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ABSTRACT

GRAHAM ENOS. Binary edwards curves in elliptic curve cryptography. (Under the
direction of DR. YULIANG ZHENG)

Edwards curves are a new normal form for elliptic curves that exhibit some cryp-

tographically desirable properties and advantages over the typical Weierstrass form.

Because the group law on an Edwards curve (normal, twisted, or binary) is complete

and unified, implementations can be safer from side channel or exceptional procedure

attacks. The different types of Edwards provide a better platform for cryptographic

primitives, since they have more security built into them from the mathematic foun-

dation up.

Of the three types of Edwards curves—original, twisted, and binary—there hasn’t

been as much work done on binary curves. We provide the necessary motivation

and background, and then delve into the theory of binary Edwards curves. Next,

we examine practical considerations that separate binary Edwards curves from other

recently proposed normal forms. After that, we provide some of the theory for bi-

nary curves that has been worked on for other types already: pairing computations.

We next explore some applications of elliptic curve and pairing-based cryptography

wherein the added security of binary Edwards curves may come in handy. Finally,

we finish with a discussion of e2c2, a modern C++11 library we’ve developed for

Edwards Elliptic Curve Cryptography.
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CHAPTER 1: INTRODUCTION

The group of rational points on an elliptic curve over a finite field has proven very

useful in cryptography since Miller and Koblitz first suggested its use independently

in the 1980s ([59] and [48]). Due to the lack of subexponential algorithms to solve the

Discrete Logarithm Problem in this group, elliptic curve cryptography cryptosystems

tend have to have a level of security comparable to other ElGamal-type systems

(e.g. ones that use the DLP, or more precisely the Diffie Hellman problem, over the

multiplicative group F∗p; see [75]) while using much smaller key sizes. Moreover, the

group of points on an elliptic curve E over a finite field K is rather nice to work with;

it’s isomorphic to either a cyclic group or the direct product of two cyclic groups and

(at least in the typical Weierstrass coordinates) has a simple geometric interpretation.

There is some room for improvement, however. Typically the group operation on

E involves a number of special cases, all of which must be checked for at every turn:

• What if one point is the neutral element, the so-called “point at infinity?”

• What if the two points are the same? What if their x-coordinate is zero?

• What if the two points are inverses of each other?

In each of these cases, the exception to the usual formula can cause implementations

to giving up more information to outside observers than intended—leaking “side

channel information.” That is, though the theory of elliptic curve cryptography is
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perfectly sound from a mathematical standpoint, in practice it is either less secure

(or at least more complicated) than originally thought due to shortcomings in the

theory’s applicability. Such types of attacks have been outlined in papers like [12]

and [45], and considerable effort has been spent trying to make Weierstrass curve

implementations secure “after the fact,” as it were; see e.g. [61].

In 2007, Dr. Harold Edwards discussed a new normal form for elliptic curves in

[25]. Despite his paper not focusing on cryptography, the normal form put forth by

Edwards has very desirable cryptographic properties that help combat the leakage

of side-channel information from the very start; as noted by Bernstein and Lange in

[7], the group law is complete and unified, two terms we will discuss later. Moreover,

in many cases the group law involves less operations, meaning that the more secure

computations involved can also be faster. While this is not the case over binary

fields, the benefits of the law’s completeness make the loss of speed seem negligible;

in fact, [62]’s authors argue that with specialized hardware the speed difference can

be greatly reduced, while the completeness of the binary Edwards curve group law

actually makes it faster than Weierstrass implementations that must constantly check

for special cases. Add to this the reduced complexity of implementation code, and

binary Edwards are just as competitive as their non-binary counterparts.

Though there has been significant work to build up the literature on Edwards

curves, there is still room to explore the cryptographic and mathematical aspects of

these new normal forms. In this dissertation we do just that, specifically focusing

on binary Edwards curves (which have been explored less than other types). Our

work is as follows: in Chapter 2, we begin with the necessary background on elliptic
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curves, elliptic curve cryptography, and two of the three types of Edwards curves.

Then in Chapter 3, we build on the theoretical foundation of the previous Chapter

to discuss binary Edwards curves. Next, in Chapter 4, we examine the practical

considerations involved in applying that theory in cryptographic practice, including

a discussion of the shortcomings of four recently proposed normal forms. After that,

we explore pairing computations over binary Edwards curves in 5. In 6, we focus

on two applications of binary Edwards curves to cryptography: password-based key

derivation functions and a compartmented secret sharing scheme with signcryption.

Finally, in Appendix 7 we discuss e2c2, a modern computer software library written

in C++11 to perform Edwards elliptic curve cryptography built on top of Shoup’s

NTL [70]; the sourcecode for e2c2 is included in appendix 7.4.4.



CHAPTER 2: BACKGROUND

In this chapter, we provide the background necessary to understand the crypto-

graphic importance of binary Edwards curves. We begin with a brief discussion of

elliptic curves in general. Since we are mostly interested in the application of elliptic

curves and pairing computations, we will stick to a lighter summary rather than going

into deep mathematical detail; i.e. we will follow the example of [79] more than [71].

We recommend these two books, along with other references in the bibliography, to

readers interested in a more in-depth background.

2.1 Elliptic Curves

2.1.1 Weierstrass Curves

Broadly speaking, elliptic curves are “curves of genus one having a specified base

point” ([71]). After appropriate scaling, such curves are usually written in generalized

Weierstrass coordinates in the homogeneous form

Y 2Z + a1XY Z + a3Y Z
2 = X3 + a2X

2Z + a4XZ
2 + a6Z

3

where X, Y and Z are taken to be projective coordinates from P2 over some base

field K and a1, . . . , a6 are scalars from the algebraic closure K (though often they’re

just taken to be elements of K itself). For ease of notation, we often work in non-



5

homogeneous affine coordinates instead, taking x = X/Z and y = Y/Z:

y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6

These two forms are interchangeably called the Weierstrass form of the curve. If

char(K) /∈ {2, 3}, then we usually simplify further to

y2 = x3 + Ax+B

after a further change of coordinates (though of course we won’t be able to do this

when working with binary curves, i.e. curves over finite fields of characteristic two).

We also specify a special point, denoted by ∞ or O, with the projective coordinates

(0 : 1 : 0).1 For fields K with char(K) = 2, Weierstrass curves are usually written in

the form

y2 + xy = x3 + a2x+ a6

We typically only work with non-singular curves. That is, we don’t allow the curve

to have multiple roots; we choose our constants such that

4A3 + 27B2 6= 0

This inequality comes from examining the discriminant of the curve in simplified

Weierstrass form, viz. ∆ = −16(4A3 + 27B2). For more, see section III.1 of [71].

If a curve is non-singular, i.e. its discriminant ∆ is nonzero, then it indeed has genus

1 and is, if taken over the complex numbers C, isomorphic to a torus. Geometrically

speaking, a non-singular curve has three distinct roots over K, so it doesn’t have

1We’ll use ∞ to refer to this point, and reserve O for the neutral element on an Edwards curve.
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a cusp—which occurs when all three roots are the same—or a node—which occurs

when only two of the roots are the same. This will be important when we define

the group law next. See Figure 2.1 for the graphs of two non-singular curves, and

compare them to the graphs of the singular curves in (2.2). The first curve in Figure

2.2 has a cusp, while the second has a node.

(a) y2 = x3 − 3x + 3 (b) y2 = x3 − 2x

Figure 2.1: Two Non-singular Elliptic Curves over R

(a) y2 = x3 (b) y2 = x3 + 2x2

Figure 2.2: Two Singular Elliptic Curves over R

From here on in, we will use the notation E(K) to specify an elliptic curve E over

a field K, or just E if the field K is understood. That is,

E(K) = {∞} ∪ {(x, y) ∈ K ×K | y2 + a1xy + a3y
2 = x3 + a2x

2 + a4x+ a6}
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keeping in mind that we include the “point at infinity” ∞ among the rational points

as well.

2.1.2 The Group Law

As it turns out, there’s a relatively easy to understand way to define a group law

on E(K). In this section, we’ll mostly be working with R as our field for ease of

notation, understanding, and graphing, but keep in mind that any field K works just

as well. Given two points P and Q on E over R with rational coordinates, connect

them with a line; that line will (barring a few special cases) intersect the graph of E

at a third point R′ with rational coordinates. Then R = P + Q is defined to be the

other point where the vertical line through R′ intersects the graph of E. In Figure

2.3, the red line connects P to Q on the curve E : y2 = x3 − 3x2 + 4. This line hits

the curve at R′ in the first quadrant; the green line connects this to P +Q = R.

Figure 2.3: Weierstrass Group Law

To go from our “chord-and-tangent” geometric understanding to an algebraic one,
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we can use the slope of the red line (via a implicit differentiation of E’s equation,

if necessary) to find R′, then the equation of the curve to find R. In special cases

where the red line is vertical, we either have P + (−P ) = ∞, the point at infinity

(the identity element of our group), or P +∞ = P . This leads us to the following for

curves given in short Weierstrass form:

Theorem 2.1 (Weierstrass Group Law). The following formulas defining the addition

of P = (x1, y1) and Q = (x2, y2) on E(R) : y2 = x3 + Ax + B turns the points E(R)

into an abelian group:

1. If P =∞, P +Q = Q.

2. If Q =∞, P +Q = P

3. If x1 6= x2, P +Q = (x3, y3) where

x3 = m2 − x1 − x2, y3 = m(x1 − x3)− y1, and m =
y2 − y1

x2 − x1

4. If x1 = x2 but y1 6= y2, P +Q =∞

5. If P = Q and y1 6= 0, P +Q = (x3, y3) where

x3 = m2 − 2x1, y3 = m(x1 − x3)− y1, and m =
3x2

1 + A

2y1

6. If P = Q and y1 = 0, P +Q =∞

The proof of this theorem, though not terribly difficult, is a bit tedious. As such we

will omit it, but it can be found in any text on elliptic curves or elliptic curve cryp-

tography, e.g. [79], [71] (section III.2), [49], [19], etc. Again, such a proof would work
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for any field of characteristic not equal to two or three; in those cases, a similar set of

formulas can be found. Of course, in finite fields our geometric understanding doesn’t

exactly hold any more—it is rather difficult to graph in F8675309, for example, but the

algebraic structure still holds. Similar theorems work for fields of characteristic 2 or

3. One other thing to note about the above group law is that it involves a number

of special cases; there isn’t a single simple law that holds for any two points P and

Q ∈ E, and the outcome of P +Q highly depends on the relationships between P,Q,

and ∞. This will be important to remember when we contrast Weierstrass curves

with Edwards curves later on.

Over a finite field K = Fq where q = pn for some prime p and n ∈ N \ {0}, similar

algebraic work yields an abelian group of Fq-rational points on E. This group is very

nice to work with; more precisely, we have the following ([39]’s Theorem 3.12):

Theorem 2.2 (Group Structure of E(Fq)). Let E be an elliptic curve defined over

Fq. Then E(Fq) is isomorphic to the direct sum of cyclic groups Zn1 ⊕ Zn2 for some

uniquely determined n1 and n2 ∈ N such that n2|n1 and n2|(q − 1).

Since cyclic groups are generated by a single element, the fact that E(Fq) is isomor-

phic to the direct sum of two cyclic groups (or one, if n2 = 1) make them very nice to

work with computationally. The exact details of this isomorphism are rather difficult

to specify, however. Except for specific groups that have thoroughly examined (or

worked on via Schoof’s Algorithm, see [75]), the best we can easily find are some

bounds on #E(Fq), the order of the group E(Fq)—even though it will of course be

n1 · n2—given by the following theorem from the 1930s:
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Theorem 2.3 (Hasse’s Theorem). The order of the group E(Fq) satisfies the inequality

q + 1− 2
√
q ≤ #E(Fq) ≤ q + 1 + 2

√
q

In some respects, the fact that the isomorphism E(Fq)→ Cn1⊕Cn2 isn’t completely

ironed out can seem frustrating. However, this—along with some other aspects to be

discussed shortly—is exactly what makes them suitable candidates for cryptographic

primitives.

2.2 Elliptic Curve Cryptography

In two groundbreaking papers ([48] and [59]) Koblitz and Miller independently

suggested using the group of rational points on an elliptic curve as the basis for a

public key cryptosystem. In its simplest form, elliptic curve cryptography uses the

Discrete Logarithm Problem and the Diffie-Hellman Problem to hide private infor-

mation in public. We’ll give two descriptions of the discrete logarithm problem: one

in a multiplicative group, like F∗p, and one in an additive one like E(Fq):

Problem 2.1 (DLP in multiplicative group). Given a group (G, ·), an element α ∈ G

of order n, and an element β ∈ 〈α〉, find the unique element k ∈ Zn such that αk = β.

We’ll borrow [75]’s notation and say that k = logα β.

Problem 2.2 (DLP in additive group). Given a group (G,+), an element α ∈ G of

order n, and an element β ∈ 〈α〉, find the unique element k ∈ Zn such that kα = β.

As [75] says, “The utility of the Discrete Logarithm problem in a cryptographic

setting is that finding discrete logarithms is (probably) difficult, but the inverse op-

eration of exponentiation can be computed efficiently.” While this description favors
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multiplicative groups, the idea is the same in an additive one: repeated applications

of the group operation are (relatively) simple to compute, but taking the result of

such a computation and trying to find the input that yields it is (believed to be)

rather difficult. We’ll say more on the “believed to be” qualification shortly.

ElGamal cryptosystems are based on the apparent difficulty of the following prob-

lem, first proposed in [24]:

Problem 2.3 (DHP in multiplicative group). Given a group (G, ·), an element α ∈ G

of order n, and two elements β = αb and γ = αc in 〈α〉 for some integers b, c ∈ Zn,

find δ = αbc.

Problem 2.4 (DHP in additive group). Given a group (G,+), an element α ∈ G of

order n, and two elements β = bα and γ = cα in 〈α〉 for some b, c ∈ Zn, find δ = (bc)α.

It’s apparent that should one find a fast algorithm to compute discrete logs, the

Diffie-Hellman Problem will also be rather simple to find—once logα β and logα γ are

found, δ can be computed from these two values, since

δ = αbc = α(logα β)(logα γ)

in multiplicative notation, or

δ = (bc)α = [(logα β)(logα γ)]α

in additive notation. Hence the DHP is no harder than the DLP; in many groups, it

is believed to be as difficult.

The above exposition of the Diffie-Hellman problem is also called the Computational

Diffie-Hellman Problem, to contrast it with the Decisional Diffie-Hellman Problem:
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Problem 2.5 (DDHP in additive group). Given a triple (β, γ, δ) from a group (G,+)

of order n such that β = bα and γ = cα for some b, c chosen independently at random

from Zn, determine which of the following two cases hold:

1. δ = (bc)α

2. δ = dα for some other d chosen at random from Zn independently from b and

c.

This problem seems easier to solve at first blush than its computational counterpart,

but is still rather difficult in many settings. We rely upon the difficulty of this problem

to construct a cryptosystem in Chapter 6.

We now describe how these problems are used for the ElGamal public key cryp-

tosystem in F∗p using two favorite characters from cryptographic literature: Alice and

Bob.2

Cryptosystem 2.6 (ElGamal over F∗p). Suppose Alice wishes to set up a secure way for

Bob to send her a message. They first agree on a large prime p and a group element

α ∈ F∗p that is a generator of the cyclic subgroup of quadratic residues (i.e. the set

of γ for which ∃β ∈ F∗p such that β2 = γ; this requirement is conjectured to equate

the semantic security of the cryptosystem to solving the DLP). Next, Alice chooses

an integer a (reduced modulo the order of α) as her secret key and publishes α and

β = αa.

To send a message (that’s been encoded as an integer m < p in some public fashion)

2The following exposition is Cryptosystem 6.1 from [75].
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securely to Alice, Bob chooses a secret integer b, computes

(γ, δ) = (αb,mβb)

and transmits them to Alice.

Once she has the pair (γ, δ), Alice computes

δ(γa)−1 = (mβb)(αab)−1 = mαabα−ab = m

and recovers the message.

The security of this system, as mentioned above, is conjectured to be equivalent

to the feasibility of solving the discrete logarithm problem in this group. That is,

this system is secure as long as computing a from α and β is difficult. To achieve

this, [75] states that because of rather efficient methods (subexponential time, but

not polynomial time) for computing logα β in F∗p like the index calculus algorithm,

“p needs to be at least 21880” for this system to securely hide message until the year

2020.3 As we’ll see, the DLP is currently much more secure in E(Fq) for much smaller

key sizes.

In elliptic curve cryptography, the size of our finite field q = pn for some prime p,

the details of the curve E, and a special point P are chosen in a manner such that the

order of P is a prime equal to #E/h for some small cofactor h = 1, 2, or 4. Typically

q = p (so n = 1) if p is a large odd prime, while n is chosen large in the binary case

where p = 2; see [30] for more details. As above, Alice chooses a secret a (reduced

modulo P ’s order) and publishes both P and Q = aP .

3[75] was published in 2005.
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However, implementers of elliptic curve cryptography are currently able to choose

much smaller parameters than there counterparts in other settings, as [75] explains:

In order for an elliptic curve discrete logarithm based cryptosystem to be

secure until the year 2020, it has been suggested that one should take

p ≈ 2160 [if p is odd] (or n ≈ 160 [if p = 2]). In contrast, p needs to

be at least 21880 [in the F ∗p case] to achieve the same (predicted) level of

security. The reason for this significant difference is the lack of a known

index calculus attack on elliptic curve discrete logarithms.

Because the faster DLP algorithms in F∗p are too specialized to work in E(Fq), would-

be attackers are (currently) forced to use more generalized algorithms that are much

slower, viz. exponential in the bit-length of our parameters. The following table from

[63] describes the state of affairs as of 2009:

Symmetric Key RSA & Diffie-Hellman Key Elliptic Curve Key
80 1024 160
112 2048 224
128 3072 256
192 7680 384
256 15360 521

Table 2.1: NIST recommended key sizes (measured in number of bits)

As you can see from table (2.1), elliptic curves provide a strong alternative to other

primitives for public key cryptosystems. They can make use of this speed and ease

of implementation in the following cryptosystem to securely share a session key for,

say, a communication via a faster symmetric system like AES [21]:

Cryptosystem 2.7 (Diffie-Hellman Key Exchange). Suppose Alice and Bob wish to

construct a secret key with which they can communicate privately. To start, they
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select a finite field Fq and a curve E : y2 = x3 + Ax+B mod p (again, p > 3). They

also agree on a generator P of a large subgroup 〈P 〉 of E(Fq).

On her own, Alice selects a secret random element a ∈ Fq and computes aP =

(xa, ya) and sends it to Bob over an unsecured channel. Likewise, Bob picks a secret

b and computes bP = (xb, yb) and sends it to Alice. Then, since a(bP ) = b(aP ), they

now have a shared secret key with which to communicate.

Moreover, an eavesdropper (Eve, say) would need either a or b to be able to recover

their shared key. However, all Eve can see is aP and bP , so she’d need to compute a

discrete logarithm to recover a or b from these multiples of P . If instead she hopes to

compute abP from aP and bP , she needs to solve the Diffie-Hellman problem, which

is also believed to be quite difficult.

We conclude this section with an example of using elliptic curves for a Diffie-

Hellman key exchange. Computations in this section were done with the help of the

Sage computer algebra system [74].

Example 2.8. To start, they follow [30]’s recommendations and select their finite field

to be Fp where

p = 6277101735386680763835789423207666416083908700390324961279

is a prime of bit length 192. They then pick their curve E to be y2 = x3−3x+B mod p,

where

B = 2455155546008943817740293915197451784769108058161191238065
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Then per [30] their generator P is the point (x, y), where

x = 602046282375688656758213480587526111916698976636884684818

y = 174050332293622031404857552280219410364023488927386650641

Alice selects her secret random element a ∈ Fp to be

a = 5599623221253947648338288897360753975761411887111443672469

She then computes aP = (xa, ya) where

xa = 5920503522293796254308104329764746582035708243035924352637

ya = 4916733057056312203451479844149885752636863324862895552670

and sends it to Bob (over an unsecured channel). Likewise, Bob selects the secret

random b ∈ Fp where

b = 2188359882031140101779611982450016865481691553092225796933

and sends bP = (xb, yb) to Alice, where

xb = 763794420572335512449180732023082145057259616577775194615

yb = 679692871035831936640161559745188598378636802338357105905

Their shared key is now

x = 1714835006422896682007668925679643931430048350714705849982

y = 4464950417588212505755764847617981239405229107427517838554
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Here’s the transcript of a Sage session for this computation:4

Listing 2.1: Diffie-Hellman Example

1 K = GF(6277101735386680763835789423207666416083908700390324961279)

2 B = Integer(’’.join("64210519 e59c80e7 0fa7e9ab 72243049 feb8deec c146b9b1"), 16)

3 E = EllipticCurve(K, [-3, B])

4 x = Integer(’’.join("188da80e b03090f6 7cbf20eb 43a18800 f4ff0afd 82ff1012"), 16)

5 y = Integer(’’.join("07192b95 ffc8da78 631011ed 6b24cdd5 73f977a1 1e794811"), 16)

6 P = E(x, y)

7 a = Integer(K.random_element())

8 b = Integer(K.random_element())

9 print(a * (b * P) == b * (a * P))

The hexadecimal strings for B, x, and y, along with the choice of p, are all given in

[30].

2.3 Edwards Curves

Inspired by studying the work of Euler and Gauss, Edwards found a new normal

form of elliptic curves in his 2007 paper [25]. “In notes published posthumously in

his Werke,” writes Edwards, “Gauss stated explicitly the formulas Euler had hinted

at earlier” for an explicit addition formula on the curve x2 = y2 + x2y2 = 1 which

related to the integral ∫
dx√

1− x4

4Note that the calls to K.random element() will in all likelihood yield different values for a and
b than those given above.
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Gauss was studying via the change of coordinates z = y(1 + x2). Gauss wrote the

formulas as

S =
sc′ + s′c

1− ss′cc′
C =

cc′ − ss′

1 + ss′cc′

As Edwards notes in [25], “Gauss’s choice of the letters s and c brings out the analogy

with the addition laws for sines and cosines.” Edwards generalized these laws to the

curve

x2 + y2 = a2 + a2x2y2 (2.1)

over a field K where a ∈ K is a constant such that a5 6= a. An example of a curve of

this type is given in Figure 2.4.

Figure 2.4: Edwards Curve

For the curve in equation 2.1, we have the following group law:

Theorem 2.4. (Edwards Addition Law) If a is a constant for which a5 6= a, the

formulas

X =
1

a
· xy

′ + yx′

1 + xyx′y′
Y =

1

a
· yy

′ − xx′

1− xyx′y′
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describe the addition formula for the elliptic curve

x2 + y2 = a2 + a2x2y2

This is theorem (3.1) in [25]; the reader is referred there for a proof. By simple

inspection, one can see that the neutral element for this curve is (0, a). Moreover, the

inverse −P of the point P = (x, y) is (−x, y):

(x, y) + (−x, y) =

(
1

a
· xy − yx

1− x2y2
,

1

a
· y

2 + x2

1 + x2y2

)
=

(
0,

1

a
· a

2 + a2x2y2

1 + x2y2

)
= (0, a)

using the curve equation in the intermediate step.

As Edwards points out in his proposition (5.1), every curve of the form given in

equation 2.1 is birationally equivalent to an elliptic curve in Weierstrass form. That

is, following Edwards’ advice “to abandon the notion of points of a curve and to work

instead with rational functions of a curve, one can consider two curves birationally

equivalent “if their fields of rational functions are isomorphic.” We’ll discuss this idea

in more depth when we go into the details of Bernstein and Lange’s exploration of

Edwards curves.

The addition law given in the above theorem is much simpler than the equivalent

Weierstrass one given in an earlier section. There are no special cases, no changing

the rules depending on whether P is the identity element or P = −Q. We do of course

lose the simple geometric description of Weierstrass curves5, but that is a small price

5Though as we’ll see in Chapter 5, there is another geometric interpretation of the group law
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to pay for so simple, symmetric, and elegant a group law. As we’ll see in the next

section, the Edwards curve group law’s superiority is more than just aesthetic: it

has desirable consequences for elliptic curve cryptographic schemes that use Edwards

curves as their group.

2.4 Bernstein & Lange: ECC potential

In [7], Bernstein and Lange generalize Edwards’ original curve to more cases and

turn their attention to cryptographic viability. First, though, we explain the necessary

algebraic geometry.

2.4.1 Algebraic Geometry

Strictly speaking, a curve is “a projective variety of genus one” and dimension

one with a distinguished rational point ([71]), so working more in depth with elliptic

curves requires some understanding of algebraic geometry. We give a cursory sketch

of the necessary pieces based upon [71] and [40]; readers who wish for more in-depth

coverage of these topics are referred to these texts.

