accelerometer after compensating for cable damping. 

 

TABLE 7.2.1: Results of mass loading compensation for 6.35 mm diameter rod 

Overhang 

length 

(mm) 

Vibrometer 

natural 

frequency (Hz) 

Accelerometer 

natural 

frequency (Hz)  

% error Compensated 

natural 

frequency (Hz) 

% error 

Medium accelerometer (680 mg) 

79 688.2 646 5.5 688.9 -0.10 

89 546.3 516 6.1 547 -0.12 

Small accelerometer (275 mg) 

79 687.8 671 2.4 688.2 -0.06 

89 545.5 532.16 2.4 545.9 -0.07 

 

7.3. Case 3: 6.35 mm rod with clamped-free boundary condition without accelerometer 

cable 

To investigate the viscous cable damping effect on the accelerometer results, 

impact tests were performed on the 6.35 mm diameter rod for two overhang lengths of 79 

mm and 89 mm with just the accelerometer attached at the free end (no cable). Impact tests 
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were also performed on the rod without any accelerometer attached to it. The vibration 

responses of the rod in both the cases were recorded using the laser vibrometer. The 

vibrometer readings were compared with each other and with the accelerometer readings 

from case 2 to verify the cable damping effect. These results are shown in figures 7.3.1 

through 7.3.4. It can be observed that the shift in the natural frequency was caused by the 

accelerometer mass and the significant change in the amplitude of the FRF was caused by 

energy dissipation from cable motion.  

FIGURE 7.3.1. Results for 6.35 mm diameter rod with an overhang length of 79 mm 

using the medium accelerometer. 
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FIGURE 7.3.2. Results for 6.35 mm diameter rod with an overhang length of 79mm 

using the small accelerometer. 

FIGURE 7.3.3. Results for 6.35 mm diameter rod with an overhang length of 89mm 

using the medium accelerometer. 

 



 
 

51 

 

 

 

FIGURE 7.3.4. Results for 6.35 mm diameter rod with an overhang length of 89mm 

using the small accelerometer. 

 

7.4. Case 4: 6.35 mm rod with clamped clamped-free boundary condition and varying 

accelerometer cable length 

To understand the effect of cable length on the amount of damping and the 

corresponding effect on the accelerometer-based FRFs, tests were performed by varying 

the catenary length of the cable for a medium accelerometer and a large accelerometer 

attached to the free end of the 6.35 mm diameter rod. Three sets of measurements, {sets 1, 

2, and 3}, were completed for each accelerometer. The cable was wound and left overnight 

between the sets. A fourth set of measurements, {set 4}, were recorded right after 

unwinding the cable to check if the cable hysteresis affected the measured FRFs. The 

catenary lengths of the cable were 304 mm, 608 mm, and 912 mm. As it was observed in 
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case 2, cable damping affected the amplitude of the FRF, so the magnitude of the FRFs 

was considered for this comparison. The  results are shown in figures 7.4.1 through 7.4.10. 

FIGURE 7.4.1.  Results for 6.35 mm rod for an overhang length of 55 mm with medium 

accelerometer and catenary cable length of 304 mm.  

 

FIGURE 7.4.2.  Results for 6.35 mm rod for an overhang length of 55 mm with medium 

accelerometer and catenary cable length of 608 mm.   
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FIGURE 7.4.3.  Results for 6.35 mm rod for an overhang length of 55 mm with medium 

accelerometer and catenary cable length of 912 mm.   

 

FIGURE 7.4.4. Cable length vs. FRF magnitude for the medium accelerometer attached 

at the free end of the 6.35 mm diameter rod with a 55-mm overhang length. 
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FIGURE 7.4.5. Plot of viscous damping coefficients used for mass loading correction vs. 

catenary cable length for medium accelerometer attached to the free end of the 6.35 mm 

diameter rod with 55 mm overhang length. 

 

TABLE 7.4.1: Results for 6.35 mm rod for an overhang length of 55 mm with medium 

accelerometer and varying catenary cable length. 

