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ABSTRACT 
 
 
PING LU. Enhanced removal of Cryptosporidium parvum oocysts and Cryptosporidium-

sized microspheres from recreational water through filtration. 
 (Under the direction of DR. JAMES E. AMBURGEY) 

 
 
Cryptosporidium species are the cause of cryptosporidiosis, which has symptoms 

such as watery diarrhea, dehydration, fever, nausea, body fatigue, and abdominal cramps.  

Infants, the elderly, and people with severely compromised immune systems are more 

susceptible and could die from cryptosporidiosis.  Numerous waterborne outbreaks of 

cryptosporidiosis have been linked to swimming pools in United Kingdom, United States, 

Australia, and Canada.  The concerns of public health and increasing demands for 

recreational opportunities have pushed the need for enhanced removals of 

Cryptosporidium from swimming pools to emergent.  Unfortunately, relatively little 

information is available on Cryptosporidium removal from pilot-scale or full-scale 

swimming pools or spas.  

Water quality was evaluated for thirty five national swimming pools at first to 

evaluate the chemical constituents of the swimming pools.  Based on these data, three 

representative swimming pool waters were developed using cluster analysis, which were 

applied in subsequent experiments.  Based on this survey, an average pool would have a 

pH of 7.5 with 1.5 mg/L of free chlorine, and the alkalinity and hardness would be 94 

mg/L and 238 mg/L as CaCO3, respectively.  The average turbidity would be 0.33 NTU, 

and the DOC concentration would be 5 mg/L. 

Zeta potentials of Cryptosporidium oocyst-sized microspheres in three pool 

waters were titrated with six coagulants to determine dose-response relationships.  
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Overdosing of organic polymer coagulants (i.e., coagulants A, B, and F) was shown to be 

possible.  No significant differences were observed for any of the coagulants’ 

performance in the three water formulations test.   

High-rate sand filtration (which refers to a filtration rate up to 37 m/h with 

coagulant addition before sand filtration) was evaluated in this study.  A series of 

experiments were conducted to develop a novel operational procedure for high-rate sand 

filtration and provide field-relevant results.  Results indicated that the highest removals 

occurred when coagulant was fed continuously by a coagulant pump.  Extended/excessive 

dosing coagulant A (the only coagulant used in this part of the study) led to coagulant A 

build up in the system and reduced microsphere removal efficiency.   

Three alternative treatment techniques were evaluated for ability to enhance 

Cryptosporidium-sized microsphere removals from a 5,500 L pilot-scale pool, including 

feeding coagulants prior to sand filter, adding a layer of perlite on top of the sand filter’s 

media without coagulation, and diatomaceous earth (DE) filtration.  High-rate sand 

filtration without coagulation (control experiment) removed 20% - 63% of microspheres.  

Up to 99% Cryptosporidium-sized microsphere removal was achieved through high-rate 

sand filtration with coagulants A, B, D, and F at 37 m/h.  Coagulant C was a  

chitosan-based product that removed less than 80% of microspheres under the studied 

conditions.  Coagulant E (polyaluminum chloride) removed more than 90% of 

microspheres at 30 m/h.  Adding perlite on the top of a sand filter increased the 

Cryptosporidium oocysts-sized microsphere removals to 79%, 99%, 99.7%, and 99.8% 

with 0.24 kg·perlite/m2, 0.37 kg·perlite/m2, 0.49 kg·perlite/m2 and 0.61 kg·perlite/m2, 
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respectively.  At least 0.7 kg·DE/m2 was required to achieve approximately 99% of 

Cryptosporidium-sized microspheres by DE filtration.    

Cryptosporidium parvum and Cryptosporidium-sized microsphere removals from 

full-scale swimming pools were evaluated.  Coagulants B, D, E, and F were individually 

fed into swimming pools both with remediation dose and maintenance dose. 

Approximately 90% of Cryptosporidium parvum and microspheres were removed by 

filtration with coagulant B (1.56 mg/L), coagulant D (305g/m2), and coagulant F (1.56 

mg/L) under remediation conditions.  Eighty two percent of Cryptosporidium and 97% of 

microspheres were removed with coagulant E (0.1 mg·Al/L) under remediation 

conditions.  Under maintenance dosing conditions: up to 93% of Cryptosporidium and 77% 

of microsphere were removed by coagulant B; as high as 99% of Cryptosporidium and 98% 

of microsphere were removed with coagulant D; 98% of Cryptosporidium and 93% of 

microsphere were removed with coagulant E; up to 85% of Cryptosporidium and 82% of 

microsphere were removed with coagulant F.  Organic polymer coagulants accumulated 

in the swimming pool water (as measured for coagulant A concentration under the study 

conditions) and led to poor filter performance over time.  Additionally, Cryptosporidium 

parvum removals by perlite/sand filter was 88%, and microspheres removal was 99.8% 

(0.5 kg·perlite/m2).  DE filtration provided above 99.8% removals both for 

Cryptosporidium parvum and microspheres.  Cartridge filters only achieved 22% removal 

of microspheres from a full-scale spa.  

To summarize, Cryptosporidium and microspheres could be effectively removed 

on a continuing basis by DE filtration, perlite/sand filtration, and high-rate sand filtration 

with continuously feeding of coagulant D or E.  Performance of coagulant D and E 
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tended to decrease with increased filter pressure, which could warrant additional research.  

Coagulant A, B, and F achieved up to 99% removal at the recommended dosage, but 

Cryptosporidium and microsphere removals decreased to less than 90% (typically within 

48 hours) as the polymer coagulants accumulated in the pool. 
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CHAPTER 1: NATIONAL SWIMMING POOL WATER EVALUATION 
 
 
1.1 Introduction  

 (Appendix A shows abstract for each chapter.) 

1.1.1 Swimming Pool Water Contaminants and Indicators 

Water recreational activities such as swimming can add significant quantities of 

microorganisms to a water body.  Swimming pool water poses a risk to the patrons 

inadvertently ingesting contaminated water.  Possible pool water contaminants include 

disinfection by-products, urine, sweat, dirt, cosmetics, bacteria, algae, Cryptosporidium, 

Giardia, and viruses.  Microorganisms such as Cryptosporidium and Giardia are of 

special concern because the traditional disinfection method of free chlorine is not 

effective for treating these organisms, and associated waterborne disease outbreaks are 

well-documented every year (CDC, 1990; CDC, 1993; CDC, 2000; CDC, 2003; CDC, 

2004; CDC, 2005; CDC, 2006; CDC, 2007).  A 1 mg/L free chlorine residual in public 

swimming pools enables them to inactivate 99.9% of  Cryptosporidium approximate  

11 days (Ct = 15,300 mg/L·min) (Shields, et al., 2008).   

1.1.1.1 Organic Matter Indicators  

Natural organic matter (NOM) is a heterogeneous mixture of organic compounds 

with large molecules and containing many functional groups that affect their chemical 

behavior (Edzwald and Tobiason, 1999).  NOM is typically quantified in water treatment 

plants by dissolved organic carbon (DOC) measurements and ultraviolet light absorbance 

at 254 nm (UV254).  Coagulation is controlled by NOM concentration in water treatment 
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plants (Amburgey, 2002; Amburgey, et al., 2004; Brown and Emelko, 2009; Edzwald 

and Tobiason, 1999; Pernitsky and Edzwald, 2006).   

DOC is an indicator of organic loadings in water body (Edwards, 1997).  DOC 

consists of truly dissolved substances and macromolecules with colloid-like properties.  

DOC plays an important role in carbon cycle, providing a key energy source for bacterial 

assimilation and also influencing the bioavailability of carbon (Kirchman, et al., 1991).  

Analytical methods for DOC can be found in Standard Methods for the Examination of 

Water and Wastewater with vacuum-filtered or pressure filtered through a 0.45 µm pore 

size filter (AWWA, 2012; Eaton, 2005). 

UV254 is a useful surrogate measure of selected organic constituents, and it is 

analyzed after filtration through 0.45 μm membrane filters (Karanfil, et al., 2003).  A 

strong correlation may exist between UV absorption and organic carbon content, color, 

and precursors of trihalomethanes (THMs) and other disinfection byproducts (Edzwald 

and Tobiason, 1999).  Double bonds and aromatic rings in organic molecules absorb 

UV254, and it thus can provide a quick estimate of the organic carbon content of raw 

water samples (Edzwald and Tobiason, 1999).  

UV254 samples must be filtered through a 0.45 µm pore-sized membrane filter and 

measured in waters prior to the addition of an oxidant or disinfectant (Eaton, 2005).  This 

is necessary because oxidants react with organic compounds and cleave the double bonds 

that absorb UV.  The disinfection by-products (DBPs) produced by the reaction between 

the aromatic organics and chlorine are carcinogenic for humans.  In European swimming 

pool systems, ozone is commonly applied to reduce the organic load in water  

(Finney, 2012).  The disinfection byproducts are then removed by various filtration 
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processes prior to the water being returned to the pool with a slight dose of chlorine 

(Finney, 2012). 

SUVA indicates the nature of NOM and the likely effectiveness of coagulation in 

removing NOM (Pernitsky and Edzwald, 2006).  SUVA correlates well with the 

aromaticity and the hydrophobicity of the organic carbon.  High hydrophobicity is 

associated with good treatability by coagulation.  NOM controls coagulation if SUVA is 

greater than 4 m-1/mg/L, strongly influences coagulation if SUVA is between 2 m-1/mg/L 

and 4 m-1/mg/L, and has little influence if SUVA is less than 2 m-1/mg/L (Edzwald and 

Tobiason, 1999; Pernitsky and Edzwald, 2006).  The DOC and UV254 determinations are 

used in the calculation of the Specific UV Absorbance (SUVA).  Its value offers a simple 

characterization of the nature of the NOM based on the UV absorbance and DOC  

(as shown in Equation (1.1)) (Edzwald and Tobiason, 1999). 

 
 

)/(

)/(100)( 1
254

LmgDOC

mcmcmUV
SUVA






                                                      (1.1) 

 
 
1.1.1.2 Particle Measurement  

Increased coagulant demand will also be caused by increased particle 

concentration (Pernitsky and Edzwald, 2006).  Both turbidity and particle size 

distribution have been recognized as parameters detecting the particle concentration in 

water (Bellamy, et al., 1993).   

Turbidity reflects ‘cloudiness’ of water sample, which needs to be controlled for 

safety and effective disinfection (ISO, 1999).  For easy visual identification of bodies at 

the bottom of a pool, a universal turbidity value is not considered to be appropriate as 
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much depends on characteristics of the pool, such as surface reflection and pool 

construction (Perkins, 2000).  It is recommended that a small child should be seen at the 

bottom of the pool from the lifeguard position while the water surface is in movement 

(WHO, 2000).  In terms of effective disinfection, a useful but not absolute, upper-limit 

guideline for turbidity is 0.5 NTU (ISO, 1999).  Turbidimeters measure the amount of 90o 

light scatter from particles in water, which is sensitive to a wide range of particle sizes 

(0.01 µm and larger).  Turbidity readings are mostly influenced by the number of 

submicron particles (<1 µm) present in the sample (Gregory, 1994; Hunt, 1993).   

Particle counters can be more sensitive to changes in water quality (Gregory, 

1994; Hunt, 1995; Lewis, et al., 1992).  The light obscuration of each particle is 

proportional to its size, and particle counters measure a change in light intensity as 

particles pass through a laser beam to report the particle size distribution in water, usually 

1 µm and larger (Hunt, 1995; Lewis, et al., 1992).  In many instances, turbidity and 

particle count trends correlate strongly with each other (Gregory, 1994; Hunt, 1993; Hunt, 

1995; ISO, 1999; Lewis, et al., 1992). 

1.1.2 Swimming Pool Water Chemistry 

1.1.2.1 Water pH  

The bulk properties of pool water, specifically pH, must be controlled to ensure 

efficient disinfection and coagulation (Hendricks, 2006; Lewis, et al., 1992; NSPF, 2009; 

Perkins, 2000; WHO, 2000).  The desired pH for disinfection and bather comfort should 

be maintained between 7.2 and 7.8 for chlorine disinfectants and between 7.2 and 8.0 for 

bromine-based and other non-chlorine disinfectants (NSPF, 2009; Perkins, 2000; WHO, 

2000).   



5 
 

 
 

1.1.2.2 Free Chlorine  

Chlorine is one of the most commonly used disinfectants for water disinfection.  

Ct values (Ct = concentration of disinfectant (mg/L) × exposure time (minutes)) for a 3 

log reduction in Cryptosporidium oocyst viability were from 10,400 to 15,300 at pH 7.5 

(Shields, et al., 2008).  Chlorine is commercially available as gaseous chlorine (Cl2) and 

as sodium hypochlorite liquid (NaOCl) or calcium hypochlorite (Ca(OCl)2).  

Hypochlorous acid (HOCl) and hypochlorite ion (OCl-) are the products of NaOCl 

dissociation in water and are the two forms of free chlorine.  The dissociation formula of 

HOCl in water is shown in chemical reaction below (Equation (1.2)) (NSPF, 2009; 

Perkins, 2000; WHO, 2000): 

 
 

  OClHHOCl                                                                (1.2)              

             

              
The efficacy of disinfection is determined by the pH.  Disinfection will take place 

optimally when the pH is between 5 and 7 as then a maximum proportion of HOCl is 

present (Hendricks, 2006).  HOCl is 80-100 times more effective than OCl- (Hendricks, 

2006).  HOCl does not evaporate and does not cause severe corrosion like Cl2.  Cl2 

exposed in air can be very dangerous.  For this reason, the ideal pH is > 6 as no Cl2 is 

present.  The highest level of HOCl is at pH value of 5.5.  With a pH value of 6.5 the 

level of HOCl is more than 90%, whereas the concentration of OCl- is less than 10%.  

Free available chlorine compounds with regard to pH are shown in Figure 1.1.   
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Figure 1.1 Chlorine Compounds Content versus Water pH (Dickerson, 2012; Gordon, et 
al., 1999) 
 
 
1.1.2.3 Cyanuric Acid (CYA) 

The chlorinated salts of cyanuric acid (CYA, (CNOH)3) have found an important 

role in recreational swimming pool waters (Cantú, et al., 2001; Wojtowicz, 2001).   

Figure 1.2 shows two structures CYA can exist.  CYA is from the dissociated chlorinated 

isocyanurate and is used in outdoor pools with the inorganic chlorines such as calcium 

hypochlorite, sodium hypochlorite, lithium hypochlorite, and chlorine gas.  CYA can 

release disinfectant chlorine and keep HOCl from being decomposed by ultraviolet light 

(Cantú, et al., 2001; Cantú, et al., 2001).  When CYA is used in an outdoor pool, chlorine 

consumption is reduced because the chlorine degradation caused by ultraviolet light is 

reduced.  In solution, CYA has the ability to tie up residual chlorine through complex 

equilibria to form up to six-chlorine isocyanurates at various pHs (Cantú, et al., 2001).  

The recommends levels of the CYA stabilizer in the 10-100 mg/L recommended by the 

National Swimming Pool Foundation (NSPF, 2009; Perkins, 2000; WHO, 2000).  The 

level of CYA is reduced by dilution due to filter backwashing, bather dragout,  
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or dumping.  CYA is a suspected gastrointestinal or liver toxicant in humans, thus pools 

above 100 mg/L need to be partially drained, and have fresh water added (Perkins, 2000; 

Yilmaz and Yazar, 2010).  High levels of CYA also cause a situation known as ‘chlorine 

lock’, which inhibits chlorine disinfection (WHO, 2000).   

 

 

Figure 1.2 Cyanuric Acid Structure (Wojtowicz, 2001) 

 

CYA significantly decreases the rate of inactivation for Cryptosporidium parvum 

oocysts.  Disinfection and remediation of swimming pools containing CYA-based 

chlorine disinfectants require increased exposure time, and/or higher concentrations of 

free chlorine, to achieve the same level of oocysts inactivation that can be expected for 

hyperchlorination when CYA is not present (Shields, et al., 2009).  When 50 mg/L CYA 

was present there was a 0.7 log reduction in Cryptosporidium oocysts viability after  

10 hours as compared to a 3.7 log reduction without CYA (Shields, et al., 2009). 

1.1.2.4 Oxidation Reduction Potential (ORP) 

Oxidation reduction potential (ORP) control of sanitizers in pools and spas is used 

all over the world.  ORP is used in pool water treatment as an indication of sanitation in 

relation to free chlorine parameter (Steininger, 1985).  As shown in Figure 1.3, the most 
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important factor affecting sanitizer activity is pH, because it changes the concentration of 

the more active form of free chlorine (HOCl).  As a result, chlorine becomes less 

effective at higher pH.  The recommended ORP level for pools and spas is typically 

between 650 and 750 mV (Steininger, 1985; Steininger, 1998), but it can be even higher 

in very clean water.   

 

 

Figure 1.3 PPM Readings versus ORP and pH  
(temperature = 25 °C, alkalinity = 100 mg/L, total dissolved solid = 500 mg/L) 
(Steininger, 1998) 
 
 
1.1.2.5 Alkalinity and Hardness 

Alkalinity (with units of mg/L as CaCO3) is an operational measure showing the 

acid neutralization capacity of the pool water (Hendricks, 2006).  The higher the 

alkalinity, the more resistant the water is to large changes in pH in response to the 

addition of acidic chemicals.  Calcium hardness (also with units of mg/L as CaCO3) is a 
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measure of the quantity of divalent cation such as calcium, magnesium and/or iron in 

water (Hendricks, 2006).  The pool operator must control both the amount of carbonate 

alkalinity and the pH to provide enough calcium carbonate to saturate the water.   

In general, total alkalinity must be kept between 80 mg/L and 125 mg/L (NSPF, 2009).  

