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ABSTRACT

LI WU. Testing predictability of asset returns. (Under the direction of DR.
ZONGWU CAI)

In this paper, a L2 type nonparametric test is developed to test a specific nonlinear

parametric regression model with near-integrated regressors. The asymptotic distri-

butions of the proposed test statistic under both null and alternative hypotheses are

established. The finite sample performance is also examined by conducting Monte

Carlo simulation. The test statistic is applied to testing the linear prediction model

of asset return and the predictability of asset return is shown at last.
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CHAPTER 1: INTRODUCTION

Nonlinear cointegration models are important in a wide range of applications in

economics (e.g. [1]). In this paper, a test statistic is introduced to test model speci-

fication of a nonlinear parametric model with near-integrated regressors.

Nonlinear Least Square method is applied for parameter estimation for the specific

parametric model. The asymptotic theorem of NLS estimates with unit root process

was introduced in [2] and [3]. The extension of the existing limit theorem to near-

integrated process is straightforward. The major works in [4, 5] of limit theorem

of sample covariances of nonstationary time series and integrable functions of such

time series that involve a bandwidth sequence are referred to in deriving asymptotic

distributions of the proposed test statistic.

The construction of our test statistic closely relates to the work in [6], in which a test

of time-varying coefficients is proposed with null hypothesis of constant coefficients.

This paper goes further than the above one in two aspects. First, the null hypothesis is

a specific nonlinear parametric model involving a constant as a special case. Next, the

functional parameter is assumed to be a nonlinear transformation of near-integrated

processes instead of stationary processes, deriving of asymptotic theory of which is

much more challenging.
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1.1 Nonlinear Cointegration Model

The belief that many economic and financial time series are highly persistent and

nonlinearly related is widely held. Nonlinear dynamic relationships that has been

discussed by economic theorists include, for instance, the correlation between cost

and production functions , hysteresis and boundary effect, exchange rate and funda-

mentals, and inflation and economic growth. Working on modeling the relationships

among highly persistent time series, two major questions are faced by econometricians

and statisticians: how to specify nonlinear models and how to test the goodness of

fit of a specified nonlinear model. This paper will focus on the latter one.

The nonlinear cointegration considered in this paper is modeled as:

yt = f(zt) + ut (1)

where zt (a scalar) is an integrated series I(1) or nearly integrated series NI(1), ut a

stationary process, and f(·) an unknown functional. The null hypothesis of interest

in this paper is a specified parametric nonlinear functional:

H0 : Pr(f(zt) = g(zt, θ)) = 1 for some θ ∈ Θ, (2)

where Θ is the parameter set. The contiguous alternatives are written as follows,

H1n : f(zt) = g(zt, θ)) + n−γG(zt) (3)

where γ < 1
10

. That is to test if the function f(·) in (1) is of the parametric form

g(z, θ).

1.2 Estimation of Nonlinear Cointegration Model

The nonlinear cointegration model is estimated using parametric and non paramet-

rical technique respectively under the null and alternative hypothesis.
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1.2.1 Nonlinear Least Square Estimator

The asymptotic theory of linear regression in the context of stationary or weakly

dependent processes has been originally developed by [7] , in which strong laws

of large number and central limit theory are applied straightly to stationary and

ergodic measurable functions. Then, a mechanism for doing asymptotic analysis for

linear systems of integrated time series was introduced by [8], [9], and [10]. They

applied weak convergence in function spaces, continuous mapping theorem, and weak

convergence of martingales in deriving asymptotic distributions.

The development of limit distribution theory for a nonlinear model with high per-

sistent time series has been hamstrung for a long time until the work of [2], where a

new machinery was introduced to analyze the asymptotic behavior of sample moments

of nonlinear functions of nonstationary data. The key notion of the new method is to

transport the sample function into a spatial function, which is also the basis of later

works of Phillips regarding nonparametric regression of nonstationary time series. In

particular, they dealt with sample sum by replacing it with a spatial sum and then

treating it as a location problem. Our analysis in this paper employs this technique,

too.

The following nonlinear regression model for yt was considered in [2],

yt = f(zt, θ0) + ut

zt = zt−1 + vt

where f : R × Rm → R is known, regressor zt an integrated process, regression

error ut a martingale difference sequence, and θ0 an m-dimensional true parameter
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vector.

They estimated θ0 by nonlinear least squares (NLS). That is to choose θ̂n by min-

imizing the function below,

Qn(θ) =
n∑
t=1

(yt − f(zt, θ))

Thus, the NLS estimator θ̂n was defined by

θ̂n = arg min
θ∈Θ

Qn(θ).

Under some regularity conditions and assumptions on function f , they showed the

consistency and limit distribution of NLS estimator,

4
√
n(θ̂n − θ0)

d−→
(
L(1, 0)

∫ ∞
−∞

ḟ(s, θ0)ḟ(s, θ0)
′
ds

)−1/2

W (1)

where L(1, 0) is the local time of the limit data generating process vt and W (1) is a

Brownian motion independent of L.

A similar limit theory of NLS estimator with near integrated (NI(1)) regressors is

given in this paper. The only difference of the limit distribution between I(1) and

NI(1) time series lies in the local time function. The local time for integrated regressor

is the local time of a limit Brownian motion. As in near integrated situation, it’s the

local time of an O-U process.

1.2.2 Nonparametric Cointegration Estimator

In nonparametric estimation, joint dependence between the regressor and the de-

pendent variable is the main complication leading to bias in conventional kernel esti-

mates. It is shown in [5, 4] that in functional cointegrating regressions with integrated

or near integrated regressors, simple nonparametric estimation of a structural non-

parametric cointegrating regression is consistent and the limit distribution is mixed
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normal.

The nonlinear structural model of cointegration is

yt = f(zt) + ut,

where ut is a zero mean stationary error, zt an integrated or near integrated regres-

sor, and f the unknown function to estimate. Then, the Nadaraya-Watson kernel

estimator of yt is given by

f̂(z) =

n∑
t=1

ytKh(zt − z)

n∑
t=1

Kh(zt − z)
,

where Kh(s) = (1/h)K(s/h) is a nonnegative kernel function, and h the bandwidth

function, such that h→ 0 as n→∞.

Imposing some assumptions, it’s proved in [4] that the limit behavior of f̂(x) is

f̂(z)
p−→f(z)

when nh2 →∞ and h→ 0. In addition, if h satisfies that nh2 →∞ and nh2(1+2γ) → 0

as n → ∞, the limit distribution of the Nadaraya-Watson kernel estimator is shown

as (
h

n∑
t=1

Kh(zt − z)

)1/2 (
f̂(z)− f(z)

)
d−→N(0, σ2)

where 0 < γ ≤ 1, for sufficiently small h, |f(hy + z) − f(z)| ≤ hγf1(y, z) for any

y ∈ R and
∫∞
−∞K(s)f1(s, z)ds < ∞, and σ2 = E(u2

m0
)
∫∞
−∞K

2(s)ds
∫∞
−∞K(z)dz.

Notice that they defined ut = 0 for 1 ≤ t ≤ m0 − 1.

It is also proven in [4] that the localized version of sum of squared residuals is a

consistent estimate of the error variance Eu2
m0

with stricter assumptions imposed,

σ̂2
n

p−→Eu2
m0
.
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for any h satisfying nh2 →∞ and h→ 0 as n→∞, where

σ̂2
n =

n∑
t−1

[yt − f̂(z)]2Kh(zt − z)

n∑
t−1

Kh(zt − z)
.

1.3 Cointegration Tests

Tests for a linear cointegrating model has been developed since [7], that tested pa-

rameter stability. Recently, a modified RESET test was introduced by [11] to test the

existence of linear cointegration. In empirical studies, the RESET test statistic was

applied to check the traditional linear cointegration specification in purchasing power

parity (PPP) model. A linearity test of cointegrating smooth transition regressions

is proposed in [12]. They tested the null hypothesis of a linear cointegration model:

y = β0 + xtβ1 + ut against the alternative hypothesis of a nonlinear cointegration

regression system: yt = g(xt) + ut, where regressor xt is a unit root process inde-

pendent of error ut. Based on the work of [12], a similar problem was investigated

in [13]. They allow regressor xt to be more general and not necessarily indepen-

dent of ut. The problem of testing a linear cointegration model against a nonlinear

cointegration model was considerred by [14]. The smooth transition regression model

developed in [14] is: yt = x
′
tα+β

′
xtg(xts−c)+ut, where xt is a p dimentional random

walk vector, and xts denotes the sth component of xt. The model reduces to a linear

cointegration model under the null hypothesis of β = 0.