Cable 

length (mm) 

 Magnitude*10-4 

(m/N) 

c (N-s/m) 

304 

Set 1 8.8 0.035 
Set 2 8.1 0.030 
Set 3 8.8 0.050 
Set 4 8.8 0.035 

608 

Set 1 8.2 0.035 
Set 2 7.9 0.045 
Set 3 7.7 0.060 
Set 4 8.1 0.060 

912 

Set 1 8.0 0.065 
Set 2 8.3 0.042 
Set 3 6.4 0.085 
Set 4 6.1 0.050 

Mean 8 0.049 

Maximum difference 2.7 0.055 

Standard deviation 0.83 0.015 
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FIGURE 7.4.6.  Results for 6.35 mm rod for an overhang length of 55 mm with large 

accelerometer and catenary cable length of 304 mm.   

 

FIGURE 7.4.7.  Results for 6.35 mm rod for an overhang length of 55 mm with large 

accelerometer and catenary cable length of 608 mm. 
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FIGURE 7.4.8.  Results for 6.35 mm rod for an overhang length of 55 mm with large 

accelerometer and catenary cable length of 912 mm. 

 

 

FIGURE 7.4.9. Cable length vs. magnitude of the accelerometer FRF for large 

accelerometer attached to the free end of the 6.35 mm diameter rod with 55 mm overhang 

length. 
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FIGURE 7.4.10. Plot of viscous damping coefficients used for mass loading 

compensation vs. catenary cable length for large accelerometer attached to the free end of 

the 6.35 mm diameter rod with 55 mm overhang length. 

 

TABLE 7.4.2: Results for 6.35 mm rod for an overhang length of 55 mm with large 

accelerometer and varying catenary cable length. 

Cable 

length (mm) 

 Magnitude*10-4 

(m/N) 

c (N-s/m) 

304 

Set 1 7.1 0.050 

Set 2 6.7 0.050 

Set 3 7.3 0.040 

Set 4 6.3 0.055 

608 

Set 1 7.1 0.065 

Set 2 6.7 0.065 

Set 3 6.5 0.075 

Set 4 6.7 0.095 

912 

Set 1 6.9 0.070 

Set 2 7.4 0.045 

Set 3 7.2 0.050 

Set 4 5.6 0.120 

Mean 7 0.065 

Maximum difference 1.8 0.080 

Standard deviation 0.48 0.023 
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For constant conditions, identical results could not be obtained for the same cable 

catenary across the four data sets as observed in figures 7.4.1 to 7.4.3 and 7.4.6 to 7.4.8. 

However, the range of variation is reasonable.  

FIGURE 7.4.11. Plot of viscous damping coefficients used for mass loading 

compensation vs. catenary cable length for the medium accelerometer attached to the free 

end of the 6.35 mm diameter rod with 65 mm overhang length. 
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TABLE 7.4.3: Results for 6.35 mm rod for an overhang length of 65 mm with medium 

accelerometer and varying catenary cable length. 

Cable 

length (mm) 

 Magnitude*10-4 

(m/N) 

c (N-s/m) 

304 

Set 1 9.80 0.038 

Set 2 9.60 0.050 

Set 3 9.08 0.048 

Set 4 9.99 0.034 

608 

Set 1 9.90 0.039 

Set 2 10.10 0.039 

Set 3 10.70 0.037 

Set 4 9.77 0.052 

912 

Set 1 9.60 0.060 

Set 2 9.50 0.057 

Set 3 10.30 0.038 

Set 4 8.70 0.070 

Mean 10.0 0.046 

Maximum difference 2.0 0.036 

Standard deviation 0.51 0.011 

 

FIGURE 7.4.12. Plot of viscous damping coefficients used for mass loading 

compensation vs. catenary cable length for large accelerometer attached to the free end of 

the 6.35 mm diameter rod with 65 mm overhang length. 
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TABLE 7.4.4: Results for 6.35 mm rod for an overhang length of 65 mm with large 

accelerometer and varying catenary cable length. 

Cable 

length (mm) 

 Magnitude*10-4 

(m/N) 

c (N-s/m) 

304 

Set 1 10.52 0.03 

Set 2 9.20 0.06 

Set 3 9.16 0.048 

Set 4 8.20 0.07 

608 

Set 1 9.43 0.041 

Set 2 9.45 0.036 

Set 3 8.70 0.075 

Set 4 8.80 0.042 

912 

Set 1 8.90 0.049 

Set 2 9.08 0.051 

Set 3 9.20 0.05 

Set 4 8.60 0.063 

Mean 9 0.051 

Maximum difference 2.32 0.045 

Standard deviation 0.55 0.012 

 

The slope of the linear regression fit for mean damping values, as seen in figures 

7.4.5 and 7.4.10, was the same for the rod with a 55 mm overhang length, but this was not 

observed for the rod with a 65 mm overhang length as shown in figures 7.4.11 and 7.4.12. 