A low total alkalinity makes it difficult to maintain a desired pH and can lead to corrosive 

water, which causes damage to equipment.  High total alkalinity can also cause scale to 

form and the water to become cloudy (Perkins, 2000).  Scale is the whitish crystallized 

deposit formed by mineral salts such as carbonates of magnesium and calcium (Perkins, 

2000; WHO, 2000). 

Calcium hardness (Ca) and magnesium hardness (Mg) are the primary ions 

contributing to water hardness with calcium typically accounting for 97% of the hardness 

(NSPF, 2009; Perkins, 2000).  Other hardness contributors are iron (Fe) and aluminum 

(Al) but are generally ignored because they are easily removed in the water treatment 

process, or by the addition of sequestering agents.  Generally, calcium hardness levels are 

kept at 200 to 400 mg/L (NSPF, 2009; Perkins, 2000).  Low calcium hardness presents a 

larger problem to pools than high calcium hardness does.  If pH, total alkalinity, and 

calcium hardness are low, the corrosiveness and aggressiveness of the pool water will be 

greatly increased.  This causes problems in deterioration of the pool walls and corrosion 

of metal parts.  The higher the hardness, the more scaling the water is.   

1.1.2.6 Total Dissolved Solid (TDS) and Conductivity 

The amount of salts in solution is referred to as total dissolved solids (TDS).  The 

National Swimming Pool Foundation suggests keeping the levels of TDS under 1,500 

ppm (NSPF, 2009).  High TDS may lead to erratic and unreliable pool testing results and 
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the water will look pale and cloudy (Perkins, 2000).  The TDS and the electrical 

conductivity are closely related.  The more salts dissolved in the water, the higher the 

value of the electric conductivity.  Conductivity is the ability to conduct or transmit 

electricity.  The electrical current is transported by the ions in solution, thus the 

conductivity increases as the concentration of ions increases (Mihelcic, 1999).   

1.1.2.7 Temperature 

 Temperature impacts the corrosiveness or scale forming properties of water.  As 

water temperature increases, the water tends to become more basic and scale-forming. 

Conversely, as the temperature decreases, water becomes more corrosive (Perkins, 2000). 

In addition, bather comfort is the primary consideration for temperature setting. 

1.1.2.8 Water Balance 

A commonly used tool in determining the degree of calcium carbonate saturation 

in pool water is the Langelier Saturation Index (LSI).  The degree of saturation 

calculation is shown as Equation (1.3) and Table 1.1 (NSPF, 2009; Perkins, 2000).  LSI is 

determined by the pH, temperature, total alkalinity and calcium hardness found in the 

pool water.  Pool water would be balanced at LSI in the range of -0.5 to 0.5.  It may also 

be defined as pool water that is either corrosive (< -0.5) or scaling (> 0.5) (NSPF, 2009; 

Perkins, 2000).   

 
Langelier Saturation Index (SI) = pH + TF + CF + AF –TDS                           (1.3) 

where, pH is the pH value of the water 
TF is temperature factor converted from the real temperature of water 
CF is calcium hardness factor converted from the real hardness of water 
AF is total alkalinity factor converted from the real alkalinity of water 
TDS is a factor for total dissolved solids, equals to 12.1  
when TDS < 1000 mg/L (ppm) and 12.2 when TDS > 1000 mg/L (ppm).   
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Table 1.1 Numerical Values for Saturation Index Formula (Perkins, 2000) 
Water 
Temperature 
(°C) 

Temperature 
Factor 

 Hardness 
(mg/L) 

Calcium 
Factor 

Alkalinity 
(mg/L) 

Alkalinity 
Factor 

0 0.0  5 0.3 5 0.7 
3 0.1  25 1.0 25 1.4 
8 0.2  50 1.3 50 1.7 
12 0.3  75 1.5 75 1.9 
16 0.4  100 1.6 100 2.0 
19 0.5  150 1.8 150 2.2 
24 0.6  200 1.9 200 2.3 
29 0.7  300 2.1 300 2.5 
34 0.8  400 2.2 400 2.6 
40 0.9  800 2.5 800 2.9 
53 1.0  1000 2.6 1000 3.0 

 
 

1.2 Materials and Methods 

1.2.1 Objectives 

The intent of this chapter is to investigate the national swimming pool water 

chemical properties, such as pH, cyanuric acid (CYA), total alkalinity as CaCO3, calcium 

hardness as CaCO3, as well as other water quality parameters, such as turbidity, particle 

size distribution, UV254 absorbance, dissolved organic carbon (DOC) concentration, 

SUVA, and conductivity.  Samples were collected and analyzed for chemical constituents 

and water quality from thirty-five swimming pools geographically distributed around the 

US pools including of indoor, outdoor, public, private, hotels, apartment complexes, 

community pools, water parks, swim clubs, etc, over the course of the spring and summer 

of 2010.  Spatial and temporal swimming pool water quality variation will be analyzed 

using t-test; three representative swimming pool waters will be provided based on the 

investigated pools using a cluster analysis method.  This study will reveal typical 

swimming pool water quality in order to lay a foundation for the remediation of 
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contaminated swimming pool water.  It will be the first nationwide water quality 

evaluation of US swimming pool water.  

1.2.2 Sample Collection 

Swimming pool water samples from thirty five swimming pools were collected in 

the United States, among which 18 pools’ samples were collected both in spring and 

summer, and 17 pools’ samples were only collected in summer or in spring.  Most of 

swimming pool samples were collected in North Carolina.  Other pools were collated in 

Hawaii, Florida, Massachusetts, Wisconsin and Texas, etc.  Samples were collected in 

500 mL high-density polyethylene (HDPE) plastic bottles, shipped to Charlotte, NC, and 

stored at 4 °C.  Duplicate samples were taken.   

1.2.3 Chemical Analyses 

Chemical constituents of each sample were analyzed using a Pooltest 25 

Professional Plus (Palintest, Erlanger, Kentucky, USA). The constituents measured were 

pH, free chlorine, calcium hardness, total alkalinity, sulfate, and CYA. The Pooltest 25 is 

a colorimeter that uses 10 mL round glass cuvettes.  A background reading of the pool 

water, without additional chemical reagents, was taken of each pool sample prior to 

testing to eliminate background colors from affecting the results of the tests.  The particle 

counter used in this analysis was a Liquid Sampler LS-200 (LiQuilaz® Particle 

Measuring Systems, Boulder, Colorado, USA).  The instrument was flushed, prior to 

each test, with ultra-pure water.  The turbidimeter used in this study was a Hach 2100 AN 

Turbidimeter (Hach Company, Loveland, Colorado, USA). Sample cells were cleaned 

prior to each test and instrument calibrations were performed regularly.  Samples for 

UV254 absorbance and DOC measurements were filtered using a 25 mm, 0.4 μm 
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polycarbonate filter (Product # K04CP02500, GE Osmonics, Minnetonka, Minnesota, 

USA).  The filter was applied to the filter housing and flushed with 30 mL of ultra-pure 

water.  UV254 absorbance was done using a UV-visible spectrophotometer (Agilent 

Technologies, Varian Cary 100 BIO UV Spectrophotometer, Santa Clara, California, 

USA).  The DOC of each pool sample was measured for each filtered pool water sample 

(GE Water and Process Technologies, Sievers 900 on-line, Boulder, CO, USA).  Samples 

were stored in 40 mL glass vials.  6 M (molar/L) phosphoric acid (H3PO4) and 15% 

ammonium persulfate ((NH4)2S2O8) were used as measurement reagents.  All sample data 

were taken in triplicate to ensure accuracy.   

1.2.4 Statistical Analysis 

 A correlation is a single number that describes the degree of relationship between 

two variables.  The correlation coefficient (CC) is calculated as Equation (1.4) (Bendat 

and Piersol, 1993; Miles and Shevlin, 2000). 
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CC               (1.4) 

 

where N is the number of pairs of samples, x and y are investigated variables.   
 
 
 

 In most studies, there are considerably more than two variables.  A correlation 

matrix lists all the correlation between paired variables (Miles and Shevlin, 2000).  This 

paper discussed the correlation between pH, alkalinity, hardness, and free chlorine 

concentration in the pool water using the correlation matrix with the residual maximum 
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likelihood (REML) approach.  REML estimation is a form of maximum likelihood 

estimation, which does not base estimates on a maximum likelihood fit of all the 

information (Harville, 1977; See, et al., 1993). 

Cluster analysis (CA) is a group of multivariate techniques to assemble objects 

based on the characteristics they possess.  CA divides a large number of objects into a 

smaller number of homogenous groups on the basis of their correlation structure.   

The resulting clusters of objects should then exhibit high internal (within-cluster) 

homogeneity and high external (between clusters) heterogeneity.  Hierarchical 

agglomerative clustering is a common approach, which provides intuitive similarity 

relationships between any one sample and the entire data set, and what is typically 

illustrated by a dendrogram (tree diagram) (Everitt, et al., 2011).  The dendrogram 

provides a visual summary of the clustering processes, presenting a picture of the groups 

and their proximity, with a dramatic reduction in dimensionality of the original data.   

The Euclidean distance usually gives the similarity between two samples, and a distance 

can be represented by the difference between analytical values from the samples (Everitt, 

et al., 2011).   

In this study, hierarchical agglomerative CA was performed on the normalized 

data set by means of the Ward’s method, using squared Euclidean distances as a measure 

of similarity.  Ward’s method is most-used hierarchical clustering technique, and this 

procedure links the pair of groups that produce the smallest variance in the merged group.  

The Ward’s method uses an analysis of variance approach to evaluate the distances 

between clusters in an attempt to minimize the sum of squares of any two clusters that 
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can be formed at each step (Everitt, et al., 2011).  The statistics software JMP  

(SAS Institute Inc.) was applied for all the statistical calculation. 

Type 1 t-test was performed by Microsoft Excel.  Two tailed t-test was applied 

with α = 0.05. A P-value below 0.05 was considered statistically significant, while one of 

0.05 or greater indicated no difference between the groups. 

1.3 Results and Discussions	

Thirty-five swimming pools were investigated with the mean pool volume of  

500 m3 (0.22 - 1892 m3).  Flow rates for pools were from 302 to 9,462 L/min.  The mean 

number of swimmers per day were in the range of 10 to 1,500 with a mean of 120, and 

the maximum number of swimmers for one day was from 12 to 2,200 (mean was 240) 

according to the survey questionnaire.  The full list of questions and information supplied 

by each pool can be viewed in Appendix B.   

The measured parameters were divided into two categories, water quality 

parameters (i.e., turbidity, particle size distribution, UV254 absorbance, conductivity, and 

DOC concentration) and water chemistry properties or operational parameters (i.e., pH, 

free chlorine, temperature, total alkalinity, and calcium hardness).  Tables 1.2 and 1.3 

briefly summarize statistical values for each parameter.  The box plot was also provided 

to descript swimming pool water quality parameters and chemistry properties.   

In statistics, a box plot is a convenient way of graphically depicting groups of numerical 

data through their five-number summaries: the sample minimum value (lower portion of 

the line), 25th percentile of samples (lower portion of the box), median of samples (the 

line in the box), 75th percentile (upper portion of the box), and sample maximum value 

(upper portion of the line).   
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Recommended values of parameters for the swimming pool are illustrated in 

Table 1.4.  Figure 1.4 shows the hardness and alkalinity values for 35 swimming pools.  

Eight pools hardness were below the minimum of 200 mg/L, and six pools were above 

400 mg/L.  It recommends that calcium hardness be maintained at a minimum of  

200 mg/L as CaCO3 to prevent corrosion or pipe scale accumulation (NSPF, 2009).  

Alkalinities for one third of the invested pools were below 80 mg/L, which may cause pH 

values to fluctuate widely due to a lack of pH buffer capacity.  Alkalinity greater than 

200 mg/L was observed in two pools, which could lead to difficulty in adjusting pH 

(NSPF, 2009).   

 
 
 

 

Figure 1.4 Hardness and Alkalinity for 35 Swimming Pools (Red lines show 
recommended values) 
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Figure 1.5 shows free chlorine values for 35 swimming pools. Adequate routine 

disinfection should be achieved with a free chlorine level of 1 mg/L, and these should not 

exceed 5 mg/L for public pools by reducing the formation of disinfection byproducts 

(NSPF, 2009).  Free chlorine concentrations of the investigated pools were less than  

5 mg/L.  Five pools had CYA levels higher than 100 mg/L in this investigation, and this 

concentration would interfere with the release of free chlorine (NSPF, 2009; Perkins, 

2000).   

 
 

 

Figure 1.5 Free Chlorine Values for 35 Swimming Pools (Red lines show recommended 
values) 
 
 

Figure 1.6 shows pH values for 35 swimming pools. Eight pools’ pH were out of 

the recommended pH range (7.2 -7.8).  High pH can lead to less effective disinfection, 

poor metal-based coagulation, and pipe scale (Perkins, 2000).  Swimming pools operate 
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in a narrow pH range, thus they must select a coagulant will function at the operational 

pH and then determine an effective dosage.   

 
 

 

Figure 1.6 pH Values for 35 Swimming Pools (Red lines show recommended values) 
 
 

Conductivities for 35 swimming pools are shown in Figure 1.7. The conductivity 

for the national pool water varied widely with the mean of 2,096 μS/cm, and standard 

deviation of 1,772 μS/cm.  The high dispersion of variables (high standard deviations) 

indicates variability in chemical composition between samples, which was primarily 

caused by some of the pools with salt chlorine generation systems.   
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Figure 1.7 Conductivities for 35 Swimming Pools 

 

Table 1.4 Recommended Chemical Values for the Swimming Pool (NSPF, 2009) 
pH 7.2 - 7.8 
Free Chlorine (mg/L) 1 - 5 
CYA (mg/L) < 100 
Alkalinity (mg/L as CaCO3) 80 - 125 
Hardness (mg/L as CaCO3) 200 - 400 
 
 
1.3.1 Swimming Pool Water Quality Spatial and Temporal Variation  
 

Turbidities for the pools are shown in Figure 1.8. Turbidities for the pools were 

from 0.11 NTU to 1.36 NTU.  Most (more than 75%) pools’ turbidity was less than  

0.5 NTU.  Particle counters can be more sensitive at low turbidities  

(Hunt 1995, Hunt 1993).  It can be seen from the particles data that the majority of 

particles (57%) were 3 µm or less in diameter, and over 90% of particles in pool water 

were 10 µm or less in diameter, as shown in Table 1.3.   
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Figure 1.8 Swimming Pool Turbidity Variation versus Time (n=18) (Red lines show 
recommended values) 
 
 

DOC values are shown in Figure 1.9. The DOC values for the pools were less 

than 16 mg/L (with mean of 5 mg/L).  UV254 are shown in Figure 1.10.  UV254 of the pool 

samples were less than 0.11 cm-1.  SUVA data showed more than 75% of pools were less 

than 2 m-1/mg/L, which indicated mostly non-humics organic contained in the pool with 

low hydrophobicity (Edzwald and Tobiason 1999, Pernitsky and Edzwald 2006).   
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Figure 1.9 Swimming Pool DOC Variation versus Time (n=18) 
 
 
 

 

Figure 1.10 Swimming Pool UV254 Variation versus Time (n=18) 
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T-tests were conducted to assess the water quality temporal variation using 

parameters including turbidity, UV254, DOC, and conductivity.  There was significant 

seasonal variation according to the paired t-tests results for turbidity (P<0.01), UV254  

(P < 0.0001) and DOC (P < 0.01).  Turbidity, UV254 and DOC values in summer (July, 

August, and September) were higher than in spring (April, May and June) (as shown in 

Figures 1.8, 1.9, and 1.10).  Seasonal water quality variation likely corresponds to the 

number of swimmers.  The potential contamination sources derive from the skin and 

excretion products of swimmers, such as skin cells, sebum, hairs, cosmetics, sweat, urine, 

mucus, and saliva.  These components are not necessarily harmful for human health.  

However, they can react with disinfectants in the water, such as free chlorine, to form 

unwanted reaction by-products (e.g., chloramines and disinfection by-products).   

Spatial variation of swimming pool water quality is determined by t-test based on 

the indoor and outdoor swimming pool investigation data (Figures 1.11, 1.12, and 1.13).  

There were significant differences between DOC (P = 0.02) for the indoor and outdoor 

swimming pools.  Indoor pools had the higher DOC than outdoor pools.  Turbidity and 

UV254 variation had no statistical significance.   
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Figure 1.11 Indoor and Outdoor Swimming Pools Turbidity Variation (n=35) 

 

 

Figure 1.12 Indoor and Outdoor Swimming Pools DOC Variation (n=35) 
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Figure 1.13 Indoor and Outdoor Swimming Pools UV254 Variation (n=35) 
 
 

1.3.2 Swimming Pool Water Chemical Properties and Water Balance  
 

A correlations matrix with all the paired correlations between the four operational 

parameters, pH, hardness, alkalinity and free chlorine, were examined by REML method.  

From the correlation matrix, the hardness of samples was negatively correlated with the 

other parameters, which indicated the high hardness generally existed in low pH, 

alkalinity and free chlorine water.  Swimming pool water sample pH was positively 

correlated with alkalinity and free chlorine.  Other relationships between these variables 

were also evident as shown in Table 1.5. 
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Table 1.5 Paired Correlations for Operational Parameters 

  Hardness pH Alkalinity Free Chlorine 
Hardness 1 -0.54 -0.05 -0.33 
pH -0.54 1 0.33 0.25 
Alkalinity -0.05 0.33 1 -0.27 
Free Chlorine -0.33 0.25 -0.27 1 

 
 
Cluster analysis (CA) allows the grouping of swimming pool water samples on 

the basis of their similarities in chemical composition.  The purpose is to assemble the 

samples based on the characteristics they possess.  Each sample is similar to the others in 

the cluster with respect to a predetermined selection criterion.  The resulting clusters of 

objects should exhibit high internal homogeneity and high external heterogeneity.  

