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ABSTRACT

NADIA ABUSAYMEH NAJJAR. Group modeling, recommendation and evaluation
in collaborative filtering group-based recommender systems. (Under the direction of

DR. DAVID WILSON)

As the field of recommender systems has grown, more and more attention has been

focused on the need for systems that provide and tailor recommendations to groups

of users, as opposed to individuals. We have identified open issues in group-based

recommender system along three different dimensions: (1) the group recommendation

technique employed to generate recommendations, (2) the group modeling strategy

for generating group recommendations, and (3) the group evaluation metrics and

procedures used for assessment of the recommendations. Group recommendation

presents significant challenges in evolving best practice approaches to group modeling,

recommendation, and evaluation. Early research provided more limited, illustrative

evaluations for group recommender approaches, but recent work has been exploring

more comprehensive evaluative techniques.

The main research problem we address is how to improve the prediction accuracy in

group-based recommender systems employing a memory-based collaborative filtering

technique. We break down this problem along the dimensions we identified in group-

based systems to the following questions:

· How to implement a principled approach to evaluate the prediction accuracy

in group-based recommender systems using datasets of individual users’ prefer-

ences?
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· Does the evaluation approach affect the results for the prediction accuracy?

· Does rating normalization increase the prediction accuracy for the group?

· Does incorporating the group-context in the neighborhood selection increase

the prediction accuracy?

· Does a hybrid group-based strategy increase the prediction accuracy?

· Does incorporating the group context in the group modeling increase the pre-

diction accuracy?

Group-based recommender systems introduce extra overhead in recruiting groups

of users to cooperate toward a common goal at the same time. To overcome this lim-

itation researchers have utilized publicly available large-scale datasets derived from

individual-based recommender systems by creating synthesized groups and using them

in offline evaluations. The need for a principled approach to evaluations utilizing this

technique remains an open issue. We address this problem by developing a group test-

ing framework to evaluate group-based recommenders in this context using data sets

from traditional, single-user, collaborative filtering systems. We utilize this group

testing framework in conducting comparatively large-scale evaluations of our pro-

posed approaches along the problem dimensions of group-based recommenders. We

first show the feasibility of an exact overlap constraint for evaluation. We then com-

pare the prediction accuracy of some of the most commonly adopted group modeling

strategies and compare to previous research that utilized synthesized groups with an

average ground truth and report on the discrepancy of evaluation results between the

two approaches. We also show that the choice modeling the ground truth for syn-

thesized groups affects the evaluation results by comparing the prediction accuracy
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using various models.

To be able to compare any new approach to previous research in this domain we

need to utilize the same baseline they have used for evaluation where they model

the actual group preference as an average of the individual group members prefer-

ences. We utilize the testing framework to create groups and the training and testing

datasets for those groups. Since different users provide preferences on different scales

research in individual based recommender has shown that normalizing the ratings in

the prediction calculation increased the accuracy of predictions for users. This led us

to explore the affect of rating normalization on the prediction accuracy for groups of

users. We show the conditions where rating normalization would be beneficial for the

group.

Previous research in this context has mainly adopted recommendation techniques

validated for single user recommender systems with out considering the group con-

text in the recommendation technique. We believe that utilizing the group context in

the recommendation technique and group modeling would result in predictions with

higher accuracy for the group. We evaluate a neighborhood model incorporating

the group context in the neighborhood selection with a weighted approach based on

neighborhood overlap. Our results show a higher prediction accuracy for the group

is realized with this finer-grained neighborhood weighting model based on the group

context is applied. We also evaluate a hybrid recommendation technique that incor-

porates the two group-based strategies. Our results show an increase in the prediction

accuracy for groups in general. We also evaluate the performance of this approach

along different group contexts and identify that this model is more advantageous for
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groups with highly similar group members terms of prediction accuracy.

To incorporate the group context in the group modeling previous research proposed

incorporating a disagreement component in the model using the predicted ratings for

that item. This led us to explore ways to base the disagreement model using a con-

crete preference rather than a predicted one since we believe this would increase the

prediction accuracy for the group. Our proposed disagreement model based on item

similarity revealed that it might not be feasible to model disagreement by incorporat-

ing similar items, rated by all the group members, to the target item in the prediction

calculation. Continuing to think along the lines of the group context as a first-class

element of the group model we investigated a Case-based Reasoning approach where

cases are matched based on the group context. Our approach is based on group-

to-group similarity rather than user-to-user case matching where we retrieve whole

previous groups as the starting point for predictions. We confirmed the potential

benefit for integrating whole-group retrieval CBR approaches into group recommen-

dation across different case-base and group conditions. We also demonstrated that

the benefits of a CBR approach may be found even in straightforward implementa-

tions, showing the potential for a broad range of deployments and investigation in

the space.
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CHAPTER 1: INTRODUCTION

Recommender systems are tools that assist users in finding items of interest by

helping them navigate through large and complex information spaces [65]. They are

intelligent information systems that use machine learning and information filtering

techniques to assist the users in finding choices they otherwise would likely have

missed. Recommender systems have been applied in many domains. Common ex-

amples include recommending movies [54], music [71], books [45], news [40], and web

pages [43, 4]. Suggestions for books on Amazon, or movies on Netflix, are commer-

cial examples of such systems. In 2006, Netflix released a data set containing 100

million anonymous movie ratings and challenged the data mining, machine learning,

and computer science communities to develop systems that could beat the prediction

accuracy of its baseline recommendation on this test data set. The contest created a

buzz within the recommender systems field. Until this point, the only publicly avail-

able data for use in recommender systems research was orders of magnitude smaller.

According to the contest website1, more than 48,000 teams from 182 different coun-

tries had downloaded the data. This has increased the attention on such systems and

their research.

Recommender systems have traditionally focused on the individual user as a target

for personalized information filtering. As the field of recommender systems has grown,

1www.netflixprize.com
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increasing attention is being focused on the need for systems that provide and tailor

recommendations to a group of users rather than single users [38, 5]. For example, a

group of friends trying to find a movie to watch together, might use such a system.

Group recommender systems must manage and balance preferences from individuals

across a group of users with a common purpose, in order to tailor choices, options, or

information to the group as a whole. Group recommendations can help to support a

variety of tasks and activities across domains that have a social aspect with shared-

consumption needs. Common examples arise in social entertainment: finding a movie

or a television show for family night, date night, or the like [57, 30, 70]; finding a

restaurant for dinner with work colleagues, family, or friends [49]; finding a dish to

cook that will satisfy the whole group [6], the book that a book club should read next,

the travel destination for the next family vacation [53, 2, 37], or the songs to play at

any social event or at any shared public space [73, 3, 17, 20, 50]. This dissertation

is centered around group-based recommender systems exploring how to increase the

performance of such systems in terms of accuracy.

Research in group-based recommender systems has been focused on approaches to

model the group for recommendation and two main approaches have been proposed:

aggregating preferences and aggregating recommendations [38]. In the aggregating

preferences approach, the individual group members’ preferences are combined into a

group preference model. In the aggregating recommendations approach, group mod-

eling is applied by combining recommendations produced for the individual group

members into a group recommendation. Group modeling strategies are inspired by

Social Choice Theory and focus on modeling the achievement of consensus among
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the group [46]. Variations to these strategies that take into account personality and

social interactions of the group members have been implemented [63][26]. In our

research, we consider research issues with group-based recommender systems along

three different dimensions: (1) the group recommendation technique employed to

generate recommendations, (2) the group modeling for generating group recommen-

dations, and (3) the group evaluation metrics and procedures used for assessment of

the recommendations.

Group-based recommenders have adopted recommendation techniques that have

been verified for single-user recommender systems. Research along this dimension

focused on adapting these techniques for use in group-based recommenders with little

attention given to the fact that these recommendations are generated for a group

rather than individuals. We believe that accounting for the group structure and

characteristics, as part of the recommendation technique, will result in higher quality

recommendations for the group. We evaluate incorporating the group context in the

recommendation technique using a finer-grained weighting schema to neighbors of the

group members based on the group context.

Recent work in group-based recommender systems focused on evaluating the group

modeling strategy performance with respect to group size and cohesiveness. We

believe that accounting for the group structure and characteristics in the choice of

an aggregation strategy, as well as combining the recommendations generated by the

two group modeling approaches, will result in higher quality recommendations for the

group.

The availability of public data sets for evaluating recommender systems played
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a significant role in the advancement of this field (e.g., Netflix prize, MovieLens2).

When it comes to group-based recommender systems such data is not readily avail-

able. Generating group-based data requires extra overhead in recruiting the groups

together and getting them to cooperate and interact towards a common goal at the

same time. Recently, researchers have been utilizing synthetic groups, generated from

single-user data sets, to evaluate various approaches to group recommendations. The

problem with this approach lies in the scope of establishing the ground truth for

these synthesized groups. Previous work that adopted this approach have mainly

evaluated the group recommendations against the individual group members’ rec-

ommendations. We have been exploring ways to utilize the publicly available data

sets in the evaluation of group-based recommenders focusing on identifying groups

with natural agreement to alleviate the problem with establishing ground truth. We

have developed a group testing framework and utilized it to evaluate several foun-

dational techniques employed to generate a recommendation for a group of users

[56]. The framework scans the individual-based recommendation data set and creates

synthesized groups based on giving constraints and group characteristics as well as

identifying some ideal test points for the generated groups.

In this dissertation we extend the evaluation of foundational techniques employed

in group-based systems, utilizing this group testing framework and introducing new

group modeling and recommendation techniques for group recommenders. We eval-

uated the tradeoffs in evaluations that measure the performance of the system in

terms of the satisfaction of the group in a large-scale evaluation. We evaluated rating

2www.movielens.org
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normalization on prediction accuracy for the group. We proposed a neighborhood

selection approach as well as a neighbor weighting model based on the group context.

We also explored group modeling strategies, used to generate personalized recommen-

dations to a group of users, that combine group modeling approaches using a hybrid

model combining profile merging and prediction aggregation taking into account the

group structure and characteristics. We evaluated a group modeling approach based

on disagreement as well as a group model based on case-based reasoning. The next

sections of this chapter introduce recommender systems, techniques and evaluation

metrics with a more detailed overview of the techniques relevant to the scope of this

dissertation.

1.1 Elements of Recommender Systems

Konstan [39] defines recommender systems as, “Recommender systems help in-

dividuals manage a potentially overwhelming set of choices by suggesting specific

information, products, or people to those individuals based on the systems’ knowl-

edge of the individual’s preferences and/or current need, and the collected knowledge

of preferences within the larger community of system users.” They are commonly

used by web sites that suggest products to their users. Suggestions can be based

on popularity, demographics of the user, geographic location/time of the user or an

analysis of the past behavior of the customer as a prediction for future behavior.

These suggestions are personalized, because they help the site adapt itself to each

user. Some systems offer personalization without recommendations. For example,

some webpages customize the background based on the geographic location of the

web request (e.g. Google). On the other hand, some systems offer recommendations



6

without personalization such as recommendations of best sellers or featured products.

Our research focuses on systems that offer personalized recommendations.

In [69] a taxonomy for E-commerce recommender applications is defined, that sepa-

rates their attributes into three categories: functional I/O, recommendation method,

and other design issues. Montaner et al. [55] proposed a taxonomy of recommender

systems that is focused on the user profile generation and maintenance, and includes

the following five classifications: the profile representation technique, the technique

used to generate the initial profile, the source of the relevance feedback which rep-

resents the user interests, the profile learning technique, and the profile adaptation

technique.

Based on the dimensions of group-based recommenders we identified earlier we re-

model these categorizations of recommender systems focusing along three different

dimensions: personalization, filtering technique, and recommendation. Figure 1 illus-

trates these dimensions and outlines how they relate to one another. Personalization

relies on a user model to tailor the system behavior to the user’s needs and prefer-

ences. The filtering technique involves the methods of identifying items of interest to

the user. The recommendation dimension depends on information about the target

model in order to produce the recommendation.
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Figure 1: Recommender systems create a user model, based on user and context
data, which is utilized by the recommendation technique to identify relevant items
and presented to the user based on the target model defined by the system.

1.1.1 Personalization

Personalization consists of a user model that is defined based on user and con-

text information that is relevant to the domain of recommendation. This information

comes in two forms, either implicit or explicit user preferences [27]. For the user data,

implicit preferences are inferred from the user’s behavior without the user’s awareness

of their use in the recommendation processes. They are usually site specific such as

navigation and purchase history. The context data is also inferred from the user’s

behavior such as item popularity based on site specific or external users’ purchase

history. Explicit preferences are intentionally provided by the user with the purpose

of informing the recommender application of their preferences. These are usually in

the form of item ratings or item attributes. The user data contains information the

user specifically provided to the system, while the context data contains information

pertaining to the domain of recommendation provided by other system users or ad-

ministrators. Context data includes different types of information, each type defining
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a certain aspect of context, such as time, location (e.g., theater), companions (e.g.,

for seeing a movie), purpose of a purchase, etc.[65].

Variants to implicit and explicit preferences are preferences identified through

conversational-based recommender systems. In such systems the user is guided through

a sequence of recommendation cycles in which one or more items are recommended

based on some evolving user model [16]. During each cycle the user is given the oppor-

tunity to provide feedback in order to help guide the system closer to the direction of

their desired item. These systems are also referred to as critique-based recommender

systems. Figure 2 shows an example of such interactions in the RentMe [16] system.

Figure 2: Critiquing an apartment during interaction with the RentMe system [16].

1.1.2 Filtering Technique

The filtering technique refers to the methodology used to identify items that match

the user model. These methods can be in their basic form a database lookup to a more

granular approach that does the matching based on more complex filtering algorithms.

Based on [69, 14, 55] we identify seven approaches: Query, Fixed, Demographic, Col-



9

laborative Filtering, Content-based, Utility-based and Knowledge-based. The Query,

Fixed, and Demographic approaches are the more general of these approaches and

offer less personalization. The Utility-based and Knowledge-based approaches are

based on knowledge about how a particular object satisfies the user needs by en-

coding expert domain knowledge. Details on Query and Fixed can be found in [69]

Demographic details can be found in [55], Utility-based and Knowledge-based details

can be found in [14] and Collaborative Filtering and Content-based details can be

found in [69, 55].

The most widely adopted approaches are Collaborative Filtering and Content-

based. Collaborative Filtering recommends items based on correlations between users

or items. For example, if two users rate items similarly, or have similar behaviors (e.g.,

buying, watching, listening), the system infers that they will rate or act on other items

similarly. Content-based techniques recommend items by identifying them based on

attributes, keywords and descriptions of items. For example, knowing the genre

information for movies, and knowing that a user liked “X-Men” and “Iron Man,” the

system infers that the user will like “Batman Forever,” since its genre classifications:

action and adventure, comic book and superhero movies, are similar to the other

two movies. The research scope in this dissertation is focused on the Collaborative

Filtering approach.

Each filtering technique has its limitations and drawbacks. The query and fixed

approach have more of a general feel than a personalized one, but are useful in situa-

tions where the user model is based on limited user and context data. Demographic

techniques are similar to collaborative ones in that they are based on correlations
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between users, but use different data. Users are categorized based on their personal

attributes and recommendations are made under the assumption that users in the

same category have the same tastes or preferences. The main advantage of this tech-

nique is that it does not require a history of user ratings needed by collaborative and

content-based techniques.

Collaborative Filtering (CF) is the most common, most widely implemented, and

most mature of these approaches [41]. They aggregate ratings of items, recognize

similarities between users based on these ratings, and generate new recommendations

based on user-to-user comparisons. CF systems work best in situations where the

density of user preferences is relatively high across a more constant space of items

and suffer when this is not the case. Given the foundational role of Collaborative

Filtering in the research of recommender systems and the availability of public data

sets for use in evaluation, we adopt the CF approach as the filtering technique. The

following sections give a more detailed overview of Collaborative Filtering systems.

Section 1.2 gives a more detailed overview of this approach.

Recommender systems can utilize two or more filtering techniques to overcome lim-

itations of any individual one and gain better performance [15]. Systems that function

in this way are often referred to as hybrid recommender systems. One simple ap-

proach is by combining the two predictions generated for an item by Content-based

and Collaborative Filtering methods using a weighted average. Several hybridiza-

tion approaches have been identified and employed in recommendation systems [14].

The most common approaches are Weighted, Switching and Mixed. In the Weighted

approach, the scores (or votes) of several recommendation techniques are combined
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together to produce a single recommendation. In the Switching approach, the sys-

tem switches between recommendation techniques depending on the current situation

while, in the Mixed approach, the recommendations from several different recom-

menders are presented at the same time.

1.1.3 Recommendation

The recommendation dimension consists of a target model that defines how to se-

lect and present items identified through the filtering technique. Two aspects need

to be considered here; the form the recommendation output needs to take and how

it will be delivered to the user. Some outputs can be in the form of a suggestion of

an item, prediction of user preference for an item, or a ranked list of items. Delivery

of recommendations has taken several forms such as being directly communicated

to the user via email for example, or creating awareness of the availability of such

recommendations to the user and waiting for the user to actively request them be-

fore delivery. For example, Figure 3 depicts how Amazon notifies the user of the

availability of recommendations personalized for them.
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Figure 3: Amazon’s recommendation system makes the user aware of the availability
of recommendations personalized for them.

On the other hand, some systems might passively introduce recommendations as

the user navigates through their site (e.g., people who viewed this item also viewed

these items). Figure 4 depicts how the iTunes recommendation system suggests new

items to the user based on their current context of navigation.
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Figure 4: iTunes music recommendation system introduces new items to the user
based on the current context.

1.2 Collaborative Filtering

CF systems are built on the main idea that “people who agreed in the past are likely

to agree in the future” [64]. They were first introduced in the context of recommender

systems by Tapestry, a system that was designed to filter and recommend documents

extracted from newsgroups to a collection of users. They define collaborative filtering

as “people collaborate to help one another perform filtering by recording their reac-

tions to documents they read” [28]. These reactions can be explicit, in the form of a

preference rating, or implicit actions taken on items that can be interpreted as pref-

erences. These actions can include click-through, viewing, adding to wish list/cart,

purchasing, or returning an item. CF systems work by collecting user feedback on

items in a given domain and exploiting similarities in preference behavior among users
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to identify items for recommendation. The users of a collaborative filtering system

share their analytical judgments and opinions regarding each item that they consume

so that other users of the system can better decide which items to consume [33].

The core of a CF system is a user-item ratings matrix of size m x n, where m is

number of users and n is the number of items. Each user in the matrix has a set

of items which the user has rated, or for which their preferences have been inferred,

and a set of items where preferences need to be predicted. CF systems face many

challenges where techniques used need to be able to deal with highly sparse data

(sparsity), to scale with the increasing numbers of users and items (scalability), and

to make satisfactory recommendations in a short period of time (speed).

Figure 5: User ratings matrix, where each cell corresponds to the rating of user u for
item i. The CF task is to predict the missing rating rui for an active user.

CF methods are divided into two main categories; memory-based and model-based.

The Memory-based [9, 64] CF approach is commonly referred to as Neighborhood-

based and relies on the fact that each person belongs in a larger group of similarly

behaving individuals. As a result, items (e.g., products, movies, books, etc.) fre-

quently purchased/liked by the various members of the group can be used to form a

basis for recommended items. This approach utilizes the entire ratings database to

generate a prediction by using statistical techniques to find the neighbors.
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The second approach is known as model-based [9], where the CF task is viewed

from a probabilistic perspective and involves building a predictive model based on

the ratings data. This model is then trained using the available data, and later used

to predict ratings of users for new items. Several techniques have been used to build

these models such as Bayesian Network (BN) [9], Clustering [9][29], Association Rules

Latent Semantic Analysis [35], Latent Dirichlet Allocation [8], Maximum Entropy

[74], Boltzmann Machines [66], Support Vector Machines [31], and Singular Value

Decomposition [7][68][41].

The model-based approach potentially offers the benefits of both scalability and

speed. It offers scalability, since models resulting from model-based algorithms are

much smaller than the actual data set, and speed, since the model is smaller to

exploit and can usually be constructed offline. Recommendations produced by simple

modeling techniques (e.g., clustering, classification) are often lower in their prediction

accuracy than ones produced using a memory-based approach [65]. In contrast, a

memory-based approach tends to produce recommendations with higher prediction

accuracy, but suffers serious scalability problems as the complexity of computing each

recommendation grows linearly with the number of users and items.

1.2.1 Neighborhood-based CF

The Neighborhood-based method can be outlined in the following steps [33]:

1. Assign a weight to all users with respect to their similarity to the active user.

2. Select the k users that have the highest similarity to the active user. This forms

the “neighborhood.”

3. Calculate a prediction for items based on a weighted combination of the iden-
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tified neighbors’ ratings.

The GroupLens system was first introduced as an automated collaborative filtering

system using a neighborhood-based algorithm [64]. GroupLens provided personalized

predictions for Usenet news articles. The GroupLens system employed thee Pear-

son Coefficient to weigh user similarity, used all available correlated neighbors, and

computed a final prediction by performing a weighted average of deviations from the

neighbor’s mean.

In the first step of this approach, we need to measure the similarity between the

user seeking the recommendation and all the other users of the system. The most

common algorithm used to calculate similarity weighting is the Pearson Correlation

Coefficient (PCC). Ringo [71] expanded upon the original GroupLens algorithm and

reported better prediction accuracy by computing similarity weights using a variant

of the PCC, the Constrained Pearson Coefficient, which uses the midpoint of the

rating scale instead of average rating. Other methods for similarity computations

are Spearman Rank Correlation, which is similar to PCC, except that the ratings

are ranks; and Kendall’s τ correlation, similar to the Spearman Rank Correlation,

but instead of using ranks themselves, only the relative ranks are used to calculate

the correlation. Herlocker et al. [33] reported better results using PCC rather than

Spearman Rank Correlation difference.

Herlocker et al. [33] also suggests devaluing similarity weights that are based on a

small number of co-rated items between any two users reflecting the amount of trust

to be placed in a correlation with a neighbor. The more overlap in ratings between two
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users the more trust can be placed on the computed correlation as a representative of

the true correlation between the two users. They refer to this strategy as significance

weighting and it is realized by applying a linear drop-off to correlations that were

based on less than a certain threshold of co-rated items. Their evaluation revealed

that significance thresholds of 25 or more do improve the accuracy of the system.

After assigning similarity weights to the users of the systems, the next step is to

select the users that will form the active user’s neighborhood and be used in the

computation of a prediction. Since most commercial CF systems handle millions of

users, considering every user as a neighbor might be infeasible for real-time perfor-

mance. Furthermore, many users of the system might not have similar tastes to the

active user, so using them as predictors will only increase the error of the prediction.

Two approaches can be applied to limit the number of neighbors considered; simi-

larity weight threshold and best-n-neighbors. Herlocker et. al. reported that weight

thresholding only made matters worse, decreasing both the coverage and the accuracy

of the system, and found that neighborhoods of 20 to 50 neighbors are reasonable,

providing enough neighbors to average out extremes.

Once the neighborhood has been selected, the ratings from those neighbors are

combined to compute a prediction. Since every user has his own internal model of

what a particular rating scale means, and rate on their own distribution, there’s a

need for some sort of transformation so that user’s ratings are in the same space.

This can be achieved by normalizing each predicted rating based on the user’s actual

rating habits. The approach taken by GroupLens was to compute the average devia-

tion of a neighbor’s rating from that neighbor’s mean rating, where the mean rating
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is taken over all items that the neighbor has rated. The average deviation from the

mean computed across all neighbors is converted into the active user’s rating distri-

bution by adding it to the active user’s mean rating. Herlocker et. al. evaluated

an extension to the GroupLens algorithm by accounting for the differences in spread

between users’ rating distributions by converting ratings to z-scores, and computing

a weighted average of the z-scores. They [33] reported that performing rating nor-

malization produces an obvious benefit over a non-normalized approach and that the

z-score normalization performed slightly better than the deviation from mean.

1.2.2 Model-based CF

Model-based techniques provide recommendations by estimating parameters of sta-

tistical models for user ratings. A Model-based method can be outline in the following

steps:

1. Developing a model of user ratings.

2. Computing the expected value of a user prediction, given his/her ratings on

other items.