A semiparametric varying coefficient model was studied in [6]. That model was

first learned by [15] and [16]:

yt = X
′

tθ(zt) + ut, (4)
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where Xt is a d-dimensional non stationary regressor, zt and ut stationary variables,

and θ(·) a d × 1 vector of unknown smooth functions. They tested the parameter

constancy

H0 : Pr(θ(zt) = θ0) = 1, for some θ0 ∈ B,

against

H1 : Pr(θ(zt) 6= θ) > 0, for any θ ∈ B.

The model studied in this paper differs from all the above ones in that we test

a nonlinear cointegraion model instead of a linear one. Compared with the varying

coefficient model investigated by [6], our model could be taken as a varying coefficient

model with one diminutional Xt = 1, and nonstationary zt. The combination of

nonlinearity and cointegration makes the analysis of limit theory very complicated.

1.4 Overview

The rest of the paper is organized as follows. Chapter 2 develops the aymptotic

theory of least square estimate of nonlinear regression with near-integrated process.

Chapter 3 describes our test statistic and shows asymptotic results of the test statis-

tics under null and alternative hypothesis respectively. In Chapter 4, Monte Carlo

simulations are performed to examine the finite sample performance of the proposed

tests. We test the predictability of asset return from a linear model using our test

statistics in Chapter 5. Chapter 6 concludes the paper. All the mathematical proofs

are relegated to Appendices.

The notation is conventional throughout the paper. We offer a summary of nota-

tion here for convenience sake. (i)
d−→ stands for convergence in distribution,

p−→
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for convergence in probability, and “⇒” for weak convergence with respect to the

Skorohod metric, as defined in [17]. (ii) Oe(an) denotes a probability order of an,

where an is a non-stochastic positive sequence; i.e. Oe(an) = Op(an). (iii) We define

Lr-norm of a matrix X by ||X||r =
(∑

ij E|Xij|r
)1/r

, where Xij is the (i, j)th element

of X. (iv) A
def
= B is used to define A by a previously defined quantity B, and A ≡ B

is used to assign a new notation B to A. (V) [a] denotes the smallest integer that is

greater than a for a > 0. (vi) we use Fnt = σ{zi, ui : 1 ≤ i ≤ t ≤ n} to denote the

smallest σ-field containing past history of {zt, ut} for all n.



CHAPTER 2: NONLINEAR LEAST SQUARE ESTIMATION

2.1 The Model and Preliminary Results

We consider the nonlinear regresstion model for yt under H0

yt = g(zt, θ0) + ut (5)

where g : R×R→ R is known and θ0 is the true parameter that lies in the parameter

set Θ. This section concentrates on nonlinear least square estimation of (5). Let

Qn(θ) =
n∑
t=0

(yt − g(zt, θ))
2, (6)

then, the NLS estimator θ̂n is as follows,

θ̂n = arg min
θ∈Θ

Qn(θ). (7)

It is assumed throughout the paper that θ̂n exists and is unique for all n, and θ0

is an interior point of Θ, where Θ is assumed to be compact and convex. This is

standard for NLS regression. σ̂n = (1/n)
∑n

t=1 û
2
t is an error variance estimate, where

ût = yt − g(zt, θ̂n).

We start by writing zt as

zt = ρzt−1 + ηt, (8)

and initializing it with z0 = 0 to avoid unnecessary complication in our development

of limit theory as in [2]. Then, define the stochastic processes Un and Vn respectively

by

Un(r) =
1√
n

[nr]∑
t=1

ut and Vn(r) =
1√
n

[nr]∑
t=1

ηt
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where [s] denotes the largest integer less than s.

Assumption 2.1: (a) (Un, Vn)
d−→(U, Vc), where U is a Brownian motion and Vc

is an O-U process driven by a standard Brownian Motion over [0, 1] with variance

ση = limn→∞Var(n−1/2
∑n

t=1 ηt). (b) (ut,Fnt) is a martingale difference sequence

with E(u2
t |Fn,t−1) = σ2 a.s. for all t and

sup1≤t≤nE(|ut|q|Fn,t−1) <∞ a.s. for some q > 2.

Assumption 2.1 is routinely imposed on NLS regression with nonstationary pro-

cesses as in [2]. Assumption (a) is well known to be satisfied for a wide variety of data

generating processes like mildly heterogeneous time series and stationary processes.

Condition (b) is essential to the limit distribution theory. But if it’s relaxed to allow

serial correlation in errors and cross correlation between regressors and errors, the

consistency of the least squared estimator still holds.

From Skorohod representation theorem, there exists a common probability space

(Ω,F ,P) supporting both (U, Vc) and (U0
n, V

0
n ) such that

(U0
n, V

0
n ) =d (Un, Vn) and (U0

n, V
0
n )→ (U, Vc) a.s. (9)

Then, there’s no loss in generality by assuming (Un, Vn) = (U0
n, V

0
n ) throughout this

paper.

More restrictive conditions on process zt required to develop the asymptotic theory

for nonlinear regression are introduced in the following.

Assumption 2.2: Let ηt = ϕ(L)εt =
∑∞

k=0 ϕkεt−k with ϕ(1) 6= 0. Assume that∑∞
k=0 k|ϕk| <∞, {εt} is i.i.d with E|εt|p <∞ for some p > 4, and the characteristic

function c(λ) of {εt} satisfying limλ→∞ λ
rc(λ) = 0 for some r > 0.

Assumption 2.2 is satisfied by all invertible Gaussian ARMA models and implies
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that V 0
n

d−→Vc.

In the subsequent development of the asymptotic theory for nonlinear regression of

near-integrated time series, the local time of the O-U proses is used repeatedly. So,

let’s recall the definition of local time. The process {LM(t, s), t ≥ 0, s ∈ R} is called

the local time of a measurable process {M(t), t ≥ 0} if,∫ t

0

T [M(s)]ds =

∫ ∞
−∞

T (s)LM(t, s)ds, all t ∈ R (10)

for any locally integrable function T (x). Intuitively, LM(t, s) is a spatial density

recording the sojourn time of process {LM(t, s), t ≥ 0} at the spatial point s over the

time interval [0, 1]. More discussions and applications of local time are provided by

[18], [19], [2] and [20].

Next, some regularity conditions for nonlinear transformation are required to de-

velop the asymptotics. Here, our focus is only on I-regular functions as defined in

[2].

Definition 2.1: A function F is said to be I-regular on a compact set Π if

(a) for each π0 ∈ Π, there exists a neighborhood N0 of π0 and a bounded integrable

function T : R → R such that for all π ∈ N0, ||F (x, π)− F (x, π0)|| ≤ ||π − π0||T (x),

and

(b) for some constant c > 0 and k > 6/(p− 2) with p > 4 given in Assumption 2.2,

||F (x, π) − F (y, π)|| ≤ c|x − y|k for all π ∈ Π, on each Si of their common support

S =
⋃m
i=1 Si ⊂ R.

Condition (a) requires F (x, ·) be continuous on Π for all x ∈ R as in standard

nonlinear regression theory. Condition (b) requires that all functions in the family
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are sufficiently smooth piecewise on their common support independent of π.

Theorem 2.1.1. Suppose Assumption 2.2 holds. If F is I-regular on a compact set Π,

then

1√
n

n∑
t=1

F (zt, π)
p−→
(∫ ∞
−∞

F (s, π)ds

)
LVc(1, 0)

uniformly in π ∈ Π, as n→∞. Moreover,

1
4
√
n

n∑
t=1

F (zt, π)ut
d−→
(
LVc(1, 0)

∫ ∞
−∞

F (s, π)F (s, π)ds

)1/2

W (1)

as n→∞.

The sample mean and sample covariance asymptotics are exactly like those in [2].

But L here is the local time of the limit O-U process Vc due to the near-integrated

data generating process.

2.2 Consistency

To prove the consistency of the NLS estimator θ̂n defined in (6), a sufficient con-

sistency condition is given following [2]. Define Dn(θ, θ0) = Qn(θ) − Qn(θ0). Then,

the condition is written as follows.

CN1: For some normalizing sequence νn, ν−1
n Dn(θ, θ0)

p−→D(θ, θ0) uniformly in θ,

where D(·, θ0) is continuous and has unique minimum θ0 a.s.

The above condition is sufficient to guarantee that θ̂n
p−→θ0, referring to the work

by [21].

Theorem 2.2.1. Under Assumption 2.2, CN1 holds if for all θ 6= θ0,
∫∞
−∞(g(s, θ) −

g(s, θ0))2ds > 0, with θ0 being I-regular on Π. Then, we have

D(θ, θ0) =

(∫ ∞
−∞

(g(s, θ)− g(s, θ0))2ds

)
LVc(1, 0)

with νn =
√
n.
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All bounded integrable functions that are piecewise smooth satisfy the conditions

in Theorem 2.1.

Corollary 2.1: Let the assumptions in Theorem 2.1 hold. Then σ̂2
n

p−→σ2, as n→∞.

