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ABSTRACT

XIAOYU WANG. A two-stage framework for designing visual analytics systems to
augment organizational analytical processes. (Under the direction of DR.

WILLIAM RIBARSKY)

A perennially interesting research topic in the field of visual analytics is how to

effectively develop systems that support organizational knowledge worker’s decision-making

and reasoning processes. The primary objective of a visual analytic system is to

facilitate analytical reasoning and discovery of insights through interactive visual

interfaces. It also enables the transfer of capability and expertise from where it

resides to where it is needed–across individuals, and organizations as necessary.

The problem is, however, most domain analytical practices generally vary from

organizations to organizations. This leads to the diversified design of visual analytics

systems in incorporating domain analytical processes, making it difficult to generalize

the success from one domain to another. Exacerbating this problem is the dearth of

general models of analytical workflows available to enable such timely and effective

designs.

To alleviate these problems, this dissertation presents a two-stage framework for

informing the design of a visual analytics system. This two-stage design framework

builds upon and extends current practices pertaining to analytical workflow and

focuses, in particular, on investigating its effect on the design of visual analytics

systems for organizational environments. It aims to empower organizations with

more systematic and purposeful information analyses through modeling the domain

users’ reasoning processes.
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The first stage in this framework is an Observation and Designing stage,

in which a visual analytic system is designed and implemented to abstract and

encapsulate general organizational analytical processes, through extensive collaboration

with domain users. The second stage is the User-centric Refinement stage,

which aims at interactively enriching and refining the already encapsulated domain

analysis process based on understanding user’s intentions through analyzing their

task behavior. To implement this framework in the process of designing a visual

analytics system, this dissertation proposes four general design recommendations

that, when followed, empower such systems to bring the users closer to the center of

their analytical processes.

This dissertation makes three primary contributions: first, it presents a general

characterization of the analytical workflow in organizational environments. This

characterization fills in the blank of the current lack of such an analytical model and

further represents a set of domain analytical tasks that are commonly applicable to

various organizations. Secondly, this dissertation describes a two-stage framework for

facilitating the domain users’ workflows through integrating their analytical models

into interactive visual analytics systems. Finally, this dissertation presents recommendations

and suggestions on enriching and refining domain analysis through capturing and

analyzing knowledge workers’ analysis processes.

To exemplify the generalizability of these design recommendations, this dissertation

presents three visual analytics systems that are developed following the proposed

recommendations, including Taste for Xerox Corporation, OpsVis for Microsoft, and

IRSV for the U.S. Department of Transportation. All of these systems are deployed to
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domain knowledge workers and are adopted for their analytical practices. Extensive

empirical evaluations are further conducted to demonstrate efficacy of these systems

in facilitating domain analytical processes.
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CHAPTER 1: INTRODUCTION

The primary objective of a visual analytic system is to facilitate analytical reasoning

and the discovery of insights through interactive visual interfaces. It also enables the

transfer of capability and expertise from where it resides to where it is needed–across

individuals, and organizations as necessary. As the field strides forward, visual

analytics research has been applied to various domains and thus lead to the development

of diversified systems that are tailored to individual domain. Many of current systems

have demonstrated the utility in facilitating domains analysis. For example, Wang et

al. [168] incorporated the investigative journalism methodologies into an interactive

visual analytics system to facilitate policy makers’ investigation of global terrorism

activities; Xiao et al. [174] presented a traffic analysis system to help network traffic

analyst analyze cyber-attack patterns through the use of domain knowledge representation.

A perennially interesting research topic in the field of visual analytics is how

to effectively design and develop systems that augment organizational knowledge

worker’s decision-making and reasoning processes. The topic becomes significant

because, as visual analytics is applied to more analysis domains, the field needs to

identify a general design framework that can instrument an effective system design

and development, and provide researchers a basis for making assessment about visual

analytics use patterns, and evaluate its impacts.

The problem is, however, most of domain analytical practices generally vary from

organizations to organizations. This leads to the diversified design of visual analytics

systems in incorporating domain analytical processes. With few exceptions [127,

164], the process for analysis-integration utilized in most of current visual analytics

systems is often specific to the targeted domain and its analytical tasks. The lack
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of consensus, from knowledge workers in different domains, on general analytical

tasks and workflows makes it difficult to generalize the success of one visual analytics

systems to new problem domains.

Exacerbating this problem is the dearth of general recommendations to articulate

the boundaries within which particular design assumptions apply. While a few

models [29, 115, 161] have been created to inform the conceptual design processes

for visualization, these models have not yet been developed to a point where they can

provide tangible system design recommendations, nor making the design process more

tractable for visual analytics developers. Thereby, they are still limited on instructing

and improving visual analytics development outcomes.

To address these problems, the needed design framework must comply with two

fundamental requirements: 1) it must reveal the generalizability of visual analytics

as a science in encapsulating and facilitating domain analysis processes, and more

importantly 2) it must clearly inform a systematical development process that guarantees

the efficacy and validity of a customizable visual analytics system.

To achieve such framework, in the past three years, this research conceptualized

and followed a series of research processes: it began by categorizing the design

experiences gained from collaborations with various organizations into a general

organizational analysis workflow. Then, validated by domain users, this research

encapsulated the general workflow into a two-stage design, and listed the necessary

design considerations for each stage. It further followed these considerations and

developed actual visual analytics system through iterative prototyping with domain

users. Through extensive empirical evaluations of the two design stages, this research

finally encapsulated both stages into a general design framework, and outlined its

four essential design recommendations.

This dissertation started by extending current practices pertaining to analytical

workflow and focused, in particular, on investigating its dynamics to the design of
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visual analytics systems for organizational environments. Specifically, three extensive

collaborations were conducted with organizations and groups of knowledge workers

to gain insights about the general analytical tasks and workflows. The results in

this dissertation are grounded on actual system developments with three groups of

professionals in different organizational settings: bridge-asset managers in The U.S.

Department of Transportation, who propose and execute strategic bridge maintenance

plans; business analysts from Xerox, who retrieve and analyze documents for information

essential to the operation of the business; and network operational manager from

Microsoft, who monitors the status of physical servers and network health. The

developments of visual analytics systems are carried out through close examinations

of these domain users’ analytic workflows, and interviews with them in learning

their actions required for achieving each analytical task. As suggested in previous

empirical studies [18, 20][15], the observed analysis tasks in these large organizations

are representative across the similar domains and, thereby of great value for generalizing

the needed analytical workflows.

Based on these extensive collaborations, a two-stage design framework is proposed

in this dissertation for designing visual analytics systems. The goal for this framework

is to inform the design of a visual analytics system through disseminating and incorporating

the general analytical workflows into the process. In particular, as shown in Figure 1,

the first stage in this framework is an Observation and Designing stage, in which

a visual analytic system is designed and implemented to abstract and encapsulate

general organizational analytical processes. The second stage is the User-centric

Refinement stage, which aims at interactively enriching and refining the already

encapsulated domain analysis process based on understanding user’s intentions through

analyzing their analysis processes. Details of each design components and their related

design processes are described in Chapter 4.

To implement this framework in the process of designing a visual analytics system,
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Figure 1: An overview for the two-stage design framework.
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a set of four general design recommendations is suggested in this dissertation. As

shown in Table 1, these recommendations are presented as a natural progression for

designing a visual analytic system. From the initial communication with targeted

domain users and to the prototyping and iteration of visual analytics system, these

recommendations illustrate the necessary actions and recommendations to design a

visual system that augments organizational analytics processes.

Table 1: The four recommendations for the two-stage design framework.

Recommendation 1 Characterize Organizational Analytics Processes Through
Interactions with Domain Users

Recommendation 2 Disseminate Analytics Workflows to Key Actionable Knowledge
Recommendation 3 Design for Actionable Knowledge Transformation Through

Software Prototyping
Recommendation 4 Design for Integrating individual’s Analysis Practices with General

Analytical Workflow

The primary contributions of this dissertation are therefore threefold: first, this

dissertation presents a two-stage framework to incorporate both the general domain

analytical workflow and individual analysis processes into the design of a visual

analytics system. It illustrates general design considerations that, when followed,

empowers a visual analytics system to bring the users closer to the center of their

analytical processes.

By placing the analytical models into the center of the visual analytics design, this

framework enables the domain users to directly interact with the data in real time and

makes analytical decisions in an customized reasoning environment. This framework

presents a general characterization of the analytical workflows in organizational environments.

This characterization fills in the blank of the current lacking of such analytical model

and further presents a set of domain analytical tasks that are commonly applicable to

various organizations. Specifically, this work has identified six task activities essential

for these professionals’ decision-making workflows.
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As shown in Figure 2, these six tasks are recurrent and central in jobs involving

foraging and organizing relevant information, and enable these workers to update

status and coordinate progress with other individuals and groups. Currently, these

tasks are handled dispersedly in an individual’s workflow with little support for

systematically aggregating, organizing, or analyzing the desired information. This

high-level semantic workflow is further disseminated into key knowledge actions, more

tangible artifacts that represent the fine-grained design elements of each analytical

task.

Secondly, this dissertation provides a general ground to bridge research and industry

on design and development. It connects the academic research on visual analytics to

industrial organizations, and showcases the utility of organizational visual analytics

systems. The use of the proposed framework would not only provide the industrial

collaborators concrete ideas about the utility of a visual analytics system, but also

suggest practical design processes and considerations for implementing visual analytics

system.

To illustrate the generalizability and effectiveness of the design considerations,

three organizational visual analytics systems are introduced and evaluated in this

dissertation. These systems are designed using the proposed considerations as a basis.

All of the three systems are deployed to domain knowledge workers and were adopted

for their analytical practices. Extensive empirical evaluations are further presented

to demonstrate efficacy of these systems in facilitating domain analytical processes.

In addition, by bridging the gap between high-level design concepts and fine-grain

implementation of such concepts, this dissertation provides a pragmatic view of

implementing an organizational visual analytics system that can help augment organizational

information analyses through modeling domain users reasoning approaches

Finally, this dissertation presents design considerations on enriching and refining

domain analysis through capturing and analyzing knowledge workers’ analysis processes.
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The considerations are used to achieve the user-centric analysis refinement stage.

This work presents two possible techniques to achieve in this stage—namely interaction

capturing, and annotation sharing—and further discusses their utility in understanding

users’ analytical preferences in order to customize their analysis processes. Both the

techniques have been utilized in the design of two visual analytics systems to exemplify

their utility. Empirical evaluations with domain analysts has been conducted to

demonstrate the efficacy of these techniques in supporting customized analytical

processes.

This dissertation is structured as follows. Chapter 2 outlines the previous work

which is relevant to acquiring and incorporating knowledge with visual analytics.

Chapter 4 presents the two-stage design framework. Chapter 3 introduces the four

design recommendations that are used in instrumenting the designs of a visual analytics

system. For each recommendation, detailed examples are presented to show the

means to follow the recommendations. Chapter 5 evaluates the framework and each

recommendation in detail for individual collaboration. Together with the conclusions

and some future research directions as described in Chapter 6, this dissertation intends

to serve as a step forward in fully developing a theoretical foundation for visual

analytics designs.
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CHAPTER 2: RELATED WORK

2.1 Objectives

The aim of this chapter is to identify a comprehensive set of theoretical information

about visual analytics design. A broad analysis of relevant existing frameworks must

be accomplished to serve as a foundation for the objective of the research, that is

to synthesize some useful theoretical concepts for the construction of the two-stage

framework for designing organizational visual analytics.

The current literature does not yet present a general framework for design visual

analytics systems; and building such design framework is the main scope of this

dissertation. It is postulated that there do exist in the current literature sufficient

practical implementations about visual analytics design to form a solid foundation

from which to synthesize useful framework. The object of this chapter is to form such

foundation .

After reading this chapter, readers should understand the several existing visualization

and HCI design frameworks that relevant to the construction of the visual analytics

design framework. Readers should further understand the needs for designing visual

analytics system for organizations.

2.2 Background

Visual Analytics is the discipline emphasizes on the facilitation of human’s reasoning

processes. The premise of visual analytics is concerned with the domain analysis,

design, evaluation, and the implementation of interactive visualization systems. In

particular, the core science of visual analytics examines the phenomena that surround

the domains’ analysis processes and more importantly, portraits and enhances those
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phenomena through encapsulating them into interactive visual interfaces. Since its

inception five years ago, the field of visual analytics has been a emerged discipline

that has undergone tremendous growth and recognition. It has been applied to many

domains to address the need of managing the ever-growing mountain of data, and

helps the domain users to make sense of data, information, and knowledge through

the use of computation and visualization.

The pioneers of visual analytics—researchers joined from data analysis, information

visualization and HCI—has brought with them invaluable application designs, algorithmic

thinkings, and engineering traditions. Quite early on, the influence from intelligence

community stressed the application of analysis model and theories of sense-making

processes when designing the visual analytics systems [23][95][71]. As show in Figure 3,

the sense-making loop presented by Card and Pirolli [131] provides a theoretical basis

for understanding and portraying the analytical discourse that the analyst performs.

Later on, parts of the cognitive science showed interests in this emerging field and

introduced the field with a science approach, that is a strong belief in the value of

empirical observations of analysis processes and users’ performances [61].

Recently, influences from machine learning, human-computer interaction and knowledge

management [167] came to establish the methodological grounds in the field of visual

analytics, broadening its scope to not only design visual interfaces for individual

users, but also to reveal the needs of visual analytics designs for the broader analytical

processes that are taken places across individuals, groups, and organizations. Therefore,

the contemporary visual analytics field is multidisciplinary to its nature, and it

has been fast maturing thanks to the collective contributions from these diversified

research areas.

2.3 Motivation

The core of contemporary visual analytics lies on the capturing and encapsulating of

domain analysis processes in to a human-centered software design. This fundamental
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Figure 3: The sense-making loop proposed by Card and Pirolli [131].

drives the maturation of the field, and converts the researchers ideas materialize and

take on concrete forms.

However, a comprehensive general model of designing a visual analytics systems for

organizations is not published in the current literature. This dissertation performs

a comprehensive analysis to identify the existing relevant practical implementations

and design frameworks. It utilizes these set of identified research to form a solid

foundation from which to synthesize useful framework (see Chapter 4).

In pursuing the successful design of a visual analytics system, this dissertation

started by performing a thorough scan of the existing models.

2.4 Design Framework in Visualization and HCI

Many researchers have studied the design framework in related areas to visual

analytics. These research efforts can be categorized into three groups, data-centered

design model, process driven design mode and system capability-driven approach.

All these categories have resulted in successful designs of visual analytics, and are



12

effective in characterizing visualization operations.

2.4.1 Data Driven Visualization Design

In the data drive visualization design, the researchers focuses on accommodating

the nature of the data. Their emphasizes the utilization of mathematical and statistical

methods in deducting the informations embedded in a dataset. One of the earliest

practitioner, Jacques Bertin had noted that on the understanding of deduction of

relationships is a matter of permutation [12]. Bertin further proposed a synoptic

that differentiated between ordered, reorderable, and topographic data, established

retinal qualities of marks that would allow viewers to differentiate between marks,

and provided recommendations for representing data as arrays of marks, histograms,

and curves based on its dimensionality.

John Tukey, in addition, developed several methods known collectively as exploratory

data analysis [157]. Tukey was interested in using statistics to extract potentially

useful hypotheses from data, as opposed to confirming existing proposed hypotheses.

To accomplish these goals, he introduced quantitative methods to reduce the effect

of outliers, such as resistant lines and median polish analysis, and visual techniques

such as box plots, rootograms, and Pareto charts that emphasize summary statistics

and enumerate potential root causes of phenomena.

2.4.2 Process-based design

Van Wijk [161] had tried to answer the question how the value of visualization can

be assessed using a process . He considered visualization purely from a technological

point of view, aiming for effectiveness and efficiency. This requires that costs and

benefits are assessed. The simple model proposed enables us to get insight in various

aspects of visualization, and also to understand why certain classes of methods

have success and others not. Another view is to consider visualization as an art,

i.e., something that is interesting enough for its own sake, and finally a view on
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visualization as an empiric science was dis- cussed. Finally, He considers that each

view that is adopted does imply playing a different game, and if we want to win,

we should play those games according their own rules: aim for provable effectiveness

and efficiency, aim for elegance and beauty, and aim at generic laws with predictive

power.

Ming et al. [30] in their position paper on knowledge assisted visual analytics

system had proposed an high-level design pipeline. This pipeline focuses on utilizing

visualization to help application users to transfer data in the computational space to

information and knowledge in the perceptual and cognitive space. As a discipline,

they suggests the need for visual analytics infrastructures to support the development

of about visualization, and to transfer such data to information and knowledge, which

helps further our understanding as well as enhance the visualization technology. While

this pipeline provided a clear conceptual design direction for visual analytics systems,

it has been too general and high-level to be informative for actual system development.

Munzner [115] proposed a nested model in designing visualization system. In this

model, Munzner focused on the use of validation to guide the visualization designers to

navigate through the design processes. She presented the nested model that classifies

validation methodologies for use at only one of four separate levels, in a unified

approach to visualization design and evaluation. While it is not directly targeted

at addressing challenges in visual analytics, this model has quite influence to the

development of this dissertation.

2.4.3 System Capability-driven Design

Card, Pirolli and colleagues have done work in understanding analyst sensemaking

techniques using cognitive task analysis techniques [131]. This work posits interlocked,

bidirectional information foraging and sensemaking loops, and describes high-level

tasks done in going both from theory to data as well as data to theory.

Chi et al. [32] extended the Card reference model into a Data State Reference
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Model [24] in order to isolate common operational steps within each visualization

type. Chi had the explicit aims of assisting implementers with choosing and deploying

visualization techniques and broadening the visualization design space. In addtion,

Chuah et al. [33] present frameworks for organizing the different types of interactions

within a visualization. Both Chi and Chuah et al. organized the interactions by their

end effects (e.g., whether the value (data), view (graphics), or some combination

is affected). Chi discussesed implementation only briefly, pointing out that where

the operator would be optimally placed (within the visualization, the database, or

in a specialized tool) depends on where in the visualization pipeline the interaction

falls. They further taxonomizes existing visualization techniques into several data

categories (scientific visualization, geographic visaulizations, multi-dimensional, information

landscape).

Shneiderman [143] posits a task-by-data-type taxonomy that crosses information-seeking

visualization tasks with different types of data and discusses both examples and

missed opportunities for supporting the given tasks. The taxonomy assumes an

implicit mapping between user goals and these visualization tasks. Snap-Together

Visualizations [120] focus on how to layer user interaction on top of visualizations

for coordination. While they focus on interaction rather than visualization (leaving

that to the individual visualization tools snapped together using their interface), they

have a very different model in which every visualization that is snapped together is

done so via the equivalent of a database join. This model leads to easily achieving

some powerful interaction capabilities such as brushing and linking.

As a result of these interdisciplinary research collaborations, the science and techniques

of design visualization have reached a matured status. There is a significant amount of

ongoing development currently in information-assisted visualization, such as UrbanVis [27]

and Terrain Analysis [22]. With a large amount of information collected locally

and globally, it is inevitable that there will be a transition to knowledge- assisted
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visualization. have been applied and well-received by many analytical domains.

In summary, while all these approaches had demonstrated influences in visual

analytics designs, they are often too general to be informative to actual system

designs. More over, the core foundation of visual analytics lies on the incorporation

and customization for analysis processes, which are not explicitly supported by these

frameworks. Therefore, the primary goal for this dissertations is to develop a comprehensive

general model of designing a visual analytics systems for organizations.



CHAPTER 3: DESIGN RECOMMENDATIONS AND CASE STUDIES

3.1 Objectives

This chapter presents four recommendations for designing a visual analytics system

for an organizational environment. These four recommendations, as presented in

Table 2, follow a natural progression for designing a visual analytic system. From

the initial communication with targeted domain users and to the prototyping and

iteration of visual analytics system, these recommendations illustrate the necessary

actions to design a visual system that augments organizational analytics processes.

This chapter further presents three successful visual analytics systems to demonstrate

the utility of these recommendations. Each of the four recommendations is validated

by the corresponding actions taken in the design of actual visual analytics systems.

This chapter:

• Illustrates four recommendations in designing a visual analytics system for

organizational environment.

• Validates all four recommendations through actual design practices.

• Presents three actual visual analytics designs and their correlations to the

recommendations.

3.2 Overview

In this chapter, the dissertation describes a set of four design and implementation

recommendations for developing organizational visual analytics systems. These recommendations

are concluded based on several long-term collaborations with multiple organizations,

including Microsoft, Xerox PARC and the US Department of Transportation.
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All four recommendations are used to present the progression from the design of

individual visual analytics system to the conclusion of a general design framework

for the visual analytics field. By describing the evolution of these recommendations

in the context of the actual design practice, the research intends to capture and

present the richness of the design framework in a manner that mere verbal descriptions

cannot achieve. In addition, details about how the development of a visual analytics

system are provided to exemplify the design recommendations. While these design

recommendations focus on the organizational environment, nonetheless, the recommendations

presented in this dissertation presents a general design strategy for a visual analytics

system to follow the two-stage design framework (see Chapter 4).

Table 2: The overview for the design recommendations.

Recommendations Actions
Recommendation 1 Characterize Organizational Analytics Processes Through

Interactions with Domain Users
Recommendation 2 Disseminate Analytics Workflows to Key Actionable Knowledge
Recommendation 3 Design for Actionable Knowledge Transformation Through

Software Prototyping
Recommendation 4 Design for Integrating individual’s Analysis Practices with General

Analytical Workflow

3.3 Recommendation 1: Characterize Organizational Analysis Processes through
Interactions with Domain Users

The analysis process adopted by individual knowledge workers in an organizational

environment is quite representative to inform their domain knowledge. Thus, identifying

a detailed portrait of domain users and their analytical workflows are the most

important design recommendation.

However, as presented in previous research [118] [36], an organizational analytical

task is a process of handling multiple channels of information through the utilization

of trained knowledge and current resources. Characterizing the analytical process in
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an organizational setting, such as a company or a governmental agency, is a complex

process:

• The characterized analytical process must support the needs and practice of a

known user group. This requires a long term collaboration and communication

between the visual analytics system designer and the end-users. Sometimes,

identifying such analysis processes could be difficult due to the lack of general

recommendations.

• The characterized analytical process must incorporate the domain experts’ knowledge

about their analytical workflows. This is challenging since these experts may

not lay clear workflows and do not follow prescription for action. Domain

analysts are used to perform analytical reasoning in their own way, making

the externalizing their workflow difficult.

• The characterized analytical process must represent the prescribed process and

restrict ad hoc analytical processes. This requires a long-term close collaboration

and commitment from both the visual analytics designer and participating

organizations.

All these challenges are exacerbated by the lack of generalized models that can

indicate the representative analytical workflows in an organization. Much of the

current research on designing visual analytics systems for organizations are principally

by trial and error, making it difficult to reuse and generalize the design approaches

applied in different domains.

Therefore, the first recommendation in this design framework focuses on the generalization

of the analytical workflows in organizational environments. This recommendation

emphasizes the use of interactions to engage the end-users in the process of the

development of a visual analytics system. By placing domain analysts in the center of

the design process, this recommendation aims to address the users’ lack of incentives
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to use a new system, and focuses on motivating them to adopt advanced analytical

tools and practices.

In addition, this recommendation presents a baseline for visual analytics designers

to systematically examine each organizational environment, and provides consistent

methods to approach the domain knowledge workers. It provides information for

several design considerations, such as what does the domain knowledge work user

generally know; what do they need to know; and what they probably do not know

yet, but want to know? How do they normally perform domain analysis? And what

could be the implications for their requirements of a visual analytics systems?

Drawing from previous information system design theories [109], this recommendation

is centered on domain process analysis. It regards the understanding of domain

analytical process as a two-step approach. The first step involves the actions that

conduct extensive studies with domain users to learn the answers to the above design

questions. This provides guidance for charactering the general analytical process.

This step follows the process-redesign analysis that is customary in reengineering

engagements, as can be seen in the theory proposed by Hammer et al. [64]. The

involved actions represent the high-level task activities in each individual analytical

domains; and they are summarized and presented in the horizontal analytical workflows,

as a direct diagram illustrated in Figure 7.

The second step involves generalizing the high-level task activities of the analytical

process. Such generalization focuses on cross-process analytical tasks that are commonly

applicable to multiple domains. The latter process representations are also generally

presented as flow diagram. But the corresponding process activities run vertically

down in Figure 7, across the kinds of horizontal analytical-process examined for each

organizational environment.

The remaining of this section introduces the analytical characterizations for the

targeted organizations. It details the interview process and analysis methodologies
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used to specify the task activities for each domain. It further concludes a cross-domain

general analytical workflows through correlating and comparing these individual task

activities.

3.3.1 Action: Characterizing General Organizational Analytics Processes

To produce appropriate design recommendations for an effective visual analytics

system, this research is conducted through extensive collaboration with three large

organizations and groups of knowledge workers. The targeted domain users are

knowledge workers from various analytical domains, including bridge-asset managers

in the U.S. Department of Transportation, who propose and execute strategic bridge

maintenance plans; business analysts from Xerox, who retrieve and analyze documents

for information essential to the operation of the business; and network operational

manager from Microsoft, who monitors the status of physical servers and network

health.

These domain users’ devotion and generosity are of great contribution to the

establishment of this design recommendation. All professionals from the above three

organizations granted the opportunity for close, in-depth interactions with their

knowledge workers and to conduct surveys and interviews, which were crucial in

studying their analytic processes. With the collected inputs, deduct invaluable resources

and insights were deducted to create schematics detailing their workflows, and identify

the general domain analytical processes used across all the organizations.

The characterization of the general domain analytics process is carried out through

close examination of these users’ analytic workflows, and interviews with them in

learning their knowledge work required for achieving each analytical task. Interview

with representatives from the three organizations revealed the analytical needs for the

potential users, including their focuses on fusing multiple streams of data, retrieving

information for context-dependent tasks, analyzing and sharing their findings, and

finally collaborating with others to reach business decisions. In addition, members
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from all three groups are required to generate shared products effectively (e.g., a

maintenance proposal or analytical report). Subsequently, these professionals need

to coordinate with multiple colleagues in different locations to agree on strategic

decisions.

This recommendation is concluded based on three separate investigations with

knowledge workers from each of the three organizations. Participants varied in

number, depending on the availability of these busy professionals at each time. During

each investigation, data was collected using online questionnaires and/or semi-structured

interviews. The data collected was used to characterize these workers’ task activities

within analytical processes, and further used to develop the design requirements for

a visual analytics system.

In the following sections, the procedures and results are described for each investigation.

This work will further summarize the general analytical workflow and its six significant

analytics tasks in Section 3.3.2.

3.3.1.1 Depicting Tasks in Bridge Maintenance Process

Background and Domain Analysis

Bridge maintenance workflow is a process of deciding the severity, trending, relevance,

and benefits of maintenance work on a specific bridge as well as a network of bridges.

According to AASHTO’s asset management recommendations [2], the first step in

this process is to gather relevant data about a particular bridge, including its known

damages, previous maintenance histories, and typical deterioration patterns. Bridge

managers will then start analyzing the obtained information, identifying the needs

for maintenance and coming up with proper maintenance plans.

According to bridge managers from NCDOT, it is common for a bridge manager

to be responsible for hundreds of bridges. Since the federal recommendation dictates

that bridges are inspected on a biennial basis, approximately 50% of the bridges are

inspected in a given year. However, in that same year, only a portion of the bridges,
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approximately 20% - 25%, would require any maintenance attention. Even fewer

bridges (around 10%) may actually receive maintenance work. Given the complexity

of these inspection results, compounded with external constraints on budget and

resources, a bridge manager needs to have complete understanding of all bridges

under his/her jurisdiction when making maintenance decisions.

It is therefore necessary to have a bridge management system (BMS) that monitors

and analyzes the conditions of bridges in a way that allows a bridge manager to

maintain an overview of all bridges and yet retain the capability to inspect detailed

information of a particular bridge. Currently, there are a few available BMSs such

as Pontis[163] and BRIDGIT[66] that promise analytical capabilities. However, there

exist many limitations and issues with these BMSs (some of which will be described

in detail in the following section), many bridge managers, including a few from

NCDOT, still rely on using simple spreadsheets such as Microsoft Excel to perform

their analyses.

Identifying Domain Analytical Workflow and Limits

While these strategies have largely balanced the limited resources with the upkeep

of bridges across the country, the collapse of the I-35 bridge in Minneapolis during

August 2007 serves as a devastating reminder that the complexity of bridge management

still demands novel techniques and proper tools to interpret and understand bridge

data.

Starting in January 2008, a research partnership with the USDOT and The North

Carolina State Department of Transportation (NCDOT) to investigate novel approaches

in assisting the bridge management process. One of the first actions under this

research partnership was to conduct a nation-wide survey [165] regarding professional

profiles, tool usage, and tool preferences. The surveys were designed to provide a

baseline and statistics for comparisons between normal tools used in bridge management,

and to identify potential areas for improvement.
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This survey focused on collecting information about the utilization of BMS in each

state, and asked for feedback on the utilities of the existing systems. As listed in the

following table 3, our survey was centered around these three substantive questions:

Table 3: The three substantive questions to all the state DOTs in the U.S.

Questions Details
Question 1 What do you see as the most important next step

in the further development of your agency’s BMS?
Question 2 What do you see as the necessity of expanding

current BMSs?
Question 3 What are the biggest barriers in your department

in implementing innovations that may strengthen
your BMS?

Thirty-five out of the fifty state DOTs responded to this survey. The results clearly

indicated that current bridge management systems are often insufficient in supporting

effective bridge analysis. Almost all the responding states expressed the need to have

a management system that would enable them to be more effective at analyzing their

bridges, and that such a system needs to be customizable to assist their individual

workflows.

Based on the response of these state DOTs, the major drawbacks of existing

BMSs in supporting domain analytical processes can be categorized in the following

three areas. In general, these areas includes challenges on: the insufficient support

for analytical processes, the restrictions in personalizing analysis routines, and the

difficulties in integrating heterogenous data.

• BMSs have not provided effective support for bridge managers’ decision-making

processes. Many states have reported that they mainly utilize BMSs as data

storage software. Although some BMSs have certain automatic decision making

support capability [163], their analysis tools are not appropriate or adequate to

be incorporated in to a bridge manager’s analysis process.
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• BMSs are rigid in structure and cannot be easily adapted to support

individual bridge manager’s task routines. Many states have reported

that it is difficult for them to customize BMSs to suite their own analytical

approaches. These states have also indicated that it is very difficult for them

to implement additional features within these BMSs.

• BMSs have not provided abilities to incorporate local inspection technologies.

Many states have their own inspections results that are complementary to the

national standard inspections. However, as reported by state DOTs, it is often

difficult to import such information into the data structure that these BMSs

provide.

Based on this categorization, a series of semi-structured interviews were further

conducted with bridge managers on a regular basis (every two weeks), in order

to iteratively identify and propose features that can better support their analyses.

Through these interviews, it becomes clear that bridge maintenance workflow is a

process of deciding the severity, trending, relevance, and benefits of maintenance work

on specific bridges, as well across as entire networks of bridges. Bridge managers hold

the role of knowledge manager and are attuned to information analysis and sharing

practices.

Figure 4: A typical analytical workflow for bridge maintenance planning.

As shown in Figure 4, the first essential analytical task in the bridge analysis

process is to gather all the relevant data about a particular bridge, including any
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known damage, previous maintenance history, and typical deterioration patterns of

the materials involved. Bridge managers then analyze the obtained information,

identify any need for maintenance, and write up proper maintenance plans. It is also

noted that bridge managers often need to develop their own custom analysis routines.

Depending on available resources, a bridge manager’s strategy can be very different

from their peers’, requiring a different combination of the above analysis processes.

In addition, sometimes even a single manager needs to utilize multiple alternative

analytical approaches due to changes in priorities. At the heart of these individual

routines are different combinations and sequences of the above analytical processes.

Therefore, it is important for a visual analytics system to provide bridge managers

with the flexibility to combine and sequence these analytical processes to fit their

own, customized workflows.

Several followup interviews had been conducted with state DOTs to understand

the limitations caused by these shortcomings. These interviews were also used to

further identify possible analysis focuses that are essential to support the domain

analytical workflow. In general, there are three analyses that are often crucial to the

bridge maintenance planning: structural analysis, temporal analysis, and geospatial

analysis. As shown in the following paragraphs, these analysis focuses are of great

importance in facilitating bridge managers to assess bridge conditions from multiple

perspectives, and therefore are integral to their daily workflows:

• Dynamic Geospatial Analysis: Bridges exist in a dynamic environment

with changing surroundings. Therefore, rather than using a static map, bridge

managers often need to adapt to new situations and analyze bridges with

additional information such as traffic patterns, flooding regions, and population

densities. According to bridge managers, supporting dynamic geo-exploration

is a primary area for bridge analysis.

• High Dimensional Structural Analysis: Typically, the data representing
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bridge structures are high in dimensionality. Federal regulation requires bridge

inspection to record nearly 130 structural variables biennially. Given the complexity

of the data, a tool that could assist bridge managers’ comprehension of these

variables would be essential. Specifically, on a high level, bridge managers need

to detect and identify causal relationships and trends in these variables so that

they could identify phenomena that are affecting all bridges. On a detailed

level when inspecting a single bridge, bridge managers need to examine the

overall structure integrity of a bridge across multiple variables and to focus on

particular structural components inside that bridge.

• Scalable Temporal Analysis: Through analyzing the temporal changes of a

bridge’s condition, bridge managers can compute the deterioration rate of the

bridge. In addition, bridge managers can adjust the future maintenance plans

by assessing the outcomes from previous work. Therefore, the ability to capture

the temporal information is of great value to bridge managers when planning

for future maintenances. However, temporal analysis in most existing BMSs is

limited to analysis on a per bridge basis. Having an overview that could help

the bridge managers spot bridges with abnormal temporal behaviors would be

very beneficial.

In summary, the detailed characterization of the bridge maintenance workflow (see

Figure 4) is critical in understanding the domain analytical processes and engaging

the incentives from domain users. The primary goal of a visual analytics system

is therefore to address these challenges in accordance with the needs of the bridge

managers at these state DOTs.

3.3.1.2 Identifying Analytical Processes in Cloud Service Management

Along with the investigation on analytical processes in bridge-asset management,

collaboration with Microsoft Cloud Service department introduces another rich organizational
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environment for this research to enrich the analysis of general domain analytical

workflow. In monitoring cloud services, a central problem is to identify anomalies

and problems, in the face of the high degree of replication and the high degree of

natural variability in the workloads. In talking to service developers and operators, a

huge hunger for perspective in identifying anomalies and problems across distributed

systems, and found that perspective comes largely from correlating across the highly

replicated structure of these services. Averages were deemed meaningless, variations

were valued. Therefore, these busy professionals are seeking tools that provide

effective data analyses and help them rapidly gain insights from the deluge of monitored

network data.