Early approaches mapped CF as a classification or a clustering problem. Breese

et al.[9] presented two model-based algorithms; a clustering model, and a Bayesian

network model. The first algorithm follows a probabilistic approach in which the

users are clustered and the conditional probability distribution of different items in

the cluster is estimated. The probability that the active user belongs to a particular

cluster, given the set of items, is then estimated from the clustering solution and the

probability distribution of items in the cluster. The clustering solution for this tech-
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nique is computed using the expectation maximization (EM) principle. The second

algorithm is based on Bayesian network models where each item in the database is

modeled as a node having states corresponding to the rating of that item. The learn-

ing problem consists of building a network on these nodes such that each node has a

set of parent nodes that are the best predictors for the child’s rating. They presented

a detailed comparison of these two model-based approaches with the user-based ap-

proach and showed that Bayesian network models outperformed the clustering model

and the user-based scheme.

More recently attention has focused on latent factor and matrix factorization mod-

els as state-of the art techniques for model based CF [41]. This approach assumes

that the similarity between users and items is simultaneously induced by some hidden

characteristics of the users and items in the system. For example, the rating that a

user gives to a movie might be assumed to depend on few implicit factors such as the

user’s taste across various movie genres. Matrix factorization techniques are a class

of widely successful latent factor models where users and items are simultaneously

represented as unknown feature vectors (column vectors) along k latent dimensions.

These feature vectors are learned so that inner products of these vectors approximate

the known preference ratings with respect to some loss measure. For a given user the

resulting dot product measures the extent of interest the user has in items that are

high on the corresponding factors.

This model is closely related to singular value decomposition (SVD), a well-established

technique for identifying latent semantic factors in information retrieval. Applying

SVD in the collaborative filtering domain requires factoring the user-item rating ma-
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trix. This often raises difficulties due to the high portion of missing values caused

by sparseness in the user-item ratings matrix and conventional SVD is undefined

when knowledge about the matrix is incomplete. Utilizing only the relatively few

known entries in a sparse user-item matrix is highly prone to over-fitting. Over-

fitting occurs when a statistical model describes random error or noise instead of

the underlying relationship. Earlier systems relied on imputation to fill in missing

ratings and make the rating matrix dense. Since imputation can be very expensive

as it significantly increases the amount of data and an inaccurate imputation might

distort the data considerably, recent work suggested modeling directly the observed

ratings only, while avoiding overfitting through a regularized model. Koren [41] sug-

gested modeling directly the observed ratings only, while avoiding overfitting through

a regularized model. Despite this recent emergence of models based on matrix factor-

ization techniques for CF systems, memory-based models remain foundational and

are widespread implemented due to their simplicity, explainability, efficiency, stability

and their ability to produce serendipitous recommendations compared to model-based

approaches [23].

1.3 Evaluation Metrics for Recommender Systems

When it comes to evaluating recommender systems, several properties of the system

need to be considered for system success. The Recommender Systems Handbook [65]

outlines different properties that might need to be considered in evaluating the success

of a recommendation task.

The vast amount of research in recommender systems is based on the assumption

that a system that provides more accurate predictions will be preferred by the user.
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For example, a system that predicts a rating for an item to a user to be 4, on a

5-scale rating, is better than a system that predicts the same item preference to be 3

if the user actual preference is 5. Since the focus in this dissertation research explores

the recommendation algorithm, we will be using the predication accuracy metric to

evaluate the success of an approach.

Prediction accuracy metrics in recommender systems can be divided into three

broad classes:

• Measuring the accuracy of ratings predictions: this is applicable in systems that

seek to predict the rating a user would give to an item. Root Mean Square Error

(RMSE) and Mean Average Error (MAE) are the most used metrics.

• Measuring the accuracy of usage predictions: this metric applies for systems

that try to recommend items to users that they may use (e.g., Netflix’s movie

recommender predicting that the user will add these movies to the queue).

Metrics used are Precision, Recall and Area Under the ROC Curve (AUC).

• Measuring the accuracy of rankings of items: for systems that order items

according to the user’s preferences (ranked list). Metrics used to measure this

property depend on whether we are trying to determine the correct order of

a set of items for each user, and measure how close a system comes to this

correct order, or we are trying to measure the utility of the system’s ranking

to a user. In the former, the Normalized Distance-based Performance Measure

(NDPM), Spearman’s ρ or Kendall’s τ metrics can be used while, in the latter

one, the R-Score and Normalized Cumulative Discounted Gain (NDCG) metrics

are commonly used.
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1.4 Group-Based Recommender Systems

1.4.1 Recommendations to Groups

Group recommenders have been distinguished from single user recommenders pri-

marily by their need for an aggregation mechanism to represent the group. A consider-

able amount of research in group-based recommenders concentrates on the techniques

used for a recommendation strategy, and two main group recommendation strategies

have been proposed [38].

The first strategy merges the individual profiles of the group members into one

group representative profile (Figure 6).

Figure 6: Recommender systems merge user models based on an aggregation algo-
rithm to create a group user model. The group user model is utilized by the filtering
technique to generate group recommendations that fit the target model.

The second strategy merges the recommendation lists or predictions computed for

each group member into one recommendation list presented to the group (Figure 7).



23

Figure 7: Recommender systems generate recommendations for every member of a
group of size n. Recommendations are merged based on an aggregation algorithm to
generate group recommendations that fit the group target model.

Both strategies utilize recommendation approaches validated for individual users,

leaving the aggregation strategy as a distinguishing area of study applicable for group-

based recommenders.

1.4.2 Group Modeling

When it comes to modeling a group it is important to note that there are two

distinct group modeling issues at play. The first is how to model a group for the

purpose of making recommendations (i.e., what a group’s preference outcome will be).

We refer to this as the recommendation group preference model (RGPM). The second

is how to determine an “actual” group preference, based on outcomes in user data, in

order to represent ground truth for evaluation purposes (i.e., what a group’s preference

outcome was). We refer to this as the actual group preference model (AGPM). For

example, it might be considered a trivial recommendation if each group member

had previously given a movie the same strong rating across the board. However,

such an agreement point is ideal for evaluating whether that movie should have been

recommended for the group.

Various group modeling strategies for making recommendations have been proposed
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and tested to aggregate the individual group user’s preferences into a recommendation

for the group. Masthoff [47] tried to find out what strategies people actually use as a

group. She evaluated eleven strategies inspired from Social Choice Theory:

1. Plurality Voting: This approach selects the alternative with the most votes .

2. Average: Uses the statistical mean of the individual ratings.

3. Multiplicative: Ratings are multiplied. The larger the product, the more influ-

ential the preference

4. Borda Count: Counts points from items’ rankings in the individuals’ preference

lists, with the bottom item getting 0 points, next one up getting one point,

etc. When an individual has multiple preferences with the same weight, the

averaged sum of their hypothetical count is equally distributed.

5. Copeland Rule: This strategy sorts the preferences according to their Copeland

index: the difference between the number of times a preference beats the rest

of the preferences (has higher weights) and the number of times it does not.

6. Approval Voting: A threshold is considered for the preferences’ weights - only

those weights greater than or equal to the threshold value are taken into account

for the profile combination.

7. Least Misery Strategy: Takes the minimum of individual ratings. Thus, a group

is as satisfied as its least satisfied member.

8. Most Pleasure Strategy: Takes the maximum of individual ratings. The higher

the weight, the more influential the preference is for the group.

9. Average Without Misery Strategy: Averages individual ratings, excluding items

with individual ratings below a certain threshold
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10. Fairness Strategy: The top preferences from all the users of the group are

considered. Items are ranked as if individuals are choosing them in turn.

11. Most respected person: Uses the rating of the most respected individual (dic-

tatorship).

Variations of these approaches have been suggested and evaluated, such as a weighted,

linear combination depending on social relationships among the group members.

When the prediction model for a group recommender system is a ranked list, the

problem can be viewed as the computation of a consensus ranking of the alternatives,

given the individual ranking preferences or predictions of the group members. Dwork

et. al. [24] identified the following rank aggregation methods:

1. Borda’s method: A “positional” method, which assigns a score corresponding

to the positions in which a candidate appears within each voter’s ranked list of

preferences, and the candidates are sorted by their total score.

2. Spearman footrule distance: Measures the distance between ranked lists as the

sum, over all elements of the lists, of the absolute difference between the ranks

of each element in the individual lists

3. Markov chain methods: The states of the chain correspond to the elements in

the lists to be ranked. The transition probabilities depend in some particular

way on the given (partial) lists, and the Markov chain ordering is the aggregated

ordering.
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1.4.3 Group-based Evaluations

Group recommendation presents significant challenges in evolving best practice

approaches to group modeling, but even moreso in both dataset collection for test-

ing and developing principled evaluation approaches across groups of users. Early

research provided more limited, illustrative evaluations for group recommender ap-

proaches (e.g., [50, 57, 49]), but recent work has been exploring more comprehensive

evaluative techniques (e.g., [5, 18, 1]).

Broadly, evaluations have been conducted either, via live user studies or, via syn-

thetic data set analysis. In both types of evaluation, determining an overall group

preference to use as ground truth in measuring recommender accuracy presents a com-

plementary aggregation problem to group modeling for generating recommendations.

Based on group interaction and group choice outcomes, either a gestalt decision is

rendered for the group as a whole, or individual preferences are elicited and combined

to represent the overall group preference. The former lends itself to user studies in

which the decision emerges from group discussion and interaction, while the latter

lends itself to synthetic group analysis. Currently, the limited deployment of group

recommender systems, coupled with the additional overhead of bringing groups to-

gether for user studies, has constrained the availability of data sets that can be used

to evaluate group-based recommenders. Thus, as with other group evaluation efforts

[5], we adopt the approach of generating synthetic groups for larger scale evaluation.
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1.5 Research Scope and Contributions

The scope of this research deals with group recommender systems where the user

model is based on users’ ratings of items relevant to the context of the domain of rec-

ommendation, and implements a collaborative filtering approach to filter items and

produce predictions for items, or ranked lists of recommended items, for a group of

users seeking a recommendation for items to consume as a group rather than individ-

uals. We identify gaps in previous research in this context along the dimensions of the

group model, the recommendation technique and the evaluation of such systems and

evaluate several hypothesis with the objective of increasing the prediction accuracy.

A major gap in this research area relates to the difficulty of evaluating the perfor-

mance of group recommendations with respect to prediction accuracy. Researchers

have been employing synthesized groups created from single-user Collaborative Fil-

tering systems to evaluate their proposed approaches to recommendations for groups.

A major issue in this approach pertains to the fact that the actual group preference is

unknown introducing a problem in establishing the ground truth, used for evaluation,

as part of creating the training and testing data sets. Previous work adopting this

approach evaluated the group recommendations independently against each group

member by comparing the predicted ratings with the ratings observed in the test set

of the individual group members. In this dissertation, we design a group-based test-

ing framework that identifies groups from single-user user data sets based on given

parameters for group structure and characteristics with ideal test points that reflect

group consensus. This establishes a new approach to evaluate group recommenda-
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tions as part of a large-scale analysis. We show the feasibility of this approach and

compare the performance of some of the most widely implemented group modeling ap-

proaches using this evaluation technique to previous research adopting this approach

to evaluation. Chapter 3 details the evaluation framework and Chapter 4 includes

the experiments in this dimension.

Previous research in group-based recommender systems has mainly adopted filter-

ing techniques validated for single-user recommender systems with little attention

focused on adapting these techniques to account for the context of group as a first-

class element in the recommendation. Along this dimension we first evaluate the

performance of rating normalization on the prediction accuracy of the most common

group modeling strategies in group-based recommender systems. We show that rating

normalization results in higher prediction accuracy for the groups when employing an

Average group model but not for group models based on Least Misery or Most Happi-

ness. We also propose and assess new approaches to recommendation techniques that

account for the fact that these recommendations are generated for a group rather than

individual users. Using a nearest-neighbor recommendation technique we account for

the group context by giving special consideration to common neighbors among group

members in the prediction calculation rather than basing the neighborhood selection

on the individual group members. We show that this approach increased the pre-

diction accuracy for the group specially for groups with high inner similarity within

the group members. Chapter 5 details the evaluations along the dimension of the

recommendation technique.

Research in this context has focused on evaluating the strategies used to aggregate
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the individual user models or the individual target models they have not explored the

performance of integrating both aggregation approaches as part of the group model-

ing dimension. In this dissertation, we evaluate the integration of recommendations

generated by the two main approaches to group modeling and show that combining

the profile merging approach with the most happiness group model results in predic-

tions with higher accuracy for the group. We also examine the integration of other

elements in the group model such as a disagreement component that is based on item

similarity and the known preferences of the group members for such items. We show

that the applicability of this approach suffers in the identification step of similar items

to the item targeted for evaluation with the constraint of a known preference for all

the group members for such item. These evaluations are detailed in Chapter 6.

Case-Based Reasoning (CBR) approaches have been used in recommender sys-

tems as a part of the recommendation technique and group-based systems that have

adopted this approach was also focused on the recommendation with little attention

focusing on adopting such approaches as a part of the group model. We employ a

group model that is based on a CBR point-of-view rather than an aggregation only

perspective. We employ the group model of the retrieved case as a first class element

in the recommendation. Our results showed that a CBR approach to group modeling

increased the prediction accuracy for the groups where the case retrieval is based on

the group context and group-to-group similarity. Chapter 7 details our CBR model

and the evaluation results.

The hypothesis along these dimensions are outlined in chapters 4-7 and are num-

bered sequentially. The contributions of this dissertation are:
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1. An evaluation framework for group-based recommender systems that allows

the creation of synthesized groups with varying group contexts. The framework

creates the groups and identifies ideal test point for creating training and testing

datasets for the groups.

2. A tradeoff comparison in the choice of the baseline for evaluation using syn-

thesized groups. We show that the choice of group model as the actual group

preference affects the evaluation results and introduces another variable that

needs to be accounted for and minimize its effect.

3. Rating normalization effect on prediction accuracy in memory-based collabora-

tive filtering group-based recommender systems. We show which group models

and group contexts benefit from rating normalization.

4. A neighborhood selection model based on the group context with a finer-grained

weighting scheme. We show that neighborhood selection strategy that accounts

for the group context and utilizes it in neighbor weighing increased the predic-

tion accuracy for the group.

5. A hybrid group model that combines profile merging and recommendation ag-

gregation and show which group aggregation models and group contexts benefit

implementing this approach.

6. A disagreement model based on item similarity to the item considered for rec-

ommendation. We investigate the applicability for this approach and show that

its feasibility is hindered with the constraint of identifying similar items rated

by all the members of the group.

7. A case-based reasoning group model that is based on group context and group-
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to-group similarity. We show the applicability of this model and the benefits

realized for the group in terms of prediction accuracy and group contexts.



CHAPTER 2: GROUP RECOMMENDER SYSTEMS BACKGROUND

In Chapter 1 we introduced recommender systems and overview their categorization

as well as group-based recommenders. In this chapter we overview related work to

group recommender systems along the dimensions we outlined in the previous chapter

and identify the open research questions we target in this dissertation.

Analyzing group-based recommender systems we identified three primary dimen-

sions and include open research questions. Exploring the group recommendation

space involves evaluation across a variety of such contexts. The context includes

choices made about:

1. The underlying recommendation strategy (e.g., content-based, collaborative

memory-based or model-based)

2. Group modeling for making recommendations — the group model used to model

the group preference as a part of the recommendation (Recommendation Group

Preference Model (RGPM)) (e.g., least misery)

3. Evaluation of the recommendations:

• Determining actual group preferences for evaluative comparison to system

recommendations — the group model used to model the group preference

as a part of the evaluation (Actual Group Preference Model (AGPM))

(e.g., choice aggregation)

• Choices about metrics for assessment (e.g., ranking, rating value).
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2.1 Recommendation Technique

In Section 1.4.1 we identified that the recommendation techniques adopted in

group-based recommender systems utilize recommendation techniques validated for

single-user recommendation systems. For example, Demographic-based, Content-

based, Collaborative Filtering, and Knowledge-based approaches have been applied

in this context. In the following sections we review some of the research that uti-

lized these techniques in a group-based context to help us understand the form of

employing them.

2.1.1 Demographic-based Group-Based Recommender Systems

The INTRIGUE [2] travel recommendation system uses social and demographic

information about the users to model the group as a set partitioned into a number

of homogeneous subgroups where their preferences are separately represented. An-

other travel recommendation system that utilizes demographic information as well

as content descriptions is presented in [25] and applies a recommendation technique

that is based on the group members’ tastes, demographic classification, and prefer-

ences for places they visited before. Another system that utilized demographic and

content-based filtering is the FIT [30] TV program recommendation system. FIT rec-

ommended TV programs to family members provided their demographic information

and their preferred watching times. The user profile was constructed by assigning the

user to a relevant stereotype that includes content-based preferences. For any given

time, the system calculates a probability of each household member watching TV and

uses it to weigh a linear combination of genre preferences for the present users.



34

2.1.2 Content-Based Group-Based Recommender Systems

Content-based techniques have been implemented in the music, travel, and restau-

rant group recommendation domains. MusicFX [50] is a group preference arbitration

system that adjusts the selection of music playing at a fitness center to best accom-

modate the preferences of the people actually there at a given time. Individual users

provided ratings to different music genres on a 5 point scale. Users identified them-

selves to the system by swiping their badges. At any given time the ratings of the

present users for each genre are added up and sorted in descending order (most pop-

ular category is first). A weighted random selection is applied on the top k genres to

select radio stations played.

Another group recommendation system that applied content-based filtering in the

music domain was introduced in [3]. Poolcasting [3] presented a web radio archi-

tecture where listeners could influence the sequence of songs played based on group

customization and interaction. Poolcasting is modeled after home-parties, where par-

ticipants can contribute, with their own records, to the pool of music and can, in turn,

control which songs are played. In Poolcasting, any user can share their personal dig-

ital music library by adding their songs to the music pool, and can interact via a

Web interface to evaluate the songs played and propose new songs to play. These

interactions allow the sequence of songs played on each channel to be customized for

the current listeners. The actual choice of music played is taken by a Case-Based

Reasoning technique [13, 10] that combines knowledge about songs’ associations and

listeners’ preferences. The system models song preferences by combining the user’s
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rating for a song with how many times the user played that song normalized according

to the average listening behavior of that user.

The Flytrap [20] system applies content-based as well as knowledge-based filtering

techniques. Flytrap selects music played in a shared space. The system has users

preference data gathered from monitoring the users’ music listening activities as well

as knowledge data of how the different music genres relate to one another, how artists

influenced each other and what kinds of transitions between songs people tend to

make. Similar to MusicFX, users’ presence is automatically detected in the room

where the music is played. For each user in the room the system uses a voting

mechanism to score songs in the playlist database according to the artist and genre

preferences. A high vote is given to a song if it’s an artist the user listened to

previously. Songs the user has never listened to before receive positive votes if the

genre is the same as, or similar by some degree to, music to which they had previously

listened. Once the voting has completed, the votes are combined and then normalized

into a probability random distribution across the entire database of songs. Songs that

get more votes have a higher probability of being played. Songs that get few votes

can still be played, but it’s less likely.

Another activity people carry out as a group is selecting a venue for a dining

experience. Pocket RestaurantFinder[49] is a system that helps users in that selection

by recommending restaurants that will appeal to the whole group applying a content-

based filtering technique. Users’ profiles consist of their preferences to four different

restaurant features as a well as a relative importance of each of these four categories

of features.
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2.1.3 Collaborative Filtering Group-Based Recommender Systems

PolyLens [57] is a group-based recommendation system that applied a user-centric,

Collaborative Filtering recommendation approach in the the movie domain. PolyLens

was designed to recommend movies for a group of users seeking recommendations to

experience as a group. Users provided movie (item) ratings on a 5 point scale. The

Nearest-Neighbor algorithm was used to predict ratings for unrated items for each

member of the group. Berkovsky et al. [6] implemented a user-based CF approach for

generating recipe recommendations based on an aggregated group user model. They

evaluated these recommendations against real-life recipe ratings provided by families

interacting with an experimental eHealth portal.

Other research implemented a model-based CF approach and evaluated group rec-

ommendations in the movie domain [5, 63, 1]. Chen et al. [18] also evaluated group

recommendations in the movie domain by implementing a combination of user and

item-based CF. Campos et al. [21] proposed a general, Bayesian Network-based model

for group recommendation. Their proposed model is considered to be a collaborative

Bayesian network-based group recommender system, where group ratings are com-

puted from the past voting patterns of other users with similar tastes. They evaluated

their approach in the movie recommendation domain.

From the research we overviewed it becomes apparent that researchers have adopted

the individual-user perspective for the recommendation techniques used in group-

based systems. They did not adapt the recommendation generation technique to ac-

count for the fact that these recommendations are created for a group of users rather
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than individuals. Previous work that utilized Content-based or CF approaches to gen-

erate recommendations for the group did not consider the group context in generat-

ing the individual recommendations when using the recommendation aggregation ap-

proach. When we say group context we are referring to context information pertaining

to group characteristics such as the size of the group and the similarity/dissimilarity

among group members. Similarly, the group context is not considered in the rec-

ommendation calculation when generating recommendations for the group’s pseudo

user in the case of profile merging. Content-based approaches use descriptions of the

items rated to learn a relationship between the ratings of a single user and the de-

scription of the items rated while CF approaches use the rating of a set of people on

a set of items to make recommendations but both utilize neighborhood approaches

in identifying similar items or similar users. In both approaches limited attention

has been given to neighborhood weighting using the group context. We believe that

accounting for the group context in the recommendation calculation would result in

better recommendation for the group in terms of prediction accuracy. We explore

incorporating the group context in the recommendation calculation specifically when

using a neighborhood-based CF. We utilize the group context when identifying the

neighborhoods used in the prediction calculation (Section 5.2).

2.2 Group Modeling

Section 1.4.2 outlines the various strategies that have been applied as the group

modeling strategies. This section overviews related work that applies these group

modeling strategies as well as variants of these strategies.
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2.2.1 Weighted Linear Combination

Most of the systems that were not focused on evaluating the group modeling strat-

egy apply a linear combination or a weighted linear combination as the group aggre-

gation strategy. Earlier group-based recommenders like MusicFX [50], Let’s Browse

[44], and PocketRestaurant [49] use a linear combination approach since the main

research focus was to assess whether such systems might be socially accepted, or they

constituted initial prototypes. Later systems like FIT and GAIN applied a weighted

linear combination to aggregate individual preferences into a group preference model

based on the probability of users being present and accounting for their preferences.

In the TV4M system users assign weights to item features then the system selects

features to include in the merged group profile based on total distance minimization.

Features that meet the minimum distance are selected to be included in the group

profile. The group weight for the selected feature is the average of the normalized

weights of the individual group members. The Poolcasting [3] system also applies

a weighted average as the group model, where the weight associated to each user

depends on their satisfaction about the last scheduled songs. The system tries to

achieve group satisfaction and guarantee more fairness by assigning a higher weight

to the preferences of the listener that was less satisfied with the last played songs so

that eventually every user gets to listen to some songs they like.

The main focus of the TRAVEL DECISION FORUM [37] is to help the group

members, for each aspect of a travel vacation that the group members are planning,

to arrive at a group preference model to which all members have agreed. The system
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can be classified as one that recommends specific preferences for the group model

rather than a specific item or items. Users have the option to choose the aggregation

strategy that is used to merge the individual preferences. The average, median, or

Automatic Mechanism Design that maximizes overall group utility and equity can be

specified.