Cluster analysis uses operational parameters including pH, free chlorine, hardness, and 

alkalinity in the original data set.  Hierarchical agglomerative clustering by the Ward’s 

method was selected for sample classification.  The dendrogram of samples obtained is 

shown in Figure 1.14.  Data from 53 selected pool samples (pH, alkalinity, hardness,  

and free chlorine) were applied to analyses, among which 18 pools provided spring and 

summer data, and 17 pools only provided summer data or spring data.  Two well 

differentiated clusters, each formed by two subgroups, can be seen.  Mean values for each 

group representing the characteristic of each group are shown in Table 1.6.   

The four chemical parameters in the first two main groups agreed with the values 

recommended by NSPF Pool and Spa Handbook (pH 7.2 - 7.8, free chlorine 1 - 5 mg/L, 

alkalinity 80 - 120 mg/L, and hardness 200 - 400 mg/L) (NSPF, 2009; Perkins, 2000).  

The third main cluster indicates the high pH, alkalinity and free chlorine, but low 

hardness, which is consistent with the correlation analysis.  On the other hand, the fourth 

main cluster shows the low pH, alkalinity and free chlorine and high hardness.  Thus, all 
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the swimming pool water samples were divided into three representative groups based on 

the CA analysis and recommended operational parameters.  The three representative 

groups are water type-1 (CA main group 1 and 2), water type-2 (CA main group 4) and 

water type-3 (CA main group 3).  Pool water type-1 has a pH of 7.5, alkalinity of 100 

mg/L, hardness of 200 mg/L, and free chlorine of 2 mg/L.  Pool water type-2 has a pH of 

7.9, alkalinity of 200 mg/L, hardness of 120 mg/L, and free chlorine of 3 mg/L.  Pool 

water type-3 has a pH of 7.2, alkalinity of 60 mg/L, hardness of 350 mg/L, and free 

chlorine of 1 mg/L (as shown in Appendix E).  Balanced pool water has proper levels of 

pH, total alkalinity and calcium hardness.  Properly balanced or saturated water prevents 

damage to the pool and equipment.  Unsaturated water corrodes plaster walls, fixtures, 

plumbing, etc., and causes staining.  Oversaturated water deposits scale or becomes 

cloudy.  Calculated SI values at 20 °C to 35 °C for the three representative pool water can 

be found in Appendix E. 
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Figure 1.14 Dendrogram Based on Agglomerative Hierarchical Clustering (Ward’s 
method) for 35 Swimming Pools Water (18 pools water samples were collected in two 
seasons; the other 17 pools samples were collected only in one season; total of 53 paired 
data were applied to calculation)  
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Table 1.6 Statistical Descriptive for Each CA Group 

Group 
pH 

Alkalinity   
(mg/L as CaCO3) 

Hardness (mg/L 
as CaCO3) 

Free Chlorine 
(mg/L) 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

Mean 
Std. 
Dev. 

1 7.6 0.15 80 26 162 110 2.7 1.2 

2 7.4 0.15 119 41 272 111 0.5 0.3 

3 7.9 0.23 195 50 124 69 1.7 2.2 

4 7.2 0.15 57 8 346 102 0.61 0.41 
 

 
1.4 Conclusions 

Swimming pools water quality was evaluated by UV254, turbidity, and DOC 

concentration.  UV254 of the pool samples were less than 0.11 cm-1.  The DOC values for 

the pools were less than 16 mg/L, with mean of 5 mg/L.  Seventy five percent of SUVA 

of the pools was less than 2 m-1/mg/L.  Turbidities for the pools were from 0.11 NTU to 

1.36 NTU, 75% was less than 0.5 NTU.  The majority of particles (57%) were 3 µm or 

less in diameter, and over 90% of particles in pool water are 10 µm or less in diameter.  

Spring swimming pool water contained lower contaminant concentration than summer as 

expected.   

Most of the sampled pools (77%) pH agreed with the recommended values,  

7.2 - 7.8.  Free chlorine concentrations of the investigated pools were all less than 5 mg/L.  

Alkalinity for 60% of swimming pools was in the recommended range of 80 - 125 mg/L 

as CaCO3.  Hardness for 60% of swimming pools was in the recommended range of  

200 - 400 mg/L as CaCO3.   

Based on the pools surveyed, an average pool would have a pH of 7.5 (standard 

deviation: 0.3) with 1.5 mg/L (standard deviation: 1.4) of free chlorine, and the alkalinity 

and hardness would be 94 mg/L (standard deviation: 47) and 238 mg/L (standard 

deviation: 130) as CaCO3, respectively. The average turbidity would be 0.33 NTU 
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(standard deviation: 0.27), and the DOC concentration would be 5 mg/L (standard 

deviation: 3.8). 

Relationships between pH, free chlorine, hardness and alkalinity were evident.  

The hardness of samples was negatively correlated with the other parameters indicating 

the high hardness generally existed in low pH, alkalinity and free chlorine water.  

Swimming pool water sample pH was positively correlated with alkalinity and free 

chlorine.  Three representative swimming pool waters are developed using cluster 

analysis, which will be applied for swimming pool water treatment.  Saturation index for 

developed pool water is satisfied as being neither too corrosive nor likely to cause scaling.   

 

 

  



 

 

CHAPTER 2: EVALUATION COAGULATION OF CRYPTOSPORIDIUM  
OOCYST-SIZED MICROSPHERE IN SWIMMING POOL WATERS USING ZETA 

POTENTIAL TITRATION 
 
 
2.1 Introduction 

2.1.1 Stability of Particle Suspensions 

Most of the natural particles in water have a negative surface charge (Hendricks, 

2006).  These negative charges cause mutual repulsion and can result in a suspension 

characterized as “stable” (Hendricks, 2006).  As particles in a suspension approach one 

another or as a particle in a flowing fluid approaches a stationary surface such as a filter 

grain, forces of electrostatic repulsion arise that tend to keep the surfaces apart.   

2.1.1.1 Double Layer and Zeta Potential 

The idea of measuring the charges on particles provides a rationale for determining 

coagulant dose.  The behavior of colloidal particles in water is strongly influenced by their 

electrostatic charge.  There are three approaches to measure particle charges (i.e., zeta 

potential, colloid titration, and streaming current) (Hankins, et al., 2006).   

Figure 2.1 displays the double layer of a particle’s surface.  Negative particles in 

water move toward the cathode in an electric field.  When charged particle moves in the 

electric field, some of the counter ions in the ion cloud around the particle move with it.   

A surface of hydrodynamic shear or “slipping plane” is developed in the diffuse layer 

(where the ions are strongly bound) and an outer diffuse layer (region where they are less 

firmly attached) are two parts of existing liquid layers surrounding the particle.   A surface 
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in a liquid may be charged by dissociation of surface groups or by adsorption of charged 

molecules such as polyelectrolyte from the surrounding solution.  This results in the 

development of a surface potential, which will attract counter-ions and achieve 

equilibrium in solution (Letterman and Yiacoumi, 2010).  The region near the surface of 

enhanced counter-ion concentration is called the electrical double layer.  The double layer 

can be approximated by a sub-division into two regions.  Within the diffuse layer there is  

a notional boundary inside which the ions and particles form a stable entity.   

When a particle moves, ions within the boundary move with it, but any ions beyond the 

boundary do not travel with the particle.  Ions in the region closest to the charged surface 

are strongly bound to the surface.  This immobile layer is called the Stern or Helmholtz 

layer.  The region adjacent to the Stern layer is called the diffuse layer and contains 

loosely associated ions that are comparatively mobile.  The potential that exists at this 

boundary is known as the zeta-potential (Lyklema, 1995).   
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Figure 2.1 Diffuse Double Layer and Zeta Potential of the Particle Surface (Letterman 
and Yiacoumi, 2010) 

 
 
There is significant variability in zeta potentials reported for Cryptosporidium 

parvum oocysts, ranging approximately from −40 mV to −10 mV (Brush, et al., 1998; 

Drozd and Schwartzbrod, 1996; Shaw, et al., 2000).  Zeta potential is an indicator of 

effective coagulation.  According to zeta potential theory, particles with large negative or 

positively zeta potential are electrically stabilized (e.g., > 30 mV or < -30 mV)  

(ASTM, 1985).  They will tend to repel each other, and there is no tendency to flocculate.  

It has been shown that zeta potential values ranging between -10 mV and +10 mV are 

favorable condition for particle removal (McCurdy, et al., 2004; Tseng, et al., 2000).  

When the proper dosage of coagulant is added, zeta potential of particles should be 

approximate zero, theoretically.  The point of zero charge (PZC) represents the proper 

dosage of coagulant added.  For a specific coagulant, the PZC must be determined 
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experimentally for a given water sample.  The PZC will be the first assessment of the 

potential to underdose and overdose for each coagulant.  However, zeta potential does not 

necessarily need to be zero for effective coagulation, since colloid destabilization occurs 

before complete neutralization of surface charge (Ratnaweers, et al., 1999).    

Zeta potential is related to raw water pH.  In general, zeta potential decreases  

(i.e., becomes more negative) as pH increases.  It was found that for the dissolved organic 

carbon (DOC) concentration of 3.6 mg/L, zeta potential became more negative with 

increasing pH at pH values greater than pH 7 (Xagoraraki and Harrington, 2004).  The 

impact of the background water conditions on the surface potentials of Cryptosporidium 

parvum through zeta potential measurements illustrated that the zeta potential of purified 

oocysts becomes more negative with increasing solution pH (Searcy, et al., 2005).  

2.1.1.2 DLVO Theory 

DLVO theory (Derjaguin, Landau, Verwey, and Overbeek) suggests that the 

stability of a colloidal system is determined by the sum of these Van der Waals attractive 

(EV) and electrical double layer repulsive (EE) forces that exist between particles as they 

approach each other due to the Brownian motion they are undergoing (Derjaguin and 

Landau, 1941; Haaland, 2008; Hunter, 2001).  The net potential caused by addition of 

these two forces determines the strength and nature of the colloid interactions (Derjaguin 

and Landau, 1941).    

Van der Waals forces result from attraction between positive and negative regions 

of neutral atoms due to fluctuations in charge distribution, including attractions between 

atoms, molecules, and surfaces, as well as other intermolecular forces, the formula for 

calculation is shown in Equation (2.1) (Hendricks, 2006; Letterman and Yiacoumi, 2010).   
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Electrostatic interactions occur due to the disproportionate amount of oppositely 

charged ions that collect near a charged surface in an aqueous medium.  The two distinct 

regions of net charge are the electrical double layer and are depicted in Figure 2.1.   

The electrical double layer repulsive force is determined by Equation (2.2).   

DLVO theory proposes that an energy barrier resulting from the repulsive force 

prevents two particles approaching one another and adhering together.  But if the 

particles collide with sufficient energy to overcome that barrier, the attractive force will 

pull them into contact where they adhere strongly and irreversibly together.  Therefore, if 

the particles have a sufficiently high repulsion, the dispersion will resist flocculation and 

the colloidal system will be stable.  Oppositely, if a repulsion mechanism does not exist 

then aggregation will eventually take place.   

 

r

AR
Ev 6

                                   (2.1) 

 

)exp(4 2 krREE                 (2.2) 

 

where, A is between 10-19 to 10-20 J (N·m) or 10-10 to 10-11 nJ (N·nm),  
            R is the radius of the particle (m, or nm), 
            r is the distance between the two particles (m, or nm), 
            ε is the permittivity constant, equals to 6.95·10-7 nN/(mV2), 
            ψ is zeta potential of the particle, 
            k is a function of the ionic composition. 
 
 
2.1.1.3 Extended DLVO Theory 

The classical DLVO theory has its limitation.  When DLVO fails to explain 

experimental results, an extra term is often added, so called extended DLVO theory  
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(i.e., hydration forces, hydrophobic forces, oscillaroty forces, water structure forces, etc.).  

Born repulsion force (EB) from the resistance to overlap of electron clouds only occurs at 

extremely small separation distances as shown in Equation (2.3) (Haaland, 2008; Hunter, 

2001). 
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where σ is collision diameter, typically equals to 0.5 nm.  Other parameters are as defined 
previously. 
 
 
2.2.2 Destabilization Mechanisms 

Suspension might be “destabilized”.  The removal of dissolved natural organic 

matter (NOM) and colloidal particles is thought to occur via four primary mechanisms: 

double layer compression, surface charge neutralization, adsorption and precipitation, and 

interparticle bridging (Bratby, 2008; Edzwald and Tobiason, 1999; Letterman and 

Yiacoumi, 2010). 

Polymers may function to charge neutralize colloids or other kinds of particles so 

that they may agglomerate as flocs and improve filter performance (Brown and Emelko, 

2009; Chang, et al., 2005).  Polymers are less pH dependent, have less sludge generation 

and disposal compared with metal-based coagulants (Polasek and Mutl, 2002; Wei, et al., 

2010).  As polymer addition generally does not impact the pH of the water being treated, 

pH adjustment is not necessarily required for optimum coagulation (Emelko and Huck, 

2003).  Polymers acting as coagulants usually contain materials with molecular weights 

(MW) generally less than 500,000 and high charge density (Bolto and Gregory, 2007).  
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Polydiallyl of dimethyl ammonium chloride (polyDADMAC) was found to be very 

effective for removing THM precursors, NOM, and color acting as a primary coagulant 

or coagulation aid (Chang, et al., 2005; Hankins, et al., 2006; Parsons, et al., 2007; 

Polasek and Mutl, 2002; Wei, et al., 2010).  Chitosan has been used for the design of 

coagulation-flocculation processes applied to the treatment of particles and dissolved 

contaminates (Guibal, et al., 2006; Parsons, et al., 2007).  Excellent turbidity and 

Cryptosporidium parvum oocysts reductions by chitosan coagulation at optimum dosages 

followed by filtration were comparable to those achieved when filtration was preceded by 

alum and FeCl3 coagulation during optimized drinking water treatment operation with  

a filtration rate of 10.4 m/h (Brown and Emelko, 2009).  The effectiveness of coagulation 

depends on dosage (Divakaran and Pillai, 2001).  There is little information available in 

literature on coagulant dosage associated with Cryptosporidium coagulation. 

2.2 Materials and Methods	

2.2.1 Objectives 

In this chapter, zeta potential of Cryptosporidium oocyst-sized microspheres 

corresponding to different dosages of six commercial coagulants were investigated to 

gain insight into the dose-response relationship between each coagulant and the surface 

charge of microspheres suspended in the pool waters.  This study will test the coagulation 

performance of six coagulants on Cryptosporidium-sized microspheres.  It will be the 

first assessment of the potential to underdose and overdose each coagulant associated 

with particle coagulation. 
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2.2.2 Experimental Material 

2.2.1.1 Instruments 

A zetasizer with an autotitrator (Malvern Instruments Ltd., Zetasizer Nano-ZS, 

Worcestershire, UK) was used as the zeta potential analyzer during the experiment.  The 

disposable folded capillary cells were used, as shown in Figure 2.2.  New tubing and 

circulation pump tubing were used for each experiment for quality control.  The accuracy 

of the zetasizer was verified by zeta potential transfer standard (Malvern Instruments Ltd., 

DTS1230, Worcestershire, UK).   

 

Figure 2.2 Disposable Capillary Cell (DTS1061) 

 

2.2.1.2 Cryptosporidium-sized Polystyrene Microspheres 

The use of polystyrene microspheres as oocysts surrogate has been done by 

multiple researchers, and it was used in this study (Amburgey, 2002; Amburgey, et al., 

2004; Amburgey, et al., 2005; Dai and Hozalski, 2003).  Microspheres with diameter of 

4.5 µm were used as the surrogate since microspheres are virtually identical to 
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Cryptosporidium oocysts in size, shape, density, and surface charge in pool water 

(Fluorsebrite™ Carboxylate YG 4.5 micron microspheres, Cat. #16592, 4.5 μm, std.dev. 

0.246 μm, Polysciences, Inc., Warrington, Pennsylvania, USA) (Amburgey, 2002; 

Amburgey, et al., 2004; Amburgey, et al., 2005; Dai and Hozalski, 2003).  Stock 

suspensions microspheres concentration was 4.37×1011 #/L.  A total of 107 microspheres 

was used in each of these experiments. The final concentration was 106 microspheres/mL 

(106 #/mL) for each experiment. 

2.2.1.3 Coagulants 

 Six coagulants were used in pool water treatment.  The coagulants are cationic 

coagulants.  The detailed coagulants information is attached in Appendix C.  Figure 2.3 

shows the structure of polyDADMAC and chitosan. 

 

 

 

 
Figure 2.3 Structure of polyDADMAC and Chitosan  ((a) is polyDADMAC, (b) is 
chitosan) 

 
 

2.2.1.4 Synthetic Pool Water 

The study made use of a body fluid analogue (BFA) solution, containing the 

primary endogenous organic amino compounds, as the organic carbon introduced into the 

simulated pool water.  Recipe of BFA is shown in Appendix D.  The synthetic pool water 
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was generated based on previous swimming pool water quality investigation (Chapter 1).  

Chemical characteristics of the synthetic swimming pool water are summarized in  

in Appendix E.  Chemicals including HCl, CaCl2, NaHCO3, Ca(OCl)2, were added to the 

synthetic pool water to adjust chemical characteristic such as pH, alkalinity, hardness, 

and free chlorine.  Recipe for the three representative pool waters is shown in Appendix F.   

2.2.2 Experimental Method 

Six coagulants were titrated into simulated pool water type-1, type-2, and type-3 

with 106 #/mL microspheres.  The corresponding zeta potential was measured to set 

benchmarks for each product.  The benchmarks indicated the minimum, optimum 

maximum, and flexibility of the dosage for each chemical in terms of zeta potential.   