This corollary shows the consistency of the error variance estimator σ̂2
n, which

follows from Theorem 3.2 in [2]

2.3 Asymptotics for Nonlinear Regression with Near-Intergrated Processes

In this section, we derive the asymptotic distribution of the NLS estimator θ̂n de-

fined in (6) under stronger assumptions on differentiability of the regression function.

Let’s start by the following definitions,

ġ = (
∂g

∂θi
), g̈ = (

∂2g

∂θ2
i

),
...
g = (

∂3g

∂θ3
i

)

to be the first, second and third derivatives of g with respect to θ, and let Q̇n and Q̈n

be the first and second derivatives of Qn with respect to θ. Therefore,

Q̇n(θ) =
∂Qn

∂θ
= −

n∑
t=1

ġ(xt, θ)(yt − g(xt, θ)),

Q̈n(θ) =
∂2Qn

∂θ2
=

n∑
t=1

ġ(xt, θ)
2 −

n∑
t=1

g̈(xt, θ)(yt − g(xt, θ)),

by ignoring a constant. The asymptotic distribution of θ̂n is naturally established

from the first order Taylor expansion of Q̇n,

Q̇n(θ̂n) = Q̇n(θ0) + Q̈n(θn)(θ̂n − θ0), (11)

where θn lies in between θ̂n and θ0. Suppose that θ̂n is an interior solution to the

minimization problem (6). Then, it follows that Q̇n(θ̂n) = 0.

From Theorem 1, normalized by an appropriately chosen sequence νn, ν−1
n Q̇n(θ0)

d−→Q̇(θ0)

for some random vector Q̇(θ0). Also, let

Q̈0
n =

n∑
t=1

ġ(zt, θ0)ġ(zt, θ0).
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We have ν−2
n Q̈0

n(θ0)
p−→Q̈(θ0) for some random matrix Q̈(θ0) by Theorem 1. Thus,

with suitable assumptions imposed, we may expect that

νn(θ̂n − θ0) = −(ν−2
n Q̈n(θn))−1ν−1

n Q̇n(θ0) (12)

= −(ν−2
n Q̈0

n(θ0))−1ν−1
n Q̇n(θ0) + op(1) (13)

d−→ −Q̈(θ0)−1Q̇(θ0) (14)

(15)

as n→∞.

A set of sufficient conditions leading to (12) are listed below for reference.

AD1: ν−1
n Q̇n(θ0)

d−→Q̇(θ0) as n→∞.

AD2: Q̇n(θ̂n) = 0 with probability approaching to one as n→∞.

AD3: ν−2
n (Q̈(θn)− Q̈(θ0))

p−→0 as n→∞.

AD4: Q̈(θ0)) > 0 a.s.

AD5: ν−2
n Q̈n(θ0)) = ν−2

n Q̈0
n(θ0)) + op(1) for large n.

AD6: ν−2
n Q̈n(θ0))

p−→Q̈(θ0)) as n→∞.

Under standard asymptotic conditions in nonlinear regression AD1-AD6, it’s easy

to see that (12) follows from (11).

Theorem 2.3.1. Let Assumption 2.2 holds. Assume g satisfies conditions in Theorem

2.2, ġ and g̈ are I-regular on Θ, and
∫∞
−∞ ġ(s, θ0)ġ(s, θ0)ds > 0. Then we have

4
√
n(θ̂n − θ0)

d−→
(
LVc(1, 0)

∫ ∞
−∞

ġ(s, θ0)ġ(s, θ0)ds

)−1/2

W (1)

as n→∞. Here, Vc is defined in (9)W (r) is a Brownian Motion satisfying

lim sup
r→0+

W (r)√
2r log log 1

r

= 1.

The NLS estimator converges at the rate of 4
√
n, and has a mixed Gaussian limiting
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distribution with I-regular regression functions. The technology applied in this section

follows immediately from [2].



CHAPTER 3: TEST STATISTIC

This Chapter constructs the test statistic and derives its asymptotics based on

theorems given above. The work in this chapter follows [6].

3.1 Construction of Test Statistics

We construct a L2 -type test statistic as in [6],∫
[f̂n(z)− g(z, θ̂n)]2dz,

where Kt (z) = K ((Zt − z) /h).

f̂n (z) =

[
n∑
t=1

Kt(z)

]−1 n∑
t=1

ytKt(z)

is the NW kernel estimator of nonlinear functional f (z), and g(z, θ̂n) is the NLS

estimator of g(z, θ). We modify the test statistic by multiplying a weighting matrix

Dn (z) =
∑T

t=1Kt(z) to get rid of the random denominator,∫
[Dn(z)(f̂n(z)− g(z, θ̂n))]2dz =

n∑
t=1

n∑
s=1

ûtûs

∫
Kt (z)Ks (z) dz, (16)

where ût = yt−g(z, θ̂n) is the residual from the parametric model. Then, a convolution

kernel is defined,

K̄ts
def
=

∫
Kt (z)Ks (z) dz =


h
∫
K2(z)dz if t = s;

h
∫
K (v)K ((Zs − Zt)/h+ v) dv if t 6= s.

When t 6= s, K̄ts =
∫
Kt (z)Ks (z) dz can be regarded as a local weight function.

Therefore, our final test statistic is obtained by removing the global center with t = s

and replacing K̄ts with Kts ≡ K((Zt − Zs)/h) as in [6], where K(·) is a kernel
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function.

În =
1

n2h

n∑
t=1

n∑
s 6=t

ûtûsKts. (17)

În is a second-order U-statistic similar to the test statistic proposed in [22] and

[6]. Model (4) was studied by [22] assuming that both xt and zt are stationary

variables, and the test statistic Ĩn = 1
n3h

n∑
t=1

n∑
s 6=t

XT
t XsûtûsKts was constructed. With

all variables stationary, it is shown that Ĩn converges to E {[E(Xtut|zt)2]f(zt)} ≥ 0

with proper scale of n and h. It’s apparent to see that Ĩn is a one-sided test statistic.

The setting of [22] was changed in [6] by assuming Xt to be an I(1) process. Law

of large numbers applied by [22] is not applicable when non stationary variables are

included. Therefore, Martingale Central Limit Theory was adopted by [6] to develop

the asymptotic theory of Ĩn. It’s proved that Ĩn is also a one-sided test statistic

that approaches a positive random variable under alternatives. In this paper, the

kernel function is based on NI(1) random variables rather than stationary variables.

The fact that the nonstationary variable is set into a function form significantly

complicates the proof of the limit theory. By applying Martingale Central Limit

Theory, continuous mapping theorem and the definition of local time, we derive the

limit distribution of În under both null and alternative hypothesis. În is shown to be

one sided unsurprisingly.

3.2 Assumptions and Asymptotic Results

Assumptions are imposed below for developing asymptotic theories. We start by

giving a stronger assumption on {zt}.

Assumption 4.1: (i) On a suitable probability space, there exists a stochastic pro-
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cess Vc(·) having a continuous local time such that for some θ∗ = (1/2) − 1/(2 + δ∗)

and λ∗ > 0 (a function of δ∗) with 0 < δ∗ ≤ 2

sup
0≤r≤1

||Vn(r)− Vc(r)|| = Oa.s.(n
−θ∗ logλ∗(n)), (18)

where ||x|| is the Euclidean norm of x and Oa.s.(·) denotes almost surely convergence.

(ii) Furthermore,

sup
r∈[0,1]

‖Vn(r)‖ = Oa.s.

(√
log log n

)
. (19)

Remark 1: Apparently, Assumption 4.1 is stronger than Assumption 2.1, since

strong approximation in (18) usually requires stronger assumptions than weak con-

vergence as in Assumption 2.1. Theorem 4.1 of [23] establishes a sufficient condition

for Assumption 4.1 to hold. It states that, for a stationary β-mixing sequence {ηt}

satisfying, for some γ∗ > 2 + δ∗,

E|ηt|γ∗ <∞, and
∞∑

n=1

β1/(2+δ∗)−1/γ∗
n <∞, (20)

where βn are the mixing coefficients of {ηt}, Assumption 4.1 holds true.

Both the weak convergence in Assumption 2.1 and the strong approximation result

in (18) are commonly made assumptions in econometrics literature, as Assumptions

in [24], [25], and [5].

Remark 2: The almost sure assumptions in (18) and (19) can be replaced by Op(·).

By the Strassen’s functional law of iterative logarithm for a NI(1) process (see [26]),

(19) can be derived.

Now, we work on the limiting distribution of În with additional assumptions im-

posed. First of all, a useful notation is defined.