McCarthy el al. [51] evaluates how to aggregate individual user models to produce

a group model used to generate recommendations in a critiquing-based, case-based

recommender. They use the CATS [52] recommender system to evaluate three dif-

ferent aggregation methods used to asses the quality of a case, in the available case

base, with respect to its similarity to a critiqued case and compatibility to the group

model that contains the union of critiques of all group members. The first strategy is

the Weighted Average Group Model that leverages a compatibility score for a case in

terms of critiques, contained within the individual user model, of the user applying

the critique with a compatibility score to the preferences of the other group mem-

bers (the group minus the critiquing individual). The second strategy is the Joint

Group Model which measures the compatibility of the candidate case with the cur-

rent aggregate group model, and the third strategy is the Average Individual Group

Model which is the average of the compatibility scores for each group member. They

evaluated their approach by comparing the quality of the recommendations gener-

ated by the three proposed strategies across different sets of groups of four members

with varying levels of inter-user similarity (similar, mixed, diverse). They reported

higher quality recommendations to the individuals of the group when compared to

single-user techniques.
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2.2.2 Social Choice Theory

The voting strategy was applied in the Flytrap [20] system. For each user in the

room the system uses a voting mechanism to score songs in the playlist database

according to the artist and genre preferences. The individual votes are combined and

then normalized into a probability random distribution across the entire database of

songs. Songs that get more votes have a higher probability of being played. Songs

that get few votes can still be played, but it’s less likely.

In the PolyLens [3] prototype it was expected that most groups using the system

would be small (2 or 3 members). The choice of a social value function was based

on the assumption that the group’s happiness was the minimum of the individual

members’ happiness scores. Predictions for items that were not rated by all group

members were aggregated based on the Least-Misery strategy.

In Campos et al.’s [21] approach, the BN formalism is used to represent both, the

interactions between group members and the processes leading to the final choice

or recommendation. Their approach outlines how the most common aggregation

strategies (average, majority, least misery, most happiness) might be encoded using

Bayesian Network (BN) formalism. Results show that when combining uncertain

information using BN at a group layer the best option is to take into account the

difference between the posterior and prior probability to correct the prior bias, par-

ticularly in those situations where the least misery and the average strategies are

used to merge individual ratings. Posterior probabilities are obtained by instantiat-

ing the ratings previously given by similar users and prior probabilities are obtained
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by propagating in the network without evidence of ratings.

Senot el al.[70] attempted to determine the factors that influence the choice of an

aggregation strategy for a group of users. They divide group recommendation strate-

gies into three main categories based on the principles adopted for the conciliation

of individual preferences regardless of the aggregation approach that each strategy

applies. The three categories are majority-based, consensus-based, and borderline

strategies. Majority-based strategies use most popular/shared interest categories or

preferred items between group members, e.g. Plurality Voting, Borda Count, Copeland

Rule, or Approval Voting. They allow satisfying the majority of the members of the

group, even if the recommendation is extremely unsatisfying for the others. The

Consensus-based strategies consider all group member preferences, such as averaging

all users’ preferences for each item/concept (Additive, Multiplicative Utilitarian Strat-

egy, Average without Misery, Fairness). Borderline strategies consider only a subset

of preferences, belonging to a subgroup of the group, based on the roles, or other cri-

teria, identified within the group (Least Misery, Most Pleasure, Dictatorship). They

compare the group profiles obtained by aggregating individual user profiles, according

to representative strategies of the three aggregation categories, to the group profile

acquired implicitly by analyzing group consumptions in the TV domain. They evalu-

ated the Utilitarian, Plurality Voting, Least Misery, Most Pleasure, and Dictatorship

strategies.

Baltrunas et al. [5] compares the effectiveness of individual and group recommen-

dation across various group sizes (2,3,4 and 8) with varying degrees of inter-user

similarity (random, high). Group recommendation lists are generated using several
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aggregation strategies: Least Misery, Average, Borda Count, and Spearman Footrule.

Garcia et al.’s [25] approach is based on three strategies that differ in how the individ-

ual preferences are combined to form a group preference model. The three strategies

are: aggregation, intersection and incremental intersection. The aggregation strat-

egy calculates the group preference for an item feature as the average value of the

preferences of the users in that group for that feature. The intersection strategy

finds the preferences that are shared by all the members in the group to establish

group preferences. The incremental intersection is a weighted average of the most

voted preferences among the users in the group, that are the preferences shared by

the largest possible group of members. When analyzing which of the three techniques

obtains the best recommendations resulting in satisfaction for the whole group, better

results were reported with the incremental strategy.

2.2.3 Extending Social Choice Theory Group Modeling Strategies

Chen et al. [18] designed a system based on the framework of collaborative filter-

ing. They use Genetic Algorithms (GA) to exploit known preferences of subgroups

of the active group and predict possible similarities among group members. These

similarities were used to weigh member contributions in item predictions. Their ap-

proach to predicting group preferences is based on having access to some item ratings

for the target group as well as subgroups of the target group and individual group

members’ preference information. They use an item-based CF approach to identify

items similar to the item for prediction. If the group did not provide a rating for

these items a user-based CF was used to predict the individual ratings. Subgroup

information was exploited using GA to assign weights in combining the individual
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users’ ratings into a group rating. Then item-based CF was used to calculate the

final group rating for the target item.

Recio-Garcia et al.[63] proposed a method of making recommendations to groups

based on existing techniques of collaborative filtering and taking into account the

group personality composition. Their approach takes into account group member in-

teractions using personal information about the conflict mode behavior of every group

member. They evaluated their approach in the movie recommendation domain using

three different variations of group recommendation aggregation strategies, Minimizing

Penalization, Average Satisfaction, and Least Misery, taking into account the Con-

flict Mode Weights (CMW) of the group members. Another work that was evaluated

in the movie recommendation domain is found in [5]. Baltrunas et al. [5] analyzed

the effectiveness of group recommendations obtained by aggregating the individual

ranked lists of recommendations produced by a collaborative filtering system.

Berkovsky et al. [6] investigated the use of aggregated group data in collabo-

rative filtering recipe recommendations. They implemented four weighting models

(uniform, heuristic, role-base, family-log) for aggregating individual data into family-

based data. The uniform model weighs users uniformly, i.e., weight for every user

equals 1. The heuristic model is role-based, where a role refers to a user’s function

within a family: applicant, partner, or child. A user’s weight is defined solely by

their role. The role-based model weighs users according to the activity of users in the

same role across the entire community. The family-log model weighs users according

to their activity in relation to other family members. Extreme case heuristics deal

with extremely positive or negative preferences. The least misery heuristic assigns
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a weight of 1 to the user who provided an extremely negative recipe rating, and a

weight of 0 to the other family members. The most pleasure heuristic assigns a weight

of 1 to the user who provided the extremely positive data, and 0 otherwise. They

evaluated CF recommendations generated using the aggregated data against real-life

recipe ratings provided by families interacting with an experimental eHealth portal.

The results showed that the most appropriate family-based recipe recommendation

strategy should aggregate individual user models, rather than individual recommen-

dations, and weigh individual users according to their observed activity rather than

according to predefined preferences.

Salamó’s [67] work continues previous work [53, 52, 51] on group recommendation.

They propose two new approaches for reaching consensus on the recommendations

made for a group of users, Statistical Dispersion and Individual Content. For the

Statistical Dispersion approach, they propose two strategies, Mean and Purity, based

on the measurement of dispersion used in statistics and probability theory. The Mean

strategy is defined as the sum of each group member’s preferences to derive a central

tendency of the preference space for the group. The Purity strategy measures the

percentage of positive preferences among the whole set of preferences, made by the

group, that are covered by the product. For the individual content approach they

propose three strategies, completeness, logical sufficiency, and group sufficiency. The

objective of the completeness strategy is to favor high scores while penalizing big

differences between members. The Logical Sufficiency is a standard likelihood ratio

statistic, which has been applied to measure rule quality of rule induction systems.

This measure divides the proportion of positive examples, that are covered by a rule,
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by the proportion of negative examples. They define it as the proportion of satisfied

preferences of a group member by the proportion of their preferences that are not

satisfied. Instead of analyzing the logical sufficiency of an individual member in

relation to their satisfied or unsatisfied preferences, the Group Sufficiency measures

the satisfaction of a member in relation to the satisfied preferences for the rest of the

group and to the unsatisfied preferences for the individual in comparison with the

whole group.

Amer-Yahia et al. [1] investigates how to efficiently compute group recommenda-

tions given a consensus function, especially in the presence of complex disagreement

models. Their approach computes group recommendations by aggregating recommen-

dations generated for individuals using a consensus function that combines relevance

of the items for a user and disagreement between members of the group. A pre-

dicted rating is a weighted summation of the two component scores. User profiles

are modeled as an item-rating matrix. They model relevance using existing strate-

gies such as average and least misery. Disagreement is modeled using two alternative

methods: average of pairwise disagreements or rating variance. The recommendation

technique is based on Threshold Algorithms, more specifically, Top-k. They study

optimization opportunities that exploit the dependencies between disagreement and

relevance. They aim to reduce the number of disagreement lists that need to be

maintained in order to achieve the best runtime performance.

Gartrell et al. [26] propose a group recommendation method that utilizes both

social and content interests of group members. Their proposed group consensus func-

tion aggregated individual predicted ratings into a group predicted rating based on
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factors related to the social ties, expertise, and interest dissimilarity among group

members. They quantify these factors as the following group descriptors: social de-

scriptor, expertise descriptor, and dissimilarity descriptor. The social descriptor is

devised to measure the social relationship strength of a group. They quantify the

social relationship strength of the pairwise member social link and categorize it into

five different contact levels based on the average daily contact frequency between

two members. The expertise descriptor measures the relative expertise of individual

group members in the domain of recommendation. They categorize the expertise of

an individual into five levels based on the number of movies that an individual has

watched. The dissimilarity descriptor measures the preference difference among the

group members using two metrics, average pairwise dissimilarity and variance dis-

similarity [1]. The choice for a group decision strategy (average, least misery, most

happiness) depends on the social relationship. The group consensus function pro-

posed is a weighted combination of the predicted rating and disagreement depending

on the social relationship strength. They also propose and evaluate a Rule-based

group recommendation. First they define attributes that are used to construct the

associative classification rules. These attributes are social strength, maximum group

member rating, minimum group member rating, average group member rating, stan-

dard deviation of member ratings, average pairwise preference dissimilarity, average

pairwise expertise dissimilarity, minimum expertise, maximum expertise, expert mem-

ber identifier, and group rating. After defining these attributes, they use FP-growth

to identify frequent item sets in the data. Quantitative association rules are generated

from these frequent predicate sets. Using the strong association rules mined from the
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data, they write classification heuristics that compute predicted group ratings for a

movie given the individual group member ratings for that movie.

Group modeling strategies focused on the approach to model the group (pro-

file merging or recommendation aggregation) or extending the baseline aggregation

strategies identified in Section 1.4.2 either by using probability theory to assess sat-

isfaction or weighing the individual user models or target models based on social

relationships, interactions, or personality types of the group members. They did not

examine the performance of a hybrid between of the two modeling approaches or

modeling the group based on known group models in the collection of the informa-

tion available to the system. A question that remains unanswered is how do these

two approaches perform if they are used together rather than choosing one. In this

dissertation we evaluate a hybrid model that utilizes both approaches. We evaluate

the performance of several aggregation strategies in this hybrid model. The ability to

exploit a large CF data set allows us to consider information extracted from the data

set that can be reflected on the aggregation strategy used for group modeling without

the need for any additional user information. Similarity information about items and

users, drawn out from the data set, can be utilized in modeling the achievement of

consensus among the group. We explore this novel approach as part of our group

modeling hypothesis in Chapters 6 and 7.

2.3 CBR

A more limited number of researchers have explored using Case-Based Reasoning

to model group decisions [60] or as a part of the recommendation technique [51, 61].

McCarthy et al. [51] looked at aggregating individual user models to produce a
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group model that was used to generate recommendations in a critiquing, case-based

recommender. They employed the CATS [52] recommender system to evaluate three

different aggregation methods to assess the quality of a case, including similarity to a

critiqued case and compatibility to the combined group critique model. To evaluate,

they used synthetic groups generated from real-user preference data (34 trial subject

profiles converted into a critique-based profile). Four-member groups were randomly

generated (3 sets of 100 groups each), with varying similarity levels (similar, mixed,

diverse). Each test group received three sets of recommendations, with each set

containing one recommendation for each group member. Recommended cases were

evaluated based on compatibility (# shared features) to the known perfect case of the

individual group members. Group compatibility was measured as the average score.

They reported an improvement in recommendation quality across the aggregation

strategies for the similar groups when compared to the individual group member’s

own case choice, but not for the diverse and mixed groups, given preference diversity.

In this work the CBR perspective was used as part of the recommendation technique

in retrieving possible candidate items for the group to critique in a similar fashion to

recommendations made to individuals and not adapted for groups.

Recent work from Quijano-Sanchez et al. employed CBR in several aspects of

group-based recommendation [61, 60]. In [61] they evaluated a CBR solution to

alleviate “cold-start” problems for group members. Cases represent previous movie

recommendation events for groups. When a group seeks a recommendation and some

group members are considered in cold-start, they find a previous case with users

in similar group-roles who are not in cold-start. Ratings are transferred to user(s)
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in the active group from corresponding users in the retrieved case, and then the

updated profile is used in the recommendation process. In this work as well, the

CBR perspective was used but not directly for group-based recommendations, as

such. It was used to address the cold start problem for individual group members.

Quijano-Sanchez et al. also applied CBR directly in modeling group decisions for

group recommendation [60]. Employing user-user similarity, each user in the active

group is aligned with exactly one user in the case group. Similarity is measured by

comparing group members on their age, gender, personality, ratings and the degrees

of trust between members of each group. Group to group similarity is calculated

as an average of these one to one similarities. All mapping combinations between

the active group and the case groups are checked and the top n cases and mappings

are then used in the recommendation process. Using item-item similarity, they map

contributions in choosing the selected item from each group member in the case.

Predictions for items are based on accumulating the similarities to the selected items

in similar cases, weighted by the degree of similarity to those cases. If group and case

are of different sizes virtual users are added to that group. An overall improvement

in success rate was reported for their CBR approach on a data set of 100 cases, which

were individually crafted with review input by a panel of experts. As far as we are

aware, this is the only group recommender work to date that investigates holistic

retrieval and reuse of entire previous groups as cases. This served as an inspiration

for our own exploration of the space.

Similar to the strategy of adopting recommendation techniques in group-based

recommenders, systems that utilized a CBR approach have mainly been used as a
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recommendation technique rather than a group modeling strategy. To our knowledge

only the work of Quijano-Sanchez et al. [60] explored the use of CBR as a part of

the group modeling strategy. In their approach they combine many subtle aspects

of the group recommendation process all at once with some requiring imputed value

support. Still this leaves some questions unanswered in this context. We raise the

questions of how would a less complex technique for case retrieval perform in terms

of prediction accuracy in a group-based recommender and rather than a single case

match how can a k -nearest neighbor approach increase the accuracy of predictions.

We address these questions in Chapter 7.

2.4 Evaluation in Group Recommendation Systems

Two classic approaches to evaluating the accuracy of predictions in a single-user

recommender system can be categorized as either conducting a user study or testing

data sets, which are utilized by dividing the data set into learning and test sets.

Similar approaches have been adopted in evaluating group-based recommenders. To

evaluate the prediction accuracy of the system, a user study can be conducted by

gathering groups of users and establishing their preferences for items in the data

set. These preferences are the ground truth for those groups. The system generates

predictions for those items and the error of the prediction accuracy can then be

measured. When it comes to group-based recommenders testing data sets are not

readily available. Some approaches tried to work around this by creating synthesized

groups from the individual user data sets and ran evaluations using these groups.

The next two sections overview related work based on the evaluation approach and

metrics adopted. Section 2.4.1 focuses on work conducting user studies. Section 2.4.2
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covers work that employs synthetic data sets generated from existing single-user data

sets (typically MovieLens).

2.4.1 Evaluation with User Studies

Masthoff [46] employed user studies, not to evaluate specific group recommendation

techniques, but to determine which group aggregation strategies people actually use

(Section 1.4.2). Thirty-nine human subjects were given the same artificial individual

ratings of three people for a set of video clips. The individual ratings were chosen in a

way that would enable differentiating between the strategies she expected the subjects

to use. Subjects were asked to decide which clips the group should see given time

limitations for viewing only 1, 2, 3, 4, 5, 6, or 7 clips, respectively. In addition, they

were asked why they made that selection. Results indicated that people particularly

use the following strategies: Average, Average Without Misery and Least Misery. She

also reported more accurate predictions when rating normalization is applied as well

as quadratic ratings (ratings are not linear).

PolyLens [57] evaluated their system by conducting a nine-month field trial. They

deployed their approach as an experimental feature of MovieLens, a movie recom-

mendation site. They allowed any MovieLens user to create a group and invite users

to join the group. Overall they had 338 groups with 819 members and group sizes

ranging from 2 to 4 with the majority of the group (76%) being of size 2. They had

a few number (12 ) of groups with a size larger than 4 but they did not provide the

details for those groups. They conducted a field trial with the systems and reported

evaluation results that were based on qualitative feedback from users and observa-

tions of changes in user behavior with the new feature being added. They did not
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evaluate their system in terms of prediction accuracy or how satisfied the users were

with the quality of recommendations.

Amer-Yahia et al. [1] ran a user study using Amazon’s Mechanical Turk users to

evaluate the prediction accuracy of their prediction aggregation strategies. The users

were used to form groups and perform judgments on group recommendations. The

study recruited 50 users where they were asked to provide their movie preferences on

a subset of the MovieLens items. The subset was selected taking into account item

diversity and a user’s familiarity of the items. Groups were formed of sizes 3 and 8

to represent small and large groups. They also varied the cohesiveness of the group

members (similar 0.9, dissimilar 0.28, random 0.71) for a total of 6 groups. They

established an evaluation baseline by generating a recommendation list using four

implemented strategies. The resulting lists were combined into a single group list of

distinct items and were presented to the users for evaluation where a relevance score

of 1 was given if the user considered the item suitable for the group, and 0 otherwise.

They employed a Normalized Discounted Gain (nDCG) measure to evaluate their

proposed prediction lists consensus function. The nDCG measure was computed for

each group member and the average was considered the effectiveness of the group

recommendation. They reported that the Least Misery strategy resulted in the best

performance for both small and large groups of similar users. They attributed this to

the fact that as a group activity of similar users, the objective is usually to agree with

the person who has the harshest opinion. The aggregation strategies that account for

disagreement among the group members performed worse since there was hardly any

scope of disagreement among groups of similar users. These strategies performed best
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for the dissimilar groups, especially the large ones. For small groups, Least Misery

worked best, whereas, for large groups, there was no significant difference between

the different strategies.

Other work considers social relationships and interactions among group members

when aggregating the predictions [26, 18, 63]. They model member interactions, social

relationships, domain expertise, and dissimilarity among the group members when

choosing a group decision strategy. For example, Recio-Garcia et al. [63] described a

group recommender system that takes into account the personality types of the group

members. Their user study included 70 students that were presented with a list of

50 heterogeneous movies selected from the MovieLens dataset. The students were

joined in groups, of size 2,3,4 and 5, to discuss choosing a movie they would be going

to see. They were asked to decide which 3 movies (favorite set) from the MovieLens

dataset they would watch together. They used a simple evaluation measure that

counts how many of the movies in the favorite set are in the k best items retrieved

by the recommender. They reported that Average and Least Misery with personality

weighting reflected improvements in the accuracy of the recommendations.

Gartrell et al. used real-world group-based user studies to evaluate the effective-

ness of modeling social, expertise, and dissimilarity group descriptors in the prediction

aggregation strategy. They recruited 10 groups, compromised of 32 individuals, to

participate in the user studies. For each group, individual group members were asked

to describe his or her social relationships with other members in the group. The

social relationships between two peers mainly contained the following four types of

relationships: couple, close friends, acquaintances and first acquaintances. The rela-



54

tionship strength was sequentially decreasing. They selected 20 movies, out of the

top 250 popular movies from IMDB3, across 10 different movie genres, selecting two

movies from each genre. They used movie trailers to capture participants’ prefer-

ences provided as ratings on a scale of 1 to 5 for these 20 movie trailers. In order

to capture the group ratings for the movies, the participants were asked to return to

their groups and begin discussion about these 20 movie trailers. They evaluated the

effect of the group’s social and expertise characteristics on the group decision process.

They reported that users with higher expertise levels carried a higher weight in the

group decision process. On the other hand, they investigated how social relationships

can affect a group’s decision. Results indicated that a group with a strong social

relationship tends to maximize the satisfaction of a user in the group, while a group

with a weak social relationship tends to minimize the misery of a user in the group.

In evaluating their group consensus approach, that combines the social, expertise,

and dissimilarity descriptors, they reported great improvement in terms of overall

prediction precision.

Berkovsky and Freyne [6] carried out an evaluation using a data set of explicit

ratings for recipes, gathered during a study observing interaction of families with

an experimental eHealth site. Evaluation consisted of 170 users where 108 of them

belonged to a family group with size ranges between 1 and 4. They implemented

a memory-based recommendation approach. Evaluations compared the accuracy of

the two group-based recommendation strategies (aggregated models and aggregated

predictions), four weighting models (aggregation strategy), and assessed the impact

3http://www.imdb.com
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of switching hybridization, extreme case heuristics, and group characteristics on the

performance of group recommendations. Their recommendation for a group-based

recommender system should aggregate individual user models of the group members

into group-based models, and weights assigned to individual user models should reflect

the observed importance of users.

2.4.2 Evaluation with Synthetic Groups

Related to aggregation strategies used in CF algorithms, Salamó et. al. evalu-

ated several strategies used to aggregate satisfaction of the individual preferences of

group members for an item in the case base; average, Least Misery, Most Happiness,

Multiplicative, and Borda Count. They utilized synthetic groups generated from user

profiles of critique preferences from a critiquing-based travel recommender system

(CATS). They had 34 individual profiles which they used to generate groups of vari-

ous sizes (3, 4, 6, and 8) with 300 groups forming 3 sets of 100 groups, where each set

was made up of members with certain similarity characteristics (similar, diverse and

mixed). The Similar group-set contained groups of users with a high average pair-

wise similarity in the range of 0.53 to 0.82. The Mixed group-set contained groups

of users with mid-range pairwise similarities in the region of 0.4. Finally, the Di-

verse group-set contains groups of users with average pairwise similarities from 0.04

to 0.28. For each test group, they generate recommendations across these strategies.

They evaluate the prediction accuracy of a single top recommendation, and a final

recommendation list of 5 products, by comparing the average similarity of the recom-

mendation product to the “Perfect Products” of the group members. Their results

indicate that Multiplicative, Borda, and Average strategies perform best across all
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group sizes.

Baltrunas et al. [5] used simulated groups to compare aggregation strategies of

ranked lists produced by a model-based collaborative filtering methodology using

matrix factorization with gradient descent (SVD). This approach addresses sparsity

issues for user similarity. The MovieLens data set was used to simulate groups of

different sizes (2, 3, 4, 8) and different degrees of similarity (high 0.456, random

0.132). They generated 1000 groups for each condition. They employed a ranking

evaluation metric, measuring the effectiveness of the predicted rank list using Nor-

malized Discounted Cumulative Gain (nDCG). To account for the sparsity in the

rating matrix nDCG was computed only over the items that appeared in the target

user test set. The effectiveness of the group recommendation was measured as the

average effectiveness (nDCG) of the group members where a higher nDCG indicated

better performance. The group recommendation lists were generated using several

aggregation strategies (Least Misery, Average, Borda Count, and Spearman Footrule)

to merge the individual recommendation lists for the group. They compared the ef-

fectiveness of the group recommendations generated using these strategies with that

of the individual recommendations as well as a random aggregation strategy. They

reported that varying the group size, the variation of the effectiveness of the group

recommendations is not large for groups of size 2, 3, and 4. They also noted that

when increasing the group size the effectiveness of the group recommendations tends

to decrease only for randomly generated groups while for groups with high inner

similarity, as the group size increases the effectiveness increases as well ( the recom-

mendations for groups with 8 members have the largest effectiveness). They couldn’t
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assert a clear winner between these strategies since the best performing method in

each evaluation depended on the group size and inner group similarity.

In recent work, De Pessimier et al. [22] evaluated the two group-based recommen-

dation strategies for various recommendation algorithms considering the size of the

group. Inspired by [5], they conducted an offline evaluation, but considerably smaller

in size (30 groups per size). Employing the nDCG metric and evaluating the effec-

tiveness of a ranked list by averaging the individual nDCG of the group members. In

their evaluation they showed that the effectiveness of the recommendations decreased

as the group size increased. They also reported that the choice of group recommen-

dation technique should depend on the underlying algorithm employed to generate

the individual recommendations as they were not able to designate an overall winner.