Background and Domain Analysis

At Microsoft, several hundred thousand of servers live in data centers around the

world, making up several hundred different cloud services, ranging in size from very

large systems with tens of thousands of servers (such as Live Search and Hotmail)

to far smaller systems with a few dozen servers. Microsoft online services operations

have been running web services since the mid-1990s, and have had to incorporate

many different design philosophies, architectures, and even operating systems over

that time. While the many systems share their physical data centers, and some

first-responder support personnel, each system has its own topology, design, and

dependencies, and as a result requires considerable expertise to maintain.

Expectations for consistent performance and availability of cloud services are high

and getting higher. Yet, within a data center, even under normal operating conditions,

given the scale and complexity of the hardware and software, hundreds of hardware or

software components may be in various degraded states: failing, undergoing upgrade,

or failed. Typically, these problems do not impact performance or availability, as

seen from a user’s perspective: the services build in replication and resilience to

cope with these conditions. That said, inevitably, things can and do go wrong; for
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example, an unanticipated dependency that leads to a significant service outage, or

a situation where too many critical components fail. Operators and developers need

tools to proactively identify looming problems, to localize and diagnose problems

that arise in the field, and to assure unanticipated failures are not triggered during

service upgrade (during which time the system is particularly vulnerable). Today,

the operators of these systems have ready access to enormous lists or tree-views of

individual components, with a blizzard of configuration and usage data available for

viewing behind each component. In addition, new service features, and corresponding

new sets of logging features are born every day. Operators are not lacking in data

about their cloud services. However, and unfortunately, they are often lacking in the

ability to rapidly gain insight from the deluge of available data.

In monitoring cloud services, a central problem is to identify anomalies and problems,

in the face of the high degree of replication and the high degree of natural variability in

the workloads. It may be that one server in a cluster is running slow: perhaps its disk

is failing, and disk seeks are being retried. Perhaps a set of databases are overloaded:

specific content may have suddenly become extremely popular. Perhaps, owing to

aberrations in the workload, computational loads within a cluster are shooting up

and response times are creeping up: it could be that the complexity of answering the

individual requests has increased. Perhaps all machines in one specific cluster are

dropping network packets: it might be a result of workload shift or something totally

unrelated, for example, an ongoing update of network switches.

Identifying Domain Analytical Workflow and Limits

Figure 5: A typical analytical workflow for cloud service management.

To better portray the complex analytical processes, several on-site interviews and
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discussions were conducted to observe the day-to-day operations performed by the

back-end cloud service teams. During this collaboration, the main contact team is

the Address Book Clearing House, or ABCH, a medium-sized cloud service, which

stores users’ address books and presence information. It maintains several hundred

back-end databases, and around one hundred front-end servers, that service requests

for users’ address books from web-based email, instant messaging tools, and other

sources. ABCH, like other services at Microsoft, uses its own set of tools for tracking

its status; an additional set of very general tools give information about the data

center as a whole.

The results from these interviews concluded that, while these busy professionals

thought of the system in terms of connections and clusters, their analytical tools were

more limited. They would examine one custom tool to check one machine’s details,

switch to another for its connections, and query a database for its status. Difficult

as it was to track services on one machine, it was even harder to move from one role

(e.g., front-end) to another (e.g., load balancer), or to separate out clusters from each

other. This caused the team to talk about their systems mainly independently: a

discussion of the front-end would have little discussion of the back-end, for instance.

Moreover, high-value cloud services are often built by combining together other cloud

services. This means that the most important services do not have a single tool from

which the status of the entire service can be viewed. Instead, the separate tools for

each of the components must be sequentially viewed and the information from them

manually integrated and interpreted by the operator. Details of their workflow is

listed in Figure 5.

For each on-site visits, group members from ABCH demonstrated one “over-the-shoulder”

debugging sessions as they worked through recent crisis. In doing so, these knowledge

workers explain details about their analysis process, including what the alert would

be, how they respond to each alert, and when to shift from one maintenance stage
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to another. They further provide details schematics for their system designs and

explained the organizations of their data and analysis needs. Emails and trouble

tickets from system failure were further collected to understand details about their

problem-solving process. Based on these scenarios, the most important problems with

this ecosystem of tools are:

• Scalability

Challenge: Many of the tools built for enterprise applications use mechanisms

such as tree-views for listing the servers, and these mechanisms become unusable

with the thousands of servers in cloud services.

Area of Improvement : There must be accommodation for a large number of

servers and databases. Users should have the ability to find problem spots and

zoom in rapidly, or pull all the way out for an overview.

• Single Perspective:

Challenge: The “tool per component” model forces operators to coalesce and

correlate information, resulting in extra steps for the operator as they switch

between tools and reducing their ability to achieve situation awareness.

Area of Improvement : A support of unified representation is required. All the

information need to be coordinated to support a single and comprehensive data

analysis.

• Rigidity

Challenge: Current tools typically have the architecture of the service deeply

embedded into them, such that a change to the architecture of the service

requires massive changes to the tool. Similarly, choosing to expose new types

of information in the tools can require a substantial rewriting.
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Area of Improvement : Flexibility must be accommodated to different users’

needs, and different services’ requirements. A system should accommodate

both of these variances, and be generally agnostic to the network structure.

Modular components are also necessary to support diversified configuration for

individual data.

• Topology

Challenge: Most tools represent nodes in lists, and have minimal or no way of

representing or separating by network topology or other clusters.

Area of Improvement : A service’s topology will change over time. Rather than

forcing the user to specify details about the topology, the user should instead

provide information on where the data can be found, and the system should

present the results.

• Monitoring overhead

Challenge: Many tools come with their own monitoring infrastructure. If a

single server is to be monitored by several tools, it will often require several

monitoring applications installed on it, at substantial cost in processor cycles

and network traffic.

Area of Improvement : Rather than implementing individual monitoring itself,

the system may take advantage of the logs collected by other existing applications.

These data sources may produce data at different intervals and in different ways.

• Inconsistent data

Challenge: Each monitoring tool operates in its own way and has its own

idiosyncrasies. Existing tools do not accommodate occasional out of range or

non-compliant data. Further, experience shows that sources of meta-data may

be inconsistent with each other (e.g., assigning the same server to two different
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roles or clusters). Today’s tools do not help operators cope with, identify, or

resolve these discrepancies.

Area of Improvement : Each monitoring tool operates in its own way and has its

own idiosyncrasies. The system should accommodate occasional out of range or

non-compliant data. The system needs to handle the inconsistency of certain

database.

• Context loss

Challenge: Users are forced to switch among multiple tools, and must maintain

the context of the jobs they are working on (e.g., the name of the server they

are modifying) using ad hoc methods (e.g., using the copy/paste clipboard).

Area of Improvement : The system needs to handle the variety of data in a

contextually consistent manner. The data comes in a variety of types, including

value data, categorical data, and free text. These need to be handled at low

levels, and summarized at a high level

In summary, working with ABCH cloud service team provided insights about how

a single cloud service team creates, maintains their network assets. It indicated

the mental model and analytical workflow used in such maintenance process. This

characterization helped to establish guiding requirements for the design of a visual

analytics system, detailing the challenges and area of improvements. The designed

system should therefore emphasize on addressing these domain challenges and on

incorporating the necessary areas of improvements. Details for the design of this

system can be seen in Section 3.5.2.2.

3.3.1.3 Understanding Business Information Analysis

To further investigate analytical workflows in organizational environment, a collaborative

project was established with Xerox Corporation in the summer of 2009. In an

organizational environment, such as Xerox, employees’ document-centric activities
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result in the creation of many diverse information streams, including email threads,

calendar entries, web browsing histories, and versions of office documents. Many of

these documents contain information essential to the operation of the business, such

as project proposals and emails capturing product discussions. Thus, the goal in

this project is to investigate the general analysis methodologies used in such a large

organization, compare that analytical workflow with the ones that are previously

observed in DOT and MSR, and finally design a system that is effective to assist

corporate employees in both managing these information streams, and extracting

desired business information from them.

Background and Domain Analysis

In the enterprise environment, employees’ document activities result in the creation

of many information streams, including email threads, calendar entries, Web browsing

histories, and versions of office documents. Many of these documents contain information

essential to the operation of the business, such as project proposals and emails

capturing product discussions. Thus, it is crucial for enterprise employees to have

an effective means to manage these information streams and retrieve desired business

information from them.

However, due to the dynamic and diverse nature of document activities, finding

the desired information can be an exhausting task. Recent reports from Interactive

Data Corp. (IDC) show that employees typically spend 3.7 hours per week searching

but not finding information, and 2.5 hours per week recreating content that couldn’t

be found [37].

One challenge in finding such information is coping with its diversity. Finding

desired information may require using different tools or looking in different places as

a result of the different behaviors and conventions of the many desktop applications,

such as individual office document suites and email clients. This challenge becomes

even more pronounced in projects that take place over long periods of time or that
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involve many people; both of these factors tend to increase the amount of information

to be managed and the number of places in which the information is stored. It

is observed that the complexity of finding such essential information can result in

reduced productivity in an enterprise environment [37]. Therefore, there appears to be

an urgent need for an information management system that can facilitate information

search and retrieval in the enterprise environment.

Some commercial products, such as Google Desktop [57] and Apple Spotlight [9]

have built-in document indexing that enable users to search for information with

keywords. However, keyword search can be difficult and is often insufficient in

an enterprise environment [151]. For example, if one can’t remember the name of

a document or can’t think of any distinctive words or phrases in a document, a

keyword-based search can be doomed to failure. In addition, if one only remembers

a vague time frame of the occurrence of certain document, then searching through

temporally-sorted results can be unacceptably slow.

Alternatively, as described in Thomson et al.’s [43] theory, people remember and

recall things through associations with other clues. A recent observatory study by

Teevan et al. [151] supports the theory that, instead of trying to directly locate the

targeted information by keywords, people usually follow a chain of clues in finding

the desired information. For example, users may not remember the particular title of

a proposal or any text in it, but can find that proposal through some retrieval cues,

such as, the person they have communicated with, the application they used, and

even the rough time frame. In practice, the Feldspar system [28], has demonstrated

the effectiveness of utilizing such retrieval strategy in managing document activities.

Yet, research in applying such retrieval strategies in an enterprise environment is still

in a preliminary stage.

Identifying Domain Analytical Workflow and Limits

The collaborative work with Xerox PARC is an investigation of some next steps
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in designing system that facilitate the document analysis. This project focus on

identifying the specific analytical workflows that are typically used in employees’

document retrieval and analysis activities.

To understand this particular information analysis process, 30 semi-structured

interviews were conducted with Xerox employees. The interviewees held a broad

range of positions, including product researchers who needed to write proposals and

research papers, managers who were in charge of business planning and marketing,

and administrative staff members who oversee hiring. These interviews were designed

to provide us with baseline statistics about the general information analysis methods

that were being used in managing business information.

As shown in Table 4, these interviews focused on examining three substantive

questions:

Table 4: The three substantive questions for interviewees about their information
analysis tasks.

Question 1 How often do you need to search for document
activity information?

Question 2 What are the typical approaches you use in
searching for desired information? Including both
clues and applications.

Question 3 How well do the applications that you use support
your retrieval tasks?

The results of these interviews showed that the most challenging problems for the

corporate employees was handling large amounts of content and, more importantly,

managing information from multiple channels simultaneously. In addition, the results

add support to previous research (see Section 3.3.1.3) that suggests that, while the

some keyword-based approaches are used in workspaces, these applications are less

tailored to support information seeking processes in enterprise environments. Many of

the interviewees mentioned that they usually find it hard to describe things they want
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to find with keywords; some of them also described that often the keywords they used

were not precise enough for such search tools to have useful results. For example, one

interviewee asked “How can I tell the search bar that, even though I don’t remember

the title of a document I am trying to find, I do remember I have copied it to Alice in

an email two weeks ago?” During these interviews, many employees expressed similar

needs: they want tools that can best support their reasoning process and facilitate

them to efficiently find useful information.

Figure 6: A typical analytical workflow for a business information analyst.

As shown in Figure 6, the analytical tasks of finding business information often

include content aggregation, information organization and correlation, and sharing

and collaboration. To analyze certain business information, an employee often starts

with aggregating content, such as possibly relevant documents, into a single location.

They will then filter this large collection of data, and attempt to organize it in a clear

and consistent manner to support the awareness and sense-making process. It is also

noticed that sharing their analysis findings and providing status updates are crucial

activities in these employees’ workflows. Because most current tools lack support

for these critical functions, employees will often resort to paper formats or email to

communicate with other colleagues about the business information which they have

found or their need for help finding it.

During the interviews, many employees expressed similar frustrations: they put

in the effort but could not find any useful information. From these interviews, we

concluded that there is need for a tool that could enable users to be more effective at
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analyzing their activities and retrieving desired information.

Identifying three Essential Retrieval Cues

Many interviewees further provided information about how they recall and search

for document activity information in their daily analytical workflows. Combining

their practical experiences and a review of the prior research literature [28, 43, 151],

this research categorized the retrieval cues into three major categories.

Temporal hints contain significant information relating to document activities.

Specifically, the interviewees mentioned that both the exact date and time when

events occurred can be very helpful (e.g., when documents were received, read,

created, or modified), and also the relative sequences of events.

Content keywords (e.g. the title of a document or the name of a person or

company) are often used in filtering down to the areas of interests during the initial

stage of the retrieval process. In addition, it is observed that certain keywords can

also help employees to associate and connect document activities together [28], and

therefore led them to recall events more precisely.

Document Types or Particular Applications are also considered important

clues for employees to locate desired information [123]. Many employees report

that the first thing they think of in searching for document activities is often the

applications they used. In addition, many interviewees mentioned that these three

retrieval cues generally coexist during their search for the desired information. Therefore,

it is advantageous to integrate them into one system and present the cues to users

cohesively.

All of these retrieval cues are essential in conducting the analysis tasks, and therefore

they are incorporated in the identification of these employees analytical workflows (See

Figure 6).

In summary, the characterization of the business analysts’ workflow indicated the

needs for an integrated, efficient, information retrieval tool tuned to the enterprise
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environment. In response to such needs for, the designed interactive visual analytics

system should aim to enhance corporate employee capabilities for finding and sharing

the business information that is embedded in their daily document activities. Details

of the design are described in a later section (see Section 3.5.2.1).

3.3.2 Six Common Task Activities in Organizational Analytics Processes

As mentioned at the beginning of this chapter (see Chapter 3.3), this first design

recommendation provides suggestions on two main areas: it first emphasizes presenting

a baseline for visual analytics designs to perform systematical examination of each

organizational environments, and provides consistent methods to approach the domain

knowledge workers. Second, it points up the importance of interactions to engage the

end-users in the process of the development of a visual analytics system.

The core of this recommendation is the characterization and generalization of

a set of general domain task activities and workflow. This set of task activities

are cross-domain, and are consolidated and characterized based on the Think Loop

model [131]. These tasks represents the common task activities that are are applicable

to a wider selection of organizational environments, and provides the design of visual

analytics in a theory of information flows through the users’ analysis processes.

Based on a careful analysis across all three organizations, it is clear that, while

different organizations shared diverse tasks, each’s analytical processes constituted a

series of similar, loosely defined, and collaborative task activities. Knowledge workers

accomplished analytical goals via subtasks, had focused targets, and accessed a range

of services and resources [55].

As shown in Figure 7, this recommendation identified six task activities common to

organizational analysis processes. On one hand, these common task activities serve

as means to achieve user-friendly system designs, as shown in Watson et al.’s prior

research. On the other hand, they are crucial components in representing the general

domain analytical workflows, and further illustrate methods to engage the domain
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analysts in the center of the visual analytics design practice.

Utilizing these common task activities, this recommendation lays out the concrete

items that future visual analytics designs could use to approach the end-users. It

aims to address the end-users’ lack of incentives to use a new system, and focuses on

motivating them to adopt advanced analytical tools and practices.

• Content Gathering and Aggregation: Knowledge workers identify appropriately-scoped

content to form basic analytical contributions. They seek and extract information

from multiple channels relevant to the analytical tasks.

• Content Filtering and Customization: Knowledge workers use filtering to

familiarize themselves with content they have collected. They also personalize

the analysis environment in which this content is filtered.

• Content Organization and Information Analysis: Knowledge workers

organize the collected content and examine it from multiple perspectives to look

for data patterns and desired information.

• Evidence Collection and Hypodissertation Generation: Knowledge

workers create hypotheses regarding their analyses, and collect related supporting

evidence.

• Report Generation and Status Update: Knowledge workers increase visibility

to others regarding analysis status, by providing notification and updates on the

progress of their analyses,

• Post-Analysis and Summarization: Knowledge workers focus on validating

project achievements and introspecting workflows, after accomplishing an analytics

process.
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3.3.3 Summary: Recommendation 1

This chapter describes the first recommendation in the design of a organizational

visual analytics system, which is “Characterize Organizational Analytics Processes

Through Interactions with Domain Users ”. This recommendation illustrates the

importance of domain characterization in designing visual analytics, and demonstrated

three successful research collaborations following this direction.

To support integrated analytical workflow and visual analytics system design, this

recommendation extend the individual workflow diagram from above three organizations

to reflect a general analytical workflow that is applicable to various domains. This

extended workflow representation augments the reusability of each domain-specific

analytical task to a broader, more general analytical scope. And it further concludes a

set of six analytical task activities that commonly exist in various analytical domains.

This cross-domain perspective facilitates system design in terms of understanding

the high-level sense-making process in general analytical workflows. It provides a

consistent and efficient instantiations to start visual analytics system designs, and

serves as a good initial approach to engage and communicate with domain users.
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3.4 Recommendation 2: Disseminate Analytics Workflows into Key Actionable
Knowledge

The six common task activities described in Recommendation 1 shows the general

analytical relationship between the knowledge worker, the information source, and

the workflows between the worker and the information source. This tasks activities

outline the analytical processes that are used in a general analytical process, and

illustrate the high-level utility of each process.

While these activities are useful in describing a general analytic process, they are

often too general to provide any specific recommendations in actual system designs.

In order to designing a visual analytics system requires support for the analytical

workflows of the knowledge workers, it is therefore needed for the identification of

tangible design artifacts that can connect the design of a system with the general

domain analytical workflows.

The second recommendation, therefore, focuses on disseminating high-level analytical

workflows to tangible design artifacts. This recommendation is established based on

the determinants of the tangible artifacts in terms of characteristics of the knowledge

worker’s analysis tasks, information source, and the relationship between both the

task and the needed information source. It is typically conceptualized into a two-step

action to identify the nature and criteria for the tangible design artifacts, and to

describe the general analytical workflow using these artifacts.

In the process of searching for the tangible design artifacts, this dissertation has

performed an extensive studying of related research fields, such as knowledge management,

business intelligence, intelligence analysis. The intent of the study is to relate to

existing theories in determining the criteria of the artifacts; and it presents insights

of the associations of analytical needs and task-relevant expertise. This investigation

would further be used in the second step to illustrates the task relationship within the

general analytical workflow, and further disseminate the common task activities into
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concrete visual analytics design elements. In the following sections, both investigation

steps are described in details.

3.4.1 Terminology: Design Artifacts

Following Simon [147] statement on “solving a problem simply means representing

it so as to make the solution transparent.”, this dissertation considers the fine-grain

“representation”, which solves an organizations analytical problems, an “design artifact”.

The design artifacts by nature hold sufficient amount of information to represent the

domain problem-solving process.

The design artifacts can lead to the depiction of the rich phenomena that emerge

from the interaction of people, organizations, and technology [96]. More importantly,

they can be qualitatively assessed to yield an understanding of the phenomena adequate

for theory development or problem solving for an organization [96]. As field studies

enable behavioral-science researchers to understand organizational phenomena in

context, Nunamaker et al. [121] pointed out that such artifact can be represented

in a structured form and are useful for design-related researchers to understand the

atomic-level task activities to organizations’ analytical solutions

As suggested by Hevener et al. [72], the proper way to construct and evaluate

the design artifacts is through empirical observations and studies of an organization.

Particularly, constructs, models, methods, and instantiations needs to be exercised

within appropriate environments to obtain the desired design artifacts.

Therefore, given the imperative value of such artifacts, this dissertation emphasizes

the use of them in informing the appropriate specification for both visualizations and

interactions that are used in a visual analytic system. Specific to the dissertation, it

focuses on capturing the design artifacts that are concrete enough for practical visual

analytics system designs; and more importantly, such artifacts must be consumable

for the knowledge workers, who need to decide how to make use of them, without

introducing a considerable cognitive overhead.
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Several empirical observations with multiple organizations have been conducted

in this dissertation to search for the tangible design artifacts. Details about these

observations are described in the following sections:

3.4.2 Action: In Search of Tangible Design Artifacts

The search for tangible knowledge and design artifacts has been conducted in many

research fields, for instance, knowledge management field, organizational learning,

information retrieval, and intelligence community. For identifying the proper tangible

design artifacts for visual analytics systems, an extensive literature study has been

conducted to establish basis of this design research.

On one hand, many approaches have been used to denote such artifacts in the

field of knowledge management (KM). Prior research in knowledge management

focuses on the capture and sharing of codified experiences and re-apply them to

products [42, 41]. This research has focused on the key role of knowledge and

its management in the analytical processes. A significant amount of the research

efforts have emphasized on building a tangible knowledge-flow, which is then used

to associate the knowledge process (e.g. knowledge creation, consumption, and

transfer) with the analytical process. Among this research, Nonaka et al. [119] has

proposed an influential organizational knowledge management theory. This theory

treats the artifacts in an organizational workflow as tacit (internal, in users’ minds)

and explicit (written down, and transmittable) knowledge. As shown in Figure 8,

a group of four general knowledge conversion processes is designed to describe to

support the transmission and communication of these artifacts. The KM researchers

have further attempted to deal with the management control regarding leveraging

the knowledge structure at the intersection of human and computer [139]. For

instance, Nissen [118] has extended Nonaka’s theory and developed a model of

the knowledge-flow phenomenon. They advanced this theory by incorporating the

consideration of time and life cycles of each conversion process. As show in Figure 9,
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Nissen et al. described in depth about the development of knowledge management in

seeking of the organizational knowledge artifacts designs.

Figure 8: The four knowledge conversion processes illustrated by Nonaka et al. [119]

Figure 9: The Knowledge management life cycle models (adapted from Nissen et
al. [118])

On the other hand, the intelligence community has also focused on identifying the

suitable structures that can be used in representing the design artifacts. Towards

computational approaches, the postulated central role of acquired knowledge has

encouraged efforts to computationally externalize experts’ knowledge into structures

that can be utilized by computers and users [74]. Much of the research has turned into

expert systems, which matches the structure of a knowledge-base to the knowledge

representation of domain experts. Much organization design knowledge is represented

as “if-else” heuristics for suggesting the organizational decisions. Several techniques

have been developed to help systematically construct such knowledge structures.

Specifically, Koppen [97] developed an interactive questioning routine to extract the
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personal knowledge of domain experts. In addition, Langley et al. [100] demonstrated

the possibilities of using computers to algorithmically compute such knowledge structures

and facilitate users to search for patterns in data repositories.

Although knowledge management theory and expert systems may cover a wide

range of organizational knowledge basis, their view of knowledge process are not

suitable to represent the design artifacts for a visual analytics system. First, the

conceptualizations of knowledge being static and hence can be modeled into certain

fixed structures limits the design utility of the designed systems. Many of current

analytical practices in organizations are dynamic, requiring the fast adaptation of

emerging knowledge. The knowledge-base abstracted from each organization may be

lagging behind the actual development of actual analytical process. For instance, in

an analytical domains that shares a fast changing pace (i.e. financial domain and

cyber security), the abstracted domain practice, for example cyber attack patterns

or wire fraudulence patterns, could have already changed by the time the end-users

utilizes the information system. The less flexible structure of knowledge-base would

restrict the expansion and utilization of new domain analytical practices.

Second, many of current knowledge management systems lack consensus and knowledge

integrity due to the diversity of knowledge worker’s practices. Domain users do

not follow a finite set of rules to achieve analysis, but rather balance many tasks

simultaneously and search for an optimal solution [126]. As Bucher et al. [20] pointed

out that, information analysis is generally isolated from the knowledge workers analytical

workflow, leaving a significant amount of data and information detached from an

interpretation context. Since information and domain-knowledge used in an analytical

workflow is not evenly distributed through the organization, individuals knowledge

workers may have individual task routines when solving analytical problem and their

analysis may share differences. Therefore, while the rule-based presentation may work

for experts, observations show that it doesn’t match non-expert’s expectations of an
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analytical system [109].

Finally, yet importantly, it is traditionally a challenge to assess and maintaining

the validity and integrity of a knowledge base. In general, there are four potential

issues that can introduce informal or even ill-structured domain knowledge into an

existing knowledge base: duplicated, partial-overlapped, imprecise and conflicting

knowledge [167]. Without careful validations of the association between the system

and actual domain analytical practice, these issues may potentially degrade the

value of the incorporated knowledge and may lead to inaccurate analytical processes.

Nonetheless, it is still quite cumbersome in applying precise metrics to validate

the integrity of a knowledge base, due to the quantify of knowledge elements and

complexity of the internal relationships.

3.4.3 Action: Identify Design Requirements through Implicit Dialectical Process

Even though the knowledge management modeling approaches are limited, they do

point out the importance of the existence of domain expertise and ways to extract

them from the domain users. It is recognized that the autonomy of knowledge

workers makes explicit knowledge-modeling process guidance risky and failure-prone.

Based on the examination of previous literature [109, 74, 10, 178], there hasn’t

been a effective way to ensure that the knowledge workers would conduct complete

analyses or engage their co-workers in deliberations about the meanings of terms,

interpretations of findings, and evaluations of alternative actions. Therefore, instead

of asking them information explicitly, this research guided the domain users (including

expert representatives and general end-users) implicitly through the task analysis,

and emphasized on revealing the importance of knowledge actions to support the

transitions between different analytical task stages,

The implicit task analysis were done through dialectical process [109]. Through

communicating with these professionals, this dialectical process placed the domain

users in their most familiar environment, and encouraging them to perform as much
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analysis as they normally would do. In this process, both consensus and contradictions

were collected to form the mechanism by which effective actionable knowledge is

identified and captured. Both processes were further integrated within the analytical

process as a whole.

These task analysis further led to the determinants of the target design artifacts

for two basic requirements: (1) they need to be concrete enough for practical visual

analytics system designs, and more importantly (2) they must be consumable for the

knowledge workers, who need to decide how to make use of them, without introducing

a considerable cognitive overhead.

3.4.4 Represente Organizational Analytics Processes using Actionable Knowledge

3.4.4.1 The Utilization of Theory of Action

Similar to Heuer’s [71] perspective, this research considers knowledge as a dynamic

expectation of information. It regards the requirements for the tangible artifacts as

the product resulted from characterizing of the relationship between the analysis tasks

and information source.

Enlightened by the Theory of Action [10], this recommendation followed Anrigyri et

al.’s definition, and described the target artifacts as a series ofActionable Knowledge.

Actionable knowledge is explicit symbolic knowledge, typically presented in the form

of tradeoffs for action or action rules [109], which allows the decision maker to

recognize some important relations and perform an action. Information search and

problem solving in these organizational analytical processes are directed toward utilizing

actionable knowledge, which in turn leads to immediate progress on a current assignment

or project.

The concept, actionable knowledge, represents a pragmatic view of knowledge

utilization and application toward specific analytical ends [25]. Such examples can

be seen as targeting a direct marketing campaign in a Bank’s operations, or planning

infrastructure maintenance aimed at repairing those assets with lowest health in asset
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managements. The initial knowledge exchanges between the researchers and the

organizational members is through the shared trust of using interactive dialogues.

It emphasizes on working with groups of organizational employees as co-researchers,

and developing the self-reflexive critical awareness that triggers action based on the

knowledge that is created [38].

Compare to the traditional knowledge management process, the creation of actionable

knowledge is typically coupled with situational characterization in an organizational

environment [10, 170]. It is distinguishable by the following five key processes: the

emergent task process, the inquiry process, the integration process, the experimental

process and the diffusion process [142]. These processes focuses on utilizing an

emergent collaborative inquiry process in which behavioral and social science knowledge

is integrated with existing organizational knowledge for the purpose of generating

simultaneously scientific and actionable knowledge [38, 170]. During these processes,

the organizational members are fully involved in the inquiry process and share the

responsibility for the effort [125].

All these characterization processes guaranteed the nature of actionable knowledge

would fit well with the above two requirements in that: (1) it represents the fine-grained

elements of each analytical task, and thus is quite instructive for the design of a

visual analytics system; (2) it is extracted from domain users’ knowledge actions, and

therefore can be consumed without additional cognitive overhead.

As illustrated in [10] [20] [40], there are many approaches to acquire and model

actionable knowledge. Given the advantage of the existing close working relationships

with actual domain users, this research adopted the domain-driven modeling process,

and grounded the search for actionable knowledge on the interviews and surveys with

the above three interviewee groups.

During the interviews, all the participants were asked to envision the hypothetical

process of carrying out their usual tasks with their regular tools and working environments.
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They were encouraged to also think about additional functions that might be useful

but not yet available in any of the tools they typically used.

Specifically, these participants were asked about the fine-grained knowledge actions

they used in their daily practices, the essential tools they have, and how they utilized

these tools to execute each action. The interviews were semi-structured with the

ambition to encourage the respondents to give a narration more than just answer

questions. In doing so, this research was able to identify key actionable knowledge

that a tool should support to improve productivity and reduce workload.

In their responses, all the interviewees expressed the importance of actionable

knowledge to the organizational decision making process. In their analytical process,

actionable knowledge is followed to respond to different situations, and illuminates

potential action paths for overcoming obstacles. The use of actionable knowledge

further directs these professionals to discover certain information or data patterns,

and helps them to react to the advantages of a specific task.

For example, for the content aggregation task, a bridge manager often needs

to check multiple sources of information (e.g. structural, financial, and historical)

prior to their response for a new bridge maintenance request. During this process,

actionable knowledge regarding where to look for information, and how to examine

the information, plays a significant role in addressing this task.

Tools, in this context, are considered as means to transform the knowledge into

desired task actions. Knowledge workers primarily use tools such as email/documents/local

folders, to produce and communicate task related contents and information. In

the process, their domain knowledge (i.e. the expertise) is employed, and further

results in context-dependent actions that are used in their analytical process. These

professionals currently posses and use a number of different tools; however, we found

that both groups were severely lacking tools that were actually designed to support to

their analysis workflows. This finding pointed to the need for a tool that encapsulates
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the users’ actionable knowledge and helps them effectively perform necessary actions.

Based on the feedback from the interviews, a set of selected actionable knowledge

was summarized to describes the six common organizational task activities. As

shown in Figure 10, every task in an analytical process is decomposed into a set

of fine-grained actionable knowledge. Note that, this list contains only a subset of

all the collected actionable knowledge; some of the stated actionable knowledge is

unclear, ambiguous, or contradictory, and is therefore excluded from this list. Also

as seen in Figure 10, a clear mapping have been constructed between high-level tasks

and their fine-grained tangible artifacts. This mapping provides clear insights into

the organizational workflow. More importantly, it is further transformed into a range

of important design requirements for creating an effective visual analytics system.

3.4.5 Summary: Recommendation 2

This section introduces the second recommendation in the design of an organizational

visual analytics system. This recommendation emphasizes the importance of disseminating

the common domain task activities into the tangible design artifacts for visual analytics

systems. Specifically, this research focuses on deducting essential actionable knowledge

that are used in typical analytical workflows, and proposes the use of this knowledge

as key design artifacts for a visual analytics system.
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Figure 10: The identified actionable knowledge (design artifacts) in checklist form.



53

3.5 Recommendation 3: Design for Actionable Knowledge Transformation
Through Software Prototyping

3.5.1 Design Considerations to Transform Actionable Knowledge into Visual
Analytics Systems

To determine the likelihood of domain users’ accepting a visual analytics system’s

functionalities, the initial design specifications for visual interfaces and interactions

need to be concluded right after the identification of the above actionable knowledge

and design requirements. Based on the two longitudinal field experiments on the

affect of user acceptance testing to the development of a user-centered system, Davis

and Venkatesh [44] pointed out that errors in requirements specifications have been

identified as a major contributor to costly software project failures. It would be highly

beneficial if information systems developers could verify requirements by predicting

workplace acceptance of a new system based on user evaluations of its specifications

measured during the earliest stages of the development project, ideally before building

a working prototype [44].

Therefore, this recommendation provides a list of possible design considerations (see

Figure 11) to encapsulate the general domain task activities into the design of a visual

analytics system. It emphasizes on deducting proper specifications to instantiate the

design of a visual analytics system, and encapsulates the general analytical workflow

into users’ accepting visual analytics functions.

These considerations are generalized based on the transformation of the above-specified

actionable knowledge into actual visual analytic systems, in all of the aforementioned

organizational environments. Following commonly established design theories [143,

109, 178], these considerations are identified through several iterations of prototyping

with the targeted domain end-users.

As shown in Figure 11, they describe in details about the needs for transforming

each general analytical tasks into system’s functionalities. As exemplified in three

successful visual analytics systems, these design considerations are demonstrated to
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have sufficient information to inform successfully implementations for visual analytics

systems. They are further evaluated by domain users through extensive empirical

evaluations, as reported in chapter 5

Iterative prototyping and formative evaluations presents an invaluable role in identifying

these design considerations. They essentially helped to encapsulate the domain

users’ actionable knowledge into functions, and led to the acquisition of critical

functionalities required to build a visual analytics system. Although all three organizations

shared similar common analytical tasks, the implementations of the prototyping

methods for them were quite different (considering their diverse workspaces and time

constrains). Specifically, the evolutionary prototyping [122] method was adopted for

the collaboration with Xerox. Given the requirement of a deployable product to

the enterprise, the evolutionary prototyping guaranteed more design iterations and,

more importantly, allowed the build of a robust system in a structured manner. It

also enabled the designers to constantly refine of the system and to explore broader

options for transforming the actionable knowledge into visual analytics designs.

As indicated based on the iterative prototyping, the business analysts had a clear

preference for a unified, intuitive, and less intrusive system that can help effectively

retrieve and manage desired information. Therefore, Taste was finalized and implemented

to support such preference [166]. Taste is an interactive visual analytics system

that enhances employees’ capabilities to search and share business information. As

shown in Figure 12, Taste is structured to embed information retrieval cues into a

coordinated multi-level visualization system. At a high level, Taste encodes these cues

with a set of three visualizations, a Facet view (A), a Temporal view(B), and a Entity

Tag view (C). Each view presents a particular aspect of document activity information

across entire collections. In lower-level views, Taste presents visualizations that

integrate related activity information for single documents(D). Using this multi-level

structure, Taste helps users to cohesively depict document activity from different
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points of view, and effectively find the desired information. Details of the implementation

of Taste can be found in section 3.5.2.1;

Given the shorter design cycle (three months), a more frequent, rapid prototyping

method [7] was used for the project with Microsoft. This rapid prototyping provided

efficiency in modeling domain requirements, and helps to create a working model of

various parts of the system at a very early stage, after a relatively short investigation.