First off, in many cases it makes sense to work with projective coordinates (as

mentioned above) instead of affine ones. As we saw in the case of Weierstrass curves,

sometimes this is not just for convenience; we need projective coordinates to be able

to discuss the point at infinity that arises from adding two points with the same

x-coordinate, for example.

Definition 2.9. Projective n-space over a field K, denoted by Pn(K) or just Pn, is the

here.
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set of all n+ 1 tuples in regular affine coordinates

(X0, . . . , Xn) ∈ An+1

such that at least one Xi is nonzero, together with the following equivalence relation:

(X0, . . . , Xn) ∼ (Y0, . . . , Yn)

if ∃λ ∈ K
∗

such that Xi = λYi for each i. We denote an equivalence class by

(X0 : . . . : Xn), and the individual Xi are called homogeneous coordinates.

Next up is the concept of a variety. Though [71] and [40] subscribe to stricter (or

at least more precise) definitions, for our purposes the ideas from [1] will suffice.

Definition 2.10. Given a polynomial f from Pn(K) to K, the variety V (f) is the set

of solutions of the equation f = 0. More formally,

V (f) = {(X0 : . . . : Xn) ∈ Pn | f(X0 : . . . Xn) = 0}

Next we define rational maps between varieties.

Definition 2.11. Let V1, V2 ⊂ Pn be projective varieties. A rational map from V1 to

V2 is a map of the form

ϕ : V1 → V2, ϕ = (f0 : . . . : fn)

where the fi have the property that for every point P ∈ V1 for which all of f0, . . . , fn

are defined,

ϕ(P ) = (f0(P ) : . . . : fn(P )) ∈ V2

Note that a rational map ϕ : V1 → V2 need not be a well-defined function at every
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point in V1; however, it may be possible to replace each fi with gfi for some other

rational function g to evaluate ϕ at a troublesome point P ∈ V1.

Finally, we come to birational maps.

Definition 2.12. A birational map is a rational map that admits an inverse; i.e. a

rational map ϕ : V1 → V2 for which there is another rational map ψ : V2 → V1 such

that, when defined, ϕ ◦ ψ and ψ ◦ ϕ are the identity map. If there is a birational

map from a variety V1 to a variety V2, we say that these two varieties are birationally

equivalent.

Birational equivalence gives a looser sort of connection between two varieties (or

curves, since that’s what we are focused on) than strict isomorphism. Basically, two

varieties are birationally equivalent if, except for a handful of points, they are iso-

morphic. In algebraic geometry, singularities of birational maps are typically handled

by “blowing up”6 the maps at those points to resolve them. If a point (x0, y0) is

a singularity of a map ϕ, we can set y = tx for some variable t and evaluate what

happens as y → y0. We’ll show an example of this when we discuss binary Edwards

curves in Chapter 3; for more, see a text on algebraic geometry like [40].

2.4.2 Bernstein & Lange’s Edwards Curves

As the authors mention in the start of [7], “Every elliptic curve over a non-binary

field is birationally equivalent to a curve in Edwards form over an extension of the

field, and in many cases over the original field.” Because “every Edwards curve has

a point of order 4,” to be birationally equivalent to a curve without such a point,

6Think “blowing up a balloon,” not “blowing up Wile E. Coyote.”
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such as “the NIST curves over prime fields,” may require working over an extension

field. However, “to capture a larger class of elliptic curves over the original field,”

Bernstein and Lange generalized the definition of Edwards curves to the following:

Definition 2.13. For a fixed field K of characteristic not equal to two, choose c, d ∈ K

such that cd(1− dc4) 6= 0 (so c 6= 0, d 6= 0, and dc4 6= 1). The Edwards elliptic curve

or Edwards curve defined by c and d is the (affine) curve of the form

x2 + y2 = c2(1 + dx2y2) (2.2)

This definition covers “more than 1/4 of all isomorphism classes of elliptic curves

over a finite field,” so it is a more useful definition for our purposes. Moreover, they

show that these are isomorphic to curves where c = 1, we will stay with the more

general form given in 2.2. From now on we will use this definition when we talk of

Edwards curves. In order to distinguish it from twisted Edwards curves (next section)

and binary Edwards curves (next chapter), we’ll denote the Edwards curve given by

equation 2.2 by EO,c,d.

Per theorem (2.1) in [7], EO,c,d is birationally equivalent to the Weierstrass curve

(
1

1− dc4

)
v2 = u3 + 2

(
1 + dc4

1− dc4

)
u2 + u

via the birational map

(x, y) 7→ (u, v) =

(
1 + y

1− y
,

2(1 + y)

x(1− y)

)

(since there are only finitely many points with x(1−y) = 0, this is indeed a birational
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map), with inverse

(u, v) 7→ (x, y) =

(
2u

v
,
u− 1

u+ 1

)
(again, there are only finitely many points such that (u+ 1)v = 0).

Like Edwards’s original formulation, this curve has a simple, symmetric group law.

Theorem 2.5 (Bernstein & Lange Edwards Addition Law). For two points (x1, y1)

and (x2, y2) on the Edwards curve EO,c,d given by equation 2.2, the map

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)

turns the set of rational points on EO,c,d(K) into an abelian group. The neutral

element for this group law is O = (0, c), and the inverse of the point (x, y) is (−x, y).

For a proof of this, see theorems (3.1) and (3.2) in [7].

Critics may wonder why cryptographic researchers are so interested in another

normal form for elliptic curves. At first blush, this new normal form may even seem

less useful than the familiar Weierstrass form since it requires a point of order four.

As we’ll see in the last section of this chapter, however, the benefits of Edwards curves

far outweigh the drawbacks. For now, though, we’ll briefly touch on one other type

of Edwards curves.

2.4.3 Twisted Edwards Curves

For the sake of completeness, we now define twisted Edwards curves.7

In [6], Bernstein et. al. introduced a generalization of Edwards curves dubbed

“twisted Edwards Curves.” These curves “include more curves over finite fields,”

7Since they have been the main focus of research for things like pairings over Edwards curves;
see Chapter 6.
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including “every elliptic curve in Montgomery form” (another form garnering cryp-

tographic interest). As [3] explains, their name “comes from the fact that the set of

twisted Edwards curves is invariant under quadratic twists8 while a quadratic twist

of an Edwards curve is not necessarily an Edwards curve.”

Definition 2.14. For a field K with char(K) 6= 2, and distinct nonzero elements

a, d ∈ K, the twisted Edwards curve ET,a,d(K) is the curve

ax2 + y2 = 1 + dx2y2

As you can see, if a = 1, then ET,a,d is an Edwards curve with c = 1. Furthermore,

ET,a,d is a quadratic twist of the Edwards curve EO,1,d/a

x2 + y2 = 1 + (d/a)x2y2

via the map

(x, y) 7→ (x, y) = (x/
√
a, y)

over the field extension K(
√
a). Of course, if a is a square in K then these curves are

isomorphic over K itself.

As before, this curve also has a symmetric and elegant group law.

Theorem 2.6 (Twisted Edwards Addition Law). Let (x1, y1), (x2, y2) be two points on

the twisted Edwards curve ET,a,d given by ax2 + y2 = 1 + dx2y2. Then the map

(x1, y1), (x2, y2) 7→
(

x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − ax1x2

1− dx1x2y1y2

)

turns the set of rational points on ET,a,d(K) into an abelian group. The neutral

8A quadratic twist of a curve is another curve isomorphic to it over a field extension of degree
two.
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element for this curve is (0, 1) and the inverse of (x, y) is (−x, y).

For a proof, see [6].

In the next chapter, we’ll define binary Edwards curves, a form of elliptic curve

that is similar in flavor to the above ones except that it is defined over fields of

characteristic two. First, though, we’ll explain the cryptographic appeal of Edwards

curves.

2.5 Cryptographic Safety from the Mathematical Foundation

As one can see from the operation counts given for the explicit formulas for addi-

tion and doubling on Edwards and twisted Edwards curves given in [7] and [6]9, these

new curves outperform Weierstrass curves with regards to pure speed. For abelian

groups that form the basis of cryptographic protocols, faster computations and more

efficiency are certainly very important. However, binary Edwards curves produce a

group law that in pure operation counts is a bit slower than its Weierstrass counter-

part.10 As it turns out, the Edwards family of curves is cryptographically interesting

for a different reason: their groups laws are unified and complete, which leads to

implementations that are safer against certain types of attacks from the very start;

they have greater security “baked into them” from their mathematical foundation, as

it were.

As we mentioned in a previous section, elliptic curve cryptography offers a lot of

security for relatively low cost because of the lack of subexponential algorithms for

calculating discrete logarithms. As such, attackers trying to break ECC implementa-

9Which we incorporate into e2c2; see Appendix 7.4.4.
10Slower only if we don’t take validity checks into account; if we do, per [62], then the binary

Edwards group law is still competitive.
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tions tend to focus on the technical details of a specific implementation rather than

any mathematical or algorithmic attacks which may take too long. Indeed, “the

mathematically proved security of a cryptosystem does not imply its implementation

[has] security against side-channel attacks,” as [67] explains. A side-channel attack

on a cryptosystem implementation is one that attempts to gain secret information via

measuring some aspect of the implementation’s performance that, perhaps unknown

to its designers or users, leaks such information. Examples for ECC implementations

include “those that monitor the power consumption and/or the electromagnetic em-

anations of a device,” [67] expands, “and can infer important information about the

instructions being executed or the operands being manipulated at a specific instant

of interest.” Elliptic curve cryptography with Weierstrass curves is certainly quite

vulnerable to such attacks;11 The group law as presented in theorem 2.1 has a number

of special cases one must check for; any implementation needs to check whether either

of the points it’s trying to add is ∞, if the two points have the same x-coordinate

but are different points, if they are the same but have an x-coordinate of zero (so

they lie on the same vertical line), or if the two points are equal and have a nonzero

x-coordinate.

There are a multitude of papers detailing such attacks against ECC or trying to

safeguard systems against them; see [9, 12, 14, 16, 20, 34, 45, 44, 46, 47, 61], and

[64] just to name a few. With all that energy expended on attacking elliptic curve

cryptosystems from the implementation side, it would certainly be advantageous for

a system to have a group law that protects against such attacks from the start; this

11At least in the “textbook” version we’ve presented, of course.
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is where Edwards curves come in.

As [7] proves, the group law for an Edwards curve EO,c,d is unified, since it can

also be used to double a point. That eliminates any need to check whether P = Q

when trying to add P + Q. Moreover, this same law works for the neutral element

and for inverses; this eliminates even more special cases. Finally, if d isn’t a square

in K then the addition law is complete; i.e. it works for all pairs of inputs, and

there are no special cases to check for at all. Twisted Edwards curves also share the

same cryptographic benefits—the group law works for doubling, so it is unified, and

is complete if a and d are both nonsquares in K (i.e.
√
a,
√
d 6∈ K). To reiterate, this

strengthens ECC implementations based on these types of curves against side-channel

analysis and attacks from the start; the elegance of their mathematical theory leads

to safer, more easily implemented cryptography. As we’ll see in the next chapter,

binary Edwards curves also have these desirable properties.



CHAPTER 3: BINARY EDWARDS CURVES

In this chapter we discuss binary Edwards curves. We’ll start with a discussion

of the work of [8], the first paper to lay out an “Edwards-like” elliptic curve over a

field of characteristic two. Then, we’ll look at the practical improvements provided

by [62].

Bernstein, Lange, and Farashahi’s paper [8] presented “the first complete addition

formulas for binary elliptic curves.” As such, it was a huge milestone in the field;

binary elliptic curves are very attractive from an implementation standpoint because,

after all, computers work in binary. Until this paper came along, ECC implementa-

tions over a binary finite field were inherently vulnerable to the types of side-channel

attacks mentioned in the previous chapter. Moloney, O’Mahony, and Laurent’s paper

[62] extended this work, presenting algorithms and practical measurements of things

like code complexity that matter to implementors of cryptographic primitives.

3.1 Bernstein, Lange, & Farashahi

Unfortunately for cryptographers, the Edwards curve equation x2 + y2 = c2(1 +

dx2y2) is not elliptic over fields with characteristic two; if it were, one could just

use Edwards curves (or twisted Edwards curves) over these fields and reap the same

benefits that we did over non-binary fields. In 2008, Bernstein, Lange, and Farashahi

came up with a normal form for elliptic curves over binary fields that is reminiscent



30

of Edwards curves which they dubbed binary Edwards curves.

Definition 3.1. Let K be a field with char(K) = 2, and d1, d2 ∈ K such that d1 6= 0

and d2 6= d2
1 + d1. The binary Edwards curve EB,d1,d2 is the affine curve

d1(x+ y) + d2(x2 + y2) = xy(x+ 1)(y + 1)

As you can see from the definition, EB,d1,d2 is symmetric in x and y, so if (x, y)

is a point on EB,d1,d2 then so is (y, x); this will soon yield our negation law. There

are only two points on the curve that are invariant under this law: (0, 0) and (1, 1).

As we’ll see shortly, the former will be our neutral element, while the latter will be a

point of order two.

In their theorem (2.2), the authors of [8] show that the affine form of EB,d1,d2 is

nonsingular. Shortly after, they look at singularities of the projective closure

d1(X + Y )Z3 + d2(X2 + Y 2)Z2 = XY (X + Z)(Y + Z)

of which there are two: Ω1 = (1 : 0 : 0) and Ω2 = (0 : 1 : 0). We’ll expand on their

work to show that the first of these blows up to two projective points, and use their

same appeal to symmetry to cover the second.

To study EB,d1,d2 around Ω1, consider the affine curve EΩ1 :

d1(1 + y)z3 + d2(1 + y2)z2 + y(1 + z)(y + z) = 0
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If we take the partial derivatives of this curve with respect to y and z, we get

∂EΩ1

∂y
= d1z

3 + 2d2yz
2 + (z + 1)(y + z) + (z + 1)y

= d1z
3 + 2d2yz

2 + 2yz + z2 + 2y + z

= d1z
3 + z2 + z

and

∂EΩ1

∂z
= 3(y + 1)d1z

2 + 2(y2 + 1)d2z + (z + 1)y + (y + z)y

= 3d1yz
2 + 2d2y

2z + 3d1z
2 + 2d2z + y2 + 2yz + y

= d1(1 + y)z2 + y2 + y

Evaluating these at the point (y, z) = (0, 0), we see that EΩ1 is indeed singular; we

can “blow up” this singularity by substituting y = tz into EΩ1 and dividing through

by z2, getting the following curve Et:

d1(1 + tz)z + d2(1 + t2z2) + t(1 + t)(1 + z) = 0

If we substitute in z = 0, Et becomes t2 + t+ d2 = 0 which has two distinct roots in

K. To see that these two points are nonsingular, consider the partial derivatives

∂Et
∂t

= 2d2tz
2 + d1z

2 + (z + 1)(t+ 1) + (z + 1)t

= 2d2tz
2 + d1z

2 + 2tz + 2t+ z + 1

= d1z
2 + z + 1
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and

∂Et
∂z

= 2d2t
2z + d1tz + (t+ 1)t+ (tz + 1)d1

= 2d2t
2z + 2d1tz + t2 + d1 + t

= t2 + d1 + t

Neither of these partial derivatives vanish at the point (z, t) = (0, 0), so these blowups

are nonsingular. As [8] says, they are “defined over the smallest extension of K in

which d2 + t+ t2 = 0 has roots.”

The authors provide the following birational equivalence: the map

(x, y) 7→ (u, v)

=

(
d1(d2

1 + d1 + d2)(x+ y)

xy + d1(x+ y)
, d1(d2

1 + d1 + d2)

[
x

xy + d1(x+ y)
+ d1 + 1

])

is a birational equivalence12 between EB,d1,d2 and the binary elliptic curve W 13

v2 + uv = u3 + (d2
1 + d2)u2 + d4

1(d4
1 + d2

1 + d2
2)

This map has inverse

(u, v) 7→ (x, y) =

(
d1(u+ d2

1 + d1 + d2)

u+ v + (d2
1 + d1)(d2

1 + d1 + d2)
,

d1(u+ d2
1 + d1 + d2)

v + (d2
1 + d1)(d2

1 + d1 + d2)

)

This map is undefined at the point (0, 0); if we define (0, 0) 7→ ∞, then this becomes

an isomorphism between the curves.

The addition law on a binary Edwards curve is just as symmetric as its ordinary

and twisted counterparts, if a little more complicated:

12Though we’ll use the equivalence given in [62] ourselves.
13In shorter Weierstrass form for binary curves
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Theorem 3.1 (Binary Edwards Addition Law). If (x1, y1) and (x2, y2) are two points

on the binary Edwards curve EB,d1,d2 , then the mapping (x1, y1), (x2, y2) 7→ (x3, y3)

turns the rational points on this curve into an abelian group, where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

as long as the denominators in the above fractions are nonzero.

Substituting (0, 0) for either (x1, y1) or (x2, y2) in the above law, we see that (0, 0)

is the neutral element. Moreover, (x, y) + (y, x) = (0, 0), so the inverse of a point

(x, y) is (y, x) as we said before. When defined, this addition law is unified; it can be

used for doubling as well. For a proof of this law, see section 3 of [8]; in that section,

the authors demonstrate that this addition law corresponds to the addition law on

the equivalent Weierstrass curve, so the birational map is indeed a isomorphism.

Astute readers will notice the caveat “as long as the denominators in the above

fractions are nonzero” in the previous theorem. We could try and list all the cases

where those fractions don’t exist and piece together a group law that takes these

special cases into account, like the Weierstrass group law does. However, Bernstein,

Lange, and Farashahi offer us another very helpful theorem.

Theorem 3.2 (Complete Binary Edwards Curves). Let K be a field with char(K) = 2

and d1, d2 ∈ K such that d1 6= 0 and no element t ∈ K satisfies t2+t+d2 = 0. Then the

addition law on the binary Edwards curve EB,d1,d2(K) is complete. Moreover, every

ordinary elliptic curve over the finite field F2n for n ≥ 3 is birationally equivalent over
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F2n to a complete binary Edwards curve.

See theorems (4.1) and (4.3) for proofs of these claims. Since elliptic curve cryp-

tography typically involves finite binary fields of degree n at least 160, the above

theorem tells us that we can use a binary Edwards curve and reap the benefits of a

complete and unified group law.

Despite their extremely thorough treatment in [8], Bernstein, Lange, and Farashahi

did leave some small room for improvement. In trying to find an equivalent complete

binary Edwards curve for a given Weierstrass curve, they left some nondeterminism

in finding d1. Though they could find an appropriate d1 easily enough experimentally,

they didn’t have a deterministic algorithm for it.

3.2 Moloney, O’Mahony, & Laurent

In 2010, Moloney, O’Mahony, and Laurent posted [62] online. In it, they perform

a practical, implementation-focused analysis of binary Edwards curves, and come up

with some very useful results.

First, they offer a modified birational equivalence. Recall the usual trace function

Tr : F2n → F2, α 7→
n−1∑
i=0

α2i

and define the half-trace function

H : F2n → F2, α 7→
(n− 1)/2∑
i=0

α22i

(noting that n must be odd). If given a2 and a6 for a Weierstrass curve, suppose we
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found a suitable d1; we can then calculate

d2 = d2
1 + d1 +

√
a6/d21

We will also make use of b which satisfies b2 + b = d2
1 + d2 + a2; it can be directly

calculated as

b = H(d2
1 + d2 + a2)

The authors show that (u, v) 7→ (x, y) is another birational equivalence from the

Weierstrass curve to EB,d1,d2 , where

x =
d1(bu+ v + (d2

1 + d1)(d2
1 + d1 + d2))

u2 + d1u+ d2
1(d2

1 + d1 + d2)

y =
d1((b+ 1)u+ v + (d2

1 + d1)(d2
1 + d1 + d2))

u2 + d1u+ d2
1(d2

1 + d1 + d2)

Though there is no difference between this equivalence and the one presented by

Bernstein et.al., the calculation of this equivalence involves fewer field inversions.

Field inversions tend to be very costly to calculate, so the fewer the better.14

Secondly, and perhaps more importantly, the authors present two deterministic

algorithms to find a suitable d1 given n ≥ 3, a2, and a6 determining a Weierstrass

curve over the finite field F2n . We reproduce the first algorithm here, since that’s

what is used in our software library e2c2. Precompute t = Tr(a2), r = Tr(a6),

and w = x + Tr(x) where x is the indeterminant used to define our field extension

F2n . This algorithm “terminates with guaranteed success in a finite number of steps,

except in the case t = r = 0.” Fortunately, “this case does not appear in any of the

standards (e.g. NIST) of which the authors are aware.”

14e2c2 uses this birational equivalence.
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Finally, [62] offers some valuable measurements and comparisons between imple-

mentations of Weierstrass and binary Edwards curves. They note that “implementing

ECC from the textbooks leaves us with incredibly complex code,” while implementa-

tions of binary Edwards curves have lower complexity. The symmetric, unified, and

complete group law takes a lot of the burden off of potential developers and implemen-

tors. More interestingly, despite the larger operation count for the binary Edwards

addition law, the fact Weierstrass implementations must constantly check for special

cases slows them down considerably. The cost measurements commonly mentioned

in the literature “do not take into account the cost of checking” if an operation “is

attempting to double the point at infinity,” for example. Moreover, “performance

is significantly different if implemented on a different processor.” Integrating binary

Edwards code into an existing ECC library, they found on one processor that, as

may be expected, the binary Edwards curve code was slower. However, on a different

processor that pipelined instructions, the implementation could take advantage of the

fact that the binary Edwards curve addition law involves no conditionals; “due to the

fact that we do not have to break the pipeline with checks for the point of infin-

ity,” along with some other, more esoteric technical work on the part of the authors,

“we are able to increase the performance of [binary Edwards curves] such that it is

approximately 25% faster than the equivalent Weierstrass version.”
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function MOLalg1(n, p, t, r, a6, w)
if t = 0 and r = 1 then

d1 ← 1
else

if t = 1 and r = 0 then
d1 ← 4

√
a6

else
if t = r = 1 and a6 6= 1 then

if Tr(1/a6 + 1) = 1 then
d1 ←

√
a6 + 4

√
a6

else
d1 ← 4

√
a6 + 1

end if
else

if t = 1 and a6 = 1 then
if Tr(1/w) = 1 then

d1 ← w
else

if Tr(1/(w + 1)) = 0 then
d1 ← 1/(w + 1)

else
d1 ← 1 = 1/(w + 1)

end if
end if

else
if t = r = 0 then

if Tr(1/(a6 + 1)) = 0 then
d1 ← 4

√
a6 + 1

else
i← 1
s← √a6

while Tr(a2i+1
6 ) = 0 do

s← s2

i← i+ 1
end while
d1 ← 1/(s+ 1)

end if
end if

end if
end if

end if
end if
return d1

end function

Algorithm 3.1: Moloney, O’Mahony, & Laurent’s first d1 finder



CHAPTER 4: PRACTICAL CONSIDERATIONS

Binary Edwards curves specifically, and Edwards curves in general, have generated

a lot of excitement in the cryptographic field. As such, a number variations, adap-

tations, and entirely new normal forms have been proposed in recent years. Many

of them are promising and have interesting mathematical properties; that doesn’t

mean, unfortunately, that they are “ready for primetime” as far as cryptographic

implementation is concerned. In this chapter, we show that four new normal forms

for elliptic curves, despite being mathematically interesting and involving some quite

nice theory, do not measure up to the cryptographic standard set by binary Edwards

curves.15 As we shall see, these constructions exhibit weaknesses that fall into one of

two categories: either their group law is not symmetric, so commutativity is hard to

see (though of course still present), or their atypical choice of neutral point obfuscates

the result of adding a point and the neutral element. In both cases, one has to resort

to working modulo the curve equation (or more precisely, modulo the ideal generated

by the curve equation in the appropriate polynomial ring) to see that these compu-

tations behave as expected. This means that elementary operations, the results of

which should be immediately apparent, cannot be implemented programmatically in

a simple way; even simple work must involve unnecessary checks and reductions. This

15A previous version of this chapter has been posted to the International Association for Crypto-
logic Research’s cryptology eprint archive (http://eprint.iacr.org/2013/015) and has been sub-
mitted to IACR’s CRYPTO 2013 conference (http://www.iacr.org/conferences/crypto2013/).
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extra work will at best slow down a cryptosystem, and at worst could leak enough

side-channel information to severely weaken the system.