Using a group recommender for tourist activities Garcia et al. [25] evaluated three

methods for aggregating individual preferences (aggregation, intersection, incremental

intersection) into a group preference profile. Refer to Section 2.2 for a description

of these approaches. The dataset used was composed of 60 individual user profiles

containing general preferences, demographic data, visited places and the user’s degree

of satisfaction when visiting these places. They randomly generated synthetic groups

with sizes varying between 2,3,4,5 and 6. They did not report on how may groups

were generated. They compared the quality of recommendation lists of 10 items

generated using these approaches for the group. Quality was measured using the

average and standard deviation of the utility of a recommendation list over all the

group members. Their results show that the utility on average is similar across

all group sizes. They repeated their evaluation using a sparser dataset and results
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were similar. Comparing the dispersion (standard deviation) of the utility reveals

that the incremental intersection approach produces recommendations that result

in all members of the group being equally satisfied. The incremental intersection

approach closely resembles the plurality voting aggregation approach, where the group

preference profile is made up of the weighted average of the most vote preferences

among the group members.

In addition to the Amazon Mechanical Turk user study evaluation, Amer-Yahia

et al. [1] also evaluated their approach using synthetic groups generated from the

MovieLens data. These synthetic groups were used to measure the efficiency of dif-

ferent strategies centered around a top-k threshold algorithm. To generate groups, a

similarity level was specified. Groups were formed from users that had a similarity

value within a 0.05 margin. They varied the group similarity between 0.3, 0.5, 0.7,

and 0.9, and the size between 3, 5, and 8. They generated 1 group for each evaluation

condition (12 total). They reported that disagreement between group members im-

pacted the quality and efficiency and could be exploited to increase the effectiveness

of the group recommendations.

Chen et al. [18] also used simulated groups and addressed the sparsity in the user-

rating matrix by predicting the missing ratings of items belonging in the union set of

items rated by group members. They simulated 338 random groups from the Movie-

Lens data set and used it for evaluating the use of Genetic Algorithms to exploit

single user ratings as well as item ratings given by groups, to model group interac-

tions and find suitable items that can be considered neighbors in their implemented

neighborhood-based CF. Group recommendations are determined by aggregating the
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group’s rating of similar items through the item-based collaborative filtering algo-

rithm. If group ratings of similar items are not available, the proposed methodology

uses the GA to learn the preferences of groups based on the ratings of its subgroups.

They reported that the proposed method can provide reasonable and high-quality

group recommendations compared to an approach that does not utilize GA.

Focusing on how individual user models can be aggregated to produce a group

model used to generate recommendations in a critiquing-based, case-based recom-

mender, McCarthy et al. [51] evaluated three aggregation strategies (Section 2.2)

using synthetic groups generated from real-user preference data. The dataset used

included 34 preference profiles of trial subjects that were converted into a critique-

based profile. Groups containing 4 members were randomly generated to form 3

sets of 100 groups each. Each set of groups was made up of members with certain

similarity level (similar, mixed, diverse). The similar groups contained users with a

high average of pairwise similarity in the range of 0.67 to 0.84. The mixed groups had

users with a mid-range pairwise similarity in the region of 0.4 while the diverse groups

contained users with average pairwise similarities less than 0.25. For each test group,

three sets of recommendations were generated with each set containing one recom-

mendation for each group member for a total of 4 recommendations. They evaluated

the recommended cases based on their compatibility (number of shared features) to

the known perfect case of the individual group members. The group compatibility was

measured as the average of these compatibility scores. They reported an improvement

in the quality of the recommendation across the three aggregation strategies for the

similar groups when compared to to the individual group member’s own case choice.
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This was not true for the diverse and mixed groups since the preferences combined

involved compromising more diverse preferences.

Utilizing the synthesized groups approach to evaluation and using the single-user

data sets for the evaluation of group-based recommenders is not as straight-forward

as in the single-user systems. A major question that then must be addressed in

evaluating group recommender systems using this approach, is how to establish the

actual group preference in order to compare the accuracy of the system predictions.

In other words, how do we establish ground truth for the synthesized groups? Previ-

ous work has mainly adopted the average aggregation strategy to model the actual

group preference. Evaluations are done using two approaches. The first approach

takes the average of the individual preferences as the actual group preference and

evaluating the prediction accuracy of the system against that average. The second

approach evaluates predictions against the individual preferences and then averages

the evaluation results, whether they were evaluating a predicted rating or a ranked

list of recommendations. For example, one approach that evaluated a ranked list of

items, the aggregated group ranking, is compared to the individuals’ optimal rankings

that they derived from the ratings in the test set [5]. In this approach the relative

ranking might be correct, but the users might not actually prefer these items. These

are some approaches to handle this issue, but it is our intuition that there is still an

open issue here and the possibility exists that, as you make complicated models of

the actual group preferences, you are moving away from the actual group preferences.

We address this issue in Chapter 4.
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2.5 Research Problems

As mentioned in Chapter 1, CF had a foundational role in the advancement of

single-user recommender systems. CF suffers when the user-rating data is sparse.

Evaluations in single-user recommender systems have taken advantage of publicly

available CF data sets to analyze various dimensions of this approach in that con-

text. When it comes to group-based recommender systems, such data is not generally

available on a significant scale. Evaluations of the CF approach in the context of

group-based recommenders are very limited and small-scale. In our work we address

the issue of sparsity in the user-rating matrix by utilizing synthesized groups identified

in publicly available CF data sets with ideal test points that illustrate group consen-

sus. We are able to provide extensive evaluations of some of the baseline approaches,

validated in the single-user context of recommendations, as well as provide some novel

extensions that consider the group context in the recommendation filtering phase.

Group modeling strategies that extended the baseline aggregation strategies iden-

tified in Section 1.4.2 focused on either probability theory to assess satisfaction or

weighing the individual user models or target models based on social relationships,

interactions, or personality types of the group members. The ability to exploit a large

CF data set allows us to consider information extracted from the data set that can

be reflected on the aggregation strategy used for group modeling without the need

for any additional user information. Similarity information about items and users,

drawn out from the data set, can be utilized in modeling the achievement of consen-

sus among the group. We explore this novel approach as part of our group modeling
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hypothesis in Chapter 6.

Utilizing the synthesized groups approach to evaluation and using the single-user

data sets for the evaluation of group-based recommenders is not as straight-forward

as in the single-user systems. A major question that then must be addressed in

evaluating group recommender systems using this approach, is how to establish the

actual group preference in order to compare the accuracy of the system predictions.

In other words, how do we establish ground truth for the synthesized groups? Previ-

ous work has mainly adopted the average aggregation strategy to model the actual

group preference. Evaluations are done using two approaches. The first approach

takes the average of the individual preferences as the actual group preference and

evaluating the prediction accuracy of the system against that average. The second

approach evaluates predictions against the individual preferences and then averages

the evaluation results, whether they were evaluating a predicted rating or a ranked

list of recommendations. For example, one approach that evaluated a ranked list of

items, the aggregated group ranking, is compared to the individuals’ optimal rankings

that they derived from the ratings in the test set [5]. In this approach the relative

ranking might be correct, but the users might not actually prefer these items. These

are some approaches to handle this issue, but it is our intuition that there is still an

open issue here and the possibility exists that, as you make complicated models of

the actual group preferences, you are moving away from the actual group preferences.

We address this issue in Chapter 4.

Another question that needs to be answered in evaluating recommender systems

concerns the evaluation metrics used. Section 1.3 details metrics used in evaluating
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single-user recommender systems. These metrics are also applicable in evaluating

group-based recommenders and we utilize them in our evaluations.



CHAPTER 3: GROUP TESTING FRAMEWORK

To assess the quality of individual user recommendations, researchers commonly

utilize offline evaluations that employ readily available substantial data sets (e.g.,

Netflix prize4, MovieLens5). This kind of approach can be used to repeatedly con-

duct large scale evaluations of proposed techniques. However, when it comes to

group-based recommender systems such datasets are not readily available. Generat-

ing group-based data directly requires extra overhead in recruiting the groups together

and getting them to cooperate and interact towards a common goal at the same time.

To address scalability in evaluation, researchers have been utilizing synthetic groups,

generated from single-user data sets, to evaluate various approaches to group recom-

mendations [67, 5, 1, 25, 18]. The aim here is to develop a standard that has the

highest probability of success based on the analysis of the individual characteristics

of “real” subjects. Since interactions between individuals are fluid in nature and can

always be highly variable having a “real” group versus synthesized can not affect the

accuracy of the analysis. We adopt this approach of generating synthetic groups for

evaluating our proposed approach to group-based recommendation.

In order to analyze the performance of a group-based recommender system we pro-

pose a novel Group Testing Framework that allows for the creation of synthesized

4www.netflixprize.com
5www.movielens.org
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groups which can be used for testing in memory-based CF recommenders. In this

chapter we give an overview of our proposed Group Testing Framework and in the

following chapters we report on the evaluations we conducted using this framework.

We have developed a group testing framework to support the task of evaluating var-

ious group recommender approaches. Given the availability and wide use of datasets

of recommender systems based on individual user data the framework is used to gen-

erate synthetic groups from this type of data. The groups can be parametrized to

test different group contexts. This enables exploration of various parameters of group

characteristics such as group diversity.

3.1 Group Testing Framework

The testing framework consists of two main components. The first component is a

group model that defines specific group characteristics such as group coherence. The

second component is a group formation mechanism that applies the model to identify

compatible groups from an underlying single-user data set, according to outcome

parameters such as the number of groups to generate. Figure 8 depicts the components

of this framework.

3.1.1 Group Model Descriptors

In simulating groups of users, a given group will be defined based on certain con-

straints and characteristics, or group model. For example, we might want to test

recommendations based on different levels of intra-group similarity or diversity. For

a given dataset, the group model defines the space of potential groups for evaluation.

We note here that the group model for evaluation could include inter-group con-

straints (diversity across groups) as well as intra-group constraints (similarity within
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Figure 8: Group Testing Framework Architecture.

groups).

Gartrell et al. [26] use the term “group descriptors” for specific individual group

characteristics (social, expertise, dissimilarity) to be accounted for within a group

model. We adopt the group descriptor convention to refer to any quantifiable group

characteristic that can reflect group structure. We refer to these as group model de-

criptors, and group formation descriptors. Some of these group descriptors that can

reflect group structure are user-user correlation, and number of co-rated items be-

tween users and demographics such as age difference. We use these group descriptors

to identify relationships between user pairs within a single user data set.

3.1.2 Group Threshold Matrix

A significant set of typical group descriptors can be evaluated on a pairwise basis

between group members. For example, group coherence can be defined as a minimum

degree of similarity between group members, or a minimum number of commonly

rated items. We employ such pairwise group descriptors as a foundational element
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in generating candidate groups for evaluation. We operationalize these descriptors in

a binary matrix data structure, referred to as the Group Threshold Matrix (GTM).

The GTM is a square n× n symmetric matrix, where n is the number of users in the

system, and the full symmetric matrix is employed for group generation. A single row

or column corresponds to a single user, and a binary cell value represents whether the

full set of pairwise group descriptors holds between the respectively paired users. We

choose this bit-set notation to effectively exploit all possible combinations of groups.

Checking all possible combinations of users can be computationally extensive. For

example, given a data set of a 100 users, there are 4950 possible different combina-

tions of groups of two. If we wanted to create groups of five the different possible

combinations goes up to 75,287,520. This number exponentially increases as the data

set and group sizes increase. The bit-set notation is an extremely efficient approach

to model this generate-and-test approach.

To populate the GTM, pairwise group descriptors are evaluated across each user

pair in a given single-user dataset. The GTM enables efficient storage and operations

for testing candidate group composition. A simple lookup indicates whether two users

can group. A bitwise-AND operation on those two user rows indicates which (and

how many) other users they can group with together. A further bitwise-AND with

a third user indicates which (and how many) other users the three can group with

together, and so on. Composing such row-wise or column-wise operations provides

an efficient foundation for a generate-and-test approach to creating candidate groups

from pairwise group descriptors. Initially, individual users are filtered based on group

descriptors that can be applied to single users (e.g., minimum number of items rated).
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The GTM is generated for remaining users.

3.1.3 Group Formation

Once the group model is constructed it can be applied to generate groups from any

common CF user-rating data models as the underlying data source. Baseline pairwise

group formation descriptors are then used to eliminate some individual users from

further consideration (e.g., minimum group size). The GTM is used to generate-and-

test candidate groups for a given group size. The group formation mechanism applies

the set of group formation descriptors to generate synthetic groups that are valid for

the group model. It conducts an exhaustive search through the space of potential

groups, employing heuristic pruning to limit the number of groups considered.

To address the issue of modeling actual group preferences for evaluating system

predictions, the framework needs to establish “ground truth”. We realize this by

identifying groups where all group members gave at least one co-rated item a rating

that satisfies the AGPM descriptor. The AGPM descriptor can be defined as an

exact rating overlap, rating within a certain standard deviation or as a threshold

for a group average. In the first set of evaluations, where we utilize this framework,

we tune it to identify groups where all group members gave at least one co-rated

item the exact same rating among all group members. Such identified “test items”

become candidates for the testing set in the evaluation process in conjunction with the

corresponding group. We did not eliminate “universally popular” items, but enough

test items are identified that such items did not make a significant difference.

The intuition behind modeling the AGPM as an exact rating overlap comes from

the fact that the satisfaction of an individual is likely to depend on that of another
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individual in the group (emotional contagion), as observed in [48]. Since, individually,

group members share the same preference for an item, assuming that their satisfaction

as members of a group is equal to their individual satisfaction provides us with a

principled evaluation point. This evaluation is also ideal for group recommender

systems where the satisfaction of group activity is based on the satisfaction of the

members individually. A common practice in evaluation frameworks is to divide data

sets into test and target data sets. In this framework the test data set for each group

would consist of a subset of these identified common item or items for that group.

3.2 Group Dataset

The data we use to ground the testing framework is available from the GroupLens

research by University of Minnesota that contain movie ratings made by movie goers.

Three datasets of different sizes (100K, 1M, 10M ratings) are available which have

100 thousands ratings from 1,000 users on 1,700 movies, 1 million ratings from 6,000

users on 4,000 movies, and 10 millions ratings with 100 thousands tags from 72,000

users on 10,000 movies respectively. The dataset also contains information about the

movies and users’ demographics.

We first utilize the 100K ratings dataset. Groups were created based on the different

thresholds defined for the group descriptors. By varying the thresholds of the group

model descriptors used to create the group threshold matrix, we were able to represent

groups of different characteristics, which we then used to find and generate groups

for testing. One aspect we wanted to investigate was the effect of group homogeneity

and size on the different aggregation methods used to predict a rating score for a

group using the baseline CF algorithms defined in Section 4.2.2.1. To answer this
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question, we needed to vary the threshold for the similarity descriptor and the size of

the group.

The model descriptors we set are the similarity and number of common rated items.

We define this similarity as the inner similarity of the group members calculated as

the average similarity between any two users a, b belonging to group G as defined

in Equation 1. We defined three similarity levels: high, medium, and low similarity.

Table 1 details the similarity thresholds that were defined.

Table 1: Degrees of group similarity

Similarity level Definition ∀a, b ∈ G

High wab ≥ 0.5

Medium 0.5 > wab ≥ 0

Low 0 > wab

To address the amount of trust to be placed in a correlation with a neighbor we set

the threshold for the number of common rated items to 5 this establishes a level of

significance of the calculated similarity correlations. So we only consider user pairs

that have at least 5 common rated items. For this MovieLens dataset used, we have a

total of 444,153 distinct correlations (943 taking two combinations at a time). For the

three similarity levels defined previously, the total correlation and average correlation

are outlined in Table 2.
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Table 2: Similarity statistics for test data set

Degree of Number of Valid Average User-User

Similarity Correlations Similarity

High 39,650 0.65

Medium 192,522 0.22

Low 95,739 -0.25

Table 3: Group threshold matrix statistics

2 3 4 5

High Similarity Total Combinations 39,650 1,351,657 40,435,741 1,087,104,263

Valid Groups 39,650 226,952 417,948 390,854

Testable Groups 37,857 129,826 129,851 71,441

Medium Total combinations 192,522 30,379,236 3,942,207,750 434,621,369,457

Valid groups 192,522 17,097,527 875,027,262 241,169,045

Testable groups 187,436 11,482,472 310,274,656 62,016,716

Low similarity Total combinations 95,739 7,074,964 421,651,608 21,486,449,569

Valid groups 95,739 1,641,946 6,184,151 5,869,889

Testable groups 87,642 470,257 283,676 41,827

The group formation descriptors we set are size, AGPM and the number of test

groups for each condition. For the size we varied the group sizes from 2 to 5. For

the AGPM we set it to an exact overlap and we wanted to have 5000 groups for each

size and similarity combination (e.g. 5000 groups of size 2 and with high inner group

cohesiveness). To make sure that the thresholds we set for the group descriptors are

relevant we first checked their applicability to generate the groups needed. Table 3

reflects the GTM group generation statistics for the underlying dataset used in this
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run. The total combinations field indicates the number of possible group combinations

that can be formed giving user pairs that satisfy our group size threshold descriptor.

The valid groups field indicates the number of possible groups that satisfy both the

size and similarity threshold whereas the testable groups are valid groups with at

least one identified test item as described in section 3.1.3 and satisfies the AGPM

(exact overlap). These numbers confirm that as the size of the group increases, the

number of combinations the implementation has to check increases significantly. We

can also see that the number of possible testable groups is large in comparison to the

number of groups used in actual user studies.

Once we have identified the possible groups we needed to generate the testing and

training data. A common evaluation approach in this domain is the leave-one-out

approach, we adopt this strategy for evaluating the accuracy of a predicted rating.

For each randomly selected group a test item is randomly selected from the set of

commonly rated items that satisfy the AGPM threshold. For each group, one item has

been identified as the test item. To generate the training set for each group we take

out the rating of that test item from all of the group members’ profiles. For example,

given a group of {user1,user2,user3} and possible test item IDs of {50, 100, 315}.

Assuming that the randomly selected item ID is 50, when calculating the prediction

of item 50 for user1, only the ratings of item 50 for users {user1,user2,user3} are taken

out of the data set to form the training set for that group. Then predictions for that

group and item are generated using this training set and so on for the other groups

and test items. Overall, for this criteria, the group dataset contains 60,000 group and

test item pair we refer to this dataset as Group Dataset 1 (GD1).
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Since we are interested in evaluating our recommendation approach for both profile

merging and recommendation aggregation, we wanted to ensure that the same training

set was used to generate all the predictions for that group. We created a training and

testing set for each group based on the test set of the group. We first created the

profiles of the pseudo users for each group by merging the individual group members’

ratings based on the average aggregation strategy. For each item rated by one or more

group member, the rating for the pseudo user would be the average of the ratings

based on the number of the group members that rated it.

Once the profiles for the pseudo users were created we can add the pseudo profile

to the original data set to include the new pseudo user. This ensured that the same

training set was used to generate predictions for the group across all the evaluated

techniques, both merging profiles and merging recommendations. To create the train-

ing set for each group, we started off with the original MovieLens dataset. We then

added the profile of the pseudo user of that group to the dataset. We then took out

the ratings of the test items identified for that group from each of the group member’s

profiles and the pseudo user. In other words, the training set for each group is the

original MovieLens dataset plus that group’s pseudo user profile minus the ratings for

the test item(s) for that group, for each of the group members and the pseudo user

of that group.

The second group dataset we generate is based on the 1M MovieLens dataset. We

refer to this dataset as Group Dataset 2 (GD2). We define the same group descriptors

thresholds as the previous run only changing the AGPM and the number of groups

generated. We set the AGPM to a commonly rated item among the group members
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with no restriction on the ratings and we set the number of groups to be generated

to 100. For each group criterion (group size / similarity level) we randomly create

100 groups for a total of 1200 unique groups. We placed an additional constraint on

group formation that requires a valid group to have at least 3 items that were rated

by all of the members of the group. This constraint provides for a minimal group

evaluation baseline across those items. From these items we identify test items for

each group.

To generate training and testing sets and to deal with the issue of disparity in

profile sizes between group members, we employed a training/test set approach to

split based on individual profile sizes within groups. For each group, we identified

the commonly rated items among the group members. Then we checked if that set is

larger than 40% of the smallest group member’s profile size. If it was smaller, then

those items would be the testing set for that group. If it was larger then we randomly

select items from that set, not exceeding 40% of the smallest group member’s profile

size, to compose the testing set for that group. We do this to ensure that for each

group member we have a majority of their original profile as part of the training set

with as many test points as possible.

Once the test items for each group were identified, we created a training and testing

set for each group in a similar fashion to how the training/testing sets are created in

GD1 including the group’s pseudo user profile. This ensures that the same training

set for each group is used to generate all the predictions for that group. Table 4

outlines the number of test items identified for each group testing category. For the

1200 groups created, we identified 10,543 group/test item pairs. The training set for
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Table 4: Number of test items across group sizes and similarity levels

2 3 4 5
High 1367 493 419 539

Medium 2156 1116 756 496
Low 1896 572 389 344

each group is created by taking the original MovieLens dataset and then removing the

ratings of the test items identified for that group from each of the group members’

profiles. In other words, the training set for each group is the original MovieLens

dataset minus the ratings for the test items for that group, for each of the group

members. For each evaluation we conducted we used the same dataset across the

different models being evaluated this preserves the assumption that our observations

may be considered as random draws from the same probability distribution and are

considered Independent and Identically Distributed.



CHAPTER 4: EVALUATION IN GROUP RECOMMENDER SYSTEMS

In order to address the issues we identified in our research of group-based recom-

mender systems our first task was to explore ways of utilizing the publicly available

datasets for evaluating CF approaches in this context. The previous chapter detailed

the group testing framework that scans the individual-based recommendation dataset

and is able to create synthesized groups, based on given constraints and group char-

acteristics, as well as identify some ideal test points for the generated groups. We

used the generated group test dataset to evaluate some representative group aggre-

gation strategies (Least Misery, Most Happiness, Average) in aggregating individual

predictions into group predictions as well as tradeoffs in evaluation strategies in this

context. We implemented a memory-based CF, as described in Section 1.2.1. For

evaluating the performance of the group aggregation strategies we measured predic-

tion accuracy, using the MAE and RMSE metrics (Section 1.3), and compared our

results to previous work that evaluated these aggregation strategies. For comparing

evaluation strategies we analyzed the impact of the choice of a model as the actual

group preference on the prediction accuracy using the RMSE metric.

4.1 Motivation

To date, we are not aware of a larger-scale group recommender evaluation using

synthetic data sets that (1) focuses on traditional, memory-based collaborative filter-

ing or (2) employs precise overlap across individual user ratings for evaluating actual
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group preference. Given the foundational role of classic, user-based [64] collaborative

filtering in recommender systems, we are interested in understanding the behavior

of group recommendation, in this context, as a comparative baseline for evaluation.

Given that additional inference to determine “ground truth,” preference for synthetic

groups can potentially decrease precision in evaluation, we are interested in comparing

results when group members agree precisely in original ratings data.

Previous work by [5, 18, 1] simulated groups from single-user data sets. Their

simulated group creation was limited to groups of different sizes (representing small,

medium, and large) with certain degrees of similarity (random, homogeneous, and

heterogeneous ). Chen et al. [18] used a baseline aggregation as the ground truth while

[5] compared the effectiveness of the group-based recommendation to the effectiveness

of the individual recommendations made to each member in the group. This led to

our work in investigating ways to create synthesized groups from the most commonly

used CF single-user data sets, taking into consideration the ability to identify and

establish ground truth.

Overall, larger-scale synthetic evaluations for group recommendation have not fo-

cused on traditional, memory-based approaches. This may be because it is cumber-

some to address group generation, given sparsity constraints in the user-item matrix.

Moreover, only limited attention has been given to evaluation based on predictions,

rather than ranking. Our initial evalution approach addresses these issues. We eval-

uate the performance of three representative group aggregation strategies (average,

least misery, and most happiness) [46] in this context, providing a novel compari-

son point for earlier, illustrative, memory-based results, for more recent model-based
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work, and for models of actual group preference in evaluation.