Zeta potential variation during each test was measured.  Before starting the titration,  

it was necessary to fill the titrant container with a specific concentration of the titrant,  

and prime the titrant syringe pumps and tubes.  An initial sample volume of 10 mL was 

used.   Nitrogen was continuously added into the sample headspace to keep CO2 out of 

sample and control pH.  A measurement was not started until all the tubes were 

connected correctly and the capillary cell was filled.  Computer-based standard operating 

procedures (SOPs) were created according for each experiment design.  The titrant was 

added into sample controlled by SOP automatically.  New connecting tubes, titrant pump 

tubing, titrant container, and sample container were replaced for each test as a quality 

control step to prevent carryover.  The folded capillary cells, when reused, were washed 

by tap water three times and comet cleaner solution at least three times, and then rinsed 

by tap water.  Simulated swimming pool water was used to rinse the cell before 
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experiments.  Zeta potential of samples was measured before titration for quality control.  

It was typically around – 30 mV ± 2 mV in this study. 

2.3 Results and Discussions 

2.3.1 Stability of Colloidal System  

 Figure 2.4 shows the impact of Van der Waals attractive (EV), electrical double 

layer repulsive, and Born repulsion force (EB) at different separation distances for 5 µm 

Cryptosporidium-sized microspheres.  The minimum separation distance to attain a net 

attraction between microspheres is approximately 0.3 nm.  The model demonstrated 

repulsion force dominated at separation distance above 0.3 nm, which implied the 

Cryptosporidium-sized microspheres colloidal system was stable prior to coagulant 

addition.  Figure 2.5 shows the net forces for Cryptosporidium-sized microspheres before 

(-30 mV) and after coagulation (e.g., -10 mV and 0 mV).  Results indicated attractive 

force dominated after coagulation with microspheres’ zeta potentials of -10 mV,  

and 0 mV after coagulation; while repelling force dominated prior to coagulation.   

The maximum attractive force was obtained when zeta potential was 0 mV.  
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Figure 2.4 Cryptosporidium-sized Microspheres Interaction Forces Versus Separation 
Distance Prior to Coagulation 
 

 
Figure 2.5 Cryptosporidium-sized Microspheres Interaction Net Forces Versus 
Separation Distance for Zeta Potential of -30 mV, -10 mV, and 0 mV 
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2.3.2 Titration Results for Simulated Swimming Pool Water  

The zeta potential of simulated water type-1 with 106 #/mL versus coagulant 

concentration is plotted in Figure 2.6 for all six coagulants.  Titration experiments 

suggested zeta potential of suspension increased in the positive direction as coagulant 

dosage increased.  The recommended dosage were 1.56 mg/L for coagulant A, B, C, and 

F, 305 g/m2 for coagulant D, and 1 mg/L as product (0.1 mg/L as Al) for coagulant E 

(Goodman, 2011).  Previous study of drinking water revealed that achieving a zeta 

potential between -10 mV and 10 mV for the suspension being treated was the 

destabilized system (Tseng, et al., 2000).  Coagulant A, B, and F dosage between  

0.5 mg/L to 3 mg/L as product, coagulant D dosage between 6 mg/L and 12 mg/L  

as product, and coagulant E dosage between 1 and 20 mg/L as product (0.1 and 2 mg/L  

as Al) resulted in microsphere zeta potentials of -10 mV to 10 mV for water type-1.  

Coagulant C could not achieve microsphere zeta potential of -10 mV at recommended 

dosage (1.56 mg/L).  Results indicated the reversal of charge was present as the coagulant 

concentrations increased.  Overdose of coagulant A, B, and F were indicated by zeta 

potential above 10 mV.   

A suspension of microspheres behaved as colloids and was coagulated readily by 

cationic coagulants.  The differences in coagulation performance among different 

coagulants may be explained by the mechanism of coagulation and the configuration of 

the coagulants (Bolto and Gregory, 2007; Huang, et al., 2000; Pan, et al., 1999).   

The most likely mechanism of cationic coagulant coagulation is charge neutralization 

(Bratby, 2008; Letterman and Yiacoumi, 2010; Singley, 1970). 
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Figure 2.7 shows zeta potential titration results for water type-2, and Figure 2.8 

shows zeta potential titration results for water type-3.  Trends of microsphere zeta 

potential titration for the three water types were very similar.  Different water types 

referred to the different pH, alkalinity, hardness, and ion concentration.  Polymer tends to 

be less pH dependent (Hendricks, 2006; Huang and Yin, 1996; Huang, et al., 2000), 

which likely contributed to the similar trends of zeta potential in different water types.  
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Figure 2.9 shows zeta titration for the three water types by coagulant A.   

Figure 2.10 shows zeta titration for the three water types by coagulant B.  Figure 2.11 

shows titration results for the three water types by coagulant C. And Figure 2.12 shows 

the zeta titration results by coagulant D for the three water types.  The negative zeta 

potential of microspheres decreases as the dosage of positively-charged coagulant 

increases.  Results indicated in Figure 2.9 to Figure 2.12 also showed the three simulated 

swimming pool water types made no differences for the zeta potential of the 

microspheres titrated by coagulant A, B, C, and D.   

 

 

 

Figure 2.9 Comparison of Zeta Titration Results for Three Types of Swimming Pool 
Water, 106 Microspheres/mL, Coagulant A (n=3) 
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Figure 2.10 Comparison of Zeta Titration Results for Three Types of Swimming Pool 
Water, 106 Microspheres/mL, Coagulant B (n=3) 
 

 

Figure 2.11 Comparison of Zeta Titration Results for Three Types of Swimming Pool 
Water, 106 Microspheres/mL, Coagulant C (n=3) 
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Figure 2.12 Comparison of Zeta Titration Results for Three Types of Swimming Pool 
Water, 106 Microspheres/mL, Coagulant D (n=3) 
 
 
2.3.3 Coagulant Dosage Analysis 

In theory, the zeta potential should be zero when the proper dosage of coagulant is 

added, which is called the point of zero charge (PZC).  Thus, PZC may coincide with the 

critical coagulant concentration (CCC) level of the specific coagulant in that colloidal 

suspension, called CCC dosage or optimum dosage.  The titration results showed the 
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PZC was 1 mg/L (standard deviation 0.2 mg/L) as product (0.1 mg/L as Al) for coagulant 

E and was 2.3 mg/L (standard deviation 0.7 mg/L) as product for coagulant F.  

2.3.4 Effect of BFA on Zeta Potential Titration 

BFA was titrated into water samples and led to the dissolved organic carbon 

(DOC) increasing from 0 to 20 mg/L, in order to study the DOC concentration effect on 

zeta potential.  The water type-1 with coagulant A at the recommended dose and  

106 #/mL microsphere was titrated by BFA.  Figure 2.13 illustrates zeta potential versus 

DOC concentration.  Zeta potential was not significantly reduced by DOC in the range 

anticipated in U.S. pools (< 16 mg/L, average of 5 mg/L).  Again, the BFA effect on zeta 

potential was not significant (based on a two tailed t test: P<0.05).   

 
 
 

 

Figure 2.13 Zeta Potential of Suspension as Function of DOC Values (n=3, 1.56 mg/L 
Coagulant A) 
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2.4 Conclusions 

Zeta potential titration results showed an upward trend of zeta potential with 

increased coagulant dosage for all six coagulants.  Achieving desired zeta potential  

(-10 mV to 10 mV) required small dosage of coagulant A, B, E, and F compared with 

coagulant D for the representative simulated swimming pool water.  Coagulant C did not 

appear to work well at the recommended dose.  Overdosing of coagulant A, B, and F 

were indicated by zeta potential above 10 mV.  No significant differences were observed 

for coagulant performance on different water types.  The PZCs were 2.1mg/L  

(std. dev. 0.6 mg/L), 1.4 mg/L (std. dev. 0.6 mg/L), 14 mg/L (std. dev. 2.6 mg/L), and 9.1 

mg/L (std. dev. 0.4 mg/L) as product for coagulant A, B, C and D, was 1 mg/L  

(std. dev. 0.2 mg/L) as product (or 0.1 mg/L as Al) for coagulant E, and was 2.3 mg/L 

(std. dev. 0.7 mg/L) as product for coagulant F with microspheres concentration of  

106 #/mL, respectively.  DOC (BFA) concentration did not appear to impact the zeta 

potential of coagulant A destabilized microspheres. 

 

 

 

  



 

 

CHAPTER 3: METHOD DEVELOPMENT ON CRYPTOSPORIDIUM-SIZED 
MICROSPHERES REMOVAL FROM RECREATIONAL WATER VENUES 

 
 
3.1 Introduction 

3.1.1 Properties of Cryptosporidium  

Cryptosporidium spp. are intracellular parasites that infect human epithelial cells 

of the small intestine (Fayer, et al., 1997).  There are now 16 recognized species (Fayer, 

2008).  Most studies have been conducted on one species, Cryptosporidium parvum.   

It is geographically widespread, infecting many host species, and producing prodigious 

numbers of oocysts, thus making it more easily obtainable for study than other species of 

Cryptosporidium.  Consequently, data derived from Cryptosporidium parvum, in some 

cases, have become generalized and extended to other members of the genus  

(Fayer, 2008).  Another primary Cryptosporidium species of concern for human health is 

Cryptosporidium hominis.  Cryptosporidium parvum and Cryptosporidium hominis have 

both been implicated in outbreaks associated with drinking and recreational water 

(Shields, et al., 2008).   

Cryptosporidium is a one-celled parasite, with diameter of 4-6 µm, commonly 

found in lakes and rivers.  It is surrounded by three distinct layers of the oocyst wall 

(Harris and Petry, 1999).  Cryptosporidium oocysts are environmentally persistent and 

very resistant to many disinfectants, including cholorine, which is the major barrier to 

infectious disease transmission that has been used for the past several decades in the 

swimming pool water treatment (Korich, et al., 1990).  Typical swimming pools in the 
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United States require at least 1 mg/L (ppm) free residual chlorine (NSPF, 2009; Perkins, 

2000).  This concentration free chlorine enables 99.9% of Cryptosporidium to inactive for 

over 11 days (Korich, et al., 1990; Shields, et al., 2008).   

3.1.2 Cryptosporidiosis 

Cryptosporidium has caused several large waterborne disease outbreaks of 

gastrointestinal illness, cryptosporidiosis, and emerged as a parasite of major public 

health concern in United States, United Kingdom, Australia, etc (Briancesco and 

Bonadonna, 2005; Karanis, et al., 2006; LeChevallier, et al., 1991; Lisle and Rose, 1995; 

PHLS, 2000; Puech, et al., 2001).  The gastrointestinal illnesses include watery diarrhea, 

dehydration, fever, nausea, body fatigue, and abdominal cramps (Frost, et al., 1997).  

Cryptosporidiosis is a diarrheal illness caused by the infection of the gastrointestinal tract 

by the protozoan parasite Cryptosporidium.  Infections caused by Cryptosporidium can 

last for days or up to 2-3 weeks (Mead, 2002).  Multiple sources have indicated that 

weaker subpopulations (infants, young children, pregnant women and elderly people) are 

more susceptible, and the occasionally severe cases requiring hospitalization depends on 

individual immunity (Daniel, 1996; Ford, 1999; Hoxie, et al., 1997).  Twenty four of 81 

patients who developed cryptosporidiosis exhibited extraintestinal biliary infections on 

the Milwaukee outbreak (Mead, 2002).  Immunocompromized individuals (AIDS) could 

die from cryptosporidiosis (Mead, 2002).  In the Nevada outbreak of 1994, 32 out of 61 

adults who developed cryptosporidiosis with AIDS died within 6 months,  

and cryptosporidiosis listed as a contributing cause on their death (Goldstein, et al., 1996). 

Many therapies are not effective against Cryptosporidium, since it has a natural resistance 

to drug therapy (Mead, 2002).  Currently, no single or combined drug therapy has proven 
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to be completely effective against cryptosporidiosis (Shahiduzzaman and Daugschies, 

2012). 

3.1.3 Cryptosporidium Sources and Transmission 

Cryptosporidium oocysts are immediately infectious, and the parasites’ infectious 

dosage is as low as 10 to 30 oocysts (DuPont, et al., 1995; Okhuysen, et al., 1999).   

The median infectious dosage for cryptosporidiosis is reported to be approximately  

132 oocysts (DuPont, et al., 1995).  One common source of infection is by swimming in a 

swimming pool with human contamination (Schets, et al., 2004).  Most swimmers retain 

some level of feces on their perianal surface that can be rinsed into recreational water 

while swimming (Gerba, 2000).  Relatively small amounts of fecal contamination per 

person, average 0.14 grams per person, have been documented, but large and heavily-used 

locations may receive a lot of daily fecal contamination (e.g., swimming pool with 20,000 

visitors per day could receive 2.8 kg of fecal contamination) (Gerba, 2000).  Infected 

humans excrete approximately 108 to 109 oocysts in stool per day (Goodgame, et al., 1995; 

Jokipii, et al., 1985).  High levels of oocysts in stool make it possible for a single infected 

person’s bowel movement to significantly contaminate beaches and artificial venues such 

as swimming pools (Chappell, et al., 2006; Jokipii, et al., 1985).   

3.1.4 Outbreaks of Cryptosporidiosis 

Numerous waterborne outbreaks of cryptosporidiosis have been linked to 

swimming pools (Briancesco and Bonadonna, 2005; Karanis, et al., 2006; LeChevallier, et 

al., 1991; Lisle and Rose, 1995; PHLS, 2000; Puech, et al., 2001).  In May 1988, 60 cases 

of cryptosporidiosis outbreaks had been reported in Los Angeles County, United States  

(Joce, et al., 1991).  The attack rate was about 73% for the swimmers exposed to pool 
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water in which there had been a single accidental faecal release.  In August 1988,  

the outbreak of cryptosporidiosis associated with a swimming pool in the United Kingdom 

was recognized (Joce, et al., 1991).  The concentration of oocysts detected in the pool 

water samples was 50 oocysts per liter.  The inspection of the potential pollution sources 

were sewage or infected swimmers.  In 1990, an outbreak of cryptosporidiosis occurred in 

British Columbia, Canada (Bell, et al., 1993).  Attack rates ranged from 8% to 78% for 

various groups of children’s pool users.  Cryptosporidium continues to pose a significant 

threat to public health in recreational water venues as more than 4,000 people were made 

aware in a summer 2005 outbreak in New York, nearly 2,000 more in Utah in the summer 

of 2007, and at least 378 others in the Dallas area in the summer of 2008.  A study by 

Health Protection Agency in Britain has shown that Cryptosporidium remains a severe 

threat for swimming pools with more than 3,000 cases recorded before the end of 2009 

(Health Protection Agency, 2009). (HealthProtectionAgency, 2009) 

Cryptosporidiosis is widespread geographically in the United States.  Data from 

2006 to 2008 seem to indicate that cryptosporidiosis incidence has increased in almost all 

states in recent years (as shown in Figure 3.1).  Cryptosporidium-related health issues 

increase significantly during summer and early fall due to the increasing number of visits 

to swimming pools.  Past study indicated Cryptosporidium transmission goes up tenfold 

during the summer months as outdoor activities increase (as shown in Figure 3.2) (Aldras 

and Bitto, 2009; Jonathan S. Yoder and Michael J. Beach, 2007; Yoder and Beach, 2010).   

Cryptosporidiosis outbreaks data from 1984 to 2008 in United States is shown in 

Figure 3.3.  From 1984 through 2008, 172 waterborne cryptosporidiosis outbreaks have 

been reported to Centers for Disease Control and Prevention (CDC) as part of the national 
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waterborne disease and outbreak surveillance system of the recreational water-associated 

outbreaks.  From 2006 to 2008, the number of reported cases of cryptosporidiosis 

increased dramatically, from 6,479 for 2006 to 11,657 for 2007, and then decreased to 

10,500 in 2008 (Jonathan S. Yoder, et al., 2010).  The majority (52%) of infected people 

was less than 25 years old, among which, 20% were between 1 and 4 years old (as shown 

in Figure 3.4).   
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Figure 3.2 Number of Cryptosporidiosis Case Reports – United States (1995 – 2007,  
n = 37,995) (Jonathan S. Yoder, et al., 2010; Yoder and Beach, 2010) 
 

 

Figure 3.3 Number of Cryptosporidiosis Case Reports, 1984-2008 (n= 172, Data for 2007 
and 2008 are provisional) (Jonathan S. Yoder, et al., 2010; Yoder and Beach, 2010) 
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Figure 3.4 Number of Cryptosporidiosis Case Reports, by Selected Age Group — United 
States, (1995–2007, n = 37,995) (Yoder and Beach, 2010)  
 
 
3.2 Materials and Methods 

3.2.1 Research Objective 

 This chapter considered the performances of the representative operation in 

swimming pools in order to develop a novel evaluation procedure for coagulants that will 

produce reliable results applicable in field-relevant swimming pools.  Decisions will be 

made regarding whether to add coagulant or microspheres first, whether to add coagulant 

and microspheres as continuous inputs or as intermittent inputs, and whether or not 

coagulant build-up occurs in the system after extended dosing causing impaired 
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Calculations will be made to determine the ratio of filter media surface area to total 

system water volume, and experiments will be conducted to determine the potential 

impact of filter surface area on microsphere removal.  Further experiments will be 

conducted to determine the impact of DOC on Cryptosporidium-sized microsphere 

removals. 