4.1 Two Weaknesses & How Edwards Curves Avoid Them

Recall that Edwards curves, originally presented by Edwards in [25] and expanded

upon by Bernstein and Lange in [7], are elliptic curves over a field of characteristic

not equal to two of the form

x2 + y2 = c2(1 + dx2y2)

with some restrictions on c and d and have the affine group law

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

c(1 + dx1x2y1y2)
,

y1y2 − x1x2

c(1− dx1x2y1y2)

)
(4.3)

Next, twisted Edwards curves can be taken over any non-binary field, have the form

ax2 + y2 = 1 + dx2y2

and have affine group law

(x1, y1) + (x2, y2) =

(
x1y2 + y1x2

1 + dx1x2y1y2

,
y1y2 − ax1x2

1− dx1x2y1y2

)
(4.4)

Finally, binary Edwards curves take the form

d1(x+ y) + d2(x2 + y2) = (x+ x2)(y + y2)
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over a field of characteristic two, and have the (slightly more complicated but still

symmetric) group law (x1, y1) + (x2, y2) = (x3, y3) where

x3 =
d1(x1 + x2) + d2(x1 + y1)(x2 + y2) + (x1 + x2

1)(x2(y1 + y2 + 1) + y1y2)

d1 + (x1 + x2
1)(x2 + y2)

(4.5)

y3 =
d1(y1 + y2) + d2(x1 + y1)(x2 + y2) + (y1 + y2

1)(y2(x1 + x2 + 1) + x1x2)

d1 + (y1 + y2
1)(x2 + y2)

All of four of the normal forms we examine have group laws that are purported

to be unified and complete (at least on a specified subgroup). They fail to live up

to the Edwards standard in other ways, however. A few of these normal forms have

group laws that are asymmetric; that is, the equations for adding two points P and

Q involve their coordinates in such a fashion that it’s not obvious that P +Q is the

same as Q + P , even though addition of two rational points on an elliptic curve is

commutative. None of the three major Edwards curve types—the original one put

forward in [25] and [7], binary curves presented in [8], or twisted curves from [6]—

exhibit this flaw. All three of the Edwards group laws—Edwards curves in equation

4.3, twisted Edwards curves in equation 4.4, and binary Edwards curves in 4.5—are

symmetric with respect to their inputs; one can clearly see that (x1, y1)+(x2, y2) is the

same as (x2, y2)+(x1, y1) without any extra work simply because of the commutativity

of field addition and multiplication. This means that any implementation of these

laws in computer code will be much less complex than they otherwise could be if

extra work were needed to demonstrate this simple fact.

The other weakness exhibited by some of the normal forms we examine is their

atypical choice of neutral element. For some, the neutral element choice makes it
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unclear that O + P = P + O = P . For Edwards curves, the neutral element is

(0, 1). It’s clear that this can be substituted into the Edwards group law in either

position and the result will always be the other point; that is, it’s immediately clear

that (0, 1) is indeed the neutral element for this law. Similarly, twisted Edwards

curves have neutral point (0, 1), while binary Edwards curves have neutral point (0, 0).

Substituting these into either position in their group laws clearly demonstrates that

they are the correct neutral elements. For some of the variations, it is not so apparent

that the stated neutral element is correct; we again need to resort to reducing modulo

the ideal generated by the curve equation in order to see that this is the case.

4.2 Farashahi & Joye

The first curve we’ll consider is Farashahi and Joye’s Generalized Hessian curve

presented in [26]. This curve has the form

Hc,d : x3 + y3 + c = dxy

or, in projective coordinates,

Hc,d : X3 + Y 3 + cZ3 = dXY Z

over an arbitrary field. The group of rational points on this curve has neutral element

O = (1 : −1 : 0).

The authors present some unified addition formulas for Hc,d (equations (9) and

(10) in [26]). If we let P = (X1 : Y1 : Z1) and Q = (X2 : Y2 : Z2) be two points on
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Hc,d, then according to their first equation we have P +Q = (X3 : Y3 : Z3) where

X3 = cY2Z
2
1Z2 −X1X

2
2Y1

Y3 = X2Y
2

1 Y2 − cX1Z1Z
2
2

Z3 = X2
1X2Z2 − Y1Y

2
2 Z1

Using these formulas, we can calculate O + P = (X2
1 : X1Y1 : X1Z1); while at first

this may not seem to be the same as P , projective points are really equivalence

classes, so this is of course the same point as we would get dividing all three positions

by X1,16 viz. (X1 : Y1 : Z1) = P provided, of course, that X1 6= 0. Similarly,

P +O = (−X1Y1 : −Y 2
1 : −Y1Z1) ≡ (X1 : Y1 : Z1) = P .

The real trouble with this construction, however, comes from comparing P + Q

with Q+ P . Let (X4 : Y4 : Z4) = Q+ P , so

X4 = cY1Z1Z
2
2 −X2

1X2Y2

Y4 = X1Y1Y
2

2 − cX2Z
2
1Z2

Z4 = X1X
2
2Z1 − Y 2

1 Y2Z2

Since we need point addition to be commutative, this should be equal (or at least

equivalent in the projective point sense) to P + Q. Suppose that all of P,Q, P + Q,

and Q + P are finite points, so their Z coordinate is nonzero. Then we need the

following:

X3

Z3

=
cY2Z

2
1Z2 −X1X

2
2Y1

X2
1X2Z2 − Y1Y 2

2 Z1

=
cY1Z1Z

2
2 −X2

1X2Y2

X1X2
2Z1 − Y 2

1 Y2Z2

=
X4

Z4

16X1 cannot be zero, or else O+P would be a singular point on Hc,d, something which the authors
show is impossible.
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This is true if and only if X3Z4 −X4Z3 = 0; i.e. if and only if the following is zero:

−X1X2

(
cX1Y1Z1Z

3
2 − cX2Y2Z2Z

3
1 −X3

1X2Y2Z2 +X1Y1Z1X
3
2 +X1Y1Z1Y

3
2 −X2Y2Z

3
2

)
(4.6)

Suppose furthermore that X1X2 6= 0; then we need the larger factor to be zero, which

isn’t immediately apparent. Factoring and simplifying, this larger factor becomes

(X1Y1Z1)(X3
2 + Y 3

2 + cZ3
2)− (X2Y2Z2)(X3

1 + Y 3
2 + cZ3

1)

Working modulo the curve equation, we know X3 +Y 3 +cZ3 = dXY Z, which implies

our work simplifies to

(X1Y1Z1)(dX2Y2Z2)− (X2Y2Z2)(dX1Y1Z1)

which is, at last, zero.

Similarly,

Y3Z4 − Y4Z3 =

(X2
1X2Z3 − Y1Y

2
2 Z1)(cX2Z

2
1Z2 −X1Y1Y

2
2 )− (X1X

2
2Z1 − Y 2

1 Y2Z2)(cX1Z1Z
2
2 −X2Y

2
1 Y2) =

Y1Y2(cX1Y1Z1Z
3
2 − cX2Y2Z

3
1Z2 +X1X

3
2Y1Z1 −X3

1X2Y2Z2 +X1Y1Y
3

2 Z1 −X2Y
3

1 Y2Z2) =

Y1Y2

[
(X1Y1Z1)(X3

2 + Y 3
2 + cZ3

2)− (X2Y2Z2)(X3
1 + Y 3

1 + cZ3
1)
]

If Y1Y2 6= 0, then this can only be zero if we resort to the curve equation, getting

Y1Y2 [(X1Y1Z1)(dX2Y2Z2)− (X2Y2Z2)(dX1Y1Z1)]

Thus P + Q does indeed equal Q + P ; note, however, that in order to reach this
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conclusion we had to perform substitutions using Hc,d’s equation. This equality was

not apparent from the outset but rather required working modulo the ideal generated

by the curve equation in the appropriate polynomial ring. This addition is true,

and even mathematically pleasing, but not cryptographically viable. Such reductions

would complicate any computer code implementation of this group—at best leading

to slow execution speed, and at worst causing side-channel leaks that could potentially

lead to a break of the implementation. This elliptic curve is not as safe as Edwards

curves when it comes to the concerns of cryptographic implementation.

4.3 Wang, Tang, & Yang

In [78], the authors explore the curve

Md : x2y + xy2 + dxy + 1 = 0

and its homogeneous projective version

M̃d : X2Y +XY 2 + dXY Z + Z3 = 0

over a field of characteristic greater than three.17 The neutral element of the group

of rational points on this curve is (1 : −1 : 0) Though their affine group law seems

to have little trouble in the symmetry department, the projective group law is where

the real trouble lies. Per the law given in [78], the sum of two points (X1 : Y1 : Z1)

17Of course characteristic greater than three means that this curve is not a direct competitor to
binary Edwards curves as such. However, it attempts to have a unified group law like Edwards
curves do and fails for reasons similar to the other normal forms we analyze; these reasons make it
worth including in our discussion.



45

and (X2 : Y2 : Z2) is (X3 : Y3 : Z3) where

X3 = X1X2(Y1Z2 − Y2Z1)2

Y3 = Y1Y2(X1Z2 −X2Z1)2

Z3 = (X1Z2 −X2Z1)(Y1Z2 − Y2Z1)(X2Y2Z
2
1 −X1Y1Z

2
2)

is problematic with regards to the neutral element. Suppose we wished to add the

point P = (X : Y : Z) (a finite point, so Z 6= 0) and the neutral element (1 : −1 : 0);

then we’d have

X3 = X · 1(Y · 0− (−1) · Z)2

Y3 = Y · (−1)(X · 0− 1 · Z)2

Z3 = (X · 0− 1 · Z)(Y · 0− (−1) · Z)(1 · (−1) · Z2 −X · Y · 02)

which simplifies to (XZ2 : −Y Z2 : Z4) ≡ (X : −Y : Z2). Except in very special

circumstances, this is of course not equal to (X : Y : Z); moreover, it’s not apparent

how resorting to the curve equation will even help here.

There are even more problems here, though. For example, O+P = (XZ2 : −Y Z2 :

−Z4) ≡ (X : −Y : −Z2), O +O = (0 : 0 : 0), and P + P = (0 : 0 : 0), so this law is

not unified (contrary to the claims of [78]). These problems can be seen by running

the following Sage [74] script:

Listing 4.2: Arithmetic on Wang et.al.’s curve

1 var(’d x y z’)

2 R.<d, x, y, z> = GF(17^17, ’a’)[]

3 S = R.quotient([x^2 * y + x * y^2 + d * x * y * z + z^3])
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4

5 def add((x1, y1, z1), (x2, y2, z2)):

6 x3 = S(x1 * x2 * (y1 * z2 - y2 * z1)^2)

7 y3 = S(y1 * y2 * (x1 * z2 - x2 * z1)^2)

8 z3 = S((x1 * z2 - x2 * z1) *

9 (y1 * z2 - y2 * z1) *

10 (x2 * y2 * z1^2 - x1 * y1 * z2^2))

11 return (x3, y3, z3)

12

13 o, p = (1, -1, 0), (x, y, z)

14

15 for pair in cartesian_product_iterator([(o, p)] * 2):

16 print "add{0}\t=\t{1}".format(pair, add(*pair))

Hence this curve is not a suitable candidate for cryptographic implementation.

4.4 Wu, Tang, & Feng

In [80], presented at INDOCRYPT 2012, Wu, Tang, & Feng introduce the curve

St : x2y + xy2 + txy + x+ y = 0

and its projective version

X2Y +XY 2 + tXY Z +XZ2 + Y Z2 = 0

and study its properties over a binary field. In their paper, they define the projective

point O = (1 : 1 : 0) as the neutral element.

Suppose that we wish to add the finite projective point (X : Y : 1) to O using
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the formulas given in [80] to obtain the point (X3 : Y3 : Z3); moreover, suppose that

X 6= Y and both are nonzero. Then

X3 = (Y · 1 + 1 · 0) [(X · 1 + Y · 1)(Y · 0 + 1 · 1) + t · Y · 1 · (1 · 0 +X · 1)]

= X [(X + Y ) + tXY ]

= X(X + Y + tXY )

Y3 = (Y · 1 + 1 · 0) [(X · 1 + Y · 1)(X · 0 + 1 · 1) + t ·X · 1(1 · 0 + Y · 1)]

= Y [(X + Y ) + tXY ]

= Y (X + Y + tXY )

Z3 = (X · 1 + Y · 1)(X · 1 + 1 · 0)(Y · 1 + 1 · 0)

= XY (X + Y )

Therefore (X3 : Y3 : Z3) is equivalent to

(
X(X + Y + tXY )

XY (X + Y )
:
Y (X + Y + tXY )

XY (X + Y )
: 1

)
=(

X + Y + tXY

Y (X + Y )
:
X + Y + tXY

X(X + Y )
: 1

)

From the curve equation, we know that X+Y +tXY = X2Y +XY 2 = XY (X+Y ),

so (X3 : Y3 : Z3) is indeed equal to (X : Y : 1). Note, however, that this result only

occurs if we take into account the curve equation. For something as simple as adding

a point to the neutral element, having to modulo the curve equation to show that

(X : Y : 1) +O = (X : Y : 1) is unnecessarily complicated.
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4.5 Diao & Fouotsa

In [23], presented at “Journées C2: Codage et Cryptographie” in September 2012,

Diao & Fouotsa introduce the curve

Eλ : 1 + x2 + y2 + x2y2 = λxy

which is valid over a field of any characteristic. Their paper is very detailed, and

the construction involves some interesting work with Theta functions. Unfortunately,

this construction also falls short of the cryptographic applicability of Edwards curves

due to the asymmetry of the group law they present.

Suppose we wished to add two points (x1, y1) and (x2, y2); it shouldn’t matter in

which order we add them, because the group law should be commutative. By the

work in [23], we have

(x1, y1) + (x2, y2) =

(
x1 + y1x2y2

y2 + x1y1x2

,
x1x2 + y1y2

1 + x1x2y1y2

)

while

(x2, y2) + (x1, y1) =

(
x2 + x1y1y2

y1 + x1x2y2

,
x1x2 + y1y2

1 + x1x2y1y2

)
The second coordinates of these points are obviously equal to each other, but we

also need the first ones to be equal. This is the case if and only if

x1 + y1x2y2

y2 + x1y1x2

=
x2 + x1y1y2

y1 + x1x2y2

⇐⇒

(x1 + y1x2y2)(y1 + x1x2y2) = (x2 + x1y1y2)(y2 + x1x2y1) ⇐⇒

x1y1 + x2(x2
1 + y2

1 + x1y1x2y2) = x2y2 + x1y1(x2
2 + y2

2 + x1x2y1y2)
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Using the curve equation this is true if and only if

x1y1 + x2y2(1 + x2
1y

2
1 + x1x2y1y2) = x2y2 + x1y1(1 + x2

2y
2
2 + x1x2y1y2) ⇐⇒

x1y1 + x2y2 + x2
1x2y

2
1y2 + x1x

2
2y1y

2
2 = x2y2 + x1y1 + x1x

2
2y1y

2
2 + x2

1x2y
2
1y2

So it is true that (x1, y1) + (x2, y2) = (x2, y2) + (x1, y1) as we required. Note that

proving this simple fact again required resorting to working modulo the curve equa-

tion (i.e. modulo the ideal generated by the curve equation in the polynomial ring

Fn2 [x1, x2, y1, y2]).

4.6 Conclusions

Following the excitement regarding the various types of Edwards curves, normal

forms for elliptic curves have been presented and explored with an eye to improving

upon one characteristic or another of Edwards curves while maintaining the same

safety and security afforded by their complete and unified group laws. It turns out

that there is more to being as safe as Edwards curves than just being complete (on a

subgroup or over the whole group) and unified, however. As we have demonstrated,

four recently proposed normal forms exhibit weaknesses that don’t show up in Ed-

wards curves: either their group laws are not symmetric or they use an unusual

choice of neutral element.18 Both of these weaknesses mean that we must reduce

modulo their curve equations to demonstrate even elementary facts, like O + P = P

or P + Q = Q + P . This extra work will complicate any computer implementation,

leading to slower execution speed and perhaps leakage of information through side

channels. The main advantage Edwards curves have for implementation is their in-

18In fact, one normal form’s troubles extend even deeper.
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corporating safety and security from the ground up; these newer normal forms do not

measure up when it comes to suitability for cryptographic implementation.



CHAPTER 5: PAIRINGS

One area of cryptography that we have yet to touch on is pairing based cryptog-

raphy. Pairings are bilinear forms over specific points on an elliptic curve (more on

that in a moment), and were actually first used in cryptography to attack cryptosys-

tems rather than implement them—see Chapter 6 for more details. In this chapter

we’ll discuss the mathematics of pairings, beginning with the necessary background

information. From there, we’ll discuss one way to compute an important function,

dubbed a Miller function, over a binary Edwards curve. Finally, we’ll discuss some

interesting directions for future work, including a preliminary result that may help

pave the way.

5.1 Background

5.1.1 Preliminaries

To start with we will discuss bilinear maps in a somewhat general setting, though of

course we will eventually focus on those taking as input rational points on an elliptic

curve over a finite field. Let G1 be a cyclic group written additively and G2 be a

cyclic group written multiplicatively (with identity element 1) such that both have

the same prime order n. A bilinear map or pairing is a function ê : G1 × G1 → G2

that satisfies the following properties:

1. Bilinearity. For any P,Q ∈ G1 and α, β ∈ Z∗n, we have ê(αP, βQ) = ê(P,Q)αβ
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2. Non-degeneracy. There exists P,Q ∈ G1 such that ê(P,Q) 6= 1; ergo if 〈P 〉 = G1

then 〈ê(P, P )〉 = G2.

3. Efficient Computability. For all P,Q ∈ G1, the pairing ê(P,Q) can be computed

efficiently (say, in polynomial time).

In the elliptic curve settings, two popular bilinear maps are the Weil pairing and

the Tate pairing; see [18, 71, 79] for details. The Weil pairing was used in Boneh

& Franklin’s scheme in [10] that gave a solution to the problem originally posed by

Shamir in [69]. We’ll take a cue from the literature and focus on the Tate pairing19

in what follows.

5.1.2 The Tate Pairing

Suppose E is some elliptic curve over a finite field Fq with identity O.20 To compute

the pairing of two points P and Q on E, we’ll need to first understand the notion of

a divisor. We off some definitions; for a more in depth coverage, see [36, 71].

Definition 5.1. The divisor group of E, denoted by Div(E), is the free abelian

group generated by the points of E.[71] An element of Div(E) is a formal sum

D =
∑

P∈E nP (P ) where (P ) is the so called “place” associated with the point P .

The degree of a divisor is the sum deg(D) =
∑

P∈E nP , and the divisors of degree

zero form a subgroup Div0(E).

There are a special set of divisors that correspond to rational functions over E,

which we’ll now discuss. To get there, we’ll borrow a few definitions from [36]. Recall

19Also known as the “Tate-Lichtenbaum pairing” in [71] or the “Reduced Tate pairing” in [3].
20We won’t focus on exactly what form the elliptic curve is in, currently, but of course we are

focusing on binary Edwards curves.
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that E is an algebraic variety over our field Fq.21

Definition 5.2. Let E ⊆ K
n

be an algebraic variety. A polynomial function of E is a

mapping of E into K induced by a polynomial in K[x1, . . . , xn]. The coordinate ring

of E is the ring of all such mappings. We define the function field of K(E) to be the

field induced by ratios of polynomials from the coordinate ring.

Next, we define the divisor of a function.

Definition 5.3. For a rational function f from a given function field K(E) of an

algebraic variety E over a field K, factor f completely over K:

f(x) = α
∏

(x− P )eP

for some α ∈ K, expressing f as the ratio of powers of zeroes and poles ; here eP ∈ Z.

Given a point P ∈ E, write f(x) as (x − P )eP g(x), where P is neither a zero nor a

pole of g (so (x − P ) divides neither the numerator nor the denominator of g). The

order of f at P , denoted by ordP (f), is the exponent eP . The divisor of f is the

element of Div(E) given by

div(f) =
∑
P∈E

ordP (f)(P )

A divisor is principal if it is the divisor of a rational function.

We can now define the Tate pairing; we’ll borrow [3]’s definition.

Definition 5.4 (The Tate Pairing). Let

• E(Fq) be an elliptic curve over Fq with neutral element O;

21In the language of [36], it’s an algebraic set, but the difference isn’t important for our purposes.
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• n|#E be a prime divisor of the group order and k > 1 be the embedding degree

of E with respect to n, i.e. k is the smallest natural number such that n|qk− 1;

• P ∈ E(Fq)[n], the torsion group of order n (so nP = O);

• and f ∈ Fq(E) be such that divP (f) = n(P )− n(O).

For ease of notation, denote by µn the group of nth roots of unity in F∗
qk

, so µn =

F∗
qk
/F∗n

qk
. The Tate pairing

τn : E(Fq)[n]× E(Fqk)/nE(Fqk)→ µn

is given by

(P,Q) 7→ f(Q)(qk − 1)/n

As [52] says, “it is well known” that τn “is a non-degenerate bilinear pairing;” see

also [29].

5.1.3 Miller’s Algorithm

Given the definition for τn, it isn’t immediately obvious how one might go about

computing such a thing; thankfully Miller gave an efficient algorithm to compute

it in [60]. Following [3], let n = (nk−1, . . . , n0)2 be the binary representation of n

(so nk−1 = 1, and n is k bits long). Let gR,S ∈ Fq(E) be “the function arising in

the addition of two points R and S on E; i.e. gR,S is a function with div(gR,S) =

(R) + (S) − (R + S) − (O).” [3] Observe that in the Weierstrass case, this function

can be thought of as the ratio of two lines; `1 through R and S (or tangent to R if

they’re equal) and one vertical one through the third point of intersection −(R + S)
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of `1 and E. In Figure 5.5, `1 is the red diagonal line, and `2 is the green vertical one.

Figure 5.5: `1 and `2 over a Weierstrass curve

We can see the above claim that gR,S = `1/`2 since

div(`1) = (R) + (S) + (−(R + S))− 3(O)

because it has zeroes at R, S, and −(R+S); since principal divisors have degree zero

(E is a smooth curve; see [71], section II), we know that `1 must have O as a pole of

order three. Similarly,

div(`2) = (−(R + S)) + (R + S)− 2(O)

since it intersects E only at R + S, −(R + S), and O. Finally,

div

(
`1

`2

)
= (R) + (S) + (−(R + S))− 3(O)− [(R + S) + (−(R + S))− 2(O)]

= (R) + (S) + (R + S)− (O)

= div(gR,S)
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function Miller(P,Q)
f ← 1
R← P
for i← k − 2 downto 0 do

f ← f 2 · gR,R(Q)
R← 2R . Doubling Step
if ni = 1 then

f ← f · gR,P (Q)
R← R + P . Adding Step

end if
end for
f ← f (qk − 1)/n

return f
end function

Algorithm 5.2: Miller’s Algorithm for computing τn

as claimed.

This leads us to defining Miller functions which arise in Miller’s iterative algorithm

for computing τn. We compute the needed f with divP (f) = n(P ) − n(O) with

a take on the familiar “double-and-and” routine. At each iteration we have some

intermediate function fi with divisor i(P )− (iP )− (i− 1)(O); after we complete our

iterations, we have f since nP = O. This gives us Algorithm 5.2.

This algorithm is very efficient and the Weierstrass implementation has a nice

geometric intuition behind it—the “chord and tangent” rule. To compute pairings

for a given normal form of an elliptic curve, it’s enough to figure out what a Miller

function looks like for that form, since this function “forms the backbone for pairing

computation.” [22] Ergo in order to implement this for Edwards curves, we’ll need a

way to compute some Miller function gR,S with div(gR,S) = (R)+(S)−(R+S)−(O).

So far pairing computations in the Edwards arena have been done for twisted Edwards

curves, since they cover more cases of elliptic curves. In trying to find Miller functions
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for binary Edwards curves, my research followed the same route that work has for

twisted ones, beginning with the work of Das and Sarkar [22].

5.2 Following Das & Sarkar

In [22], the authors give a way of explicitly evaluating a pairing over twisted Ed-

wards curves by using the birational map to and from a more familiar normal form.

We do the same here, but for binary Edwards curves.22

Let Φ be the birational map23 from our binary Edwards curve E to the correspond-

ing Weierstrass curve

W : v2 + uv = u3 + a2u
2 + a6

Following the notation and work from [62], Φ is given by

u =
√
a6

(
(X + Y )Z

d1XY + d2
1(X + Y )Z

)
v =
√
a6

(
(b+ 1)XZ + bY Z

d1XY + d2
1(X + Y )Z

+ 1 +
1

d1

)

where b is chosen such that b2 + b = d2
1 +d2 +a2; i.e., b is the half trace of d2

1 +d2 +a2

(assuming that the degree n of our binary field F2n is odd). We also have Φ−1 : W → E

given by the projective coordinates

X = d1(bu+ v + (d− 12 + d1)(d2
1 + d1 + d2))

Y = X + d1u

z = u2 + d1u+ d2
1(d2

1 + d1 + d2)

In order to calculate the pairing of P1 and P2 on E, we need to find a point P3 and

22In what follows, we shift our notation slightly to follow that of [22] instead of [3] since it makes
our work slightly easier in the current setting.