Our initial evaluation goal is to test group recommendation, based on traditional

memory-based collaborative filtering techniques, in order to provide a basis of com-

parison that covers (1) synthetic group formation for this type of approach, and (2)

group evaluation based on prediction rather than ranking. We hypothesize that ag-

gregation results will support previous research for the aggregation strategies tested.

In doing so, we investigate the relationship between the group’s coherence, size, and

the aggregation strategy used.

4.2 Group Characteristics and Structure

4.2.1 Hypothesis

H1 - A group’s cohesiveness and size has a direct effect on the prediction ac-

curacy of the aggregation strategy applied in aggregating the individual predictions,

generated using a memory-based CF, into a group predicted rating.

4.2.2 Evaluation Setup

By varying the thresholds of the group descriptors used to create the group thresh-

old matrix, we were able to represent groups of different characteristics, which we then

used to find and generate groups for testing. One aspect we wanted to investigate

was the effect of group homogeneity and size on the different aggregation methods

used to predict a rating score for a group using the baseline CF algorithms defined

in section 4.2.2.1.

4.2.2.1 Baseline Collaborative Filtering

Collaborative Filtering played a significant role in the advancement of recommender

systems. CF requires a substantial amount of data in order for it to generate qual-



79

ity recommendations. Availability of data sets in this context contributed to a vast

amount of research focused on evaluating and improving this approach for recommen-

dation generation in single-user recommender systems. The difficulties of generating

such data for group-based recommender systems have hampered research focusing

on evaluating this approach in this context. Utilizing our group testing framework,

we are able to lead large scale group-based evaluation of this approach. Given this

foundational role of CF, we implement the most prevalent memory-based CF algo-

rithm, the neighborhood-based CF algorithm [33, 64]. The basis for this algorithm

is to calculate the similarity, wab, which reflects the correlation between two users a

and b. We measure this correlation by computing the Pearson correlation defined as:

wab =

∑n
i=1[(rai − ra)(rbi − rb)]√∑n

i=1(rai − ra)2
∑n

i=1(rbi − rb)2
(1)

To generate predictions, a subset of the nearest neighbors of the active user are

chosen based on their correlation.

We then calculate a weighted aggregate of their ratings to generate predictions for

that user. We use the following formula to calculate the prediction of item i for user

a:

pai = ra +

∑n
b=1[(rbi − rb) · wab]∑n

b=1wab
(2)

Herlocker et al. [33] noted that setting a maximum for the neighborhood size less

than 20 negatively affects the accuracy of the recommender systems. They recom-

mend setting a maximum neighborhood size in the range of 20 to 60. We set the
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neighborhood size to 50. We also chose 50 as the minimum neighborhood size for

each member of the groups we considered for evaluation. Breese et al. [9] reported

that neighbors with higher similarity correlation with the target user can be excep-

tionally more valuable as predictors than those with the lower similarity values. We

set this threshold to 0.5 and we only consider the ones based on 5 or more co-rated

items. This resulted in eliminating groups that had at least one member not having

50, or more similar users with a Pearson correlation higher than 0.5, with at least 5

co-rated items.

4.2.2.2 Group Aggregation Strategies

Previous work in group modeling focused on strategies inspired by Social Choice

Theory. For this evaluation we choose three representative strategies: average strat-

egy, least misery, and most happiness. The average strategy has been implemented as

a baseline strategy in many group-based recommenders. We choose the Least Misery

and Most Happiness since they cover extreme cases in terms of group consensus and

satisfaction.

• Average Strategy: this is the basic group aggregation strategy that assumes

equal influence among group members and calculates the average rating of the

group members for any given item as the predicted rating. Let n be the number

of users in a group and rai be the rating of user a for item i, then the group

rating for item i is computed as follows:

Gri =

∑n
a=1 rai
n

(3)

• Least Misery Strategy: this aggregation strategy is applicable in situations
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where the recommender system needs to avoid presenting an item that was

highly disliked by any of the group members, i.e., that goal is to please the least

happy member. The predicted rating is calculated as the lowest rating for any

given item among group members and computed as follows:

Gri = min
a
rai (4)

• Most Happiness: this aggregation strategy is the opposite of the least misery

strategy. It applies in situations where the group is as happy as their happiest

member and computed as follows:

Gri = max
a
rai (5)

Previous group recommender research has focused on several group aggregation

strategies for combining individual predictions. We evaluate three of the most com-

monly implemented group aggregation strategies outlined here as representative RGPMs.

We compare the performance of these three aggregation strategies with respect to

group characteristics: group size and the degree of similarity within the group.

4.3 Results

We investigated the relationship between the group’s coherence, size, and the ag-

gregation strategy used. For statistical analysis we employed the ANOVA test and

the Student’s t-test. In this evaluation we used ANOVA to compare the different

models for each group size and group cohesiveness level. The ANOVA statistical

model assures that the differences in the models are significant. We use ANOVA for

Repeated Measures with Benferroni adjustment and a p value less than 0.5. For this
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evaluation we examined the difference between each of the three evaluated models

(Average, Least Misery and Most Happiness) for each group size and they were are

all significant for all the group sizes and group cohesiveness evaluated. We then exam-

ine the pair-wise difference between the models using the t-test for a more granulated

analysis. Figures 10-15 reflect the MAE and RMSE for these evaluated relationships.

Figure 9: RMSE - High degree of similarity.

Figure 10: MAE - High degree of similarity.
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Examining the graphs for the groups with high similarity levels, Figures 9 and

10 show that average strategy and most happiness perform better than least mis-

ery. We conducted a paired t-test to evaluate the results’ significance and found that

both MAE and RMSE for average and most happiness strategies, across all group

sizes, significantly outperform the least misery strategy (p<0.001 ). For group sizes

2 and 3 there was no significant difference between the average and most happiness

strategies (p>0.01 ). For group sizes 4 and 5, the most happiness strategy performs

better than the average strategy (p<0.001 ). Both least misery and average strate-

gies’ performance worsens as the group size grows while the most happiness strategy

performance improves as the group size increases from 2 to 4. This indicates that a

larger group of highly similar people is as happy as its happiest member.

Figures 11 and 12 show the RMSE and MAE for groups with medium similarity

levels. The average strategy performs significantly better than most happiness and

least misery across group sizes 2,3 and 4 (p<0.001 ). For the groups of size 5 there was

no significant difference between average and most happiness strategies (p>0.01 ). For

groups with medium similarity level the least misery strategy performance is similar

to that of groups with high cohesiveness levels.
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Figure 11: RMSE - Medium degree of similarity.

Figure 12: MAE - Medium degree of similarity.

Figures 13 and 14 show the results for the groups with low similarity levels. Ex-

amining the RMSE and MAE in these graphs, the average strategy performs best,

across all group sizes, compared to the other two strategies. MAE and RMSE for the

average strategy for all group sizes with low cohesiveness had a statistically signifi-

cant p value (p<0.001 ) compared to both least misery and most happiness strategies.
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Unlike groups with high cohesiveness, the most happiness strategy performance starts

to worsen and the least misery strategy performance starts to improve as the group

size increases, for groups with low cohesiveness.

Figure 13: RMSE - Low degree of similarity.

Figure 14: MAE - Low degree of similarity.

4.4 Summary

These evaluation results indicate that, in situations where groups are formed with

highly similar members, the most happiness aggregation strategy would be best to
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model the RGPM while, for groups with medium to low cohesiveness, the average

strategy would be best. These results, using the 5000 synthesized groups for each cat-

egory, coincide with the results reported by Gartrell using real subjects. Gartrell de-

fined groups based on the social relationships between the group members. They iden-

tified three levels of social relationships (couple, acquaintance and first-acquaintance)

that might exist between group members. In their study to compare the performance

of the three aggregation strategies across these social ties, they reported that, for the

groups of two members with a social tie defined as couple, the most happiness strategy

outperforms the other two. For the acquaintance groups, which had 3 members, the

average strategy performs best, while for the first-acquaintance, which had one group

with 12 members, the least misery strategy performs the best. It is apparent that

their results for the couple groups performance is equivalent to our high-cohesiveness

groups. The acquaintance groups maps to the medium-cohesiveness groups while the

first-acquaintance groups follow the low-cohesiveness groups. Masthoff’s studies re-

ported that people usually used average strategy and least misery since they valued

fairness and preventing misery. It is worth noting that her studies evaluated these

strategies for groups of size 3 only without any reference to cohesiveness levels.

As group-based recommender systems become more prevalent, there is an increas-

ing need for evaluation approaches and data sets to enable more extensive analysis of

such systems. In our work, we have developed and evaluated a group testing frame-

work that can help address the problem by automating group formation resulting in

the generation of groups applicable for testing in this domain. Our work provides

novel coverage in the group recommender evaluation space by, (1) considering focus
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on traditional memory-based collaborative filtering, and (2) employing precise overlap

across individual user ratings for evaluating actual group preference. We evaluated

our framework with a foundational Collaborative Filtering neighborhood-based ap-

proach, measuring prediction accuracy, and utilizing three representative group pre-

diction, aggregation strategies. Our results show that, for small-sized groups with

high-similarity among their members, the average and the most happiness strategies

perform the best. For larger size groups, with high-similarity, most happiness per-

forms better. For the low and medium similarity groups, average strategy has the

best performance. Overall, this work has helped to extend the coverage of group

recommender evaluation analysis, and we expect this will provide a novel point of

comparison for further developments in this area.

This experiment has provided a foundation for evaluation and analysis of group-

based recommender systems. We presented this work as a part of the Workshop on

Human Decision Making in Recommender Systems held in conjunction with the ACM

Conference on Recommender Systems [56].

In evaluating recommendations for synthetic groups, the AGPM — the baseline

for measuring recommendation accuracy — has typically been modeled as an average

rating across group members (e.g., [5]). However, there is comparatively little evi-

dence that real group decisions rely almost solely on an average strategy. For example,

[46] and [38] note that different groups employ a variety of different strategies. As

a result, evaluations that consider only an average strategy AGPM (and the system

development that relies on them) may not always provide the best model for group

recommender behavior. Recent work by Quijano-Sanchez et. al. [61] utilized human
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subjects to establish ground truth for the synthesized groups used in their evaluation

of a case-based aggregation model for group recommenders. They based the AGPM

on a voting scheme of a panel of experts rather than a model based on the individual

known preferences of the group members.

In the absence of one true AGPM, the meta-issue arises of how to evaluate can-

didate evaluation models. In order to do so, there are essentially two traditional

options: finding a baseline context for comparing AGPMs, or relative performance

comparison among different evaluation models. Keeping in mind that the the de-

pendent variable in such experiments is a component of the evaluation strategy itself.

This issue of how to model the AGPM in the evaluation of group recommenders using

synthesized groups motivated us to investigate alternative approaches for AGPMs. Of

course changing the evaluation baseline will show differences in outcomes, but we are

interested in investigating the shape and extent of such differences as a way to inform

the process of evaluation. In the next experiment we examine the scope of potential

tradeoffs in the choice of an aggregation model for recommendations for groups when

actual group preference may vary. We lay out a survey of evaluation techniques in

this context. This can provide group recommender system developers with a better

understanding of the implications in choosing a particular AGPM baseline.

4.5 Tradeoffs in Evaluation

The purpose of the following sections is to show that when utilizing synthesized

groups in evaluation outcomes can vary depending on the underlying model used

as the APGM. We hypothesize that these changes occur and interested in seeing

how they are visible, and examine their impact on conclusions drawn using current
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evaluative techniques that do not take them into account.

4.5.1 Hypothesis

H2 - The choice of a model as the actual group preference impacts the accu-

racy levels of predictions generated for the group. Results will favor the aggregation

strategy that is used for both the RGPM and the AGPM.

4.6 Dataset and Evaluation Process

In this experiment we utilized the same dataset (GD1), evaluation process and

setup from the previous experiment with the following modifications:

• To evaluate different models for the AGPM, we randomly selected a test item

from the set of commonly rated items for each group not limiting it to the

item where all group members gave the same ratings. For each group, one item

has been identified as the test item we then followed a similar leave-one-out

approach using that test item as explained in Section 3.2.

• Since we are interested in the performance of various aggregation models used

as the AGPM we varied the AGPM between the Average, Least Misery and

Most Happiness models.

In the previous experiment the analysis results obtained using the MAE and RMSE

metrics were comparable in the following evaluation we analyze and include the results

based on the RMSE metric only.

4.7 Results and Discussion

To analyze the impact of the choice of a model as the actual group preference on the

accuracy levels of predictions generated for the group, we compare the accuracy levels
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of predictions generated using the three different models defined in section 4.2.2.2.

Surely changing the baseline will change the accuracy results but we are interested

in the size, extent, and trends of such differences across different group conditions.

4.7.1 Relationship between the AGPMs

In this evaluation we used ANOVA to compare the different models for each group

size and group cohesiveness level across the various AGPMs. The difference was

significant for all the group sizes and group cohesiveness evaluated (p < 0.5). Figures

15 to 17 show the RMSE values for the various conditions. To evaluate the difference

in RMSE values we use the two-tailed, t-test for statistical significance with a p value

of p < 0.01. For each group similarity level (high, medium, low) and AGPM (LM,

MH, Average), we compared the RGPMs (LM, MH, Average) to each other. So, for

each pair of AGPM (Avg/LM, Avg/MH, LM/MH), we compared the various RGPMs

for each group similarity level and group size (2,3,4,5).

For this evaluation there were 324 conditions (3 AGPM pairs x 9 RGPM pairs x

4 group sizes x 3 similarity levels). Of those only 4 had a p value > 0.01. Examining

those 4 non-significant relationships further, they are between the LM AGPM and

MH AGPM. Thus, as expected, there are significant differences in most RGPM eval-

uations, depending on the active AGPM baseline. For the LM AGPM (Figure 16)

results indicate that the LM RGPM performs best across all group inner-similarity

levels and the different group sizes. The difference between the RGPMs was signifi-

cant for each group inner-similarity level and each group size. The same results are

found for the MH AGPM (Figure 17) and the Avg AGPM (Figure 15).

Indeed, we would be surprised, were it not the case, that evaluation outcomes
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were biased when the aggregation strategy used for the RGPM is also used for the

AGPM. If we knew which aggregation strategy the group actually used, applying it

on the recommendation side, one would expect that it would result in more accurate

recommendations. From these results we can conclude that the choice of a baseline to

represent the AGPM does indeed matter and the commonly adopted average model,

as a baseline, does not necessarily provide an ideal baseline for evaluating group-based

recommender systems.

Figure 15: RMSE for Avg AGPM

4.7.2 Relationship between the RGPMs

In comparing evaluation outcomes, we examine the outcomes across individual

conditions and the correlation across all group sizes. Tables 1-3 show the correlation

among accuracy values between the three aggregation models when used as the AGPM

as well as the RGPM for the three defined inner group similarity levels.
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Figure 16: RMSE for LM AGPM

Figure 17: RMSE for MH AGPM

Examining the correlations between the LM AGPM and the MH AGPM, we can

see that these two approaches are mostly negatively correlated. The correlation is
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Table 5: Correlations between the RGPMs using the different AGPMs for groups
with low similarity levels

Avg RGPM LM RGPM MH RGPM

LM – MH

Size 2 -0.1101 -0.0900 -0.1470
Size 3 -0.0332 -0.0585 -0.0985
Size 4 0.0216 -0.0403 -0.0557
Size 5 0.1806 0.0783 -0.0040

LM – AVG

Size 2 0.4320 0.1751 0.7026
Size 3 0.1738 -0.1626 0.6401
Size 4 0.1854 -0.1817 0.6181
Size 5 0.1030 -0.0827 0.5798

MH – AVG

Size 2 0.2761 0.5788 0.0398
Size 3 0.2303 0.6300 -0.1284
Size 4 0.1923 0.5853 -0.1401
Size 5 0.1309 0.4684 -0.0716

Table 6: Correlations between the RGPMs using the different AGPMs for groups
with medium similarity levels

Avg RGPM LM RGPM MH RGPM

LM – MH

Size 2 -0.1823 -0.1356 -0.1420
Size 3 -0.1428 -0.0907 -0.1054
Size 4 -0.0923 -0.0624 -0.1309
Size 5 -0.0202 -0.0444 -0.0630

LM – AVG

Size 2 0.5158 0.2703 0.7402
Size 3 0.2737 0.0087 0.6458
Size 4 0.1291 -0.0366 0.6374
Size 5 0.0452 -0.0486 0.5754

MH – AVG

Size 2 0.3134 0.6242 0.1733
Size 3 0.2730 0.6483 0.0904
Size 4 0.2471 0.6101 -0.0972
Size 5 0.1963 0.5836 -0.0536

strongest for the MH RGPM for groups with a high inner-group similarity level. One

explanation for that is that, as the group members are highly similar, they tend to

give items ratings that are similar or close. In that case, both aggregation models

used as a baseline might yield comparable evaluation results.

When comparing the LM AGPM to the Avg AGPM we can also see a similar trend.

For groups that have highly similar members the evaluation outcomes, using these
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Table 7: Correlations between the RGPMs using the different AGPMs for groups
with high similarity levels

Avg RGPM LM RGPM MH RGPM

LM – MH

Size 2 -0.1233 -0.1216 0.0656
Size 3 -0.2017 -0.0872 0.0535
Size 4 -0.1425 -0.0657 0.2397
Size 5 -0.1368 -0.0894 0.2451

LM – AVG

Size 2 0.7159 0.5238 0.8418
Size 3 0.6006 0.3620 0.8011
Size 4 0.5751 0.3878 0.7814
Size 5 0.5544 0.3966 0.7771

MH – AVG

Size 2 0.4186 0.6336 0.4520
Size 3 0.3168 0.6923 0.3800
Size 4 0.3487 0.6528 0.6083
Size 5 0.3007 0.6035 0.5794

two AGPMs as a baseline, are highly correlated for all group sizes and RGPMs. Since

the group members are similar they tend to rate similarly or very close to the group’s

average rating for that item.

As the group sizes increase, for groups with medium and low similarity levels, the

Avg RGPM and LM RGPM can result in different evaluation outcomes. We can see

that all the lowest correlations are for the LM RGPM and appear in groups of medium

and low similarity. This can be because, as the group’s inner similarity level decreases,

the chances that they rate an item differently increases which makes it further from the

average rating of the group members for that item. Another factor is, as we pointed

out earlier, the LM RGPM favors the lowest rating and that might be further away

from the average group rating for that same item. This also highlights the bias effect

introduced when comparing results with the same aggregation strategies used on the

recommendation and evaluation sides. Here we are comparing the LM RGPM using

the LM AGPM as a baseline.
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We attribute this relationship to the fact that these two aggregation strategies are

on opposite sides. The LM AGPM favors the lowest rating while the MH AGPM

favors the highest rating. We can see the conditions where the RGPMs are negatively

correlated between the LM AGPM and the Avg AGPM. We can see that all the

negative correlations are for the LM RGPM and appear in groups of medium and

high similarity. This can be because, as the groups’ inner similarity level increases,

there is a greater chance that they rate an item more similarly, which makes it closer

to the average rating of the group member’s for that item.

Another factor is, as we pointed out earlier, the LM RGPM favors the lowest rating

and that might be further away from the average group rating for that same item.

This also highlights the bias effect introduced when comparing results with the same

aggregation strategies used on the recommendation and evaluation sides. Here we

are comparing the LM RGPM using the LM AGPM as a baseline. We notice the

same trends when comparing either MH or LM to the Avg AGPM. We see the low

correlations more in the low similarity groups for the MH RGPM. This might indicate

that, for low similarity groups, using the MH RGPM might not result in satisfactory

recommendations to all the group members. Here the bias effect is also highlighted

since the MH AGPM is one of the baselines used here.

4.7.3 Summary

In this experiment we analyzed different choices of an aggregation strategy to model

the actual group preference when evaluating the accuracy performance of a group-

based recommender system using synthesized groups. We compared the results of

using the Avg AGPM, LM AGPM and MH AGPM as a baseline to evaluate the
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performance of three representative aggregation strategies as the RGPMs using syn-

thesized groups with various degrees of inner similarity and size. Results show that

the choice of an AGPM, in this context, results in different evaluation outcomes. The

choice of an AGPM can also introduce a bias, particularly when the same aggregation

strategy is used on the recommendation side.

We aimed to show that modeling the actual group preference does matter when

evaluating group-based recommenders, and different models provide different results.

Developers of such systems need to consider the tradeoffs when choosing a baseline

for evaluation. Here we demonstrated the differences between some of these choices.

Overall, this work has helped to extend the coverage of group recommender evaluation

analysis, and we expect this will provide a novel point of comparison for further

developments in this area.



CHAPTER 5: RECOMMENDATION TECHNIQUE FOR GROUP-BASED
RECOMMENDER SYSTEMS

In our research of group-based recommender systems we identify the following

research issues, and outline the primary problems, to include choices made about:

1. The underlying recommendation strategy (e.g., content-based, collaborative

memory-based, or model-based)

2. Group modeling for making recommendations — RGPM (e.g., least misery)

3. Evaluation of the recommendations:

• Determining actual group preferences for evaluative comparison to system

recommendations — AGPM (e.g., choice aggregation)

• Choices about metrics for assessment (e.g., ranking, rating value).

We have formulated representative hypotheses to target the issues we identified in

group-based recommenders. In this chapter and thefollowing chapters we propose to

investigate novel approaches along these contexts. For each issue, we will introduce

the motivation that led us to ask these questions. The questions are formalized as

hypotheses. The methods, techniques, tasks, and tools needed to evaluate each hy-

pothesis are highlighted in the “Methodology” (Sections 5.1.2.2, 5.2.2, 6.1.2.2, 6.2.4)

and “Evaluation Process” (Sections 5.2.3, 6.1.2.3, 6.2.4.1) sections.
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5.1 Memory-Based Collaborative Filtering In Group-Based Recommender

Systems

5.1.1 Motivation

Previous research in CF utilized the availability of large, single-user data sets to

evaluate approaches used in this technique and to assess their validity and success.

Since group-based data sets are not readily available, evaluations have been limited

to a smaller scale. Utilizing our implementation of the Group Testing Framework

defined in Section 3 we are able to provide a baseline evaluation for some of the

design choices for Group Neighborhood-Based Collaborative Filtering Algorithms.

In section 1.2.1, a neighborhood-based CF is divided into three components; simi-

larity computation, neighbor selection, and rating combination. Herlocker et al. [33]

provided a baseline evaluation of the most widely used approaches along those compo-

nents for single-user, Neighborhood-Based Collaborative Filtering recommender sys-

tems. They found that a gain in prediction accuracy was achieved by using Pearson

correlation as a similarity measure, a significance weight to devalue correlations with

small numbers of co-rated items and the use of the deviation-from-mean approach

to normalize ratings. We believe that special consideration along the components of

a Neighborhood-Based CF, that accounts for the group structure and members, will

result in a gain in prediction accuracy.

Masthoff [46] applied normalization in measuring satisfaction for a group after

viewing a series of items (TV shows). She normalized the individual satisfaction scores

for each group member before aggregating them into one group satisfaction score.
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She reported an improvement in the final satisfaction score. Herlocker’s evaluation

compared normalizing ratings, when it comes to combining the individual ratings, to

form a prediction for an item. Deviation-from-mean averaging (equation 2) was shown

to increase prediction accuracy significantly over a normal weighted average, while

z-score averaging provided no significant improvements over deviation-from-mean.

On the same lines, we believe that accounting for the fact that users rate on different

scales by normalizing the individual ratings will result in a gain in prediction accuracy

for recommendations generated for groups. This is hypothesized in Section 5.1.2.