3.2.2 Experiment Setup  

A 5,500 L swimming pool was built with filtration system and chemical control 

system.  Pool water can be pumped through the filter (either granular filter or precoat 

filter) as shown in Figure 3.5.  Appendix G contains detailed information about the 

materials used in this research (i.e., instruments, pumps, flow meters, and filters).  The 

smaller sand filter was made from transparent polyvinyl chloride (PVC) pipe.  It utilized 

an integral media support cap (Leopold, ITT) as support for filter media as well as 

backwash flow distribution.  The filter had a diameter of 15 cm and the sand depth of 30 

cm.  The effective size of the sand was 485 µm.  Hydraulic loading rates (HLR) for the 

sand filter was 37 m/h, which is a typical high-rate filter loading rate used in the US 

swimming pools.  All chemicals and microspheres were fed using peristaltic or metering 

pumps.  The pool’s pH and oxidation reduction potential (ORP) sensors were mounted in 

a bypass line shown in Figure 3.5.  These sensors were connected to a controller (CAT 

5000, Poolcomm, Rockville, MD, USA) for monitoring and chemical feed control.  

Coagulant and microspheres were fed into the pipe ahead of the pump and pre-filtration 

for a rapid coagulant mixing.  Streaming current meter (Micrometrix, Suwanee, Georgia, 

USA) was installed in sample influent line to measure the surface charge of the water.  

Turbidimeter (HF scientific, Fort Myers, Florida, USA), particle counter (Chemtrac, 
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Norcross, Georgia), UV transmission monitor (HF scientific, Fort Myers, Florida, USA, 

and Real Tech INC, Canada) were installed both on filter influent and effluent line.  On-

line data can be record and download from a computer.  Particle counters collect the 

particle size in the following range, 2 µm-3 µm, 3 µm-6 µm, 6 µm-10 µm, 10 µm-20 µm, 

20 µm-50 µm, 50 µm-100 µm, and the total particles from  

2 µm to 100 µm.   

 Brown particles, thought to be sediment particles from the water distribution 

system, were intermittently observed in the tap water used to make the simulated 

swimming pool water.  To remove the majority of these particles and provide a consistent 

base for the pool water recipe, tap water was circulated through a sand filter without 

coagulant addition for one pool turnover time (large sand filter = 25 mins,  

precoat filter = 30 mins) prior to each experiment. Swimming pool turnover is theoretical 

hydraulic detention times of the pool.  The particles were then removed by backwashing 

prior to all experiment.   
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Figure 3.5 Pilot-Scale Swimming Pool Set-up 
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3.2.3 Synthetic Pool Water 

The simulated swimming pool water type-1 was applied in all the experiments.  

The body fluid analog (BFA) solution, containing the primary endogenous organic amino 

compounds, as the organic carbon was introduced as DOC into the simulated pool water. 

Appendix D shows the ingredient of the BFA solution.  Chemical characteristics of the 

pool water samples are summarized in Appendix E.  Amount of 5,500 L of Charlotte, NC 

tap water with total organic carbon (DOC) of 1 mg/L was supplemented with NaHSO4, 

CaCl2, and NaHCO3 to adjust pool water chemical characteristic.  Appendix F shows the 

recipes for simulated swimming pool water. 

3.2.4 Experimental Approach 

3.2.4.1 Order of Feeding Coagulant and Microspheres 

The order of adding coagulant and microspheres may impact the overall removal.  

Three scenarios are possible in practice and were evaluated to produce reliable results, 

“adding coagulant first”, “adding microsphere first”, and “adding coagulant and 

microsphere simultaneously”.  The recommended dosage of coagulant and 1.8 #/mL 

microspheres was seeded for each experiment. The experiment with adding coagulant and 

microspheres simultaneously were conducted in one turnover time (8 hr), which was 

named as “normal” experiment.  Samples were collected at 0.5, 1, 2, 4 6, and 8 hr, 

respectively.   

A “coagulant first” experiment was conducted by feeding 1.56 mg/L coagulant A 

for 8 hrs, following by 10 hrs without coagulant feeding.  Samples were taken at the  

0.5 hr, 1.5 hr, 4 hr, 6 hr, 8 hr, and 10 hr since stop the coagulant feed.  Microspheres were 
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only fed 15 mins before each sample collection, and feeing stopped after each sample 

collection.   

A “microspheres first” experiment was conducted by feeding 1.8 #/mL 

microspheres for 30 mins (experiment was started at 0 hr, and microspheres were fed 

during 0-0.5 hr).  One recommended dosage of coagulant (1.56 mg/L) was fed for 8 hrs 

since stop feeding microspheres (coagulant was fed during 0.5 – 8.5 hr). The first sample 

was collected at 1 hr after feeding coagulant (first sample was taken at 1.5 hr).  The rest 

of samples were taken over the time of feeding coagulant.   

3.2.4.2 Feeding Modes of Coagulants and Microspheres 

“Intermittent feeding of coagulant” and “continuous feeding of coagulant” was 

evaluated.  “Intermittent feeding” experiment was conducted for approximately 64 hrs.  

Coagulant was fed as 1.56 mg/L for 8 hrs followed by no coagulant feeding for 8 hrs, 

which was called a cycle (one cycle time = 16 hrs).  Four cycles were conducted.  

Amount of 107 microspheres (1.8 #/mL) was seeded and samples were taken at the 

second and eighth hour during the 8 hrs without coagulant feeding.  The experiment with 

continuous feeding coagulant was conducted by continuously feeding 1.56 mg/L/8hrs 

coagulant A by coagulant pump, which was the same as the “normal” experiment.  

3.2.4.3 Extended Feeding Coagulants  

Excessive use of coagulant could lead to impaired microsphere removals as well 

as inefficient use of resources.  Extended feeding coagulant with the same filter media 

and water were evaluated at 1.56 mg/L/8 hrs.  Samples were collected every turnover.   
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3.2.4.4 Microspheres Concentration versus Coagulant Dosages 

Multiple experiments with different coagulant dosages (from 0.03 mg/L to  

1.56 mg/L) and microsphere concentrations (the amount of 105, 107, and 108 

microspheres, correlated with concentration of 1.8 ×10-2 #/mL, 1.8 #/mL, and 18 #/mL, 

representatively) were performed.  Coagulant was fed from high dosage to low dosage to 

determine the dosages corresponding to 99%, 95%, and 90% microspheres removals.  

Coagulant was also fed from low dosage to high dosage to further evaluate the 

relationship between microspheres concentration and coagulant dosage. 

3.2.4.5 Filter Media Surface Area 

Experiments were conducted to determine the potential impact of filter media 

surface area on microsphere removal using the large filter with diameter of 48 cm  

(0.18 m2) and the small filter with diameter of 15 cm (0.018 m2) at 37 m/h (15 gpm/ft2).  

The media surface area was 2.8 m2 and 0.03 m2. 

3.2.4.6 Body Fluid Analogue (BFA) Concentration  

Experiments were performed to evaluate the impact of BFA on microsphere 

removals.  Experiments were conducted under “normal” condition, feeding recommended 

dosage of coagulant A per turnover with or without addition of BFA.  BFA was applied 

into the pool water and led to the dissolved organic carbon (DOC) increasing.   

3.2.5 Enumeration of Cryptosporidium-sized Polystyrene Microspheres 
 

The use of polystyrene microspheres as an oocyst surrogate has been done by 

multiple researchers and was used in this study (Amburgey, 2002; Amburgey, et al., 2004; 

Amburgey, et al., 2005; Dai and Hozalski, 2003; Li, et al., 1997).  Microspheres with 

diameter of 4.5 µm were used as the surrogate (Fluorsebrite™ Carboxylate YG  

4.5 micron microspheres, Cat. #16592, 4.5 μm, std.dev. 0.246 μm, Polysciences, Inc., 
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Warrington, Pennsylvania, USA) since microspheres are virtually identical to 

Cryptosporidium oocysts in size, shape, density, and surface charge in water  

(Amburgey, 2002).  Stock suspensions microspheres concentration was 4.37×1011 #/L.  

The diluted suspension with microspheres concentration of 4.37×108 #/L was prepared by 

1 to 1,000 dilutions of stock solution.  Microsphere samples were mixed by vortexing and 

hand shaking for at least two minutes each before analyzing.  Samples were passing 

through 3.0 µm pore size polycarbonate filters (Product # K30CP02500, GE Osmonics, 

Minnetonka, Minnesota, USA).  Each polycarbonate filter was mounted on a glass 

microscope slide with a polyvinyl alcohol-DABCO solution, covered with a glass cover 

slip (25-mm square, No. 1.5, Corning, Inc., Corning, New York, USA), and counted 

under an epifluorescence microscope (Zeiss Standard 25 microscope, Carl Zeiss 

MicroImaging, LLC, Thornwood, New York, USA) (Freer, 1984).  For ease of counting 

and to obtain statistically valid data, microscope slides needed to contain between 10 and 

150 microspheres.  Removal efficiency was calculated by comparing the concentrations 

between influent and effluent samples.     

3.2.6 PolyDADMAC Measurement 

PolyDADMAC was analyzed using a method based on that of Parazac et al 

(Parazak, et al., 1987). The method involves the formation of an insoluble complex 

between the cationic polymer and the anionic dye Ponceau S.  The complex precipitates 

out of solution and is collected at the interface between the aqueous layer and a solvent. 

The aqueous layer is collected, and the concentration of dye remaining in solution is 

measured by a Varian Cary 100 BIO UV Spectrophotometer at 520 nm  

(Agilent Technologies, Santa Clara, California, USA).  Ponceau S (200 mg/L)  
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(Fisher BioReagents), 0.5 M sulfuric acid (Fisher BioReagents), and dichloromethane 

(Fisher BioReagents) were used. The detailed experimental description could be found in 

Analytical methods for polymers and their oxidative by-products (Fielding, 1998).  The 

absorbance of the standards versus polyDADMAC concentration calibration plot is 

shown in Figure 3.6.  Standards with known polyDADMAC concentrations were made of 

tap water and polyDADMAC polymer (coagulant A).  Calibration plot was created and 

the regression is shown in Equation (3.1). 

 

 

Figure 3.6 Absorbance versus coagulant A concentration calibration curve (10 mm cell) 

 
 

4308.00058.0  xy     (3.1) 

where y is absorbance at 520 nm for standard; x is coagulant A concentration of standard.  

y = -0.0058x + 0.4308
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3.2.7 Data Analysis 

A box plot was applied to evaluate the benchmarks for each coagulant.   

In statistics, a box plot is a convenient way of graphically depicting groups of numerical 

data through their five-number summaries: the smallest observation (sample minimum), 

lower quartile, median, upper quartile, and largest observation (sample maximum).  

3.2.8 Quality Assurance and Quality Control 

A control experiment was conducted without filter media to test if there are 

microsphere losses in the system.  The average 1% removal (approximately zero) was 

obtained and demonstrated close to no significant system losses.  A sand filter experiment 

without coagulation was conducted as another control experiment indicating 20% - 63% 

(0.1 - 0.4 log) Cryptosporidium-sized microspheres removal.  Duplicate experiments 

were conducted.  Triplicate samples were taken (only one experiment was conducted 

with triplicate samples for some of the experiment and indicated by n=1).  The swimming 

pool was rinsed, filled, and drained with tap water at least three times between 

experiments to limit the amount of cross-contamination between experiments.  Fresh sand 

was used for each experiment.  Sand filter was backwashed with simulated pool water for 

5 minutes to ensure the sand was clean and sand grain restratified (fine grains on top and 

coarse grains on bottom). 

3.3 Results and Discussions 

3.3.1 Orders of Seeding Microspheres and Coagulant  

In swimming pools, there are three possible Cryptosporidium contamination 

scenarios, such as their releases into the pool while no coagulant residual exists in the 

pool (corresponding to the experimental procedure adding microspheres first), or there is 
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coagulant residual in the pool when microspheres are released (corresponding to adding 

coagulant prior to microspheres), or microsphere contamination occurs during active 

coagulant addition (corresponding to adding microspheres and coagulant simultaneously).  

The order of adding coagulant and microspheres might impact the overall removal.  

Figure 3.7 shows the percent removal and log removal of Cryptosporidium-sized 

microsphere referring to the three scenarios.  The percent removal, 99.5% (2.3 log), was 

achieved by feeding coagulant and microspheres simultaneously.  Adding coagulant first 

averaged 94% removal (1.3 log).  The average removal was only 65% (0.5 log), for 

‘adding microspheres first’ experiment.   

 Figures 3.8, 3.9, and 3.10 display the microsphere removals over time for the 

three scenarios.  Figure 3.8 shows removals for feeding coagulant and microspheres 

simultaneously.  Removals were above 99% if feeding coagulants and microspheres 

simultaneously over the 8 hrs as shown in Figure 3.8.  Removals decreased from 98% to 

92% over time when feeding coagulant first as shown in Figure 3.9.  Figure 3.10 shows 

microspheres removals and particle counts in 3-6 μm for “feeding microspheres first” 

experiment.  The microsphere removals were increased over time for “feeding 

microspheres first” experiment.  The effluent particle counts (3-6 µm) were significant 

higher than the influent particle counts (3-6 µm) in the first 1 hr after feeding 

microspheres as shown in Figure 3.10. 
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Figure 3.7 Performances of the Three Scenarios Referring to Sequence of Adding 107 
Microspheres (1.8 #/mL), 1.56 mg/L coagulant A, 30 cm Sand, and 37 m/h Filtration 
Rate (“Coagulant first” ─ seeding of microspheres as well as collecting samples after 
feeding 1.56 mg/L coagulant for 8 hrs; “Microspheres first” ─ seeding microspheres 30 
mins prior to coagulant addition, followed by feeding coagulant for 8 hr and taking 
samples over this time; “Simultaneously” ─ feeding microspheres and coagulants 
simultaneously.) 
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Figure 3.8 “Simultaneously Feeding of coagulant and Microspheres” Test, Microspheres 
Removals over Time, 30 cm Sand, and 37 m/h Filtration Rate ─ (feeding of 1.56 mg/L 
coagulant, and seeding 1.8 #/mL microspheres over 8 hrs) (number of experiments =1, 
number of samples = 3) 
 

Figure 3.9 “Coagulant First” Test, Microspheres Removals over Time, 30 cm Sand, and 
37 m/h Filtration Rate ─ (feeding of 1.56 mg/L coagulant for 8 hrs, then seeding 1.8 #/mL 
microspheres without coagulant feeding and collecting samples) (number of experiments 
=1, number of samples = 3) 
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Figure 3.10 “Microspheres First” Test, Microsphere Removal and Filter Influent and 
Effluent Particle Counts, 30 cm Sand, and 37 m/h Filtration Rate (seeding 1.8 #/mL 
microspheres 30 mins prior to 1.56 mg/L coagulant addition) (Microspheres were fed in 
period ‘1’; Coagulant was fed continuously in period ‘2’; Samples were collected in 
period ‘3’ with intermittent microsphere seeding) (number of experiments =1, number of 
samples = 3) 
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feeding.  Microsphere removal of 99.5% (2.3 log) was achieved by continuously feeding 

coagulant and microsphere.  While only 74% (0.6 log) of microspheres were removed by 

intermittent feeding.  The mechanism of “intermittent feeding” is similar to the 

“coagulant first”.  Differences between these two experiments operations were:  

(1) “coagulant first” experiment was only conducted in 2 turnovers (16 hrs), with feeding 

of coagulants for 8 hrs, seeding microspheres and collecting samples during the next  

8 hrs, while the “intermittent feeding” experiments were conducted over 8 turnovers  

(64 hrs); (2) Microspheres residual from the last cycle would impact the microspheres 

removals for “intermittent feeding” experiment, and this was similar to “feeding 

microspheres first” (i.e., low microspheres removals in last cycle led to microspheres 

exist before coagulant fed in this cycle).  The same as “coagulant first” experiment, 

coagulant was fed for 8 hrs and samples were collected in the next 8 hrs.  Two samples 

were collected in the following 8 hrs, 2 hrs samples and 8 hrs samples since stop feeding 

of coagulant in each cycle.  Figure 3.12 displays the microsphere removals for 

“intermittent feeding” over 64 hrs.  The removals at the eighth hour since stopping 

feeding of coagulant were typically less than that at the second hour.  Removals at the 

second hour decreased over time, which perhaps because of the similar mechanism of 

“feeding microspheres first” (as shown in Figure 3.10) and the excessive dosing 

coagulant (will be discussed in 3.3.3 Extended Dosing of Coagulant).  All these results 

indicated the coagulant should be fed continuously to maximize the removals of 

Cryptosporidium-sized microsphere from the pool.  
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Figure 3.11 Performances of Continuous Feeding and Intermittent Feeding, 107 
Microspheres (1.8 #/mL), 1.56 mg/L coagulant A, 30 cm Sand, and 37 m/h Filtration 
Rate (“Intermittent” ─ 1.56 mg/L coagulant A was fed in 8 hrs, and samples were taken 
after the coagulant addition after 2 hrs and 8 hrs delay; “Continuous” ─ feeding 
microspheres and coagulant A continuously and simultaneously)  
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Figure 3.12 Performances of Intermittent Feeding over Time, 1.8 #/mL Microspheres, 
1.56 mg/L coagulant A, 30 cm Sand, and 37 m/h Filtration Rate (Blue column─ removals 
at the second hour since stopping feeding of coagulant; red column ─ removals at the 
eighth hour since stopping feeding of coagulant) (One cycle was 16 hrs, coagulant was 
fed in the first 8 hrs, and followed by samples collection at the second and eighth hour 
without coagulant feeding in the next 8 hrs) (number of experiments =1, number of 
samples = 3) 
 
 
3.3.3 Extended Dosing of Coagulant  

Performance of extended dosing of coagulant was evaluated.  Coagulant was fed 

as one recommended dosage per turnover for five days, streaming current data and 

removals are shown in Figure 3.13.  Streaming current started from -200 streaming 

current unit (SCU), which was the streaming current of Charlotte tap water after adding 

chemicals to get pH of 7.5, alkalinity of 100 mg/L as CaCO3, hardness of 200 mg/L as 

CaCO3, and free chlorine of 2 mg/L.  The streaming current meter was installed at the 

filter influent line after the coagulant feeding point.  Streaming current values increased 

with addition of coagulant.  Figure 3.14 shows the streaming current trends with feeding 
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0.1 times of the recommended dosage coagulant every turnover.  The negatively charged 

microspheres were neutralized by positively charged coagulant, and this led to the 

increasing of streaming current at first.  Streaming current tended to be saturated by the 

overdose of coagulant as shown in Figure 3.13 and 3.14.  Removals of microsphere 

decreased with the continued coagulant addition, because of the coagulant accumulated in 

the system.  Coagulant concentration in the pool at each turnover is shown in Table 3.1.  