23It’s really a group isomorphism when we extend it to the neutral elements, but nobody computes
the pairing of a neutral element with another point in practice anyway.
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a rational function h ∈ F2n(E) such that

div(h) = (P1) + (P2)− (P3)−O

To do so, we’ll map our points to Q1, Q2, Q3 ∈ W via Φ, use the function

g(u, v) =
`1(u, v)

`2(u, v)
=
v + λu+ θ

u+ u3

for lines `1 through Q1 and Q2 and `2 through Q3 and −Q3, then map back to E via

Φ−1. The values λ and θ are the slope and intercept of `1, which is given via straight

calculation. Putting it all together, we have the following

Theorem 5.1. Let E be a binary Edwards curve over F2n for n odd, and P1 = (X1 :

Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two points on E with sum P3 = (X3 : Y3 : Z3).

Then the Miller function h(x, y) such that

div(h) = (P1) + (P2)− (P3)−O

is given by N/D, where

D = (u1 + u2)(u3d1(d1XZ + d1Y Z +XY ) +
√
a6Z(X + Y ))

and the value of N depends on whether P1 and P2 are equal:
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1. If P1 6= P2, then

N = Z(X + Y )d2
1(v1u2 + u1v2 + u1

√
a6 + u2

√
a6)

+
√
a6(u1 + u2)d1(XY +XZ + Y Z)

+ Y Xd1(v1u2 + u1v2)

+
√
a6(XZu1b+ Y Zu1b+XZu2b+ Y Zu2b

+XY u1 +XZu1 +XZv1 + Y Zv1 +XY u2 +XZu2

+XZv2 + Y Zv2)

2. If P1 = P2, then

N = u1Z(X + Y )d2
1(u2

1 +
√
a6)

+ u1d1(XY u2
1 +XY

√
a6 +XZ

√
a6 + Y Z

√
a6)

+
√
a6(XZu2

1 + Y Zu2
1 +XZu1b+ Y Zu1b+XY u1 +XZu1 +XZv1 + Y Zv1)

Proof. Given Φ(X, Y, Z) = (u, v) via the definition above, our function h is g (Φ−1(u, v))

per [22]. That is, we have

h = g

(
√
a6

(
(X + Y )Z

d1XY + d2
1(X + Y )Z

)
,
√
a6

(
(b+ 1)XZ + bY Z

d1XY + d2
1(X + Y )Z

+ 1 +
1

d1

))

which is equal to

√
a6

([
1 + 1

d1
+ (b+1)XZ+bY Z

d1XY+d21(X+Y )Z

]
+ λ

[
(X+Y )Z

d1XY+d21(X+Y )Z

])
+ θ

√
a6

[
(X+Y )Z

d1XY+d21(X+Y )Z
+ (X3+Y3)Z3

d1X3Y3+d21(X3+Y3)Z3

] (5.7)

where λ and θ are determined by the line `1. Observe that if P1 6= P2, then λ is the
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slope of the line between them; if, on the other hand, P1 = P2, then it’s the slope of

the tangent line at P1. In either case, θ = v1 + λu1.

If P1 6= P2, a straightforward calculation yields

λ =
v2 + v1

u2 + u1

(5.8)

(since we’re in characteristic two, addition and subtraction are the same). If not, we

use implicit differentiation on the equation for W to find λ = dv
du

:

v2 + uv = u3 + a6u
2 + a2 =⇒ 2vλ+ uλ+ v = 3u2 + 2a6u

=⇒ λ
∣∣
(u1,v1)

=
u2

1 + v1

u1

(5.9)

remembering again that we’re in characteristic two.

Replacing λ with (5.8) and (5.9), in turn, and taking θ = v1 +λu1 yields the desired

result after some tedious calculation. Rather than show all the work, we include the

following Sage script that will do the heavy lifting for us:

Listing 5.3: Calculations for binary Edwards Pairings

1 var(’d1 d2 x y z u v u1 v1 u2 v2 u3 v3 b a6 sqrtA6’)

2

3 R.<d1, d2, x, y, z, u, v, u1, v1, u2, v2, u3, v2, b, a6, sqrtA6> = GF(2)[]

4

5 def U_V(x, y, z):

6 tmp = d1 * x * y + d1^2 * (x + y) * z

7 u = sqrtA6 * ((x + y) * z / tmp)

8 v = sqrtA6 * (((b + 1) * x * z + b * y * z) / tmp + 1 + 1 / d1)

9 return u, v
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10

11 def Lambda_Theta(case):

12 if case == 1:

13 Lambda = (v2 + v1) / (u2 + u1)

14 elif case == 2:

15 Lambda = (u1^2 + v1) / u1

16 Theta = v1 + Lambda * u1

17 return Lambda, Theta

18

19 def g(case, (u, v)):

20 Lambda, Theta = Lambda_Theta(case)

21 return (v + Lambda * u + Theta) / (u + u3)

22

23 h_1 = g(1, U_V(x, y, z))

24 N_1, D_1 = h_1.numerator(), h_1.denominator()

25

26 h_2 = g(2, U_V(x, y, z))

27 N_2, D_2 = h_2.numerator(), h_1.denominator()

28

29 print(D_1 ==

30 D_2 ==

31 (u1 + u2) * (u3 * d1 * (d1*x*z + d1*y*z + x*y) + sqrtA6 * z * (x + y)))

32

33 print(N_1 ==

34 z * (x + y) * d1^2 * (v1*u2 + u1*v2 + u1*sqrtA6 + u2*sqrtA6)

35 + sqrtA6 * (u1 + u2) * d1 * (x*y + x*z + y*z)

36 + y * x * d1 * (v1*u2 + u1*v2)
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37 + sqrtA6 * (x*z*u1*b + y*z*u1*b + x*z*u2*b + y*z*u2*b + x*y*u1 +

38 x*z*u1 + x*z*v1 + y*z*v1 + x*y*u2 + x*z*u2 + x*z*v2 + y*z*v2))

39

40 print(N_2 ==

41 u1 * z * (x + y) * d1^2 * (u1^2 + sqrtA6)

42 + u1 * d1 * (x*y*u1^2 + x*y*sqrtA6 + x*z*sqrtA6 + y*z*sqrtA6)

43 + sqrtA6 * (x*z*u1^2 + y*z*u1^2 + x*z*u1*b + y*z*u1*b + x*y*u1 +

44 x*z*u1 + x*z*v1 + y*z*v1))

5.3 Directions for Future Work

Clearly the preceding theorem, though perfectly adequate, leaves something to be

desired; a more elegant, cleaner solution for the Miller function would be nice. The

most clear way to such a solution, as evidenced by [3] and [54], is to get a better

understanding of the geometry of binary Edwards curves. To that end, we show how

to extend one of the theorems of [3] from twisted Edwards curves to binary Edwards

curves. We intend this theorem to be a stepping stone towards a full result similar

to the main idea of [3], wherein they give a new geometric formulation of the twisted

Edwards curve group law (among many other interesting results).

In [3], the authors give a new interpretation of the group law similar in its geometric

flavor to the familiar “chord-and-tangent” law of Weierstrass curves. They show that

the sum of two points on a twisted Edwards curve ET,a,d can be given by a special

conic: quoting their Remark 3, “we see that P1 + P2 is obtained as the mirror image

with respect to the y-axis of the eighth intersection point of ET,a,d and the conic



63

passing through Ω1,Ω2,O′, P1, and P2,” where Ω1 and Ω2 are the two points at

infinity (1 : 0 : 0) and (0 : 1 : 0), respectively, and O′ is the point (0,−1) of order 2.

We offer an analogous result to their main theorem (1) that paves the way for their

geometric interpretation in the hopes that it will inspire similar results for binary

Edwards curves.

Let O′ = (1, 1) = (1 : 1 : 1); recall that this point has order 2. Furthermore, let

ϕ(X, Y, Z) = cX2X2 + cY 2Y 2 + cZ2Z2 + cXYXY + cXZXZ + cY ZY Z ∈ K[X, Y, Z]

be a homogeneous polynomial of degree 2 and C : ϕ(X, Y, Z) = 0 be the associated

plane (possibly degenerate) conic. Like in [3], since the points Ω1,Ω2, and O′ do not

lie on a line, a conic C passing through these points cannot be a double line and ϕ

represents C uniquely up to multiplication by a scalar. By evaluating ϕ at Ω1,Ω2,

and O′, we get the following:

Ω1 : ϕ(1 : 0 : 0) = cX2

Ω2 : ϕ(0 : 1 : 0) = cY 2

O′ : ϕ(1, 0, 0) = cX2 + cY 2 + cZ2 + cXY + cXZ + cY Z

Hence cX2 = cY 2 = 0 and cZ2 = cXY + cXZ + cY Z . Therefore C must have the form:

cXY (XY + Z2) + cXZ(XZ + Z2) + cY Z(Y Z + Z2) (5.10)

Next we have the following analogous result to Theorem 1 of [3]:

Theorem 5.2. Let EB,d1,d2 be a binary Edwards curve over K and let P1 = (X1 :

Y1 : Z1) and P2 = (X2 : Y2 : Z2) be two affine, not necessarily distinct, points on

EB,d1,d2(K). Let C be the conic passing through Ω1,Ω2,O′, P1, and P2 which must
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have the form (5.10). If some of the above points are equal, we consider C and

EB,d1,d2 to intersect with at least that multiplicity at the corresponding point. Then

the coefficients in (5.10) of the equation ϕ of the conic C are uniquely determined

(up to scalars) as follows:

1. If P1 6= P2, P1 6= O′, and P2 6= O′, then

cXY = Z1Z2 [X1(Y2 + Z2) + Y1(X2 + Z2) + Z1(X2 + Y2)]

cXZ = Y1Z2(X1Y2 +X1Z2 + Z1Z2) + Y2Z1(Y1X1 + Z1X1 + Z1Z2)

cY Z = X1Z2(Y1X2 + Y1Z2 + Z1Z1) +X2Z1(X1Y2 + Z1Y2 + Z1Z2)

2. If P1 6= P2 = O′, then cXY = Z1, cXZ = Z1, and cY Z = X1

3. If P1 = P2, then

cXY = X2
1Y1 +X1Y

2
1 + d1X1Z

2
1 +X2

1Z1 + d1Y1Z
2
1 + Y 2

1 Z1 +X1Z
2
1 + Y1Z

2
1

cXZ = X2
1Y1 + d1Y

2
1 Z1 +X1Y

2
1 + d1X1Z

2
1 +X2

1Z1

+ d1Y1Z
2
1 +X1Y1Z1 + d1Z

3
1 + Y1Z

2
1

cY Z = d1X
2
1Z1 + d2X

2
1Z1 + d2Y

2
1 Z1 +X2

1Z1 + d1Z
3
1 +X1Z

2
1

Proof. We tackle each case separately.

1. If the points P1 and P2 are distinct, evaluating equation 5.10 at the two points

yields two linear equations in the coefficients:

cXY (X1Y1 + Z2
1) + cXZ(X1Z1 + Z2

1) + cY Z(Y1Z1 + Z2
1) = 0

cXY (X2Y2 + Z2
2) + cXZ(X2Z2 + Z2

2) + cY Z(Y2Z2 + Z2
2) = 0
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Since we’re working in projective coordinates, two equations is enough to uniquely

determine the three unknowns, and we get the following solutions:

cXY =

∣∣∣∣∣∣∣∣
X1Z1 + Z2

1 Y1Z1 + Z2
1

X2Z2 + Z2
2 Y2Z2 + Z2

2

∣∣∣∣∣∣∣∣
= (X1Z1 + Z2

1)(Y2Z2 + Z2
2) + (X2Z2 + Z2

2)(Y1Z1 + Z2
1)

= Z1Z2 [X1(Y2 + Z2) + Y1(X2 + Z2) + Z1(X2 + Y2)]

cXZ =

∣∣∣∣∣∣∣∣
X1Y1 + Z2

1 Y1Z1 + Z2
1

X2Y2 + Z2
2 Y2Z2 + Z2

2

∣∣∣∣∣∣∣∣
= (X1Y1 + Z2

1)(Y2Z2 + Z2
2) + (X2Y2 + Z2

2)(Y1Z1 + Z2
1)

= X2
1Y1 + d1Y

2
1 Z1 +X1Y

2
1 + d1X1Z

2
1 +X2

1Z1

+ d1Y1Z
2
1 +X1Y1Z1 + d1Z

3
1 + Y1Z

2
1

cY Z =

∣∣∣∣∣∣∣∣
X1Y1 + Z2

1 X1Z1 + Z2
1

X2Y2 + Z2
2 X2Z2 + Z2

2

∣∣∣∣∣∣∣∣
= (X1Y1 + Z2

1)(X2Z2 + Z2
2) + (X2Y2 + Z2

2)(X1Z1 + Z2
1)

= d1X
2
1Z1 + d2X

2
1Z1 + d2Y

2
1 Z1 +X2

1Z1 + d1Z
3
1 +X1Z

2
1

as claimed.

2. Note that C is tangent to the curve EB,d1,d2 at the point O′ if and only if

0 = (∂ϕ/∂x) (1 : 1 : 1) = cXY + cXZ , i.e. iff cXY = cXZ . Then

ϕ = cXY (XY + Z2 +XZ + Z2) + cY Z(Y Z + Z2) = (Y + Z)(cXYX + cY ZZ)

Since P1 6= O′, it doesn’t lie on the line Y + Z = 0, so cXYX1 + cY ZZ1 = 0.
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Then together cXY = cXZ and cXYX1 = cY ZZ1 imply the result.

3. In the final case, let Z = Z1 = 1 in our equations. The tangent vectors at

P1 = (X1 : Y1 : 1) = (X1, Y1) of EB,d1,d2 and C are∂E/∂Y

∂E/∂X

 =

d1 +X1 +X2
1

d1 + Y1 + Y 2
1


∂C/∂Y

∂C/∂X


cXYX1 + cY Z

cXY Y1 + cXZ


(note that we can drop the usual negative signs because char(K) = 2). These

vectors are collinear if and only if

0 =

∣∣∣∣∣∣∣∣
d1 +X1 +X2

1 cXYX + cY Z

d1 + Y1 + Y 2
1 cXY Y + cXZ

∣∣∣∣∣∣∣∣
= cXY (d1Y1 +X1Y1 +X2

1Y1 + d1X1 +X1Y1 +X1Y
2

1 )

+ cXZ(d1 +X1 +X2
1 ) + cY Z(d1 + Y1 + Y 2

1 )

= cXY (d2(X2
1 + Y 2

1 ) +X2
1Y

2
1 ) + cXZ(d1 +X1 +X2

1 ) + cY Z(d1 + Y1 + Y 2
1 )

using the curve equation to simplify. We also know that

0 = ϕ(X1, Y1, 1) = cXY (X1Y1 + 1) + cXZ(X1 + 1) + cY Z(Y1 + 1)

These two equations can be solved in the same manner as our work in the first
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case, yielding

cXY =

∣∣∣∣∣∣∣∣
d1 +X1 +X2

1 d1 + Y1 + Y 2
1

X1 + 1 Y1 + 1

∣∣∣∣∣∣∣∣
= d1(X1 + Y1) +X1 + Y1 +X2

1 + Y 2
1 +X2

1Y1 +X1Y
2

1

= (X1 + Y1)(X1Y1 +X1 + Y1 + d1 + 1)

for the first coefficient,

cXZ =

∣∣∣∣∣∣∣∣
d2(X2

1 + Y 2
1 ) +X2

1Y
2

1 d1 + Y1 + Y 2
1

X1Y1 + 1 Y1 + 1

∣∣∣∣∣∣∣∣
= d1(X1Y1 + 1) + d2(X2

1Y1 + Y 3
1 +X2

1 + Y 2
1 ) +X2

1

+ Y 2
1 +X1Y

2
1 +X1Y

3
1 + Y1 + Y 2

1 +X2
1Y

3
1

= X2
1Y1 + d1Y

2
1 +X1Y

2
1 + d1X1 +X2

1 + d1Y1 +X1Y1 + d1 + Y

for the second, and

cY Z =

∣∣∣∣∣∣∣∣
d2(X2

1 + Y 2
1 ) +X2

1Y
2

1 d1 +X1 +X2
1

X1Y1 + 1 X1 + 1

∣∣∣∣∣∣∣∣
= d1(X1Y1 + 1) + d2(X3

1 +X2
1 +X1Y

2
1 + Y 2

1 ) +X3
1 4Y 2

1

+X2
1Y

2
1 +X2

1Y1 +X3
1Y1 +X1 +X2

1

= d1X
2
1 + d2X

2
1 + d2Y

2
1 +X2

1 +X1 + d1

for the third, using the curve equation to simplify. Homogenizing yields the

stated result. Note that the same formulas work if P1 = O′, since then we still

have ϕ = 0.
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Unfortunately, it’s not entirely clear where to go from here; the geometry of twisted

Edwards curves is different from the geometry of binary Edwards curves. Moreover,

though working in characteristic two has some benefits to arithmetic, more often

than not it seems to complicate calculations. Therefore, theorem 5.2 is offered as a

possible starting point for future research instead of an end in and of itself. If we

were to continue to mirror the progression of results for pairings on twisted Edwards

curves, the next step would be to expand on a result similar to [3]’s to get one similar

to [54]’s. Again, because the geometry of binary Edwards curves differs so much from

that of twisted means the results of this paper don’t directly apply, but they do offer

an intriguing possibility for another direction. Such a result would involve not only

reinterpreting the geometry of binary Edwards curves, but would also involve working

in extended coordinates (four instead of the usual three for projective space).



CHAPTER 6: APPLICATIONS

In this chapter we discuss two applications of elliptic curve cryptography, both of

which benefit from the added security granted by the binary Edwards group law.

Moreover, they may be more attractive to implementors because they use binary

Edwards curves rather than some other type; computers do work in binary, after all,

so binary Edwards curves can lend themselves to efficient implementation in software

or even hardware (e.g. [15], [50], [51]).

6.1 Password Based Key Derivation

6.1.1 Background

Our first application is a password based key derivation function, or PBKDF.

Password safety is paramount in today’s interconnected world; users log in to multiple

workstations, websites, and services for communication, work, banking—the list goes

on. Despite its importance, password safety still a tricky technical subject, one that

even experts get wrong sometimes; for example, according to [33], the IEEE exposed

plaintext passwords in a public FTP directory “for over a month.” One way to

securely store passwords is, somewhat paradoxically, to not store them at all. Instead,

a system can use a PBKDF to store different information derived from a user’s login

credentials to authenticate them.

To quote [65],
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Password-based key derivation functions are used for two primary pur-

poses: First, to hash passwords so that an attacker who gains access to

a password file does not immediately possess the passwords contained

therein; and second, to generate cryptographic keys to be used for en-

crypting and/or authenticating data. . . . Since all modern key derivation

functions are constructed from hashes against which no non-trivial pre-

image attacks are known, attacking the key derivation function directly is

infeasible; consequently, the best attack in either case is to iterate through

likely passwords and apply the key derivation function to each in turn.

Unfortunately, this form of “brute force” attack is quite liable to suc-

ceed. Users often select passwords which have far less entropy than is

typically required of cryptographic keys; a recent study found that even

for web sites such as paypal.com, where—since accounts are often linked

to credit cards and bank accounts—one would expect users to make an

effort to use strong passwords, the average password has an estimated

entropy of 42.02 bits, while only a very small fraction had more than 64

bits of entropy.24 This is where a properly designed PBKDF comes in.

As [77] says, “the main idea of a PBKDF is to slow dictionary or brute force attacks

on the passwords by increasing the time needed to test each password.” Ideally, it

should behave like a random mapping from passwords to possible data, which we’ll

called password hashes, though this term is somewhat problematic.25 To slightly

24The cited study is [27].
25Using “hashes” may lead one to think that using a general-purpose hash function like SHA-256

as a PBKDF is a good idea; as we’ll see, this is not the case.
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borrow some of [57]’s exposition, “a password, associated with each user (entity), is

typically a string of 6 to 10 or more characters the user is capable of committing to

memory.” In order to authenticate herself to the system in question, “the user enters

a (userid, password) pair” to the system, which then uses this information in some

way to compute the hash. Once this computation is complete, the system checks the

hash against the credentials it has stored for the supplied userid; if the hash matches

the one on file, the user is granted access to the system.

Clearly a string of 6 to 10 memorable characters may not have enough entropy

to qualify as cryptographically secure; therefore, a PBKDF should be designed to

make the hash output look as random as possible. Randomness alone isn’t enough,

however; as [65] mentions above, cryptographic security can be compromised if the

PBKDF is too computationally simple to perform; consider the following example.

Example 6.1. Suppose an eavesdropper Eve manages to get her hands on the table of

[userid, hash(password)]

pairs for Alice’s system. If Eve’s desire to break into Alice’s system isn’t particularly

time sensitive, she can simply grab a large file of likely passwords and hash them

all until she finds a match in the second column of the table. If Alice chose to use

a general purpose message hashing algorithm for her PBKDF like SHA-3 ([5]), Eve

may have the computational power to break into Alice’s system soon enough to cause

severe damage.

One way to combat this “dictionary attack” is to widen the search space by salting

the hashes; for each userid, a system may instead store hash(password ∗ salt) for
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some operation ∗, typically string concatenation or bit exclusive-or, where the salt is

a secret value known only to the system. In this setup, a potential attacker would

have to brute-force over all possible salts as well as all possible passwords, greatly

increasing the work involved. Even with salting, however, the speed of hash can

still be an issue given today’s technology. There are a number of recent publications

regarding cracking password hashes by brute force, many of which use the advanced

parallel computing power granted by today’s GPUs—see [2, 32, 55], and [83].

To make matters worse, the inevitable increase in computing power we experience

as technology changes means that attackers will be able to attack any fixed PBKDF

more and more easily as time goes by. This means that a successful PBKDF should

be tunable to meet this rising power available to would-be password crackers; as

[66] puts it, we are looking for a future-adaptable password scheme to “keep up with

hardware speeds.” A secure PBKDF’s computational cost “must increase as hardware

improves.”

One other successful PBKDF is [66]’s bcrypt. However, it isn’t the final answer

to the PBKDF problem; bcrypt is already under some scrutiny, and some alterna-

tives have been proposed, the most notable of which is probably [65]’s scrypt. Like

scrypt, our proposed PBKDF will incorporate a pseudorandom number generator.

It will also make use of binary Edwards curves; although they can be implemented

rather efficiently, the inherent complexity of binary Edwards curves compared to the

computer primitives of which typical hash functions are built adds to the security of

our PBKDF.
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6.1.2 Proposed PBKDF

To further research into and development of secure PBKDFs, I propose we take a

cue from NIST: look at a candidate scheme that is very different from what currently

exists, so they won’t (necessarily) be vulnerable to the same attacks, like NIST did

with the recent SHA-3 competition. Explaining some of the reasons for declaring

Keccak the winner, they wrote

“Keccak has the added advantage of not being vulnerable in the same

ways SHA-2 might be,”says NIST computer security expert Tim Polk.

“An attack that could work on SHA-2 most likely would not work on

Keccak because the two algorithms are designed so differently.” [5]

In fact, we’ll take even more from NIST’s recent competition and present a variation

on the Elliptic Curve Only Hash (ECOH, [13]) which was submitted to the SHA-3

competition in 2008. This variation makes some changes to the original algorithm to

combat the main weakness that lost it the competition, viz. the second pre-image

attack found in [37, 38]. At the same time, these changes ensure that while several

different instances of our PBKDF can be parallelized, the algorithm itself is inherently

serial and thus resists any further attempts at parallelization.

Specifically, the points Pi and the values X1 and X2 presented in this section rely

on the state of the algorithm at every step. That is, each Pi for i > 0 relies upon

the previous Pi−1, and both X1 and X2 rely on the all of the Pi. We also incorporate

a pseudorandom number generator, not unlike other PBKDFs like scrypt [65]. As

mentioned, these changes effectively ameliorate the second pre-image attack from [38];
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they also have force the different stages of the hash to be computed serially, removing

any chance of parallelization. This makes our PBKDF more resilient in the face of

processors that are no longer scaling up to greater speeds but out to more and more

cores; for an offline attack, only multiple instances of our PBKDF can be run on a

parallel machine or GPU. The PBKDF itself can’t be sped up.