For the the neighborhood selection component we believe accounting for a group

neighborhood in calculating the individual predicted ratings will also result in a gain

in prediction accuracy. For any group member, when calculating a predicted rating

for an item by weighting neighbors ratings, a gain in prediction accuracy is realized

by weighting users that belong to the neighborhoods of all group members more

than the users belonging only to the individual group member neighborhood. This is

hypothesized in Section 5.2.1

5.1.2 Rating Normalization for Prediction Calculation in Memory-Based

Collaborative Filtering

5.1.2.1 Hypothesis

H3 - Normalizing the individual ratings when computing a final prediction by

performing a weighted average of deviations from the neighbor’s mean or accounting

for the differences in spread between users’ rating distributions by converting ratings

to z-scores, will result in a higher prediction accuracy in the final group item prediction

when compared to a non normalized, memory-based CF approach.
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5.1.2.2 Methodology

To evaluate this hypothesis, we evaluated the prediction accuracy of a predicted

group rating for a test item generated by equation 2 as the CF algorithm to a baseline,

non-normalized average approach defined as follows:

pai =

∑n
b=1(rbi · wab)∑n

b=1wab
(6)

Where pai is the prediction for the active user a for item i. n is the number of

neighbors, rbi is user b rating of item i , and wab is the similarity weight between

users a and b as defined by the Pearson correlation coefficient, equation 1. We will

also evaluate the performance of a z-score approach to normalizing ratings, as defined

in equation 7 in comparison to the baseline non-normalized approach as well as the

deviation-from-mean approach.

pai = ra + σa

∑n
b=1[(

rbi−rb
σ a

) · wab]∑n
b=1wab

(7)

Where pai is the prediction for the active user a for item i. n is the number of

neighbors, rbi is user b rating of item i , and wab is the similarity weight between users

a and b as defined by the Pearson correlation coefficient, equation 1.

5.1.2.3 Evaluation Setup

1. Define the dataset used in this evaluation: We use the GD2 dataset created as

defined in section 3.2.

2. Define the baseline prediction group aggregation strategy: We implement the

Average, Least Misery, and Most Happiness aggregation strategies.

3. Generate predictions for each group based on the three different user-user CF
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Figure 18: RMSE comparing baseline to normalization with deviation-from-mean and
z-score for 1200 groups

algorithms as outline in Section 5.1.2.2.

4. Generate predictions for the pseudo user of that group.

5. Compare prediction accuracy of the non-normalized baseline to the two nor-

malization approaches (Equation 2, Equation 7) based on the RMSE metric for

profile merging and recommendation aggregation techniques.

5.1.3 Results

To compare applying these two normalization approaches in prediction calculation

we examine the accuracy of these approaches for the recommendation aggregation

techniques using average, least misery and most happiness strategies as well as the

profile merging technique using the average strategy. We first examine the perfor-

mance of normalization with considering the group modeling approach. This included

all the groups in the dataset (1200 groups/10543 items) with out considering group

characteristics. Figure 18 shows the RMSE for these approaches across the group

modeling techniques. For the Profile Merging (PM) model there was no advantage to
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applying normalization to the ratings when calculating the prediction for the group

members. Even though both normalization approaches had a higher RMSE value it

was not significant (p < 0.05) for both the ANOVA across the three techniques and

the pair-wise using the t-test and this difference was negligible in value (0.001) with

the z-score slightly better than deviation.

For the recommendation technique the performance of the normalization highly

depended on the group modeling strategy. When using the average model the nor-

malization approaches were better than the baseline with no difference between them.

Overall the z-score approach performed best.

For both the Least Misery (LM) and Most Happiness (MH) these results were

conflicting. Normalization resulted in lower accuracy predictions (higher RMSE).

This effect was much more noticeable for the LM model. For the MH model even

though the difference in RMSE value was not big it was significant.

Next we evaluated normalization with respect to group characteristics across the

different group models. The characteristics we considered are the group’s inner cohe-

siveness and size. Figure 19 show the wining approach across each inner cohesiveness

level and size of the groups. Figure 19 depicts this comparison by highlighting the

winning strategy for each group category tested and reflecting the significance of these

results. For the significance testing we used ANOVA and two-tailed, paired T-Test

with p < 0.01. Upon examination of the first group model (Average), across the dif-

ferent group inner cohesiveness levels and group sizes we can see that normalization

using the z-score resulted in higher accuracy predictions when compared to the base-

line and the deviation-from-mean approaches for groups with a low inner cohesiveness
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Figure 19: Comparing baseline prediction to normalized prediction using deviation-
from-mean and z-score, across group inner cohesiveness and size, in terms of prediction
accuracy using RMSE

level. The baseline approach had better results for groups with high and medium in-

ner cohesiveness levels. For groups of high or medium inner cohesiveness and of size 2

the z-score had better but not significant results. Similarly, groups with medium inner

cohesiveness and of size 3 had better results with the deviation-from-mean but small

in value and not significant. So if we determine the inner cohesiveness level of the

group to be of a low level and we are using the average group model when aggregating

predictions using normalizing ratings would yield a higher accuracy predictions when

compared to a non normalized approach.

Results of the LM and MH approach for each group characteristic we evaluated were

consistent with the overall results where the non normalized approach outperformed

the normalized approaches.

The last group model we examined in this evaluation was the PM model which
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had similar results across the group characteristics as the Average model, where

normalization was mostly effective for groups with lower inner cohesiveness levels

regardless of the group’s size.

Overall, from this evaluation, we conclude that using normalization in the predic-

tion calculation when generating recommendations for a group would result in higher

accuracy predictions when using the Average group model with profile merging and

prediction aggregation. If we are aggregating predictions using the Least Misery or

the Most Happiness group model, a non-normalized approach would result in higher

accuracy predictions.

5.2 Neighborhood Selection In Memory-Based Group Recommender Systems

The traditional CF approach is commonly referred to as Neighborhood-based and

relies on the fact that each person belongs in a larger group of similarly behaving

individuals. For example, items (e.g., products, movies, books, etc.) frequently pur-

chased/liked by the various members of the group can be used to form a basis for

recommended items. Similarly, users that appear in more than one of the group mem-

bers’ neighborhoods might be more valuable as a basis for the group recommendation.

Neighborhood-based Collaborative Filtering for single-user recommendation iden-

tifies neighbors of the target user and item pair. Extending this to the group-based

context, we focus on neighbors of the group as a whole rather than of individual

members.

In this evaluation we explored the effect on prediction accuracy if special consider-

ation is given to the neighbors of the group members and they are shared by one or

more of the group members.
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Figure 20 depicts the neighborhoods we explore in this evaluation and their effect

on prediction accuracy in group-based recommendation.

Given an item for which the system needs to predict the rating for the group, for

each group member we find the topN similar users that rated the item. This forms a

set of Neighborhoods for that item across all the group members (Figure 20a). We then

considered the intersection of these neighborhoods. The neighbors that are present

across all the individual group members’ Neighborhoods form the group’s intersect

neighborhood for that item, referred to as the Intersect Neighborhood (Figure 20c).

For each group member the users that are present in their Neighborhood, and not in

the Intersect Neighborhood, form what we refer to as the User Neighborhood (Figure

20b).

Figure 20: Identified neighborhood in the group context

This enabled us to distinguish between types of neighboring users in making pre-

dictions. In this analysis, we investigated higher weighting for Intersect Neighborhood

users. We used the deviation-from-mean approach to calculate a predicted rating for

group members, where the users that are present in the Intersect Neighborhood are

assigned a higher weight than the users that are present in the User Neighborhood.
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We refer to this approach as the Group Intersect Neighborhood Selection model.

We evaluated the performance of this approach for both main types of group recom-

mendation techniques (merging profiles, merging recommendations). For the merging

profiles technique, we computed predictions for the group based on a pseudo-user cre-

ated by merging the profiles of the group members. For the prediction aggregation

approach a prediction is calculated for each group member and then these individual

predictions are aggregated into a final group prediction using a group aggregation

model. We evaluated the three group aggregation models outlined in Section 4.2.2.2.

5.2.1 Hypothesis

H4 - The prediction accuracy will increase if additional weight is assigned to

the neighbors that are in common to all group members when used to calculate a

predicted rating using the deviation from mean approach as defined in Equation 8

when compared to the baseline predicted rating calculated using Equation 2.

5.2.2 Methodology

To evaluate this hypothesis we evaluated the prediction accuracy of a predicted

group rating for a test item generated by a baseline CF approach, as defined in

Section 4.2.2.1, to a group weighted neighborhood approach defined as follows:

1. For every group member, a, create CF neighborhood for item i, Nai.

2. Find the intersect neighborhood for all group members for item i, IntersectNGi.

3. For every group member, a, define two neighborhoods: group intersect neighborhood

IntersectNGi and user neighborhood UserNai for item i, where UserNai is equal

to (Nai - IntersectNGi).



107

4. For every group member, a, compute a predicted rating pai for item, i, as follows:

pai = ra + σa

∑n
b=1[(

rbi−rb
σ a

) · wab] · α∑n
b=1wab

(8)

where α = 2 if b ∈ IntersectNGi and α = 1 if b ∈ UserNGi

5. Aggregate the individual group members’ predictions into a final group predic-

tion for item i.

5.2.3 Evaluation Process

1. Define the dataset used in this evaluation. We use the GD2 dataset created as

defined in section 3.2

2. Define the baseline prediction group aggregation strategy: we implement the

Average, Least Misery, and Most Happiness aggregation strategies.

3. Generate predictions for each group and the group’s pseudo user based on the

baseline CF approach.

4. Generate predictions for each group and the group’s pseudo user based on the

group neighborhood CF approach

5. Compare prediction accuracy of the group neighborhood CF approach to the

baseline average approach (RMSE).

5.2.4 Results

We first considered the overall RMSE performance across all group sizes and sim-

ilarity levels (Figure 21). An ANOVA showed the the difference between the eight

models is significant (p < 0.05). We found that the average baseline aggregation

performs better than any of the baseline aggregating recommendations approaches as
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well as applying the Group Neighborhood Selection model whether we are aggregating

profiles or aggregating recommendations.

Figure 21: RMSE over all evaluated groups and test items

Given the evaluation approach, it is possible for a subset of the randomly cre-

ated groups to have a Group Neighborhood size of zero. To examine the potential

impact of our model, we specifically considered groups and test items where the

Group Neighborhood size is greater than zero. In our results, there were 775 unique

groups and 4836 group/item pairs for testing. Figure 22 depicts the results still show-

ing that the average baseline provides higher accuracy recommendations (p < 0.001

for t-test and p < 0.05 for ANOVA with all models) than the other implemented

approaches.

5.2.4.1 Group Size

To examine how the group neighborhood model performs with respect to the size

of the group we combined the evaluated groups based on size. We first examined the
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Figure 22: RMSE over all evaluated groups and test items with Group Neighborhood
size > 0

results for the aggregating predictions recommendation technique. Table 8 shows the

RMSE values for the different evaluated models across group sizes 2-5. Results show

that for groups of sizes 2 and 3 the average group model (Avg) performed best while

the group neighborhood selection model performed better for groups of sizes 4 and

5. For groups of size 4 and size 5 combining the group neighborhood selection model

with the average aggregation yielded the best performance in terms of prediction

accuracy.

Avg LM MH wIntAvg wIntLM wIntMH
Size 2 0.69405 0.79391 0.717 0.69558 0.79567 0.71946
Size 3 0.5905 0.82459 0.66772 0.5908 0.82471 0.66819
Size 4 0.54716 0.84672 0.63618 0.5460 0.84608 0.63559
Size 5 0.52167 0.93668 0.58564 0.52085 0.93701 0.58349

Table 8: RMSE values across the different group sizes

To directly analyze the performance of the Group Neighborhood Selection model

with respect to group size, we once again examined only the groups/test pairs where
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it was applicable (Group Neighborhood size >0). Table 9 shows the RMSE for each

model across the various group sizes evaluated. These results are in line with the

non-filtered results shown in table 8 and show that the average prediction aggregation

model performed best for groups of size 2 and 3. Combining the group neighborhood

selection model with average aggregation model was best for groups of size 4 and size

5.

Avg LM MH WIntAvg WIntLM WIntMH
Size 2 0.6719 0.7716 0.6981 0.6761 0.7751 0.7032
Size 3 0.5852 0.7929 0.6784 0.5859 0.7931 0.6794
Size 4 0.5620 0.8614 0.6890 0.5573 0.8579 0.6860
Size 5 0.5298 0.9089 0.7391 0.5216 0.9123 0.7216

Table 9: RMSE values across the different sizes for groups and test items with
Group Neighborhood size > 0

From these results we can conclude that, as the group size increases, the group

neighborhood selection model results in higher prediction accuracy.

5.2.4.2 Group Cohesiveness

We then examined the performance of the evaluated models with the respect to

inner-group similarity.

Prediction Aggregation

We first analyze the results for the prediction aggregation approach. Table 10 shows

the RMSE values for the evaluated models with respect to inner-group similarity lev-

els. For groups with high levels of inner-similarity the Group Neighborhood Selection

model performs better than the other approaches. While the baseline average aggre-

gation model performed better for groups with medium to low inner-similarity levels.

The difference between the baseline Average and the Group Neighborhood Selection
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model was not significant for groups with medium similarity and significant for groups

with low similarity levels.

Avg LM MH wIntAvg wIntLM wIntMH
High 0.75063 0.94227 0.75894 0.74548 0.93983 0.75360

Medium 0.59812 0.80642 0.64528 0.60002 0.80662 0.64846
Low 0.52917 0.66920 0.63056 0.53927 0.67764 0.63939

Table 10: RMSE with respect to inner-group similarity level with prediction aggre-
gation

We then considered and evaluated only the groups and test items where there was a

Group Neighborhood with respect to inner group similarity. Table 11 shows the RMSE

values for those groups that have test items with Group Neighborhood size > 0. Again,

results correspond to the non-filtered results where groups with high levels of inner-

similarity had higher accuracy predictions with the Group Neighborhood Selection

model in comparison to the other approaches. The baseline average aggregation model

performed better for groups with medium to low inner-similarity levels. The difference

between the baseline (Average) and the Group Neighborhood Selection model was not

significant for groups with medium similarity and significant for groups with low

similarity levels.

Avg LM MH wIntAvg wIntLM wIntMH
High 0.7516 0.8875 0.7871 0.7450 0.8846 0.7799
Medium 0.6334 0.7832 0.6753 0.6361 0.7835 0.6799
Low 0.5826 0.6807 0.6394 0.5965 0.6932 0.6525

Table 11: RMSE with respect to inner-group similarity level with prediction aggre-
gation for groups and test items with Group Neighborhood size > 0

Profile Merging

Next, we examined the performance of the evaluated models with respect to inner
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group-similarity when using the profile merging recommendation technique. Table 12

includes the RMSE value for the baseline profile merging model and Group Neigh-

borhood Selection model with profile merging. These results show that the Group

Neighborhood Selection method performs best for high similarity groups when used

with the aggregating profiles group recommendation technique. This result was not

significant (p>0.05) when compared to the baseline profile merging approach. For

groups with medium and low inner group similarity levels the baseline profile merging

approach performed best. For groups with medium inner similarity level the differ-

ence was not significant when compared to the Group Neighborhood Selection model.

These results were significant for the groups with low inner similarity level.

Avg PM wIntAvg PM
High 0.74493 0.74411
Medium 0.60507 0.60887
Low 0.54771 0.56017

Table 12: RMSE with respect to inner-group similarity level with Profile Merging

Table 13 filters the results to include only groups and test items with Group Neighborhood

size > 0. These results correspond to the results from Table 12 where the Group

Neighborhood Selection method performs better for high similarity groups when used

with the aggregating profiles group recommendation technique. This result was not

significant (p>0.05) when compared to the baseline profile merging approach. For

groups with medium and low inner group similarity levels, the baseline profile merging

approach performed best. For groups with medium inner similarity level the differ-

ence was not significant when compared to the Group Neighborhood Selection model.

These results were significant for the groups with low inner similarity level.
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Avg PM wIntAvg PM
High 0.75785 0.75689
Medium 0.64335 0.64883
Low 0.59345 0.61075

Table 13: RMSE with respect to inner-group similarity level with Profile Merging for
groups and test items with Group Neighborhood size > 0

5.2.4.3 Group Size and Cohesiveness

Another aspect we examined is the combined effect of the group size and the inner

group similarity on the prediction accuracy using the proposed approach and the

baseline approaches. Table 14 shows the best performing strategy based on the RMSE

calculated for each group size and group inner similarity combination we evaluated.

The difference between the models evaluated was significant for both ANOVA and

t − test. For groups with high inner similarity level we noticed that the Group

Neighborhood Selection model yields higher accuracy predictions when compared to

the baseline models for groups of sizes 2, 4 and 5. The baseline average model had

a lower RMSE value when compared the to Average Group Neighborhood Selection

model, but the difference was not significant. As the group size increases the Most

Happiness model performs better than the Average and the Least Misery models.

This performance carries over when applying the Group Neighborhood Selection. Our

results show that as the group size increases for groups with high similarity levels

among the group members, combining the Most Happiness model with the Group

Neighborhood Selection results in predictions with higher accuracy for the group.

Focusing on the Group Neighborhood Selection model, Table 15 shows the best

performing approach for these filtered results. Once again these results go along with
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↓ Similarity → Size 2 3 4 5
High WIntAvg Avg WIntAvg WIntMH
Medium Avg Avg WIntAvg WIntAvg
Low Avg Avg WIntAvg Avg

Table 14: Wining strategies with respect to inner-group similarity level and group
size based on RMSE

Similarity Size 2 3 4 5
High WIntAvg Avg WIntAvg WIntMH

Medium Avg Avg WIntAvg WIntAvg
Low Avg Avg WIntAvg Avg

Table 15: Wining strategies based on RMSE with respect to inner-group similarity
level with Profile Merging for groups and test items with Group Neighborhood size >
0

the results shown in Table 14 indicating that an advantage is gained for the group,

in terms of prediction accuracy, when special consideration is given to neighbors that

are common to all the group members. This approach is mostly advantageous as the

group size and inner group similarity increases. An ANOVA tests showed that these

results were significant for all categories (p < 0.05) except for groups of size 5 with

low similarity levels.

5.2.5 Expert Evaluation

In this evaluation, we use a dataset we obtained from [60]. A common evaluation

approach of group-based systems is to simulate groups from individual datasets [22, 5].

This dataset utilizes this approach but, rather than basing the group preference on

a model of the individual preferences, they employed human experts to evaluate the

group’s preferences and produce a group decision on which to base and ground the

evaluation. Following is a detailed explanation of this dataset.

The baseline dataset used is the MovieLens 1M dataset. Building an effective CF
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recommendation system requires sufficient data. This data set provides the basis for

that. This dataset contains 1 million ratings, on a scale of 1 to 5, for 6040 users and

3952 movies. Each user has at least 20 ratings. The dataset also gives a small amount

of demographic information about each user. In particular, they use the user’s gender

and age range (under 18, 18-24, 25-34, and so on).

Quijano-Sanchez et al. created 100 groups from this dataset. Group members were

chosen at random from all users, but subject to the following restrictions:

1. In a group, users are distinct (but a user may be in more than one group).

2. In a group, they ensure that all the users are in the same age range.

3. In a group, they ensure that there are at least 15 movies which are co-rated by

all members of the group. These 15 movies will be the test items for the group.

They conducted a Facebook poll in which they asked respondents to tell them, for

the last five times that they went to the movie theatre as a group, how large the group

was. There were 105 respondents that reported the group size for 525 events. They

used the frequencies from this distribution to create 100 groups. The break down of

the groups is as follows: 50 groups of size 2, 18 of size 3, 16 of size 4, 7 of size 5, 5 of

size 6, and 4 where they set the size to be 7.

To establish ground truth to be used as the baseline for the evaluation, they used

four human experts who were given all the information about a group’s members and

the candidate movies (test items), including the actual ratings by the members of the

group for the items in their test set. The experts were asked to decide on which of

the movies the group would be most likely to settle. Each expert evaluated 50 cases,
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hence each of the 100 groups was evaluated by two experts (not always the same two).

Experts were asked to give an ordered list of three movies from the test set on which

they thought the members of the group would agree. They combined the experts’

judgements into a single, final ordered list of size three.

Since we are interested in evaluating our recommendation approach for both profile

merging and recommendation aggregation, we wanted to ensure that the same training

set was used to generate all the predictions for that group. We created a training and

testing set for each group based on the test set of the group. We first created the

profiles of the pseudo users for each group by merging the individual group members’

ratings based on the average aggregation strategy. For each item rated by one or more

group member, the rating for the pseudo user would be the average of the ratings

based on the number of the group members that rated it.

Once the profiles for the pseudo users were created we added the pseudo profile

to the original data set to include the new pseudo user. This ensured that the same

training set was used to generate predictions for the group across all the evaluated

techniques, both merging profiles and merging recommendations. To create the train-

ing set for each group, we started off with the original MovieLens dataset. We then

added the profile of the pseudo user of that group to the dataset. We then took out

the ratings of the test items identified for that group from each of the group member’s

profiles and the pseudo user. In other words, the training set for each group is the

original MovieLens dataset plus that group’s pseudo user profile minus the ratings

for the test items for that group, for each of the group members and the pseudo user

of that group.
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We explored outcomes of prediction accuracy for profile merging and recommen-

dation aggregation using the Average group aggregation strategy. We analyzed the

results across the various group sizes. We made a comparison between the baseline

nearest neighborhood recommendation technique and the Group Neighborhood Se-

lection techniques as outlined in the previous section. We compared recommendation

rankings based on prediction to the item’s ranking provided by the experts using the

evaluation metric outline in the following section.

5.2.6 Hypothesis

H5 - Evaluation outcomes for the Weighted Intersect Neighborhood Selection

model utilizing the dataset with real users will be in line with the results obtained

using the synthesized groups dataset.

5.2.7 Evaluation Metric

To evaluate the performance of the implemented recommendation techniques we

compared the recommended list of items to the actual preferences list. A variant

of this strategy, success@n, was employed in [60] to measure the rate of having at

least one recommended item in the top n positions of the actual preferences list. For

example, given an ordered set of recommended items recList of size n and an ordered

set of the actual preferences actList of the same size, success@3 would return 1 if at

least one of the items in the top 3 positions of recList appeared in the top 3 positions

of actList, and 0 otherwise. We used the success@n=3 metric in this evaluation. For

each recommendation technique we measured the success@3 for each group using each

expert’s list as the benchmark for evaluation. For an overall success rate we averaged

the results across the different group sizes and then averaged the results from each



118

expert.

5.2.8 Results

Profile Merging

We first analyze our results for the Profile Merging recommendation technique.

Table 16 includes the success rate for the baseline and the WtIntGN Model across the

different group sizes. For groups of size 2 the Weighted Intersect Group Neighborhood

outperform the baseline with a success rate of 87.5%. Similarly, for groups of size

3 the WtIntGN has a higher success rate than the average baseline model scoring

83.3% versus a score of 77.8% for the baseline. For the other group sizes there was

no change in the performance in terms of the success rate.

Baseline WtIntGN
Size 2 0.7917 0.875
Size 3 0.7778 0.8333
Size 4 1 1
Size 5 0.8571 0.8571
Size 6 1 1
Size 7 0.75 0.75

Table 16: Success@3 comparing the baseline to the weighted group neighborhood
selection using the profile merging technique for groups of size 2-7.

Recommendation Aggregation

Next we analyze the results for recommendation aggregation recommendation tech-

nique. Table 17 includes the success rate for the baseline and the WtIntGN Model

across the different group sizes. For groups of size 2 the Weighted Intersect Group

Neighborhood outperform the baseline with a success rate of 81.25%. Similarly, for

groups of size 3 the WtIntGN had a higher success rate than the average baseline
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model scoring 89.9% versus a score of 83.3 % for the baseline. For the other group

sizes there was no change in the performance in terms of the success rate.

Baseline WtIntGN
Size 2 0.7708 0.8125
Size 3 0.8333 0.8889
Size 4 0.9375 0.9375
Size 5 1 1
Size 6 1 1
Size 7 0.75 0.75

Table 17: Success@3 comparing the baseline to the weighted group neighborhood
selection using the recommendation aggregation technique for groups of size 2-7

Across the Board

We also wanted to examine the performance of the model over all the groups. Table

18 includes the success values for all the groups across the various neighborhood

models for both Profile Merging and Recommendation Aggregation. From these

results we can see that the Weighted and Frequency Intersect Group Neighborhood

models performs best. With a success rates of 88.76% and 86.73% for the Profile

Merging and Recommendation Aggregation respectively.