Results indicated coagulant A concentration increased over time and approximately was 

multiple of 1.56 mg/L with differences between 3% to 12%.  The removal data indicated 

excessive use of coagulant led to impaired microsphere removal.     

 
 

Table 3.1 Measured and Estimated Coagulant A Concentration in Each Turnover 
Time 
(hr) 

Influent 
Concentrati
on (mg/L)a 

Effluent 
Concentrati
on (mg/L)b

Average of 
'a' and 'b' 
(mg/L)c

Estimated 
Concentrati
on (mg/L)d

Differences 
between 'c' and 
'd'

8 1.40 1.38 1.39 1.56 12%
16 2.76 3.03 2.90 3.12 7%
24 4.36 4.41 4.39 4.68 6%
32 5.86 6.07 5.97 6.24 4%
40 7.36 7.72 7.54 7.8 3%
48 9.16 9.09 9.12 9.36 3%
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Figure 3.13 Streaming Current Variation and Microsphere Removal versus coagulant 
Concentration, 107 Microspheres (1.8 #/mL), 1.56 mg/L coagulant A, 30 cm Sand, and 37 
m/h Filtration Rate (n=1) 

 

Figure 3.14 Streaming Current Variation and Microsphere Removal versus coagulant 
Concentration, 107 Microspheres (1.8 #/mL), 0.156 mg/L coagulant A, 30 cm Sand, and 
37 m/h Filtration Rate (n=1) 
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Streaming current measured the surface charge of microspheres in the pool water.  

The streaming current value obtained with microsphere feeding and continuous coagulant 

feeding was defined as active streaming current.  Streaming current data shown in  

Figure 3.13, Figure 3.14, and Figure 3.15 were active streaming current.  Figure 3.15 

shows microsphere removals corresponding to different active streaming current values.  

The streaming current value obtained with microsphere feeding but without coagulant 

feeding (only coagulant residual existed in the pool) was defined as passive streaming 

current.  Figure 3.16 shows microsphere removals under different passive streaming 

current.  Microsphere removals were not always the same for the same active and passive 

streaming current, and they were much agreed for active and passive streaming current at 

0 SCU.  

 

  
 
Figure 3.15 Active Streaming Current versus Microsphere Removal, 107 Microspheres 
(1.8 #/mL), 1.56 mg/L coagulant A, 30 cm Sand, and 37 m/h Filtration Rate (n=1) 
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Figure 3.16 Passive Streaming Current versus Microsphere Removal, 107 Microspheres 
(1.8 #/mL), 1.56 mg/L coagulant A, 30 cm Sand, and 37 m/h Filtration Rate (n=1) 
 
 
3.3.4 Microsphere Concentration  

The removals of Cryptosporidium have been reported to be dependent on the 

oocyst concentration in the source water (Assavasilavasukul, et al., 2008; Betancourt and 

Rose, 2004).  Multiple experiments were conducted with multiple microsphere 

concentrations and multiple coagulant dosages in order to determine whether the 

concentration of microsphere seeded into the pool system impacted the overall 

microsphere removals.  Figure 3.17 shows 1.8 × 10-2 #/mL microsphere removals at 

different coagulant concentrations.  Figure 3.18 shows 1.8 #/mL microsphere removals at 

different coagulant concentrations.  And Figure 3.19 shows 18 #/mL microsphere 

removals at different coagulant concentrations.  Coagulant was fed from high dosage to 

low dosage in order to discover the dosages corresponding to 99%, 95% and 90% 
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microsphere removals for each microsphere concentration.  Figure 3.20 displays the 

removal at 99%, 95% and 90% for the microsphere with concentrations of  

1.8 × 10-2 #/mL, 1.8 #/mL, and 18 #/mL (magnitude of 1 × 105, 1 × 107, and 1 × 108 

microsphere) versus the coagulant dosage to achieve those percent removals.  Results 

indicated microspheres concentration impacted the overall percentage of microsphere 

removals.  The relationship between coagulant dosage and microsphere removals was 

stoichiometric (Tenny and Stumm, 1965), which was indicated by the coefficient of 

determination (R2) in Figure 3.20.  Raw water coagulant demand was not considered in 

this study.   

Coagulant demand to neutralize one microsphere (4.5 μm) is determined to be 

1.63×10-7 mg.  105 microspheres will need 1.63×10-2 mg coagulant;  

107 microspheres will need 1.63 mg coagulant; 108 microspheres will need 16.3 mg 

coagulant as shown in Appendix H.  
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Figure 3.17 Microspheres (1.8 × 10-2 #/mL) Removal versus coagulant B Concentration, 
30 cm Sand, 37 m/h Filtration Rate (coagulant was fed beginning with high dosage and 
reduced to low dosage) (number of experiments =1, number of samples = 3) 

 

Figure 3.18 Microspheres (1.8 #/mL) Removal versus coagulant B Concentration, 30 cm 
Sand, 37 m/h Filtration Rate (coagulant was fed beginning with high dosage and reduced 
to low dosage) (number of experiments =1, number of samples = 3) 
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Figure 3.19 Microspheres (18 #/mL) Removal versus coagulant B Concentration, 30 cm 
Sand, 37 m/h Filtration Rate (coagulant was fed beginning with high dosage and reduced 
to low dosage) (number of experiments =1, number of samples = 3)   
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Coagulants were also fed with low dosage and increased to higher dosage to 

determine the relationship between the microsphere concentration and coagulant dosage.  

Microsphere concentration of 1.8 × 10-2 #/mL, 1.8 #/mL, and 18 #/mL (total 

microspheres of 105, 107, and 108) were evaluated.  Results are illustrated in Figure 3.21.  

Significant differences of the removal performance were observed for different 

microsphere concentrations.  The 96% of microsphere removals, which was the highest 

removals obtained (for microsphere concentration of 1.8 × 10-2 #/mL) was achieved at 

0.016 mg/L.  The 98% of microsphere removals, which was the highest removals 

obtained (for microsphere concentration of 1.8 #/mL) was achieved at 0.78 mg/L.  The 97% 

of microsphere removal, which was the highest removals obtained (for microsphere 

concentration of 18 #/mL) was achieved at 1.56 mg/L.  None of these experiments 

achieved 99% removals as observed in previous experiments.  Since the coagulant dosage 

went from low to high, this was thought to be similar to “feeding microspheres first”  

(i.e., feeding microspheres before an effective dose of coagulant was started).   

The “feeding microspheres first” results appear in Figure 3.10 with removals never 

exceeding 90%.  Removals decreased with the increased coagulant dose after achieved 

the highest microsphere removals for microspheres concentration of 1.8 × 10-2 #/mL and 

1.8 #/mL, perhaps because of the overfeeding of coagulant. 
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Figure 3.21 Removals of Microspheres concentration of 1.8 × 10-2 #/mL, 1.8 #/mL,  
and 18 #/mL at Different Coagulant A Dosage, 30 cm Sand, 37 m/h Filtration Rate  
(coagulant was fed from low to high dosage) (n=1) 
 
                   
3.3.5 Ratio of Filter Media Surface Area to Pool Volume  

Microsphere removals by sand filtration with two different sand surface areas 

were compared.  The large sand bed surface area was 0.18 m2 (1.9 ft2), and the small sand 

bed surface area was 0.018 m2 (0.19 ft2).  Swimming pool turnover time was 50 min for 

the large sand filter and 8 hrs for the small sand filter.  The hypothesis was that the 

surface area of the sand might exert a greater coagulant demand, which was not 

supported by the result obtained under experimental condition.   

Large sand filter bed failed first compared with small sand filter (as shown in 

Figure 3.22).  Large sand filter media depth was 25.4 cm (10 inch), and small sand filter 

depth was 30 cm (12 inch).  Previous study indicated media depth made differences in 

microspheres removal by comparing 30 cm and 60 cm sand filters with the same filtration 
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rate (Goodman, 2011).  Large sand filter was operated at 114 L/m (30 gpm), and small 

sand filter was operated as 11.4 L/m (3 gpm).  Perhaps mixing was also different with the 

higher flow for large sand filter versus the lower flows for large sand filter.   

The ratio of the pool volume to sand filter media surface area was calculated as 

148,209 L/m2 (3,638 gal/ft2) for the small bed filter, 1,959 L/m2 (48 gal/ft2) for the big 

bed filter, and 69,638 L/m2 (1,709 gal/ft2) for one full scale swimming pool located on 

the University of North Carolina at Charlotte campus.  Appendix I gives the parameters 

and the calculations for the ratio of pool volume to the sand surface area of the swimming 

pools.   
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Figure 3.22 Removals Corresponding to Different Filter Bed Surface Areas, 1.8 #/mL 
Microspheres, 1.56 mg/L coagulant A, 30 cm Sand, 37 m/h Filtration Rate (Yellow color 
box ─ 0.18 m2 filter surface area; Red color box ─ 0.018 m2 filter surface area) (number 
of experiments =1, number of samples = 3) 
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3.3.6 BFA Concentration Impact on Removal of Microspheres 

 The study made use of a BFA solution, containing artificial sweat and urine.  

Removals of microsphere with and without BFA addition over 8 hrs are shown in  

Figure 3.23.  No differences were observed between with and without BFA addition.  The 

results agreed with the zeta titration results that BFA had no significant impact on 

microspheres surface charge. 

 
 
 

 

Figure 3.23 Log Removal of Microspheres With or Without BFA addition, 1.8 #/mL 
Microspheres, 1.56 mg/L coagulant A, 30 cm Sand, 37 m/h Filtration Rate, Continuous 
and Simultaneous Feeding (number of experiments =1, number of samples = 3)  
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3.4 Conclusion 

The microsphere removals for feeding microspheres and coagulant A 

simultaneously were over 99% (2 log), compared with 94% removal (1.3 log) for 

“feeding coagulant first”, and 65% (0.5 log) for ‘adding microsphere first’.  Continuously 

feeding of coagulant A achieved over 99% (2 log) removals, compared with 74% (0.6 log) 

by “intermittent feeding”.  All of these experiments indicated that the maximum 

microsphere removals were achieved by continuously feeding coagulant by using 

coagulant pump.  Microspheres concentration impacted the system performance.  Higher 

microsphere concentration required higher coagulant dosage to achieve the same 

microsphere removals.  No significant differences of microsphere removals were 

observed between large sand filter and small sand filter.  No significant differences 

between microsphere removals with and without addition of BFA were observed either.  

However, extended periods of feeding coagulant led to coagulant accumulation in the 

system and reduced removal efficiency under these experimental conditions (coagulant A 

was the only coagulant used in this part of the study).   

  



 

 

CHAPTER 4: PILOT-SCALE STUDY ON ENHANCED CRYPTOSPORIDIUM-SIZED 
MICROSPHERE REMOVALS FROM RECREATIONAL WATER THROUGH 

FILTRATION 
 
 
4.1 Introduction 

4.1.1 Conventional Drinking Water Treatment on Cryptosporidium 

The removal of Cryptosporidium in drinking water industry has been widely 

researched for decades.  It has been demonstrated that Cryptosporidium removal 

throughout all stages of the classical treatment process is largely influenced by the 

effectiveness of coagulation pretreatment (Amburgey, 2002; Amburgey, et al., 2004; 

Cummins, et al., 2010; Dugan, et al., 2001; Hankins, et al., 2006; Karim, et al., 2010; 

Lopez, et al., 2010). 

4.1.1.1 Drinking Water Treatment Process 

Conventional drinking water treatment includes the coagulation, rapid mixing, 

flocculation, sedimentation, and filtration (Hendricks, 2006).   Particles tend to repel each 

other and there is no natural tendency to flocculate.  Coagulation is the process 

destabilizing the particles (Edwards, 1997; Gao, et al., 2002).   

4.1.1.2 Coagulation of Cryptosporidium 

Inorganic trivalent metal ions such as aluminum and ferric iron, and water-soluble 

organic polymer coagulants are widely used for particle and NOM coagulation (Bolto and 

Gregory, 2007; Polasek and Mutl, 2002).  Charge neutralization and sweep flocculation 

are the predominant mechanism for Cryptosporidium coagulation (Butkus, et al., 2003; 
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Okuda, et al., 2006; Xagoraraki and Harrington, 2004).  The best removals have been 

shown to occur at high alum doses where aluminum hydroxide precipitation was observed 

to be extensive (Xagoraraki and Harrington, 2004).  Coagulation pH has impact on 

coagulation through its effect on particle zeta potential and chemical speciation.   

One investigation suggested that lowering coagulation pH could improve removal of 

Cryptosporidium (States, et al., 2002).  The effect of pH on metal-based coagulants is 

more significant than for polymeric organic coagulants (Hendricks, 2006).   

Polymeric organic coagulants (polymers) are less pH dependent, have less sludge 

generation and sludge disposal associated secondary pollution compared with metal-based 

coagulants (Hendricks, 2006).  They may function to charge neutralize colloids or other 

types of particles so that they may agglomerate as flocs.  Since polymer addition generally 

does not impact the pH of the water being treated, pH adjustment is not necessarily 

required for optimal coagulation (Emelko and Huck, 2003).  Polymers acting as 

coagulants usually contain materials with high charge density (Bolto and Gregory, 2007).  

Polymerisation of diallyl dimethyl ammonium chloride (polyDADMAC) is  

a water-soluble polymer.  It was found to be very effective for removing disinfection  

by-product (BDPs) and natural organic matter (NOM) acting as a primary coagulant or 

coagulation aid (Chang, et al., 2005; Hankins, et al., 2006; Polasek and Mutl, 2002; Wei, 

et al., 2010).  The elimination of pathogenic organisms like Giardia and Cryptosporidium 

can be achieved by combination of alum salts as coagulant and polymer as coagulation aid 

(Bernhardt and Clasen, 1991; Narkis, et al., 1990).  The natural cationic polymer such as 

chitosan was reported to coagulate with particle and enhance the particle removals (Bolto 

and Gregory, 2007; Fabris, et al., 2010; Guibal, et al., 2006).  Chitosan has the 
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characteristic of low charge density (Parsons, et al., 2007).  Cryptosporidium parvum 

oocysts were removed by chitosan coagulation at optimal dosages followed by filtration 

were comparable to those achieved when filtration (at 10 m/h) was preceded by alum or 

iron coagulation during optimized operation (Brown and Emelko, 2009).   

The effectiveness of coagulation depends on dosage (Divakaran and Pillai, 2001).  

Investigation indicated chitosan coagulation at dosage less than 1.0 mg/L did not result in 

appreciable improvements in Cryptosporidium parvum oocyst removal (Brown and 

Emelko, 2009).   

4.1.2 Direct Filtration Removal of Cryptosporidium 

Direct filtration is similar to conventional treatment in that a coagulant is used to 

form larger particles, but coagulated water is applied directly to the filters without settling 

or sedimentation step.  It is generally used for low and consistent turbidity water.   

The removals of Cryptosporidium in direct filtration is usually lower than that in the 

conventional water treatment (Amburgey, 2002; Nieminski and Ongerth, 1995; 

Nieminski, et al., 1995).  A two year evaluation of Cryptosporidium was conducted at a 

full-scale treatment plant and a pilot plant operating under coagulation and direct 

filtration (Nieminski and Ongerth, 1995).  Consistent of 2.9 log removal of 

Cryptosporidium were achieved when the treatment plant produced water of consistently 

low turbidity (0.1–0.2 NTU).  Although the direct filtration was applied in a water 

treatment plant, a cryptosporidiosis outbreak was reported in 1994 (Nieminski and 

Ongerth, 1995; Roefer, et al., 1995; Roefer, et al., 1996). 
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4.1.3 Granular Media Filtration Removal of Cryptosporidium 

Granular media filters alone were unable to stop the flow of Cryptosporidium 

oocysts.  Laboratory experiments have shown only approximately 0.1 to 0.3 log removal 

(20% to 50%) of Cryptosporidium oocysts following a single pass through a filter without 

coagulation (Amburgey, et al., 2001; Amburgey, 2002; Amburgey, et al., 2009; Croll, et 

al., 2007).   

4.1.4 Precoat Filtration Removal of Cryptosporidium 

Diatomaceous earth (DE) filtration used in drinking water treatment can achieve 

approximately 3-6 log removal of Cryptosporidium depending on DE grades and 

operating conditions (Ongerth and Hutton, 1997; Ongerth and Hutton, 2001; Schuler, et al., 

1988; Schuler and Ghosh, 1990).  DE for Cryptosporidium and Cryptosporidium-sized 

microspheres removals were from 2.25 log (99.44%) to 4.44 log (99.996%) from 757 L 

(200 gal) swimming pool (Amburgey, et al., 2012).  Straining is one of the removal 

mechanisms in precoat filtration, and when an appropriate grade of DE is selected,  

the pore structure of the filter cake physically blocks the passage of oocysts into filtered 

water (Letterman and Yiacoumi, 2010).  The finer-graded media provides smaller pores 

between the grains and removes smaller particles more efficiently, but finer media also 

leads to faster head loss (Letterman and Yiacoumi, 2010).   