Therefore, a conclusive relationship between the catenary length of the cable and the 

resultant damping coefficient could not be established. Also, it was observed that the mean 

damping value seemed to increase with the stiffness of the rod, 0.46 to 0.49 for the medium 

accelerometer and 0.51 to 0.65 for the large accelerometer.  

7.5. Case 5: Thin ribs with clamped-clamped-clamped-free boundary condition. 

To test the accuracy of this mass compensation technique for structures with 

different boundary conditions and geometries, measurements were recorded for 150 x 20 

x 2 mm and 100 x 20 x 3 mm aluminum ribs, which were designated as rib 1 and rib 2, 

respectively, with the medium accelerometer and laser vibrometer. The accelerometer-
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cable FRF was modelled using Eq 6.4 to account for the cable damping. For each rib, the 

FRF obtained by the IRCSA method was compared with the FRF obtained from the 

accelerometer and vibrometer measurements. Similar to the measurements of the clamped-

free rods, a shift in the natural frequency and decrease in magnitude was observed for the 

accelerometer FRFs as seen in figures 7.5.1 and 7.5.2.  

FIGURE 7.5.1. Results for 150 x 20 x 2 mm aluminum rib (rib 1) with medium 

accelerometer. 
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FIGURE 7.5.2. Results for 100 x 20 x 3 mm aluminum rib (rib 2) with medium 

accelerometer . 

.  

. 

For rib 1 the percent error in natural frequency was reduced from 5.97% to 0.07%. 

For rib 2 the percent error in natural frequency was reduced from 9.08% to -0.26%. The 

damping effect of the cable may scale with the structure stiffness as it was observed that 

for the same mass of accelerometer and length of the cable, the damping valued used for 

the compensation for rib 1 and rib 2 were 0.18 and 0.92, respectively.  
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7.6. Effects of mass loading and cable damping compensation on stability lobe diagrams. 

Stability lobe diagrams were generated for a two-tooth 6.35 mm diameter tool (55 

mm overhang length) performing a 25% up milling operation in an aluminium alloy (750 

N/mm2 specific cutting force and 68 deg force angle). The tool FRF was approximated 

using measured data from the 6.35 mm diameter steel rod with an overhang length of 55 

mm. Stability lobe diagrams for four cases are presented in figure 7.6.1: accelerometer, 

vibrometer, accelerometer with mass compensation only, and accelerometer with both 

mass and damping compensation. As expected, the uncompensated accelerometer and 

vibrometer stability lobes differ. The stability lobe diagram generated using both mass and 

damping compensation closely agrees with the vibrometer diagram, however. The stability 

lobe diagram generated using only mass compensation matches in spindle speed (), but 

overestimates the allowable axial depth of cut (blim) slightly. 

 

 

 

 

 

 

 

 

 

 

FIGURE 7.6.1. Stability lobe diagrams for end milling with 25% radial immersion up 

milling generated using different FRFs. 

 



 
 

64 

 

 

The variation in the stability limit with the compensation damping value was also 

explored. Based on the prior results with the hanging cable repetitions, a mean (c) and 

standard deviation (c) was identified for the 6.35 mm diameter rod with a 55 mm overhang 

damping compensation value. Stability lobe diagrams are displayed in figure 7.6.2 for three 

cases: mean c, mean c plus one standard deviation, and mean c minus one standard 

deviation compensation, where the mean c value was 0.049 N-s/m and the standard 

deviation was 0.015 N-s/m. The damping variation had only a slight impact on the limiting 

axial depth of cut.  

 

FIGURE 7.6.2. Stability lobe diagrams for end milling with 25% radial immersion 

generated using FRFs corrected with different c values. 
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CHAPTER 8:  SUMMARY AND CONCLUSION 

 

In this work, inverse receptance coupling substructure analysis (IRCSA) was 

proposed to compensate for the mass loading and damping effect of the accelerometer and 

its cable on the FRF measurements of low mass structures. The motivation for this study 

was to enable more accurate FRF measurements with accelerometers, which are a popular 

due to the ease of setup and use. This would result in increased accuracy for stability lobe 

diagrams, which are used to select stable machining parameters. A brief introduction to 

FRFs and a literature review were presented first. This was followed a description of 

receptance coupling. FRF measurement techniques used in this study were then detailed 

along with possible errors.   