Ωn(η) = {(l, k) : ηn ≤ k ≤ (1− η)n, k + ηn ≤ l ≤ n},

where 0 < η < 1, following [5].
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(A1) ġ (z, θ) is continuously twice differentiable with respect to θ. ġ (z, θ) and its par-

tial derivative functions with respect to θ (up to second order) are all uniformly

continuous and bounded. Moreover,
∫∞
−∞ ġ

2 (z, θ) dz <∞.

(A2) For all 0 ≤ k < l ≤ n, n ≥ 1, there exist a sequence of constants dl,k,n such that

(a) for some m0 > 0 and C > 0, inf(l,k)∈Ωn(η) dl,k,n ≥ ηm0/C as n→∞,

lim
η→0

lim
n→∞

1

n

n∑
l=(1−η)n

(dl,0,n)−1 = 0, (21)

lim
η→0

lim
n→∞

1

n
max

0≤k≤(1−η)n

k+ηn∑
l=(k+1)

(dl,k,n)−1 = 0, (22)

lim sup
n→∞

1

n
max

0≤k≤n−1

n∑
l=(k+1)

(dl,k,n)−1 < ∞, (23)

(b) zk,n are adapted to Fk,n and, conditional on Fk,n, (zl,n − zk,n)/dl,k,n has a

density hl,k,n(x) which is uniformly bounded by a constant K and

lim
δ→0

lim
n→∞

sup
(l,k)∈Ωn[δ1/(2m0)]

sup
|u|≤δ
|hl,k,n(u)− hl,k,n(0)| = 0. (24)

(A3) {ut} is an i.i.d. sequence and is independent of {Zt}. Also, E (ut) = 0 ,

E (u2
t ) = σ2

u <∞ and E (u4
t ) = µ4 <∞.

(A4) The kernel function K(u) is a differentiable symmetric (around zero) probability

density function on interval [−1, 1] . Also, we denote ν2 (K) =
∫
K2 (u) du,

supuK(u) <∞ and supuK
′
(u) <∞.

(A5) {ηt} is a strictly stationary, absolutely regular (or β-mixing) sequence satisfying

(20).

(A6) h (log log n)3 → 0, nh2 →∞, and h→ 0 as n→∞.

(A7) sup1≤t≤n

∣∣∣∣∣∣f̂n (zt)− f (zt)
∣∣∣∣∣∣ = op

(
n−1/2

)
.

(A8)
∫ ∫

G(zt)G(zs)Ktsdztdzs 6= 0 and
∫ ∫ ∫

G(zs1)G(zs2)Kts1Kts2dztdzs1dzs2 6= 0.

Remark 3: (A3) can be relaxed to E (ut|zt,Fn,t−1) = 0, E(u2
t |zt,Fn,t−1) = σ2

u and
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E (u4
t |zt,Fn,t−1) <∞ for all t, which requires a lengther proof.

Remark 4: The bounded support of the kernel function in (A4) is not necessary.

Kernel functions with unbounded support, such as Gaussian kernel, is allowed at the

cost of a lengthier proof. (A7) is used to simplify the proof of consistency of the

estimated asymptotic variance of the test statistic.

Before presenting the asymptotic results of our test statistic, we define a mearurable

process LVc(r, r, 0) as the local time of measurable process {Vc(t)−Vc(s), t ≥ 0, s ≥ 0},∫ r

0

∫ r

0

T [(Vc(t)− Vc(s))]dsdt =

∫ ∞
−∞

T (x)LVc(r, r, 0)dx, all r ∈ R (25)

where T (x) denotes a locally integrable function.

Now, the asymptotic properties of our test statistic are stated in the following

theorem with proofs delayed to Appendix B.

Theorem 3.2.1. Under Assumptions A1-A8, we obtain (i) under H0,

Jn = n
5
4h

1
2 În

d−→MN(0,Σ), (26)

where MN (0,Σ) is a mixed normal distribution with zero mean and conditional

variance as

Σ =
1

2
σ4
uµ2(K)E[LVc(r, r, 0)] (27)

In addition, if Assumption A7 also holds, a consistent estimator of Σ is given by

Σ̂ =
2

n
3
2h

n∑
t=2

t−1∑
s=1

ũ2
t ũ

2
sK

2
ts

p−→ Σ (28)

where ũt = Yt− f̂ (−t) (Zt) is the nonparametric residual of the leave-one-out estimator

f̂ (−t) (Zt) for all t;

(ii) under H1, the test statistic Jn diverges to +∞ at the rate of h−1. Hence, we have

Pr[Jn > Bn]→ 1 as n→∞,

where Bn is a non-stochastic sequence with Bn = o(h−1). Therefore, the statistic Jn
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is a consistent test.

Theorem 3.2.1 shows that Jn as the leading term of n5/4h1/2În converges in distri-

bution to a positive random variable under the alternative hypothesis. That indicates

that the test is one-sided. It follows that the nonlinear parametric functional form in

null hypothesis is rejected when Jn is greater than the (1 − α)100%th percentile zα

of a standard normal distribution.



CHAPTER 4: MONTE CARLO SIMULATIONS

Monte Carlo simulations are performed in this chapter to examine the finite sample

performance of the proposed nonparametric test. The test statistic is given by

Jn = n
5
4h

1
2 În (29)

where

În =
1

n2h

n∑
t=1

n∑
s=1

ûtûsKts (30)

as proposed in Chapter 3.

The data generating process (DGP ) under H0 is assumed to be:

yt = θz2
t + ut (31)

zt = ρzt + ηt =
(

1− c

n

)
zt−1 + ηt (32)

where ut is an i.i.d random variable satisfying N(0, σ2
u), ηt an i.i.d standard normal

random variable, and zt a NI(1) process that’s independent of ut. It’s clear that zt

becomes I(1) process if ρ = 1 or c = 0. Thus, in model (31), we see that yt is a

nonlinear function of nonstationary random variable zt.

For alternative hypothesis, two different settings are investigated. We use DGP1

and DGP2 to indicate two data generating processes constructed under Ha:

DGP1 : yt = θz2
t + a1n

−1/10zt + ut,

DGP2 : yt = θz2
t + a2n

−1/10z3
t + ut
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Table 1: Estimated sizes: varying smoothing parameters

d = .8 d = 1 d = 1.2
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 .014 .061 .113 .008 .036 .100 .014 .053 .101
200 .016 .076 .124 .013 .055 .106 .010 .061 .128
400 .014 .057 .118 .024 .061 .106 .014 .047 .100
600 .015 .058 .101 .010 .055 .101 .014 .058 .105

Table 2: Estimated powers: varying smoothing parameters

d = .8 d = 1 d = 1.2
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 .846 .914 .939 .832 .900 .952 .811 .900 .928
200 .996 .998 .999 .997 1 1 .995 .997 1
400 1 1 1 1 1 1 1 1 1
600 1 1 1 1 1 1 1 1 1

The replication time of Monte Carlo simulation is m = 1000. Sample sizes are

n = 100, n = 200, n = 400 and n = 600. Gussian kernel function is used with

bandwidth h = dn−1/10 . First, we let near-integration parameter c = 2 and choose

different values of d to check the effect of different amount of smoothing. The results

are listed in Table 1 and Table 2. Then, we compare tests under 3 settings of near-

integration parameter c with c = 0, c = 2 and c = 20, and d is fixed to be 1. Table

3 and Table 4 give the results of the above comparison. Estimated powers above

are calculated based on DGP1 with a1 = 0.5. Estimated powers against DGPj are

reported in Table 5, where c and d are both set to be 1, and a1 = a2 = 0.5. We

report estimated powers against DGP1 according to different settings of a1 in Table

6, where c = d = 1.

From Table 1 and 2, we don’t see significant effect on test sizes and powers from

the smoothing parameter. Table 2 shows that even the sample sizes are small, the

proposed test statistic reject the null hypothesis effectively under Ha.
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Table 3: Estimated sizes : varying integration parameters

c = 0 c = 2 c = 20
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 .018 .050 .109 .008 .036 .100 .013 .054 .107
200 .015 .060 .107 .013 .055 .106 .010 .043 .087
400 .015 .050 .102 .024 .061 .106 .013 .056 .100
600 .012 .057 .097 .010 .055 .101 .021 .070 .114

Table 4: Estimated powers: varying integration parameters

c = 0 c = 2 c = 20
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 .902 .953 .973 .832 .900 .952 .579 .774 .849
200 .997 1 1 .997 1 1 .975 .994 .996
400 1 1 1 1 1 1 1 1 1
600 1 1 1 1 1 1 1 1 1

Table 5: Estimated powers: varying models

DGP1 DGP2

n 1% 5% 10% 1% 5% 10%
100 .856 .919 .952 .829 .907 .944
200 .998 1 1 .997 1 1
400 1 1 1 1 1 1
600 1 1 1 1 1 1

Table 6: Estimated powers: varying a1

a1 = 0.25 a1 = 0.5 a1 = 1
n 1% 5% 10% 1% 5% 10% 1% 5% 10%

100 .328 .478 .561 .856 .919 .952 .999 1 1
200 .754 .860 .904 .998 1 1 1 1 1
400 .995 .998 .999 1 1 1 1 1 1
600 1 1 1 1 1 1 1 1 1
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Table 3 and 4 offer the estimated test sizes and powers when the integration pa-

rameter varies. It’s obvious that for c = 20, our test has less power against the

alternative than the other cases with c = 0 and c = 2, when sample size is pretty

small. As sample size increases, the test has power for all 3 settings of c. This indi-

cates that the test is more powerful if regressors are closer to an I(1) process rather

than the stationary process, especially when sample size is limited.