Results show similar patterns to the reported results spanning the group sizes. For

the Profile Merging approach and the Recommendation Aggregation, the WtIntGN

model had a higher success rate compared to the Baseline model. We recall from the

dataset details that the majority of the groups fall in the size 2 category (50 groups

of size 2, 18, 16, 7, 5, 4 for sizes 3, 4, 5, 6, and 7 respectively). We perceive the

results obtained for this group size as more effective and indicative of the difference

in performance of the evaluated models. For either group recommendation technique,

assigning a higher weight to a neighbor, if they are shared with more than one group
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Baseline WtIntGN
PM 0.83673 0.88776
RA 0.83673 ] 0.86735

Table 18: Success@3 with Profile Merging (PM) and Recommendation Aggregation
(RA) for 100 groups

member, increased the success rate when compared to a baseline neighborhood ap-

proach. In the baseline neighborhood approach all neighbors are considered to have

the same influence in the group context and neighbors are only weighted by their

similarity to the individual group members.

5.2.9 Discussion

In this experiment, we carried out further exploration in the space of neighborhood

identification in group-based recommendations when employing a Collaborative Fil-

tering recommendation technique. We identified a neighborhood model given a group

context as well as a weighting scheme incorporating these neighborhoods. We have

evaluated our approach using a success metric for a list of recommended items. We

reported results for different group sizes (2-7) and group recommendation strategies

(profile merging, recommendation aggregation).

For the profile merging strategy, accounting for a higher influence of users that

are neighbors of more than one group member resulted in an increase in success rate

when generating a list of three recommended items. Our results shows a 6% increase

in success rate, compared to the baseline neighborhood CF.

Similarly, for the recommendation aggregation approach, accounting for a higher

influence of users that are neighbors of all the group members resulted in an increase

in success rate (%4).
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Given that this evaluation is based on “real” user judgment, we believe that our

approach has significant grounds in extending these results to real groups, not just

synthesized groups.



CHAPTER 6: GROUP MODELING IN GROUP-BASED RECOMMENDER
SYSTEMS

6.1 A Hybrid Approach to Group Recommender Systems

6.1.1 Motivation

This study focused on examining a hybrid approach in generating recommendations

for groups. Burke’s [14] research in hybrid recommender systems highlights the fact

that no one recommendation technology or strategy is likely to be optimal in any

given recommendation scenario. As a result, considerable attention has been paid to

the prospect of developing hybrid recommendation strategies that combine individual

approaches such as content-based and collaborative filtering techniques [15]. In fact,

in the Netflix Prize, the wining team has used a hybrid approach combining more

than 100 models in their final solution [41].

When it comes to group recommendations, limited hybrid approaches have been

considered. Berkovsky et al. [6] evaluated a switching hybridization strategy, which

selects a recommendation strategy to apply according to the user data density. They

apply density thresholds for switching between the general, aggregated models, aggre-

gated predictions, and personalized group recommendation techniques. The switching

strategy was discovered to be superior to all the individual strategies across both of

the accuracy metrics and obtained extremely high coverage of recommendations.

In Garcia et al.[25], their group travel recommendation system used a hybrid rec-
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ommendation technique to combine demographic, content-based recommendation and

preference-based filtering. Their strategy applies a mixed hybrid approach to com-

bine the recommendation lists generated by the three recommendation techniques

to produce a final recommendation list. Their evaluation compared two preference

aggregation strategies (aggregation, intersection), that used a hybrid recommenda-

tion technique, to a preference aggregation strategy (incremental intersection) that

produced one list of recommended items.

Since hybrid approaches have resulted in better performance with fewer drawbacks

than any individual approach, we believe that a hybrid approach to the group recom-

mendation techniques would result in higher prediction accuracy. Our initial results

revealed insight on the performance of the aggregation strategy (average, least misery,

most happiness) when compared to group characteristics (size, cohesiveness). On the

same line, we believe that a hybrid approach to the aggregation strategy, depending

on group characteristics, would result in higher prediction accuracy. We examine

applying a weighted, hybrid approach to the recommendation strategy (aggregated

preferences and aggregated predictions) as well as a switching hybrid approach, based

on group characteristics, to the aggregation strategy (average, least misery,...).

6.1.2 A Hybrid Group Recommendation Strategy

6.1.2.1 Hypothesis

H6 - A weighted hybridization of predictions, generated by aggregating the in-

dividual preferences of the group members into one group preference profile, with

predictions generated by aggregating the predictions generated for each group mem-

ber, will result in a higher prediction accuracy for the group recommendation.
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6.1.2.2 Methodology

To evaluate the hypothesis we will evaluate the prediction accuracy generated by

the hybrid approach against the prediction accuracy generated by the single ap-

proaches: preference aggregation and predication aggregation. Prediction accuracy

metrics, as discussed in Section 1.3, will be used. Hypothesis 6 can be formalized as

follows:

LetGriA equal the predicted group rating for item i computed by approach

A

Let GriB equal the predicted rating for item i computed by approach B

Then, the final group predicted rating Gri is computed by employing a

weighted hybrid approach.

Gri = αGriA + βGriB (9)

where α + β = 1

6.1.2.3 Evaluation Process

1. Define the dataset used in this evaluation: we use the GD2 dataset created as

defined in Section 3.2

2. Define the baseline prediction group aggregation strategy: we implement the

Average, Least Misery, Most Happiness aggregation strategies.

3. Generate predictions for each group recommendation strategy (preference ag-

gregation, predication aggregation).
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4. Generate predictions applying a weighted hybrid (average) as in Equation 9.

5. Compare prediction accuracy of the weighted hybrid to the single group recom-

mendation techniques.

6. Vary the weight distribution between α and β.

7. Generate predictions based on the different weight distributions.

8. Compare prediction accuracy of the generated predictions to find ideal threshold

values (RMSE, MAE).

6.1.3 Results

We varied the weight distribution between α and β as follows:

α = 0.5, β = 0.5

α = 0.7, β = 0.3

α = 0.3, β = 0.7

We compared the prediction accuracy generated using the Profile Merging (PM),

Average Recommendation Aggregation (Avg), Least Misery Recommendation Aggre-

gation (LM) and Most Happiness Recommendation Aggregation (MH), Hybrid with

Average (HyAvg), Hybrid with Least Misery (HyLM) and Hybrid with Most Happi-

ness (HyMH). Where in the hybrid approaches the final prediction for a group was

calculated using Equation 9 and the values of α and β as defined above.
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Figure 23: RMSE comparing PM, Avg, LM, MH, HyAvg, HyLM and HyMH for
groups of size 2, 3, 4, and 5

Results showed that the hybrid approach resulted in higher accuracy predictions for

the group in terms of RMSE calculated when compared to the baseline profile merging

approach or the recommendation aggregation approach for all the combinations of α

and β. The best results were achieved with the 0.7/0.3 weights with the higher

weight assigned to the the Profile Merging approach. In particular the HyMH had

the lowest RMSE making it the best performance approach in terms of accuracy

prediction. Figure 23 shows the RMSE with respect to group size. An ANOVA

test for all the approaches across the group categories showed that the difference is

significant p < 0.05. Examining the difference between the wining hybrid approach

and the best performing approach among the non-hybrids using a two-tailed paired

TTest for each group size, all were significant with p < 0.01 except for size 3 where

there was no difference between the HyMH and the Avg approaches.

Examining the overall RMSE for all the groups the HyMH had the best result in

comparison to the PM and Avg with a p < 0.001. Comparing the HyMH to PM
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there was a 3% increase and a 2.6% increase compared to the Avg approach. All

approaches except the ones based on avoiding misery (LM, HyLM) had an increase

in accuracy as the group size increased. What was interesting is that despite that

the MH approach did not outperform the PM for any of the evaluated group sizes

it outperformed all the other approaches when combined with the PM in the HyMH

approach.

Next we examined the results with respect to both group cohesiveness and size.

Figures 24-26 show the results for groups with high, medium and low inner group

similarity respectively. We detected similar trends in performance as the results we

observed in the overall analysis for the high and medium inner similarity levels where

the HyMH had the highest accuracy and that accuracy increased as the group size

increased. For the groups with lower similarity levels the Avg approach was best for

all the group sizes (Figure 26). Looking at the HyMH (Figure 24) performance to

compare it to the overall results and its performance for other group similarity levels

we can see that as the group sizes increase its performance is lower than HyAvg and

HyLM. Examining the non hybrid technique we can see that the approach based on

LM has lower prediction accuracy compared to the MH and the PM approaches and

both HyAvg and HyLm has better performance than the PM. Combining the PM

with LM or Avg is better than PM but not better than Avg.
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Figure 24: RMSE comparing PM, Avg, LM, MH, HyAvg, HyLM and HyMH for
groups of size 2, 3, 4, and 5 and high level inner similarity among group members.

Figure 25: RMSE comparing PM, Avg, LM, MH, HyAvg, HyLM and HyMH for
groups of size 2, 3, 4, and 5 and medium level inner similarity among group members.
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Figure 26: RMSE comparing PM, Avg, LM, MH, HyAvg, HyLM and HyMH for
groups of size 2, 3, 4, and 5 and low level inner similarity among group members.

6.2 Disagreement Modeling in Group Aggregation for Group-Based

Recommender Systems

6.2.1 Motivation

We pointed out that the main distinguishing feature of group recommender systems,

when compared to individual recommender systems, is their need for a mechanism to

aggregate individual preferences or aggregate the generated recommendations. For

this reason, major research efforts focused on defining aggregation strategies to model

real group interaction and achieve consensus for any given group task or activity. Sec-

tion 1.4.2 overviews the baseline strategies that have been proposed, and in Section

2.2 we highlighted the major work that has been proposed as variations of these base-

line strategies to achieve better group modeling. When it comes to modeling actual

groups in reaching agreement for an item to consume two factors come to play. Either

the group agrees on the item, or there’s disagreement among the members and the

need for a consensus arises. We believe that accounting for this disagreement as a
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part of the aggregation strategy will result in a higher prediction accuracy for the

group recommendation. In [1, 26] disagreement is accounted for, in aggregating the

predicted individual ratings for an item, by combining the average of the individual

predicted ratings with a disagreement score by applying a weighted linear combina-

tion. The disagreement score is calculated as the average of pair-wise predicted rating

differences for the item among group members, or as the mathematical variance of

the predicted ratings for the item among group members. In [63] they use the type

of personality trait of dealing with conflicts, of each member, to weight the influence

of their ratings in the aggregation model.

Conflict is a natural part of interactions with others. In most groups the different

group members have different expectations and desires that usually appear to be

incompatible, leading to “conflict situations” and the need for conflict resolution

arise. We hypothesize that modeling the disagreement using ratings provided by the

group members for an item that is similar to the item for prediction will result in

higher prediction accuracy for the group recommendation. We adopt Amer-Yahia

et al. formalization for group disagreement. Disagreement is modeled in two ways,

average of pairwise disagreement and score variance. We base the model of resolution

of disagreement on known preferences of similar items to the target item.

6.2.2 Disagreement Models

We formalize the disagreement models as follows:

Baseline group disagreement models based on the average and variance of a pre-

dicted rating among group members as defined in [1]:
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1. Average pairwise disagreement coefficient

dis(Gi) = (
2

|G|(|G| − 1)
) ∗

n∑
1

(pui − pvi) (10)

for every u and v ∈ G and u 6= v

2. Disagreement variance coefficient

dis(Gi) = (
2

|G|(|G| − 1)
) ∗

n∑
1

(pui − ˆpGi))) (11)

where p̂G is the predicted group rating for item i calculated as the average of the

predicted rating for each member for that item.

Our hypothesis bases the disagreement coefficient on the known rating of an item

that is rated by group members rather than the predicted rating for the test item.

What we need to define is the item-to-item similarity metric and threshold.

We make use of the Pearson Correlation to calculate the similarity between all the

items in our database and we set the threshold for the item-to-item similarity to be

0.1. The final group prediction can be formalized:

pGi = (w1 ∗ ˆpGi) + (w2 ∗ (1− dis(Gi))) (12)

6.2.3 Hypothesis

H7 - Predictions generated by accounting for the difference between the aggregated

prediction for the group and the ratings provided by each member for a similar item

will result in higher prediction accuracy for the group.
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6.2.4 Methodology

To evaluate the hypothesis, we will evaluate the prediction accuracy generated by

a baseline prediction aggregation strategy to the prediction accuracy generated by

accounting for disagreement among group members over a similar item in the data

set. Prediction accuracy metrics, as discussed in Section 1.3, will be used.

6.2.4.1 Evaluation Process

1. Define the dataset used in this evaluation: We use the GD2 dataset created as

defined in Section 3.2

2. Define the baseline prediction group aggregation strategy: We implement the

Average, Least Misery, Most Happiness aggregation strategies.

3. Define the disagreement model (average, variance): We implement both average

(Equation 10 and variance disagreement models (Equation 11)

4. Define a threshold for the item similarity in order for an item to be considered

in the disagreement calculation: We defined a threshold of 0.5 and 0.1 for the

item-to-item similarity level measured using the Pearson Correlation Coefficient

as defined in Equation 1.

5. Generate predictions for each group by aggregating the individual predictions

into a group prediction employing the baseline strategies.

6. Generate predictions for each group by aggregating the individual predictions

into a group prediction employing the disagreement model.

7. Compare prediction accuracy of the prediction with disagreement to the baseline

group aggregation strategy: We compare accuracy using the RMSE metric.
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6.2.4.2 Results

The first question we needed to answer in order to evaluate this hypothesis with the

data set we selected was to find out the number of test-item/group pairs where there

would be a match for the test item in the commonly rated items for that group. We

set the item-to-item similarity for the first run to be 0.5. We consider this threshold

to represent a highly similar item. For all the test groups (1200) and test items

(10500) in this data set there was no match. We attributed this to the fact that the

way the test/training set was created by using the commonly rated items among the

group members as the test items. So in most groups all of those were considered

test items not leaving a commonly rated item in the training set to be considered

for the disagreement coefficient calculation. To overcome this we then considered the

entire MovieLens 1M data set to look for the similar items rather than the specific

group training set. Since the baseline predictions were already generated using each

group’s training set we can look for a commonly rated item in the original data set

for that group without affecting the original predictions. Surprisingly there was still

no matching test items and commonly rated items for any group that satisfied the

item-to-item similarity threshold.

We next thought of lowering the similarity threshold to check at what threshold

we would have a match. We lowered the threshold to 0.1 with no matches. Having a

lower similarity than 0.1 would mean that we would be considering items with no to

low similarity levels with the test item which was not what we were set to investigate.

Since the applicability of a model goes in line with it’s validity and the disagreement
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model we proposed was never valid in this data set, hypothesis H6 is rejected.

Even though we were not able to validate our hypothesis we got results for the

disagreement models proposed by Amer-Yahia et al. [1]. Figures 27 and 28 show

the RMSE results for Average baseline strategy, the Average with Average pairwise

disagreement and the Average with Disagreement Variance. We varied the weights

between 80/20 and 20/80 for Equation 12 and Figures 27 and 28 show these results

respectively. In both cases the Average baseline approach has a lower RMSE resulting

in higher accuracy predictions than the models incorporating disagreement. In their

work [1] they reported that the predictions that incorporated disagreement were more

beneficial to groups with lower similarity levels among the group members using the

nDCG metric to evaluate the quality of a ranked list. We did not see this in terms

of prediction accuracy measured using RMSE. We saw a similar trend to the figures

below that include all of the groups in our data set for any group size and similarity

levels we evaluated. Even though their evaluation was based on real users the final

group judgement was still based on the individual responses of each group member

and overall they had one group for each category they evaluated.
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Figure 27: Disagreement 80 20 weights

Figure 28: Disagreement 20 80 weights

6.2.4.3 Summary

Even though we were not able to validate our hypothesis using the data set we

had available we were able to compare previously proposed disagreement models in a

comparatively large evaluation. We implemented a different evaluation metric than

the metric used previously. Our results show that these disagreement models did

not improve the accuracy of predicted ratings for a group. On the contrary, the
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prediction accuracy was negatively affected when disagreement was accounted for

based on the predictions generated for the test item for each group member. Group

size and similarity level did not affect this observation.

We also found out that was not possible to find a similar item rated by all the group

members in the data set we employed. Models depending on such an item might not

be feasible in the recommendation process for a group.

At this point we are thinking of the group context as the basis of the recommenda-

tion technique. Despite our findings in this evaluation we still believe that utilizing

the group context as an initial point of reference rather than the individual members

for the recommendation technique would be more beneficial for the group by produc-

ing prediction with higher accuracy. The question that remains unanswered here is

how can we model this group context?

In this evaluation we explored utilizing disagreement models and item-item similar-

ity in modeling the group context but found that such models might not be applicable

in the context of the group dataset we employed in our evaluation. In the next chapter

we explore modeling the group context based on a group-to-group similarity perspec-

tive and metric. We take advantage of other, previous group contexts as a first-class

element for the recommendation technique before we employ the group aggregation

strategy to generate a prediction for an item for any given group. We retrieve and

reuse a whole, previous experience of another group which is considered to be a CBR

perspective on group-based recommendation that we formalize and evaluate in the

next chapter.



CHAPTER 7: CASE-BASED REASONING APPROACH IN GROUP
RECOMMENDER SYSTEMS

7.1 Motivation

Case-Based Reasoning (CBR) has a long history as a methodology for building rec-

ommender systems [11]. In general, case-based recommendation embodies a content-

based or knowledge-based approach, with a semantically rich representation of users

and/or items (e.g., [51]). However, a number of researchers have also taken a case-

based perspective on ratings-based profile representations as employed in Collabora-

tive Filtering recommendation [12, 32, 59, 58, 62], and we adopt this perspective.

Though there are a number of such examples, group recommendation has received

comparatively little attention overall. Recent research has largely focused on making

straightforward individual recommendations for each group member and then aggre-

gating the results. But this considers only the group context of the query or problem

specification (on final aggregation), and does not take advantage of other, previous

group contexts as a first-class element of the knowledge base. Retrieving and reusing

the previous experience of another group — taken as a whole — is a natural applica-

tion for CBR. Case-based approaches to group recommendation have appeared, but

are quite few. To our knowledge, only the seminal work by Quijano-Sanchez et al.

[60] has examined retrieval of entire groups as cases, as opposed to the aggregation

of individual retrievals.



138

To help place our investigation in perspective, we here provide a more extensive

consideration of [60] as related work in motivating our study. For example, their

approach combines many subtle aspects of the group recommendation process all

at once (some requiring imputed value support). Since there was not an ablation

analysis, this naturally raises questions about the relative contributions of different

aspects. Differently from [60], our technique is less complex overall, which enables

a clearer understanding of the contribution provided by baseline case retrieval. The

evaluation metric (Success@1, etc.) reported in [60] has not been commonly used,

and they did not report on significance, which makes comparisons to other approaches

more challenging. Here we evaluate with a more widely employed metric, Root Mean

Squared Error (RMSE) with reported significance. Their study case-base included

only groups of same-age-range for its group members, whereas we examine explicit

conditions for intra-group coherence.

The case-base is both a strength and limitation of the previous study. Data sets

with real group decisions are difficult to create and not readily available, so an expert

crafted case-base helps to address validity of the group decision data. At the same

time, manual review / creation limits the scope of experimental studies, which has

commonly been addressed by generating synthetic groups on a larger scale (e.g., [5]).

And so, we expand upon their initial exploration of this interesting space with our

own studies. While we look at a general accuracy comparison with [60], the main

point here is to better understand the nature and effectiveness of CBR approaches

that retrieve and reuse whole previous groups for group recommendation. In partic-

ular, to help establish baseline effectiveness for straightforward CBR techniques, as
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a context for understanding more complex approaches. This includes a streamlined

CBR approach, and limiting imputed values for a clearer baseline understanding. It

also includes fixing the group size between the active group and the cases considered

in the recommendation process eliminating the need to use virtual users. We exam-

ine different conditions than [60], such as adaptation from explicit top-1 vs. top-N

perspectives, as well as explicit experimental conditions for group homogeneity. Our

experiments examine a larger overall case-base size of 1200 groups in comparison to

the 100 groups for the cases used in [60].

In this evaluation we carry out further exploration of the space, investigating the

effectiveness of case-based reasoning approaches to retrieve and adapt whole previ-

ous groups as a basis for recommendation. This chapter presents our foundational

approach for case-based group recommendation and evaluation results that investi-

gate a variety of conditions for group size and homogeneity. Section 7.2 introduces

our research question. Section 7.3 formalizes the recommendation techniques investi-

gated in our group-based recommender, and experimental outcomes are discussed in

Section 7.5. Our results show that foundational group-to-group approaches can out-

perform individual-to-group recommendations across a wide range of group contexts.

7.2 Exploring Whole-Group Case-Based Reasoning

Our main research question in this experiment is to examine under what conditions

will taking advantage of existing group contexts in the knowledge base — in addi-

tion to the group context of the target / active group (as query) — improve group

recommender performance. That is, if we take a CBR perspective on group rec-

ommendation, retrieving whole previous groups as the starting point for predictions
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instead of directly aggregating on individuals, when will there be an overall benefit

for the system? To investigate this issue, we integrate a foundational CBR compo-

nent (Section 7.3) with a common group recommender technique, evaluating across a

variety of conditions. In this study, we focus on understanding how much traction is

really possible with a straightforward whole-group retrieval CBR approach. And so

we embrace the limits of the process — limiting retrieval to groups of the same size,

allowing for retrieval failure, and so on.

The group recommender component provides a standard aggregation of individual

recommendations for group members. The case-based reasoning component retrieves

similar groups from the case-base and adapts retrieved group preferences to the tar-

get group query. For this study, there is no guarantee of complete coverage by the

case base, and so the system acts as a “switching” hybrid recommender [14]: if the

CBR component can not make a recommendation with sufficient confidence, then the

baseline aggregation method is used. This is similar in spirit to integrations of CBR

with generative planners in case-based planning [19, 72]. The standard aggregation

technique also serves as the baseline for system evaluation, comparing the CBR ap-

proach (with switching as needed) to using only the baseline for each query. Our

evaluation examines three main hypotheses.

7.2.1 Hypotheses

H8 - The foundational CBR approach will be able to respond to a substantial

number of queries across a range of conditions.

H9 - The hybrid CBR approach will provide significantly better accuracy than

the baseline.
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H10 - Accuracy results for the foundational CBR approach will show similar

trends to those reported in [60]. Significance testing is considered for p < 0.01.

7.3 Case-Based Group Recommender

Our case-based group recommender employs ratings-based user profile data as the

foundation of the case-base. We formalize our approach as follows. Given a matrix

of users (U ) and items (I ) a case is represented as {Gcb,I cb}. Gcb is a group of users,

ucb, of size n where ucb ∈ U. I cb is a set of items i cb where i cb is an item rated by all

the users in Gcb and i cb ∈ I. The active group that is seeking the recommendation is

represented as Ga.

7.3.1 Active Group to Case Similarity Metric

In order to retrieve previous group-cases that are relevant to the active (query)

group, we define a similarity metric that considers the correlation between each user

in the active group and every user in the case group. Similarity between Ga and Gcb

is measured by considering the cartesian product of these two sets. Which is the set

of all ordered pairs (ua, ucb) where ua ∈ Ga and ucb ∈ Gcb. Let this set be represented

as CProdG and contain the correlations that need to be calculated to measure the

similarity between the active group and a case from the case base. Since we only

consider cases with the same size as the active group’s size (|Ga| = |Gcb|) then the

size of the set CProdG is equal to |Ga|2. This is the number of correlations that

we need to consider to calculate the group to case similarity. In the next step, we

calculate the correlation for all elements of CProdG using Equation 1. The resulting

correlations form the group-to-case correlation set PCorrG where only the possible

correlations are stored. The final case similarity can then be calculated as the average
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of the PCorrG set. We note here that the similarity metric we use is based only on

the user’s ratings, differently from [60] where the similarity, in addition to ratings,

includes trust, age, gender and personality.