The model then becomes the starting point from which users can re-examine their

expectations and clarify their requirements. When the basic model has been established,

the system is formally then developed based on the identified requirements [7].

During the three month collaboration, over 7 prototypes were generated. Among

all these prototypes, what the cloud service managers emphasize most is the ability

to have a single tool to monitor the status of the entire cloud service. To accommodate

their individual task requirements, these managers also require the ability to customized

their analyses views. (e.g different combination of status, data sources and servers).

As a collaborative results, an interactive visual analytics system, OpsVis, is therefore

implemented to support all these requirements. As shown in Figure 19 OpsVis

provides a single view of the entire cloud service, as a network. It shows high-level

objects, such as clusters of servers, as a single unit. These units are interconnected

with network edges, allowing the user to visualize the network configuration and

dependencies. Details of the design of OpsVis is introduced in section 3.5.2.2;

Thanks to a long-term collaboration plan, a longer-cycle, more functionality-based

prototyping process was carried out by this dissertation with the bridge managers

at both USDOT and NCDOT. This iterative functional prototyping [60] simulates

application behavior and helps to ensure that more of our design system is understood

at each step of the collaboration. In each iteration, the bridge managers were invited

to test and evaluate our prototypes by working with the system to perform actual

bridge analysis. Based on their suggestions and requests, this research then refined,
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re-designed, and re-implemented the prototype system to increase its effectiveness to

support the bridge analysis process.

During a nine-month period, over ten functional prototypes were generated, including

various changes to the visualization and interface designs. Over the course of past

two years, the prototyping has resulted in a final set of variations of the system.

These all focus on providing support for bridge management using integrated remote

sensing and visualization, so and they are generally referred as IRSV. While each

of the systems is designed to accommodate requirements for different use cases, all

follow a similar set of underlining actionable knowledge, and were designed to achieve

the same goal: to provide examination of heterogeneous data sources and facilitate

effective bridge maintenance planning.

At the heart of IRSV is a set of visualizations to help bridge managers organize and

analyze their assets from the multiple perspectives essential to their decision-making

process. As seen in Figure 21, these visualizations were designed to perform the three

high-level analyses: structural analysis (G), temporal analysis (H), and geospatial

analysis (I). For lower-level tasks, we designed a structural detail view (F) to automatically

link information between each bridge component, and provided bridge managers with

an intuitive visualization to interactively analyze specific corresponding information.

All of these visualizations are tightly coordinated together in such a way that an

action performed in one view affects all other views. Implementation details can be

seen in section 3.5.2.3

3.5.2 Actions: Iterative Prototyping for Organizational Visual Analytics Systems

Systems like Taste, Opsvis and IRSV were designed following the above listed

design considerations. These visual analytics systems are implemented to support

the analytic processes encountered in organizational environments. Through iterative

prototyping processes, each was tailored to the analytical workflow of its target

domain. As shown in the following above examples (see section 3.5), the design



58

considerations actually incorporated within each system are illustrated separately.

In the following section, this dissertation will introduce each design practices in

details, including the utilized design considerations (including the total numbers used

in designing each system), the prototyping process, and the finalized visual analytics

systems.

3.5.2.1 Case: Taste for Xerox Corporation

In response to the identified needs for an integrated, efficient, information retrieval

tool tuned to the enterprise environment, Taste was designed and deployed to facilitate

the analysis needs for employees in Xerox corporation. Taste is an interactive visual

analytics system that aims to enhance corporate employee capabilities for finding and

sharing the business information that is embedded in their daily document activities.

As shown in Figure 12, Taste is designed following the general design recommendations

that are indicated by the marked checklist. Specifically, the design of Taste is

essentially centered on incorporation of the aforementioned retrieval cues 3.3.1.3,

namely temporal hints, content keywords, and document types or particular applications.

It integrate all these retrieval cues with the general design considerations to support

the users’ search for the desired information. Figure 13 further illustrated the detailed

design pipeline for Taste, including considerations from data and information processing

to interactive visual interface.

In the following paragraphs, we explain the in detail on how each general design

consideration and domain information retrieval cue is transformed into the design of

Taste:

Data Capture and Storage

At the heart of Taste is an automatic and transparently real-time contextual data

capturer. As shown in Table 5, this data capturer is implemented to provide a unified

content interface as well as to integrate multiple information channels. As part of

the UbiDocs project [81], Taste runs on a single user’s computer, and captures user
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Figure 13: The Taste pipeline.

Table 5: Design considerations implemented in the data capture and storage
component

1 Unified content interface
2 Integrated multiple information channels

activities around office documents, calendars, emails, Web pages, etc.

Like a desktop search engine [57], Taste creates an index of documents on a

business analyst’s machine. As shown in Figure 13, Taste utilizes UpLib [81] to

extract information from and about each document, including its title and authors,

its text, the people and other entities that it mentions, its paragraphs and its images.

All of the captured information is indexed and grouped with its related documents.

This provides Taste with a secure long-term storage for a wide variety of business

related documents such as proposals, papers, web-knowledge bases, presentations,

and email. Taste can support collections comprising tens of thousands of documents,

and provided for ease of document entry and access as well as high levels of security

and privacy. A cross-document similarity matrix is also created in real-time to enable

search for related documents that are essential for business information.

However, more than a desktop search engine, Taste also logs information about a

user’s activities with documents. In particular, it collects information about which
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documents, emails, and web pages were read, and how long they were open. It also

collects document metadata, such as information about the senders and recipients

of email messages. Taste stores this activities information, along with copies of the

documents, into the above unified document repository, UpLib.

Utilizing this rich data reposition, Taste is designed to integrate multiple channels of

document data into a single content space. It further collects the document activities

that contain rich information representing user’s analysis behaviors. In doing so,

Taste prepares a unified data repository that can help effectively manage relevant

analytical resources; and based on this data repository, Taste further implement an

interactive visual analytics systems that facilitate the users’ to retrieve and analyze

business information.

Visualization Interface

Table 6: Design considerations implemented in the visualization interface

3 Easily accessible across platform application or web-portal
4 Deliver contents in straightforward representation
5 Enable facet filtering for information personalization
6 Interactive content exploration and filtering
7 Aggregate information and show its patters
8 Display information in consistent format
9 Visualize information from multiple aspects
10 Construct coordinated views for linked information

Instead of presenting the diverse document activities through a keyword search

interface, Taste embeds the retrieval cues into a coordinated visualization system,

through utilizing the design considerations listed in Table 6.

At a high level, Taste encodes the three cues with a set of three visualizations,

each of which presents a particular aspect of the document activity information. To

provide a lower level detailed view, Taste also presents a visualization that integrates

related activity information for a single document. Using this multi-level structure,
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Taste helps users to cohesively depict document activities from different points of

view and to effectively find desired information.

High-level Visualization Overviews:

Figure 14: The zoomed in temporal view in Taste.

The Temporal view presents temporal hints:

The Temporal View shows how a user’s activities unfold over time. It presents

both the number of documents a user interacted with in different time periods, and

the types of those documents. This view is created as an interactive ThemeRiver [85],

and it shows the temporal trends and patterns of a user’s document activities. In this

view, each vertical axis represents a period of time, while horizontal ribbons indicate

both the format of documents (i.e., email, Microsoft Word, etc.), and the time spent

on each. For example, Figure 12(B) depicts the history of a day in which a user spent

a significant time browsing Web pages and took a quick break around 3:00 pm.
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Besides showing general trends and patterns, the temporal view also allows the

user to drill down into time periods. When the user selects a time period on the

horizontal axis in the center of the view, Taste zooms into that period of time. At the

same time, a time period summary window appears on the desktop (see Figure 14)

that presents the highest ranked-N documents for that time period and provides the

user with a quick way to return to the original time scale.

Figure 15: The Taste facet view. The HUD display shows the information panel.

The Facet view shows document types:

To help corporate employees efficiently retrieve specific documents of interest,

Tastes is designed with the Facet View to aggregate both the documents and the

people that a user has interacted with during a particular period of time. Like Lee

et al [102], this facet view allows the user to filter and sort information based on

automatically-extracted data facets, including type (person or document) and format
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(email, slide presentation, text document, etc.) The user can query this view to filter

its output based on a set of facets. For example, the user can choose to see or hide

activities with email, with office documents, with Web pages, or with people. Each

of these facets can be turned on or off by pressing an associated button.

In order to fit the activity information into a reasonable amount of screen space

and in order to draw the user’s attention to the most important activities in each

time period, Taste sorts document activities by importance, and displays the most

important documents at the top and with the most salient presentation by computing

the importance value as:

Dimportance = Fappearance ∗
Tcur end∑

Tcur start

Tdwell

In this equation, the importance of each document (Dimportance) is set to the number

of times each document appears in the repository (Fappearance) multiplied by the sum

of the amount of time the document was open on the display ( Tdwell, measured in

milliseconds). Document importance is computed in a particular time frame, which

is between Tcur start and Tcur end.

Therefore, based on this equation, Taste considers the document that a user spent

the most time on to represent the most important activity the user performed during

that time period. To give users a sense of the importance of each document, Taste

displays scale bars next to each document, where the length of the bar denotes

its importance in that time period (shown in light grey as the background of each

document in Figure 15).

To enable fast exploration, a summarized information panel (see Figure 15 is

shown when the mouse hovers over a visual element representing an activity. Like

the Document Card [149], this panel includes a readable thumbnail and aggregated

information about that visual element. If the user needs more details, the user can

double click on the visual element to bring up a Detail view window (See section
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4.2.1.5).

Figure 16: The Taste entity tag view.

The Entity Tag view for content keywords:

Since it is observed that content keywords from documents are helpful for information

seeking, Taste extracts entities [16], such as company name, contacts, date/time, etc.,

from all of the documents the user has interacted with and displays them in the Entity

Tag view.

To enable fast entity browsing and to emphasize the most frequently encountered

entities from a selected time period, this view uses a TagCloud visualization of the

entities. The size of each entity in the TagCloud is calculated based on the equation:

TagSize = Fentity appearance ∗ Fdoc appearance ∗
Tcur end∑

Tcur start

Tdwell

In this equation, the entity appearance frequency (Fentity appearance) is the number

of times that the entity is mentioned in a particular document and the document

appearance frequency (Fdoc appearance) is the number of times a document was used in

a given time period.

As shown in Figure 16, the Entity Tag view colors the extracted entities based on

their categories, i.e. company or person. When the mouse hovers over an entity tag,

a summarized information panel appears that shows the top ranked six documents

that mention that entity. The user can double-click on an entity name to open a

persistent window with information related to that entity, including a larger selection

of documents that mention it.
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View Coordination:

Since information retrieval can involve the utilization of all three retrieval cues,

Taste is structured to encapsulate these visualizations within a coordinated system.

All the visualizations in Taste are coordinated so that updates in one view are

immediately reflected in the others. For example, if the user zooms in on a particular

time period from the temporal view, the facet view responds by creating a new

aggregated panel, and the entity tag view updates its displayed entities.

Therefore, a user can start the process of recalling document activities beginning

from any retrieval cue that they remember. Updates in a coordinated view will often

display information that is more similar to the desired information, allowing the user

to follow a path through the visualizations and converge on the desired information

quickly.

Low-level Detail View

While the above visualizations focus on presenting overviews of the entire collection,

the Detail view depicts a single document from multiple perspectives, showing temporal

information, related document information (i.e. how many versions of this document

are available), and other information. The Detail view can be invoked from any view

in Taste to learn more about a document appearing in that view.

As shown in Figure 17, the detail view contains four panels. Figure 17 A shows

the preview panel that allows the user to view the document without having to

reopen the corresponding application. By comparing paragraph, image, and page

layout similarities [81], the related documents panel (Figure 17 (B)) recommends

documents that are similar in content to the selected one. The temporal information

panel (Figure 17 (C)) shows how much time the user has spent on that document and

when activity with it occurred. Finally, Figure 17 (D) presents the entity information

panel in which the user can browse all of the entities that were extracted from the

document that is presented in the preview panel.
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Figure 17: The Detail view for a selected document.

Summary Taste

In an enterprise environment, documents are of great importance to business operations

and information flows. It is therefore essential for corporate employees to have an

effective means to retrieve this information and use it in their work. Although current

commercial products present efficient methods for keyword-based searches, they are

not as effective in an enterprise environment, where information is hard to find by

keywords alone.

Taste is therefore designed and implemented to alleviate such challenges. Taste is
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an interactive visual analytics system that presents an integrated document retrieval

interface. As shown in Figure 12, Taste is designed following the general design

recommendations that are indicated by the marked checklist. Specifically, the design

of Taste is essentially centered on incorporation of the aforementioned retrieval cues 3.3.1.3,

namely temporal hints, content keywords, and document types or particular applications.

It integrate all these retrieval cues with the general design considerations to support

the users’ search for the desired information.
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3.5.2.2 Case: OpsVis for Microsoft Corporation

Figure 18: A representation of OpsVis, and the data structures. Areas in light gray
are not directly represented in the configuration file, while areas in white are. The
configuration file specifies both topology and status information. Note that OpsVis
counts on external tools for monitoring and topology information.

In talking to service developers and operators, this research found that data fusion

across numerous and diverse sources is a large part of the problem. The goal was

not to build a tool customized for one particular service; rather, it was to build a

general tool for data center operations applicable to any cloud service (i.e., a data

center application that provides services to users across the Internet)

Working with a specific team allowed us to understand how that team creates,

maintains, and uses a mental model of their server and network topology. Cloud

services are typically constructed from a small number of different types of atomic

objects, running service-specific code or configured in a service-specific manner: servers,

databases, switches, load balancers. Second, these atomic objects are organized into

clusters, with all objects within a cluster performing an identical role (although with

different data). Third, within and across clusters, there is a high degree of redundancy

in order to be resilient to failure.

Accordingly, a key component of the needed visual analytics system is a flexible

back-end to accommodate these many forms of data, in a unified interface. In

addition, another key requirement is the ability to customized analyses views that
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enables individual cloud service managers to perform their individual task requirements

(e.g different combination of status, data sources and servers).

To support these requirements, this dissertation designed an interactive visual

analytics system, OpsVis (See Figure 20). As shown in its pipeline (See Figure 18),

OpsVis facilitate the cloud-service management from data back-end (e.g. collecting

and aggregating topology and status data) to visualization front-end (e.g. interactive

visualizations, real-time information update). The implementation of OpsVis follows

the design considerations listed in the previous section 3.4, and the details are described

in the following sections:

The Data Models

Table 7: Design considerations for OpsVis Interface

1 Unified content interface
2 Integrated multiple information channels
3 Aggregate information and show its pattern

Designed following consideration in Table 7, the OpsVis provides cloud-service

manager with the flexibility to customize their workflows by editing configuration

file. These files are explicitly specifies a set of Data Models. Each Model specifies the

information to represent a single top-level object in the visualization. For instance,

one Model can represent each front-end cluster, or can represent a single cluster of

back-end servers. Figure 20 is represented by 16 Models: 4 front-end clusters, 6

back-end clusters, and 6 connections.

Models have two jobs: they contact data sources to collect topology and status

information; and they create Visualizers to reflect this topology and status information.

Models act as indices of the Visualizers that make them up; each of them has the

ability to assign status information to any named entity. For example, if a status data

source indicates that database ABCHA526 has gone down, then the Model can look
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up that name in its index, and relay that information to the corresponding visualizer.

In Figure 19 (left), note that the two Models each specify a topological data source

and a parameter.

Models must balance a tension between generality and specificity: their design

must be general enough to be re-usable, but customized for the sort of data that

they will represent. In our current implementation, we have several different Models.

One represents a set of uniformly-configured, interchangeable entities; these are used

to represent front-end clusters. A second represents one or more sets of back-end

servers, which are each coupled with one or more databases. We are continuing to

work on generalizing these components. Models populate themselves by querying a

topological data source.

Topological Data Sources: Topological Data Sources specify the sources of the

information that our tool will use. A topological data source returns a table of data

that describes the underlying structure of the data. There is a tight binding between

Models and the topological data sources: Models expect their data sources to provide

an appropriate table. The goal of the topological data source is to populate the

visualization with specific machines, databases, and other bottom- level items; and

to cluster them into higher-level clusters.

A topology data source, in the current implementation, refers either to a text file or

to an SQL query. In the case of a query, the topology data source specifies both the

connection string to the database and the query to be invoked. One such SQL query

is described in Figure 18. More complex Models can be populated simply by listing

out the full combination of all items. For example, to populate the back ends (on the

right side of Figure 19 (left)), the returned table contains rows with a set (e.g., 18),

a server name (e.g., SQL04), a database number (e.g., 581), and a partition name

(DB14708). The visual connection then assembles the multi-tiered structure on the

right side.
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Status Data Sources: Like topology data sources, Status Data Sources are based

on queries that return tables of data. Models expect status data sources to return

tables with columns representing the machine name and its value.

Because many status data sources may be relevant to a given visual component,

status data sources contain the list of Models to which they apply. A status data

source can be applied to any Model; the data they return can be applied to any

named element. Thus, the status data source does not need to specify whether it is

returning data that applies to a specific database, to a server, or to a connection; the

key that the query returns disambiguates it. For example, receiving a key/value pair

that CPU time on SQL04 has increased is enough: each Model then checks its name

table to see if it knows about this machine.

The configuration file descriptor for a status data sources also contains information

on how it should be rendered. This metadata consists of several cues to the system.

It specifies whether the data should be interpreted as categorical or value, and what

do to with the data: whether it should be interpreted as a color, as a text string, or

in some other way. It also specifies to what part of the Visualizer the data should

be applied. In the current implementation, the background color of the shape and

the color of the “’glow” around the shapes can both be mapped to colors. While

these might someday be automatically detected as in systems like Tableau [1], this

is not currently implemented. The data source optionally specifies the minimum and

maximum expected values: values outside this range are drawn as black or white.

Last, status data sources specify a refresh rate: the frequency with which the database

should be checked for new information.

A sample SQL status data source in Figure 19 (left) specifies that the column

“CPUTime” should be interpreted as a value, rendered as color brightness based on

data values from 25 to 35, applied to the background, and refreshed every ten seconds.

While the status data sources currently all use a “pull” model to retrieve periodic
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data from SQL servers or text files, the extensibility model designed would allow a

developer to add an event-based “push” model, where only specific changes would be

propagated through.

Aggregating Status Information: The cloud-service managers are not expected

to examine all servers, all the time. Rather, the design of OpsVis aims to provide a

set of aggregations that allow a these domain analysts to review a rolled-up set of

servers without concern. Status data sources specify whether their value should be

rolled up to the next level. Status data sources that expect to be aggregated can

also provide instructions for what functions should be used to aggregate them: for

value types, the user can specify minimum, maximum, and average; for categorical

types, a distribution is drawn. The status data source in Figure 19 (left) expects to

be aggregated with the average function.

The OpsVis Configuration Files

Table 8: Design considerations for the OpsVis configuration files

4 Easily accessible cross platform application or web-protal
5 Employ sophisticated data structures
6 Construct coordinated views for linked information
7 Enable in-app collaborative editing
8 Present status update for collaborative threads

One goal of OpsVis is to provide a declarative way of specifying the visualization

techniques and data sources that are used in creating a visualization of a cloud

service.This goal is achieved using the implementation of the OpsVis configuration

file, which follows the considerations listed in Table 8. This declarative specification

must describe a multi-layered system that allows for easy aggregation.It further unifies

the topological components, data sources, and the color mappings. As such, it allows

users to easily modify and customize their visualization, and to share it with others

easily. At the lowest level, OpsVis represents individual entities, the smallest items
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that are parts of the conversation. At ABCH, these are databases and servers. (These

are not the same because a single logical database is physically located on two or more

servers). At the highest level, there must be ways to represent clusters, the logical

groupings which aggregate these entities.

The configuration file is written in XAML, an XML dialect. XAML is a serialization

language for Microsoft’s .NET family of languages. It represents an object hierarchy

conveniently and directly, making it easy for users to interpret the configurations they

have generated. A sample XML file that generates two front- ends, with each server

colored by CPU load, is in Figure 19 (left).

Figure 19: The XML Script (left) for a simple OpsVis configuration file that visualizes
two front-ends, and colors them by CPU status information. Detail of OpsVis (right).
A set of databases (in green) and servers (in purple). Brighter databases have more
rows. The green stripes are a result of a backup cycle as data is moved from one set
of databases to another.

Extensibility and customization: Operational problems in cloud services are

often found on the backend, particularly in databases. Because the ABCH team was

particularly concerned about active database status, they could configured OpsVis to
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include this information as a primary decoration.

End users could configure the OpsVis’s visualizations by tweaking the XAML; while

a networking operator might choose to have a configuration that most prominently

displays network information, for instance, a database operator might neglect network

information entirely for information about their area of specialty.

Because adding a new sort of data to the system as straightforward as writing

an SQL query and copying a few parameters, users have found it straightforward to

modify the visualization to their needs. This configuration status also means that it

should be straightforward for users to share configurations with each other.

The system is generally extensible along several axes. It is most straightforward

to connect with different databases and data structures, simply by changing the

connection string and the query. The basic Models we have account for a substantial

portion of services within Microsoft.

In addition, this research has learned that other network analysis groups desire

additional visualization components and status reader types, more precise specification

of aggregations, and more precise status visualization. As such, OpsVis is designed

an extensibility package for the system: implementing a module that specifies a new

aggregation makes it available in the configuration file.

OpsVis Interface

Table 9: Design considerations for the OpsVis Interface

9 Deliver contents in straightforward representation
10 Enable facet filtering for information personalization
11 Interactive content exploration and filtering
12 Aggregate information and show its patterns
13 Display information in consistent format
14 Visualize information from multiple aspects

OpsVis provides a single view of the entire cloud service, as a network. It shows

high-level objects, such as clusters of servers, as a single unit. These units are
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interconnected with network edges, allowing the user to visualize the network configuration

and dependencies. Designed following the considerations (see Table 9), each composite

object can be expanded to see the next level down: sets of machines, or individual

servers and databases. Figure 20 shows OpsVis in action as configured for ABCH.

Bubbles and small rectangles represent individual machines and databases, while

top-level boxes represent logical clusters of machines.

Figure 20: A portion of a display from OpsVis in operation at ABCH. Three different
front-end “affinity clusters” each communicate with a pair of back-end database
clusters. Each database cluster consists of six databases sets; each set consists of eight
servers each hosting four primary and four secondary databases. The visualization
represents logical connectivity between servers and clusters . The color of each server
in a cluster indicates CPU load. Offline databases are marked red color. Clusters and
sets have summaries showing how many databases are online. Tooltips show more
information, such as the size of the database.

This layout was developed through several iterations with the ABCH team. On the

left, boxes represent clusters of stateless front-end servers. The FrontEnd C cluster is

expanded and consists of 34 servers: each server is represented by an oval. In ABCH,

the back-end clusters are divided into five or six sets; each set has eight servers which



77

run 32 databases. In Figure 20, one of the back-ends was expanded to show its sets,

and Set 18 is expanded to show the servers and databases running on it. Each server,

on the left, is a horizontal bar; each database is represented by two boxes showing

the “primary” and “secondary”.

Within this framework, the next task is to overlay usage. Here, each server is being

monitored for its CPU load. CPU load is drawn on a color scale from black, through

saturated color, to white: machines with a higher load are drawn closer to white. The

visualization makes immediately clear that four machines are running at below the

expected minimum level.

Each database is monitored for status; inactive databases are highlighted in red.

A little bit of exploration shows that all eight databases that are highlighted in red

come from the same server; however, that server is still running (it is not grayed out,

which would signal no “updates”).

The images are animated, with decorations and displays such as CPU load and

activity information updating continually as the data changes. OpsVis also provides

a time-loop feature so that past behavior can be replayed at high-speed (similar to

weather map animations). This helps operators discover recurring and time-dependent

behaviors.

Visualizers: The visualization drawn by OpsVis is based around three concepts.

The first is a service topology represents the “bones” of the service architecture, the

clusters of entities with similar roles, and the relationships among those groups. The

second are visualizers, which are responsible for rendering each part of the topology

in a manner appropriate for that type and number of machines. Third, data sources

provide the raw information used to populate the topology, the relationships between

machines in the topology, and the state of the machines that is visualized over the

topology.

Each entity that OpsVis knows about is represented by a visualizer. A visualizer
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is the graphical element that will be rendered, and can carry on it some status

information. OpsVis has sought visualizers that allow the eye to correlate across

multiple objects in the same role, as well as dependent objects in different roles. For

example, in Figure 20, every database and server is represented internally by an

Entity Visualizer, which is drawn as a simple object: a circle, or a rectangle. For

the collections of elements, a visualizer is drawn as a compound object, including its

children.

Every visualizer must be able to be assigned a background color, a string of text,

and a series of key/value pairs in its tooltip. Aggregate visualizers aggregate the

values of their elements, and thus must also be able to represent the aggregated

information of their child entities.

In addition, every visualizer has a unique name, corresponding to the real- world

name of the component or grouping it represents. Visualizers are not explicitly

represented in the configuration file: instead, they are implicitly created by their

internal models. In Figure 18, visualizers are in gray boxes along the left side.

Summary OpsVis

Cloud services are designed and implemented as networks of distributed systems.

The underlying distributed systems are characterized by rapid change (in infrastructure,

software, and workload), and by use of replication of components (such as servers, data

bases, and switches) as the key to scaling out to meet demand in a high performance

and reliable manner. Monitoring these systems effectively and economically is a

major challenge. Subtle problems inevitably arise in cloud services that impact user

perceived performance, and that, unfortunately, are extremely hard to detect, localize,

and diagnose.

OpsVis helps to meet these challenges by enabling developers and operators to

create visualizations that provide insight at a glance into anomalies and variability

across the systems. It provides a perspective that matches the way cloud service
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developers and operators think about their systems.
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3.5.2.3 Case: IRSV for Department of Transportation

Based on the requests of state DOTs as described in section 3.3.1.1, this research has

resulted in an interactive visual analytics system (Figure 21) that supports a bridge

manager’s decision-making process and remains customizable to fit an individual

manager’s task routine. During a nine-month period, over ten functional prototypes

were created, including various changes to the visualization and interface designs.

Over the course of the collaboration in the past two years, the prototyping has resulted

in a final set of variations of the system. These all focus on providing support for

bridge management using integrated remote sensing and visualization, so they are

generally referred as IRSV. The following demonstrated is the desktop version of

IRSV, which have been widely deployed to multiple state DOTs.

The design of the IRSV system is based on coordinated multiple views (CMV) [133],

as well as a modular software architecture that supports customization of the system

depending on the bridge manager’s preference. It is designed to provide examination

of heterogeneous data sources and facilitate effective bridge maintenance planning.

Since previous two projects have led to a more or less complete discovery of

the design considerations, the user-engagement and initial system design is much

smoother then before. This leads to a comprehensive understanding of the targeted

domain and a more efficient and effective system implementation.

Supporting Integration of Heterogenous Inspection Data

Table 10: Design considerations for the IRSV Data Management

1 Unified content interface
2 Integrated multiple information channels

While this is an important issue for the bridge managers, solving it begins with

designing new data structures for the BMS. Currently, given the rigid nature of

existing BMSs, supporting data integration would require an overhaul of the designs
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of these BMSs.

As shown in Table 10, the design of IRSV has taken consideration of incorporating

heterogenous data sources. It approach enables bridge managers to combine the

traditional National Bridge Inspection Standards (NBIS) dataset with their locally

collected information. Currently, IRSV is implemented to help NCDOT bridge managers

to associate bridge structural information with extensive data collected in the North

Carolina region. This extensive information includes, as shown in Figure 23, field

inspections imageries, Light Detection And Ranging (LIDAR) scans for each structure,

and pavement crack analysis results.

Supporting Decision-Making Process through Multiple Coordinated Visualization

Table 11: Design considerations for the IRSV System

3 Aggregate information and show its pattern
4 Deliver contents in straightforward representation
5 Interactive content exploration and filtering
6 Aggregate information and show its patterns
7 Display information in consistent format
8 Visualize information from multiple aspects

Following the general design considerations (see Table 11), a set of visualizations

is implemented to help bridge managers organize and analyze their assets from the

multiple perspectives essential to their decision-making process. As seen in Figure 21,

these visualizations were designed to perform the three high-level analyses: structural

analysis (G), temporal analysis (H), and geospatial analysis (I). For lower-level tasks,

a structural detail view (F) is developed to automatically link information between

each bridge component, and provided bridge managers with an intuitive visualization

to interactively analyze specific corresponding information. All of these visualizations

are tightly coordinated together in such a way that an action performed in one view

affects all other views.

The following sections describe the details of these implementations:
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Figure 22: This is the overview of the entire system, including views for Microsoft
Virtual Earth(center), Parallel Coordinates (top corners), Scatter Plots (middle left),
Temporal Analysis (third row right), and the original data (bottom row). Per-Bridge
Detail View(middle right). Several items are highlighted with colors.

High dimensional structural analysis: IRSV system includes three views for

helping bridge managers to analyze bridge structures on both a high-level overview

and a low-level detail view. On the high level, it utilizes both a parallel coordinate

view (PCView, see Figure 22 (A)) [114] and a scatter plot view (SPView see Figure 22

(B)) [156] to help bridge managers detect and identify causal relationships and trends

in the data variables. The nature of parallel coordinates limits the number of dimensions

that can be effectively displayed at a time. IRSV alleviate this issue by providing

control panels to allow the user to select the dimensions of interest (Figure 22 (D)).

These dimensions are determined by individual expertise and bridge managers’ areas

of focus. For example, a structural engineer is more likely to examine bridges based

on the structural related dimensions, whereas a planner would focus on analyzing

dimensions that represent balances between costs and potential bridge improvements.
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Using this view, bridge managers can therefore find correlations in specific sets of the

bridge’s attributes.

On the other hand, the SP view is designed to depict relationships between bridges

across two specific dimensions. The spatial layout of the view allows the user to see

clusters and clearly identify outliers, and is a slightly more intuitive interface than

the potentially complex PC view. In addition, given the importance of time in bridge

analysis, IRSV also extends the ability to see temporal changes in both views, which

in turn allows bridge managers to interactively explore and compare information from

different inspection cycle. For example, Figure 22 (B1) suggests the sufficiency rating

distribution in year 2004, while Figure 22 (B2) shows the distribution of same group

of bridges in year 2006. Together, these two visualizations give bridge managers the

ability to see high-level trends and patterns in the data’s variables.

Figure 23: The Detail View for Bridge (A) An interactive Bridge Schematic Diagram;
(B) A Line graph for monitoring temporal changes for major bridge structures;
(C) Image Analysis Results for cracks on pavements; (D) Inspection Imageries that
suggests the structural damage of the supporting piles of this bridge.
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On a detailed level, when inspecting a single bridge, bridge managers need to

examine both the overall structural integrity of a bridge across multiple variables, as

well as focusing on particular structural components inside that bridge. Therefore,

IRSV is designed with a structural detail view to automatically link information

between each bridge component and provide bridge managers with an intuitive visualization

to interactively analyze the corresponding structural information.

Based on existing bridge design recommendations [46], we model general bridge

components into an interactive bridge schematic diagram (see Figure 23 (A)). In this

diagram, bridge managers can directly select the major bridge structures, and analyze

each component individually. In addition, a line graph enables bridge managers to

monitor temporal changes for individual bridge structures. Associated with overall

temporal information presented in the small multiples view, this structural temporal

component helps bridge managers to gain insight into the effects of structural changes,

and to efficiently identify the key factors in the overall deteriorations.

Small multiples for temporal analysis: Bridge managers have expressed the

need of having a tool to help them analyze the temporal changes of bridge data. They

want to be able to perform analysis over time on a large number of bridges as well as

one bridge at a time. Thus, IRSV utilizes a small multiples view [156] to help them

achieve temporal analysis of large number of bridges. The design of this temporal

view is based on small multiples views in the literature [87], and it shows deterioration

changes of each bridge using trend lines.

As shown in Figure 24, each cell in this view represents a single bridge, while the

inside line graph represents the bridge’s overall rating in all inspection cycles. These

cells are further sorted based on the standard deviations of the y axes in the line graph

to determine the color of the cells, with warmer color representing sharper changes

over time. We note that in this approach, bridges with either downward and upward

trending in structural attributes will be colored with warmer colors. Although it is
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Figure 24: The Small Multiples view with Squarified Treemap layout. Bridges are
grouped by their main structure types. For each cell, the x axis represents different
inspection cycles and the y axis represents the structural attribute values selected by
the user.

not often that bridge managers need to review more than three inspection cycles (6

years), this small multiple views can still efficiently represent all the inspection cycles

by changing the line graph to a trail enabled bubble chart, which is similar with the

work by Robertson et al [134]. A control panel is also provided to bridge managers

to modify the mathematical functions used in highlighting the cells.

Additionally, since it is often necessary for bridge managers to understand the

temporal patterns for a certain group of bridges, IRSV adopts a customizable Treemap [19]

spatial layout to group the small multiples based on particular structures. There

were two main design considerations on utilizing this layout. On one hand, Treemap

layout for its inherent advantage in displaying large scale of data, as demonstrated

by Bederson et al. [11]. Since bridge managers normally need to monitor hundreds

of bridges together, this salability is useful for them to effectively compare difference
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bridges and see overall trends.

On the other hand, IRSV utilizes the Treemap layout to indicate the size and

groupings of different bridges. For example, Figure 24 shows the bridges divided

based on their construction material (note the black lines separating regions of the

treemap). In this example, the layout enables bridge managers to discover the

uncommon temporal pattern where several recently built, known-to-last, concrete

structure bridges show significant deterioration. It is therefore mentioned by bridge

managers that the capability in finding such insight is not only valuable for their

maintenance decisions, but also can help optimize their future construction planning.

While there is still much to be improved for the small multiple view, bridge

managers have already seen usefulness in utilizing it to analyze temporal trends and

patterns among the bridges.

Geospatial analysis: Extensive research on geospatial visualization [172, 51]

have shown the benefits of utilizing online map systems such as Google Maps and

Microsoft Virtual Earth. IRSV utilizes Microsoft Virtual Earth (MSVE[113]) to

provide bridge managers with dynamic and interactive geospatial analysis (see Figure

22 (C)). By placing the bridges onto the scalable map, detailed geographic relationships

and patterns immediately become apparent.

By adopting online map systems such as MSVE, IRSV can have the most up-to-date

geospatial information such as road structures and 3D building models. However,

IRSV extended MSVE to overlay large amounts of (proprietary) geo-coordinated

information over the map, such as traffic distribution patterns and satellite images,

and can utilize that information to perform extensive geospatial analysis.

Supporting Domain Knowledge-base

To utilize the existing bridge management technology, IRSV is also designed to

incorporate the externalized domain knowledge based into the interactive exploration

and analysis process. As shown in Figure 25, a well-designed knowledge database
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plays an important role in supporting the knowledge internalization, externalization,

collaboration, and combination processes. In order to design a useful visual analytics

system that incorporates knowledge, a tightly integrated and well-designed knowledge

database is considered to be essential in the design process.