The test has power against both generating processes DGP1 and DGP2 as presented

in Table 5.

We see from table 6 that the proposed test statistic is sensitive to parameter a1 in

alternative hypothesis. The greater the value of a1 is, the better we can detect the

alternative hypothesis. We also see that for sample sizes large enough, our test is

equivalently powerful to all values of a1.

The finite sample performance of the proposed test statistic was demonstrated

by Monte Carlo simulations implemented above. Then, we’ll apply it to testing

predictability of asset return in the following chapter.



CHAPTER 5: EMPIRICAL STUDY

5.1 Review of Tests of Predictability of Asset return

Monte Carlo simulations conducted in the previous chapter illustrate finite sample

performance of our test. In this chapter, we apply the proposed test statistic to

testing the predictability of asset return.

Whether asset returns can be predicted by financial variables like dividend-to-

price ratio and earning-to-price ratios has been a hot topic for last two decades.

Conventional tests of predictability of asset return could lead to invalid inference due

to the high persistency of financial variables. The large sample theory of traditional

t-statistic is shown to be a poor approximation to the finite sample distribution of test

statistic based on a persistent predictor variable (see [27]; [28]; and [29]), since the

asymptotic theory for t-statistic is established on the assumption that the predictor

is a process with autoregressive root less than 1. Hence, the strong evidence for the

predictability of asset returns provided by traditional t-test is not reliable.

Later on, new methods are developed to address the problem caused by high persis-

tence of financial variable. Extending work of [30] and [31], [32] shows that returns are

predictable at short horizons but not at long horizons. No evidence for predictability

of stock return was found in [33] by testing the stationarity of long-horizon returns,

while predictability with some ratios was verified in [34].
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A unifying understanding of various test procedures mentioned above refers to [35].

They used theory of uniformly most powerful (UMP) test as a benchmark to compare

different methods. In addition, a new Bonferroni test was proposed by [35] based on

the theory of UMP test.

The test procedure proposed by this paper differs from that in [35] in that we

test a specific parametric model against a nonparametric model. In the context of

testing predictability of asset returns, we check the linear regression model with high

persistent financial predictor. Then, the null hypothesis is

H0 : Pr(rt = θ0 + θ1zt−1 + ut) = 1 for any θ0 ∈ Θ0 and θ1 ∈ Θ1,

where rt denotes asset return, and zt financial variable. The alternative hypothesis is

H1 : Pr(rt = θ0 + θ1zt−1 + ut) = 0 for any θ0 ∈ Θ0 and θ1 ∈ Θ1,

The work of [35] focused on testing whether the value of parameter in linear

prediction model rt = θ0 + θ1zt−1 + ut equals zero or not. The hypotheses are stated

as

H0 : θ1 = 0,

and

H1 : θ1 6= 0,

It’s clear to see that the rejection of null hypothesis indicates no linear predictability

of asset return in our test procedure, while in [35], the rejection of null hypothesis

provides evidence for predictability of asset return.
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5.2 Description of Data and Model

In this section, the nonparametric test of the linear prediction model of asset re-

turn is implemented on monthly NYSE/AMEX value-weighted index data (1926-

2002) from the Center for Research in Security Prices (CRSP), referring to the data

used by [35]. Dividend-price ratio and earnings-price ratio are used to predict excess

stock returns separately, where dividend-price ratio is defined by the ratio of past

year dividends over current price, and earnings-price ratio by dividing moving av-

erage of earnings over previous ten years by current stock price. Monthly earnings

are constructed by linear extrapolation using data from S&P 500 as in [36] , since

no earnings available from CRSP. Excess returns are computed as stock returns sub-

tracting risk-free returns. The one-month T-bill rate from CRSP Indices database is

used as monthly risk-free return.

The regression model we consider is

rt = α + βxt−1 + ut, (33)

xt = γ + ρxt−1 + et, (34)

where rt denotes the excess stock return at time t, and xt−1 the financial predictor at

time t−1. The financial variables used to predict excess return are log dividend-price

ratio and log earning-price ratio.

Fig.1 and Fig.2 provide time series plots of monthly log dividend-price ratio and

monthly log earnings-to price ratio from 1926 to 2002. Both ratios appear persistent,

especially at the end of the sample period. We estimate ρ by least square method

and construct the confidence intervals toward log dividend-price ratio and log earning-
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Table 7: Estimated autoregression parameter

ρ 95% CI for ρ
ldp .9895 (.9796, .9994)
lep .9885 (.9786, .9985)

price ratio in Table 7. It’s apparent that log dividend-price ratio and log earning-price

ratio are both near integrated time series with autoregression coefficient close to 1.
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Figure 1: Time series plot for log dividend-price ratio.

5.3 Nonparametric Test of Predictability

We show in previous section that the predictors are near integrated processes. So

the proposed nonparametric test statistic can be applied to testing the predictability

of stock return. The test statistic is defined as (29) in Chapter 4.

To get the estimated critical values, we perform nonparametric wild bootstrap to

do residual resampling. The procedure is described as below,

1. Generate bootstrap residuals u∗ from multiplying nonparametric residuals ũ by
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Figure 2: Time series plot for log earning-price ratio.

standard normal random variable ε.

2. The resampled response variable r∗t is calculated as

r∗t = α̂ + β̂xt−1 + u∗t ,

where α̂ and β̂ are linear least square estimates from the original data.

3. Compute test statistic Jn by using bootstrap response observations r∗t and xt.

We repeat the above procedure for 400 times to calculate the P-value for Jn. The

result of our empirical study is provided in Table 8

Table 8: Test statistics and p-values

Jn p-value
ldp -.0259 0.145
lep -.0277 0.35

P-values of test statistic Jn based on log dividend-price ratio and log earning-price

ratio are both greater than 10% as reported in Table 8. Therefore, our nonparametric

test fail to reject the linear prediction model for stock return if the significance level
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is no more than 10%. This could be viewed as evidence for predictability of asset

return from a linear model of financial variables also.



CHAPTER 6: CONCLUSION

We propose a L2 type nonparametric test statistic to test the nonlinear parametric

model with near integrated regressors in this dissertation. The construction of test

statistic is based on [6], where the limit distribution of the test statistic is derived

under the null hypothesis of a linear function of nonstationary time series. We ex-

tend the method to testing a model of nonlinear function of a near-integrated process.

The contribution of this dissertation is to provide the asymptotics of a L2 type test

statistic with a nonlinear function of near-integrated process included. The asymp-

totic distribution under the null hypothesis of a nonlinear function is mixed normal,

similar to testing a linear model as in [6]. Since We test the null against contiguous

alternatives, the convergence rate for alternative models is derived to be less than or

equal to n−
1
10 to make it detectable, when the rate for bandwidth is set to be optimal

h = n−
1
10 .

Monte Carlo simulation demonstrates the finite sample performance of the test

statistic. It shows that even the sample sizes are quite small, like 100 and 200, the

proposed test has power against the alternative, and the power increases rapidly as

the sample size increses. Table 2 shows that the test isn’t sensitive to the selection

of smoothing parameter. But it is noticably more powerful if the regressor is closer

to a unit root process than to a stationary process seen from Table 4. We also see
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that the power of the test is significantly sensitive to parameter a1 in the alternative

model. The power is positively related with a1.

In empirical studies, the test is applied to testing the lieanr prediction model of

asset return. The high persistence of financial variables used to predict asset return is

shown. Since traditional test procedures are not appropriate in case of high persistent

predictors, the strong evidence for predictability from traditional tests are not reliable

due to over-rejection (see [35]). Thus, the nonparametric test proposed here is

performed and evidence for linear predictability is shown. The linear prediction model

of stock return with log dividend price ratio and earning price ratio as predictors

respectively is verified.

In short, a nonparametric test procedure, that can be used for detecting nonsta-

tionary nonlinear parametric model, is developed in this dissertation. The linear

prediction model of asset return is evidently supported by this method.
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APPENDIX A: TECHNICAL RESULTS FOR CHAPTER 2

The proof of limit theory of NLS estimator follows the procedure applied by [2].