Five different cases were studied to gain a better understanding of how the 

accelerometer mass loading and cable damping affect measurement accuracy for systems 

with different dynamics. The accuracy of the mass loading compensation was also 

evaluated. FRFs were measured using accelerometers and a vibrometer, which provided a 

non-contact measurement reference with no mass loading. A model of the accelerometer-

cable FRF was decoupled from the measured FRF using IRCSA to compensate for the 

accelerometer mass loading and cable damping. The resultant IRCSA FRF was then 

compared to the vibrometer FRF to validated the compensation technique. 

In the cases 1 and 2, two steel rods of 12.7 mm and 6.35 mm diameter with clamped-

free boundary conditions were measured with the same accelerometer to study how the 
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same mass loading affects structures with different modal masses. Measurements were 

taken at different overhang lengths to vary both the modal stiffness and mass of the rods. 

In case 3, measurements were completed using the accelerometer, but with no 

cable. The accelerometer was attached to the free end of the 6.35 mm diameter rod. This 

removed the cable damping effect and enable a comparison to test 1 and 2, which included 

the cable. For case 4, the cable was again included. The cable was supported by a metal 

stand and the catenary length of the cable was systematically varied between 304 mm, 608 

mm, and 912 mm to study the effect of cable length on the amount of damping.  

Experiments were performed at two rod overhang lengths to compare the results. In case 

5, impact tests were performed on two clamped-clamped-clamped-free aluminium ribs to 

verify the accuracy of the mass loading correction technique on structures with different 

geometry and boundary conditions. The modal stiffness was an order an order of magnitude 

different for the two ribs.  

Results from all tests indicated that the accelerometer-cable mass affected the 

natural frequencies, while the damping had a significant effect on the magnitudes. As the 

mass of the accelerometer increased, the shift in the natural frequency also increased. In 

case 1, the length of the cable was too short to have a noticeable damping effect, so only 

the accelerometer-cable mass was considered and the compensated FRF matched with 

vibrometer measurement. In case 2, when the cable length was large enough to have a 

damping effect on the accelerometer-based FRF, the damping value had to be included in 

the accelerometer-cable FRF model. Using this model, the compensated FRFs matched the 

vibrometer FRFs when appropriate viscous damping coefficients were included in the 

accelerometer-cable model. Results from case 3 showed that the significant change in the 
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FRF magnitudes measured using accelerometers was caused by cable energy dissipation. 

The attempts to directly relate the cable length to the amount of damping with the results 

from case 4 were not successful. Although the average damping values (generally increased 

with cable length, the dispersion was large. To further investigate the relationship between 

the compensation damping value and the system dynamics, figures 8.1 and 8.2 display the 

variation in damping with modal stiffness, k, and natural frequency, fn, respectively. In both 

cases, a linear relationship is observed. This result can potentially be used in future work 

to develop a predictive damping model for accelerometer cable damping compensation.   

FIGURE 8.1. Modal stiffness vs average damping value. 

 

TABLE 8.1: Modal stiffness vs. average damping values. 

Structure k (N/m)  Average c value (N-s/m) 

6.35 mm rod – 65 mm overhang length 1.12105 0.046 

6.35 mm rod – 55 mm overhang length 1.75105 0.049 

Aluminum rib - 150 x 20 x 2 mm 2.62105 0.18 

Aluminum rib - 100 x 20 x 3 mm 35.7105 0.92 
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FIGURE 8.2. Frequency vs average damping value. 

 

Table 8.2:  Natural frequency vs. average damping values. 

Structure fn (Hz)  Average c value (N-s/m) 

6.35 mm rod – 65 mm overhang length 875 0.046 

6.35 mm rod – 55 mm overhang length 1212 0.049 

Aluminum rib - 150 x 20 x 2 mm 1415 0.18 

Aluminum rib - 100 x 20 x 3 mm 5150 0.92 

 

The mass loading compensation technique reduced the percent error between the 

vibrometer and compensated FRFs to the tenths of a percent level for both the clamped-

free rods and the thin ribs with different boundary conditions and geometry. This was 

reflected in the stability lobe diagrams, where the diagram generated using the 

compensated accelerometer FRF matched very closely with that generated from the 

vibrometer FRF. This demonstrates that the IRCSA technique can be implemented to 

compensate for mass loading and damping effects of the accelerometer-cable for any 

dynamic structure. 
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