Bumping is the act of intentionally stopping the precoat filter and forcing the 

precoat media and collected contaminants to be removed from the filter septum.  It may 

impair pathogen removal and could facilitate the release of pathogens previously trapped 

in the filter, but the impact has not been clearly determined for swimming pool 

applications. 
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4.1.5 Cartridge Filter Removal of Cryptosporidium 

Cartridge filters consist of surface filter media wrapped or constructed around a 

hollow core, wherein the feed water contacts the outer perimeter and, with pressure, 

moves across the filter to the core.  Media is often pleated to increase the effective filter 

surface area; in some cartridges, media of differential porosity is used, the outer depth 

being of higher pore size to trap larger particles, while the inner media is tighter,  

to capture finer material.   

4.2 Materials and Methods 

4.2.1 Research Objectives 

 This chapter determined the approximate level of Cryptosporidium oocyst-sized 

microsphere removals that can be achieved in a swimming pool system through high-rate 

sand filtration with six coagulants.  Microsphere removals, particles counts, turbidity, 

UV254, and filter pressure loss were evaluated.   

The performance of perlite/sand filter on Cryptosporidium-sized polystyrene 

microspheres removal was evaluated in a 5,500 L (1,450 gal) swimming pool.  Sand and 

sand with an added top-layer of perlite filter media performances was tested without 

coagulation.  Cryptosporidium-sized microsphere removals by DE without coagulation at 

different amount of precoat (DE) and filtration rates, as well as DE filtration with 

coagulation were evaluated.  The bumping impact on DE filter performance was 

evaluated. 

4.2.2 Experimental Setup  

A 5,500 L swimming pool was built with filtration system and chemical control 

system.  Pool water can be pumped through the filter (either granular filter or precoat 
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filter) as shown in Figure 4.1.  Detailed information about the materials used in this 

research is shown in Appendix G (i.e., instruments, pumps, flow meters, and filters).  The 

small sand filter was made from transparent polyvinyl chloride (PVC) pipe.  It utilized an 

integral media support cap (Leopold, ITT) as support for filter media as well as backwash 

flow distribution.  The filter had a diameter of 15 cm and the sand depth of 30 cm.   

The effective size of the sand was 485 µm.  Hydraulic loading rates (HLR) for the sand 

filter was 37 m/h, which is a typical high-rate filter loading rate used in the US swimming 

pools.  All chemicals and microspheres were fed using peristaltic or metering pumps.  

The pool’s pH and oxidation reduction potential (ORP) sensors were mounted in a bypass 

line shown in Figure 4.1.  These sensors were connected to a controller (CAT 5000, 

Poolcomm, Rockville, MD, USA) for monitoring and chemical feed control.  Coagulant 

and microspheres were fed into the pipe ahead of the pump and pre-filtration for a rapid 

coagulant mixing.  Streaming current meter (Micrometrix, Suwanee, Georgia, USA) was 

installed in sample influent line to measure the surface charge of the water.  Turbidimeter 

(HF scientific, Fort Myers, Florida, USA), particle counter (Chemtrac, Norcross, 

Georgia), UV transmission monitor (HF scientific, Fort Myers, Florida, USA, and Real 

Tech INC, Canada) were installed both on filter influent and effluent line.  On-line data 

can be record and download from a computer.  Particle counters collect the particle size 

in the following range, 2 µm - 3 µm, 3 µm - 6 µm, 6 µm - 10 µm, 10 µm - 20 µm,  

20 µm - 50 µm, 50 µm - 100 µm, and the total particles from 2 µm to 100 µm.   

 Brown particles, thought to be sediment particles from the water distribution 

system, were intermittently observed in the tap water used to make the simulated 

swimming pool water.  To remove the majority of these particles and provide a consistent 
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base for the pool water recipe, tap water was circulated through a sand filter without 

coagulant addition for one pool turnover time (large sand filter = 25 mins,  

precoat filter = 30 mins) prior to each experiment.  The particles were then removed by 

backwashing prior to all experiment.    
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Figure 4.1 Pilot-Scale Swimming Pool Set-up 
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4.2.3 Filter Design 

 A sand filter was filled with 30 cm (12 inch) of dry sand.  The single collector 

efficiency predicting model, shown in Equation (4.1) and (4.2) were applied  

(Tufenkji and Elimelech, 2004).  Calculated single collector efficiency, η, and removal 

efficiency are shown in Figure 4.2.  Single collector efficiency is the ratio of ‘total rate at 

which particles strike a media grain’ and ‘total rate at which particles approach a media 

grain’, including efficiency for transport by diffusion, gravity and interception (Tobiason, 

et al., 2010; Tufenkji and Elimelech, 2004).  The 30 cm sand filter could remove only 

approximated 50% of Cryptosporidium-size microspheres according to this model  

(as shown in Figure 4.2), and 250 cm (100 inch) sand would be used for a required 99% 

removal, which might be impractical.  However, it indicated with the increasing of 

particle size (due to aggregation), removal efficiency also increased (as shown in  

Figure 4.3).   

 
 

053.011.124.0125.0675.1052.0715.0081.03/1 22.055.04.2   vdwGRARSvdwpeRST NNNNNANNNA       (4.1) 

]
2

)1(3
exp[1 Td

c

p
e L

d
r 






      

(4.2) 

where ηT is single collector efficiency, 
           NPe is peclet number, 
           NR is aspect ratio, 
           Nvdw is van der Waals number, 

NA is determined as ‘H/3πμdp
2V’ (H is Hamaker constant, V is filtration rate, dp is 

particle diameter), 
NG is determined as ‘dp2 (ρ1- ρ)g/18μV’ (ρ1 is density of particle, ρ is density of 
water), 

          As is porosity-dependent parameter of Happel’s model, 
re is removal efficiency, Ld is filter media depth, εp is porosity, α is coagulation 
efficiency, and dc is sand grains. 
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Figure 4.2 Microsphere (5 μm) Removals and Single Collector Efficiency Using 30 cm 
Sand Filter at Different Temperature, b. different sizes of microspheres at 20 °C) 
 
 

 

Figure 4.3 Different Sizes of Microsphere Removals and Single Collector Efficiency 
Using 30 cm Sand Filter at 20 °C 
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4.2.4 Synthetic Pool Water 

The synthetic pool water was generated based on previous swimming pool water 

quality investigation (simulated swimming pool water type-1).  Chemical characteristics 

of the water samples are summarized in Table 4.1.   Amount of 5,500 L of Charlotte, NC 

tap water with dissolved organic carbon (DOC) of approximate 1 mg/L was 

supplemented with NaHSO4, CaCl2, NaHCO3, Ca(OCl)2, to adjust pool water chemical 

characteristics to those listed in Table 4.1. 

 
Table 4.1 Chemical characteristic of experiment water samples 

DOC pH Alkalinity   Hardness  Free  
chlorine 

Oxidation 
reduction 
potential (ORP)  

(mg/L) (mg/L as CaCO3) (mg/L as 
CaCO3) 

1.0  7.5   100  200  2  770-800 
 
 
4.2.5 Cryptosporidium-sized Polystyrene Microspheres and Coagulants 
 

The use of polystyrene microsphere as an oocyst surrogate has been done by 

multiple researchers and was used in this study (Amburgey, 2002; Amburgey, et al., 2004; 

Amburgey, et al., 2005; Amburgey, 2011; Amburgey, et al., 2012; Dai and Hozalski, 

2003; Li, et al., 1997).  Microspheres with diameter of 4.5 µm (Fluorsebrite™ 

Carboxylate YG 4.5 micron microspheres, Cat. #16592, Polysciences, Inc., Warrington, 

Pennsylvania, USA) were used as the surrogate since microspheres are virtually identical 

to Cryptosporidium oocysts in size, shape, density, and surface charge in pool water 

(Amburgey, 2010).  Stock suspensions microspheres concentration was 4.37×1011 #/L.  

The diluted suspension with microspheres concentration of 4.37×108 #/L was prepared by 

1 to 1,000 dilutions of stock solution.  Microsphere samples were mixed by vortexing and 

hand shaking for at least two minutes each before analyzing.  Samples were passing 
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through 3.0 µm pore size polycarbonate filters.  Each polycarbonate filter was mounted 

on a glass microscope slide with a polyvinyl alcohol-DABCO solution, covered with a 

glass cover slip and counter under an epifluorescence microscope (Freer, 1984).  For ease 

of counting and obtaining statistically valid data, microscope slides needed to contain 

between 10 and 150 microspheres.  Removal efficiency was calculated by comparing the 

concentrations between influent and effluent samples.  Six coagulants were used as 

primary coagulants in pool water treatment.  Chemical characteristic of coagulants are 

summarized in Appendix C.  “Material safety sheets” for each coagulant are shown in 

Appendix Q. 

4.2.6 Granular Media 

Table 4.2 illustrates the sand and perlite media properties.  Table 4.3 shows the 

DE characteristic and the filter operation details (IIG, 2011).  Sand (Pavestone®, 

Grapevine, Texas, USA), perlite (IIG, Brunswick, GA, USA) and DE (EpMinerals®Reno, 

Nevada, USA) were used as filter media in experiment.  A sieve analysis of the filter sand 

was performed to determine the grain size distribution of the filter sand.  The D90, D60, 

and D10 for the sand were 993, 726, and 485 μm, respectively.  The D10 is also known as 

the effective size (0.49 mm).  The sand was approximately a 20/40 mesh size.   

This means that most of the sand passed through a #20 sieve, but was retained on a #40 

sieve.  The uniformity coefficient for the filter sand was 1.50.  This is calculated by 

dividing the D60 by the D10.  The results of this analysis can be seen in Figure 4.2.   

Perlite size distribution was obtained from datasheet by Microtrac  

(as shown in Appendix J), and DE characteristics were obtained by datasheet from EP 

Minerals (as shown in Appendix K) (IIG, 2011).   



104 
 

 
 

Table 4.2 Filter Media and Filter Operating Details 
Filter media materials Sand Perlite 
Effective Size (d10, µm) 485 16.9 
d60 (µm) 726 50.37 
d90 (µm) 993 92.3 
Uniformity coefficient (UC, d60/d10) 1.50 2.98 
Filter bed depth (cm) 30 varied among experiments
Filter surface area 0.018 m2 (0.196 ft2) 0.018 m2 (0.196 ft2) 
Hydraulic loading rate (HLR) 37 m/h (15.3 gpm/ft2) 37 m/h (15.3 gpm/ft2) 
 
 
Table 4.3 DE Media Characteristics 
Grain density (kg/m3) Permeability (μm2) Filter surface area (m2) 
320 3.6 2.23 
 
 
4.2.7 General Experimental Approach 

4.2.7.1 High-Rate Sand Filtration 

Experiments were performed over multiple turnovers (theoretical hydraulic 

detention times) of the swimming pool (turnover time was 8 hr).  Coagulants were fed at 

one recommended dose per turnover.   Extended feeding of coagulants was evaluated.  

Samples were taken at each turnover.  High-rate sand filtration control experiments 

without coagulant addition were conducted.  A backwash was conducted after each 

experiment.  Mass balance calculation for each experiment was performed.  The mass 

balance calculation for the filter was shown as below (Equation 4.3, Equation 4.4, and 

Figure 4.4), 

 

Mass In – Mass Out = Accumulated                       (4.3) 

 

Percent of Total Added = Out / In · 100%                              (4.4) 

where “Mass In” includes total added microspheres; “Mass Out” includes microspheres 
in backwash flow, backwash remnant water flow out of the filter, and flow to the pool; 
“Accumulated” refers to accumulated mass in the filter. 
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Figure 4.4 Filter Mass Balance Sketch 
 
 
4.2.7.2 Precoat Filtration 

Amount of precoat is the amount of perlite or DE media loaded on unit filter 

surface area, with the unit of kg·perlite/m2 or kg·DE/m2.  Four levels of perlite were 

tested at 0.24 kg·perlite/m2 (0.05 lbs·perlite /ft2), 0.37 kg·perlite /m2 (0.075 lbs·perlite /ft2), 

0.49 kg·perlite /m2 (0.1 lbs·perlite /ft2), and 0.61 kg·perlite /m2 (0.125 lbs·perlite /ft2), 

respectively.  Experiments were conducted to compare single sand media and perlite/sand 

media on Cryptosporidium-sized microsphere removals under swimming pool conditions.  

The four levels of amount of precoat were separately added onto the filter through the 

skimmer.   

The precoating of the DE was done in a closed loop with DE slurry.  Water was 

pumped through the filter at rates of 182 L/min for the precoat filter.  Studied HLRs for 

the precoat filter were 6 m/h, 5 m/h, and 3.6 m/h.  DE was added via the skimmer to the 

precoat filter, corresponding to 0.5 kg·DE/m2, 0.7 kg·DE /m2 and 1.0 kg·DE /m2.  
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Bumping was conducted by restarting the filter after a 5-minute, 15-minute, or 30-minute 

stop of the filter.   

4.2.7.3 PolyDADMAC Measurement 

 PolyDADMAC was analyzed using a method based on that of Parazac et al 

(Parazak, et al., 1987). The method involves the formation of an insoluble complex 

between the cationic polymer and the anionic dye Ponceau S. The complex precipitates 

out of solution and is collected at the interface between the aqueous layer and a solvent. 

The aqueous layer is collected, and the concentration of dye remaining in solution is 

measured by a Varian Cary 100 BIO UV Spectrophotometer at 520 nm  

(Agilent Technologies, Santa Clara, California, USA). Ponceau S (200 mg/L)  

(Fisher BioReagents), 0.5 M sulfuric acid (Fisher BioReagents), and dichloromethane 

(Fisher BioReagents) were used. The detailed experimental description could be found in 

Analytical methods for polymers and their oxidative by-products (Fielding, 1998).   

The absorbance of the standards versus polyDADMAC concentration calibration plot is 

shown in Figure 4.5.  Standards with known polyDADMAC concentrations were made of 

tap water and polyDADMAC polymer (coagulant A).  Calibration plot was created and 

the regression is shown in Equation (4.5). 
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Figure 4.5 Absorbance versus coagulant A concentration calibration curve (10 mm cell) 

 

4308.00058.0  xy      (4.5) 

where y is absorbance at 520 nm for standard; x is coagulant A concentration of standard.  

 

4.2.8 Data Analysis 

A box plot was applied to evaluate the benchmarks for each coagulant.   

In statistics, a box plot is a convenient way of graphically depicting groups of numerical 

data through their five-number summaries: the smallest observation (sample minimum), 

lower quartile (Q1), median (Q2), upper quartile (Q3), and largest observation (sample 

maximum).  Removal of microspheres through the treatment process was expressed 

either as percent removal (i.e., 99%) or in terms of the logarithmic reductions (base 10).  

Log reductions are currently calculated as the difference between the log10 of the influent 
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concentration and the log10 of the effluent concentrate.  Log removals that incorporated 

non-detects (i.e., no particles detected in filtrate) are prefixed with the > symbol with one 

particle assumed in the effluent (Dugan, et al., 2001).  (Pool water pH, free chlorine, 

oxidation reduction potential (ORP), conductivity, and temperature are shown in 

Appendix L.  Raw data for microsphere removals from pilot-scale pool are shown in 

Appendix M.) 

4.2.9 Quality Assurance and Quality Control 

A control experiment was conducted without filter media to test if there are 

microsphere losses in the system.  The average 1% removal (approximately zero) was 

obtained and demonstrated no significant system losses.  A sand filter experiment without 

coagulation was conducted as another control experiment indicating 20% - 63%  

(0.1 - 0.4 log) Cryptosporidium-sized microsphere removals (as shown in Figure 4.6).  

Duplicate experiments were conducted.  Triplicate samples were taken.  The swimming 

pool was rinsed, filled, recirculated, and drained with tap water at least three times 

between experiments to limit the amount of cross-contamination between experiments.  

Fresh sand was used for each experiment.  Sand filter was backwashed with simulated 

pool water for 5 minutes to ensure the sand was clean and sand grain restratified (fine 

grains on top and coarse grains on bottom). 

4.3 Results and Analysis 

4.3.1 Sand Filtration Control 

Figure 4.6 shows the removals of microspheres in control experiment without 

coagulation.  Control experiments were conducted over 24 hrs and followed by a 

backwash.  Microsphere removals were consistent during the 24 hrs and only between  
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20% - 63% (0.1 - 0.4 log).  The pore size of the sand filter was larger than the 4.5 µm 

microspheres.  The negatively charged Cryptosporidium-sized microspheres repel each 

other and cannot efficiently attach on the negatively charged sand media (Amburgey, 

2002).  Figure 4.7 shows UV254 data.  Influent and effluent UV254 was very close.  Figure 

4.8 illustrates the turbidity and particle counts for influent.  The swimming pool influent 

water turbidity average was 0.12 NTU.  The upper-limit guideline for turbidity was  

0.5 NTU for swimming pool (ISO, 1999).  Peaks of turbidity and particle counters were 

associated with microspheres seeded into the system, especially in 3 µm - 6 µm particle 

counters as shown in Figure 4.8.  Figure 4.9 illustrates along with increased turbidity, 

particle counter also increased.  No pressure variation was observed during the 24 hr as 

shown in Figure 4.10.   