Figure 25: A graphical representation showing four entities: data, knowledge
database, visualization, and user. Once explicit knowledge is extracted from the data.
It is stored in a knowledge database (KB) and used in visualization to represent it to
a user. The user continuously perceives the image and gains tacit knowledge.

There is, however, no definitive way to construct a knowledge database. Much

research has focused on designing and developing different forms of such databases

that could represent domain knowledge. The differences between these database are

not only reflected in their capacities, but also in their structural complexities. As

shown in work by Garg et al. [53], a knowledge database could be as simple as a

textual structure that contains inductive logic programming equations. On the other

hand, it could also be described by extensive decision models, such as Markov decision

process (MPD) in the Artificial Intelligent field. IRSV is designed to apply an ontology

for storing and retrieving domain specific knowledge.

The ontological knowledge structure is a conceptualization of domain knowledge

which includes concepts, properties and their relationships. This conceptualization

process aims to transfer both human tacit knowledge and explicit knowledge into

computer-understandable formats. These concepts can be further utilized to facilitate

other users’ problem-solving processes. More specifically, a Problem Domain Ontology
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(PDO) enables solving a complex problem where the underlying domain concepts

have high interdependencies by building up a problem scenario based on concepts,

properties and features in the ontological knowledge structure.

Although research on ontological knowledge structure have advanced in the recent

years, integrating such structure with visual analytics system is still an open research

area. In the following subsections, the dissertation briefly introduces the understanding

about how to integrate these two components is presented first, and presents the

prototype of a knowledge-assisted visual analytics system.

(a) (b)

Figure 26: (a) the Venn Diagram that suggests the complementary relationship
between visualization and ontology. (b) the knowledge window provides updated
knowledge rules inside the ontological knowledge structure.

The Relationship between Visualization and Ontology

In order to integrate a visualization with an ontological knowledge structure, it

is important to understand what their relationship is and why the integration is

meaningful. By examining visualization and ontological structure separately, a complementary

functional relationship is discovered between these two components when represented

as a Venn diagram (Figure 26). As shown in the overlapping region of the Venn

diagram, both visualization and ontological structure share similar functions that
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could provide specific information in the forms of visual selections and data queries

respectively. Due to the different foci and strengths of the two approaches, the

functions of the visualization and the ontological knowledge structure are not always

the same. Visualization, on one hand, usually allows the user to interactively explore

patterns of the underlying data from various perspectives; the ontological knowledge

structure, on the other hand, focuses more on representing the conceptualization of

domain knowledge and the interdependencies among the concepts.

A further analysis of this complementary relationship suggests that the integration

of these two could be beneficial. If reasonably integrated, users could discover new

concepts and knowledge through exploring the visualization and externalize such

knowledge into the ontological knowledge structure for future references. Users could

also directly access the knowledge structure to acquire predefined domain concepts

and rules to guide them through visual explorations and assist their decision-making

processes.

Therefore, IRSV is designed to integrate visualization and ontological knowledge

base and to utilize the encapsulated knowledge from a domain specific ontological

knowledge structure.

The Ontological Knowledge Structure

An ontological knowledge structure is integrated in IRSV to provide domain concepts

and information. Using an ontology-driven modeling approach [103], this ontological

knowledge structure contains bridge domain concepts, such as bridge structural types

and locations. These individual bridge concepts are further connected through their

interdependent relationships, which is modeled based on the experience of bridge

managers and other domain users. By connecting concepts in such a manner, additional

domain rules can be identified and created. For example, a rule can be described as:

if a bridge’s sufficiency rating is below 50 and its super-structure rating is less than

5, this bridge has potentially undergone severe structural damage. This rule is then
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stored in the knowledge structure and can be executed upon request. Utilizing such

a rule-based ontological knowledge structure allows for great flexibility for IRSV to

support precise examination of bridges and enables the system to better facilitate

bridge management processes.

Communication between components

Through a server-client web interface, IRSV tightly coordinates the visualization

interface with the ontological knowledge structure. Since these two components

share the same underlying bridge ID number, the message passing becomes clear

and feasible. For example, any results from the executed rules in the ontological

knowledge structure will be immediately updated in each visualization window. Thus,

exploring within visualization could lead to new concepts that can be further added

into the ontological structure; while the knowledge stored in the ontology could assist

decision-making during the visual exploration.

To assisting bridge managers in executing the domain rules, IRSV presents an

interactive knowledge window (Figure 26(b)) which is automatically synchronized

with rules within the ontological knowledge structure. With these two components

tightly integrated together, the users always have access to the most up-to-date rules

and concepts. The users simply have to execute the relevant rules, and they can

see and interact with the bridges in further detail immediately in the visualization

environment.

Furthermore, IRSV enables the bridge managers to directly modify the knowledge

structure. This function provides bridge managers an important interface to update

the externalized knowledge and maintain its accuracy. Based on their discoveries

during their interactions with the visualization, bridge managers could create new

concepts or rules and directly insert them into the ontological knowledge structure.

For example, through their interaction with visualization, bridge mangers may find

that the combination of low ratings (less then 4) on both “supporting structure” and



92

“water adequacy” suggests water erosion and flood damage. The bridge managers

could then insert this new discovery into the ontological knowledge structure and

further re-apply it to check how many bridges have been affected by water-erosion or

damage.

Embedded Knowledge Processes

There are four different knowledge conversion processes - internalization, externalization,

collaboration, and combination in IRSV’s knowledge-integrated functions. These

functions are corresponding to Nonaka et al. [119]’s four knowledge conversion processes,

and are depicted specifically in the context of visual analytics [167].

• The Internalization process embodies the transfer of knowledge from a computer

to a user through the interactions with a visualization. In IRSV, this process

mainly happens through the user’s interaction with the coordinated visual

analytics views. These views help the users inspect the data from different

perspectives and assist the potential discovery of unexpected data patterns and

trends that could become new domain knowledge.

• The Externalization process happens upon the user’s acquisition of new domain

knowledge or information that does not already exist in the ontological knowledge

structure. This knowledge could come from both discoveries from interacting

with the visualization system or from collaborating with other co-workers. Once

acquired, user could directly insert this new knowledge into the ontological

knowledge structure to augment its knowledge database. The ontology will

then store this knowledge and re-apply it during a user’s future investigations.

• The Collaboration process takes place when a user interacts with our integrated

system that incorporates domain knowledge of multiple experts. Through the

integrated knowledge interface, each bridge managers connects to the same

ontological knowledge structure. New knowledge or domain rules created by one
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manager would immediately be reflected in another bridge manager’s visualization

system. In this manner, through the use of the ontology as a central repository

of knowledge, IRSV facilitates collaboration between multiple bridge managers.

• The Combination process occurs when inserting new knowledge into the existing

knowledge structure. The new knowledge could come from a new set of domain

data, new perspectives or regulations on bridge inspections, etc. Since bridge

inspection rules vary for different inspection cycles due to new federal bridge

inspection guidelines or regulations, the Combination process is particularly

important in ensuring that each bridge manager is inspecting their data with

the most suitable domain knowledge. For example, to handle changes in the

standards of water adequacy, IRSV combines different sets of that criteria and

applies them accordingly to different inspection cycles.

Summary IRSV

Maintaining bridges is a multi-faceted operation that requires both domain knowledge

and analytics techniques over large data sources. Although current bridge management

systems are very efficient at data storage, they are not as effective at providing

analytical capabilities.

This dissertation presents an interactive visual analytics system that extends the

capabilities of current BMSs. As shown in Figure 22, the IRSV system was designed in

collaboration with bridge managers in national, state, and local DOTs, and has been

implemented specifically to provide them with interactive data exploration, cohesive

information correlation and domain-oriented data analyses. The IRSV system enables

bridge managers to customize the visualization and data model to fit each individual’s

task routines.

In addition, based on the understanding of knowledge base systems and the four

knowledge processes, IRSV is also designed to incorporate domain ontological knowledge
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source. It allows bridge mangers to interactively analyze the data with access to the

expert’s domain knowledge.

3.5.3 Summary: Recommendation 3

This section introduces the third recommendation in the design of an organizational

visual analytics system. This recommendation presents the use of iterative prototyping

in transforming the actionable knowledge into the design considerations for a visual

analytics system. Three successful visual analytics systems are described and discussed

in this section to demonstrate the utility of this transformation process. This section

further concludes a list of possible design considerations (see Figure 11) to encapsulate

the general domain task activities into the design of a visual analytics system.
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3.6 Recommendation 4: Design for individual’s Analysis Practices Integrations
and Customization

3.6.1 Design Considerations to Achieve User-centric Refinements

This dissertation initially thought of the organizational visual analytics design as

a holistic decision that could be informed by expert representatives. It instantiates

the design by gathering and coordinating organizational knowledge and analytical

processes based on inputs from various analysis groups. The first stage in the proposed

design framework follows this approach, and concentrates on synthesizing these inputs

into a single, unified, and consensus perspective. In this stage, the design framework

thus presents both general analytical workflow model and detailed design recommendations

to help promoting this synthesis.

Over the course of these projects, however, this research learned that individual

domain analyst did not always share the same perspectives on analysis workflows.

Although the aforementioned general workflow is valid in presenting the synthesis of

the majority of domain analysis activities, individuals may have different opinions on

how these activities are carried out. At the heart of these diversified analysis routines

are the different combinations and sequences of the above analytical processes. For

example, the study with bridge managers 3.3.1.1 revealed that the bridge managers

often need to develop their own analysis routines. Depending on available resources, a

bridge manager’s strategy can be very different from his/her peers’, and would require

a different combination of the above analysis processes. In addition, sometimes even

the same manager needs to take alternative analytical approaches due to changes in

priorities.

Consequently, this research recognized the need of a “feedback” process to integrate

the individual’s analytical practices with visual analytics systems, and achieve the

customization of such system based on different analysis perspectives. Particularly,

the second stage of the proposed framework (User-centric Refinement stage) utilizes
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the rich information embedded in users’ interactions, and captures and reapply the

individual analytical practices.

Prior research on using interactions to model users’ analysis process has shown

great utility in capturing and recovering analysis processes. For example, by asking

human coders to analyze experts’ interactions logs, Dou et al. [49] demonstrated the

possibility of recovering high-level semantic reasoning processes of domain experts.

In addition, by encoding user’s behaviors in a visual analytics system, Gotz et al. [58]

presented a visual analytics system that can record and reapply users analytical

processes. Last but not least, through the use of pre-defined scripting language,

the Czsaw system [86] have shown capabilities in capturing and visualizing the users’

analysis processes.

In keeping with the need to this “feedback” process, the design considerations

expanded. This recommendation focuses on presenting the related considerations (See

Figure 27) to enrich and refine domain knowledge through capturing and analyzing

knowledge workers’ task behaviors. Two essential techniques that can be useful in

achieving in these considerations are described and discussed in this section, namely

interaction capturing, storytelling and reporting. These considerations have been

applied to both the Taste and IRSV system, and extend these systems to encapsulate

the users’ reasoning practices through either analyzing their storytelling reports or

abstracting from their task behavior logs. While the research on this direction is still

at its early stage, however, the results from empirical evaluation with domain analysts

has demonstrate its efficacy in supporting customized analytical processes.

In the following section, this dissertation will introduce each design practices in

details, including the utilized design considerations, the refinement process, and the

extension of the for both existing visual analytics systems:
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3.6.2 Action: Extending Existing VA Systems to Support Refinement Stage

3.6.2.1 Case: Enabling Analysis Refinement and Knowledge Sharing using
Web-based IRSV

3.6.2.1.1 Reassessing the IRSV systems

While the IRSV systems supports data analysis that can assist bridge managers

in identifying candidate bridges that are structurally deficient, finding these bridges is

just the first step in achieving overall maintenance decisions. An important prioritization

process is performed to decide which bridge actually receives maintenance that takes

place after the candidates have been identified. Due to the limited resources such as

budget and construction timings, this maintenance prioritization is typically determined

based on the collective discussions among multiple bridge managers. During these

discussions, bridge managers often need to find a balance between limited resources

and maintenance requirements to maximize the overall stability of the transportation

system as well as the safety of the public.

Unfortunately, such an optimization process is often not well defined, and the

maintenance decisions vary depending on the goal of individual bridge managers. The

analysis of high-dimensional bridge data is generally performed by bridge managers

who have a great deal of experience and special training, both of which are valuable

domain knowledge. For example, some managers may focus on repairing supporting

structures of bridges, which they believe is crucial to the bridges’ structural integrity,

while others may spend the resources on fixing the bridge deck where visible damages

occur.

Therefore, to maximize the utilization of the dearth resource, the bridge managers

are in need of a way to annotate and share their analyses, and balance the requirement

resource with others. With the need for a closer collaboration between groups of

managers [164], many state DOTs indicate that it would be useful to collect and

annotate their analysis findings and bring these findings into the prioritization discussions.
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Further, they would like to have the ability to share these findings with other managers

to determine the proper distributions of resources.

3.6.2.1.2 Designing a Web-based System to Support Analysis Customization and
Knowledge Sharing

It is increasingly noticed that the bridge managers are facing hurdles in sharing the

analysis information. This research began designing to influence their collaboration

as well as their prioritization of actions to resolve analysis gaps. This research further

observed whom the bridge managers communicated with when they have analysis

results and whom they involved in prioritization discussions. As shown in Table 12,

four design considerations is concluded to support this situation.

Table 12: Design considerations for the Collaborative IRSV System

1 Allow evidence collection and annotation
2 Trace Interactions and system usage for future automation
3 Support sharing of evidence and hypodissertation
4 Real-time collaborative communication or report generation templates

Extending on existing literature on collaborative visualization [69], this research

transformed these design considerations into an architecture of web-based interactive

visual analytics that is tailored to support the prioritization need. As illustrated in

Figure 28, this architecture a web-based service-client model, and provides web-services

to establish communications between both client and server side.

Following these design recommendations, the extension of the project is to design

a visual analytics environment that can be customizable to support complex bridge

management process as well as enabling effective collaboration. As a result of extensive

literature research [69, 68] and discussion with bridge managers, this dissertation

developed in a asynchronous web-based visual analytics system that is used internally

with multiple state DOTs.

On the one hand, the web-based IRSV system is designed and implemented following
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Figure 28: The architecture of the web-based collaborative visual analytics system.
(A) The diagram on the left denotes the Client-side architecture for an interactive
visual analytics system. (B) The graph on the right shows the overall service-oriented
Server-side collaborative environment between individual clients.

the design considerations listed in Section 3.5.2.3. It encodes the three analysis

processes into a set of coordinated visualizations, and thus provide bridge managers

with their familiar analytical capability. This system focuses on supporting information

analysis from the similar aspects as the desktop version (e.g. geospatial, temporal

and structural analysis). Note, since most of the data analysis components in the

client-side interface follow with same design considerations previously mentioned

in 3.5.2.3, this dissertation will not reiterate these designs but will demonstrate the

visual changes for web usage in Figure 29.

On the other hand, since analyzing bridge conditions is a sophisticate process, IRSV

enables the bridge managers to record their analysis process at every step. With

built-in evidence finding mechanism, the users can directly capture their analysis

findings and annotate those findings to intermediate maintenance reports. Bridge

managers can further share their analysis results with colleagues, and collaboratively

maximize the utilization of maintenance resources.

In the following paragraphs, this dissertation describe the key features in this design

that helps to achieve the knowledge refinement and sharing:

Customizations of the Domain Analysis Process
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Figure 29: The overview of the entire system of iMonitor client. In this client
system, iMonitor provides views for Google Map(D), Parallel Coordinates (E), Scatter
Plots (F), Temporal Analysis (B), Bubble Chart (A), Comparison Matrix (C), and
the original data (top row). Per-Bridge Detail View (H) and Evidence Annotation
Panel(G). Several items are highlighted with colors. (D1) is used in Section 6 as part
of the scenario
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Table 13: Extended Design considerations for support customization of analysis
processes

6 Easily accessible cross platform application or web-protal
7 Customize personal workspace and preferences
8 Construct coordinated views for linked information
9 Trace interactions and system usage for future automation

Follows the design considerations shown in Table 13, the web-based IRSV system

is designed to enable customization of individual analytical process. It allows bridge

managers to extend the system to incorporate advanced visualizations and additional

data models. As shown in Figure 28(A), the client architecture utilizes the concept

of coordinated multiple views [133] as well as a modular software architecture to

customize the visual analytics system.

Depending on the bridge manager’s preference, the web-based IRSV system provides

both explicit and implicates ways to support the customization. Explicitly, IRSV

enables bridge managers to interactively design and arrange visualizations based on

their needs and analytical routines. Each visualization component integrated in IRSV

is interchangeable plugins that can be efficiently coordinated based on the identical

bridge identification numbers. In doing so, IRSV allows bridge managers to upload

their data, and select specific data dimensions for analysis.

Following on the bridge manager’s selections of data and visual representation,

the mapping between data and the desired visualization are computed on real-time.

Thanks to the client-server design, IRSV processes this mapping on the server and

utilizes its computation power to support on-fly data aggregation and information

correlation. During this process, multiple statistic analyses would be performed to the

data for additional information, including such as standard deviation, linear regression

and coefficient that are commonly applied to the bridge analysis. IRSV would

then stream this computed information back to client side and create customized
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visualization and interactions accordingly.

On the other hand, through capturing and analyzing users’ interactions, IRSV also

presents a less intrusive way to customize visual interface for individual analytical

processes. With the user’s permission, IRSV implicitly collects information about her

exploration trails during each analysis session. This information includes visualization

parameters (interaction logs and view parameter), temporal event information (e.g.

the duration spent on particular visualization, the frequency of using certain views),

and data parameters (e.g. what data is used, which dimensions have been focused

on).

This collected data is analyzed on the server-side to retrieve reasoning preferences

for individual bridge managers. Based on the association between the collected data

and its owner, a pair-wise ranking matrix is automatically generated to rank the

importance of each visualization, data and the mapping between them both. This

ranking matrix establishes the baseline for the user’s analysis steps, and provides

the IRSV system with a set of visual-data combinations that are associated to that

particular bridge manager. It further indicates preliminary analysis sequences that

may fit into individual’s task routines. Using this ranking matrix, IRSV can utilize the

interaction logs to customize the analysis environment, and adjust its date models and

visual representations in accordance with the specific preferences for bridge managers.

Since the web-based IRSV has only been deployed recently, the results on how

effective our approach is are still limited. With the growth of our online users, this

dissertation is expecting to gain more insights and conclude more details about its

utility in the future.

Annotating and Sharing Findings

Collaborative visual analytic environments require considerations of a number of

factors. One must consider the specific requirements of the problem domain, and

what the overriding and imperative questions to be answered are. In the case of
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Table 14: Design considerations for annotating and sharing findings

10 Support sharing of evidence and hypodissertation
11 Real-time collaborative communication or provide report generation templates

bridge analysis, this research primarily concerns with the sharing of analysis findings

for individual bridge manager.

As such, IRSV chose to not enforce any strict limits on who can do what where,

and designed our asynchronous collaborative environment based on recommendations

from Heer et al. [69]. Rooted with Scott’s [140] observations about intuitive division

of collaborative space, this research recognizes that the client-side architecture is

obviously the center point for individual bridge manager to perform analytical process.

Similar to the Scalable Reasoning System [128], IRSV focuses on the collaborative

aspects of organizing the analytical processes among multiple users and sharing their

results to enhance the bridge maintenance prioritization process.

Figure 30: Annotation example
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In keeping with this design, as shown in Figure 30, IRSV supports interactively

collecting, annotating, and sharing analysis findings between different collaborators.

Incorporating the listed design considerations (Table 14) into the web interface(see

Figure 29(G)), IRSV enables bridge managers to create diversified visualizations (See

Figure 29), and allows them to group the visualizations into workspaces. Like a

Windows desktop, a workspace initially presents a blank visualization canvas for

individual bridge managers to customize their analysis environment. Unlike aWindows

desktop, user can create multiple workspaces during the same analysis process, and

compare and correlated information that is represented in them.

IRSV further allows bridge managers to use the collected evidence to support

their analysis hypotheses and create analysis reports [164]. IRSV treats individual

visualizations and group workspaces as collectable items. It enables bridge managers

to directly drag and drop these items into a sandbox, designed to collect all the

findings. As illustrated in Figure [173], IRSV each collected items to the sandbox, and

sort them temporally. Through a predefined template, IRSV further allows bridge

managers to annotate each collected evidence. As illustrated in Figure 29, IRSV

provides a rich set of annotations tools for bridge managers to directly insert their

comments for each evidence, including inserting textual descriptions, and highlighting

key patterns in a visual evidence.

To capture the causal relationship between these evidences, IRSV supports bridge

managers to interactively create a semantic graphs between individual evidence, and

more importantly, it allows bridge managers to combine and organize the evidences

based on their own reasoning processes. IRSV further deploys a semi-structured

reporting function to help bridge mangers to construct a preliminary analysis report

based on these organized evidences.

As illustrated in Figure 28(B), our server architecture follows a server-client model.

The architecture aims at supporting services that can enable interpersonal collaborations.
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The main functions for this architecture are to guarantee stable hosts of online

bridge management community, sharing of information between bridge managers,

and unified yet protected data repository. Through a set of predefined web-services,

our server-side architecture allows the instant information exchanging between both

tiers, and therefore enables bridge managers to interactively collaborate on bridge

prioritizing and decisions-making.

Using built-in sharing channels or emails, IRSV helps bridge managers to share their

findings and reasoning processes with colleagues. Instead of merely sharing a static

image, IRSV records the parameters of each evidence and its semantic connects, and

shares this information with other bridge managers to recreate an interactive analysis

workspace.

Incorporating Emerging Data Model

Table 15: Design considerations for incorporating emerging data model

7 Integrate multiple information channels
8 Incorporate elements from organizational knowledge base

To adapt to the development of emerging domain technologies, IRSV is built on

top of a modular architecture that allows bridge managers to extend the system to

incorporate advanced visualizations and more effective data models. This is made

possible largely because inspections and analysis results are tightly associated using

a unique bridge identification number. Therefore, if bridge managers are in need of

analyzing additional data, IRSV is designed to be ready to incorporate this data and

provide proper visual analysis.

In practice, IRSV follows the above design considerations, as seen in Table 15, and

implemented the server-side architecture to combine and cross-reference diversified

bridge datasets upon their arrivals. Serving as a dynamic data repository, IRSV’s

server allows bridge managers to upload their own datasets onto the server. It further
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facilitates the users to publish and share their data with colleagues.

Currently, this approach enables bridge managers to combine the traditional National

Bridge Inspection Standards (NBIS) dataset with their locally collected information.

As of the dissertation, this research has helped NCDOT bridge managers to associate

bridge structural information with extensive data collected in the North Carolina

region. This extensive information includes, as shown in Figure 22 (F), field inspections

imageries, Light Detection And Ranging (LIDAR) scans for each structure, and

pavement crack analysis results.

Summary: the web-based IRSV

Following the above design considerations, the web-based IRSV system is implements

to support the user-centric refinement process. It supports methods to customize and

adjust the visual analytics system, and helps to integrate the individual’s analysis

processes with the general analytical workflow. This web-based IRSV system not

only presents a customizable visual analytics environment, but also it enables bridge

mangers to collect, annotate and organize evidences found during their analysis

findings. Using these functions, the IRSV system supports the sharing and collaboration

among multiple managers, and in turn, facilitates the bridge maintenance prioritization

process.

3.6.2.2 Case: Enhance Taste to Refine Individual Analysis Processes and Support
Information Sharing

3.6.2.2.1 Reassessing the Taste system

Enterprise strategists have long been aware that the information sharing flow has

tremendous influence on business success or failure [20]. A vibrant organizational

culture with a strong sense of community and cross-functional network of employee

relationships can significantly augment traditional management methods and processes

structures [109]. Especially in a large enterprise like Xerox Corporation, where

documents and information are generally decentralized among employees, it requires
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collaborative efforts to achieve efficient information retrieval and decision-making

processes. In particular, the follow-up interviews conducted by this dissertation

revealed that the success of these collaborative efforts is determined by the responsiveness

of the inter-personnel communication, the efficiency of information sharing, and

effectiveness of collaborations with personnel hierarchies.

However, previous studies [20, 110] have suggested that such collaborative efforts

could be undermined by three major limits, namely, the communication between

colleagues may not be timely, relevant information might not be shared, and mostly

the collaboration may not occur to the right person or the right organization. Because

most current tools lack support for these critical functionalities, enterprise employees

often resort to paper formats or email to communicate with other colleagues about

the business information that they have found or their need for help finding it. This

therefore largely slows down the decision-making process and causes breakdowns the

information sharing and collaboration, thus resulting the unwillingness of knowledge

workers to share insights and pass along experiences.

Therefore, to retain an effective information flow, the research collaboration with

Xerox had been extended to design tools that could enhance such organizational

collaboration processes. Specifically, this research extension is conducted based on

the evaluation and assessment of Taste with domain knowledge workers, and focuses

on extending Taste to support such needed information sharing flow. In general, these

professionals expressed their need of tools that not only can effectively help organizing

business information, but also would allow them to share their analysis results and

collaborate with others in a timely manner.

3.6.2.2.2 Utilizing storytelling to refine and share individual business analysis

According to Pike et al. [129], the typical goal of information analytics is to create

new understanding and communicate it to others. This sharing and collaborating

factor is especially valuable in a large enterprise environment, where information can
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be spread out among multiple employees. In such workplaces, seeking information

may require an organized effort by collaborating employees. Therefore, Taste supports

the information seeking process for both individuals and groups.

By utilizing an interactive Story Telling view, Taste allows users to collaboratively

find information, organize it and share it. In this view, the user takes a more active

role in information tracking. Like the Detail view, this view is universally supported

throughout Taste. Whenever a user comes across an interesting information object

in Taste, they can right click on that object to add it to a new or existing Story view.

Once an element is in a Story view, as shown in Figure 31, the user can annotate

or tag it. The user can also perform basic grouping and sorting on the story elements.

In addition, the user can drill down to more information about a given document or

person by clicking on its icon.

Figure 31: A story that has been organized into 3 Story views.
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The story created by one user around a collection of people and documents may

be of interest to other users as well, so Taste allows stories created on one instance

of the system to be shared with users on another instance. Other employees, who

receive this shared story, are able to modify it based on their understanding of the

topic and add or suggest removal of story elements. By sharing their stories about

document activities, groups of employees can now understand those activities better

and improve information retrieval for all members of the group.

While the story feature in Taste is quite new, we can already see that it may be

useful for a number of applications, including capturing a related set of ideas, building

an annotated bibliography, recording the history of a project, or sharing information

about recent exchanges with a customer. We are still testing the usability and utilities

of this feature in enterprise environments.

By utilizing an interactive storytelling view, shown in Figure 12 (D), Taste allows

users to interactively collect evidence, annotate it, and share it with others. The

storytelling view allows the user to take a more active role in information tracking, and

enables them to express the information relationship based on their own knowledge.

Whenever a user comes across an interesting information object in Taste, they can

directly add that object to a new or existing story view. Once an element is in a

storytelling view, the user can further annotate or tag it, and can group different

story elements based on their reasoning logic.

The story created by one user around a collection of people and documents may

be of interest to other users as well, so Taste allows stories created in one instance

of the system to be shared with users in another instance. Analysts who receive

these shared stories, are able to modify them based on their understanding of the

topics, and add or suggest removal of story elements. By sharing their stories about

document activities, groups of employees can now understand those activities better,

and improve information analysis for all members of the group.
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3.6.2.2.3 Logging interactions to parameterize the document analysis processes

Another “feedback” loop built in the Taste system is the implicit logging of individual

knowledge worker’s interactions history. While seeking business information embedded

in multiple document activities is important, an individual document is weighed

differently based on the analytical needs and targets. Employees generally have their

own methods for organizing and relating business information, based on their job

requirements and individual experience. It is therefore interesting to consider whether

externalizing such knowledge and embedding it into customized visualizations would

be feasible for enhancing their information retrieval processes.

Taste currently logs the interactions that are used in analyzing the document

activities. The goal for this interactions logging is to use content frequency and

analysis duration information (i.e. time intervals and content ordering) to update

and customize visualization parameters. The logged information is used to capture,

store and reuse domain analysis knowledge. As shown in Facet view (see Figure 15),

the ordering of a document is determined and rearranged by this logged individual

interaction information.

In addition, Taste implicitly stores the information for the annotation elements

that are created by the users. It concentrate on analyzing the story elements and

translating them into knowledge artifacts that can be externalized to document

repositories and then used as input to personalized search methods. This implicit

annotation logging helps extending the collaboration support, and suggests document

information to collaboration groups.

While the interaction feature is new, many employees found the idea of the automatic

reordering of information necessary. They felt that the feature was practical and

useful. The employees were interested in testing this function in their daily analysis

processes, and expected to use this function to increase their productivities.
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3.7 Conclusion

In this chapter, this dissertation presents four design recommendations that are

useful in the implementation of organizational visual analytics systems. Each of these

recommendations covers an individual procedure during the design process; together

the four recommendations presents a coherence design process for an organizational

visual analytics system. Three successful visual analytics systems are described and

discussed in this chapter to illustrate the utility of these recommendations. These

three examples systems represent the four recommendations for an important aspect

of visual analytics design.



CHAPTER 4: A TWO-STAGE DESIGN FRAMEWORK

4.1 Objectives

The objectives of this chapter are to synthesize a two-stage visual analytics design

framework for organizational environments. This framework is concluded based on

the four design recommendations that are summarized from extensive collaborations

with three large organizations, namely Microsoft, Xerox Corporation and the USDOT.

Details of the four design recommendations can be seen in Chapter 3.

This framework presents knowledge beyond the mere summarization of the aforementioned

recommendations. It focuses on the concept of a two-stage design process in achieving

a comprehensive modeling of a organization’s analytical workflows. The two stages in

this framework, namelyObservation and Designing stage and the User-centric

Refinement stage, are aims at interactively enriching and refining the already

encapsulated domain analysis process based on understanding user’s intentions through

analyzing their analysis processes.

Since there is no such visual analytics design framework exists in current literature,

as suggested in Chapter 2, this chapter presents the building process and details of

the proposed two-stage design framework. Every important design component is

described and discussed in this chapter. This chapter further introduces the general

ways to use this design framework for actual implementations.

This chapter:

• presents a two-stage visual analytics design framework for organizational environments.

• illustrates the detailed design steps of the framework , including its individual

component and process.
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• demonstrate the design process and the utility of this general two-stage design

framework.

4.2 Overview

The modern organizations, including government agencies and commercial enterprises,

depend upon timely and effective flows of information and knowledge through its

organizations for success. The larger, more time-critical and multi-information channeled

an organization, the more that it relies on the efficacy of such analysis workflows [118].

Since different analytical activities in the workflow demand tailored information and

require distinctive domain-knowledge, the organizations demand new kinds of decision

support systems that incorporate the knowledge workers’ reasoning and task-solving

processes. In turn, many of the prominent organizations depend upon information

support systems to support their analytical processes, in order to excel and compete

through innovation more than production and service [79, 111, 3, 117].

As shown in many successful examples in Chapter 2, visual analytics systems have

played an important role in accommodating these domain analysis requirements and

facilitate their analytical processes. While these outcomes have demonstrated the

utility of visual analytics, however, one might say that the contemporary visual

analytics field is inherently diversified, lacking of unified theory and design foundations.

It also introduces one key question that is critical in presenting the science of visual

analytics: “What’s the generalization and design foundation of visual analytics?”. To

identify such generalization, it requires the visual analytics researcher to summarize

their success from multiple domains and conclude them into a cohesive design framework

that holds the field together.

Despite the variety of systems development approaches that are in practice, this

design research is anchored to the identification of the essential components, processes,

and techniques that function as the general building blocks or ingredients of various

visual analytics systems design and development methodologies. For instance, it
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considers the fundamentals of visual analytic design from multiple aspects, including

the characterization of general analytical workflows based on domain analysis, the basic

considerations and techniques for extracting the domain information (e.g. task and

context analysis), the general visual design and encoding methodologies for many

systems development, the structural approach to systematically development a visual

analytics system, and finally the evaluation to assess efficacy of a visual analytics

system.

Based on research on these design fundamentals, this dissertation presents a general

design framework to provide future visual analytics developers and researchers with

starting point, or the “generational experience” [132], to address various systems

development situations.

4.3 The Fundamentals of a Design Framework from a Visual Analytics
Perspective

Like many empirical sciences (e.g. HCI, InfoVis), the field of visual analytics does

not solely research on existing technologies, styles of interaction, or interface solutions.

The design of organizational visual analytics systems concerns beyond merely the

final user interface and representations. While these interface features are undeniably

essential considerations in visual analytics development, but they are not the major

concern of this dissertation.

The core foundation of visual analytics designs is, in the view of this dissertation,

rooted in the generalization of domain analytics processes, the visual facilitation

to domain analytical tasks and finally, the customization for users’ analytical workflows.

Essentially, the design of visual analytics systems is analysis centric in a way that

it needs to encapsulate the organizational analysis discourse and support its’ related

reasoning tasks and user behaviors.

In particular, the design of visual analytics systems needs to consider and alleviate

the potential incompatibilities and challenges that could affect organization users’
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acceptances of, and reactions to, such systems. The design of visual analytics system

needs to provide supports for various domain analysis tasks, match properly between

the nature of the task and the support from the systems, provide logical organization

of the targeted data, utilize the accurate statistics to meaningfully transform data

and most importantly, guarantee the consistency between the analytical workflows

and the visual analytics system operations.

Human-centered design is another very significant factor in visual analytics

design. This recent research and practice in HCI has shown the users affective

reactions and their holistic experiences with technology are gaining more attention

and becoming increasingly important [4, 169, 178]. As suggested by many empirical

studies that, a better understanding of various human cognitive, affective, and behavioral

factors involved in user tasks, problem solving processes and interaction contexts is

required to address these problems [178].

The central tenet of human-centered design is to fully engage domain users during

the modeling and design step of developing a visual analytics system, ensuring their

requirements and demands to be clearly understood and conveyed to visual analytics

designers. The human-centered design is a bi-direction process: on one hand, the

elicitation of system requirement demands visual analytics designers to communicate

fluently in same the “analysis language” of the targeted domain; on the other hand, it

also requires the designers to introduce the merits of visual analytics to influence the

analysis domains and help them to reform the organization of their existing analysis

processes.

Both the generalization of core domain analysis and the human-centered design

are regarded as the two fundamentals in constructing a general visual analytics

framework. Therefore, such framework need to comply with both fundamentals in a

ways that: 1) the framework must reveal the generalizability of visual analytics in

encapsulating and facilitating domain analysis processes, and more importantly 2) the
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framework must clearly instruct a systematical development process that guarantees

the efficacy and validity of a customizable visual analytics system.