We start by defining regular functions as follows (see [2] ):

Definition A.1. A transformation T on R is said to be regular if and only if

(a). it is continuous in a neighborhood of infinity, and

(b). given any compact set K ⊂ R, for each ε > 0 there exists continuous functions

T ε, T ε, and δε > 0 such that T ε(x) ≤ T (y) ≤ T ε(x) for all |x − y| < δε > 0 on

K, and such that
∫
K

(T ε − T ε)(x)dx→ 0 as ε→ 0.

The so called regularity conditions are defined also.

Definition A.2. F is regular on Π if

(a). F (·, π) is regular for all π ∈ Π, and

(b). for all x ∈ R, F (x, ·) is discontinuous in a neighborhood of x.

The regularity conditions (a) is a sufficient condition that ensures the existence

of both sample mean and sample covariance asymptotics for F (·, π) for each π ∈

Π. Condition (b) guarantees that there’s a neighborhood N0 of any π0 ∈ Π such

that supπ∈N0
F (·, π) and infπ∈N0 F (·, π) are regular. These results are shown in the

following lemmas.

Next, we provide some useful lemmas:

Lemma A.3. If T1 and T2 are regular transformations, then so are T1 ± T2 and T1T2.

Lemma A.4. Suppose that Assumption 2.1 holds. If T is regular, then

1

n

n∑
t=1

T

(
zt√
n

)
→a.s.

∫ 1

0

T (Vc(r))dr,
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1

n

n∑
t=1

T

(
zt√
n

)
ut

d−→
∫ 1

0

T (Vc(r))dU(r),

as n→∞

Lemma A.5. (a) If F (·, π) is a regular family on Π, then for each π0 ∈ Π, there exits

a neighborhood N0 of π0 such that supπ∈Π F (·, π) and infπ∈Π F (·, π) are relular for all

N ⊂ N0.

(b) If F is regular on a compact set Π, then supπ∈Π |F (·, π)| is locally bounded.

Lemma A.6. (a) Let Assumption 2.1 hold. If F is regular on a compact set Π, then

for large n, n−1
∑n

t=1 F (zt/
√
n, π)ut = op(1) uniformly in π ∈ Π.

(b) Let Assumption 2.2 hold. If F is I-regular on a compact set Π, then for large n,

n−1/2
∑n

t=1

F (zt, π)ut = op(1) uniformly in π ∈ Π.

Lemma A.7. (a) If F is regular on a compact set Π, then
∫ 1

0
F (Vc(r), ·)dr is continuous

a.s. on Π.

(b) If F is I-regular on a compact set Π,
∫∞
−∞ F (s, ·)ds is continuous on Π.

Lemma A.8. Let Assumptions 2.1 hold. Then U0
n introduced in (8) can be represented

by

U0
n

(
t

n

)
= U

(τnt
n

)
with an increasing sequence of stopping times τnt in (Σ,F , P ) with τn0 = 0 such that

sup
1≤t≤n

∣∣∣∣τnt − tnδ

∣∣∣∣→a.s. 0

as n → ∞ for any δ > max(1/2, 2/q) where q is the moment exponent given in

Assumption 2.1.

Lemma A.9. (See Theorem 3.1 in [2])Let Assumptions 2.1 hold. If F is regular on a
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compact set Π, then

1

n

n∑
t=1

F

(
zt√
n
, π

)
→a,s,

∫ 1

0

F (Vc(r), π)dr

uniformly in π ∈ Π, asn→∞. Moreover, if F (·, π) is regular, we have

1√
n

n∑
t=1

F

(
zt√
n
, π

)
ut →a,s,

∫ 1

0

F (Vc(r), π)dU(r)

as n→∞.

See Appendix A of [2] for proofs of lemmas. Now, we use lemmas given above to

prove Theorem 2.1.1.

Proof of Theorem 2.1.1: See proof of Theorem 3.2 of [2].

Proof of Theorem 2.2.1: See proof of Theorem 4.1 of [2].

Proof of Theorem 2.3.1: See proof of Theorem 5.1 of [2].
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APPENDIX B: TECHNICAL RESULTS FOR CHAPTER 3

Throughout this section we will use the notation that An ≈ Bn to denote that Bn

is the leading term of An, i.e., An = Bn + (s.o.), where (s.o.) denotes terms having

probability order smaller than that of Bn. In addition, we use An ∼ Bn to denote An

and Bn having the same stochastic order. Also, we let M denote a generic constant,

which may take different values at different places.

Proof of Theorem 3.2.1 (i): Under H0, ût = yt− g(zt, θ̂n) = ut− (g(zt, θ̂n)− g(zt, θ0)),

where θ0 is the true parameter to be estimated. We decompose În in (17) as

În =
1

n2h

n∑
t=1

∑
s 6=t

[ut us + (g(zt, θ̂n)− g(zt, θ0))(g(zs, θ̂n)− g(zs, θ0))

− 2ut (g(zs, θ̂n)− g(zs, θ0))]Kts

≡ I1n +G2n − 2G3n,

where

I1n =
1

n2h

n∑
t=1

∑
s 6=t

utusKts, (35)

G2n =
1

n2h

n∑
t=1

(g(zt, θ̂n)− g(zt, θ0))
∑
s 6=t

(g(zs, θ̂n)− g(zs, θ0))Kts, (36)

and

G3n =
1

n2h

n∑
t=1

ut
∑
s 6=t

(g(zs, θ̂n)− g(zs, θ0))Kts. (37)

Lemma B.11 below shows that, under H0, n5/4h1/2I1n
d→MN(0,Σ). Also, Lemmas

B.14 and B.15 show that G2n = Op (n−
3
2h) and G3n = Op (n−

5
4 ) under H0 . These

results lead to n5/4h1/2În = n5/4h1/2I1n + op(1)
d→ MN(0,Σ) relying on Assumption

A7. Finally, Lemma B.15 gives that Σ̂
p→ Σ, which completes the proof of Theorem
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3.2.1 (i) (under H0).

Now, we give a lemma to show the asymptotic distribution of a sample moment

useful in subsequent proofs.

Lemma B.10. Under Assumption 2.1 and Assumptions A1-A7, for dn =
√
n
h

and

r ∈ [0, 1], we have

dn
n2

[nr]∑
t=1

t∑
s=1

Kts ⇒
1

2
LVc(r, r, 0) (38)

as n→∞. where LVc(r, r, 0) is defined by (25).

Proof of Lemma B.10: Let

L(r)
n,ε =

dn
n2

[nr]∑
t=1

t∑
s=1

∫ 1

−1

K[dn(zt,n − zs,n + xε)]φ(x)dx,

where zt,n = zt√
n
,

φε(x) =
1

ε
√

2π
exp

{
− x

2

2ε2

}
,

and

φ(x) = φ1(x) =
1√
2π

exp

{
−x

2

2

}
.

Then, for each ε > 0, we have

L(r)
n,ε −

(∫ 1

−1

K(u)du

)
dn
n2

[nr]∑
t=1

t∑
s=1

φε(zt,n − zs,n) = op(1) (39)

uniformly in r ∈ [0, 1], zt,n and zs,n as n → ∞ and dn → ∞. Since
∫ 1

−1
K(u)du = 1,

it becomes

L(r)
n,ε −

dn
n2

[nr]∑
t=1

t∑
s=1

φε(zt,n − zs,n) = op(1)

The proof of (39) refers to the proof of Lemma B in [20].

Next, it follows from the continuous mapping theorem that, for ∀ε > 0 and any

r ∈ [0, 1],

dn
n2

[nr]∑
t=1

t∑
s=1

φε(zt,n − zs,n)
d−→
∫ r

0

∫ t

0

φε(Vc(t)− Vc(s))dsdt (40)
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By recalling the definition of local time of a measurable process, as n→ 0, we get∫ r

0

∫ t

0

φε(Vc(t)− Vc(s))dsdt =
1

2

∫ ∞
−∞

φ(x)LVc(r, r, εx)dx =
1

2
LVc(r, r, 0) + oa.s.(1)

where {LVc(r, r, εx), 0 ≤ r ≤ 1, s ∈ R} satisfies the following equation,∫ r

0

∫ r

0

φε(Vc(t)− Vc(s))dsdt =

∫ ∞
−∞

φ(x)LVc(r, r, εx)dx

Then, write

L(r)
n =

dn
n2

[nr]∑
t=2

t−1∑
s=1

Kts

Lemma B.10 follows if we prove that

lim
ε→0

lim
n→∞

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = 0 (41)

The proof of (41) is similar to proof of Theorem 2.1 in [5].

Lemma B.11. Under Assumptions A1-A7, we obtain n5/4h1/2I1n
d−→ MN (0,Σ),

where MN (0,Σ) is a mixed normal with mean zero and conditional variance Σ given

in (27).