Finally, we make some changes to the parameters involved. Rather than sticking

to an Elliptic curve in Weierstrass form, we make use of a binary Edwards curve;

this makes the PBKDF more resistant to side-channel analysis. We also remove the

nondeterministic part of the Search step of ECOH, instead using the ideas from [41]

to deterministically map a field element to a point on our curve. In doing so, we

incorporate the birational map from [62].

Our PBKDF, called ECOH’s Echo, takes in a salt s and password p and makes use

of the following parameters:

• a pseudorandom number generator PRNG that can be seeded (primed with an

initial state)

• a block size blen, number of blocks/rounds numblocks, length ilen for integer

bit representations, and an output length

• a finite field F2n , an algebraic extension of F2 of degree n

• a2 and a6, two elements of F2n determining an elliptic curve in Weierstrass form

• E, the birationally equivalent binary Edwards curve

• G, a base point on E
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Note that our parameters are not set in stone, but rather can be scaled up to larger

sizes as potential attacking computing power increases. We can increase our degree

n as well as the other parameters as the need arises.

We also make use of a number of maps:

• π, a deterministic map from K to E (see [41] and [62]) that takes a fixed number

of steps

• A mapping ω : E × {X, Y } → K, given by

(Q,Z) 7→
⌊
Q+

⌊
Q.z
2

⌋
G
⌋
.z

2
mod 2blen

where z = x if Z = X and y if Z = Y (i.e., Z picks out the coordinate). This is

an extension of the output mapping from the original ECOH submission ([13])

to work with either of a point’s coordinates.

• A mapping ϕ : E → K given by ϕ(Q) = ω(Q,X) (not strictly needed, of course,

this is just a specialization of ω)

• A mapping ψ : E → F2 given by ψ(Q) = ω(Q, Y )&1, the least significant bit of

ω(Q, Y )

Before we move on, let’s flesh out the details of the map π. Take [41]’s fa2,a6 : F2n →

W (F2n) where W is an elliptic curve in the Weierstrass form

v2 + uv = u3 + a2u
2 + a6
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defined by z 7→ (u, v) such that

α = a2 + z + z2

u = (α4 + α3 + a6)
1/3 + α

v = zu+ α2

and combine it with [62]’s birational equivalence to create π via z 7→ (u, v) 7→ (x, y).26

This gives us a direct mapping π : F2n → E(F2n) that inherits all of the cryptograph-

ically desirable properties of fa2,a6 since the birational equivalence has no exceptional

points save ∞. Moreover, it’s more secure than the Search step of ECOH, since this

was a nondeterministic map that would take an indeterminate amount of steps. As

always, we strive to minimize the leakage of extra information through side-channels.

We’ll first give a more näıve version of ECOH’s Echo.

6.1.2.1 Näıve Version

Execution proceeds as follows: first, our PRNG is seeded with the exclusive-or

(XOR) of the password and salt.27 Each block Oi is generated in the following way:

given an integer i, append the ilen-bit representation of i to a blen− ilen long stream

of pseudorandom bits from PRNG. Second, we initialize a point P0 from the initial

block O0 by setting it to be π(O0). We then iterate for numblocks−1 rounds, setting

26We use this one instead of the original given in [8] due to its having only one exceptional point
(∞ which won’t show up here) and being more efficient in implementation.

27Strictly speaking, there is an encoding involved in making an integer value out of the password.
In our reference implementation below, we make the usual choice of treating the password as a string
of ASCII-encoded bytes and build an integer out of that.
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Pi to be π(Oi ⊕ i⊕ ϕ(Pi−1)). Next we update numblocks, saving

numblocks⊕
(∑numblocks−1

0
2iψ(Pi)

)
in its place. After that, X1 and X2 are defined to be π(numblocks) and

π
(
numblocks⊕

[⊕numblocks−1

0
Oi

])
respectively. Finally, we define Q to be the sum

X1 +X2 +
∑numblocks−1

0
Pi

and output ϕ(Q).

6.1.2.2 Memory Efficient Version

Though it’s simpler to follow, the above version of our PBKDF is not as effi-

cient with regards to memory as it could be. We needn’t store all the intermediate

points Pi, for instance, if we instead introduce two temporary variables Y1 and Y2

that will be used to build X1 and X2 later. After seeding PRNG as before, let

(O, Y1, Y2) = (O0, numblocks, numblocks) and set Q = P = π(O). Then we iterate

for i ∈ {1, . . . , numblocks− 1}, setting

O = Oi

P = π(O ⊕ i⊕ ϕ(P ))

Y1 = Y1 + 2iψ(P )

Y2 = Y2 ⊕O

Q = Q+ P
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function ECOH’s Echo(p, s)
PRNG.salt(s⊕ p)
P0 ← π(O0)
for i← 1 to numblocks− 1 do

Pi ← π (Oi ⊕ i⊕ ϕ(Pi−1))
end for
numblocks← numblocks⊕

(∑numblocks−1
0 2iψ(Pi)

)
X1 ← π(numblocks)

X2 ← π
(
numblocks⊕

[⊕numblocks−1
0 Oi

])
Q← X1 +X2 +

∑numblocks−1
0 Pi

return ϕ(Q)
end function

Algorithm 6.3: ECOH’s Echo, Näıve version

at each step of the loop. Finally, let X1 = π(Y1), X2 = π(Y1 ⊕ Y2), and Q =

Q+X1 +X2. As before, we output ϕ(Q).

6.1.3 Algorithm Pseudocode and Diagrams

We give a description of ECOH’s Echo in algorithms (6.3) and (6.4). Diagrams of

the flow of the rounds in the more efficient description are given in Figures (6.6) and

(6.7).

O0 P0 Q += P0

Y2 ^= O0

helps P1

Y1 ^=ψ(P0) • 20

π

Figure 6.6: First round of ECOH’s Echo
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function ECOH’s Echo(p, s)
PRNG.salt(s⊕ p)
O ← O0

Y1 ← numblocks
Y2 ← numblocks
P ← π(O)
Q← P
for i← 1 to numblocks− 1 do

O ← Oi

P ← π (O ⊕ i⊕ ϕ(P ))
Y1 ← Y1 ⊕ 2iψ(P )
Y2 ← Y2 ⊕O
Q← Q+ P

end for
X1 ← π(Y1)
X2 ← π (Y1 ⊕ Y2)
Q← Q+X1 +X2

return ϕ(Q)
end function

Algorithm 6.4: ECOH’s Echo, Memory-Efficient Version

6.1.4 ECOH’s Echo Reference Implementation

Finally, we provide a reference implementation of ECOH’s Echo using our software

library e2c2. For more on e2c2, see Appendix 7.4.4.

Listing 6.4: ECOH’s Echo

1 /**

2 * @file ecoh_echo.cc

3 * @brief Elliptic Curve only key derivation function

4 * @author Graham Enos

5 *

6 */

7 #include <algorithm>

8 #include <iostream>

9 #include <sstream>



80

Oi Pi Q += Pi

Y2 ^= Oi

helps Pi + 1

Y1 ^=ψ(Pi) • 2i

π
Oi ^ i ^ φ(Pi-1)

Pi - 1

Figure 6.7: Subsequent rounds of ECOH’s Echo

10 #include "e2c2.h"

11

12 using namespace std;

13 using namespace NTL;

14 using namespace e2c2;

15

16 //------- Constants --------//

17 /// Number of blocks

18 const size_t NUM_BLOCKS = 32;

19 /// Length of each block

20 const size_t B_LEN = 192;

21 /// Bit length of integer representation

22 const size_t I_LEN = 64;

23

24

25 //------- Utilities -------//
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26 /// Helps omega() decide which coordinate to use

27 enum class Coord { X, Y };

28

29 string ZZtoHex(const ZZ& z) {

30 /// The hex representation of z

31 static const size_t out_len = (B_LEN + I_LEN) >> 4;

32 static const string digits = "0123456789abcdef";

33 stringstream ss;

34 if (z <= 0) {

35 ss << "0x";

36 while (ss.str().length() < out_len + 2) {

37 ss << "0";

38 }

39 return ss.str();

40 } else {

41 auto zz = z;

42 while (zz > 0) {

43 ss << digits.at(to_long(zz & 0xf));

44 zz >>= 4;

45 }

46 while (ss.str().length() < out_len) {

47 ss << "0";

48 }

49 ss << "x0";

50 auto s = ss.str();

51 reverse(s.begin(), s.end());

52 return s;
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53 }

54 }

55

56 ZZ StoZZ(const string& s) {

57 /// Treat a string of characters as a bunch of bytes (ASCII), then use

58 /// those bytes to build a ZZ

59 size_t i = 0;

60 auto z = ZZ::zero();

61 for (auto c : s) {

62 ++i;

63 z <<= 8;

64 z |= to_ZZ(c);

65 }

66 /// Extra NOPS (to protect against side-channel/timing attacks)

67 while (i < (B_LEN >> 3)) {

68 ++i;

69 }

70 return z;

71 }

72

73 ZZ GF2EtoZZ(const GF2E& x) {

74 /// Use the bit representation of x to create a ZZ

75 GF2X::HexOutput = false;

76 auto z = ZZ::zero();

77 stringstream ss;

78 ss << x;

79 auto s = ss.str();
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80 /// Only leave behind 0s and 1s (remove spaces and brackets)

81 for (auto c : string("[ ]")) {

82 auto i = remove(s.begin(), s.end(), c);

83 while (i != s.end()) {

84 s.erase(i);

85 i = remove(s.begin(), s.end(), c);

86 }

87 }

88 /// Set bits where there are 1s

89 for (auto c : s) {

90 z <<= 1;

91 z |= to_ZZ(c == ’1’) & 0x1 ;

92 }

93 return z;

94 }

95

96 GF2E ZZtoGF2E(const ZZ& z) {

97 /// Use the bit representation of z to create a GF2E

98 auto x = GF2E::zero();

99 stringstream ss;

100 ss << "[";

101 for (auto i = 0; i < NumBits(z); ++i) {

102 ss << bit(z, i) << " ";

103 }

104 ss << "]";

105 ss >> x;

106 return x;
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107 }

108

109

110 //------- ECOH’s Echo Helpers -------//

111 ZZ block(const size_t i) {

112 /// The ith block O_i is (random)^{B_LEN - I_LEN} || {I_LEN bit repr of i},

113 /// similar to the original ECOH submission

114 auto O = (RandomBits_ZZ(B_LEN - I_LEN)) << I_LEN;

115 O |= to_ZZ(i) & ((to_ZZ(1) << I_LEN) - 1);

116 return O;

117 }

118

119 ZZ omega(const BinaryAff& Q, const BinaryAff& G, const Coord z) {

120 /// Output, based on coordinate, of bit-length B_LEN

121 if (z == Coord::X) {

122 return GF2EtoZZ((Q + (GF2EtoZZ(Q.x) / 2) * G).x) / 2 %

123 power2_ZZ(B_LEN);

124 } else { /// z == Coord::Y

125 return GF2EtoZZ((Q + (GF2EtoZZ(Q.y) / 2) * G).y) / 2 %

126 power2_ZZ(B_LEN);

127 }

128 }

129

130 BinaryAff pi(const GF2E& z, const GF2E& a2, const GF2E& a6,

131 const BinaryCurve& E) {

132 /// Uses Icart’s f from "How to Hash into Elliptic Curves" and Moloney,

133 /// O’Mahony, & Laurent’s birational map from "Efficient Implementation of
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134 /// Elliptic Curve Point Operations Using Binary Edwards Curves"

135 const auto alpha = a2 + z + sqr(z);

136 const auto u = power(power(alpha, 4) + power(alpha, 3) + a6,

137 (2 * GF2E::cardinality() - 1) / 3) + alpha;

138 const auto v = z * u + sqr(alpha);

139 return birMapAff(u, v, a2, E);

140 }

141

142

143 //------- ECOH’s Echo -------//

144 ZZ ecoh_echo(const ZZ& password, const ZZ& salt, const GF2E& a2,

145 const GF2E& a6, const BinaryCurve& E, const BinaryAff& G) {

146 /// Our PBKDF

147

148 /// Helpers defined as lambda expressions

149 auto phi = [&G](const BinaryAff& P){ return omega(P, G, Coord::X); };

150 auto psi = [&G](const BinaryAff& P){ return omega(P, G, Coord::Y) & 1; };

151

152 /// Memory efficient version

153 SetSeed(salt ^ password);

154 auto O = block(0);

155 auto X_1_tmp = to_ZZ(NUM_BLOCKS);

156 auto X_2_tmp = to_ZZ(NUM_BLOCKS);

157 auto P = pi(ZZtoGF2E(O), a2, a6, E);

158 auto Q = P;

159 for (size_t i = 1; i < NUM_BLOCKS; ++i) {

160 O = block(i);
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161 P = pi(ZZtoGF2E(O ^ i ^ phi(P)), a2, a6, E);

162 X_1_tmp ^= (psi(P) << i);

163 X_2_tmp ^= O;

164 Q += P;

165 }

166 auto X1 = pi(ZZtoGF2E(X_1_tmp), a2, a6, E);

167 auto X2 = pi(ZZtoGF2E(X_1_tmp ^ X_2_tmp), a2, a6, E);

168 Q += X1 + X2;

169 return phi(Q);

170 }

171

172

173 //------- An Example -------//

174 int main(int argc, char *argv[]) {

175 //------- Error Checking -------//

176 if (argc != 3) {

177 cerr << "usage: " << argv[0] << " salt password" << endl;

178 return EXIT_FAILURE;

179 }

180

181 //------- Setup -------//

182 /// Our irred. polynomial is x^163 + x^7 + x^6 + x^3 + 1, per FIPS 186-3

183 GF2E::init(GF2X(163, 1) + GF2X(7, 1) + GF2X(6, 1) + GF2X(3, 1) +

184 GF2X(0, 1));

185 GF2X::HexOutput = true; /// more compact output

186 auto a2 = to_GF2E(1), a6 = GF2E::zero();

187 /// a6 = b in Fips 186-3 language
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188 set_parameter(a6, "20a601907b8c953ca1481eb10512f78744a3205fd", true);

189 auto E = from_weierstrass(163,

190 to_ZZ("5846006549323611672814742442876390689256843201587"),

191 a2,

192 a6);

193 auto u = GF2E::zero(), v = GF2E::zero();

194 set_parameter(u, "3f0eba16286a2d57ea0991168d4994637e8343e36", true);

195 set_parameter(v, "0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1", true);

196 auto x = GF2E::zero(), y = GF2E::zero();

197 BinaryAff G = birMapAff(u, v, a2, E);

198

199 //------- Run ECOH’s ECHO -------//

200 auto salt = to_ZZ(argv[1]);

201 auto password = StoZZ(argv[2]);

202 cout << ZZtoHex(ecoh_echo(password, salt, a2, a6, E, G)) << endl;

203

204 return EXIT_SUCCESS;

205 }

6.2 Compartmented ID-Based Secret Sharing and Signcryption

Another application of elliptic curves and elliptic curve cryptography is using pair-

ings for identity-based schemes, like those first suggested in [10].28 In [53], Li, Xin,

and Hu describe an ID-based signcryption scheme that uses a bilinear map to accom-

plish (t, n) shared unsigncryption with the help of Shamir’s secret sharing scheme.

28A previous of this section has been posted to the International Association for Cryptologic
Research’s cryptology eprint archive (http://eprint.iacr.org/2012/528) and has been submitted
for consideration to the Information Processing Letters Journal for consideration for publication.
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Here we describe a way to extend Li et. al.’s construction into a compartmented

scheme. For our compartmented scheme, suppose the organization O is split into

several compartments Ci, i ∈ {1, . . . , t}. In order to unsigncrypt a message sent to

O, at least one member of each of the t compartments must participate; without

the cooperation of at least one member from each compartment, the message cannot

be unsigncrypted. What’s more, each member Mij ∈ Ci gets different information;

therefore, although any Mij can participate equally, the compartment Ci is in fact

split up so that all of its potential participants have something unique to contribute.

In what follows, we will make the following changes to the terminology and notation

of [53]: uppercase letters will denote points on an elliptic curve E over a predetermined

finite field K, lowercase letters will denote elements in the multiplicative group µn

of nth roots of unity, Greek letters are used for elements of Fq, and script letters

generally denote compartments or members thereof. Moreover, ê is a pairing function

from E × E → µn = F∗
qk
/F∗n

qk
.

6.2.1 Preliminaries

Here we briefly discuss the basic tools needed for our scheme, namely

1. Bilinear Diffie-Hellman Problems

2. Identity-based encryption

3. Shamir’s threshold scheme

4. Signcryption

5. Baek & Zheng’s zero knowledge proof for the equality of two discrete logarithms
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based on a bilinear map

We also cite relevant references for readers who would like more in-depth coverage of

these interesting topics.

6.2.1.1 Bilinear Diffie-Hellman Problems

As [57] writes, bilinear maps were first used in cryptography to weaken systems

rather than create them. In [56], the authors showed that “the discrete logarithm

problem for an elliptic curve over a finite field Fq can be reduced to the discrete

logarithm problem in some extension field Fkq .” For a particular class of curves called

supersingular curves, this was a particularly devastating attack. Fortunately for

elliptic curve cryptography, not all curves are supersingular.

The basic idea behind this attack was that if Q = `P , then

ê(P,Q) = ê(P, P )`

so we can solve the resulting discrete logarithm problem (or Diffie-Hellman problem)

in a different group instead, one where logarithms might be computed more easily.

As such, we need to pick our groups E and µn such that the Decisional Diffie-Hellman

Problem is difficult in µn and the following problems are difficult in (E, µn, ê):

Problem 6.2 (Computational Diffie-Hellman Problem). Suppose P is a generator of

a large subgroup of E and α ∈ µn = ê(P, P ). Given Q,R ∈ E such that Q = bP and

R = cP , compute bc via β = αb = ê(P,Q) and γ = αc = ê(P,R).

Problem 6.3 (Decisional Diffie-Hellman Problem). Suppose P is a generator of a large

subgroup of E and α ∈ µn = ê(P, P ). Given Q,R, S ∈ E such that Q = bP
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and R = cP , determine which of the following is true via β = αb = ê(P,Q) and

γ = αc = ê(P,R):

1. S = bcP (so δ = ê(P, S) is equal to αbc)

2. S = dP for some d chosen uniformly at random from Zn independently of b and

c.

These problems are currently believed to be difficult if the size n of our groups is

chosen large enough.

6.2.1.2 Identity-Based Encryption

In [69], Shamir proposed an interesting problem: he “asked for a public key encryp-

tion scheme in which the public key can be an arbitrary string.” [10] Shamir wished

to simplify the management of digital certificates in e-mail and other systems; as the

authors of [10] write, he wished to have a system such that “when Alice sends mail

to Bob at bob@hotmail.com she simply encrypts her message using the public key

string ‘bob@hotmail.com’,” thereby removing the need for interacting with any sort

of management or external cryptographic infrastructure on a per-message basis. One

of the most satisfying solutions to date comes from Boneh and Franklin. The Weil

pairing was used in Boneh and Franklin’s scheme in [10]; readers are referred to this

paper for more.

In [69] and [10], the protocols and schemes consist of four stages: Setup, Extract,

Encrypt, and Decrypt. We follow the notation of [53] in the description of our scheme,

though, with the four stages Setup, Extraction, Signcryption, and Unsigncryption.

Before we get to the protocol, however, there is more background to cover.



91

6.2.1.3 Shamir’s Threshold Scheme

In [68], Shamir developed a simple and elegant method to share a secret piece of

information amongst n people such that no less than some threshold value t of them

must cooperate to recover that secret. This scheme uses polynomial interpolation

over a finite field; if we suppose that the secret piece of information s is encoded as

some element of the field, we then construct a random polynomial f of degree t − 1

such that f(0) = s (so s is the constant term). If we give the pair (i, f(i)) to the

ith person in our scheme, for 1 ≤ i ≤ n, then via Lagrange interpolation any group

of t people can first reconstruct the polynomial f and then evaluate f(0) to recover

s. Furthermore, because no group of t − 1 or less people will suffice to recover the

polynomial, this scheme is information-theoretically secure. For more, see the original

paper [68]; [72] extends the idea of secret sharing to multipartite and compartmented

schemes, while [11, 31, 42] and [43] discuss some ways to share secrets in various

settings. To our knowledge, however, none of these include identity-based encryption

and the next topic: signcryption.

6.2.1.4 Signcryption

In [81], the author put forth a new idea that combines the steps of digitally signing

and encrypting a message—traditionally two separate procedures—that drastically

reduces the computational and communication costs involved. Later work extended

this idea to include other cryptographically desirable features such as non-repudiation,

public-verifiability, and forward security (see [53]). Recently made into an interna-

tional standard, signcryption has gained increasing popularity with researchers and
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implementers alike. For more information, see the original [81]; [82] demonstrates how

to implement signcryption using rational points on elliptic curves over finite fields.

Even more information, including an extensive bibliography, can be found online at

signcryption.org.

6.2.1.5 Baek & Zheng’s zero knowledge proof

In this section, O stands for the neutral element on an Edwards curve E instead of

the organization in question. Per [4] and [53], the zero knowledge proof of membership

for the language

LEDLogE
P, eP

def
= {(x, x̃) ∈ µn × µn | logg x = logeg x̃}

(where g = ê(P, P ) and g̃ = ê
(
P̃ , P̃

)
for generators P and P̃ of a large additive

cyclic subgroup E(K) of order #E = n) ensure the robustness of our threshold

decryption. Provided that the Decisional Diffie-Hellman problem is hard in µn and

the Computational and Decisional Bilinear Diffie-Hellman Problems are difficult in

(E, µn, ê), the basic idea is as follows: suppose both the Prover and the Verifier receive

the tuple
(
P, P̃ , g, g̃

)
and the pair (k, k̃) ∈ LEDLog

µn
P, eP . Moreover, suppose the Prover

knows a secret S ∈ E \ {O} such that k = ê(S, P ) and k̃ = ê(S, P̃ ); then

1. The Prover chooses at random an element R ∈ E \ {O} computes a = ê(R,P )

and ã = ê(R, P̃ ), and sends a and ã to the Verifier.

2. The verifier picks γ ∈ F∗q at random and sends it to the Prover.

3. The Prover computes T = R + γS and sends it to the Verifier. If (and only if)
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the two equalities

akγ = ê(T, P ) ãk̃γ = ê(T, P̃ )

hold, the Verifier believes that the Prover knows the secret S since

ê(T, P ) = ê(R + γS, P ) = ê(R,P )ê(S, P )γ = akγ

and

ê(T, P̃ ) = ê(R + γS, P̃ ) = ê(R, P̃ )ê(S, P̃ )γ = ãk̃γ

For more, including how to adapt the above into a non-interactive zero knowledge

proof, see [4].

6.2.2 The Proposed Compartmented Scheme

Suppose we have an organization O consisting of n people split into t compartments

Ci, each consisting of members Mij. In addition, we have a Private Key Generator

(P) who acts as the trusted authority and a sender Alice (A) who wishes to send

a message to the compartments Ci ⊂ O. There are four stages: Setup, Extraction,

Signcryption, and Unsigncryption.
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6.2.2.1 Setup

P first chooses our two groups of large prime order n: E and µn. P also picks a

generator P of E and a number of hash functions:29

H1 : {0, 1}∗ → E

H2 : µn → {0, 1}∗

H3 : {0, 1}∗ × µn → F∗q

Finally, P chooses a secret master key s ∈ F∗q, computes Ppub = sP , and publishes

the tuple

(E, µn, n, ê, P, Ppub, H1, H2, H3, E,D)

where E and D are the encryption and decryption steps of some fast symmetric key

cipher (like AES; see [21]).

6.2.2.2 Extraction

In what follows, given an ID (identifying information considered as a bit string),

the public key P generates for that ID is QID = H1(ID), the private signcryption

key is SID = s−1QID, and the private decryption key is DID = sQID.

Since P uses IDO to compute QO, SO, and DO and wishes to pass information to

each Ci in such a way that some cooperation is required to put DO back together,

she randomly picks Rk ∈ E \ {O}, k ∈ {1, . . . , t − 1}, and constructs a function

f : {0, 1}∗ → E via f(u) = DO +
∑t−1

1 ukRk (treating u as the binary representation

29H1 can be the one from [41]
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of some positive integer). Then, for each Ci ⊂ O, P :

1. Computes Di = f(IDi), the private decryption key for Ci

2. Computes yi = ê(Di, P ), the public verification key for Ci

3. For each Mij ∈ Ci, P :

(a) Chooses a random µij ∈ F∗q

(b) Privately sends Mij the triple (Di, Pij, yij) =
(
Di, (1 + µij)Di, y

µij
i

)
4. Finally, P publishes the table

{(IDi, yi, {(IDij, yij)}} = (ID1, y1, (ID1,1, y1,1), (ID1,2, y1,2), . . .