4.4 Developing a Two-stage Design Framework for Designing Visual Analytics
Systems

Following Zimmerman et al.’s [179] definition of design research as “an intention to

produce knowledge and not the work to more immediately inform the development of

a commercial product”, instead of intending to produce a commercial product, this

dissertation focuses on producing a framework that informs the design of a visual

analytics system.

Similar to Hirschheim and Klein’s [73] view on developing an information system,

this dissertation proposes a two-stage framework for systematically designing visual

analytics systems in organizational environments. As shown in Figure 32, the proposed

framework concentrates on incorporating both the generalization of domain analytics

processes and human-centered designs into the conceptualization of the framework.

More importantly, this dissertation conflates the other two essential fundamentals in

a cohesive manner to augment the design of a visual analytics system.

Figure 32: An overview of the targeted framework. The two stages in this framework
emphasizes on the incorporation of both general domain analytical process and
individual analysis approaches
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In particular, the first stage in this framework is anObservation and Designing

stage (OD-stage) (Section 4.5.1), in which a visual analytic system is designed and

implemented to abstract and encapsulate general organizational analytical processes.

As detailed in Section 4.5.1, there are typically a two design steps used to achieve

this stage. The second stage is the User-centric Refinement stage (UCR-stage)

(Section 4.5.2), which aims at interactively enriching and refining the already encapsulated

domain analysis process based on understanding user’s intentions through analyzing

their analysis processes. Two design steps related to the UCR-stage are described in

Section 4.5.2 to show the steps in developing requirements for this stage.

As shown in Figure 32, the goal of this framework is therefore four-fold:

• Generalize domain analytical workflows to present high-level problem-solving

direction

• Incorporate both general domain analytical process and individual analysis

approaches

• Bridge the gap between high-level design concepts and fine-grain implementation

of such concepts

• Augment organizational information analyses through modeling domain users

reasoning approaches

On the conceptual level, this framework is designed to effectively engage the domain

users during the design process and more importantly, to alleviate their lack of

incentives in adopting novel analytical tools. Through revealing the high-level sense-making

process in a general analytical workflow, this framework presents a cross-domain

perspective that facilitates the design of a visual analytics system. In addition,

it further provides a consistent and efficient starting point for designing a visual

analytics system, and serves as a great initial approach to engage and communicate

with domain users.
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On the implementation level, this framework is constructed to inform the design

of a visual analytics system through disseminating and incorporating the general

analytical workflows into the design artifacts. It also presents visual analytics researchers

and designers with more tractable design processes and more importantly, it provides

them with a basis for assessing visual analytics use patterns and evaluating their

impact.

To incorporate a comprehensive analysis environment, this framework focuses on

covering both the objective generalization of domains’ analytical workflows and the

subjective experiences of individuals domain knowledge workers. The fundamental

principle of designing a visual analytics system from which the four recommendations

are derived is that knowledge and understanding of a design problem and its solution

are acquired in the building and application of an design artifact.

On the one hand, it emphasizes incorporating the observed general domain analysis

methods and models into visual analytics systems. These models and methods are

derived from the characterization of the targeted organizations, and they represent

the domain requirements with a more abstract and generic development description.

This framework requires the characterization of an organizational analytics processes

(Recommendation 1).The design is based on the clear depiction of the analysis processes

utilized in an organizational environment. These analysis processes are the core

components in the designed visual analytics system. This framework further demands

dissemination and transformation of the domain analyses into tangible design artifacts.

These fine-grain artifacts are used to inform the creation of an innovative, purposeful

visual analytics system for a specified problem domain (Recommendation 2).

On the other hand, this framework concentrates on the integrations of domain

users’ perspectives into the system development process. It considers and analyzes the

possible interactions between users and visual analytics systems at an early stage, and

provides the users with flexibility to customize and refine their analysis workspaces.
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Because the design artifact identified in Recommendation 2 is purposeful, it must

yield utility for the specified problem. Hence, to inform accurate visual designs,

Recommendation 3 focuses on transforming these design artifacts into programmable

visual elements. The designed system needs be innovative, solving a heretofore-unsolved

problem or solving a known problem in a more effective manner. The incorporation of

various “feedback” loops to enhance a designed system would provide opportunities to

engage domain users and identify novel domain analytical processes (Recommendation

4). The process by which it is created, and often the artifact itself, incorporates or

enables a search process whereby a problem space is constructed and a mechanism

posed or enacted to find an effective solution.

Both these focuses guaranteed the proposed framework would comply with the

above two required fundamentals in that: (1) it presents visual analytics design from

the perspective of the encapsulation and facilitation of general domain analytical

practices; (2) it supports the design processes for customizable analysis environment,

and informs a systematical process for the development of an effective visual analytics

system.

4.4.1 Design Methodology

To materialize such framework, a series of research processes were conducted in this

dissertation: it began by categorizing the design experiences gained from collaborations

with various organizations into a general organizational analysis workflow. Then,

validated by domain users, this research incorporated the general workflow into a

two-stage design, and listed the necessary design considerations for each stage. It

further followed these considerations and developed visual analytics systems through

iterative prototyping with domain users. Through extensive empirical evaluations of

the two design stages, this research finally encapsulated both stages into a coherent

general design framework.

The design process of this framework is intertwined with the actual implementation
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practices. This bootstrapping process emphasizes using both theoretical design aspects

and practical experiences to construct a coherent and comprehensive design framework.

On the one hand, the implementation practices present essential functional components

that need to be incorporated into the framework. They further provide a testing

ground to verify and validate the design framework. On the other hand, the theoretical

framework instructs proper implementation steps, including the use of formative

and summative evaluations. It details the natural progression for designing a visual

analytic system and presents it in a cohesive manner. From the initial communication

with targeted domain users and to the prototyping and iteration of visual analytics

system, this framework illustrates the necessary actions and recommendations to

design a visual system that augments organizational analytics processes.

In this section, this dissertation presents the design methodology that is related in

the materialization of the two-stage framework.

4.4.1.1 Settings: Organizational Environments

The proposed framework mainly targeted facilitating the information analysis processes

in organizational environments. Given the analysis-intensive nature of these organizations,

a general design framework is believed to hold significant performance implications

in instructing the development of visual analytics systems that can help employees

solve increasingly complex and often ambiguous problems.

However, as presented in previous research [118] [36], an organizational analytical

task is a process of handling multiple channels of information through the utilization

of trained knowledge and current resources. Characterizing the analytical process in

an organizational setting, such as a company or a governmental agency, is a complex

process:

To guarantee the unbiased nature of the domain analysis and the generalizable

outcomes, qualitative interviews and observations were conducted with multiple large

organizations.
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In the past three years, this dissertation performed interview studies within three

groups of professionals in different organizational settings, including bridge-asset

managers in The U.S. Department of Transportation, who propose and execute

strategic bridge maintenance plans; business analysts from Xerox, who retrieve and

analyze documents for information essential to the operation of the business; and

network operational manager from Microsoft, who monitors the status of physical

servers and network health.

All of the above organizations gave the opportunity for close, in-depth interactions

with their knowledge workers and to conduct surveys and interviews, which were

crucial in studying their analytical processes.

4.4.1.2 Data Collection and Analysis

The starting point of the data collection process is, typically, to investigate the

analysis workflow for the individual domain. Following the business process notations

used in these organizations [150, 162], this dissertation undertook a similar approach

as Sukaviriya et al. [150] in identifying the basic analysis processes used in organizations.

It focuses on examining information for the occurrence of a task, the inputs and

outputs of that task and overall, the sequence of analytical tasks.

In particular, to understand the bridge maintenance domain, this dissertation

conducted a nation-wide survey in the United States, and followed up with the

participants through close examinations to understand their general analysis workflow

and task requirements. To portray business analysis workflows, this dissertation

interviewed 30 Xerox employees to gain insight about they analytical workflows.

Finally, to better study the complex network analysis processes, this dissertation

conducted several on-site interviews and discussions with cloud-service operators at

Microsoft to observe the day-to-day operations performed by the back-end cloud

service teams.

In doing so, this dissertation aims to identify the generalization of these organizational
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analytical workflows. Through analyzing the results from these collaborations, this

dissertation gained domain analysis insights through close observation of these domain

users’ analytic workflows, and leaned their actions required for achieving each analytical

task. While all these organizations’ analysis processes are unique considering their

problem definitions and solution trajectory, all of the three organizations share general

project responsibilities that required them to be effective and efficient at generating

pragmatic solutions to move the decision-making process forward. Therefore, this

dissertation considers these organizational analysis processes to be quite representative

in revealing the needed general analytical workflows for visual analytics designs.

Details of how these collaborations lead to the characterization of the general domain

workflows can be found in Section 3.3.

4.5 The Two Design Stages

The efficacy of a visual analytics system puts emphasis on the support for both

organizational and individual’s analysis requirements. As shown in Figure 33, the

design framework is therefore proposed based on the same philosophy.

In particular, this framework follows the typical software development life-cycle

model [106, 178], and incorporates the analysis requirements into two design stages

(OD-stage and UCR-stage). Both of these design stages serves as the basic building

blocks to construct the components and techniques for a visual analytics system.

Individually, each of these stages is detailed to inform visual analytics designers with

tangible development guidance. As shown in Figure 33, a total of four individual

design steps are described and utilized the two stages to direct the process of a

system development, namely “domain observation and analysis”, “design artifact

specification”, “system deployment and user training”, and “usage pattern analysis

and customization”.

Collectively, both stages contribute to the development of a visual analytics system.

They support iterations among different design steps, and inform the transitions from
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Figure 33: An overview for the two-stage framework. The Framework is listed as a
system development lifecycle. The Observation and Designing stage is consisted
of the top two design steps, while the User-centric Refinement stage is listed at
the bottom. Dash line means potential development direction, but not necessarily
required for every development.
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one step to another. The combined efforts from both stage grant visual analytics

designers a holistic design perspective, suggesting design considerations and processes

from domain characterization to individual refinement. Together these two stages

show the key ideas of the visual analytics development approach: domain analysis,

iterative prototyping, swift feedback (such as soliciting user feedback), and human-centered

analysis customization.

4.5.1 Stage I: Observation and Designing stage

Figure 34: The Observation and Designing stage (Stage I) and its two design
steps.

As shown in Figure 34, the primary goal of the Observation and Design stage

is to identify the target domain’s analytical processes and to determine the required

system functionalities. It further specifies the design artifacts that are appropriate

to implement such functionalities. Therefore, the use of two consecutive development

steps were suggested in this dissertation, namely the domain observation and analysis

step and the design artifacts specification step. Both steps are used in achieving the

first stage of the iterative prototyping of a visual analytics systems.
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4.5.1.1 The Observation and Analysis step

Following previous design research (e.g. HCI [44], Knowledge Management [119]

and visualization community [115, 161]), the observation and analysis step emphasizes

determining the system requirements, structuring requirements according to their

interrelationships, and developing the visual designs and evaluation metrics. There

are four essential implementation components in this step, including Identifying analytics

requirements, specifying data requirements, constructing evaluation metrics, and

finally performing formative evaluation to fine tune the domain characterizations.

As the core foundation in visual analytics rests on understanding domain analytical

processes, this domain characterization and analysis generalization step is one of the

most important design activities in the framework. It urges the visual analytics

designers to communicate and interact with domain users to learn about the data

and the analytical tasks within the targeted domain. This design step motivates the

designers to categorize both the data and analytics requirements through interactions

with end-users, and further assists the designers to transform these requirements into

tangible system functionalities. Both the data requirements and analytics requirements

are used to derive the evaluation metrics that are essential for assessing the efficacy of

the designed visual analytics system. In the follow sections, this dissertation presents

details of each implementation components.

The goal for Observation and Analysis step is two-fold:

• Characterize the general domain analytical processes

• Identify design artifacts for visual analytics implementation

4.5.1.1.1 Implementation Component: Identifying Analytics Requirements

As illustrated in Figure 35, The analytics requirements are generated based on

context analysis, user analysis, and task analysis. Following ethnographic methodology [6,

135, 152], typical methods perform the these analyses include semi-structured interview
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Figure 35: The Observation and Analysis step

(see Section 3.3.1.3 for examples ), surveys (Section 3.3.1.1), and on-site observations

(Section 3.3.1.2).

Context Analysis

As noted in organizational design and HCI research [178, 44, 18, 109], context

analysis is a useful method to analyze the environment in which a organization

operates. On a broader scope, context analysis provides a constraint to ensure that

all factors that may affect the usability of a product are considered. It also helps to

ensure that user-based evaluation produces valid results, by specifying how important

factors are handled in an evaluation, and by defining how well the evaluation reflects

real world use [14].

In developing a visual analytics system for organizational environments, the context

analysis has been narrowed to understand the technical, analysis and collaboration

settings where the visual analytics systems will be used. The main goal for a context

analysis in the design process is to analyze the organizational environments in order

to acquire an overall characteristic of the domain. Overall, context analysis can

provide ideas for design factors such as metaphor creation/selection and patterns of

communications between users and the system.

In addition, the context analysis provides insights to develop a strategic plan for

the development of a visual analytics system. It examines whether and how the

interaction among individual domain users and between the users and the organizations
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would impact or even change the design of a visual analytics system.

Typically, there are three aspects in context analysis: technical context, analytical

context, and social context. While not all three are needed for every visual analytics

design process, individual development project should select suitable aspects in accordance

with the complexity of the targeted organization and the scope of the visual analytics

system in design.

Technical context: When designing a visual analytics system for an organization,

the end-user’s technical skill level and the cost for adopting the visual analytics

system are often two significant factors that shape the design and development

strategy.

On the one hand, a properly designed visual analytics system should comply

with existing technical environment and users’ skill sets. This aims to minimize

the potential cognitive overhead that is caused by a new analytical system. More

importantly, by placing the users in a more familiar technical environment, such

visual analytics system could also motivate the users to actually take advantage

of the features in a visual analytics system for their analysis needs.

On the other hand, through understanding the current techniques in an organization,

technical analysis provides a baseline for visual analytics designers to compare

to. This analysis enables the designers to identify the insufficiency in existing

organizational techniques. It further helps the designers to determine the needed

analysis features and functions for a visual analytics system.

For example, the collaboration between this work and the USDOT is benefited

by performing the technical context analysis. The initial design and implementation

for IRSV system (detailed in Section 3.5) was targeted to be a multiple-coordinated

visual analytics system that runs on each bridge manager’s desktop. This design

complied with the technical environment at that time and was proven useful
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with the wide deployment to bridge managers across the States.

Over the course of past two years, the overall technical environment in USDOT

has gradually changed based on technical advancement introduced by the use of

the original IRSV design. Since then, the bridge managers have become more

familiar and confident in visual analytics systems. Thus, the collaboration has

led to the reassessment of the bridge managers’ technical environments, and

further resulted in the enhancement of the existing visual analytics system to a

web-based collaborative analysis environment (see Section 3.6.2.1).

Analytical context: While similar to the task analysis (detailed in the following

section), analytical context analysis focuses on depicting the overall analysis

environments rather than specific task elements. It aims on conceptualizing

the relationship between general analytical activities and the organizational

operations. In particular, this analysis focuses on mapping out the resources

(personnel, data, technique) and restriction that need to be considered in the

design of a visual analytics system.

A typical approach to perform the analytical context analysis involves investigations

on the analysis process of an organization. Following literature in business

process learning [20, 150, 109], these investigations should be constructed towards

the depiction of the fiveWs (Who, When, Where, What, andWhy) that are used

in an analysis operation. Summarizing on the domain users’ feedback on these

questions, this analysis further concludes an overall concept of an organization’s

analysis environment.

For instance, Table 16 listed five sample questions that has been asked during

the collaboration with Microsoft (as shown in Section 3.3.1.2).

Through investigating these questions with domain users, the dissertation was

able to depict the general analytical workflow for cloud-service managers, in
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Table 16: Sample questions that are asked to analyze the analytical context in
Microsoft

Who are the main operator for these tasks?
Where are the tasks carried out?

When will the information get updated?
What resources are utilized in the entire task operation?

What are the organizational restrictions that may limit or diverge the task workflow?

which they need to manually integrate individual tools to construct a cohesive

cloud-service analysis. Particularly, the answers to the questions revealed the

current practice of most of the cloud-service managers in that: they typically

consider the cloud-service system in terms of connections and clusters; and they

monitor their systems mainly through independent tools, using one custom tool

to check one machine’s details, switching to another for its connections, and

query a database for its status.

Social context: Due to the dynamic and diverse nature of analysis activities, modern

organizations produce large amount of data throughout their business operations.

Most of the data is distributed across the entire organization domain, making it

difficult for individual knowledge worker to find desired information. Therefore,

the social context analysis is used to identify the information pertinent to

individual’s analytical needs and more importantly, to portray the dynamic

analysis flow that are essential to the organization’s operations [178, 20, 166].

In the context of visual analytics design, the social context analysis mainly

characterizes the analysis needs, knowledge worker, and the interactions between

these two. Especially in a large enterprise, where documents and information are

generally decentralized among employees, performing an analytical task requires

collaborative efforts to achieve efficient information retrieval and decision-making.
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A proper implementation of the social context analysis provides visual analytics

designers with insights on the dynamic nature of an organization’s analytical

flows. It helps addressing various design questions, such as: which streams of

data to be fused together, where to retrieve information for certain analytical

tasks, how to share individual’s analysis with others and finally, in what way

could one collaborate with others to reach business decisions.

As shown in Section 3.6.2.2, the collaboration with Xerox corporation has

utilized the social context analysis to identify the characteristic of the analysis

processes that are used in managing document activities. In general, Xerox

employees must utilize and analyze information from multiple channels, and are

required generating shared products effectively (e.g., a maintenance proposal

or analytical report). Subsequently, they need to coordinate with multiple

colleagues from different locations to agree on strategic decisions.

Based on the results from the social context analysis, this dissertation was able

to capture the employees’ strong needs for information sharing and collaboration.

The resulting visual analytics system, Taste (discussed in 3.5.2.1), is therefore

designed to accommodate these needs. By utilizing an interactive Story Telling

function, Taste allows employees to collaboratively search for information, annotate

the desired information, and share it with others.

User Analysis

The user analysis is used to ensure the information and characterizations about

the target users of a proposed visual analytics design are accurate and explicit. This

analysis provides the designer with perspectives on the different categories of domain

users who will ultimately use the visual analytics systems. It requires the designers

to identify characteristics of the user population that are likely to influence their

acceptance and effective use of a visual analytics system.
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Conceptually, the user analysis may seem obvious; in action however, it is not

trivial. As suggested by Dillon et al. [48] that, the user analyses are typically highly

context sensitive and vary from one generalization to another, never mind agreement

across proponents. It demands the visual analytics designers to actively engage

domain users and elicit the design requirements through extensive interactions with

these users. As emphasized by previous research [115, 6, 135, 152] that, in the process

of user analysis, it is rather important for visual analytics designers to not make their

own assumptions, but to ground the user characterization strictly on the information

collected from domain users.

The user analysis often means distinguishing users broadly in terms of expertise

with technology, task experience, educational background, usage constraints and

personal traits, gender and age [56, 116]. As summarized in Table 17, the user

analysis provides designers with information on:

Table 17: The information provided by user-analysis.
Demographics data Occupation, Organizational position, Specific task

focuses, Computer skill, and Experience with
similar analytical systems

Task related factors Job characteristics, Work styles, Frequency of
analytical tools used for the tasks, and Usage
constraints and preferences

Personal Traits Cognitive styles, Affective traits, and Skill sets or
capabilities

Task Analysis

Once user and context analysis has passed, the task analysis is conducted to

specify the tasks and workflows in an organizational environment. Particularly, task

analysis [63] has been used for documenting user tasks and processes.

Much previous research has suggested and conducted task analysis to investigate

existing situations [130, 8, 47]. Task analysis includes scenarios and conditions under

which users perform the tasks. It focuses on analyzing and articulating the nature of
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analytics tasks that domain users or organizations normally performs. Particularly,

this analysis emphasizes on the understanding of what people do in order to achieve

their analysis goals and how their task activities are performed during the analysis

processes.

Specific to the design of visual analytics systems, task analysis is performed in a

more narrowed scope. This process emphasizes understanding organization analysis

flows and knowledge workers’ roles in this flow. It is used to help visual analytics

designers to more effectively define the task structure, the needed fine-grain analytical

actions, and the strategy of the organization. The task analysis provides a detailed

understanding about the domain analysis processes and their related requirements.

Instead of a broad focus, the scope of task analysis in visual analytics is specified to

the identification of actionable knowledge that is utilized in the domain analytical

workflows.

On the one hand, task analysis helps the visual analytics designers to gain basic

understandings about the targeted domain. It motivates the designers to learn the

domain vocabulary in describing the problems and challenges and more importantly

encourages the designers to share the same analysis perspective with the domain

users. In turn, the task analysis enables the designers to effectively communicate

with domain users, and leads to the elicitation of a set of proper analytics design

requirements. It depicts the information needs, patterns of information, and routines

that are specific to users or organizations during their analytics processes.

On the other hand, the task analysis enables the visual analytics designers to

discovers patterns of exceptions. The objective of task analysis is to determine the

necessity and sufficiency for visual analytics systems to support user and organizational

task activities. Task analysis provides the designers the access to have close collaboration

with domain users, and enables these designers to determine the likelihood of target

users accepting of a system’s functionalities. It reveals the errors in design requirement
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specifications, and helps to avoid the unnecessary cost in the development of a visual

analytics system.

Based on significance of task analysis in instructing the design a visual analytics

system, this dissertation follows the research of task analysis in general domain [84]

and regards task analysis as one of the most important analyses in the observation

and design stage. This dissertation recommends the visual analytics designers to

conduct task analysis at the earliest stage to improve the efficiency of the overall

design process.

When developing organizational visual analytics systems, it is useful to analyze

tasks at two levels: individual level and organizational level. The overall task analysis

should start with identifying the tasks or goals on the individual level. In this process,

the visual analytics designers should focus on learning about the nature of domain

users’ analytical workflows. The designers need to depict tasks activities that are

meaningful to individual’s job or work within the analytical context, and identify the

workflows that is horizontal in each individual analytical workflows. Details about

this process and its results can be see in Section 3.3

The task analysis, on the organizational level, typically involves generalizing the

high-level common task activities of the analytical process. Such generalization

focuses on cross-process analytical tasks that are commonly applicable to multiple

domains. It examines the task workflow and the distribution of work and work

skills within an organization. Development of a visual analytics system must take

into account of the movement from one type of structured work environment to

another. As summarized in Section 3.3.2, through organizational task analysis,

the dissertation has identified a set of six task activities common to organizational

analysis processes, namely content gathering and aggregation, content filtering and

customization, content organization and information analysis, evidence collection and

hypothesis generation, report generation and status update, and post-analysis and
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summarization.

4.5.1.1.2 Implementation Component: Evaluation Metrics

The results from both analytics and data requirement analysis are important inputs

to establish the visual analytics evaluation metrics. The evaluation metric specifies

the expected analysis goals from the domain users for the designed visual analytics

systems. Such metrics often presents key features that a visual analytics system, when

designed and implemented, should incorporate. These metrics are used to measure

performance, either of the system alone or of the combination of the user and the

system for interactive technologies.

The visual analytics systems focuses on the analysis capabilities in provided by

visualization, interaction, and collaborations. Thus, to determine the effectiveness

of a visual analytics system, the visual analysis designers need to develop proper

evaluation metrics. In developing a visual analytics system, the evaluation metrics

typically provide benchmarks for both the formative evaluation [52, 141] and the

summative evaluation [141]. Such metrics guide the rest design steps of the visual

analytics development process, and aims to address the concerns listed in Table 18.

It is worth mentioning that a number of visual analytics researchers have looked at

ways to evaluate a visual analytics system using heuristic evaluation [180, 137, 153,

155, 13]. While such a method has demonstrated its utility in evaluating the usability

of an interface, the heuristic evaluation is limited in evaluating the analytics process

embodied in visual analytics systems [154, 138].

Following the evaluation methods commonly used in intelligence community [71],

this dissertation proposes the use of qualitative evaluation metrics [178] for evaluating

the analytical utility of visual analytics systems. Qualitative evaluation metrics

provides a top-down approach for instructing goal-directed analysis software evaluations.

Such metric provides visual analytics designers with reusability for evaluating similar

system, and further enables them to perform cross-domain comparison for the visual
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analytics systems.

As shown in previous work [178], such evaluation metrics, when properly crafted,

would cover a number of issues including the visualizations, how the visualizations

facilitate analysis, user interactions with the visualizations, and the support the

environment provides for the analytic process. As shown in Table 18, Scholtz [137]

summarized five areas of visual analytics concerns. These concerns are particularly

relevant to the development of the qualitative evaluation metrics for visual analytics.

Table 18 also lists some of the ways to measure these concerns that are proposed by

this dissertation.

The actual developed qualitative evaluation metrics may vary from organizations

to organizations, depending on the organization settings and their diversified tasks.

Consequently, the qualitative evaluation metrics need to reflect the needs for visual

analytics designers in terms of assess the efficacy of the designed system; it also have

to comply with the analysis needs of the targeted organization.

The specific measures or quantitative aspects of the metrics are typically determined

based on the above analysis results (context, user, and task analyses), formative

evaluation tests on mockups or prototypes, as well as the goals and constraints of

the visual analytics system being developed. Note that not all concerns are required

at the same time. Visual analytics designers are encouraged to select subsets of the

metric in their design work to determine the most appropriate evaluation approaches.

Examples of the utilization of these evaluation metrics can be seen in Chapter 5.

4.5.1.1.3 Summary: the Observation and Analysis step

The goal in the Observation and Analysis step is to characterize the targeted

organizational environments. It emphasized on the identification of the both the

analytics requirements and data requirement. This step further outputs the domain

analytical workflow that will serve as inputs to derive the design artifacts. Detailed

process of performing this analysis stage is described in previous chapter (see Recommendation
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Table 18: Areas of visual analytics evaluation concerns

Concerns Description Sample Measure Items
Situation Awareness Visual analytics system supports

the analysts’ knowledge on
performing domain-specific
analytical tasks.

Ability to track the
change of information
Provide contextual
analysis environments;
Selfdescriptiveness of the action;

Collaboration Visual analytics system enables
communication and information
sharing between collaborators.

Ability to share evidence;
Support intuitive communication
between collaborators;
Capable to reveal information
flows;

Interaction Visual analytic system provide
sufficient visualization and
interaction combinations to
facilitate domain analytical
processes

Suitability for the task;
Controllability;
Customization

Creativity Visual Analytics system supports
the flexibility and diversified
analysis processes for individual
domain analyst.

Support individual’s tasks;
Effective in searching
for analytical results
Ability to lead to high quality of
analysis solutions;

Utility
(Analytical Process)

Visual analysis system fits in
analysts cognitive strengths and
reduces its cognitive workload on
analyst

Easy to use;
Engaging;
Comply with existing
technical context;
Conformity with user
expectations or consistency;
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1 & 2 in Section 3.3).

4.5.1.2 The Design Artifacts Specification step

Once theObservation and Analysis step is performed, theDesign Artifacts Specification

step need to be executed to inform the design specifications that are used for the

implementation of a visual analytics system. The goal in this step is to support

the identified analysis requirements concluded by context, task and user analyses; it

further helps designing the functionalities for a visual analytics system to meets the

evaluation metrics requirements.

As shown in Figure 36, this step focuses on disseminating the domain analysis

processes, and transforming them into tangible visualization or interaction specifications.

It emphasizes the depiction of the programmable instructions from the previously

identified data and analytics requirements. In doing so, key interface elements of a

visual analytics system—such as the selection of visualization, the choices of interaction,

and the combination of these two—are derived based on the high-level analysis results

outputted from the Observation and Analysis step.

The concluded general actionable knowledge and its related design considerations

are listed in Figure 10. This list presents a clear connection between the aforementioned

key common task activities and the needed visual analytics design considerations. The

previously characterized six common task activities (see Section 4.5.1) are disseminated

into fine-grained actionable knowledge. The corresponding design considerations are

consolidated by transforming this actionable knowledge into practical functions.

The goal for this design step is to:

• Perform analysis encapsulation and visual encoding

• Disseminate high-level task activities into actionable knowledge

• Transform actionable knowledge into visual encoding
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Figure 36: The Design Artifacts Specifications step

4.5.1.2.1 Implementation Component: Domain Analysis Dissemination

The general domain characterization concluded in the Observation and Analysis

step presents a overall task structures in an organization. While these activities

are useful in describing a general analytic process, they are often too general to

provide any specific considerations in actual system designs. In order to designing a

visual analytics system requires support for the analytical workflows of the knowledge

workers, it requires the identification of tangible design artifacts that can connect the

design of a system with the general domain analytical workflows.

The first component in this step, therefore, focuses on disseminating high-level

analytical workflows to tangible design artifacts. This step is established based on

the determinants of the tangible artifacts in terms of characteristics of the knowledge

worker’s analysis tasks, information source, and their relationship between both

parties. It is typically conceptualized into a two-stage action to identify the nature

and criteria for the tangible design artifacts, and to describe the general analytical

workflow using these artifacts.

As extensively described in Recommendation 2 (see Chapter 3.4), the key to

disseminate these high-level task activities is the identification and use of actionable

knowledge. Actionable knowledge shows the pragmatic view of knowledge utilization

and application towards specific analytical ends [25]. The actionable knowledge is

the knowledge used to instruct domain user’s actions when addressing a task. The
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actionable knowledge details the relations between domain analytical tasks and the

related knowledge actions. It presents the analytics activities from domain users

perspectives, for example, what data to look at and which person to communicate to

in achieving a certain task. Such examples can be seen as targeting a direct marketing

campaign in a Bank’s operations, or planning infrastructure maintenance aimed at

repairing those assets with lowest health in asset managements.

A situational domain task characterization is recommended by many researchers [10,

170] in the identification of actionable knowledge. A typical approach is to perform

interviews and real-time discussions with targeted organizations. As suggested by

Shani et al. [142], there are five processes that are needed to guarantee a successful

creation of domain actionable knowledge: the emergent task process, the inquiry

process, the integration process, the experimental process and the diffusion process.

These processes focuses on utilizing an emergent collaborative inquiry process in

which behavioral and social science knowledge is integrated with existing organizational

knowledge for the purpose of generating simultaneously scientific and actionable

knowledge [38, 170]. All these characterization processes guaranteed the nature of

actionable knowledge would fit well with the above two requirements in that: (1)

it represents the fine-grained elements of each analytical task, and thus is quite

instructive for the design of a visual analytics system; and (2) it is extracted from

domain users’ knowledge actions, and therefore can be consumed without additional

cognitive overhead.

During these processes, the organizational members are fully involved in the inquiry

process and share the responsibility for the effort. The visual analytics designers are

suggested to establish close working relationships with domain users, and observe and

discuss their detailed actionable knowledge through a dialectical process [40].

For example, during the design process of the GTDVis [168], all the terrorist

analysts participated in the interviews were asked to envision the hypothetical process



141

of carrying out their usual tasks with their regular tools and working environments.

As shown in Figure 40, they were encouraged to also think about additional functions

that might be useful but not yet available in any of the tools they typically used.

Based on their analysis interests, the designed system targeted on depicting one of the

most fundamental actionable knowledge in investigative analysis, the five Ws (who,

what, where, when, and why); it emphasizes revealing the transition of a terrorist

groups, the temporal trends of that group, and its similarities with other groups in

the dataset. The interviews were semi-structured with the ambition to encourage the

respondents to give a narration more than just answer questions. Specifically, these

terrorist analysts were asked about their fine-grained analysis actions that are used

in their daily practices: what the essential analysis methods they have, and how they

utilized these tools to execute each action. In doing so, the GTDVis was designed

to support the key actionable knowledge that could improve the productivity of the

domain users analysis processes.

4.5.1.2.2 Implementation Component: Transforming the Actionable Knowledge
into Visualization and Interaction Specifications

To properly encapsulate the domain user’s actionable knowledge into the design

of a visual analytics system, the other important component in the Design Artifacts

Specification step emphasizes transforming the actionable knowledge into visualization

and interaction specifications. This transformation process needs to be concluded

consecutively with the identification of the above actionable knowledge.

As shown in Figure 2, this research provides a list of design considerations to

effectively instantiate the design of a visual analytics system. Following commonly

established design theories [143, 109, 178], these considerations are identified through

several iterations of prototyping with the targeted domain end-users. Detailed examples

for these deductions are described in Chapter 3.5.

These considerations are summarized based on the implementation experiences
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with the aforementioned three organizations. As exemplified in three successful visual

analytics systems, these design considerations are demonstrated to have sufficient

information to instruct successfully implementations for visual analytics systems.

They represent the details on how to transforming each general analytical task into

system’s functionalities. These general design considerations emphasize encapsulating

both the general analytical workflow and individual’s analysis process into users’

accepting visual analytics functions. They are further evaluated by domain users

through extensive empirical evaluations, as reported in chapter 5.

Both formative evaluations and summative evaluation presents an invaluable role

in transforming the actionable knowledge into these design considerations. They

essentially helped to encapsulate the domain users’ actionable knowledge into functions,

and led to the acquisition of critical functionalities required to build a visual analytics

system. Similar to the design of an information system [160], before transforming all

gathered actionable knowledge from the Domain Characterization and Analysis step

into design considerations, the organization must select the final alternative design

strategy for the proposed visual analytics system because (1) different users offer

competing concepts on what the system should do, and (2) multiple alternatives are

available for an implementation environment for enhancing the proposed system.

Therefore, the formative and summative evaluation is needed for fine-tuning the

design considerations, and verifying the specifications before the actual system implementation.

They are further instructive to the iterative prototyping process that is used for the

system implementation. The goal and procedures of both formative and summative

evaluations are described in the following sections.

4.5.1.2.3 Implementation Component: Formative Evaluation

Formative evaluations identify defects in designs thus inform design iterations and

refinements. A variety of different formative evaluations can occur several times

during the design stage to form final decision decisions. In fact, formative evaluations
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occur during the entire visual analytics development life cycle. It is involved as

an iterative process throughout the design life cycle. Adopting rigorous formative

evaluations process is also beneficial to designers as they can verify requirement of a

system at an early stage; and it further guides the designers to gradually move on to

the UCR-stage ( see Section 4.5.2).

Formative Evaluation is a bit more complex than summative evaluation. It is done

with a small group of people to ”test run” various aspects of instructional materials.

It’s like having someone look over the participants’ shoulders during the development

step to help them catch things that they miss, but a fresh set of eye might not. At

times, the participant might need to have this help from a target audience. Although

all three organizations shared similar common analytical tasks, the implementations

of the prototyping methods for them were quite different (considering their diverse

workspaces and time constrains). Specifically, the evolutionary prototyping [122]

method was adopted for the collaboration with Xerox. Given the requirement of a

deployable product to the enterprise, the evolutionary prototyping guaranteed more

design iterations and, more importantly, allowed the build of a robust system in a

structured manner.

In the proposed framework, formative evaluations are recommended in every design

step to ensure the final implementations are sufficient to support the domain’s analytical

needs. The proper conduct of formative evaluation can also minimize the cost of

development and increase the likelihood of users’ acceptance of a visual analytics

system.