GGsim =

∑n
g=1 PCorrGg

|PCorrGg|
(13)

7.3.2 Case Retrieval

Using the defined similarity metric, cases are retrieved using the following con-

straints. First, only cases of the same size as the active (query) group are considered.

Second, only cases that meet a defined similarity threshold θ are considered. Subject

to these constraints, the top-N set of identified cases is represented as GGCB. For

this study, we do not consider a limit on the number of cases that meet the specified

constraints, and we examine prediction strategies based on the single best case and on

the entire retrieved set. In the circumstance that no case meets the selection criteria,

the null set is returned to indicate failure, which serves as a trigger for the hybrid

switching mechanism.

7.3.3 Adaptation for Recommendation

In order to make a prediction on an item rating for the active (query) group, we

adapt the retrieved case(s) on the item in question. We also consider several different

adaptation variants: either the most similar retrieved case or a set of retrieved cases,

as well as scaling. Formally, we examine the items in Icb and the item for which we

are calculating a prediction. Let us refer to that item as the active item ia. Since we

are trying to model the group decision for a certain item and attempting to minimize
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variables in this approach we choose to base our model on cases where the active

item considered for recommendation is present in the item set for the case-base group

(icb == ia). Applying this condition to the set of possible cases, GGCB is reduced to

ĜGCB.

We consider two main adaptation variants. The first adapts only the single, most-

similar group-case that contains ia. The second adapts the entire set of retrieved cases

that contain ia (ĜGCB). Within each of these two variants, we consider whether group

ratings should be normalized between the active group and the retrieved case(s).

7.3.3.1 Adaptation — Best Case / Multi-Case

In the first variant, we consider only the case with the highest similarity to the

active group. We refer to this approach as CBR single. Here the case group rating’s

are used as the basis for the prediction. The prediction for the active group is modeled

as the average of the individual rating for the active item ia given by the members of

the case group Gcb formalized as:

pGaia =

∑n
ucb=1 rucb
|Gcb|

(14)

Where rucb is the rating for ia by user ucb and ucb ∈ Gcb.

In the second variant, we consider the entire set of retrieved cases. We calculate

a prediction for each participating case, as in equation 14, and average the results,

formalized as:

pGaia =

∑
(
∑n

ucb=1 rucb
|Gcb|

)

|ĜGCB|
(15)
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7.3.3.2 Adaptation Scaling

We also consider a scaling condition for each variant, which normalizes the rating

scale between the active group and the retrieved case(s). This is formalized as:

p̂Gaia = Ga + (σGa ∗

∑
((pGaia−ucb

σucb
) ∗GGsim)

(GGsim ∗ |Ga|)
) (16)

where σGa is the average standard deviation of ratings for the users in Ga, σucb is the

standard deviation of ratings for the users in Gcb and Ga is defined as:

Ga =

∑
ua
|Ga|

(17)

where uais the average rating for a user ua in Ga. In other words, Ga is the average

of the average ratings for the users in Ga. The value pGaia is calculated using either

CBR single or CBR multi.

7.4 Experimental Setup

Recommendation Parameters

As a basis for evaluation we employ the common neighborhood-based CF algo-

rithm as outline in Section 4.2.2.1. We set the neighborhood size to 50 based on the

recommendations of [33].

7.4.1 Accuracy Measurement

We measure the accuracy of a predicted rating computed for a group across differ-

ent test conditions using root-mean-square error (RMSE) [34]. To measure the dif-

ferences between values predicted by a model and the actual values, we compare the

group-predicted rating calculated for the test items, using the aggregation approaches
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described (Average, Least Misery, Most Happiness), to a model of the actual rating

(average) across the different group sizes and inner-group similarity levels.

Another evaluation strategy is to compare a recommended list of items to an actual

preferences list. A variant of this strategy, success@n, was employed in [60] to measure

the rate of having at least one recommended item in the top n positions of the actual

preferences list. For example, given an ordered set of recommended items recList of

size n and an ordered set of the actual preferences actList of the same size, success@3

would return 1 if at least one of the items in the top 3 positions of recList appears in

the top 3 positions of actList and 0 otherwise. We use the success@n=1,2,3 metric

to make a general comparison of our results to the approach in [60].

7.4.2 Case Base

In this experiment we utilize the GD2 dataset defined in Section 3.2. Each group

is this set is considered as a case that can be used as the basis in the prediction

generation for the target group.

7.4.2.1 Case Retrieval

To retrieve cases that may be used to model group recommendations, we define the

threshold θ for group to case similarity (GGCB) with a value of 0.5. This similarity

threshold ensures a highly similar group is used as the case-based group. Taking each

group at a time as the active group (Ga), we calculate the similarity between that

group and all the other groups. The results would be the case groups (Gcb) that

have the same size as the active group regardless of the groups’ inner cohesiveness.

Cases that have a group-to-case similarity level higher than the threshold with the

active group are then considered for the prediction calculation phase. We note that
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similarity threshold dependency could also be analyzed to provide a perspective on

results for different levels. In this study, we select a representative level to understand

initial results, leaving threshold dependency analysis for future work.

We explore outcomes of prediction accuracy for recommendation aggregation using

the most commonly used group modeling strategies (Average, Least Misery, Most

Happiness) as outlined in Section 4.2.2.2. We examine these outcomes with respect

to group size and inner group similarity. We contrast this approach, using the base-

line neighborhood approach to the Case-based model approach, by comparing the

prediction accuracy of the predicted group rating of each test item to the average of

the actual ratings of the individual group members for that test item.

7.5 Results

For each created group and test item we calculate a predicted rating using the

baseline group recommender (Section 4.2.2.1) and the case-based group recommender

(Section 7.3).

The first hypothesis (H6) we examine is that the CBR approach will be able to

respond to a substantial number of queries. Given the constraints, we would consider

a baseline 10% response rate for the generated groups to provide an indication of

reasonable traction. To some degree, this is a function of the case-base generation

model, but it is critical to understand the context of accuracy. It is useful to know for

the given similarity threshold in the experiments, the degree to which the approach

is able to respond, as this provides context for interpreting the accuracy results. We

also note that the model has some influence on intra-group similarity, but not on

inter-group similarity, within the generated case-base. To test this hypothesis, we
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Table 19: Number of case-based
groups for the different similarity level
and size groups

High Medium Low
Size 2 63 81 81
Size 3 40 36 9
Size 4 52 11 1
Size 5 90 8 1

Table 20: Number of case-based items
for the different similarity level and
size groups

High Medium Low
Size 2 181 326 298
Size 3 68 51 14
Size 4 108 14 1
Size 5 367 9 2

inspect the number of items and groups where the case-based approach is applied for

each group category. Tables 18 and 19 show these numbers for the different groups.

We compare these numbers to Table 4, which represents the overall number of testing

items for each of the 100 groups evaluated in each category. This shows the categories

in which the CBR approach was best able to respond to prediction queries. We can

see that the CBR approach was most applicable for groups with high inner similarity

levels.

For these groups the CBR approach was overall in effect for 25% of the test items

in 60% of the groups. We also notice that as the group size increased, for the highly

similar groups, these numbers increased. For example, in groups of size 5 with high

similarity among the group members, the CBR approach was applied for 68% of

the test items across 90% of the groups. Thus, if the group is highly cohesive and

the group members are more similar to each other, then the cases that are used are

more likely to be of high cohesiveness as well. This, in turn, increases the possibility

for those cases to have more commonly rated items within the case group, which in

turn, increases the likelihood of the active group’s test items being shared with the

case groups. This is not the case for groups with low inner similarity levels, where

these numbers go down as the similarity level for the group decreases and the size
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increases. For example, in groups of size 4 and 5 with low similarity level, the CBR

approach responded for 1 and 2 test items respectively in only 1 group. Overall, for the

representative similarity threshold, the foundational CBR approach was applicable

for a substantial number of test queries (H1 accepted), and the applicability of the

approach increases as the size and inner group similarity increases.

Our second hypothesis (H7) is that the hybrid CBR approach will provide signifi-

cantly better accuracy than the baseline. To examine this, we first compare the results

of the two case-based approaches, adaptation and adaption scaling. The performance

level between the two case-based variations themselves was not significantly different

for that we present and discuss only the adaption scaling approach (as representative

of both CBR variants) to the baseline approaches. Figure 29 shows the RMSE for

the baseline group aggregation models and both scenarios of the case-based approach

(CBRsingle, CBRmulti) across the various evaluated group conditions. An ANOVA test

for all the models across the group categories showed that the difference is significant

(p < 0.05). From these figures we can see that the case-based group recommender

outperforms the baseline recommender for groups with high and medium inner group

similarity. Between the two case-based approaches the CBRmulti approach is a slightly

better technique than the CBRsingle, but not significantly so.

In comparison to the baseline, the CBR approach results in significantly (p <

0.01) higher accuracy predictions for groups with high inner similarity levels (top

graph). The performance of this approach also increases as the group size increases

for all similarity levels. For groups with low similarity levels no difference is reported

between the performance of the CBR group recommender and the average baseline
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Figure 29: RMSE for groups across the different inner similarity levels

recommender. In this context, the CBR component largely failed to find matching

cases. In that circumstance, the group recommender switches to the baseline leading

to similar results. We also note for this category (low similarity) of groups of size 2,

where 15% of the test items used the case-based recommender in 81 groups, the CBR

recommender reported better results. Overall, these results indicate that a significant

improvement in accuracy can be achieved by using a case-based group recommender

(H2 accepted), where similar cases are considered as part of the prediction calculation.

Our third hypothesis (H8) is that our results would show accuracy trends for a

foundational CBR approach to be similar to those reported in [60]. We were very

grateful to receive the dataset from [60] for a direct comparison. The details of this

dataset is in Section5.2.5. Given the limited size of this dataset (100 groups/cases)
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and the case-to-case size and similarity constraints there was no match in the case

retrieval for any group that could be used as the basis for the recommendation. This

led to a complete and direct comparison being beyond the scope of the current work,

given the overhead for full reimplementation and testing of their approach. However,

we are able to make a general comparison, using their success@n evaluation metric as

a basis. They reported success@n evaluation ranking values for n=1,2,3. Since it is

a ranking metric, we need to be able to predict ratings for more than three items for

each group from our case base, and to generate a ranked list of recommendations. To

do so, we selected the groups that had a test set with 5 or more items where our case-

based approach can be applied to generate predictions for those items. From the 1200

we were able to identify 71 groups that satisfied the condition. For the true ranked

list used to compare the predictions, we employed the average rating provided by the

group members for those items as the ground truth employing a random selection to

resolve equally ranked items. Table 21 shows the success rates at various n. Note

Table 21: Success@n rates for our CBR approaches and [60]. * indicates value esti-
mated from figure.

SUCCESS @1 SUCCESS @2 SUCCESS @3
CBR multi 54% 83% 97%
CBR single 69% 89% 100%

Quijano-Sanchez et al. [60] 12% 61% 92%*

that exact numbers were not reported for all levels in [60], and so some are estimated

based on the graphs showing their results (as noted). The percentage success rate

results show that our approaches can provide comparable (arguably better in some

cases) success rates to those previously reported, and a similar trend (increasing as n
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increases) to those reported in [60] (H3 accepted). While this comparison is limited

in comparing outcomes across data sets, it serves to corroborate previous results on

the potential benefit of CBR approaches in the context of a different case-base and

group conditions. Moreover, it indicates that the benefits of a CBR approach may be

realized even in a foundational implementation, without substantial demographic or

data imputation requirements.

7.6 Summary

In this evaluation, we investigated different foundational CBR strategies for retriev-

ing and reusing whole previous groups as a basis for making group recommendations.

Inspired by [60], we carried out further exploration of the space, investigating the

effectiveness of case-based reasoning approaches to retrieve and adapt whole previous

groups as a basis for recommendation. Results showed that even a straightforward

CBR approach can be useful across many group recommendation circumstances, pro-

viding a significant performance benefit. In comparison with previous work, we ex-

amined different similarity and adaptation metrics, larger case-base size, and multiple

additional experimental conditions for group size and cohesiveness across the case-

base. We confirmed the potential benefit for integrating whole-group retrieval CBR

approaches into group recommendation across different case-base and group condi-

tions. We also demonstrated that the benefits of a CBR approach may be found

even in straightforward implementations, showing the potential for a broad range of

deployments and investigation in the space. Going forward, we plan on conducting

larger evaluations for larger group sizes and case-bases; examining other variations in

retrieval and adaptation, such as similarity thresholds; and considering the impacts
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of case storage and case-base maintenance.



CHAPTER 8: CONCLUSION

8.1 Dissertation Contributions

In Chapter 1, we outlined the main research question we are trying to answer: how

to improve the prediction accuracy in group-based recommender systems employing a

memory-based collaborative filtering technique? we answer this question by examine

factors that influence the accuracy of recommendations made to groups rather than

individuals along the contexts of evaluation, group modeling, and the recommendation

technique. We break this down to the following more specific questions:

· How to implement a principled approach to evaluate the prediction accuracy

in group-based recommender systems using datasets of individual users’ prefer-

ences?

· Does the evaluation approach affect the results for the prediction accuracy?

· Does rating normalization increase the prediction accuracy for the group?

· Does incorporating the group-context in the neighborhood selection increase

the prediction accuracy?

· Does a hybrid group-based strategy increase the prediction accuracy?

· Does incorporating the group context in the group modeling increase the pre-

diction accuracy?

For evaluation in group-based recommender systems, we designed a testing frame-

work that scans a dataset consisting of individual users’ preferences in a collaborative
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filtering based system and creates groups of users based on predefined group character-

istics. The system can also identify possible test items for these created groups. This

framework provided us with a principled evaluation approach to group recommenders

using synthetic groups. One major issue we identified in evaluating group-based rec-

ommender systems using synthesized groups is the absence of a concrete actual group

preference (ground truth). Our initial evaluation focused on ways of modeling the

ground truth for the groups in our dataset. We analyzed outcomes of group predic-

tion accuracy based on an actual group preference model (AGPM) of an exact rating

overlap where, for each group, we identified at least one test item where all the group

members had the exact preference (rating value).

Despite the recent trend towards model-based CF methods, with leading methods

based on matrix factorization, e.g.,[36, 42], traditional memory-based (or neighborhood-

based) approaches are still widespread due to their simplicity, explainability, and

effectiveness [23]. Our initial evaluation goal was testing group recommendation,

based on traditional memory-based collaborative filtering techniques, in order to pro-

vide a basis of comparison that covers (1) synthetic group formation for this type

of approach, and (2) group evaluation based on prediction rather than ranking. We

hypothesized that aggregation results will support previous research for the aggre-

gation strategies tested. In doing so, we investigated the relationship between the

group’s coherence, size, and the aggregation strategy used. Our results, using the

5000 synthesized groups for each category (60,000 total groups), coincide with the

results reported by Gartrell [26] using real subjects.
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In the absence of one true AGPM, the meta-issue arises of how to evaluate candidate

evaluation models. In order to do so, there are essentially two traditional options:

finding a baseline context for comparing AGPMs, or relative performance comparison

among different evaluation models, keeping in mind that the dependent variable in

such experiments is a component of the evaluation strategy itself. This issue of how to

model the AGPM in the evaluation of group recommenders using synthesized groups

motivated us to investigate alternative approaches for AGPMs. Of course, changing

the evaluation baseline will show differences in outcomes, but we are interested in

investigating the shape and extent of such differences as a way to inform the process of

evaluation. In the second experiment, we examined the scope of potential tradeoffs in

the choice of an aggregation model for recommendations for groups when actual group

preference may vary. We laid out a survey of evaluation techniques in this context in

order to provide group recommender system developers with a better understanding

of the implications in choosing a particular AGPM baseline when evaluating their

systems.

Results showed that the choice of an AGPM, in this context, results in different

evaluation outcomes. The choice of an AGPM can also introduce a bias, particularly

when the same aggregation strategy is used on the recommendation side. We showed

that modeling the actual group preference does matter when evaluating group-based

recommenders, and different models provide different results. Developers of such

systems need to consider the tradeoffs when choosing a baseline for evaluation.

Next, we examined the recommendation technique aspect in group-based recom-

menders. Focusing on memory-based models, we compared the effect of rating nor-
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malization using deviation-from-mean and z-score approaches on the prediction ac-

curacy for the group. We analyzed predictions based on group size and cohesiveness

levels as well as group modeling approach and strategy. We found that the rat-

ing normalization is overall better. The z-score approach results in predictions with

higher accuracy, for groups with low inner cohesiveness within the group members,

when using the average aggregation model with profile merging and recommendation

aggregation. Non-normalized ratings are best employed if we are using the “Least

Misery” or the “Most Happiness” with recommendation aggregation.

In the next evaluation, we explored the effect on prediction accuracy if special con-

sideration is given to the neighbors of the group members if they are shared by one

or more of the group members. We explored outcomes of prediction accuracy for pro-

file merging and recommendation aggregation using the “Average” group aggregation

strategy. We analyzed the results across the various group sizes. We made a com-

parison between the baseline Nearest Neighborhood recommendation technique and

the Group Neighborhood Selection techniques as outlined in the previous section.

We compared recommendation rankings based on prediction to the item’s ranking

provided by the experts using the evaluation metric outline in the following section.

Analysis showed that an advantage is gained for the group, in terms of prediction

accuracy, when special consideration is given to neighbors that are in common to all

the group members. This approach is mostly advantageous as the group size and

inner-group similarity increased.

Continuing along the dimension of the recommendation technique, we carried out

further evaluations of the neighborhood selection model in the space of neighborhood
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identification in group-based recommendations when employing a Collaborative Fil-

tering recommendation technique. We identified a neighborhood model, given a group

context, as well as a weighting scheme incorporating these neighborhoods. We’ve eval-

uated our approach using a success metric for a list of recommended items rather than

prediction accuracy (Success@n vs. RMSE). We employed a dataset that contained

“real-user” judgement in comparison to a purely synthesized, group-based dataset.

We reported results for different group sizes (2-7) and group recommendation strate-

gies (profile merging, recommendation aggregation). We showed that, when applied,

the Group Neighborhood Selection model increased the success rate of a recommen-

dation list of size 3 for both profile merging and recommendation aggregation.

Next we move to the context which is considered the main distinguishing feature

of group-based systems to individual based ones, the group modeling context. We

employed a hybrid model that incorporated both group recommendation strategies.

Our initial results revealed insight on the performance of the aggregation strategy

(average, least misery, most happiness) when compared to group characteristics (size,

cohesiveness). On the same line, a hybrid approach to the aggregation strategy, de-

pending on group characteristics, resulted in higher prediction accuracy. We examined

applying a weighted, hybrid approach to the recommendation strategy by combining

the aggregated preferences and aggregated predictions models. Results showed that

the hybrid approach resulted in higher accuracy predictions for the group in terms of

RMSE calculated when compared to the baseline profile merging approach or the rec-

ommendation aggregation approach for all the weight distributions we evaluated. The

best results were achieved with the 0.7/0.3, weights with the higher weight assigned
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to the the Profile Merging approach. Overall, the HyMH (Profile merging and most

happiness recommendation aggregation) had the lowest RMSE making it the best

performance approach in terms of accuracy prediction. With respect to group char-

acteristics, we detected similar trends in performance as the results we observed in

the overall analysis for the high and medium inner similarity levels, where the HyMH

had the highest accuracy and that accuracy increased as the group size increased.

The last viewpoint we took with respect to group modeling explored, not only con-

sidering the group context in the final aggregation, but also takes advantage of other

previous group contexts as a first-class element of the knowledge base. We proposed

a recommendation model that employs the group context in retrieving similar items

to the target item and utilizing the group model for this item in the prediction calcu-

lation. With the current dataset we were not able to evaluate this model since there

was no match in the data where this modeling approach was applicable. Thinking

of solving the group model for predicting a rating for a group based on the group

model of a previously known rating for the group, we found our selves looking at the

group model as an application for Cased-based Reasoning. Retrieving and reusing

the previous experience of another group, taken as a whole, is a natural application

for CBR.

We examined the conditions under which taking advantage of existing group con-

texts in the knowledge base, in addition to the group context of the target / active

group (as query), improves group recommender performance. We explored outcomes

of prediction accuracy for recommendation aggregation using the Average, Least Mis-

ery, and Most Happiness group models. We examined these outcomes with respect to
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group size and inner group similarity. We contrasted this approach, using the baseline

neighborhood approach to the Case-based model approach, by comparing the predic-

tion accuracy of the predicted group rating of each test item to the average of the

actual ratings of the individual group members for that test item. We validated the

applicability of this approach by analyzing the group contexts and found that this ap-

proach was highly applicable for groups with high inner cohesiveness. In comparison

to the baseline, the CBR approach resulted in higher accuracy predictions for groups

with high inner similarity levels. The performance of this approach also increases as

the group size increases for all similarity levels. Overall, the results indicated that

a significant improvement in accuracy can be achieved by using a case-based group

recommender, where similar cases are considered as part of the prediction calcula-

tion. The last step we did was contrasting our CBR approach to the most similar

application of CBR in group-based recommenders perviously published. We indi-

cated that the benefits of a CBR approach may be realized even in a foundational

implementation, without substantial demographic or data imputation requirements.

The contributions of this dissertation are:

1. An evaluation framework for group-based recommender systems that allows

the creation of synthesized groups with varying group contexts. The framework

creates the groups and identifies ideal test point for creating training and testing

datasets for the groups.

2. A tradeoff comparison in the choice of the baseline for evaluation using syn-

thesized groups. We show that the choice of group model as the actual group
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preference affects the evaluation results and introduces another variable that

needs to be accounted for and minimize its effect.

3. Rating normalization effect on prediction accuracy in memory-based collabora-

tive filtering group-based recommender systems. We show which group models

and group contexts benefit from rating normalization.

4. A neighborhood selection model based on the group context with a finer-grained

weighting scheme. We show that neighborhood selection strategy that accounts

for the group context and utilizes it in neighbor weighing increased the predic-

tion accuracy for the group.

5. A hybrid group model that combines profile merging and recommendation ag-

gregation and show which group aggregation models and group contexts benefit

implementing this approach.

6. A disagreement model based on item similarity to the item considered for rec-

ommendation. We investigate the applicability for this approach and show that

its feasibility is hindered with the constraint of identifying similar items rated

by all the members of the group.

7. A case-based reasoning group model that is based on group context and group-

to-group similarity. We show the applicability of this model and the benefits

realized for the group in terms of prediction accuracy and group contexts.

8.2 Limitations and Future Work

Similar to most studies we acknowledge some limitations that we faced in con-

ducting this research. Some of the limitations in terms of evaluation revolve around

employing real subjects in a user studies. Given the context of our work, that is fo-
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cused on group-based recommenders and collaborative filtering, a user study was not

feasible since these approaches require datasets on a larger scale to be able to ground

the evaluation. We address this by obtaining a data set from a research group [60]

that enabled us to provide a comparison of our evaluation results using our dataset of

synthesized groups to the results obtained from a dataset that contained real subjects’

judgement. Another limitation is that we evaluate our approaches to group-based rec-

ommendations in one domain using the MovieLens dataset. To be able to generalize

and extend our results to other domains we would need to obtain datasets from dif-

ferent domains. Additional limitation we faced relates to the ability of comparing

our models to previous research. The structure of the datasets and evaluations of

previous research contributed to the infeasibility of providing a direct comparison to

our models. For example, we evaluate the prediction of accuracy using the RMSE

measure while other studies use a different metric so their dataset is structured for

the metric they were adopting. Another way to overcome this is to reimplement the

approaches of previous research which might not be feasible since some details of the

evaluation setup might be ambiguous and reimplementation is beyond the scope of

this dissertation.

There are several future studies that can be conducted to address the limitations

we faced in this work. Conducting a large scale study with groups of real subjects

would help extend our results. Similarly, evaluating our models in different domains

would also enable us to generalize our results further. Another future study to extend

our results would be to evaluate our models using a larger size dataset of groups than

the dataset we employ. We also realize the advantage of sharing our dataset with
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the research community to help alleviate some of problems in evaluating group-based

recommenders. This in return allows the grounding of evaluations in the group-based

context and can lead to a more direct comparisons between various research. We plan

on sharing the dataset containing groups with items of exact rating overlap since we

see the value of this approach to evaluations using synthesized groups.
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