(ID2, y2, (ID2,1, y2,1), (ID2,2, y2,2), . . .

...

6.2.2.3 Signcryption

To send the message m to O, Alice computes the signcrypted text (c, r, S) as

follows:

1. She chooses a random x ∈ F∗q

2. k1 = ê(P,QA)x

3. k2 = H2(ê(QA, QO)x)

4. c = Ek2(m)

5. r = H3(c, k1)
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6. S = (x− r)SA

6.2.2.4 Unsigncryption

After at least one memberMij from each of the t compartments Ci assemble, they

first verify Alice’s signature; then each Mij individually

1. Computes k′1 = ê(S, Ppub)ê(QA, P )r

2. Accepts Alice’s signature if and only if r = H3(c, k′1)

Next, each Mij picks two random points Bij, Tij ∈ E and uses Bij to certify

that they belong to Ci and Tij to certify their decryption share. While the latter is

accomplished in exactly the same manner as in [53], Mij does the former as follows:

3. Construct credentials κij using Bij, where

κij = (P̃ij, zij) = (Pij +Bij, yij ê(Bij, P ))

4. Send credentials κij to each of the other Mk`

5. Check each of Mk`’s credentials by testing whether

yk =
ê(P̃k`, P )

zk`

Once everyone’s credentials are established, the rest of unsigncryption continues as

in [53].

6.2.3 Analysis of Scheme

We discuss the effects to correctness, security, and efficiency of the changes we

have made to [53]’s original scheme. As such, our analysis is based on that of [53],
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especially where it makes use of [4]’s zero knowledge proof of membership.

6.2.3.1 Correctness

Observe that

ê(P̃ij, P )

zij
=
ê(Pij, P )Ê(Bij, P )

yij ê(Bij, P )

=
ê ((1 + µij)Dk, P )

y
µij
k

=
ê(Dk, P )ê(Dk, P )µij

y
µij
k

= ê(Dk, P )

= yk

So κij does indeed certify thatMij belongs to and can speak for the compartment

Ck. The correctness of the rest of our scheme can be proven in exactly the same

manner as [53].

6.2.3.2 Security

Because the signcryption process in our scheme is the same as in [53] (which in

turn is the same as in [17]), our scheme has the same existential unforgeability against

chosen plaintext attacks in the random oracle model as those schemes, provided that

the Computational Bilinear Diffie-Hellman Problem is difficult in the groups and

pairing underlying the implementation of our scheme.

What’s more, our scheme doesn’t change the level of confidentiality either; assum-

ing the Decisional Bilinear Diffie-Hellman Problem is hard in (E, µn, ê), our scheme

enjoys the same indistinguishability against adaptive chosen ciphertext attacks in the
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random oracle model. During unsigncryption, no less than t cooperating members of

different compartments suffice to recover the key k2 (and hence the message). Giving

different randomly obfuscated versions of the same information to members of the

same compartment does nothing to lessen this fact. Recovery of DO is also compu-

tationally infeasible due to the difficulty of inverting the pairing ê. Finally, the use

of Baek and Zheng’s zero knowledge proof ensures that each member participating

in unsigncryption is protected against the possibility of dishonesty from any of the

others.

The public verifiability of our extended scheme remains intact, since any third

party can verify the signature via the first two steps of the Unsigncryption stage.

We also still keep forward security, since it remains difficult to compute k′2 without

DO, even if SA is leaked.

6.2.3.3 Efficiency

With a slight modification to [53]’s notation, let Tp, Tm, and Te be the computing

time required for calculating a pairing, point multiplication, and exponentiation, re-

spectively. Note that our scheme still requires 2Tp + Tm + 2Te for signcryption and

(2t+ 4)Tp + Tm + (3t− 1)Te forMij, just like the original scheme. The main bottle-

neck in this scheme is the random point choices performed by P ; if we assume that

P has a fast pseudorandom number generator, then the time this takes is essentially

(2n+ 1)Tm, just like in [53].

The efficiency picture can be improved, though; instead of having P choose each

Mij’s point, it could instead choose t points and send them to t secondary generators
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Pi, one for each compartment. These secondary generators can then randomize those

points and distribute the relevant information to the members of their respective

compartments. Though this doesn’t reduce the work involved (and it requires having

more trusted authorities, or rather semi-trusted authorities), it does allow our scheme

to parallelize one of its major, one-time steps. Hence our scheme lends itself better to

implementation using modern computing methods (i.e. parallel computation) than

does [53].

6.2.4 Conclusion

In this section we demonstrated how a small modification to Li, Xin, and Hu’s

scheme ([53]) extends it into a compartmented scheme, allowing a sender to address

a message to an organization O and requiring different compartments Ci ⊂ O to

cooperate for the message’s recovery. In doing so, we do not lose any of the security

or efficiency features of [53]’s scheme—in fact, we can even parallelize one of the

main stages. To our knowledge, this scheme is the first that combines identity-based

encryption, Shamir’s secret sharing, and signcryption into a compartmented sharing

scheme that can be implemented with available algorithms and software.

This scheme incorporates a naturally parallelizable step, and is likewise naturally

applicable to modern situations. For instance, this scheme could very easily be used

in cloud computing to synchronize information passed to different groups or clusters

from a single host. As another example, one could use this scheme for authenticated

and signcrypted communication in a business setting; the shared secret could be an

expected return message to acknowledge receipt of an important document or the
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scheduling of an important meeting. There is still room for future work. We hope

to investigate deeper into questions such as increasing the efficiency of our scheme or

reducing the reliance upon the trusted private key generator P .



CHAPTER 7: E2C2: A C++11 LIBRARY FOR EDWARDS ECC

In order to explore the theory and implementation of Edwards curves for Elliptic

Curve Cryptography, I’ve created a modern C++11 software library called e2c2. In

this chapter, we’ll discuss the design and rationale behind e2c2, its organization, and

a few examples of its functionality.

7.1 Rationale and Design Choices

e2c2 was designed to be a software library that was simple enough to use but

close enough to a practical implementation that software engineers could use it as

a template or a stand-in for a practical cryptographic library. As such, it strikes

a balance between usability and speed and between clarity of exposition and being

closer to “production-level code.”

7.1.1 C++11

Probably the most obvious design choice was picking C++, specifically the newest

standard C++11, for the programming language. Though not as low-level as C, C++

still gives us decent enough control over the underlying specifics of the machine. Since

it’s a compiled language with a long history of implementation, it creates very fast

binaries. Furthermore, C++ is available on a number of platforms, so portability is

less of an issue. These characteristics combine to make C++ a viable choice for a

cryptography implementation seeking to bridge the gap between mathematical theory



102

and programming practice.

Even more helpful was the expressiveness of the new C++ language standard,

C++11[28]. This new standard adds interesting and useful constructs to the language,

many of which are used in our library. These improvements—like type inference,

lambda functions and expressions, and range-based for-loops—make C++ an easier

language in which to implement complex mathematical and cryptographic concepts.

What’s more, this new level of expressiveness comes at no obvious loss of execution

speed.

7.1.2 NTL and GMP

The next important choice was choosing to use software libraries that abstract away

the details of arbitrary precision integers and foundational number theory concepts.

The GNU Multiple Precision Arithmetic Library, better known as GNU MP or GMP,

is a free and open-source library for arbitrary-precision arithmetic with integers and

rational numbers.[35] Though a true full-blown production-level cryptographic library

might choose to implement its own big integer arithmetic for ultimate control, speed,

and safety, GMP is tried and tested enough after over 15 years of development to

be included here in our library that’s trying to be a mix of proof-of-concept and

implementation guide.

I used Victor Shoup’s Number Theory Library—NTL for short—for the same rea-

sons, only more so.[70] NTL is a C++ library for doing number theory; to quote its

website,

NTL is a high-performance, portable C++ library providing data struc-
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tures and algorithms for manipulating signed, arbitrary length integers,

and for vectors, matrices, and polynomials over the integers and over fi-

nite fields. NTL provides high quality implementations of state-of-the-art

algorithms for:

• arbitrary length integer arithmetic and arbitrary precision floating

point arithmetic;

• polynomial arithmetic over the integers and finite fields including ba-

sic arithmetic, polynomial factorization, irreducibility testing, com-

putation of minimal polynomials, traces, norms, and more;

• lattice basis reduction, including very robust and fast implementa-

tions of Schnorr-Euchner, block Korkin-Zolotarev reduction, and the

new Schnorr-Horner pruning heuristic for block Korkin-Zolotarev;

• basic linear algebra over the integers, finite fields, and arbitrary pre-

cision floating point numbers.

NTL’s polynomial arithmetic is one of the fastest available anywhere, and

has been used to set “world records” for polynomial factorization and

determining orders of elliptic curves.

NTL does most of the heavy lifting when it comes to finite field computations in e2c2;

it is only linked against GMP at compile time to take advantage of some of its code

for enhanced performance. To quote the project’s website again, the main reason

for choosing NTL is because “It provides a good environment for easily and quickly

implementing new number-theoretic algorithms, without sacrificing performance.”
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In some regards, e2c2 can be seen as an extension of NTL. It uses portions of NTL

to implement Edwards curves in a way that blends well with the rest of NTL, and

the line between where NTL stops and e2c2 starts need not be of much concern to

users of this library.30

7.1.3 Template Specialization Instead of Inheritance

The last design choice we’ll discuss will probably only be of concern to aficionados

of C++ (or perhaps another object-oriented language). Though curves and points are

implemented as classes in e2c2, the library is written using template specialization

instead of class inheritance. This gave me the ability to use the illusion of inher-

itance in constructing e2c2, sharing common functionality between different types

of curves or different types of points, without the added runtime penalties that can

be associated with virtual function lookup. Moreover, C++ templates are expanded

at compile time (and much can be inlined by a compiler), thereby only charging the

programmer for what they use. Another added bonus of using template specialization

over inheritance is ease of portability and use; e2c2 consists entirely of C++ header

files, four specifying the implementation and one single e2c2.h interface header to

be included in projects. This means that e2c2 is quite compact, and it is simple to

share or extend the sourcecode. It’s compact enough that the entire source for e2c2

and examples of its usage is included in Appendix 7.4.4.

Readers interested in learning more about C++ templates should consult [76].

30Especially if C++ projects using e2c2 prefaces any major portions of code with the directives
“using namespace NTL” and “using namespace e2c2,” as in the examples we’ll show later.
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7.2 Curves and Points

We now get into the actual details of e2c2’s code. First up is a description of its

fundamental objects: curves and points.

7.2.1 curves.h

The code for curves in contained in the header file curves.h. Curves are im-

plemented as templates based on two parameters: an element type (one of NTL’s

“ZZ pE” or “GF2E” datatypes) and a C++ enumeration31 called “CurveID” (to

help distinguish between two types of curves that have the same base element type).

Each curve type has two field elements called c and d as members; these correspond

to the c and d of Edwards curves, a and d in twisted Edwards curves, and d1 and d2

in binary Edwards curves. They also have an NTL ZZ m that gives the cardinality of

the curve (i.e., the number of rational points on the curve over the field in question).

Besides the usual C++ member functions (i.e. constructors and destructors),

curves have four member functions. Through C++’s operator overloading, curves

can be compared for equality or inequality with the usual operators (== and !=).

They can also tell you their cardinality via calls to cardinality() and information

about them can be printed to an output stream via the << operator.

Each curve specialization—OddCurve, TwistedCurve, and BinaryCurve—provides

four things. The first is an alias typedef from the verbose template name to the

shorted curve name for ease of use. Then each specialization provides three functions

that are used in their member functions:

31Actually it’s a C++11 strongly typed enumeration for added typesafety peace of mind.
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• getName, when given a curve as an argument, returns a human readable string

describing the type of curve; this is used when the curve information is printed

to an output stream

• parametersValid, when given a curve as an argument, returns a boolean value

which checks whether the curve parameters c and d are valid; this is used in

curve construction to ensure that the curve being built matches the requirements

given in the various papers about it

• curveEquation, when given a curve and an x and y coordinate, returns a

boolean value that specifies whether the two coordinates describe a point lying

on the curve or not; this is used when points are constructed (to be described

shortly)

To construct a curve, one first builds the appropriate field via NTL, then calls

the specific Curve constructor with c, d, and m specified. For an example, see

curves test.cc (described below).

7.2.2 points.h

As you might expect, points are a little more complicated. There are two base class

templates for points: “Affine” and “Projective.” Each point has a curve to which it is

assigned; in addition, Affine points have two coordinates (x and y), while Projective

points have three coordinates (x, y, and z). Though Affine points can only interact

with Affine points at this time, and likewise Projective, there is a copy constructor

from Affine to Projective; i.e. if a is a BinaryAff, one can write the following:

1 auto p = BinaryProj(a);
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to create a projective version of a.32

Beyond the obvious difference in the number of coordinates, Affine and Projective

points have all the same member functions. Points can be compared for equality and

inequality, tested for whether they’re the identity element, added or subtracted (both

with +, - and +=, -=), doubled, and multiplied by a scalar. Scalar multiplication

is implemented with Montgomery’s ladder, and incorporates the suggested “wrap-

around” to counteract Brumley and Tuveri’s timing attack from [14].

An example of point functionality is given in points test.cc, which we will soon

discuss.

7.3 Utilities and Subroutines

e2c2 has two scaffolding files that support the real work, the first of which is the

header mol.h.

7.3.1 mol.h

This header file is named for the authors of [62]. In it there are a number of

functions and routines that implement the ideas from that paper. Some are only

used by other functions in the same file, but probably most important is mol alg 1.

If fed a long n, representing the degree of the extension field F2n , and two elements

of this field a2 and a6 that specify a binary elliptic curve in Weierstrass form, this

algorithm computes the d1 value that specifies the birationally equivalent binary

Edwards curve.33 This function is in turn used to implement other functions in

32This copy constructor has been declared explicit, so there shouldn’t be any surprises about
when this conversion takes place.

33d1 is called c in e2c2.
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mol.h.

mol alg 1 is definitely too low-level for typical use, while other functions in this

file are probably more user friendly; programmers interested in the e2c2 library will

find most useful

• from weierstrass, which takes n, m, a2, and a6 as arguments and returns a

BinaryCurve

• mol bm aff, which implements the birational map from [62] for Affine points

• mol bm proj, which implements the birational map from [62] for Projective

points

7.3.2 utilities.h

The other utility file is called, rather aptly, utilities.h. This file contains a rou-

tine to set a parameter given a string in hex or not; this routine, called set parameter,

is helpful in constructing the curves specified in various standards like [30]. utilities.h

also specifies the various C++ exceptions created to signal fatal error conditions to

users of e2c2:

• InvalidParametersException, which is thrown when one tries to construct a

curve with parameters that are invalid

• DifferentCurvesException, which is thrown when attempting to perform an

operation involving two points from different curves

• NotImplementedException, which is left over from e2c2’s development; it was

used (and can be used again, as development of this library continues) to indi-
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cate that the edge of current implementation had been reached but the func-

tionality in question was planned for future work

7.4 Examples

Probably the best exposition we can have of e2c2 is to see it in action; as such,

we present four example C++ files that can be compiled and run to demonstrate the

library’s functionality and usage. All examples have been compiled and tested with

the following command and options:34

Listing 7.5: Compiler Options

1 g++-4.7 -Wall -Wextra -Weffc++ -pedantic -O3 -m64 -std=c++11 -lntl -lgmp

Specifically, all this code was compiled with the GNU C++ compiler version 4.7 (see

[73]), though any compiler and standard library that implements most of the C++11

standard should work.

7.4.1 curves test.cc

The first example file is curves test.cc. In this program, there are three different

subroutines that can all be called by the main routine, depending on user input. Each

specifies a type of Edwards curve—odd, binary, or twisted—to construct and output

some information about. The binary example is slightly more involved, since it builds

a curve from the Weierstrass equivalent and later intentionally crashes by trying to

make a curve with invalid parameters.

34The -Weffc++ option tells the compiler to warn about C++ code that doesn’t meet the high
standards set by [58].
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7.4.2 points test.cc

The next example file is similar; it shows the creation and usage of points, both

affine and projective, over all three types of Edwards curves. Again, the user can

specify a specific type of curve to work over; once that is done, the program

1. builds the appropriate curve

2. constructs an affine identity element on that curve and outputs it

3. constructs two projective points, one of which is the neutral element and one

which is not

4. demonstrates point addition, negation, and scalar multiplication with these

points

7.4.3 key demo.cc

The third example file is a little more involved. This program gives a short Diffie-

Hellman key exchange demonstration. After some setup, we join our friends Alice

and Bob as they try to construct a shared key so as to communicate in private. After

deciding (in public) on a base point P , Alice and Bob pick private random scalars

a and b, respectively. Then Alice computes and publishes aP while Bob does the

same with bP . Their shared key is a(bP ) = b(aP ); the code double-checks that all

calculations went according to plan.

Here is the output of an example run of this program, slightly reformatted:

Listing 7.6: Output of key demo.cc

1 Alice and Bob wish to communicate in private, so they need a shared secret key.
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2

3

4 Alice first picks a secret random number a =

5 10582230386582042969237721342986301254891720029263

6 with the same number of bits as m (the size of our group)...

7

8 ...then sends Bob the point pA = a * P (the generator) =

9 (0x325292b6786653bc201777d7ce8f78ad2b7293bf5 :

10 0xadc4e7fb280edc5b490bf5a0200716435af252064 :

11 0x1)

12

13 Bob also picks a secret random number b =

14 6842965894516648772563843478507619750018805216122

15 Then he sends Alice the point bP = b * P =

16 (0x0d48849159e4d4af5fbfe0d25841ebf5da8200793 :

17 0xac71cbbf9c6b620a45a52ec50cdd4c52f10e07a05 :

18 0x1)

19

20 Then Alice takes a and multiplies it by bP to get key_a =

21 (0x9b003af9bf9ff81875b26c8873ac866413199742 :

22 0x77bb1c163e1fdacd2eefba7941a9dc5b7de4838c2 :

23 0x1)

24 Similarly, Bob calculates key_b = b * aP =

25 (0x9b003af9bf9ff81875b26c8873ac866413199742 :

26 0x77bb1c163e1fdacd2eefba7941a9dc5b7de4838c2 :

27 0x1)

28
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29 Are these in fact the same key?

30 Yes!

31 So now they share a secret key, and can communicate securely.

7.4.4 ecoh echo.cc

As a final example, we draw the reader’s attention to the sourcecode listing in the

first section of Chapter 6. In it we provide ecoh echo.cc, a reference implementation

of our password based key derivation function described in that section. It is prob-

ably the best non-trivial example of using e2c2 for cryptographic exploration and

implementation.

e2c2 Source

Listing 7.7: curves.h
1 /**
2 * @file curves.h
3 * @brief Edwards Curves over finite fields of prime characteristic
4 * @author Graham Enos
5 *
6 * This file contains the interface and implementation (since this base "class"
7 * is really a template) of Edwards Curves over finite fields of prime
8 * characteristic, viz @f$ \mathbf{F}_{p^n} @f$ in C++
9 */

10

11 #ifndef _CURVES_H
12 #define _CURVES_H
13

14 #include <iostream> // Readable output
15 #include <NTL/ZZ.h> // Arbitrarily large integers
16 #include <NTL/ZZ_pE.h> // Field elements from @f$ \mathbf{F}_{p^n} @f$
17 #include <NTL/GF2E.h> // Field elements from @f$ \mathbf{F}_{2^n} @f$
18 #include "utilities.h" // Utilities header for e2c2 project
19

20

21 /// Namespace for our library
22 namespace e2c2 {
23

24 //------- Class Skeletons -------//
25

26 /**
27 * @p CurveID
28 * @brief quick typesafe identifiers for curves
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29 *
30 * @details Used in curve definitions, made an enum class for typesafety
31 * and speed; used to differentiate curves that are defined similarly
32 */
33 enum class CurveID {
34 Odd,
35 Binary,
36 Twisted
37 };
38

39 /**
40 * @p Curve
41 * @brief Base "class" (really class template) for Edwards Curves
42 *
43 * @tparam Elt field element
44 * @tparam ID id of curve
45 *
46 * @details Collects all relevant information about the curve and provides
47 * basic functionality
48 */
49 template <class Elt, CurveID ID>
50 class Curve {
51 public:
52 /// Parameter #1 of curve; @f$ c @f$ in papers on odd curves,
53 /// @f$ d_1 @f$ in binary papers, @f$ a @f$ in twisted papers,
54 Elt c;
55

56 /// Parameter #2 of curve; @f$ d @f$ in papers on odd and twisted
57 /// curves, @f$ d_2 @f$ in binary papers
58 Elt d;
59

60 /// Cardinality of curve
61 NTL::ZZ m;
62

63 /// Default constructor
64 Curve() : c(), d(), m() {}
65

66 /// Destructor
67 ~Curve() {}
68

69 /// Constructor given full tuple as input
70 Curve(const Elt& c, const Elt& d, const NTL::ZZ& m) :
71 c(c), d(d), m(m) {
72 if (!parametersValid(*this))
73 throw InvalidParametersException();
74 }
75

76 /// Equality test
77 bool operator==(const Curve& that) const {
78 return (c == that.c) && (d == that.d) && (m == that.m);
79 }
80

81 /// Inequality test
82 bool operator!=(const Curve& that) const {
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83 return not(*this == that);
84 }
85

86 /// Number of rational points on curve over field
87 NTL::ZZ cardinality() const {
88 return m;
89 }
90

91 /// Output of curve’s information
92 friend std::ostream& operator<<(std::ostream& out,
93 const Curve& curve) {
94 out << getName(curve) << std::endl
95 << "Curve parameter #1: " << curve.c << std::endl
96 << "Curve parameter #2: " << curve.d << std::endl
97 << "Cardinality: " << curve.m;
98 return out;
99 }

100 };
101

102

103 //------- Edwards Curves -------//
104

105 /**
106 * @var OddCurve
107 * @brief Edwards Curve over finite field with odd characteristic
108 *
109 */
110 using OddCurve = Curve<NTL::ZZ_pE, CurveID::Odd>;
111

112

113 /**
114 * @p getName(const OddCurve&)
115 * @brief output of name
116 */
117 inline std::string getName(const OddCurve&) {
118 return std::string("Edwards Curve over odd field");
119 }
120

121 /**
122 * @p parametersValid(const OddCurve& curve)
123 * @brief Parameter validation
124 */
125 inline bool parametersValid(const OddCurve& curve) {
126 return (curve.c != 0 && NTL::sqr(curve.c) + curve.c != curve.d);
127 }
128

129 /**
130 * @p curveEquation(const OddCurve& curve, const NTL::ZZ_pE& x,
131 * const NTL::ZZ_pE& y)
132 * @brief Validation of point coordinates
133 */
134 inline bool curveEquation(const OddCurve& curve, const NTL::ZZ_pE& x,
135 const NTL::ZZ_pE& y) {
136 auto xx = NTL::sqr(x), yy = NTL::sqr(y);
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137 return (xx + yy == NTL::sqr(curve.c) * (1 + curve.d * xx * yy));
138 }
139

140

141 /**
142 * @var BinaryCurve
143 * @brief Edwards Curve over finite field of characteristic two
144 */
145 using BinaryCurve = Curve<NTL::GF2E, CurveID::Binary>;
146

147 /**
148 * @p getName(const BinaryCurve&)
149 * @brief output of name
150 */
151 inline std::string getName(const BinaryCurve&) {
152 return "Binary Edwards Curve";
153 }
154

155 /**
156 * @p parametersValid(const BinaryCurve& curve)
157 * @brief Parameter validation
158 */
159 inline bool parametersValid(const BinaryCurve& curve) {
160 return (curve.c * curve.d * (1 - curve.d * NTL::power(curve.c, 4)) !=
161 0);
162 }
163

164 /**
165 * @p curveEquation(const BinaryCurve& curve, const NTL::GF2E& x,
166 * const NTL::GF2E& y)
167 * @brief Validation of point coordinates
168 */
169 inline bool curveEquation(const BinaryCurve& curve, const NTL::GF2E& x,
170 const NTL::GF2E& y) {
171 auto xx = NTL::sqr(x), yy = NTL::sqr(y);
172 return (curve.c * (x + y) + curve.d * (xx + yy)
173 == (x + xx) * (y + yy));
174 }
175

176

177 /**
178 * @var TwistedCurve
179 * @brief Twisted Edwards Curve over a non-binary field
180 */
181 using TwistedCurve = Curve<NTL::ZZ_pE, CurveID::Twisted>;
182