4.5.1.2.4 Implementation Component: Summative Evaluation

In many visual analytics design cases, however, the use of formative evaluations

all the way through the design cycle may not be feasible. The use of summative

evaluations is then recommended in this framework to evaluate the design before the

deployment of the designed system. At the end of the design and implementation
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process, summative evaluation need to be performed to provide information of the

efficacy of the designed visual analytics system.

Using the identified evaluation metrics, this evaluation focuses on verifying and

validating the product’s ability to do what it was designed to do. It emphasizes the

comparison between the designed functionalities and the desired analytical workflows.

The summative evaluation is used to inform the changes needed in new releases.

Compared with the formative evaluation, this evaluation focuses on the signs, analysis

structures, and visualizations presented to users at the interface level, signaling the

immediate interpretations assigned to them and the role they play in facilitating the

domain analysis processes. In summative evaluation, the visual analytics designers

should systematically break down the system functions into components (e.g. measurable

tasks, resources, goals and constraints) that can then be analyzed and compared with

the domain task activities.

The summative evaluation is an important indicator to determine the success of

the designed visualization, and helps to decide if the design should proceed to the

UCR-stage. As show in the overall framework (Figure 33), failing in passing the

summative evaluation may results in the need to re-assessing the domain characterization

process, and thus may require a new implementation of the designed system.

4.5.1.3 Summary: the Observation and Design stage

The first stage of the design framework considers the design of an organizational

visual analytics system as a holistic design decision. This stage focused on characterizing

domain’s analytical processes through generalizing the domain analysis processes.

Through interactions with domain expert representatives, this stage aims to identify

specifications that should be considered during the design process. In particular, this

stage emphasizes the need to identify the actionable knowledge that is associated

with the domain’s general analytical workflow. It suggests methods to transform the

characterized task activities into design artifacts, and it further illustrates the design
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considerations that are useful in implementing a visual analytics system.

4.5.2 Stage II: User-centric Refinement stage

Figure 37: TheUser-centric Refinement stage (Stage II) and its two design steps.

Visual analytics systems typically are implemented within an organization setting

for improving the efficiency of that organization. The realm of visual analytics

research is therefore at the confluence of people, organizations, and technology, much

alike the information system design [45].

When considering design of such systems for an organization, as mentioned in

previous task analysis, the visual analytics design framework needs to cover both

the organizational level (high-level generic task workflow) and the individual level

(specified task scope and operations). While both levels are tightly connected to

augment each other, their divergent scopes on how analytical tasks should be conducted

have resulted in the need of a diversified approach for a visual analytics system.

Specifically, task performance on an organizational level means a generic, cohesive

and holistic view of the general analysis workflow; on the contrary, on the individual

level, different knowledge workers may share individual perspectives on task activities [109,

4]. As the essential operators of all the analysis activities, knowledge workers have

different organization roles, capabilities, interests, and analysis characteristics. Their

perspectives on organizational analysis processes therefore are different, resulting
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in diversified analytical needs and personal task routines. At the heart of these

diversified analysis routines are the different combinations and sequences of the generic

analytical processes.

Although the general workflow, identified in theObservation and Design stage,

is valid in presenting the synthesis of the majority of domain analysis activities,

individual differences weren’t captured in that stage to customize the visual analytics

system to support individual ways to carry out analysis. For instance, the interview

with Xerox employee suggested that the organizational knowledge workers often

perform information analysis and analytical reasoning in their own way. This makes

externalizing and accommodating individuality almost impossible in a holistic design

approach.

Consequently, this design framework recognized the need of a “feedback” process

to integrate the individual’s analytical practices with visual analytics systems, and

achieve the customization of such system based on different analysis perspectives.

Particularly, a User-centric Refinement stage is introduced.

As shown in Figure 37, this stage presents two design steps. After passing a

summative evaluation (introduced in Section 4.5.1.2.4), the visual analytics system

is deployed to domain users through the “System Deployment and User Training”

step. Then, the “Usage Pattern Analysis and Customization” step emphasized on

using the actual usage data collected from domain users to refine the visual analytics

system, refining the users’ analysis focuses, updating the data model (data focus),

and helping users to customize the visualization combinations.

The goal of this stage is twofold. First, it primarily emphasizes identifying design

elements that could inform the visual analytics designers with methods and techniques

to incorporate end-users’ diversified analytical processes. In general, the methods

and techniques (as shown in Section 4.5.2.2) utilizes the rich information embedded

in users’ interactions, and captures and reapplies the individual analytical practices.
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Secondly, this stage presents considerations when deploying a visual analytics system

to domain users. It focuses on explaining how to approach and deliver the system to

motivate domain users to adopt the novel analytical systems. While the research on

this direction is still at its early stage, however, the results from empirical evaluation

with domain analysts have demonstrated its efficacy in supporting customized analytical

processes.

4.5.2.1 The System Deployment and User Training step

Figure 38: The system deployment and user training step.

An important fundamental of this design framework is the human-centered

design . This fundamental request placing the domain users and their analysis

process at the center of a visual analytics system. Thus, comparing to typical software

development life cycle, where the deployment is the final step to the domain user, this

framework emphasize that the System Deployment and User Training is actually an

essential part of the design process. As human-centered design research, the visual

analytics field needs to emphasize on the importance of this deployment and the

training step in placing analysts closer to the center of their analysis process.

The benefits of carrying out a rigorous system deployment design is twofold: first,

it not only guarantees proper means for visual analytics designers to deliver their

designed systems to vast domain users. In turn, it provides the designers a ground

to evaluate the success and drawbacks of their systems based on inputs from various
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domain users.

Secondly, this deployment process grants the designers opportunity to access and

collect the diversified domain analytical methods from individual knowledge workers,

which encourages the visual analytics designers to come up with solutions to incorporate

individuality into the refining process of visual analytics systems.

During the System Deployment and User Training step, there are multiple factors

that need to be considered, namely documentation, installation, support and training

with analysis scenarios. As show in Figure 38, the first three of these steps follow the

typical software engineering and development life cycle [178].

Since it’s efficient for visual analytics system follows the general software engineering

approaches, therefore, these steps—documentation, installation, supports—are not

the focus of this dissertation. On the other hand, considering visual analytics system’

uniqueness in supporting domain analysis process, this dissertation emphasizes on

the discussion of the design of training visual analytics system with domain users.

4.5.2.1.1 Implementation Component: Training Sessions

Training domain users to adopt and get familiar with a visual analytics system is

not trivial. As pointed out in their extensive organizational studies, Markus et al. [108]

noted that, domain users typically lack incentives to use analysis technologies, and

they may share negative perceptions of the functions that the system was designed

to support. Therefore, it is up to the visual analytics researchers and designers to

utilize both the design interactions (see Recommendation 1 3.3) and training sessions

to motivate the domain users to accept the designed visual analytics systems.

This effort starts with the formative evaluations. These evaluations provide feedback

on the training as well as on the actual visual analytics system. In some instances, the

visual analytics designer trains the domain analysts participating through a formal

on-site technology insertion. In other cases, the designers would provide the domain

users with a self-contained tutorial, listing all the core functions of a visual analytics
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system. In all cases, the expert representatives who have some exposure to the

capabilities of the visual analytics systems should be invited to discuss effective ways

to utilize the system.

General Visualization Concepts Session

While during the holistic Observation and Design step, expert representatives

are familiar with visualizations and interactions that are utilized in the designed visual

analytics system, other targeted domain users are generally not aware of the concepts

of visualization nor visual analytics.

It is therefore necessary for visual analytics designers to introduce the details of

each design decisions. They need to describe how the visualization captures the

design artifacts, which are identified during analysis dissemination processes 4.5.1.2.1.

In addition, the designers need to further explain the details of each visualization

concepts, and the usage of these visualizations in domain’s analysis activities.

Figure 39: A sample from IRSV manual that was delivered to domain analysis.

As shown in Figure 39, a detailed manual was developed for deploying IRSV system

(Section 3.5.2.3) to general bridge managers. In this document, details were listed

about each visualization, including its design purpose, its related interaction, and

its relevance to the users’ analysis processes. The effort in providing such detailed
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document aims to ensure the domain analysts’ familiarity with the visual analytics

concepts, making them feel comfortable using the systems.

Analysis Scenarios

In many cases, the effort from merely introducing general visualization concepts

is not sufficient for domain users to gain enough understandings about how to use

a visual analytics system. Domain users mainly reason about the cases they have

and the constrains that occurred in their analysis process. Differs from the designer’s

perspective on introducing system functions, the domain users emphasize how these

functions would be useful in action, and are more willing to use a system if they see

it fits in their existing problem-solving needs.

Therefore, concluded on the collaborations efforts, this dissertation emphasizes the

necessity of using case scenarios in engaging and motivating domain users. It considers

the introduction and showcase of analysis scenarios using the design system would

largely complement the efforts of explaining the system on the function level.

A case scenario describes a general process in addressing the domain’s problems.

Such a case scenario should include the description of the entire analysis case, including

the statement of the problem, the challenges to the existing system, and the solutions

provided by visual analytics. These scenarios are generally identified through the

collaborative efforts from both visual analytics designers and the expert representatives

who participated in the holistic design.

For example, the following is a short paragraph in demonstrating the use case of

GTDVis [168], developed by this dissertation in collaboration with U.S. Department

of Homeland Security:

“By examining the system overview (see Figure 40 left), we can see that

a great deal of terrorist attacks took place in the Philippines. Zooming

into that specific region and selecting the entire country in the map view

(what) lists all the terrorist groups active between 1970 and 1997. A
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Figure 40: A sample case scenario for GTD

quick search in the entity view (who) shows that the NPA (New People’s

Army) is one of the most active groups in the region (Figure 40 top right).

Highlighting NPA reveals that although active, NPA is strictly domestic

and has never performed activities outside of the Philippines.”

As shown in a later chapter (see Chapter 5), this dissertation further presented

three detailed case scenarios that are identified together with domain experts. These

case studies, together with the training documents, have contributed to the successful

deployment of the visual analytic systems to domain users. Therefore, this framework

recommends the visual analytics designers to consider using both tutorial documents

and case scenarios to motivate domain users to adopt the designed systems.

4.5.2.1.2 Summary: the System Deployment and User Training step

The System Deployment and User Training step focuses on deploying the designed

visual analytics system to domain users. It aims to address the users’ lack of incentives

to use a new system, and focuses on motivating them to adopt advanced analytical

tools and practices.

Through interactive training sessions with domain users, basic visualization and

interactions should be presented to suggest the usefulness of the system in action. In

addition, the identified analysis scenarios that describe a general process in addressing
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a domain problem should also be detailed and introduced to engage domain users.

Since the user’s acceptance of a system is a key factor in the success of incorporating

the individual’s analysis processes, this System Deployment and User Training phase

is therefore of great importance in the overall design framework.

4.5.2.2 Usage Pattern Analysis and Customization step

The key fundamental in visual analytics is the support of the human-centered

organizational analytical processes. Many organizational analyses centered around

the individual knowledge workers’ analysis capabilities in linking information, identifying

and associate patterns, sharing findings, and finally communicating and collaborating

with other colleagues. While the analysis outcomes may be similar among different

domain users, the ways for these individuals to accomplish such analysis process may

vary from one another.

For instance, based on the collaboration with the USDOT [165], this dissertation

found that, bridge managers often need to develop their own analysis routines to

maximize the use of their limited maintenance resources. Depending on what’s

available, a bridge managers strategy can be very different from his/her peers, and

could require a different combination of the above analysis processes. In addition,

sometimes even the same manager needs to take alternative analytical approaches

due to changes in priorities.

Therefore, while a holistic way of incorporating domain knowledge is generally

effective, many organizations worked with this dissertation also recognized the benefit

of having a visual analytics system that can support the diversified analytical needs

and personal task routines in an organization.

From these organizations’ perspectives, the customization supports can be threefold:

first, at the heart of the needed support is the ability to shuffle the analytical

components in the system, rearranging the sequences and combinations of the generic

analytical processes. Second, the ability for individuals to collect analytical findings
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and trace the analysis trials that led to these findings. Finally, these organizations

need to have efficient means to share these analysis findings between knowledge

workers, and provide an effect environment to support collective decision-making.

Figure 41: The Usage Pattern Analysis and Customization step.

Consequently, two methods for tracking and analyzing individual’s task activities

were proposed in this dissertation, namely interaction logging, and annotation tracking.

As shown in Figure 41, all these usage collection methods focus on recreating and

extending specific visual analytics results or routines through collecting and analyzing

analysis behaviors on both individual and organizational levels. The goal for these

methods is to fine-tune the visual analytics system and make it capable to adapt

to individual knowledge worker’s analysis behaviors. Such fine-tuning is reflected by

allowing users to refine their analysis focuses, to update the visual analytics internal

data models, and to customize the visualizations combinations.

In the following section, this dissertation describes each of the usage collection

methods, and presents them as a whole in enriching and refining domain analysis

processes through capturing and analyzing knowledge workers’ task behaviors.

4.5.2.2.1 Implementation Component: Usage Pattern Analysis

As noted by Kindlmann [88] and Silva et al. [146], the lack of reproducibility of

visualization research has the potential of hindering the advancement of visualization
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as a science. They argue that in order to recreate and extend specific visualization

results, knowing the complete process of how the results are generated is just as

important as the techniques used and the outcome. This process of recording how a

user interacts with a visualization is sometimes referred to as provenance tracking,

which is defined by Anderson et al. [88] as the logging of information about how data

came into being and how it was processed.

In keeping with the need to customize a visual analytics system, this dissertation

expanded the design consideration to incorporate more collaborative methods. Two

essential methods are described and discussed in this section, including interaction

logging and annotation tracking. Each of this technique represents a unique perspective

in extending the visual analytics systems to encapsulate the users’ reasoning practices.

Interaction Logging and Capturing Users’ Analysis Provenance

While visual representations can aid problem solving significantly on their own,

they gain even more power to model a problem when interaction is introduced.

Interaction is increasingly seen as central to the process of reasoning with visualization [104,

129, 158]. Lending weight to the intuition that interaction improves reasoning,

Hundhausen et. al [77] found that interacting with an algorithm visualization produces

better understanding than viewing an equivalent animation.

As previous explained in Section 4.5.1.2, interactions is a key component in visual

analytics design. It bridges the visual interfaces with domain knowledge workers.

Interactions enable knowledge workers to freely explore the targeted data space, and

help them to identify patterns and outliers that are buried deeply in the dataset.

This dissertation uses the term interaction in the broad sense defined by Yi et al.:

the dialogue between the user and the system as the user explores the data set to

uncover insights [177].

In this sense, the relationship between interaction and problem solving has been the

subject of much research by cognitive scientists in the field of distributed cognition [78].
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In particular, David Kirsh has argued extensively that projection and interaction

with external representations are fundamental to human reasoning [93, 90, 92]. Kirsh

points to the pervasive use of external representations and interaction with the world

in everyday problem solving, and identifies several functions performed by interaction

in the reasoning process [90].

A number of previous visual analytics research has focused on understand the

utility of interaction logs in terms of retrieving users’ analytical processes. Groth and

Streefkerk [62] recently coined the term information provenance to distinguish systems

that capture low-level user interactions from systems that record the information

discovery process in using a visualization. In their model, they focus on recording

the users interaction independently from the data in a way that the same set of

logged interactions can be applied to a different dataset. Under Groth and Streefkerks

definition, many recent visualization systems that record user interactions incorporate

tracking of information provenance. Jeong et al. integrated tracking functions into a

financial visualization tool and recorded semantic-level interactions that are relevant

to the specific domain [82]. Heer et al. presented methods for both capturing semantic

interactions within an information visualization system as well as the mechanism for

reviewing, editing, and annotating on those interactions [70]. Lastly, in the Aruvi

system developed by Shrinivasan et al., the users interactions are automatically stored

into a visible history tree [145]. The user can also manually construct the state of

the discovery using an interactive node-link diagram, which provides additional detail

behind the users interactions.

While all of the aforementioned systems have noted on the benefits of capturing

provenance, including communication, evaluation, training, etc., the details of how

provenance could be utilized to achieve such benefits is sometimes unclear. A notable

exception is the work from Dou et al. on studying financial analysts’ analysis trails [49].

They examined the benefits of information provenance captured in a financial visual
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analytics tool by comparing the captured information provenance to the original users

analysis process. Their results indicated that information provenance does not equate

exactly to the analysis process and the relationship between the two varied depending

on the stages of the analysis. While this research all focused on reviewing a users

interaction history, there has been little research in how either data or information

provenance could be used.

To better understand and confirm the connection between interaction and knowledge

worker’s analytical processes, this dissertation further conducted an empirical study

that follows on Dou et al. [49] previous work. The goal was to demonstrate that

constraining user interactions indeed affects problem-solving through exploring the

relationship between interaction constraints, visual representation, and problem-solving

performance as measured by response time and score.

The study recruited a total number of 117 participants (86 Male, 31 Female),

and asked the participates to search for the best analytical solution using a set of

interaction constraints for the Number Scrabble game [50]. The research went through

multiple rounds of a refining process to design the interaction constraint conditions

used in the study. And the goal was to design constraints that ranged from placing

no limit on the interaction to restricting the interaction a great deal. Details of this

study and how it was conducted is listed in Appendix A 3.1.

The findings from this study suggest that, there is a clear connection between the

nature of interactions available in a visual representation and the types of strategies

users tend to develop when working with the representation. The results showed that

more confined constraints led to better analysis solutions, and better analysis solutions

result in large improvements in scores on the Number Scrabble game. Overall, these

results indicate that the search for analytical outcomes can be embodied in user

interaction by imposing different constraints, and that certain interaction constraints

can lead to a higher chance of deriving a better solution for a problem.



157

Therefore, this dissertation suggests that degree of constraint is an important

dimension to consider when designing interactions for visual analytics systems, although

this is not a common way of talking about interaction design in visualization. Specifically,

the results of the study imply that highly constrained interactions can impede the

discovery of the unexpected, but can also potentially guide the users to consistently

identifying the expected findings. With better analytical solutions yielding higher

performance, these results demonstrate that the effectiveness of problem solving

activities can be captured and improved by embodying information in user interaction.

As shown in Table 19, a number of research on interaction logging are discussed

and summarized into categories. In design practice, this dissertation has applied

these interaction-logging methods to multiple projects. Details about these design

and implementations is described in Section 3.6.

Table 19: A list of categorized interaction logging methods

Log Focus Log Elements Examples
Tracing detailes of analysis
sessions

Low level event (e.g. MouseClick,
Key Stroke)

Jeong et.al [82],Dou
et.al [50]

Replay key analysis frames Visual States (e.g. visualization
parameters)

Jankun-Kelly et
al. [80], Shrinivasan et
al. [145]

Reconstructing user’s
analysis process

Low-level events and Contextual
information and etc.

Robinson et al. [136],
Dou et al. [49]

Annotation Tracking and Content Sharing

Collaboration and content sharing is one key process in accomplishing organizational

decision-making [119, 23]. This process emphasizes on the sharing of tacit knowledge

between knowledge worker, including individual’s analysis findings, progress status,

and analysis reports. Collaboration is the most formal inter-organizational relationship

involving shared authority and responsibility for planning, implementation, and evaluation

of a joint effort [75]. As Monsey [110] further pointed out that collaboration and
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content sharing brings autonomous organizations together to fulfill a common mission

that requires comprehensive planning and communication on many levels.

However, while collaboration is beneficial to advance the analysis processes, it also

comes with risk since each member contributes his/her own resources [110]. Wood and

Gray [171] further outline the nature of collaboration as a process that ...occurs when

a group of autonomous stakeholders of a problem domain engage in an interactive

process, using shared rules, norms, and structures, to act or decide on issues related

to that domain.

To accommodate the challenges in organizational collaborations, much research has

focused on representing the communication and content sharing flow in a visualization

system. Specifically in the context of visual analytics, building collaborative visual

analytics environments also has a long history [35, 83]. Johnson [83] defined that

collaborative visualization is a subset of computer-supported cooperative work (CSCW)

in which control over parameters or products of the scientific visualization process

is shared. More recently, Burkhard proposed a collaboration process of transferring

knowledge between at least two persons or a group of perople [21]. Similarly, Ma [105]

noted that sharing visualization resources will provide the eventual support for a

collaborative workspace. He discussed existing web-based collaborative workspaces

in terms of sharing high-performance visualization facilities and visualizations and

findings. He also showed several existing collaborative workspaces such as TeraGrid [17],

Many Eyes [107], etc (see [105] for detail). Finally, Heer et al. concluded a compelling

list of design considerations for collaborative visual analytics, attempting to identify

accomplishments which facilitate collaboration and suggest mechanisms for achieving

them [70].

One repetitive key question that comes out of the above research is searching for

the tangible contents that can be used to establish the organizational collaboration

environment. Naturally, human-communication is based on symbols like language,
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gesture, and written contents [119]. Consequently, Nonaka et al. noted that a

computerized human-communication method should also be based on symbolic contents

that would enable knowledge workers to participate in sharing their knowledge, learning

analytical practices, and building consensus of decision-making through the use of

computer systems [119].

In this dissertation, such symbolic artifacts in the collaboration process is generally

regard as Annotations. In the context of visual analytics, annotation refers to the

process that users externalize their findings, such as data correlation, outliers, patterns

or trends, on top of the visualization. Comparing to interaction logging, which

focuses on capturing users analysis process implicitly, annotations place the users

in the center of explicitly tracking and sharing analysis findings. By annotating the

findings, the domain users attach semantic meanings to their analysis findings; so

that these findings can then be analyzed, evaluated, reused, and exchanged for the

collaborative decision-making.

Consequently, with the utilization of annotations, exchanging expert’s analysis

finding and establishing organizational collaboration has become more efficient. Communications

centered on annotations allow domain users to efficiently share their analysis findings

among peers and colleagues. The basic idea to achieve such communication is to share

the annotation of an analysis finding, including its cached data and visual parameters,

to other users.

Concluded on previous research [164, 31], this dissertation categorizes the design

of an annotation sharing mechanism onto two levels: the sharing of the statics

annotation level and the exchanging of the dynamic annotations level. This dissertation

considers both level of annotation sharing effective; their categorization is based on

the difficulty in implement such sharing mechanism.

On the one hand, this dissertation considers the sharing of static annotations. In

this sharing method, annotations are typically a static content (e.g. image, snapshot,
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and bookmarks or comments) that can be shared between one knowledge worker and

the others. This sharing mechanism is typically easier to achieve and can be added

onto the existing visual analytics system in a straightforward manner. Sharing static

annotations allows users to save and share with remote peers additional semantic

information about certain data features and visualization patterns. While the remote

peers can view and depict the shared information, their flexibility in continuing the

original analyst is limited.

On the other hand, this dissertation presents the sharing of dynamic annotations.

The dynamic annotations include not only the final products of an analysis, as the

static annotations do, but also capture the visual states and its configurations for

reuse. In doing so, multiple users can gain access to the same analytical process

as the original analyst. These additional collaborators can then review or continue

that analysis process within the same interactive visual analytics environment. This

allows collaboration between groups of analysts to contribute to the analysis of a

large volume of data. It further helps to create and share analysis applications for

smaller subsets or contexts of data. In this way, an analyst is allowed to discover an

interesting feature using a combination of interactive visualizations, bookmark and

comment on the feature, and share the interactive visualization with another analyst

who could then be able to contribute to the understanding of the feature.

The details of these two mechanisms are summarized and compared in Table 20. In

keep with the diverse collaboration needs for different organizations, this dissertation

has designed three visual analytics systems that support the annotation sharing

mechanisms for all three aforementioned organizations (Microsoft, USDOT, and Xerox).

This examples can be see in their corresponding implementation shown in Table 20

It is worth noting that In existing approaches, users are usually required to manually

input notes or drawings to record the semantic meaning of an analytical finding [59].

One drawback of this manual approach is the possible introduction of interruptibility
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Table 20: The comparison between sharing static annotations v.s. dynamic
annotations

Sharing
Mechanisms

Efficiency Efficiency Effectiveness Information
Sharing Flow

Design
Case

Sharing
Static
Annotation

Fixed
Image;
Textual
Information;
Drawing

Easy to
construct. Can
be add on to
existing visual
analytics system

More
effective in a
small-to-mid-size
collaboration
group.

Typically
one-way.
Information
comes from
original analyst
and shared with
other colleagues.

OpsVis
(Section 3.5.2.2
)

Exchanging
Dynamic
Annotation

Parameters
that can be
applied to
in another
instance of
the visual
analytics
system

Needs to modify
the existing
visual analytics
system.

Support larger
collaboration
teams and
departments.

Bi-direction,
both original
analysts and
peers can
collectively
modify and
extend the
analysis results.

IRSV
(Section 3.6.2.1)
and Taste
(Section 3.6.2.2)

during the analysis process. This dissertation is currently working on identifying

more automated annotation methods, including annotation templates and report

templates, to reduce the interruptions to users to attach semantic meanings to their

analysis findings.

4.5.2.2.2 Implementation Component: Visual Analytics System Customization

The ultimate goal of collecting and analyzing the domain users’ interaction and

annotation is to incorporating their analysis individuality into the holistic design of a

visual analytics system. As demonstrated in previous section, both interaction logging

and annotation sharing methods can enable a visual analytics system to collect such

information.

Analysis Evaluation and Knowledge Validation

Although these customized analysis processes were coming directly from domain
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users, this dissertation emphasizes on the necessity of validating such processes before

merge to individual’s visual analytics system. Due to individual experiences and

understanding, different experts have their own ways of performing analysis processes.

Their views of an analytical process may be imprecise, duplicated and even conflict

with the organizations generic analytical workflow. Therefore, this dissertation concerns

that, if new analysis process or knowledge is not carefully validated, inserting unrelated

or incorrect knowledge could potentially degrade the value of the design of visual

analytics system.

The validation process is therefore of great importance in the knowledge mapping

structure. While verifying and validating diverse domain users’ analytical process

is difficult in nature, this dissertation has considered the design of such validation

process to be applied to two levels:

The first level happens internally in a visual analytics system. The key point

for validation on this level is the cost of updating the targeted visual analytics

environment. It is important for a visual analytics system to attach costs to system

customization. As shown in Figure 42, such cost of customization could be a combined

factor of cost of interaction (concluded by Lam [99]), cost of visualization (suggested

by Amar et al. [5]), and cost of cognitive overload (proposed by Green et al. [61]).

The designed visual analytics system needs to apply threshold to control the cost, and

maximize the cost/benefit valuate in determining the need for system customization.

Figure 42: The cost of customization
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Therefore, when a customization request is submitted by analyzing user’s interaction

logs or annotations, the visual analytics system should impose another level of validation

on this candidate prior to updating the visual renderings.

Specifically, at a low cost level (i.e. only part of the screen needs to be updated),

the visual analytics system should be able to automatically validate the update either

through algorithmically applying predefined criteria in the runtime or by users direct

instructions. However, if the cost of change the visual representation is too high

based on the analysis candidates, such as a drastic change in graph layouts, user

should be notified as to the possible changes prior to the visual actions. For example,

such validation processes can be derived from Heer et al.’s [69] elaborated study on

differentiate the cost of individual graph layouts.

The second level requires the user’s participation. Typically, after validating the

analysis updates internally, the visual analytics system should present the changes to

the user through visual hints. At this level, the visual analytics system should be able

to allow users to accept or dispute these update candidates, based on their judgments

on whether it is relevant to their on-going analytical reasoning processes.

This validation presents an important feedback loop in the entire customization

process. Especially, the proper utilization of this process would affect the construction

of the user’s individual knowledge structures. For example, the KEF system [39]

presented user with the ability to review the suggested materials and accept/dispute

based on user’s preferences; through actively tacking the visual changes, the HARVEST

system [144] also provides users capabilities to revert the visual updates.

In summary, by enforcing the above two level of analysis update validation, this

dissertation believes that a visual analytics system could then begin to incorporate

more accurate and suitable individual analysis processes. While currently there is no

definitive measure for such cost, the research presents the supporting evidences of the

need for such measure. As discussed in Chapter 6, the identification and verification
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of such cost would be one of the most important directions of this research.

Customize the Visual Analytics Systems

As mentioned at the beginning of this Chapter 4.5.2.2, there are three needed

customization supports; First, it is the ability to shuffle the analytical components

in the system, rearrange the sequences and combinations of the generic analytical

processes. Secondly, it needs to support individuals abilities to collect analytical

findings and trace the analysis trials that lead to their findings. Finally, these

organizations need to have efficient means to share these analysis finds between

knowledge workers, and provide an effect environment to support collective decision-making.

Consequently, after evaluating the cost of customization, as shown in Table 21, there

are three ways to individualize the system: refine analysis focuses, update data

model and customize visualization combination. Examples of the implementation

of these customization methods can be found in previous sections (Section 3.6.2.1

and Section 3.6.2.2 ).

Table 21: Three system customization methods

Mehod Description & Examples Implementation
Update
Data
Model

Based on users’ data focuses, modifying and
updating the underline data model. For example,
the visual analytics should prioritize the more
frequently used statics based on users’s analyzing
histories.

Section 3.6.2.1
Section 3.6.2.2

Customize
Visualization
Combinations

Rearranging the visualization combination based
on the users’ interaction logs and annotation
histories. Built upon a modular design, the
visualization system needs to adjust the primary
and entry view of the system based on the behavior
analysis.

Section 3.6.2.1

Refine
Analysis
Focuses

Utilizing the recorded annotation, the visual
analytics system needs to understand the
important analysis focuses for a user. It needs to
guide the users toward that analysis focus through
interactions

Section 3.6.2.2
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4.5.2.3 Summary: the User-centric Refinement stage

The User-centric Refinement stage is proposed to incorporate the individual’s

analysis processes. In this stage, the first step is to deploy the design visual analytics

systems to domain users. This deployment process involves two typical training

sessions (e.g. general visualization concepts session and analysis scenarios session)

to motive the targeted users to use the system and adopt the new ways of performing

analytical tasks. Since the user’s acceptance of a system is a key factor in the success

of incorporating the individual’s analysis processes, the System Deployment and User

Training step is therefore of great importance in this design stage.

The next step in this stage is the Usage Pattern and Customization step. This is

the key step to support the incorporation of individual analysis processes. In this step,

two essential methods are described and discussed in this section, including interaction

logging (implicit method) and annotation tracking (explicit method). Each of this

technique represents a unique perspective in customizing the visual analytics systems

to encapsulate the users’ reasoning practices.

Although these customized analysis requests were collected directly based on domain

users’ analysis behavior, this stage emphasizes validating such requests before merge

to individual’s visual analytics system. An important concept discussed in this

stage is the cost of customization, which is directly associated with the validation

of the system customization process. After evaluating the cost of customization,

three typical methods—namely refining analysis focuses, updating data model and

customizing visualization combination—are described to individualize a visual analytics

system.

4.5.3 Conclusion

This chapter presents the two-stage framework for designing visual analytics systems

in organizational environments. This framework emphasizes the benefit and efficacy

of incorporating both general domain analytical workflows and individual analysis
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practices. Both the Observation and Designing stage and the User-centric

Refinement stage in this framework aim at interactively enriching and refining

the already encapsulated domain analysis process based on understanding user’s

intentions through analyzing their analysis processes.



CHAPTER 5: EVALUATIONS

5.1 Objectives

In this chapter, this dissertation presents extensive evaluation for all three designed

visual analytics system, namely Taste, IRSV and OpsVis. The goal for these evaluations

aims at thoroughly validate the effectiveness of the aforementioned design considerations,

and verify their usefulness in instructing the design of a visual analytics system. Three

detailed human subjects experiment is conducted. Note that this experiment is not

a comprehensive validation or proof of the Two-stage Framework. Such a proof is

inline with the future work of this dissertation. Instead, this experiment provides

some partial support for the claimed predictive power of the framework.

5.2 Overview

All of above systems, including Taste, OpsVis and IRSV, were designed following

our recommendations. These visual analytics systems are implemented to support the

analytic processes encountered in organizational environments. Through iterative

prototyping processes, each was tailored to the analytical workflow of its target

domain. As shown in Figure 21 and Figure 12, the design recommendations actually

incorporated within each system are illustrated separately by marked checkboxes. We

also conducted user-studies to evaluate the utility of these systems.

Instead of emphasizing technique details, the following sections focus on evaluations

for the effectiveness of our systems to support domain analysis processes. Specifically,

the users’ feedback and comments are summarized to assess the performance of

the aforementioned three systems for their efficacy of facilitating the common task

activities.
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5.3 Taste: Supporting Business Information Analysis

To evaluate Taste, two studies were conducted in this dissertation: (i) a controlled

laboratory study to assess the usability and utility of Taste’s interface with a fixed set

of data and (ii) a field study to evaluate the effectiveness of Taste, which embedded

with the tree retrieval cues, in aiding people’s information seeking process in users’

own work environments.

To evaluate Taste, 21 Xerox employees participated in both lab and field studies

using the tool. In the following sections, this dissertation presents how Taste was

found to be useful and effective in facilitating each of the six common task activities

in the domain analysis process. Detailed statistical results are presented along with

the users comments and feedback:

5.3.1 Study Design

Study Goals and Experimental Setups For both studies, two conditions were

examined: (i) the use of Taste; and (ii) the use of regular Mac OS X tools [1], hereafter

referred as RT (regular tools), including Microsoft Office for Mac and Google Desktop.

All participants experienced both conditions in a counter-balanced order.

For the field study, the data capture module was first deployed to each participant.

Document logging for Taste was unobtrusive: there were no reported interruptions to

the user, but each day the logger were checked to be active on all participant machines.

Taste was able to sample around 200 documents during an 8-hour working day. The

total number of documents sampled over the period of 1.5 weeks per participant was

in the range of 1000 - 1200. Participants were instructed not to look at their data

during collection. The Taste interface was not installed on any of their machines

during this period.

In preparation for the lab study, Taste was used to collect one-month’s worth of

workstation activity data. The resulting data became the test corpus. This data was

diverse, containing different types of documents, web pages, images and emails. In
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total, there were 7,419 data objects, with over 24,275 pages. None of the participants

had any prior exposure to this data. No new additions were made to the log during

the study; so all participants accessed the same data set. For purposes of comparison,

this data was also indexed by both Apple Spotlight and Google Desktop search. All

participants were presented with the nature of the data set and locations (folders) of

documents before the study began.

Figure 43: Study results for the three measured factors: efficiency, accuracy, and
confidence. Lab study results are on top. Field results are on the bottom.

Participants All of the participants from the Xerox coorporation were volunteers

consisting of researchers, administrative staff, managers and business development

staff. For the short-term controlled lab evaluation, 12 participants (5 female and 7

male) were recruited through email lists and by acquaintance. For the field study, six

participants (1 female and 5 males) volunteered to use Taste on their personal data

for 1.5 weeks during which their document activity was continuously logged. All were
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proficient users of the Mac OS X operating system and its applications. None of the

participants had any prior knowledge of this project nor any prior experience with

Taste.