Proof of Lemma B.11: Denote Znt = n−3/4h−1/2ut
∑t−1

s=1 usKts. It follows that

n5/4h1/2I1n = 2
∑n

t=2 Znt. Let Fnt = σ {ηi, ui : 1 ≤ i ≤ t ≤ n} be the smallest σ-

field containing the past history of {ηt, ut} for all n and Et(Z) denote E (Z|Fnt) for

short. It is easy to see that {Znt; Fnt} is a martingale difference process by showing

Et−1(Znt) = 0 given E (ut|Zt,Fn,t−1) = 0 for all t. Therefore, central limit theorem

for a martingale difference (Theorem 3.2 of [37] is applied to establish our results. We

verify that the two conditions of the central limit theorem for martingale difference

are satisfied.
n∑
t=2

Et−1

[
Z2
ntI (|Znt| > ξ1)

] p−→ 0 for all ξ1 > 0 (42)
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and

V 2
n =

n∑
t=2

Et−1

(
Z2
nt

) p−→ Σ/2, (43)

where Σ is given in (27) and I(A) is the indicator function of event A. We start by

checking (43). Define at−1,s = Et−1(u2
sK

2
ts)− E(u2

sK
2
ts). Then, V 2

n is decomposed as

V 2
n =

n∑
t=2

Et−1

(
Z2
nt

)
= n−3/2h−1

n∑
t=2

Et−1

(ut t−1∑
s=1

usKts

)2


= σ2
un
−3/2h−1

n∑
t=2

t−1∑
s1=1

t−1∑
s2=1

us1us2Et−1(Kts1Kts2)

= σ2
un
−3/2h−1

n∑
t=2

t−1∑
s=1

E(u2
sK

2
ts) + σ2

un
−3/2h−1

n∑
t=2

t−1∑
s=1

at−1,s

+2σ2
un
−3/2h−1

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

us1us2Et−1(Kts1Kts2)

= B1n +B2n + 2B3n.

The probability limits of B1n, B2n and B3n are derived respectively with B1n =

σ4
un
−2
∑n

t=2

∑t−1
s=1E(K2

ts), B2n
p−→ o(1), and B3n

p−→ o(1).

by lemma B.10, we have

B1n = σ2
un
−3/2h−1

n∑
t=2

t−1∑
s=1

E(u2
sK

2
ts)

= σ4
uE

[
n−3/2h−1

n∑
t=2

t−1∑
s=1

K2
ts

]
= σ4

uν2(K)E[LVc(r, r, 0)]

as n→∞. Notice that ν2(K) =
∫
K2(u)du.

Next, we consider B2n. To show that B2n = op(1), we specify some useful notations.

For any small δ ∈ (0, 1), set N = [1/δ], sk = [kn/N ] + 1, s∗k = sk+1 − 1, N∗t =
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[(N − 1)(t− 1)/n] and s∗∗k = min{s∗k, t− 1}. Then,

B2n = σ2
un
−3/2h−1

n∑
t=2

t−1∑
s=1

at−1,s

≤

∣∣∣∣∣σ2
un
−3/2h−1

n∑
t=2

t−1∑
s=1

at−1,s

∣∣∣∣∣
≤ σ2

un
−3/2h−1

n∑
t=2

N∗t∑
k=0

∣∣∣∣∣∣
s∗∗k∑
s=sk

at−1,s

∣∣∣∣∣∣
.

Also, it’s easy to see that dnE|at−1,s| = Op(1) where dn =
√
n
h

. Then,

E

n−3/2h−1

n∑
t=2

N∗t∑
k=0

∣∣∣∣∣∣
s∗∗k∑
s=sk

at−1,s

∣∣∣∣∣∣
 ≤ n−3/2h−1

n∑
t=2

N∗n sup
s+nδ<t

E

∣∣∣∣∣
s+δn∑
i=s

at−1,i

∣∣∣∣∣
≤ n−1

n∑
t=2

sup
s+nδ<t

E

∣∣∣∣∣dnδn
s+δn∑
i=s

at−1,i

∣∣∣∣∣
= M(δn)−1/2 = op(1)

as n→∞. This implies that B2n = o(1). Apply the same method to B3n. It follows

that B3n = o(1).

Finally, we prove that (42) holds. For all ξ2 > 0,

Pr

{
n∑
t=2

Et−1

[
Z2
ntI (|Znt| > ξ1)

]
> ξ2

}

= Pr

{
n∑
t=2

Et−1

[
Z2
ntI

(
|Znt|
ξ1

> 1

)]
> ξ2

}

≤ Pr

{
ξ−2

1

n∑
t=2

Et−1

(
Z4
nt

)
> ξ2

}

≤ ξ−2
1 ξ−1

2

n∑
t=2

E
(
Z4
nt

)
,

where the last inequality follows from Markov inequality. Condition (42 ) holds if
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t=2 E (Z4

nt)→ 0 as n→∞. Simple calculations give
n∑
t=2

E
(
Z4
nt

)
= n−4

n∑
t=2

E(ut

t−1∑
s=1

usKts)
4

= µ2
4 n
−4

n∑
t=2

t−1∑
s=1

E(K4
ts) + 2µ4 σ

4
u n
−4

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

E(K2
ts1
K2
ts2

)

= o(1),

where in the above we have used (A3) and (A5). This completes the proof of the

Lemma B.11.

To prove the convergence of G2n and G3n, lemma B.12 and lemma B.13 are pro-

vided.

Lemma B.12. Let

L(r)
n,ε =

c2
n

n2h

[nr]∑
t=2

t−1∑
s=1

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ġ[cn(zt,n + x1ε)]ġ[cn(zs,n + x2ε)]

K[cn(zt,n − zs,n + x1ε− x2ε)]φ(x1)φ(x2)dx1dx2

M (r)
n,ε = τ

1

n2

[nr]∑
t=2

t−1∑
s=1

φε(zt,n)φε(zs,n)

where cn =
√
n, τ =

∫∞
−∞

∫∞
−∞ ġ(a)ġ(b)K(a − b)dadb, φε(z) = 1

ε
√

2π
exp

{
− z2

2ε

}
, and

φ(x) = φ1(x). Suppose Assumptions 4.1, (A1)-(A6) hold. Then, for any r ∈ [0, 1]

and ε > 0,

L(r)
n,ε −M (r)

n,ε = op(1)
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Proof: The proof refers to Lemma B of [20] Write

L(r)
n,ε =

c2
n

n2

[nr]∑
t=2

t−1∑
s=1

∫ ∞
−∞

∫ ∞
−∞

∫ ∞
−∞

ġ[cn(zt,n + x1ε)]ġ[cn(zs,n + x2ε)]

K[
cn
h

(zt,n − zs,n + x1ε− x2ε)]φ(x1)φ(x2)dx1dx2

=
c2
n

n2h

[nr]∑
t=2

t−1∑
s=1

∫ ∞
−∞

∫ ∞
−∞

ġ(cna)ġ(cnb)K[dn(a− b)]φε(a− zt,n)φε(b− zs,n)dadb

=
c2
n

2n2h

[nr]∑
t=1

[nr]∑
s=1

∫ ∞
−∞

∫ ∞
−∞

ġ(cna)ġ(cnb)K[dn(a− b)]φε(a− zt,n)φε(b− zs,n)dadb

+s.o.

Then, similar to the proof of Lemma B in [20], it is readily seen that as n→∞,

sup
r

∣∣L(r)
n,ε −M (r)

n,ε

∣∣→ 0.

Lemma B.12 follows.

Lemma B.13. Let LVc(r, s) be a continuous local time process for measurable process

Vc(t) satisfying the following equation,∫ r

0

φε(VC(t))dt =

∫ ∞
−∞

φε(s)LVc(r, s)ds (44)

Suppose Assumptions 4.1, (A1)-(A6) hold. Then, for cn =
√
n and r ∈ [0, 1],

c2
n

n2h

[nr]∑
t=2

t−1∑
s=1

ġ(cnzt,n)ġ(cnzs,n)K(cn(zt,n − zs,n))
d−→1

2
τL2

Vc(r, 0)

Proof: The proof refers to Theorem 2.1 of [5]. Write

L(r)
n =

c2
n

n2h

[nr]∑
t=2

t−1∑
s=1

ġ(cnzt,n)ġ(cnzs,n)K(
cn
h

(zt,n − zs,n))

L(r)
n,ε =

c2
n

n2h

[nr]∑
t=2

t−1∑
s=1

∫ ∞
−∞

∫ ∞
−∞

ġ(cn(zt,n + x1ε))ġ(cn(zs,n + x2ε))K[cn(zt,n − zs,n

+x1ε− x2ε)]φ(x1)φ(x2)dx1dx2

where φ(x) = φ1(x) with φε(x) = (1/ε
√

2π exp {−x2/2ε2}).