183 /**
184 * @p getName(const TwistedCurve&)
185 * @brief output of name
186 */
187 inline std::string getName(const TwistedCurve&) {
188 return "Twisted Edwards Curve";
189 }
190
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191 /**
192 * @p parametersValid(const TwistedCurve& curve)
193 * @brief Parameter validation
194 */
195 inline bool parametersValid(const TwistedCurve& curve) {
196 return (curve.c != curve.d) || ((curve.c == 0) || (curve.d == 0));
197 }
198

199 /**
200 * @p curveEquation(const TwistedCurve& curve, const NTL::ZZ_pE& x,
201 * const NTL::ZZ_pE& y)
202 * @brief Validation of point coordinates
203 */
204 inline bool curveEquation(const TwistedCurve& curve, const NTL::ZZ_pE& x,
205 const NTL::ZZ_pE& y) {
206 auto xx = NTL::sqr(x), yy = NTL::sqr(y);
207 return (curve.c * xx + yy == 1 + curve.d * xx * yy);
208 }
209 }
210

211 #endif // _CURVES_H

Listing 7.8: points.h
1 /**
2 * @file points.h
3 * @brief Affine points on Edwards Curves
4 *
5 * This file contains the interface and implementation (since this base "class"
6 * is really a template) of affine and projective points on Edwards Curves.
7 */
8

9 #ifndef _POINTS_H
10 #define _POINTS_H
11

12 #include <iostream> // Readable output
13 #include <NTL/ZZ.h> // Arbitrarily large integers
14 #include <NTL/ZZ_pE.h> // Field elements from @f$ \mathbf{F}_{p^n} @f$
15 #include <NTL/GF2E.h> // Field elements from @f$ \mathbf{F}_{2^n} @f$
16 #include "utilities.h" // Utilities header for e2c2 project
17 #include "curves.h" // e2c2 curve interface and implementation
18 #include "mol.h" // Birational map and utilities from MOL paper
19 #include "utilities.h" // e2c2 utilities
20

21

22 /// Namespace for our library
23 namespace e2c2 {
24 //------- Helper Function -------//
25

26 /**
27 * @p counterBTTiming(const NTL::ZZ& k, const NTL::ZZ& m)
28 * @brief This function counteracts the timing attack outlined in Brumley &
29 * Tuveri’s paper
30 */
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31 inline NTL::ZZ counterBTTiming(const NTL::ZZ& k, const NTL::ZZ& m) {
32 if (NTL::NumBits(k + m) == NTL::NumBits(m))
33 return k + 2 * m;
34 else
35 return k + m;
36 }
37

38

39 //------- Class Skeletons -------//
40

41 /**
42 * @class Affine
43 * @brief Class skeleton for affine points on Edwards Curves
44 *
45 * Collects relevant information and functionality for affine points on
46 * Edwards Curves
47 */
48 template <class Elt, class Curve>
49 class Affine {
50 public:
51 /// x-coordinate
52 Elt x;
53

54 /// y-coordinate
55 Elt y;
56

57 /// curve to which this point belongs
58 Curve curve;
59

60 /// Default constructor
61 Affine() : x(), y(), curve() {}
62

63 /// Destructor
64 ~Affine() {}
65

66 /// Constructor given all information
67 Affine(const Elt& x, const Elt& y, const Curve& curve) :
68 x(x), y(y), curve(curve) {
69 if (!curveEquation(curve, x, y))
70 throw InvalidParametersException();
71 }
72

73 /// Constructor if given just a curve (left to specific classes)
74 Affine(const Curve& curve) : x(), y(), curve(curve) {
75 *this = aff_id(curve);
76 }
77

78 /// Checking whether we have the neutral element
79 bool isID() const {
80 return *this == Affine(this->curve);
81 }
82

83 /// Two affine points are equal if all relevant info is the same...
84 bool operator==(const Affine& that) const {
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85 return (x == that.x) && (y == that.y) && (curve == that.curve);
86 }
87

88 /// ...and are not equal otherwise
89 bool operator !=(const Affine& that) const {
90 return !(*this == that);
91 }
92

93 /// Assignment by addition; left to fleshed-out classes
94 Affine& operator+=(const Affine& that) {
95 if (this->curve != that.curve)
96 throw DifferentCurvesException();
97

98 *this = aff_add(*this, that);
99 return *this;

100 }
101

102 /// Negation of a point; left to full class
103 Affine operator-() const {
104 return aff_neg(*this);
105 }
106

107 /// Assignment by subtraction; makes use of += and -
108 Affine& operator-=(const Affine& that) {
109 return *this += -that;
110 }
111

112 /// Addition via +=
113 Affine operator+(const Affine& that) const {
114 return Affine(*this) += that;
115 }
116

117 /// Subtraction via -=
118 Affine operator-(const Affine& that) const {
119 return Affine(*this) -= that;
120 }
121

122 /// Point doubling; left to full class
123 Affine pointDouble() const {
124 return aff_double(*this);
125 }
126

127 /// Montgomery Ladder for scalar multiplication
128 Affine montgomery(const NTL::ZZ& k) const {
129 // Work with positive scalars
130 if (k < 0)
131 return (-(*this)).montgomery(-k);
132

133 // Counteract Brumley & Tuveri’s timing attack
134 NTL::ZZ kk = counterBTTiming(k, curve.cardinality());
135

136 Affine aTmp(curve); // identity element
137 Affine bTmp(*this);
138 for (auto i = NumBits(kk) - 1; i >= 0; i--) {
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139 if (bit(k, i)) {
140 aTmp += bTmp;
141 bTmp = bTmp.pointDouble();
142 } else {
143 bTmp += aTmp;
144 aTmp = aTmp.pointDouble();
145 }
146 }
147 return aTmp;
148 }
149

150 /// Assignment by scalar multiplication (using Montgomery Ladder)
151 Affine& operator*=(const NTL::ZZ& k) {
152 return *this = montgomery(k);
153 }
154

155 /// Assignment by scalar multiplication (using Montgomery Ladder)
156 template <class N>
157 Affine& operator*=(const N& k) {
158 return *this = montgomery(NTL::to_ZZ(k));
159 }
160

161 /// Scalar multiplication (using Montgomery Ladder), via *= (e.g. k *
162 /// point)
163 friend Affine operator*(const NTL::ZZ& k, const Affine& point) {
164 return Affine(point) *= k;
165 }
166

167 /// Scalar multiplication (using Montgomery Ladder), via *= (e.g. k *
168 /// point)
169 template <class N>
170 friend Affine operator*(const N& k, const Affine& point) {
171 return Affine(point) *= NTL::to_ZZ(k);
172 }
173

174 /// Output
175 friend std::ostream& operator<<(std::ostream& out, const Affine&
176 point) {
177 return (out <<"(" << point.x << ", " << point.y << ")");
178 }
179 };
180

181

182 /**
183 * @class Projective
184 * @brief Class skeleton for projective points on Edwards Curves
185 *
186 * Collects relevant information and functionality for projective points on
187 * Edwards Curves
188 */
189 template <class Elt, class Curve>
190 class Projective {
191 public:
192 /// x-coordinate
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193 Elt x;
194

195 /// y-coordinate
196 Elt y;
197

198 /// z-coordinate
199 Elt z;
200

201 /// curve to which this point belongs
202 Curve curve;
203

204 /// Default constructor
205 Projective() : x(), y(), z(), curve() {}
206

207 /// Destructor
208 ~Projective() {}
209

210 /// Constructor given all information
211 Projective(const Elt& x, const Elt& y, const Elt& z,
212 const Curve& curve) : x(x), y(y), z(z), curve(curve) {
213 if (!curveEquation(curve, x / z, y / z))
214 throw InvalidParametersException();
215 }
216

217 /// Constructor if given just a curve (left to specific class)
218 Projective(const Curve& curve) : x(), y(), z(), curve(curve) {
219 *this = proj_id(curve);
220 }
221

222 /// Constructor from an affine point of the same type
223 explicit Projective(const Affine<Elt, Curve>& a) : x(a.x), y(a.y), z(),
224 curve(a.curve) {
225 z = 1;
226 if (!curveEquation(curve, x / z, y / z))
227 throw InvalidParametersException();
228 }
229

230 /// Equivalence class representative: z = 1
231 Projective equivalenceClassRep() const {
232 Elt one;
233 one = 1;
234 return Projective(x / z, y / z, one, curve);
235 }
236

237 /// Checking whether we have the neutral element
238 bool isID() const {
239 return *this == Projective(this->curve);
240 }
241

242 /// Two projective points are equal iff all relevant info is the
243 /// same...
244 bool operator==(const Projective& that) const {
245 return (x / z == that.x / that.z) && (y / z == that.y / that.z) &&
246 (curve == that.curve);
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247 }
248

249 /// ...and are not equal otherwise
250 bool operator !=(const Projective& that) const {
251 return !(*this == that);
252 }
253

254 /// Assignment by addition; left to fleshed-out class specificities
255 Projective& operator+=(const Projective& that) {
256 if (this->curve != that.curve)
257 throw DifferentCurvesException();
258

259 *this = proj_add(*this, that);
260 return *this;
261 }
262

263 /// Negation of a point; left to class specificities
264 Projective operator-() const {
265 return proj_neg(*this);
266 }
267

268 /// Assignment by subtraction; makes use of += and -
269 Projective& operator-=(const Projective& that) {
270 return *this += -that;
271 }
272

273 /// Addition via +=
274 Projective operator+(const Projective& that) const {
275 return Projective(*this) += that;
276 }
277

278 /// Subtraction via -=
279 Projective operator-(const Projective& that) const {
280 return Projective(*this) -= that;
281 }
282

283 /// Point doubling; left to class specifics
284 Projective pointDouble() const {
285 return proj_double(*this);
286 }
287

288 /// Montgomery Ladder for scalar multiplication
289 Projective montgomery(const NTL::ZZ& k) const {
290 // Work with positive scalars
291 if (k < 0)
292 return (-(*this)).montgomery(-k);
293

294 // Counteract Brumley & Tuveri’s timing attack
295 NTL::ZZ kk = counterBTTiming(k, curve.cardinality());
296

297 Projective aTmp(curve); // identity element
298 Projective bTmp(*this);
299 for (auto i = NumBits(kk) - 1; i >= 0; i--) {
300 if (bit(k, i)) {
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301 aTmp += bTmp;
302 bTmp = bTmp.pointDouble();
303 } else {
304 bTmp += aTmp;
305 aTmp = aTmp.pointDouble();
306 }
307 }
308 return aTmp;
309 }
310

311 /// Assignment by scalar multiplication (using Montgomery Ladder)
312 Projective& operator*=(const NTL::ZZ& k) {
313 return *this = montgomery(k);
314 }
315

316 /// Assignment by scalar multiplication (using Montgomery Ladder)
317 template <class N>
318 Projective& operator*=(const N& k) {
319 return *this = montgomery(NTL::to_ZZ(k));
320 }
321

322 /// Scalar multiplication (using Montgomery Ladder), via *= (e.g. k *
323 /// point)
324 friend Projective operator*(const NTL::ZZ& k,
325 const Projective& point) {
326 return Projective(point) *= k;
327 }
328

329 /// Scalar multiplication (using Montgomery Ladder), via *= (e.g. k *
330 /// point)
331 template <class N>
332 friend Projective operator*(const N& k, const Projective& point) {
333 return Projective(point) *= NTL::to_ZZ(k);
334 }
335

336

337 /// Output
338 friend std::ostream& operator<<(std::ostream& out,
339 const Projective& point) {
340 Projective tmp = point.equivalenceClassRep();
341 return (out << "(" << tmp.x << " : " << tmp.y << " : " << tmp.z <<
342 ")" );
343 }
344

345 };
346

347

348 //------- Affine Specialization Functions -------//
349

350 /**
351 * @var OddAff
352 * @brief Affine points on an odd curve
353 *
354 * This typedef builds the four functions necessary to flesh out our Affine
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355 * template for odd affine points.
356 */
357 using OddAff = Affine<NTL::ZZ_pE, OddCurve>;
358

359 /**
360 * @p aff_id(const OddCurve& curve)
361 * @brief Affine neutral element on odd curve.
362 */
363 inline OddAff aff_id(const OddCurve& curve) {
364 return OddAff(NTL::ZZ_pE::zero(), curve.c, curve);
365 }
366

367 /**
368 * @p aff_add(const OddAff& a1, const OddAff& a2)
369 * @brief Affine addition for points on an odd curve.
370 */
371 inline OddAff aff_add(const OddAff& a1, const OddAff& a2) {
372 NTL::ZZ_pE w, num_x, num_y, den_x, den_y;
373 w = a1.curve.d * a1.x * a2.x * a1.y * a2.y;
374 num_x = a1.x * a2.y + a1.y * a2.x;
375 num_y = a1.y * a2.y - a1.x * a2.x;
376 den_x = a1.curve.c * (1 + w);
377 den_y = a1.curve.c * (1 - w);
378

379 return OddAff(num_x / den_x,
380 num_y / den_y,
381 a1.curve);
382 }
383

384 /**
385 * @p aff_neg(const OddAff& a)
386 * @brief Negation of an affine point on an odd curve.
387 */
388 inline OddAff aff_neg(const OddAff& a) {
389 return OddAff(-a.x, a.y, a.curve);
390 }
391

392 /**
393 * @p aff_double(const OddAff& a)
394 * @brief Affine point doubling on odd curve.
395 */
396 inline OddAff aff_double(const OddAff& a) {
397 auto xx = NTL::sqr(a.x);
398 auto yy = NTL::sqr(a.y);
399 auto num_x = 2 * a.x * a.y * a.curve.c;
400 auto num_y = (yy - xx) * a.curve.c;
401 auto den_x = xx + yy;
402 auto den_y = 2 * NTL::sqr(a.curve.c) - (xx + yy);
403

404 return OddAff(num_x / den_x, num_y / den_y, a.curve);
405 }
406

407

408 /**
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409 * @var BinaryAff
410 * @brief Affine points on a binary curve
411 *
412 * This typedef builds the four functions necessary to flesh out our Afine
413 * template for binary affine points.
414 */
415 using BinaryAff = Affine<NTL::GF2E, BinaryCurve>;
416

417 /**
418 * @p aff_id(const BinaryCurve& curve)
419 * @brief Affine neutral element on binary curve.
420 */
421 inline BinaryAff aff_id(const BinaryCurve& curve) {
422 return BinaryAff(NTL::GF2E::zero(), NTL::GF2E::zero(), curve);
423 }
424

425 /**
426 * @p aff_add(const BinaryAff& a1, const BinaryAff& a2)
427 * @brief Affine addition for points on a binary curve.
428 */
429 inline BinaryAff aff_add(const BinaryAff& a1, const BinaryAff& a2) {
430 auto w1 = a1.x + a1.y;
431 auto w2 = a2.x + a2.y;
432 auto a = NTL::sqr(a1.x) + a1.x;
433 auto b = NTL::sqr(a1.y) + a1.y;
434 auto c = a1.curve.d * w1 * w2;
435 auto d = a2.x * a2.y;
436

437 return BinaryAff(
438 a1.y + (c + a1.curve.c * (w1 + a2.x) + a * (d + a2.x)) /
439 (a1.curve.c + a*w2),
440 a1.x + (c + a1.curve.c * (w1 + a2.y) + b * (d + a2.y)) /
441 (a1.curve.c + b * w2),
442 a1.curve);
443 }
444

445 /**
446 * @p aff_neg(const BinaryAff& a)
447 * @brief Negation of an affine point on a binary curve.
448 */
449 inline BinaryAff aff_neg(const BinaryAff& a) {
450 return BinaryAff(a.y, a.x, a.curve);
451 }
452

453 /**
454 * @p aff_double(const BinaryAff& a)
455 * @brief Affine point doubling on binary curve.
456 */
457 inline BinaryAff aff_double(const BinaryAff& a) {
458 auto aa = NTL::sqr(a.x);
459 auto b = NTL::sqr(aa);
460 auto c = NTL::sqr(a.y);
461 auto d = NTL::sqr(c);
462 auto f = a.curve.c;
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463 auto g = (a.curve.d / a.curve.c) * (b + d);
464 auto j = aa + c;
465 auto k = g + a.curve.d * j;
466 auto z = f + j + g;
467

468 return BinaryAff((k + aa + d) / z,
469 (k + c + b) / z,
470 a.curve);
471 }
472

473 /**
474 * @p birMapAff(const NTL::GF2E& u, const NTL::GF2E& v,
475 * const BinaryCurve& curve)
476 * @brief Birational Map from Weierstrass curve to Binary Edwards curve.
477 */
478 inline BinaryAff birMapAff(const NTL::GF2E& u, const NTL::GF2E& v,
479 const NTL::GF2E& a2, const BinaryCurve& curve) {
480 NTL::GF2E x, y;
481 mol_bm_aff(x, y, u, v, NTL::GF2E::degree(), curve.c, curve.d, a2);
482 return BinaryAff(x, y, curve);
483 }
484

485

486 /**
487 * @var TwistedAff
488 * @brief Affine points on a twisted curve
489 *
490 * This typedef builds the four functions necessary to flesh out our Affine
491 * template for twisted affine points.
492 */
493 using TwistedAff = Affine<NTL::ZZ_pE, TwistedCurve>;
494

495 /**
496 * @p aff_id(const TwistedCurve& curve)
497 * @brief Affine neutral element on twisted curve.
498 */
499 inline TwistedAff aff_id(const TwistedCurve& curve) {
500 return TwistedAff(NTL::ZZ_pE::zero(), NTL::to_ZZ_pE(1), curve);
501 }
502

503 /**
504 * @p aff_add(const TwistedAff& a1, const TwistedAff& a2)
505 * @brief Affine addition for points on a twisted curve.
506 */
507 inline TwistedAff aff_add(const TwistedAff& a1, const TwistedAff& a2) {
508 auto w = a1.curve.d * a1.x * a2.x * a1.y * a2.y;
509 auto num_x = a1.x * a2.y + a1.y * a2.x;
510 auto num_y = a1.y * a2.y - a1.curve.d * a1.x * a2.x;
511 auto den_x = 1 + w;
512 auto den_y = 1 - w;
513

514 return TwistedAff(num_x / den_x, num_y / den_y, a1.curve);
515 }
516
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517 /**
518 * @p aff_neg(const TwistedAff& a)
519 * @brief Negation of an affine point on a twisted curve.
520 */
521 inline TwistedAff aff_neg(const TwistedAff& a) {
522 return TwistedAff(-a.x, a.y, a.curve);
523 }
524

525 /**
526 * @p aff_double(const TwistedAff& a)
527 * @brief Affine point doubling on a twisted curve.
528 */
529 inline TwistedAff aff_double(const TwistedAff& a) {
530 auto b = NTL::sqr(a.x + a.y);
531 auto c = NTL::sqr(a.x);
532 auto d = NTL::sqr(a.y);
533 auto e = a.curve.c * c;
534 auto f = e + d;
535 auto j = f - 2;
536 auto z = f * j;
537

538 return TwistedAff(((b - c - d) * j) / z,
539 (f * (e - d)) / z,
540 a.curve);
541 }
542

543

544 //------- Projective Specialization Functions -------//
545

546 /**
547 * @var OddProj
548 * @brief Projective points on an odd curve
549 *
550 * This typedef builds the four functions necessary to flesh out our
551 * Projective template for odd affine points.
552 */
553 using OddProj = Projective<NTL::ZZ_pE, OddCurve>;
554

555 /**
556 * @p proj_id(const OddCurve& curve)
557 * @brief Projective neutral element on odd curve.
558 */
559 inline OddProj proj_id(const OddCurve& curve) {
560 return OddProj(NTL::ZZ_pE::zero(),
561 curve.c,
562 NTL::to_ZZ_pE(1),
563 curve);
564 }
565

566 /**
567 * @p proj_add(const OddProj& p1, const OddProj& p2)
568 * @brief Projective addition for points on an odd curve.
569 */
570 inline OddProj proj_add(const OddProj& p1, const OddProj& p2) {
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571 // From Bernstein & Lange, "Faster Addition and Doubling on Elliptic
572 // Curves"
573 auto a = p1.z * p2.z;
574 auto b = NTL::sqr(a);
575 auto c = p1.x * p2.x;
576 auto d = p1.y * p2.y;
577 auto e = p1.curve.d * c * d;
578 auto f = b - e;
579 auto g = b + e;
580 return OddProj(a * f * ((p1.x + p1.y) * (p2.x + p2.y) - c - d),
581 a * g * (d - c),
582 p1.curve.c * f * g,
583 p1.curve);
584 }
585

586 /**
587 * @p proj_neg(const OddProj& p)
588 * @brief Negation of an projective point on an odd curve.
589 */
590 inline OddProj proj_neg(const OddProj& p) {
591 return OddProj(-p.x, p.y, p.z, p.curve);
592 }
593

594 /**
595 * @p proj_double(const OddProj& p)
596 * @brief Projective point doubling on odd curve.
597 */
598 inline OddProj proj_double(const OddProj& p) {
599 /// From Bernstein & Lange, "Faster Addition and Doubling on Elliptic
600 /// Curves"
601 auto b = NTL::sqr(p.x + p.y);
602 auto c = NTL::sqr(p.x);
603 auto d = NTL::sqr(p.y);
604 auto e = c + d;
605 auto h = NTL::sqr(p.curve.c * p.z);
606 auto j = e - 2 * h;
607 return OddProj(p.curve.c * (b - e) * j,
608 p.curve.c * e * (c - d),
609 e * j,
610 p.curve);
611 }
612

613

614 /**
615 * @var BinaryProj
616 * @brief Projective points on an binary curve
617 *
618 * This typedef builds the four functions necessary to flesh out our
619 * Projective template for binary affine points.
620 */
621 using BinaryProj = Projective<NTL::GF2E, BinaryCurve>;
622

623 /**
624 * @p proj_id(const BinaryCurve& curve)
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625 * @brief Projective neutral element on binary curve.
626 */
627 inline BinaryProj proj_id(const BinaryCurve& curve) {
628 return BinaryProj(NTL::GF2E::zero(),
629 NTL::GF2E::zero(),
630 NTL::to_GF2E(1),
631 curve);
632 }
633

634 /**
635 * @p proj_add(const BinaryProj& p1, const BinaryProj& p2)
636 * @brief Projective addition for points on a binary curve.
637 */
638 inline BinaryProj proj_add(const BinaryProj& p1, const BinaryProj& p2) {
639 /// from Bernstein, Lange, and Farashahi, "Binary Edwards Curves"
640 auto w1 = p1.x + p1.y;
641 auto w2 = p2.x + p2.y;
642 auto a = p1.x * (p1.x + p1.z);
643 auto b = p1.y * (p1.y + p1.z);
644 auto c = p1.z * p2.z;
645 auto d = w2 * p2.z;
646 auto e = p1.curve.c * NTL::sqr(c);
647 auto h = (p1.curve.c * p2.z + p1.curve.d * w2) * w1 * c;
648 auto i = p1.curve.c * c * p1.z;
649 auto u = e + a * d;
650 auto v = e + b * d;
651 auto s = u * v;
652 return BinaryProj(
653 s * p1.y + (h + p2.x * (i + a * (p2.y + p2.z))) * v * p1.z,
654 s * p1.x + (h + p2.y * (i + b * (p2.x + p2.z))) * u * p1.z,
655 s * p1.z,
656 p1.curve);
657 }
658

659 /**
660 * @p proj_neg(const BinaryProj& p)
661 * @brief Negation of an projective point on a binary curve.
662 */
663 inline BinaryProj proj_neg(const BinaryProj& p) {
664 return BinaryProj(p.y, p.x, p.z, p.curve);
665 }
666

667 /**
668 * @p proj_double(const BinaryProj& p)
669 * @brief Projective point doubling on binary curve.
670 */
671 inline BinaryProj proj_double(const BinaryProj& p) {
672 /// from Bernstein, Lange, and Farashahi, "Binary Edwards Curves"
673 auto a = NTL::sqr(p.x);
674 auto b = NTL::sqr(a);
675 auto c = NTL::sqr(p.y);
676 auto d = NTL::sqr(c);
677 auto e = NTL::sqr(p.z);
678 auto f = p.curve.c * NTL::sqr(e);
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679 auto g = (p.curve.d / p.curve.c) * (b + d);
680 auto h = a * e;
681 auto i = c * e;
682 auto j = h + i;
683 auto k = g + p.curve.d * j;
684 return BinaryProj(k + h + d, k + i + b, f + j + g, p.curve);
685 }
686