Procedures Since the participants would inevitably get more familiar with Taste

and the sample dataset during the process of our studies [102], control steps were

taken to isolate learning factors. In particular, each participant was asked to attend

two sessions, separated by a two day time period. It is expected that over this time

period participants would forget most of the details of the data set.

To balance performance gain, the sequence of conditions (using Taste vs. Regular

Tools) across participants were randomized. In addition, the allocation of time to

tool was balanced across sessions. Each participant used either Taste or RT at the

first session and switched to the other tool two days later.

To ensure that the study results were comparable across sessions, participants were

given the same task questions for each tool; participants were asked to find information

on the same time frame or about the same person.

Retrieval Tasks and Study Measures In total, each participant was asked to

carry out 12 tasks (6 tasks in 2 conditions). These tasks were identified based on our

pre-design interviews, all of which are at least common in corporate daily tasks, if

not predominant in all jobs. As shown in Table 22, these most representative tasks

were selected to evaluate the capability of Taste.

For each task, the following factors were collected and analyzed to measure the

utility and usability of Taste:

Accuracy : the percentage of accurately retrieved items in the participant’s answers.

In the lab study where standard answers were known, this factor was measured by

comparing participants’ answers to the standard answers; in the field study, this factor

was analyzed together with each participant after the two study sessions.

Efficiency : the time (in seconds) spent on answering each question.
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Task 1 Please use tool(s) to find the most mentioned contacts
within a particular time frame.

Task 2 Please use tool(s) to find the most visited information
sources within a particular time frame.

Task 3 Please use tool(s) to find and list the user’s recent
activities with Mr. Manager X.

Task 4 Please use tool(s) to locate a recent threaded email with
attachments.

Task 5 Please use tools(s) to locate such an email in the file
system and find its attachments and, if possible, find
other related documents.

Task 6 Please use the tool(s) to prepare an activity report for
the user’s activities in time frame A. Please write down
contents and artifacts.

Table 22: Task questions for both conditions in the laboratory study (the word
’tool(s)’ was replaced to reflect the condition)

Confidence: a 5-point Likert scale score measuring how confident users were in the

accuracy of their answers.

When participants completed their tasks, each participant was asked to answer two

open-ended question about their experience using the assigned tool, and also asked

them to score their answers on a 5-point Likert scale: 1)“How well do you think the

provided tool covers your retrieval cues?”; and 2)“How do you like the design of the

tools provided?”

5.3.2 Statistical Results

The results for both studies were significant. In general, Taste has significant

advantages over regular tools in the following four aspects:

Taste provided better retrieval accuracy Results from both studies suggest that

Taste provided participants with more accurate retrievals. In our lab study

where participants had no prior knowledge about the data, the results suggested

a significant (ANOV A : F (1, 78) = 45.49, p < 0.001) 17.3% accuracy gain (as

computed by comparing mean values (90.5-77.13) /77.13) during both sessions,
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as shown in Figure 43 B. Even though participants had prior knowledge about

the data, our field study also indicated a significant difference (F (1, 82) =

8.80, p < 0.004) between Taste and the regular tools on the accuracy of retrieving

information. As shown in Figure 43 E, Taste still delivered nearly an 8% increase

((84.88’78.57)/78.57) in retrieved information.

Taste significantly improved retrieval efficiency As shown in Figure 43 A and 43D,

both studies suggested significant reductions in participants’ information retrieval

time, with 36.8% ((176.3-111.3)/176.3) reduction in the lab study and 31.1%

((166-114.3)/ 166) in the field study. The ANOVA results (lab: (F (1, 82) =

6.13p < 0.015) and field: (F (1, 78) = 10.84, p < 0.001)) show that Taste helps

participants perform their tasks more efficiently.

Taste largely increased participants’ confidence Initially, since participants had

prior knowledge about the location of their own data, it was expected that

the confidence value to be similar between Taste and RT in the field study;

on the other hand, Taste was expected to increase user confidence in the lab

study. While the lab results (F (1, 78) = 17.12, p < 0.001) partly supported our

expectation, the field results yielded a significant positive confidence increase

(ANOVA (F (1, 82) = 16.16, p < 0.001) when using Taste. Therefore, as shown

in Figure 43 C and 43 F, participants trusted Taste more than the regular tools

for retrieving their document activities.

Taste provided a more advanced interface In response to our post-task questions,

Taste received an average 4.57 out of 5 in supporting users’ retrieval cues,

even though participants had interacted with Taste for less then an hour. By

contrast, the regular tools scored a 3.36 on these questions. Taste also received

an overall score of 4.34 out of 5 for usability, suggesting that participants felt

comfortable using Taste to perform the tasks. One participant noted, ’This
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interface [Taste] provides me more control over the data. ’ it makes me feel

more confident in searching for information’.

Given that participants had prior knowledge of the collected data, it seems likely

that the accuracy of their answers depended largely on the tools provided. Since Taste

provides a cohesive visual interface that incorporated highly rated retrieval cues, many

participants positively rated Taste as an aid for information seeking. The field study

supported this result by suggesting that Taste performed better than regular tools

on our three measured factors. One participant commented that, ’ By looking at all

the [Taste] interface, I can easily relate all the information together and effectively

examine my activities from different aspects.’

Even if there is no previous knowledge about the data, our laboratory study

suggests that Taste’s interface is designed sufficiently enough for users to follow

important clues in the tasks and outperform the results from using regular tools.

One participant noted that, ’[Taste] is very good at giving a quick impression of data

across the board. I like how you can mix different types of files and people together

and represent them interactively.’

While Taste has only been used by a small number of people so far and for a short

period of time, it appears to be a promising technology. Participants enjoyed using

Taste to retrieve information and shared comments like ’I can definitely see myself

using it regularly’; and ”it can be quite helpful when I need to quickly put together

some research reports’.

The following sections presents the detailed feedback that demonstrates the usefulness

of Taste in helping corporate employees:

5.3.3 User Feedback on the Design Consideration

Gathering content into a unified visual interface At the heart of Taste is a

transparent, real-time, contextual data capturer, which was designed to capture

the user’s activities around office documents, calendars, emails, etc. Taste
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creates an index of documents on a user’s machine, and logs information about

the user’s activities with these documents. Taste stores this information, along

with copies of the documents, in a unified repository. All captured information

is then indexed and grouped with its related documents, and is interactively

presented to the user through Taste’s visualization interface, as shown in Figure 12

(Right).

All participants indicated the usefulness of this unified interface. They agreed

that integrating multiple information streams into a single interface sufficiently

encapsulates their actionable knowledge, reducing search times for related information.

They believe this could greatly assist them in gathering and aggregating contents

from multi-channels

Enable facet search for content filtering As shown in Figure 12 (A), Taste utilizes

the Facet view to aggregate both the documents and the people with whom a

user has previously interacted. This visualization allows the users to filter and

sort information based on automatically extracted data facets, including type

(person or document) and format (email, text document, etc.). Facet view

further sorts and displays document activity by importance, which is measured

by frequency and users’ dwell time.

When presented to the participants, they spontaneously formulated a variety of

facet filters to find information. They were generally satisfied with the efficiency

of using Taste to ’slice and dice’ information, and appreciated the flexibility to

perform customized analysis.

A common suggestion was to be able to also create formulas to sort the documents

with customized measures. One analyst indicated that introducing customized

time factors (such as increasing the importance of a more recently created

documents over older documents) would be especially useful for filtering.
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Interactive Information Analysis Besides the facet view, Taste also supports high-level

content analysis based on both temporal information and content keywords (See

Figure 12 (B) and (C)). Taste utilizes the temporal view to show how a user’s

activities unfold over time, and presents the temporal trends and patterns of a

user’s document activities. This view allows the user to interactively drill down

to a specific time, and helps the users examine the content, which occurred in

that time span. In addition, an entity tag view is used to enable fast entity

browsing. This is implemented using an automated entity extractor, which

extracts entities, such as company name, contacts, etc., from all of previous

documents. As shown in Figure 12 (C), Taste enables users to focus on a

specific entity, and examine any information related to it.

In the low-level view, Taste incorporates a detail view (Figure 12 (D)) for

depicting a single document from multiple perspectives, such as its related

temporal information and other versions of the document. All views in Taste

are coordinated, such that updates in one view are immediately reflected in the

others.

In both lab and field studies, Tastes was compared with other existing tools

to assess its analysis capabilities. The participants were generally positive

about Taste’s effectiveness for retrieving and analyzing business information.

All participants agreed that the ability of viewing information from different

granularities could largely help them filer and analyze information.

One suggestion was to provide finer-grained categories, and display more information

for entities. One participant suggested that the current categorization is too

broad by referencing a common expectation: Instead of general, high-level

categories like browsing, email, etc., usually the categories of interest are more

narrow like “email with Bob” or “browsing about JAVA”)
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Using Storytelling to generate and share reports By utilizing an interactive

storytelling view, shown in Figure 12 (D), Taste allows users to interactively

collect evidence, annotate it, and share it with others. The storytelling view

allows the user to take a more active role in information tracking, and enables

them to express the information relationship based on their own knowledge.

Whenever a user comes across an interesting information object in Taste, they

can directly add that object to a new or existing story view. Once an element

is in a storytelling view, the user can further annotate or tag it, and can group

different story elements based on their reasoning logic.

The story created by one user around a collection of people and documents

may be of interest to other users as well, so Taste allows stories created in one

instance of the system to be shared with users in another instance. Analysts who

receive these shared stories, are able to modify them based on their understanding

of the topics, and add or suggest removal of story elements. By sharing their

stories about document activities, groups of employees can now understand

those activities better, and improve information analysis for all members of the

group.

While the story feature is new, many participants found the idea of collaboratively

searching for information interesting and the way Taste approached feature

practical and useful. Although there was no setup for a collaborative environment

for participants due to privacy concerns, participants were still interested in

utilizing the Story view and tried to share findings between different instances

of Taste.

5.3.4 Summary: Taste Evaluation

While Taste has so far only been evaluated by a limited number of participants

(albeit actual target users), it appears to be a promising technology and a successful
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design. Based on the feedback from participants, it is indicated that the design of

this visualization successfully encapsulates the actionable knowledge and supports the

analytical workflows that are essential for business information analysis. Through

the on-going collaboration, this research is further refining its basic functions and

enriching it with more advanced features.

5.4 IRSV: Facilitating Bridge Maintenance Planning

The evaluations of IRSV and its variations were performed iteratively throughout

the collaboration, and were mainly conducted with a group of bridge managers from

both North Carolina DOT and Charlotte DOT (CDOT). These 12 (10 male, 2 female)

bridge managers participated in at least three sessions of onsite evaluations

5.4.1 Summative Expert Evaluation

First, a training session (30 - 40 minutes) was conducted with the participants.

During this session, the design of the system and the utilities of each visualization

were demonstrated through interactive training session. Then, bridge managers were

invited to perform their domain analyses using the system for 45 - 60 minutes. During

this hands-on process, these bridge managers were encouraged to carry out these

analyses in a think aloud manner. The details about their analysis processes were

observed and documented. Finally, the summative evaluations were conducted using a

set of semi-structured questionnaires. These questionnaires are used to collect bridge

managers feedback and comments about the IRSV system. Since bridge managers

may need time to familiarize themselves with the all features provided by our visual

analytics system, several email follow-ups were also conducted to see if there were

additional comments they would like to share.

As of the current dissertation, the communications with bridge managers on their

comments of the system were continued in the past 7 months. The results from this

longitude study have provided the research significant insights for the continuation
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of the collaboration project. Although the degree and depth of analyses differed in

each evaluation, the bridge managers generally agreed that our system provided more

analytical capability than any existing BMSs, and that it is flexible enough for them

to quickly incorporate the use of the IRSV systems into their daily routine.

In the following sections, this dissertation first presents the analysis scenarios that

are identified together with bridge experts. These scenarios are used in the evaluation

process. It further presents the summarized feedback from these evaluations, and

assesses the systems (multiple IRSV variations collectively) for their effectiveness in

facilitating each task activity encountered in bridge maintenance planning.

5.4.2 Example Scenario

5.4.2.1 Investigating Causes for Bridge Deteriorations

Figure 44: (A) A significant downward temporal trending indicates an unusual pattern
(B) Using PCView to compare different structural attributes (C) Examining a certain
bridge on SPView, indicating this is the earliest constructed bridge in the database
(D) The Geospatial view shows that this bridge is constructed on top of a river stream.
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Identifying and understanding the cause of bridge deterioration is a key step for

bridge managers to come up with corresponding maintenance strategies. Based on our

discussions with 9 bridge managers and bridge experts, it has been observed that there

are generally three stages in achieving this step, namely, selecting bridge candidates,

detailed examination, and identifying potential causes for damage. The following

scenario was identified together with 5 bridge engineers (4 males and 1 female)

from Charlotte DOT’s bridge management team for their annual bridge maintenance

planning. During this process, these engineers were encouraged to collaboratively

discuss the issues in a think aloud manner. Their analysis processes were further

documented to help them to familiarize with the system. Along the hands-on period,

additional explanations were also provided to explain certain features in IRSV system.

IRSV system was initialized with data from previous three inspection cycles: years

2000, 2004, and 2006. The bridge management team started the maintenance process

by searching for bridges with significant changes in sufficiency rating in the previous

years. They utilized the small multiples view to see if any interesting bridge changing

patterns could be identified. As shown in Figure 22 (E), the team found a set of

bridges with warmer colors in the small multiples view, and they also identified several

bridges with significant downward trends in the past years. By highlighting these

bridges in the scatter plot view (see Figure 44 (C)), the team noticed that one of

them was actually the oldest bridge in the Charlotte area. Suggested by both the

small multiple view and the scatter plot view, this bridge actually shared the lowest

overall rating in that year and had had drastic deteriorations since 2004.

To have a closer look at the bridge, the team used our geospatial view and zoomed

into the bridge to check its surrounding environments. As shown in Figure 44 (D),

this bridge was constructed over a river stream, and had supported high traffic volume

because it had been chosen as a part of a detour route for a major interstate highway.

These findings immediately raised several questions: could the bridge’s deterioration
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be caused by water erosion, overloaded traffic, or flood damage? Although these were

all possible causes of the deterioration, bridge managers had no definitive answers to

confirm these hypotheses by looking at the geospatial view alone.

Trying to verify their hypotheses, the management team started to find clues from

the structural reports of that bridge. By plotting the corresponding criteria in the

parallel coordinate view, they found that the traffic amount on that bridge had not

changed significantly in the previous years, and therefore ruled out the possibility of

traffic pattern being the cause of the deterioration. However, the PC view showed that

the water adequacy rating had dropped significantly during the past two inspections,

suggesting the bridge had undergone severe water damage. To extract more detail,

the team brought up the bridge’s detailed structural view. As shown in Figure 23 (D),

the supporting pillar for this bridge had shown heavy warping, and the bridge showed

clear marks of water erosion near the bottom of the pillar. A quick reference check on

the county’s flood history confirmed that three significant flooding took place in years

2003, 2005, and 2006 around that area, which gave the bridge managers significant

reasons to conclude that water damage, especially flooding, was a key factor in causing

the deterioration of this bridge.

Given the poor condition of its supporting structure, the bridge managers concluded

that this bridge definitely needed maintenance attention. After the exercise, the

management team commended the effectiveness of our system in assisting the identification

of the deficient bridge, as well as the cause of the deterioration. Although simple, this

scenario demonstrates a successful application of the IRSV tool in an actual domain

analysis process.

5.4.2.2 Augmenting Visualization through the use of an Ontology

According to bridge experts, water erosion and flooding can cause severe damages

to bridges. The pattern for this type of deterioration is in general typical along

river streams. In this scenario, we demonstrate how our system could help bridge
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Figure 45: Close examination of the geospatial view shows that although these three
bridges are on the same river stream, their conditions are different. The bridge over
the upper stream is currently under repair and reconstruction.
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(a) (b)

Figure 46: (a) A large group of unknown data is shown in the temporal view, which
lead to the search of its cause. (b) Visualization views indicating that these are
Railroad bridges.

managers to quickly identify the cause of unexpected bridge deteriorations through

the knowledge internalization process. This scenario is identified together with city

of Charlotte bridge management team during their examination of causes of water

damage.

Since the criterion for “bridge above water” has already been externalized in

our ontological knowledge structure, the bridge managers can easily highlight all

these bridges in the geospatial view and examine them individually. Through quick

examination on the geospatial view, the bridge managers immediately noticed an

interesting pattern in South Charlotte. Although located over the same river, as

shown in Figure 45, the three bridges over that river showed different “present

conditions”. The one over the upper stream has already been filed for replacement

and has been under construction. However, the other two are still in good condition.

This pattern is interesting because if there was a flood, all three bridges should share

similar deterioration patterns; or at least, they should deteriorate at a similar pace.

Even though temporal information suggests that these bridges were built at similar

times, the changes in their conditions are drastically different. This inconsistency

raised the bridge managers’ interests.
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After a detailed examination of these bridges in the geospatial view, the bridge

managers realized that the cause of this inconsistency was due to the different turns

of the river. According to one of the bridge managers, although there was flood in

both the upper and lower parts of this river, the bridge over the upper stream received

the most impact since there were no bends in the river before the water hit it. On

the other hand, due to the slow down of the river’s speed when the water passed the

second and third bridges, these two bridges received much less impact. Based on this

observation, the bridge management team was able to quickly identify and internalize

this pattern and re-use it for future reference.

In this scenario, the bridge managers gained insightful knowledge from interacting

with our visualization system and incorporated it into their tacit knowledge (internalization).

5.4.2.3 Updating and Sharing Knowledge through Visualization

Since managing bridges is a complex process that often requires precise analysis, it

is important for a bridge analyst to quickly determine the most relevant information

to focus on during an investigation. In this scenario, we demonstrate how our system

facilitates bridge experts through the externalization of their discoveries and sharing

of the findings (collaboration) to filter out unnecessary data and focus on analyzing

the most relevant information.

A local bridge expert was using our visualization system to explore the bridge

distributions around the Charlotte region. After a quick examination of the temporal

view, the expert noticed that a large group of bridges did not have any ratings

information (Figure 46(a)). Based on this bridge expert’s experience, this situation

was most likely caused by two reasons: one, it could be caused by a loss of data

or errors during the data entry process. Two, these bridges could be outside of the

bridge management team’s jurisdiction. As shown in the coordinated visualization

views (Figure 46(b)), the bridge experts identified that these bridges were all railroad

bridges, which fell into the second category.
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Since the city bridge management team is not responsible for maintaining these

bridges, showing them together with other bridges can be confusing. In order to

reduce this confusion, the bridge manager created new rules in the ontological knowledge

structure to identify and filter out these railroad bridges. Other bridge managers

of the same team will then be able to reuse these rules to reduce the irrelevant

information and concentrate on the relevant bridges.

This scenario shows how a user could gather information during visual exploration

and further update (externalization) and share his knowledge discoveries with other

co-workers (collaboration).

5.4.3 User Feedback and Evaluation Results

Integrating heterogeneous data into one interface As shown in Figure 21, IRSV

provides bridge managers with a unified content interface that combines multiple

streams of bridge information. It can incorporate a range of data sources,

including National Bridge Inspection Standards (NBIS) datasets, high-resolution

aerial images, and Light Detection and Ranging (LIDAR) scans. In addition,

IRSV provides an advanced feature, incorporating knowledge contents from an

ontological knowledge structure. As detailed in our previous report [167], using

a service-oriented-architecture, IRSV has been extended to communicate with

the knowledge base, access and fetch the inference results, and present them in

a cohesive visual interface.

Through comparisons to existing bridge management systems, it was clear that

IRSV was appreciated for its efficiency in contents aggregation. All participants

considered the visual interface well addressed their information retrieval needs,

representing cohesive and useful for bridge information. Moreover, they were

excited about the ability to access and follow prior practices and recommendations

that were embodied in the knowledge base.
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Customizing analysis workflows Because it was built with a modular architecture,

IRSV allows bridge managers to extend the system to incorporate advanced

visualizations and more effective data models. Each visualization component

integrated within IRSV was designed to be interchangeable with other equivalent

visualizations. Furthermore, IRSV provides bridge managers with the flexibility

to combine and sequence different visualizations to fit their individual analysis

routines.

All participants appreciated the flexibility of the interface, finding it useful

for customizing the system to only utilize the necessary visualizations in their

particular practices. They spontaneously formed a variety of visualization

combinations in order to find bridge assets. The most common strategy used

was to combine a geospatial window with scatter plot view to gain information

for the most recent changes of a particular bridge. A manager from NCDOT

further pointed out that,“[IRSV] will greatly shorten the catch-up time between

my learning to use the system and my actual use of it.”

Analyzing information from multiple aspects All participants noted that IRSV

provided a visual exploration environment to help them analyze information

from multiple aspects. The capability to perform not only geo-temporal analysis,

but also structural analysis was of great value to their decision-making process

(See Figure 21 (G)(I)(H)). One of the managers commented that, “[the] linked

visualizations provide me with a cohesive understanding about the data that I

am working on. It reduces the time I spent on manually searching for information,

and helps me focus more on the task itself.”

In particular, seven out of the 12 bridges managers pointed out that the temporal

analysis in IRSV provided them with the capability to effectively monitor changes

in bridge conditions and identify maintenance candidates. In addition, after
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familiarizing themselves with the concepts and usage of the visualizations, most

bridge managers (9 out of 12) noted that the capability to examine bridge

structures simultaneously from multiple levels (overview and detailed view)

allowed for effective transitions from examining large amounts of data to inspecting

bridges one at a time.

Evidence collection and report generation As shown in Figure 21(J), IRSV also

supports interactively collecting, annotating, and sharing analysis findings between

different collaborators. Using a web interface, IRSV treats individual visualizations

and group workspaces as collectable items. It enables bridge managers to

directly drag and drop these items into a sandbox, designed to collect all

the findings and sort them temporally. IRSV further allows bridge managers

to use the collected evidence to support their analysis hypotheses and create

analysis reports. The bridge managers can directly combine findings that can

support their reasoning and share them with colleagues, through built-in sharing

channels or emails.

Most participants found the idea of collaboratively managing bridge information

intriguing. They consider our approach practical and useful for creating preliminary

analysis reports. There was significant interest in utilizing the features that

allowed evidence to be reported and shared with others. While these features are

still being refined, the IRSV has shown great potential to support the inherently

collaborative nature of bridge maintenance planning.

5.4.4 Summary: IRSV Evaluation

In summary, IRSV was designed by following our design recommendations set

forth earlier in this paper. It has been deployed to USDOT for daily use and testing.

Based on feedback from bridge mangers, IRSV appears to be a successful design

and a useful visual analytics system that effectively supports the bridge maintenance
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management process. The effort to enrich IRSV is still on-going; the research with

bridge mangers are still continuing to identify new actionable knowledge that requires

advanced features, including web-based collaboration and post-analysis.

5.5 OpsVis: Enhancing the network management operations

In section 3.3.1.2 above, this dissertation presents details about the initial meetings

and observations conducted with ABCH. After these initial interactions, a rudimentary

prototype was delivered to the ABCH team aiming to replace (or supplement) the

multiple tools and screens, with a single visual perspective, supported by data fusion

across the underlying topology and usage data stores. The response to this formative

evaluations was extremely positive and encouraging. However, in the same breath,

the team pointed that the prototype entirely missed several key data sets, and so

could not, at that time, provide any real help. This learning led to a key turning

point in the OpsVis project’a key component would have to be extremely flexible

data integration in a centralized system. At this point, the XAML interface was

invented to the data, completely re-factored and generalized the software.

In addition, the following three scenarios were identified to discuss the utility of

OpsVis for those most critically analysis processes that are in need of visualization

support: health monitoring; software upgrades; and crisis resolution.

5.5.1 Scenarios

Health monitoring Of the tools operators use today, most are request-driven, waiting

for a user to make specific queries; the rest use alarms to alert operators to

changes in status. Unfortunately, this structure makes it difficult to monitor

the health of systems smoothly. Operators are unlikely to notice a problem

until it goes very wrong, setting off an alarm; fluctuations that involve some

servers running abnormally but not bad enough to be at alarm levels will not be

noticed at all. A visualization that allows operations staff to know at a glance
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how the system is operating would help anticipate problems early.

Software update No matter how well tested, deploying a software update is a

fragile, multi-step process: each server must be taken off active status, updated,

and brought back on-line. In the process, a far-away service may suddenly

discover that it depends on a now-disabled function, or long-dormant bugs may

come to the surface. Operations teams monitor upgrades carefully - continually

making decisions whether to continue the upgrade process. Monitoring the

progress of an update and tracking its effects on the rest of a service is critical

to correctly making these decisions.

Crisis resolution When a true crisis occurs, operations staff use their extensive

knowledge of the system configuration to try to figure out what factor is at

fault. Visualization can help surface regularities in the failure, and give the

operations team a fast way to examine their active data.

These scenarios were further used in the summative evaluation with ABCH team.

By covering these analysis areas, the ABCH team recognized the utility of the enhanced

visual analytics systems and considered it can provide real help.

5.5.2 Expert Evaluation

At the next interaction with the ABCH team, there was quite a bit more excitement,

as the data needed for systems management could now be brought together and

effectively displayed. However, the team instantly recognized artifacts that departed

from reality. The errors derived from data staleness and integrity issues in operations’

central inventory and topology store. As a shared resource, this store has a certain

inertia. The store changes more slowly than individual cloud services, and operational

processes sometimes “lie” to the store by inserting information morphed to agree with

operational processes that are required by the store, but in partial discord with service
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reality. To get beyond these problems, the system was tested to handle upstream (as

the operators’ suggested) to the data that feeds the shared store.

With clean data and useful views (validated in the lab on historical data), the

next series of interactions with the ABCH team shifted to installing the prototype in

production. The next set of hurdles involved the uncovering and working through of

important albeit nettlesome differences between the lab and production environment;

for example, code incompatibilities between 32-bit and 64-bit implementations. In

addition, the team had certain expected values of data; they wanted to highlight with

colors values that were out of these ranges. Thus, for example, any CPU value above

60% is too high; color gradations should be saved for CPU values between 25 and

50. When the color scale was re-adjusted, the team was able to catch times when

multiple machines were surging. Having overcome these incompatibilities, OpsVis

was successfully deployed into ABCH production.

Comparing the current version of the system to the first version shared with ABCH,

several visual differences were noticed. The original version did not represent the three

clusters, which now divide the image into three parts.The previous prototype had

originally included a load-balancer unit, which the ABCH team felt added excessive

complexity, and had shown network traffic.

To date, using the enhanced system, working with real time data, the response

of the ABCH team has been more positive. The configuration mechanism allowed

the team to easily customize data sources and views to produce a new and useful

system-wide view. OpsVis’s color gradation design enabled the ABCH team to easily

understand a node’s health relative to other servers in the same cluster.

From comments gleaned from the team, this provides a huge leg up in reacting

to problems to quickly localize the root cause of problems. For example, the ABCH

tuned their data sources to focus on server processing outliers. The resulting view, for

example, makes it trivial to spot the condition when one server’s job processor load is
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larger than 60% while its peers’ are only around 40%. The team expects even peaks

to stay under 40%, which suggests that the former server is likely having a problem.

In contrast, if all or most servers are above 60%, the team can see at a glance that

there is a systemic problem or overload.

What’s more, while the ABCH team ran OpsVis, they found meaningful patterns

not easy to depict in the original tools. For instance, OpsVis directly depicts activity

characteristic of the system’s backup procedures. During the backup process, the

contents of some databases are merged together, leaving others emptier. This creates

a distinctive alternating pattern of bright and dull green stripes that stand out in

views of the database clusters (Figure 19 (right)). During major upgrades, all eyes

are on screens, and seeing this sort of detail assists in monitoring performance and

correctness.

ABCH has suggested other features that would make OpsVis more useful. They

would like additional data monitoring layers to assist with simultaneous comparisons

with different data types. Although OpsVis can already be used in this manner,

it requires a cumbersome configuration and style of usage. More importantly, the

team wants the integration of service controls, where OpsVis becomes a dashboard

for controlling the system as well as visualizing it, with real time views of response.

In addition to working with ABCH, other network teams were also invited to discuss

how they could adapt OpsVis. At an internal showing of OpsVis, the OpsVis demo

was visited by a wide variety of teams, excited about the idea of a tool that could

be configured to let them see how their own system was working in a way that

matched their own model. It was surprising that reflecting on system and network

structure was of interest to more groups of users than anticipated. Customer support

representatives felt that knowing system status in more detail could help them work

with end-users; developers felt that monitoring the current system could help them

understand the needs of Operations better.
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5.5.3 Summary: OpsVis Evaluation

In summary, OpsVis helps to meet these challenges by enabling developers and

operators to create visualizations that provide insight at a glance into anomalies and

variability across the systems. It provides a perspective that matches the way cloud

service developers and operators think about their systems. The above evaluation

experience in applying the OpsVis prototype to monitoring cloud services within

Microsoft have been quite positive. A wide internal deployment of this system has

suggested the efficacy and utility of the visual analytics design.

5.6 Conclusion

This chapter describes the evaluations for the three designed visual analytics systems.

To accommodate diverse deployment environments, these evaluations, including both

formative and summative evaluations, were customized to assess the efficacy of the

designed systems in individual organizational setting. All the three evaluations demonstrated

the utility of the three visual analytics system in incorporating both the domain

general analytical activities and the individual analysis processes. The results from

these evaluations were further used to improve the visual analytics designs and

implementations.



CHAPTER 6: CONCLUSION AND FUTURE WORK

6.1 Objectives

This chapter concludes the usefulness of this dissertation. It presents the contributions

of this dissertation, and further discusses the limitations and future directions for this

research.

6.2 Overview

There are several parts of this dissertation. This dissertation, however, pursues a

single goal. That is to create a two-stage framework for designing visual analytics

systems in an organizational environment. This work has been an attempt to make a

first general investigation of the problem of systematically designing a visual analytics

to incorporate both general and individual analysis processes. The missing of a

general visual analytics design framework was a recognized problem that had not

been systematically addressed in a general way.

A review of the existing literature uncovered the fact that although many researchers

had identified this topic as a critical problem, none had made comprehensive and

general theoretical guidelines. Without such theoretical guidelines, the design of a

visual analytics system would 1) lack of recommendations to instrument an effective

system design and development; and 2) provide less tractable procedures for researchers

to assess the visual analytics use patterns, and evaluate its impacts.

This dissertation therefore presented four years of iterative design efforts to explore,

establish, and advance the design of visual analytics systems. This dissertation started

by extending current practices pertaining to analytical workflow and focused, in

particular, on investigating its dynamics to the design of visual analytics systems for
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organizational environments. Specifically, to achieve such framework, three extensive

collaborations with organizations and groups of knowledge workers were conducted

to gain insights about the general analytical tasks and workflows.

In particular, this dissertation presents a series of research processes: it began by

categorizing the design experiences gained from collaborations with various organizations

into a general organizational analysis workflow. Then, validated by domain users,

this research encapsulated the general workflow into a two-stage design, and listed the

necessary design considerations for each stage. It further followed these considerations

and developed actual visual analytics system through iterative prototyping with

domain users.

Through extensive empirical evaluations of the two design stages, this research

finally encapsulated both stages into a general design framework, and outlined its

four essential design recommendations. These four general design recommendations,

when followed, empower such systems to bring the users closer to the center of their

analytical processes. As shown in Table 23, these recommendations are presented

as a natural progression for designing a visual analytic system. In addition, this

dissertation presents the visual analytics designers with a checklist of design considerations

that could be used to instruct the development of their visual analytic system. These

considerations illustrate the necessary actions and recommendations to design a visual

system that augments organizational analytics processes, and they are presented in

Figure 47.

6.3 Contributions

Concluded based on these extensive collaborations, this dissertation proposes a

two-stage design framework for designing visual analytics systems, as shown in Figure 47.

The goal for this framework is to inform the design of a visual analytics system

through disseminating and incorporating the general analytical workflows into the

process. In particular, the first stage in this framework is an Observation and
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Table 23: The recommended recommendations for achieving the two-stage design
framework.

Recommendation 1 Characterize Organizational Analytics Processes Through
Interactions with Domain Users

Recommendation 2 Disseminate Analytics Workflows to Key Actionable Knowledge
Recommendation 3 Design for Actionable Knowledge Transformation Through

Software Prototyping
Recommendation 4 Design for Integrating individual’s Analysis Practices with General

Analytical Workflow

Designing stage, in which a visual analytic system is designed and implemented

to abstract and encapsulate general organizational analytical processes. The second

stage is the User-centric Refinement stage, which aims at interactively enriching

and refining the already encapsulated domain analysis process based on understanding

user’s intentions through analyzing their analysis processes.

The primary contributions of this dissertation are therefore threefold: first, this

dissertation proposes a two-stage framework for facilitating the domain users’ workflow

through integrating their analytical models into interactive visual analytics systems.

This design framework illustrates general design recommendations that, when followed,

empowers a visual analytics system to bring the users closer to the center of their

analytical processes. By integrating the analytical models into interactive visual

analytics, the user directly interacts with the data in real time and makes analytical

decisions in a customized reasoning environment. To illustrate the generalizability

and effectiveness of the design recommendations, this dissertation further introduces

and evaluates three visual analytics systems designed using them as a basis. All

of these systems are deployed to domain knowledge workers and are adopted for

their analytical practices. Extensive empirical evaluations are further conducted to

demonstrate efficacy of these systems in facilitating domain analytical processes.

This framework emphasizes the better understanding of the pragmatic analytical
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processes in an organizational environment. It focuses on identifying practical design

recommendations for visual analytics systems. To this end, this dissertation consolidated

the design recommendations into characteristics for the six common analytical task

activities, their related actionable knowledge, and interactions between the two.

It found that actionable knowledge plays a unique role in addressing important

problems in organizations, and affects knowledge workers’ performance. Therefore,

this work transformed this knowledge into design considerations for visual analytics

systems. These considerations were intended to help others visual analytics designers

provide better support for domain analytical processes within their visual analytics

applications.

The detailed design considerations on incorporating individual’s analytics processes

were also presented in this dissertation. The considerations are used to achieve

the user-centric refinement stage, and focuses on enriching and refining domain

analysis through capturing and analyzing knowledge workers’ analysis processes.

Two possible techniques were discussed to achieve such goal, namely interaction

capturing and annotation tracking. This work further demonstrated the utility of

these techniques in understanding users’ analytical preferences in order to customize

their analysis processes. To exemplify the efficacy of these techniques, this research

has applied them to the design of several interactive visual analytics systems. Empirical

evaluations with domain analysts were conducted to demonstrate their efficacy in

supporting customized analytical processes.