Then, by lemma B.12, We have
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L(r)
n,ε −

τ

n2

[nr]∑
t=2

t−1∑
s=1

φε(zt,n)φε(zs,n) = op(1)

uniformly in r ∈ [0, 1]. Next, we just need to show

lim
ε→0

lim
n→∞

sup
0≤r≤1

E|L(r)
n − L(r)

n,ε| = 0 (45)

It follows from the continuous mapping theorem that, for ∀ε > 0 and ∀r ∈ [0, 1],

1

n2

[nr]∑
t=2

t−1∑
s=1

φε(zt,n)φε(zs,n)

=
1

2

∫ r

0

∫ r

0

φε(z[tn],n)φε(z[sn],n)dsdt+ s.o.

d−→ 1

2
L2
Vc(r, 0)

Then, we prove (45). Write Yt,s,n = ġ[cnzt,n]ġ[cnzs,n]K[cn(zt,n − zs,n)]− ġ[cn(zt,n +

x1ε)]ġ[cn(zs,n + x2ε)]K[cn(zt,n − zs,n + x1ε− x2ε)]. Next, it’s easy to see that

sup
0≤r≤1

E|Ln − Ln,ε| ≤
1

2

∫ ∞
−∞

∫ ∞
−∞

c2
n

n2h
sup

0≤r≤1
E

∣∣∣∣∣∣
[nr]∑
t=1

[nr]∑
s=1

Yt,s,n(x1, x2)

∣∣∣∣∣∣φ(x1)φ(x2)dx1dx2

(46)

Because zt,n/dt,0,n has a density ht,0,n(x) that is bounded by a constant and the

kernel function K(·) is also bounded, we have

c2
n

h
E|Yt,s,n| ≤

Ac2
n

2

∫ ∞
−∞

∫ ∞
−∞
|ġ[cn(dt,0,n + x1ε)]ġ[cn(ds,0,n + x2ε)]− ġ[cndt,0,nz1]ġ[cnds,0,nz2]|

ht,0,n(z1)hs,0,n(z2)dz1dz2

≤ A

2dt,0,nds,0,n

∫ ∞
−∞
|ġ(z1 + cnx1ε)− ġ(z1)|dz1

∫ ∞
−∞
|ġ(z2 + cnx2ε)− ġ(z2)|dz2

≤ A

[∫ ∞
−∞
|ġ(z)|dz/dt,0,n

]2

Then, it follows that

c2
n

2n2h
sup

0≤r≤1
E|

[nr]∑
t=1

[nr]∑
s=1

Yt,s,n(x1, x2)| ≤ A1
1

n2

n∑
t=1

n∑
s=1

1

dt,0,nds,0,n
<∞ (47)

This, together with (46) and the dominated convergence theorem, implies that , to

prove (45), it suffices to show that, for fixed x1 and x2,
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Λn(ε) =
c2
n

n2h
sup

0≤r≤1
E

 [nr]∑
t=1

[nr]∑
s=1

Yt,s,n(x1, x2)

2

→ 0 (48)

Refer to Proof of Theoren 2.1 in [5], we can see that (48) is true. Now, the result

is stated.

Lemma B.14. Under Assumptions given in Theorem 3.2.1, under H0, we obtain

G2n = Op (n−
3
2 ) and G3n = Op(n

− 3
2 ), where G2n and G3n are defined in (36) and (37),

respectively.

Proof: By Taylor expansion, g(zt, θ̂) is written as

g(zt, θ̂) = g(zt, θ) + ġ(zt, θ)(θ̂n − θ) + s.o.

Also, note that the convergence rate of θ̂n is n1/4 according to Theorem 2.3.1. Then,

lemma B.12 and lemma B.13 are applied to get the following result

c2
n

n2h

n∑
t=2

t−1∑
s=1

ġ(zt, θ) ġ(zs, θ)K

(
zt − zs
h

)
d−→1

2
τ  L2

Vc(1, 0)

Hence, we have

G2n ∼
1

n2h

n∑
t=1

∑
s 6=t

(g(zt, θ̂n)− g(zt, θ)) (g(zs, θ̂n)− g(zs, θ))Kts

=
2

n

c2
n

n2h

n∑
t=2

t−1∑
s=1

ġ(zt, θ)(θ̂n − θ) ġ(zs, θ)(θ̂n − θ)Kts + s.o.

=
1

n
(θ̂n − θ)2 c2

n

n2h

n∑
t=2

t−1∑
s=1

ġ(zt, θ) ġ(zs, θ)Kts + s.o.

= Op(n
−3/2)

Next, let

G3n ∼
1

n2h

n∑
t=1

∑
s 6=t

ut(g(zs, θ̂n)− g(zs, θ))Kts ≡ An



49

In a similar way to dealing with G2n,

A2
n =

4σ2
u

n4h2

n∑
t=3

t−1∑
s1=2

s1−1∑
s2=1

(
g(zs1 , θ̂n)− g(zs1 , θ)

)(
g(zs2 , θ̂n)− g(zs2 , θ)

)
Kts1Kts2

=
σ2
u

n5/2
(θ̂n − θ)2 c3

n

n3h2

n∑
t=3

t−1∑
s1=2

t−1∑
s1=2

ġ(zs1 , θ)ġ(zs2 , θ)Kts1Kts2 + s.o.

= Op (n−3)

So, G3n = Op(n
−3/2). This completes the proof of Lemma B.14.

Lemma B.15. Under Assumptions given in Theorem 3.2.1, we obtain

Σ̂ =
1

n
3
2h

n∑
t=1

∑
s 6=t

ũ2
sũ

2
tK

2
ts

p−→ Σ,

where ũt = Yt − f̂ (−t) (Zt) is the nonparametric residual and Σ is defined in (27).

Proof: Note that ũt = Yt − f̂ (−t) (Zt) = ut − [f̂ (−t)(Zt) − f(Zt)]. By Assumption A8

we know that we can replace ũt by ut to obtain the leading term of Σ̂. Following the

proof in Lemma B.11, we obtain

Σ̂ =
1

n
3
2h

n∑
t=1

∑
s 6=t

ũ2
sũ

2
tK

2
ts + op(1) =

1

n
3
2h
σ4
u

n∑
t=1

∑
s 6=t

E(K2
ts) + op(1)

p−→ Σ.

Remark: Here we emphasize that it is important to use the nonparametric residual in

computing Σ̂. If the nonparametric residual ũt is replaced by the parametric residual

ût = Yt − g(Zt, θ̂) = ut − [g(Zt, θ̂) − f(Zt)], then under H1, ût = ut + Op(1), and

Lemma B.15 does not hold and the resulting test may have only trivial power even

as n→∞.

Proof of Theorem 3.2.1 (ii): Under H1, fn(zt) = g(zt, θ0) + n−γG(zt) + ut and I1n is

the same as that defined under H0. Hence, I1n = Op(n
− 5

4h−
1
2 ).

Now, we consider G2n.
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G2n ∼
1

n2h

n∑
t=1

∑
s 6=t

[
g(zt, θ̂n)− fn(zt)

] [
g(zs, θ̂n)− fn(zs)

]
Kts

=
1

n1+2γ

dn
n2

n∑
t=1

∑
s6=t

G(zt)G(zs)Kts + s.o.

= Op(n
−(1+2γ))

Finally, we deal with G3n in a similar way as G2n,

G3n ∼
1

n2h

n∑
t=1

∑
s 6=t

ut(g(zs, θ̂n)− fn(zs))Kts ≡ Bn

B2
n =

2σ2
u

n4h2

n∑
t=3

t−1∑
s1=2

t−1∑
s2=1

(
g(zs1 , θ̂n)− f(zs1)

)(
g(zs2 , θ̂n)− f(zs2)

)
Kts1Kts2

=
σ2
u

n2+2γ

d2
n

n3

n∑
t=3

t−1∑
s1=2

t−1∑
s2=1

G(zs1)G(zs2)Kts1Kts2 + s.o.

= Op (n−(2+2γ))

Therefore, G2n = Op(n
−(1+2γ)) and G3n = Op(n

−(1+γ)) under H1. Since γ > 0, G2n

is the leading term. Then, the test has power if

n
5
4h

1
2 Op(n

−(1+2γ)) ≥ Op(1)

is satisfied.

Suppose bandwidth h = an−δ, where a and δ are constant, we get γ ≤ 1
8
− δ

4

by solving inequality B. If the rate for h is set to be n−
1
10 , the optimal rate for

bandwidth in nonparametric nonstationary regression, γ ≤ 1
10

is required for the test

to have power.

This concludes the proof of Theorem 3.2.1 (ii).