687 /**
688 * @p birMapProj(const NTL::GF2E& u, const NTL::GF2E& v,
689 * const BinaryCurve& curve)
690 * @brief Birational Map from Weierstrass curve to Binary Edwards curve.
691 */
692 inline BinaryProj birMapProj(const NTL::GF2E& u, const NTL::GF2E& v,
693 const NTL::GF2E& a2, const BinaryCurve& curve) {
694 NTL::GF2E x, y, z;
695 mol_bm_proj(x, y, z, u, v, NTL::GF2E::degree(), curve.c, curve.d, a2);
696 return BinaryProj(x, y, z, curve);
697 }
698

699

700 /**
701 * @var TwistedProj
702 * @brief Projective points on an twisted curve
703 *
704 * This typedef builds the four functions necessary to flesh out our
705 * Projective* template for twisted affine points.
706 */
707 using TwistedProj = Projective<NTL::ZZ_pE, TwistedCurve>;
708

709 /**
710 * @p proj_id(const TwistedCurve& curve)
711 * @brief Projective neutral element on twisted curve.
712 */
713 inline TwistedProj proj_id(const TwistedCurve& curve) {
714 return TwistedProj(NTL::ZZ_pE::zero(),
715 NTL::to_ZZ_pE(1),
716 NTL::to_ZZ_pE(1),
717 curve);
718 }
719

720 /**
721 * @p proj_add(const TwistedProj& p1, const TwistedProj& p2)
722 * @brief Projective addition for points on a twisted curve.
723 */
724 inline TwistedProj proj_add(const TwistedProj& p1, const TwistedProj& p2) {
725 /// From Bernstein, Birkner, Joye, Lange, Peters, "Twisted Edwards
726 /// Curves"
727 auto a = p1.z * p2.z;
728 auto b = NTL::sqr(a);
729 auto c = p1.x * p2.x;
730 auto d = p1.y * p2.y;
731 auto e = p1.curve.d * c * d;
732 auto f = b - e;
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733 auto g = b + e;
734 return TwistedProj(a * f * ((p1.x + p1.y) * (p2.x + p2.y) - c - d),
735 a * g * (d - p1.curve.c * c),
736 f * g,
737 p1.curve);
738 }
739

740 /**
741 * @p proj_neg(const TwistedProj& p)
742 * @brief Negation of an projective point on a twisted curve.
743 */
744 inline TwistedProj proj_neg(const TwistedProj& p) {
745 return TwistedProj(-p.x, p.y, p.z, p.curve);
746 }
747

748 /**
749 * @p proj_double(const TwistedProj& p)
750 * @brief Projective point doubling on twisted curve.
751 */
752 inline TwistedProj proj_double(const TwistedProj& p) {
753 /// From Bernstein, Birkner, Joye, Lange, Peters, "Twisted Edwards
754 /// Curves"
755 auto b = NTL::sqr(p.x + p.y);
756 auto c = NTL::sqr(p.x);
757 auto d = NTL::sqr(p.y);
758 auto e = p.curve.c * c;
759 auto f = e + d;
760 auto h = NTL::sqr(p.z);
761 auto j = f - 2 * h;
762 return TwistedProj((b - c - d) * j, f * (e - d), f * j, p.curve);
763 }
764 }
765

766

767

768 #endif // _POINTS_H

Listing 7.9: utilities.h
1 /**
2 * @file utilities.h
3 * @brief Utilties for Edwards Curves and points on them
4 * @author Graham Enos
5 *
6 * This file contains various utilities for e2c2.
7 */
8

9

10 #ifndef _UTILITIES_H
11 #define _UTILITIES_H
12

13

14 #include <algorithm> // For reverse
15 #include <sstream> // For stringstream set_parameter hackery
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16 #include <stdexcept> // Exceptions
17

18

19 /// Namespace for our library
20 namespace e2c2 {
21

22 /**
23 * @p set_parameter(T& param, const std::string& value,
24 * const bool& hex_and_rev=false)
25 * @brief Generic hackery to set a parameter to a string
26 *
27 * @tparam T type of parameter
28 *
29 * This function sets the parameter "param" to the value given in the
30 * string "value." Basically this is to smooth over some of the rough edges
31 * of NTL.
32 */
33 template <class T>
34 void set_parameter(T& param, const std::string& value,
35 const bool& hex_and_rev=false) {
36 std::stringstream ss;
37 std::ostream& out = ss;
38 std::istream& in = ss;
39 std::string v(value.begin(), value.end());
40 if (hex_and_rev) {
41 reverse(v.begin(), v.end());
42 out << "0x";
43 }
44 out << v;
45 in >> param;
46 }
47

48

49 /**
50 * @p InvalidParametersException
51 * @brief Custom exception to be thrown when building a curve with invalid
52 * parameters
53 */
54 class InvalidParametersException : public std::invalid_argument {
55 public:
56 InvalidParametersException() :
57 std::invalid_argument("INVALID PARAMETERS") {}
58 };
59

60

61 /**
62 * @p NotImplementedException
63 * @brief Custom exception to be thrown when we reach the limits of current
64 * implementation
65 */
66 class NotImplementedException : public std::runtime_error {
67 public:
68 NotImplementedException() :
69 std::runtime_error("NOT YET IMPLEMENTED") {}
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70 };
71

72

73 /**
74 * @p DifferentCurvesException
75 * @brief Custom exception to be thrown when attempting to operate on
76 * points from different curves
77 */
78 class DifferentCurvesException : public std::invalid_argument {
79 public:
80 DifferentCurvesException() :
81 std::invalid_argument("THESE POINTS BELONG TO DIFFERENT CURVES") {}
82 };
83 }
84 #endif // _UTILITIES_H

Listing 7.10: mol.h
1 /**
2 * @file mol.h
3 * @brief Birational Map and utilities from MOL Paper
4 * @author Graham Enos
5 *
6 * This file contains the interface to the C++ implementation of the birational
7 * map and assorted utility functions given in Moloney, O’Mahony, & Laurent’s
8 * paper, available here: http://eprint.iacr.org/2010/208
9 */

10

11 #ifndef _MOL_H
12 #define _MOL_H
13

14 #include <iostream> // Readable output
15 #include <NTL/ZZ.h> // Arbitrarily large integers
16 #include <NTL/ZZ_pE.h> // Field elements from @f$ \mathbf{F}_{p^n} @f$
17 #include <NTL/GF2E.h> // Field elements from @f$ \mathbf{F}_{2^n} @f$
18 #include "curves.h" // Edwards curves (and variations)
19 #include "utilities.h" // Utilities header for e2c2 project
20

21

22 /// Namespace for our library
23 namespace e2c2 {
24

25 /// Per MOL paper, \f$\sqrt{\alpha} = \alpha^{2^{m-1}}\f$
26 inline const NTL::GF2E gf2m_sqrt(const NTL::GF2E& alpha, const long& m) {
27 auto s = alpha;
28 for (auto i = 0L; i < m - 1; ++i) {
29 sqr(s, s);
30 }
31 return s;
32 }
33

34

35 /// Half-Trace function
36 inline const NTL::GF2E half_trace(const NTL::GF2E& alpha, const long m) {
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37 auto ht = NTL::GF2E::zero();
38 auto e = NTL::to_ZZ(1);
39 for (auto i = 0L; i <= (m - 1) / 2; ++i) {
40 ht += power(alpha, e);
41 e <<= 2;
42 }
43 return ht;
44 }
45

46

47 /// MOL’s Algorithm 1 to compute d1
48 inline const NTL::GF2E mol_alg_1(const long& n, const NTL::GF2E& a2,
49 const NTL::GF2E& a6) {
50 auto t = trace(a2), r = trace(a6);
51 auto a6_2 = gf2m_sqrt(a6, n);
52 auto a6_4 = gf2m_sqrt(a6_2, n);
53 auto x = NTL::GF2E::zero(), d1 = NTL::GF2E::zero();
54 set_parameter(x, "[0 1]");
55 auto w = x + trace(x);
56 if (t == 0 && r == 1) {
57 set(d1);
58 } else {
59 if (t == 1 && r == 0) {
60 d1 = a6_4;
61 } else {
62 if (t == 1 && r == 1 && a6 != 1) {
63 if (trace(inv(a6 + 1)) == 1) {
64 d1 = a6_2 + a6_4;
65 } else {
66 d1 = a6_4 + 1;
67 }
68 } else {
69 if (t == 1 && a6 == 1) {
70 if (trace(inv(w)) == 1) {
71 d1 = w;
72 } else {
73 if (trace(inv(w + 1)) == 1) {
74 d1 = inv(w + 1);
75 } else {
76 d1 = inv(w + 1) + 1;
77 }
78 }
79 } else {
80 if (t == 0 && r == 0) {
81 if (trace(inv(a6 + 1)) == 0) {
82 d1 = a6_4 + 1;
83 } else {
84 auto i = 1;
85 auto s = a6_2;
86 while (trace(NTL::power(a6,
87 NTL::power_long(2, i) + 1))
88 == 0) {
89 s *= s;
90 ++i;
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91 }
92 d1 = inv(s + 1);
93 }
94 }
95 }
96 }
97 }
98 }
99 return d1;

100 }
101

102

103 /// Construct a Binary Edwards Curve from Weierstrass Parameters, degree of
104 /// field extension, and supplied cardinality of curve
105 inline BinaryCurve from_weierstrass(const long n, const NTL::ZZ& m,
106 const NTL::GF2E& a2, const NTL::GF2E& a6) {
107 auto c = mol_alg_1(n, a2, a6);
108 auto d = NTL::sqr(c) + c + gf2m_sqrt(a6, n) / NTL::sqr(c);
109 return BinaryCurve(c, d, m);
110 }
111

112

113 /// MOL’s birational map from Weierstrass curve to Affine Binary Edwards
114 inline void mol_bm_aff(NTL::GF2E& x, NTL::GF2E& y, const NTL::GF2E& u,
115 const NTL::GF2E& v, const long m, const NTL::GF2E& d1,
116 const NTL::GF2E& d2, const NTL::GF2E& a2) {
117 auto b = half_trace(sqr(d1) + d2 + a2, m), tmp = sqr(d1) + d1 + d2;
118 auto z = sqr(u) + d1 * u + sqr(d1) * tmp;
119 x = d1 * (b * u + v + (sqr(d1) + d1) * tmp);
120 y = (x + d1 * u);
121 x /= z;
122 y /= z;
123 }
124

125

126 /// MOL’s birational map from Weierstrass curve to Projective Binary
127 /// Edwards
128 inline void mol_bm_proj(NTL::GF2E& x, NTL::GF2E& y, NTL::GF2E& z,
129 const NTL::GF2E& u, const NTL::GF2E& v, const long m,
130 const NTL::GF2E& d1, const NTL::GF2E& d2, const NTL::GF2E& a2) {
131 auto b = half_trace(sqr(d1) + d2 + a2, m), tmp = sqr(d1) + d1 + d2;
132 x = d1 * (b * u + v + (sqr(d1) + d1) * tmp);
133 y = (x + d1 * u);
134 z = sqr(u) + d1 * u + sqr(d1) * tmp;
135 }
136 }
137 #endif // _MOL_H

Listing 7.11: curves test.cc
1 /**
2 * @file curves_test.cc
3 * @brief A quick test of curve functionality
4 * @author Graham Enos
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5 *
6 * This file gives a demonstration of current curve functionality in e2c2.
7 */
8

9 #include <cstdlib> // User input
10 #include <iostream> // Readable output
11 #include "e2c2.h"
12

13 using namespace std;
14 using namespace NTL;
15 using namespace e2c2;
16

17

18 /**
19 * @p odd_test()
20 * @brief Test of odd curve functionality
21 */
22 void odd_test() {
23 ZZ_p::init(power2_ZZ(255) - 19); /// Sets F_p
24 ZZ_pE::init(ZZ_pX(1, 1)); /// Sets F_(p^n) = F_(p^1)
25

26 /// Bernstein’s "Curve25519"
27 auto c = to_ZZ_pE(1), d = to_ZZ_pE(121665) / to_ZZ_pE(121666);
28 auto m = 8 * (power2_ZZ(252) +
29 to_ZZ("27742317777372353535851937790883648493"));
30 OddCurve o(c, d, m);
31 cout << o << endl;
32 }
33

34

35 /**
36 * @p binary_test()
37 * @brief Test of binary curve functionality
38 */
39 void binary_test() {
40 /// Our irred. polynomial is x^163 + x^7 + x^6 + x^3 + 1, per FIPS 186-3
41 GF2E::init(GF2X(163, 1) + GF2X(7, 1) + GF2X(6, 1) + GF2X(3, 1) +
42 GF2X(0, 1));
43 GF2X::HexOutput = true; /// more compact output
44 auto n = 163;
45 auto m = to_ZZ("5846006549323611672814742442876390689256843201587");
46 auto a2 = to_GF2E(1), a6 = GF2E::zero();
47 /// a6 = b in Fips 186-3 language
48 set_parameter(a6, "20a601907b8c953ca1481eb10512f78744a3205fd", true);
49 auto b_163 = from_weierstrass(n, m, a2, a6);
50

51 cout << b_163 << endl;
52 cout << "Here are the (c, d) parameters again: " << endl;
53 cout << "(" << b_163.c << ", " << b_163.d << ")" << endl;
54

55 /// Purposefully raising an InvalidParametersException
56 cout << endl << endl << "Hold on tight; I’m going to try to"
57 << " make a binary curve with c = d = 0..." << endl;
58 BinaryCurve b(GF2E::zero(), GF2E::zero(), ZZ::zero());
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59 }
60

61

62 /**
63 * @p twisted_test()
64 * @brief Test of twisted curve functionality
65 */
66 void twisted_test() {
67 ZZ_p::init(power2_ZZ(255) - 19); /// Sets F_p
68 ZZ_pE::init(ZZ_pX(1, 1)); /// Sets F_(p^n) = F_(p^1)
69

70 /// Bernstein’s "Curve25519," in twisted form
71 auto c = to_ZZ_pE(121666), d = to_ZZ_pE(121665);
72 auto m = 8 * (power2_ZZ(252) +
73 to_ZZ("27742317777372353535851937790883648493"));
74 TwistedCurve t(c, d, m);
75 cout << t << endl;
76 }
77

78

79 /**
80 * @p main(int argc, char *argv[])
81 * @brief Runs appropriate curve test
82 */
83 int main(int argc, char *argv[]) {
84 try {
85 if (argc == 1)
86 binary_test();
87 else {
88 switch(atoi(argv[1])) {
89 case 0:
90 odd_test();
91 break;
92 case 1:
93 binary_test();
94 break;
95 case 2:
96 twisted_test();
97 break;
98 default:
99 cout << "Please select a type of curve." << endl;

100 }
101 }
102 } catch (InvalidParametersException& e) {
103 cout << e.what() << endl;
104 }
105

106 return 0;
107 }

Listing 7.12: points test.cc
1 /**
2 * @file points_test.cc
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3 * @brief A quick test of point functionality
4 * @author Graham Enos
5 *
6 * This file gives a demonstration of current point functionality in e2c2.
7 */
8

9 #include <cstdlib> // User input
10 #include <iostream> // Readable output
11 #include "e2c2.h"
12

13 using namespace std;
14 using namespace NTL;
15 using namespace e2c2;
16

17

18 /**
19 * @p odd_test()
20 * @brief Test of odd point functionality
21 */
22 void odd_test() {
23 ZZ_p::init(power2_ZZ(255) - 19); /// Sets F_p
24 ZZ_pE::init(ZZ_pX(1, 1)); /// Sets F_(p^n) = F_(p^1)
25

26 /// Bernstein’s "Curve25519"
27 auto c = to_ZZ_pE(1), d = to_ZZ_pE(121665) / to_ZZ_pE(121666);
28 auto m = 8 * (power2_ZZ(252) +
29 to_ZZ("27742317777372353535851937790883648493"));
30 OddCurve o(c, d, m);
31 cout << o << endl;
32

33 OddAff id(o);
34 cout << "id = " << id << endl;
35 cout << "17 * id = " << 17 * id << endl;
36

37 auto x = to_ZZ_pE(1), y = ZZ_pE::zero(), z = to_ZZ_pE(1);
38 OddProj point1(x, y, z, o), point2(point1);
39 for (auto i = 0; i < 4; ++i) {
40 cout << "ProjectivePoint 2 = " << point2 << endl;
41 cout << "ProjPoint2 + ProjPoint1 = " << point2 + point1 << endl;
42 point2 += point1;
43 }
44

45 cout << (point1 + OddProj(OddAff(x, y, o))) << endl;
46

47 cout << -point1 << endl;
48

49 cout << "3 * point2 = " << 3 * point2
50 << endl;
51

52 }
53

54

55 /**
56 * @p binary_test()
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57 * @brief Test of binary point functionality
58 */
59 void binary_test() {
60 /// Our irred. polynomial is x^163 + x^7 + x^6 + x^3 + 1, per FIPS 186-3
61 GF2E::init(GF2X(163, 1) + GF2X(7, 1) + GF2X(6, 1) + GF2X(3, 1) +
62 GF2X(0, 1));
63 GF2X::HexOutput = true; /// more compact output
64 auto n = 163;
65 auto m = to_ZZ("5846006549323611672814742442876390689256843201587");
66 auto a2 = to_GF2E(1), a6 = GF2E::zero();
67 /// a6 = b in Fips 186-3 language
68 set_parameter(a6, "20a601907b8c953ca1481eb10512f78744a3205fd", true);
69 auto b_163 = from_weierstrass(n, m, a2, a6);
70 cout << b_163 << endl;
71

72 BinaryAff id(b_163);
73 cout << "id = " << id << endl;
74 cout << "17 * id = " << 17 * id << endl;
75

76 GF2E x = to_GF2E(1);
77 GF2E y = to_GF2E(1);
78 GF2E z = to_GF2E(1);
79 BinaryProj point1(x, y, z, b_163);
80 BinaryProj point2(point1);
81 for (auto i = 0; i < 4; ++i) {
82 cout << "ProjectivePoint 2 = " << point2 << endl;
83 cout << "ProjPoint2 + ProjPoint1 = " << point2 + point1 << endl;
84 point2 += point1;
85 }
86

87 cout << (point1 + BinaryProj(BinaryAff(x, y, b_163))) << endl;
88

89 cout << -point1 << endl;
90

91 cout << "3 * point2 = " << 3 * point2
92 << endl;
93 /// Purposefully raising an InvalidParametersException
94 cout << endl << endl << "Hold on tight; I’m going to try to"
95 << " make a binary point with (x : y : z) = (1 : 0 : 1)..." << endl;
96 BinaryProj(to_GF2E(1), GF2E::zero(), to_GF2E(1), b_163);
97 }
98

99

100 /**
101 * @p twisted_test()
102 * @brief Test of twisted point functionality
103 */
104 void twisted_test() {
105 ZZ_p::init(power2_ZZ(255) - 19); /// Sets F_p
106 ZZ_pE::init(ZZ_pX(1, 1)); /// Sets F_(p^n) = F_(p^1)
107

108 /// Bernstein’s "Curve25519," in twisted form
109 auto c = to_ZZ_pE(121666), d = to_ZZ_pE(121665);
110 auto m = 8 * (power2_ZZ(252) +
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111 to_ZZ("27742317777372353535851937790883648493"));
112 TwistedCurve t(c, d, m);
113 cout << t << endl;
114

115 TwistedAff id(t);
116 cout << "id = " << id << endl;
117 cout << "17 * id = " << 17 * id << endl;
118

119 ZZ_pE x = ZZ_pE::zero();
120 ZZ_pE y = to_ZZ_pE(-1);
121 ZZ_pE z = to_ZZ_pE(1);
122 TwistedProj point1(x, y, z, t);
123 TwistedProj point2(point1);
124 for (auto i = 0; i < 4; ++i) {
125 cout << "ProjectivePoint 2 = " << point2 << endl;
126 cout << "ProjPoint2 + ProjPoint1 = " << point2 + point1 << endl;
127 point2 += point1;
128 }
129

130 cout << (point1 + TwistedProj(TwistedAff(x, y, t))) << endl;
131

132 cout << -point1 << endl;
133

134 cout << "3 * point2 = " << 3 * point2
135 << endl;
136 /// Purposefully raising an InvalidParametersException
137 cout << endl << endl << "Hold on tight; I’m going to try to"
138 << " make a binary point with (x : y : z) = (1 : 0 : 1)..." << endl;
139 TwistedProj(to_ZZ_pE(1), ZZ_pE::zero(), to_ZZ_pE(1), t);
140 }
141

142

143 /**
144 * @p main(int argc, char *argv[])
145 * @brief Runs appropriate point test
146 */
147 int main(int argc, char *argv[]) {
148 try {
149 if (argc == 1)
150 binary_test();
151 else {
152 switch(atoi(argv[1])) {
153 case 0:
154 odd_test();
155 break;
156 case 1:
157 binary_test();
158 break;
159 case 2:
160 twisted_test();
161 break;
162 default:
163 cout << "Please select a type of curve." << endl;
164 }
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165 }
166 } catch (InvalidParametersException& e) {
167 cout << e.what() << endl;
168 }
169

170 return 0;
171 }

Listing 7.13: key demo.cc
1 /**
2 * @file key_demo.cc
3 * @brief Demo of DH Key Exchange with projective points
4 * @author Graham Enos
5 *
6 * This is a sample file that makes use of the classes and methods in
7 * b_projective.cc and b_edwards.cc to conduct a DH key exchange demonstration.
8 */
9

10 #include <iostream>
11 #include <sstream>
12 #include "e2c2.h"
13

14 using namespace std;
15 using namespace NTL;
16 using namespace e2c2;
17

18 /**
19 * @brief A quick key exchange demo
20 *
21 * This function shows how to use our projective points on a Binary Edwards
22 * Curve to conduct a Diffie-Hellman key exchange.
23 */
24 int main(int argc, char *argv[]) {
25 /// Our irred. polynomial is x^163 + x^7 + x^6 + x^3 + 1, per FIPS 186-3
26 GF2E::init(GF2X(163, 1) + GF2X(7, 1) + GF2X(6, 1) + GF2X(3, 1) +
27 GF2X(0, 1));
28 GF2X::HexOutput = true; /// more compact output
29 auto n = 163;
30 GF2E a2 = to_GF2E(1), a6;
31 /// a6 = b in Fips 186-3 language
32 set_parameter(a6,
33 string("20a601907b8c953ca1481eb10512f78744a3205fd"),
34 true);
35 auto m = to_ZZ("5846006549323611672814742442876390689256843201587");
36 auto c = mol_alg_1(n, a2, a6);
37 auto d = NTL::sqr(c) + c + gf2m_sqrt(a6, n) / NTL::sqr(c);
38 auto b_163 = from_weierstrass(n, m, a2, a6);
39

40 /// Weierstrass params; need to be changed to Edwards Curve
41 GF2E g_x, g_y, x, y, z;
42 set_parameter(g_x, "3f0eba16286a2d57ea0991168d4994637e8343e36", true);
43 set_parameter(g_y, "0d51fbc6c71a0094fa2cdd545b11c5c0c797324f1", true);
44 mol_bm_proj(x, y, z, g_x, g_y, n, c, d, a2);
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45 BinaryProj P(x, y, z, b_163);
46 BinaryProj id(b_163);
47

48 /// Key Exchange
49 cout << "Alice and Bob wish to communicate in private, " <<
50 "so they need a shared secret key." << endl << endl << endl;
51 /// Seeding pseudorandom generator
52 SetSeed(argc <= 1 ? to_ZZ(1729) : to_ZZ(argv[1]));
53 /// Alice’s first steps
54 auto a = RandomLen_ZZ(NumBits(m));
55 cout << "Alice first picks a secret random number a = " << a <<
56 " with the same number of bits as m (the size of our group)..." <<
57 endl;
58 auto aP = a * P;
59 cout << "...then sends Bob the point pA = a * P (the generator) = "
60 << aP << endl << endl;
61 /// Bob’s first steps
62 auto b = RandomLen_ZZ(NumBits(m));
63 cout << "Bob also picks a secret random number b = " << b << endl;
64 auto bP = b * P;
65 cout << "Then he sends Alice the point bP = b * P = " << bP << endl
66 << endl;
67 /// Alice reconstructs private key
68 auto key_a = a * bP;
69 cout << "Then Alice takes a and multiplies it by bP to get key_a = " <<
70 key_a << endl;
71 /// Bob does the same
72 auto key_b = b * aP;
73 cout << "Similarly, Bob calculates key_b = b * aP = " << key_b << endl;
74 /// Quick check
75 cout << "Are these in fact the same key? " << endl;
76 if (key_a == key_b) {
77 cout << "Yes!" << endl <<
78 "So now they share a secret key, and can communicate securely."
79 << endl << endl << endl;
80 } else {
81 cout << "NO...uh oh, my code is wrong somewhere..." << endl;
82 }
83 return 0;
84 }
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