Secondly, this dissertation provides a general ground to bridge research and industry

on design and development. It connects the academic research on visual analytics to

industrial organizations, and showcases the utility of organizational visual analytics

systems. It not only provides industrial collaborators concrete ideas about the impact

that a visual analytics system can bring to them, but also suggests practical framework

and considerations for designing visual analytics system.
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This framework presents a general characterization of the analytical workflow in

organizational environments. This characterization fills in the blank of the current

lacking of such analytical model and further represents a set of domain analytical

tasks that are commonly applicable to various organizations. Specifically, this work

has identified six task activities essential for these professionals’ decision-making

workflows. In addition, by bridging the gap between high-level design concepts and

fine-grain implementation of such concepts, this dissertation provides a pragmatic

view of implementing an organizational visual analytics that can help augment organizational

information analyses through modeling domain users reasoning approaches

Finally, this dissertation provides academia with more theoretical approach to

understand and design visual analytics systems. It encourages researchers to search

and establish the foundation of visual analytics design principles. This dissertation

can also serve for educational purpose, and are intended to use as a course syllabus

and materials for teaching visual analytics research.

6.4 Limitations

There are limitations to the research that must be addressed. Generalizability

of these design considerations is limited because this research was conducted within

only three organizations. This dissertation attempted to mitigate local biases by

increasing the number of participants. Nevertheless, different training backgrounds,

personal preferences, and project time constraints could engender different analytical

conditions.

Moreover, the research characterizes the domain analytical workflow through interviews

and surveys, which generally are self-reported by participants. This research was also

limited, in that it modeled the analytical workflow from a retrospective perspective,

whereas Brows et al. demonstrated that problem spaces and solutions are established

and change dynamically in interactions with people and the environment [18]. Therefore,

the understanding of domain analysis and actionable knowledge is constrained to the
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knowledge workers’ general way of performing tasks.

Finally, this research is limited by its evaluations with domain experts. This

dissertation evaluated Taste with formal studies, and IRSV and OpsVis with informal

case studies. Developing evaluations, strategies, and methodologies to accurately

assess the effectiveness of a visual analytics system is challenging. At this point this

dissertation do not have a clear outline on the best evaluation approach; the design

of recommendations for evaluating a visual analytic system would be one interesting

future direction for the research.

Understanding each of these relationships is imperative for maintaining the validity

and integrity of a knowledge base that is used in real decision-making environments.

At present time, domain experts handle all three scenarios manually. However, in

the Knowledge Engineering literature, researchers proposed and designed several

verification and validation (V&V) techniques and tools. Some of them support the

ability to automatically verify and validate underlying knowledge. But without a

clear understanding of domain knowledge, most automatic techniques and tools are

not always reliable. In visualization, it remains an open research area for us to create

a semi-automated knowledge management system for organizing and storing diverse

knowledge and rules in the same knowledge base.

However, while this dissertation recognize these limitations in our work, this work

considers the support of organizational analysis processes is an important visual

analytics research. The concluded design considerations illuminate the role that a

visual analytics plays in such complex problem-solving environments.

6.5 Future Work

This dissertation contributes to the establishment of a two-stage design framework

for visual analytics. But some components in this framework still require further

solutions. The uncovered complexity of this framework implies that there is a vast

amount of work that must be done before a final framework is complete. Some
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potentially fruitful additional work was considered during the creation of this dissertation,

but which were out- side the scope of this work. These additional efforts are outlined

here and left as future work.

There are three categories of future works: (1) expansion of interactive reasoning

modeling capabilities for the framework; (2) understanding the cost of customization;

and (3) establishing the evaluation foundation of visual analytics.

6.5.1 Expanding the interactive reasoning modeling capabilities

A first step in this work could be to expand the interactive reasoning modeling

capabilities for the framework. The analysis of the identified relevant domains of

research could be deepened, and other relevant domains may be discovered. This

expansion of this interactive modeling process could be used to refine and improve

the incorporation of individual’s analytical processes in a visual analytics system.

This research is interested to consider whether externalizing such domain knowledge

and reapplying it into customized visualizations would be feasible for enhancing

domain decision-making process. Although there is no definitive way to achieve

complete knowledge transfer, existing research that has demonstrated how to incorporate

visualization with domain specific knowledge [175, 54]. To achieve similar knowledge

externalization, a tight integration of the visualization with an ontological knowledge

structure were proposed to interactively capture and store the user’s interactions and

translate them into domain knowledge [167]. This externalization could further be

used in training new managers, communicating with others, and reporting decisions.

In addition, this work intends to investigate additional analysis methods for the

automated analysis of user’s interaction logs and annotations. For example, Hidden

Markov Models (HMM) could be used for data where the segments are not explicitly

defined but can be learned based on the original data sequence. These potential

additions combined with the general approach of blending automated and multi-view,

interactive visual analysis open the door to gain new insights that can help model the
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domain users’ reasoning processes.

6.5.2 Understanding the cost analysis and customization validation

The validation process of the cost for customization is of great importance in the

“feedback” loop for the proposed design framework. As described in Section 4.5.2.2.2,

this process emphasizes the verification and validation of the customization requests

that are generated based on analyzing users analytical behaviors. The key in this

process is the identifications of the measures that can determine the cost of customizing

a system. Currently, there is no existing research that addresses this recognized

problem.

In the future, one of the most important research directions for this work is to

continue investigating the measures for the costs of customization. This direction

emphasizes the search for visual and/or interaction parameters that can be used to

quantify such cost. Specifically, this research would focuses on creating a combined

factor to attach costs to system customization. This factor could be calculated based

on the cost of interaction (concluded by Lam [99]), cost of visualization (suggested

by Amar et al. [5]), and cost of cognitive overload (proposed by Green et al. [61]).

A first step in this direction could be to surveying the existing literatures (e.g.

visual analytics, InfoVis and HCI) for the theoretical foundation for the cost of

customization. The analysis of the identified relevant domains of research could be

deepened, and other relevant domains may be discovered. This expansion of the

theoretical foundation could be used to refine and improve the Definition of the cost

to interactively customize a visual analytics system.

6.5.3 Establishing the evaluation foundation of visual analytics

General evaluation recommendations for the assessment of the proposed visual

analytics framework have not been solved here. Future work is needed to complete this

research. The final solution may be some mixture of the utilization of internal evidence
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and external evidence [112]. Both these evidences present a coherent perspective to

evaluate the framework, by placing it into the evolvement of the visual analytics field.

The evidences are collected to support speculation that such a mixed solution may

be more useful than any one solution in isolation.

On the one hand, these general evaluation recommendations should not only focuses

on the assessment of the functionalities of a visual analytics system. It needs to verify

the utility of a designed system, and validate how properly the implemented functions

are in facilitating domain analysis process.

On the other hand, these recommendations should also emphasize measuring the

knowledge-gain for the domain users. Much like the confidence value measured in

evaluating Taste (presented in section 5.3), these evaluation recommendations need

to place emphasis on measuring the impacts of visual analytics systems in affecting

individual’s domain analytical practices.
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Appendix A: Experiment Setup for Connecting Interaction Logging and Information

Analysis Process

1 Introduction

In his insightful keynote address to the EuroVis 2009 conference, Pat Hanrahan

discussed how visualization plays a role as a system of thought [65]. One remarkable

topic of his talk is the use of visual problem isomorphs to make complex problem-solving

seem simple and often trivial. The examples Dr. Hanrahan provided demonstrated

the idea that once the right visual representation of the problem isomorph is found,

solving that problem can be as simple as looking at the visual representation and

identifying the right answer immediately. Of particular interest to us is the example

of using a “magic square” as a visual isomorph to the Number Scrabble game (which is

discussed further in section 2.1). It is clear that by transforming the Number Scrabble

game into a magic square, this relatively difficult game of finding and adding multiple

numbers becomes as simple as playing a game of tic-tac-toe.

This example is compelling because the process of encouraging a user to discover

a useful visual isomorph for a problem can be thought of as the primary goal of

visualization. However, the obvious question is, how does someone find the right

visual isomorph to a problem? Unfortunately, the answer to this question is not

trivial or well-understood. Building on work in cognitive science and diagrammatic

reasoning [90], we argue that helping a user find a useful visual isomorph is not just

a matter of presenting an appropriate visual representation. Rather, people can best

discover visual solutions to problems through interaction with visual representations.
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Unfortunately, while visualization researchers understand how to design visualizations

to represent data, they have not exploited the relationship between interaction and

problem solving to the same extent as cognitive scientists.

The goal of the research presented in this paper is therefore to bridge the gap

between the findings in the cognitive science community and the visualization community.

Specifically, we acknowledge research in the cognitive science community that shows

interaction plays a critical role in problem solving [90]. However, given our emphasis

on visualization, we do not simply seek to corroborate their existing findings. Instead,

our interest lies at the intersection of the two fields where we look to understand how

using interaction to solve problems can lead to the identification of potential visual

isomorphs.

First we extend the notion that interaction generally facilitates problem solving.

However, we further hypothesize that interactions with different constraints and

amount of encoded information will lead to different solutions to the problem. In

addition, we hypothesize that during the problem-solving process, the different constraints

on interaction will lead to different types of isomorphs both visual and non-visual.

Finally, we hypothesize that these different types of isomorphs have varying degrees

of effectiveness in solving the problem, which can be measured quantitatively.

To test our hypotheses, we conducted a user study in which 117 participants were

given different types of interaction constraints while developing strategies for the

Number Scrabble game. We chose to use the Number Scrabble problem because

it is self-contained and is known to have an optimal visual problem isomorph in

the form of the magic square [147]. The participants’ accuracy and time in playing
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the game against a computer were logged and tracked, and their strategizing session

video-recorded. Based on the data obtained from the study, we find that: (1) different

constraints on interactions do affect the participants’ performance while playing the

game, (2) with more constraints, the participant has a higher chance to derive the

optimal visual isomorph (the magic square), and finally, while not all participants

were able to derive the optimal visual isomorph, (3) using visual isomorphs in general

leads to better performance than using non-visual isomorphs.

We begin by reviewing related work on interaction and problem isomorphs in the

context of problem solving. Next, we present our experiment exploring the effect of

interaction constraints on deriving visual problem isomorphs. We then discuss the

implications of our experimental results and limitations of the study.

2 Related Work

Our conception of visualization as providing externalizations for problem solving

draws on work in visualization theory as well as cognitive science. In particular, we

study how visual representations can provide useful isomorphs of the information they

visualize. Two problems or representations are isomorphic if they are informationally

equivalent but present that information in different structures. As an example, we

use the Number Scrabble problem and its isomorphic magic square representation.

2.1 The Number Scrabble problem

The original Number Scrabble [147] is a game played by two people with nine

cards: ace through nine. The cards are placed in a row, face up. The players draw

alternately, one at a time, selecting any one of the unselected cards. The objective of
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the game is for a player to get three cards which add up to 15 before his opponent

does. If all nine cards have been drawn without either player having a combination

that adds up to 15, the game is a draw.

The main reason we chose to use the Number Scrabble game is that there is a

known visual isomorph of the problem called the “magic square” (figure 48). Since

the magic square visually represents all possible combinations of three numbers that

can be added up to 15 in a succinct manner, it can significantly help a player to

perform well at the game. In other words, once this visual isomorph is identified,

the Number Scrabble problem is turned into a much simpler tic-tac-toe game. THe

number scrabble game represents a large number of well-defined problems that show

how visual isomorphs can make evident what was previously true but obscure [147].

Figure 48: 3x3 magic square

2.2 Isomorphs and diagrammatic reasoning

Simon defined problem isomorphs as problems whose solutions and moves can be

placed in one-to-one relation with the solutions and moves of the given problem [147].

The key to isomorphism is that even when two representations contain the same

information, they can still provide very different sets of operations for accessing

and inferring about that information, which can make a given problem easier or
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harder to solve [101]. In our example, the magic square and number scrabble are

isomorphs of the same problem in that they both contain all the information needed

to play the game. However, in number scrabble, the operations provided to the

player to access important information about the game—such as whether your cards

contain a winning combination—are mathematical. In the magic square case, that

information is contained in a visual operation: seeing whether the cards form a line

across the magic square grid. Since the brain processes such visual operations faster

than mathematical ones, the visual isomorph is more efficient in this case.

The idea that visual representations make certain operations more efficient to

perform is at the core of the theory of diagrammatic reasoning [34, 101]. However,

efficiency is not the only measure of interest in visualization; our goal is to make

information not just accessible, but understandable. The distinction between these

goals is highlighted by Carroll et al. [26], who had participants solve a design problem

presented as one of two isomorphs: a spatial arrangement problem and a temporal

scheduling problem. The spatial isomorph was easier and faster for participants to

solve and led to fewer failures to understand the problem. That is, in the temporal

case there were several participants whose solutions did not follow the requirements

of the task. Interestingly, when participants in both cases were provided a simple

graphical representation (a grid) in which to work on their solution, the temporal

case was as easy to solve as the spatial one, but participants in the temporal case

remained more likely to fail to understand the problem requirements. The authors

took this to mean that appropriate graphical representations can make problems

easier to solve, but not necessarily easier to understand.
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Another way to interpret this is that there is more to designing a visual isomorph

than making information more efficient to access. Much of the power of visual

representations comes from how they set constraints on interpretation and reasoning.

Constraints inherent in visual isomorphs can encode constraints on the information

they represent, leading to a more direct preservation of information structure [124]. As

Stenning and Oberlander [148] argue, these constraints inherent to visual representations

help to meaningfully restrict the number and kinds of inferences that can be made

about a problem, focusing processing power on only valid cases. In this way, visual

isomorphs can not only make operations more efficient, but can also model the

constraints of a problem directly. This can affect the difficulty of solving a problem

by reducing the cognitive load of remembering rules [98] or by encouraging different

types of strategies [67].

2.3 Interaction and problem solving

While visual representations can aid problem solving significantly on their own,

they gain even more power to model a problem when interaction is introduced.

Interaction is increasingly seen as central to the process of reasoning with visualization [159,

104]. Lending weight to the intuition that interaction improves reasoning, Hundhausen

et. al [76] found that interacting with an algorithm visualization produces better

understanding than viewing an equivalent animation.

We use the term “interaction” in the broad sense defined by Yi et al.: “the

dialogue between the user and the system as the user explores the data set to

uncover insights” [176]. In this sense, the relationship between interaction and
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problem solving has been the subject of much research by cognitive scientists in

the field of distributed cognition [78]. In particular, David Kirsh has extensively

argued that projection and interaction with external representations are fundamental

to human reasoning [89, 91, 90, 92, 94]. Kirsh points to the pervasive use of external

representations and interaction with the world in everyday problem solving, and

identifies several functions performed by interaction in the reasoning process [90]. Of

these, most relevant to our work is reformulation, or the ability to restate ideas. Kirsh

sees reformulation as a process that is frequently too complex to perform entirely in

memory, and so is often managed with external tools. Since reformulation is closely

related to identifying different problem isomorphs, we argue that this process can also

be made easier through certain types of interaction.

3 Experiment

Our research objective is to investigate the question of how constraints on interaction

affect problem solving through the derivation of visual isomorphs. We propose that

in developing a strategy for playing a game like Number Scrabble, participants will

tend to derive an isomorph for the problem that is easier for them to use than

the representation in the original game, and that the availability of different levels

of interaction while strategizing will lead to different types of isomorphs. If this

is the case, it can help to clarify the relationship between interaction with visual

representations and reasoning. To what extent does the nature of a visual representation,

and the type of interactions a user is allowed to perform upon it, affect the kind of

strategy that user develops for solving a problem?
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We therefore designed a study based on the aforementioned Number Scrabble

game due to its known optimal visual isomorph, the magic square. In our study, we

developed 5 different interaction conditions, ranging from free-form to very restrictive,

and studied how strategizing under these conditions affects problem solving and the

development of isomorphs. In particular, we propose three interrelated hypotheses

concerning interaction, problem solving, and isomorphs:

1. Interactions and Problem Solving: We hypothesize that different types

of interactions will affect the participants’ performance in playing the Number

Scrabble game. Specifically, we hypothesize that more constrained interactions

can encode more information, and will therefore lead to better problem-solving.

2. Interactions and Isomorphs: We hypothesize that the different constraints

on interaction will affect the isomorphs generated by the participants. With

higher constraints on interaction, a participant will be more likely to derive the

optimal visual isomorph (the magic square).

3. Isomorphs and Problem Solving: We hypothesize that not all isomorphs

developed by participants will be visual, but that visual isomorphs will be more

effective for playing the Number Scrabble game.

4 Experiment Design

The main factor of interaction constraint had five levels (no interaction, pen and

paper, single set of cards, multiple sets of cards, and boundary). Details of each

constraint and design rationale will be discussed in section 4.3. We used a between-subjects
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design with repeated measures. Each subject is randomly assigned to one of the five

interaction constraint conditions which determines what interactions are available to

them during their strategy session. Qualitative measures in our experiment are the

types of isomorphs our subject derived during their strategy session. Quantitative

measures involved response time and scores on Number Scrabble games played against

a computer, using the game interface shown in Figure 49. The computer was programmed

to play the game optimally so that it never loses. While our subjects played the game

against the computer, we recorded number of games tied or lost and the time it took

them to figure out the next move for response time. We alternate who makes the first

move between the subjects and the computer for every game played.

Figure 49: Number scrabble game interface

4.1 Participants

We recruited a total number of 117 participants (86 Male, 31 Female) from introduction

to computer science courses at our university. Participants’ age ranged from 18 to

40 with median of 25. Students were primarily undergraduates, and 80% were in

computing-related majors.
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4.2 Task

The experiment begins with investigators introducing the Number Scrabble game

to the subjects based on a training script. The investigators were asked to play the

game with the participants until they fully grasped the rules. Next, the participants

fill out a demographic form on age, gender and experience with mathematical courses

through a web interface. The rest of the experiment can be divided into four major

sessions: pre-test, strategizing, externalizing isomorph, and post-test.

1. Pre-test: During the pre-test session, the participants were asked to play the

Number Scrabble game six times against the computer. To make sure that our

participants do not start developing strategies during the pre-test, we enforced

a maximum time limit of 18 minutes to finish all six pre-test games. Failing to

meet the time limit resulted in a participant’s data being dropped from analysis.

2. Strategizing: During the strategizing session, the subjects were given 20

minutes and allowed to interact with the materials we provided under different

constraints and are told to look for a strategy that can help them play the game

better.

3. Externalizing isomorphs: At the end of the strategizing session, all participants

were given 2-3 minutes to make a “cheat sheet” out of the strategy they developed

so that they can refer to it during the post-test session when they play Number

Scrabble again. This cheat sheet was a single sheet of paper onto which participants

were told they could write anything they felt would help them play the game.
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(In the case of the pen and paper condition, this was a separate sheet from

those they wrote on during the strategizing session.) This gave us a record

of the isomorph used by participants in forming a strategy and reduced the

cognitive load on participants during the post-test. We only gave them a very

short amount of time to make their “cheat sheet” so that they could not continue

elaborating on it after the end of the strategizing session.

4. Post-test: During the post-test session, participants were asked to play the

Number Scrabble game six more times against the computer while consulting

their “cheat sheet.” To be consistent with the pre-test and also to make sure

that the participants do not refine their isomorphs during the post-test, 18

minutes was set as the upper limit for playing all six games. As in the pre-test,

failing to meet the time limit resulted in a participant’s data being dropped

from analysis.

After the post-test session, participants were asked to fill out a questionnaire

regarding how they arrived at their strategy and their experience during the strategizing

session. The investigators collected all the participants’ “cheat sheets” for further

analysis of the isomorphs they derived during the experiment. In addition, the

strategizing sessions were video recorded, which allows us to examine how the interaction

constraints affected our participants’ behavior during the process of searching for an

isomorph.
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4.3 Interaction constraints

We went through multiple rounds of a refining process to design the interaction

constraint conditions used in our study. Our goal was to design constraints that

ranged from placing no limit on the interaction to restricting the interaction a great

deal.

• Constraint #1 (no interaction): The participants were asked to think about the

problem in their head during the strategizing session to develop a strategy to

help them play the game better. The participants were not allowed to interact

with any materials.

• Constraint #2 (pen and paper): The participants were provided with pen and

paper to work out their strategy for the Number Scrabble problem.

• Constraint #3 (multiple sets of cards): The participants assigned to this constraint

were provided with multiple sets of cards, with each set consisting of the

numbers one through nine. Each card is square in shape and made from

paper with the numbers printed on them. Within the strategizing session, the

participants were encouraged to organize the cards freely.

• Constraint #4 (single set of cards): The participants were further limited to

interact with only one set of cards labeled with the numbers one through nine.

• Constraint #5 (boundary): This is the most restrictive case. Participants were

presented with nine cards and a square space only large enough to fit the cards
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in a grid, and were told to confine their interactions to that space. Figure 50

shows this condition.

Figure 50: Cards and Boundary

Our conditions are designed so that “no interaction” serves as a control group, and

“pen and paper” represents no limit on user interaction. Then, based on both the

original description of the Number Scrabble problem and the optimal visual isomorph,

we derived the other three interaction constraints from “multiple sets of cards” to

“boundary” by adding more constraints on interaction each time, all of which encode

some information about the optimal visual isomorph of the problem.

5 Results

When analyzing the experimental data, we were concerned with the impact of

outliers due to random responses. Therefore, we trimmed out the data of four

participants whose response times were unusually fast during the pre-test. In addition,

11 of our participants reached the 18-minute time limit during either pre- or post-test,

thus their data are automatically dropped since their missing data made it impossible
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Index Isomorph category Definition
1 Magic square (Visual) The magic square isomorph.
2 Partial magic square (Visual) Same layout as the magic square isomorph with

different ordering or numbers.
3 Other visual isomorph Visual isomorph but numbers are not organized in

a 3*3 matrix manner.
4 Mathematical isomorph All possible combinations of 3 numbers adding to

15.
5 Incomplete isomorph Strategies that do not involve all 9 numbers.

Table 24: Number of visual isomorph developed increases as interaction constrained

to fairly compare pre-test and post-test scores. As a result, we have valid data from

100 participants with 20 subjects under each interaction constraint.

5.1 Isomorph vs. Interaction constraint

Based on the strategies recorded on their cheat sheets, our participants developed

a wide range of problem isomorphs during the experiment. Some of these are visual

while the others are either mathematical or purely descriptive. We classified these

isomorphs into five different categories, described in Table 24. Note that categories

1–3 are visual isomorphs of the Number Scrabble problem while 4 and 5 are not. In

addition, examples of different types of isomorphs are shown in figure 51.

The distribution of different isomorphs developed by our subjects within each

interaction constraint is shown in Figure 52. This distribution supports our hypothesis

in the sense that as the interactions become increasingly costrained (from pen and

paper to boundary), more participants developed visual isomorphs of the number

scrabble problem. More importantly, nine out of 20 subjects under the most restrictive

constraint (boundary) discovered the optimal visual isomorph (the magic square)

while another six subjects developed partial magic square isomorphs. In contrast,
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Figure 51: Isomorph examples
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Figure 52: Distribution of isomorphs developed under five different interaction
constraints. The gaps divide visual isomorphs (1,2 and 3) from non-visual isomorphs
(4 and 5).
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only one out of 20 participants in either the no interaction condition or the pen

and paper condition discovered any visual solution. A Pearson’s chi-square test of

independence finds a highly significant interaction between interaction constraint and

isomorph, χ2(16, N = 100) = 116.9, p < .001. Since 15 cells have an expected count

of less than five, we performed a Fisher’s exact test which also yielded a probability

of p < .001.

5.2 The effect of interaction constraints on Response Time and Score

Results regarding time and score were analyzed statistically using an analysis of

variance (ANOVA) followed by Tukey’s HSD (Honestly Significant Difference) test

for pairwise comparisons. The factor in our experiment was interaction constraint

(five levels) and the dependent variables were improved response time and improved

score.

Improved response time is derived from the time it took to decide which card to

choose next at each move during a game. Response time per game is defined as

the average time it took the participants to choose the next card during each game,

T =
∑

ResponseT ime/n, with n being the number of cards chosen following the

opponent’s move during a specific game. Since both the pre-test and post-test sessions

comprise six games, improved response time is thus defined as IT =
∑6

i=1 T (i, posttest)−
∑6

i=1 T (i, pretest). In a similar vein, improved score is derived from whether the

subjects tied or lost to the computer during each game, with tying counted as 1 point

and losing as 0 points. Thus improved score is defined as IS =
∑6

i=1 S(i, posttest)−
∑6

i=1 S(i, pretest).
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5.2.1 Response time

We expected participants to choose the next card faster during the post-test as

the interaction constraints increased, since we hypothesized that they would be more

likely to derive a better visual isomorph similar to the “magic square”. However,

we did not observe a significant main effect of improved response time (F (4, 95) =

1.54, p = 0.097). Figure 53 (top) shows the mean improved response time under

different interaction constraints. However, interesting yet surprising findings emerged

once we considered response time during pre-test and post-test separately. Figure 53

(bottom) shows the mean response time during both pre- and post-tests under the

five interaction constraints. It should be noted that participants in the no interaction

condition had an unusually slow average response time in the pre-test, which makes

comparisons between that condition and the others problematic. In general, however,

we found that most of our participants spent more time deciding which card to choose

next during the post-test, and participants under the most confined constraints took

the longest time, which ran counter to our expectations. We discuss possible reasons

for this in Section 6.

5.2.2 Score

If we consider mean scores on the pre-test and the post-test separately (Figure 54

(bottom)), it is clear that in general our participants scored higher after the strategizing

session under all five interaction constraints (F (1, 1190) = 57.7, η2p = 0.046, p < .001).

More importantly, the subjects in the more constrained interaction groups tend to

score higher than those in the less restrictive interaction groups.
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Figure 53: (top)Mean improved response time; (bottom) mean response time(pre vs.
post test)
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For improved score (Figure 54 (top)), we observed a significant main effect of

interaction constraint type (F (4, 95) = 6.5, η2p = 0.215, p < .001). Post-hoc tests

showed that the improved scores are significantly different between numerous pairs of

interaction constraints. To elaborate, the improved score for participants assigned to

interaction constraint #5 (boundary) is significantly larger than that for participants

assigned to interaction constraint #1 (no interaction), p = .001, constraint #2 (pen

and paper) with p < .01, and constraint #4 (one set of cards) with p < .01. Although

the result of other pairwise comparisons were not significant, we can see a clear trend

(Figure 54 (top)) that as the interaction constraints become more restrictive, the

improvement of score increases except in the case of constraint #4. We further

analyze this unexpected “dip” in the discussion section.

5.3 The effect of isomorph on improvement of score

Overall, the main effect of types of derived isomorph is significant (F (4, 95) =

8.495, η2p = 0.263, p < .001) on improved score (figure 55). Post-hoc tests showed

that the improved scores for participants who derived the magic square isomorph

is significantly higher than for participants who derived partial magic squares at

p < .05, and significantly higher than those of all other participants at p < .01. The

result supports our hypothesis that the optimal solution does lead to much better

performance in terms of accuracy. Although the other pairs are not significantly

different on mean improved score, we can see a trend that as the isomorphs are

further from the optimal magic square, the mean improved score decreases. We

further performed a linear contrast between visual isomorphs (1, 2, 3) and non-visual
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Figure 54: (top) Mean improved score; (bottom) mean score (pre vs. post test)
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isomorphs (4, 5) on improved score. The result shows that the mean improved score

for participants using visual isomorphs is significantly larger than for those using

non-visual isomorphs (t(95) = 3.822, p < .001).

Figure 55: Mean improved score vs. Isomorph

6 Discussion

We start our discussion by addressing the key questions based on our hypothesis:

Do more confined interaction constraints yield a better chance of deriving

a visual isomorph?

Yes, based on figure 52 and the chi-square analysis (section 5.1), we observe that

as the interaction constraints are increasingly restricted, larger number of visual

isomorphs are developed. In addition, the strictest interaction constraints led to

the highest number of the optimal visual isomorphs discovered. Nine out of 20
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participants under constraint #5(boundary) discovered the magic square isomorph

during the strategizing session and seven participants out of the remaining 11 discovered

a partial magic square isomorph. Based on further analysis of feedback about the

interaction constraints, most participants under this condition found constraint #5

very helpful in their discovery of the visual isomorphs. Many of them left comments

such as, “It helped me visualize the problem and make competitive moves.” Similarly,

most subjects under interaction constraints #3 (multiple sets of cards) and #4 (one

set of cards) felt that being able to manipulate the cards freely was helpful. Thus

both statistics and user feedbacks support the hypothesis that interaction constraints

significantly affect the types of isomorphs users are able to derive by altering the way

participants approach the same problem. In other words, the manipulation of the

isomorphs could be embodied in the interaction.

Does a more advanced visual isomorph outperform a non-visual isomorph

in terms of score?

Yes. We consider an isomorph as more advanced if it is more similar to the optimal

visual isomorph (the magic square). Thus our results summarized in Section 5.3

confirm that visual isomorphs lead a greater increase in score compared to non-visual

isomorphs. What’s more, within the group of visual isomorphs, the optimal visual

isomorph outperforms the other two significantly.

Does more confined interaction constraint always yield larger improvements

on score?

The short answer is: not always. As seen in Figure 54, the general trend shows

that as the interaction constraints become more restricted, the improved score tends
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to rise, with the exception of constraint #4 (one set of cards). The low improved

score in this condition can be explained by considering Figure 52, which shows that

none of the participants under this condition derived a magic square (red) or partial

magic square (orange) isomorph. Without more efficient visual isomorphs, it made

sense that the subjects did not do much better in their post-test compared to the

pre-test. However, when we designed the five interaction constraints, we considered

one set of cards as a highly restrictive constraint, thus we expected better scores and

more derivation of the optimal isomorph. Based on the comments they left, many

participants in this condition felt limited by only being able to interact with one set

of cards and wished they were given paper to write down combinations of numbers

they found to offload the burden of having to memorize them. After the experiment,

when we present the magic square isomorph to participants, most in this condition

thought they were close to discovering the optimal isomorph at some point during the

experiment. But without the extra boundary to further constrain their interaction,

it was hard for them to find the bridge between one set of cards and the magic

square. This finding highlights the fact that more restrictive interaction constraints

are not necessarily helpful unless they meaningfully encode information about the

problem. The single set of cards constrained interaction, but without the boundary

this constraint did not by itself tell participants anything about the nature of the

problem.

Why is improved response time not a good measure?

Unexpectedly, we did not observe a significant result of isomorph type in terms

of post-test response time. In fact, response times in the post-test were generally
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longer than in the pre-test, and participants who discovered the optimal isomorph

tend to take an especially long time responding during the post-test. We contacted

them afterwards about why they made decisions more slowly during the post-test

and found out that instead of playing defensively using the magic square, they spent

more time thinking about how to beat the computer. Thus we can infer the bar this

particular group of participants set was higher than just “not to lose.” Overall, it may

have been the case that participants in the post-test took a longer time because they

were consulting their cheat sheets or otherwise thinking harder about their strategy,

as we encouraged them to do in the strategizing session.

Another reason we did not observe a significant result of different types of isomorphs

on improved score is that the search time for each of the visual isomorphs our subjects

derived to decide the next card might vary drastically. For example, searching through

a partial magic square should yield a faster decision than searching through a 9x9

matrix, while searching through a 9x9 matrix leads to a faster decision than going

through all possible combinations of three numbers adding to 15. Overall, since there

are many other factors involved in the improved response time (such as search time

and self-expectation of performance), we did not observe a strong causal relationship

between types of isomorph and improved response time.

7 A note on the variety of visual isomorphs

In Table 24, we roughly categorized all the isomorphs our subjects developed during

the study into five categories including three visual and two non-visual isomorph

types. In this section we mainly focus on the visual isomorphs discovered by the
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participants. It is interesting to see that eight participants across interaction constraint

#3 (multiple set of cards) and #5 (boundary) developed a partial magic square

isomorph, and that 11 participants discovered other forms of visual isomorph across

interaction constraints #1, 2, 3 and 4. Within the partial magic square isomorph,

there are many variations. Figure 51(a) illustrates a few of them, and we can see that

the variations are mainly caused by ordering. There are even more variations under

the “Other visual isomorph” category. One type of variation was a decision tree, such

as the examples in Figure51(b); additionally, a few participants built a 9x9 matrix

(Figure 56).

Figure 56: A matrix-like visual isomorph

In Figure 52 we can see a strong contrast between the types of visual isomorphs
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the participants came up with. Most participants under interaction constraint #5

(boundary) developed magic square-like visual isomorphs during the strategizing

session, while there are a relatively larger number of participants under both constraints

#3 and #4 who discovered more creative visual isomorphs (such as different forms of

decision trees and node-link diagrams). Thus, there seems to be a trade off between

interaction constraint and the creativity of the resulting visual isomorph.

8 Implications and Future Work

Our findings suggest that there is a clear connection between the nature of interactions

available in a visual representation and the types of strategies users tend to develop

when working with the representation. While we have demonstrated this in the

context of a specific problem-solving scenario, we argue that our results have significant

implications for the more general area of interaction with visual representations with

which visual analytics concerns itself.

In particular, this research suggests that degree of constraint is an important

dimension to consider when designing interactions for visual analytics systems, although

this is not a common way of talking about interaction design in visualization. In cases

where a task has an optimal solution path—for example, when there is a standardized

procedure that analysts are expected to follow—highly constrained interaction is likely

to be a good way to guide a user towards this procedure without the need for extensive

training. In situations where the designer needs to encourage creative solutions to a

problem, some middle ground between constrained and unconstrained interaction is

likely to be more helpful. One strong implication of our findings, however, is that
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complete freedom of interaction may make problem-solving more difficult; encoding

some degree of boundaries into the interaction will likely help users to understand

the task in a more intuitive fashion.

As demonstrated by our results, the optimal visual isomorph indeed makes the

Number Scrabble problem easier to solve. But as mentioned in Section 2.2, efficiency

is not the only measure of interest in visualization; our goal is to make information

not just accessible, but understandable. In this context, it is worth mentioning that

we had one participant who discovered the magic square visual isomorph but failed to

realize that the nature of the game is just like tic-tac-toe given the optimal isomorph.

While one incident does not warrant enough evidence to confirm or counter any

existing theory, it is an interesting phenomenon to consider.

Since the problem we considered has a known and clearly defined optimal visual

isomorph, our designed interaction constraints were geared towards this isomorph.

Realizing the limitations of our task, we certainly hope that this proof-of-concept

could be generalized to more complex problems. The obvious next step is to examine

how to design interaction constraints for problems that might not have known optimal

visual isomorphs.

9 Conclusion

We have demonstrated that constraining user interactions indeed affects problem-solving

through exploring the relationship between interaction constraints, visual isomorphs,

and problem-solving performance as measured by response time and score. Our results

showed that more confined constraints lead to better visual isomorphs, and better
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visual isomorphs result in large improvements in scores on the Number Scrabble game.

Our hypothesis is further confirmed by a significant effect of interaction constraints on

improved score. Overall, our results indicate that the manipulation of isomorphs can

be embodied in user interaction by imposing different constraints, and that certain

interaction constraints can lead to a higher chance of deriving a better visual isomorph

for a problem. With better visual isomorphs yielding higher performance, our results

demonstrate that we can indeed improve the effectiveness of problem solving activities

by embodying information in user interaction.
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