Filter mass balance was conducted.  Mass flow into the filter included total added 

microspheres.  Mass flow out of the filter included microspheres in backwash water,  

in backwash remnant, and to the pool in the filter effluent.  The accumulated 

microspheres in filter could then be calculated based on the mass balance as shown in 

Equation (4.3).  The “percent of total added” averaged was 60% for the control as shown 

in Table 4.4.   
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Figure 4.6 Microspheres Removal by Sand Filter during 24 hr (1.8 #/mL Microspheres, 
30 cm Sand, 37 m/h Filtration Rate)(number of experiments = 2, number of samples = 3) 
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Figure 4.7 Filter Influent and Effluent UV Transmittance Variation (1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 

Figure 4.8 Influent Turbidity and Particle Counter Variation (1.8 #/mL Microspheres, 30 
cm Sand, 37 m/h Filtration Rate) 
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Figure 4.9 Effluent Turbidity and Particle Counter Variation (1.8 #/mL Microspheres, 30 
cm Sand, 37 m/h Filtration Rate) 
 

 

Figure 4.10 Filter Influent and Effluent Pressure (1.8 #/mL Microspheres, 30 cm Sand, 37 
m/h Filtration Rate) 
 

0.00

0.04

0.08

0.12

0.16

0.20

0.24

0

50

100

150

200

250

300

0 8 16 24

P
ar

ti
cl

e 
N

um
be

r 
(#

/m
L

)

Time (hr)

2-3 μm 3-6 μm 6-10 μm

10-20 μm 20-50 μm 50-100 μm

2-100 μm Effluent Turbidity 

T
urbidity (N

T
U

)

0

2

4

6

8

10

0

10

20

30

40

50

0 8 16 24

P
re

es
ur

e 
(k

Pa
)

Time (hr)

P
ressure (psi)

Influent (kPa) Effluent (kPa) Influent (psi) Effluent (psi)



113 
 

 
 

   

T
ab

le
 4

.4
 M

as
s 

B
al

an
ce

 a
nd

 O
ve

ra
ll

 R
em

ov
al

 R
at

e 
fo

r 
C

oa
gu

la
nt

 A
, B

, C
, D

, a
nd

 F
 



114 
 

 
 

4.3.2 High-Rate Sand Filtration  

4.3.2.1 Particle Removals 

(1) Cryptosporidium-Sized Microsphere Removals 

Particle removals were evaluated by microsphere removals, filter influent and 

effluent particle counts, and turbidity.  Coagulant A and B were polyDADMAC products, 

coagulant C was chitosan, coagulant D was an aluminum based coagulant, and coagulant 

E was polyaluminum chloride (BioGraud, 2001; Kemira, 2012; Robarb, 2000; SeaKlear, 

2008; Vantage, 2009).  Formulation of coagulant F is proprietary.  Coagulants were 

continuously fed into the system at the rate of one recommended dose per turnover.   

Table 4.4 illustrates the mass balance calculation for each coagulant except for 

coagulant E (no backwash samples were collected for coagulant E).  Control experiments 

listed in Table 4.4 were sand filtration without a coagulant.  No system loss was 

demonstrated as 1% removals (roughly zero removal) obtained in control experiment 

without filter media.  The “percent of total added” for all of the experiments were 

between 55% and 87%.  Some of microspheres could remain attached to the sand media 

that were not detected.  The “percent removals from the system” by backwashing were 

from 83% to 87% for coagulant A and B, were average of 52% for coagulant C, were 

approximately 80% for coagulant D, and were 83% for coagulant F.  While these 

numbers may contain some error, it appears that at least 13% of the microspheres could 

remain attached to the media following a water only backwash. 

Box plots of Cryptosporidium oocyst-sized microsphere removals by high-rate 

sand filtration preceded by coagulation A at one recommended dosage per every 8 hrs 

(i.e., one turnover) are shown in Figures 4.11.  Up to 99% (2 log) microsphere removals 
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were obtained by filtration with coagulant A.  Microsphere removals decreased with 

continuous feeding of coagulant A.  Table 4.5 shows coagulant A concentration in each 

turnover. The concentration of coagulant A in the pool water after 24 hrs of feeding was 

approximately 3 times of recommended dose of 4.68 mg/L. Based on the data in  

Table 4.5, it appears that polyDADMAC rapidly accumulated in the bulk water, which 

appears to explain the rapid decline in removals over time as the effective coagulant 

dosage is exceeded.  Figure 4.12 shows microsphere removals at each turnover for 

coagulant B.  Coagulant B performed similar to coagulant A, because they both contained 

polyDADMAC polymers.  Microspheres removals by coagulant C were always less than 

80% as shown in Figure 4.13.  Figure 4.14 shows microsphere removals in each turnover 

by coagulant D.  Up to 99% removals were achieved by coagulant D in the first 56 hrs by 

continuously feeding coagulant D.  Microsphere removals were in the range of 35% to 70% 

with coagulant E at 37 m/h as shown in Figure 4.15.  The same results were found 

previously (Goodman, 2011).  Figure 4.16 shows the microsphere removals with 

filtration rate of 30 m/h by coagulant E (0.1 mg/L as Al).  Experiments were conducted  

3 days, and backwashes were conducted after that.  The microsphere removals were 

increased to as high as 99% by reducing the filtration rate to 30 m/h by coagulant E.   

Above 90% of microspheres were removed at the second and third day by coagulant E.  

Figure 4.17 shows microsphere removals by coagulant F.  Coagulant F performed similar 

to coagulant A and B, with up to 99% removals achieved.  The removals decreased over 

time since coagulants continuously feeding led to the overdose of coagulants A, B, and F 

(as shown in Figures 4.11, 4.12, and 4.16).  Removals decreased for coagulant D and E 

were caused by filter pressure build-up/filter pore clogging (as will be discussed 
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subsequently).  The removal data could be interpreted based on the zeta titration data, 

which indicated coagulants A, B, D, E, and F achieved -10 mV at recommended dosage 

while coagulant C did not.   

The highest 99% (2 log) removals obtained from experiments was higher than 

predicted single filtration removal efficiency (approximate 50%) for 5 µm microspheres 

according to single collector efficiency as shown in Figure 4.2.  The potential reasons 

included (1) the single collector efficiency model was theoretically based on clean bed 

media; (2) single collector efficiency model assumed the spherical media, which was 

different from the shape of the sand used in this study; (3) suspended media grain that did 

not touch were also assumed in the model, while the sand media grain contacted each 

other; and (4) 5 µm microspheres might collide and attach each other to form larger 

microsphere aggregates in coagulation process (Tufenkji and Elimelech, 2004).  The 

removal for larger microsphere aggregates is predicted in Figure 4.3,  

which illustrated >95% removal was predicted for 15 µm microsphere aggregates.      

 
 
 

Table 4.5 Measured and Estimated Coagulant A Concentration in Each Turnover 
Time 
(hr) 

Influent 
Concentration 
(mg/L)a 

Effluent 
Concentration 
(mg/L)b

Average of 'a' 
and 'b' 
(mg/L)c

Estimated 
Concentration 
(mg/L)d

Differences 
between 'c' and 
'd' 

8 1.40 1.38 1.39 1.56 12% 
16 2.76 3.03 2.90 3.12 7% 
24 4.36 4.41 4.39 4.68 6% 
32 5.86 6.07 5.97 6.24 4% 
40 7.36 7.72 7.54 7.8 3% 
48 9.16 9.09 9.12 9.36 3% 
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Figure 4.11 Cryptosporidium-sized Microsphere Removals through Filtration (1.56 mg/L 
Coagulant A, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) (number of 
experiments = 2, number of samples = 3) 

 

Figure 4.12 Cryptosporidium-sized Microsphere Removals through Filtration (1.56 mg/L 
Coagulant B, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) (number of 
experiments = 2, number of samples = 3) 
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Figure 4.13 Cryptosporidium-sized Microsphere Removals through Filtration (1.56 mg/L 
Coagulant C, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) (number of 
experiments = 2, number of samples = 3) 
 

 

Figure 4.14 Cryptosporidium-sized Microsphere Removals through Filtration (305 g/m2 
Coagulant D, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) (number of 
experiments = 2, number of samples = 3) 
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Figure 4.15 Cryptosporidium-sized Microsphere Removals through Filtration (0.1 
mg·Al/L Coagulant E, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
(number of experiments = 2, number of samples = 3) 
 

 
Figure 4.16 Cryptosporidium-sized Microsphere Removals through Filtration, (0.1 
mg·Al/L Coagulant E, 1.8 #/mL Microsphere, 30 cm Sand, 30 m/h Filtration Rate) 
(number of experiments = 2, number of samples = 3) 
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Figure 4.17 Cryptosporidium-sized Microsphere Removals through Filtration (1.56 mg/L 
Coagulant F, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) (number of 
experiments = 2, number of samples = 3) 
 
 
(2) Particle Counts 

Filter influent particle count for coagulant A is shown in Figure 4.18.  The particle 
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for coagulant D is shown in Figure 4.24, for coagulant E is shown in Figure 4.26, and for 

coagulant F is shown in Figure 4.28.  Different influent particle counter trends for 

coagulant D and E compared with other coagulants (i.e., coagulant A, B, C, and F) was 

caused by the precipitate in coagulant D and E solution increased particle count numbers 

(Figure 4.24 and 4.26).  Coagulant D and coagulant E precipitated because they were Al 

based.  Lots of small insoluble grains were observed in coagulant D solution during 

experiments.   

Effluent particle counts for coagulant A, B, C, D, E, and F are shown in  

Figure 4.19, 4.21, 4.23, 4.25, 4.27, and 4.29, respectively.  Similar trends of effluent 

particle counters were observed for coagulants A, B, D, and F, which showed that 

particles decreased over time in each microsphere seeding trial (as shown in Figures 4.19, 

4.21, 4.25, and 4.29).  The 3-6 µm particles in effluent decreased compared with influent 

particles for coagulants A, B, D, E, and F.  It demonstrated that excellent filter effluents 

were achieved during experiments with coagulants A, B, D, and F.  Effluent particle 

counts for coagulant C increased over time (as shown in Figure 4.21), which could be 

interpreted by the poor microsphere removals obtained by coagulant C in Figure 4.21.  

Results illustrated that particle count was a good tool for monitoring filter performance, 

which agreed with the previous research (Edzwald, et al., 2000; Gregory, 1994; Hunt, 

1995; Lewis, et al., 1992).  Figure 4.30 displays the influent particle counts in 2-100 µm 

for all the six coagulants.  Figure 4.31 displays the effluent particle counts in 2-100 µm 

for all the six coagulants.  Total particle counts between 2 µm and 100 µm were higher 

for coagulants D and E relative to coagulants A, B, C, and F.  It appears the Al-based 

coagulants tend to have more small particles entering and leaving the filter even through 
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microsphere removals were generally very high as shown in Figures 4.24, 4.25, 4.26, and 

4.27. 

 
 
 

 

Figure 4.18 Influent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant A, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.19 Effluent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant A, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 
Figure 4.20 Influent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant B, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.21 Effluent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant B, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 
Figure 4.22 Influent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant C, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.23 Effluent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant C, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 
Figure 4.24 Influent Particle Counts Variation over Treatment Time (305 g/m2 Coagulant 
D, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.25 Effluent Particle Counts Variation over Treatment Time (305 g/m2 Coagulant 
D, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 

Figure 4.26 Influent Particle Counts Variation in One Filter Run Time (0.1 mg·Al/L 
Coagulant E, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.27 Effluent Particle Counts Variation in One Filter Run Time (0.1 mg·Al/L 
Coagulant E, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate)  
 
 
 

 
Figure 4.28 Influent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant F, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.29 Effluent Particle Counts Variation over Treatment Time (1.56 mg/L 
Coagulant F, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate)  
 
 
 
 

 
Figure 4.30 Influent Particle Counts Variation over Treatment Time for Six Coagulants 
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Figure 4.31 Effluent Particle Counts Variation over Treatment Time for Six Coagulants 
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also the poor microsphere removals were obtained near end.  Influent turbidity for 

coagulant D was higher compared with coagulant A, B, and C, because of the aluminum 

precipitate in these coagulants increased the turbidity measurements.  Figure 4.36 shows 

influent and effluent turbidity for coagulant E.  Peaks in influent turbidity variations for E 

corresponded with microsphere seeding.  Effluent turbidity for coagulant E was also less 

than 0.5 NTU.  The reading of a turbidimeter is more strongly influenced by number of 

submicro particles (< 1 μm) present in the sample (Gregory, 1994; Hunt, 1993), which is 

a plausible size for Al precipitate.  Influent and effluent turbidity variation for coagulant 

F is shown in Figure 4.37.  Influent turbidity for coagulant F was different from other 

coagulants, and there was not a plausible explanation about this.  Effluent turbidity for 

coagulant F was less than guideline, 0.5 NTU.   

 
 

 
Figure 4.32 Turbidity of Influent and Effluent over Time (1.56 mg/L Coagulant A, 1.8 
#/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.33 Turbidity of Influent and Effluent over Time (1.56 mg/L Coagulant B,  
1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 
Figure 4.34 Turbidity of Influent and Effluent over Time (1.56 mg/L Coagulant C,  
1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.35 Turbidity of Influent and Effluent over Time (305 g/m2 Coagulant D,  
1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 
 

 
Figure 4.36 Turbidity of Influent and Effluent over Time (0.1 mg·Al/L Coagulant E,  
1.8 #/mL Microspheres, 30 cm Sand, 30 m/h Filtration Rate) 
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Figure 4.37 Turbidity of Influent and Effluent over Time (1.56 mg/L Coagulant F,  
1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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(Freese, et al., 2001).  UV254 variations for coagulant E were different.  Particles observed 

in turbidity readings were likely interfering with UV254 measurements for coagulant E.  

 
 
 

 

Figure 4.38 UV254 of Influent and Effluent over Time (1.56 mg/L Coagulant A, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.39 UV254 of Influent and Effluent over Time (1.56 mg/L Coagulant B, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 

Figure 4.40 UV254 of Influent and Effluent over Time (1.56 mg/L Coagulant C, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.41 UV254 of Influent and Effluent over Time (305 g/m2 Coagulant D, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 

 
Figure 4.42 UV254 of Influent and Effluent over Time (0.1 mg·Al/L Coagulant E,  
1.8 #/mL Microspheres, 30 cm Sand, 30 m/h Filtration Rate) 
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Figure 4.43 UV254 of Influent and Effluent over Time (1.56 mg/L Coagulant F, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 

 

 
Figure 4.44 UV254 of Filter Effluent for Six Coagulants over Time  
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4.3.2.3 Coagulation Evaluation 

 A streaming current meter (SCM) was installed on the influent sample line.   

A SCM reported changes with the charge of the particles in the water (Edney, 2011).  

Raw water streaming current was negative.  Streaming current increased with cationic 

coagulants added since negative particles can be charge neutralized by coagulants.  

Figure 4.45 displays the streaming current values for each coagulant over time.  

Streaming current typically increased to a certain value with the addition of coagulants A, 

B, and F from -200 streaming current unit (SCU) to 400 SCU or 500 SCU, and the SCM 

detector was saturated at high polymer concentration.  Coagulant A, B, and F appeared to 

overdose, which was confirmed by microsphere removals, zeta potential, and 

polyDADMAC concentration variation for each turnover.  Streaming current was not 

changing with addition of coagulant C, which corresponded with zeta titrations and 

helped explain the pool microsphere removals obtained by coagulant C.  Coagulant D and 

E did not show a tendency to overdose or accumulation. 
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4.3.2.4 Pressure Losses  

 Figures 4.46, 4.47, 4.48, 4.49, 4.50 and 4.51 show pressure variation during each 

experiment for coagulant A, B, C, D, E, and F respectively.  The initial filter influent 

pressure was 41 kPa (6 psi), and effluent pressure was 21 kPa (3 psi) for the six 

coagulants.  Both influent pressure and effluent pressure for each coagulant increased 

during the experiments.  There was not significant pressure buildup for coagulants A, B, 

C, and F.  However, influent and effluent pressures were increased significantly for 

coagulant D and E.  Influent pressure was 70 kPa (10 psi) higher than the original starting 

pressure, which was because the precipitate in coagulant D and E solution were retained 

by the filter media and created a fine cake layer.  Pressures decreased after backwash for 

coagulant D and E.  Pressure buildup (pore clogging) for coagulant D and E could help to 

explain the decreased microsphere removals with time.  Figure 4.52 compares the 

influent and effluent pressure differences (pressure loses) for the six coagulants.  

Pressures losses for coagulant D and E were significantly more than coagulant A, B, C, 

and F. 
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Figure 4.46 Pressure Variations over Treatment Time (1.56 mg/L Coagulant A, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.47 Pressure Variations over Treatment Time (1.56 mg/L Coagulant B, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.48 Pressure Variations over Treatment Time (1.56 mg/L Coagulant C, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.49 Pressure Variations over Treatment Time (305 g/m2 Coagulant D, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.50 Pressure Variations over Treatment Time (0.1 mg·Al/L Coagulant E,  
1.8 #/mL Microspheres, 30 cm Sand, 30 m/h Filtration Rate) 
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Figure 4.51 Pressure Variations over Treatment Time (1.56 mg/L Coagulant F, 1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.52 Pressure Losses over Treatment Time for Six Coagulant (1 recommended 
dosage of coagulant, 1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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4.3.3 Perlite/Sand Filtration  

Perlite with 0.24 kg/m2 (0.05 lbs/ft2), 0.37 kg/m2 (0.075 lbs/ft2), 0.49 kg/m2  

(0.1 lbs/ft2), and 0.61 kg/m2 (0.125 lbs/ft2), were added onto the surface of the sand media, 

respectively.  The depths for perlite were approximately 0.30 cm, 0.35 cm, 0.60 cm, and 

0.70 cm for 0.24 kg/m2, 0.37 kg/m2, 0.49 kg/m2, and 0.61 kg/m2, respectively, based on 

the photos shown in Figure 4.53 (the top white color media was the added perlite).  

Figure 4.54 shows microsphere removals by perlite/sand filter.  Microsphere removals 

were equal to or greater than 99% (2 log) when amount of precoat was 0.37 kg·perlite /m2 

or above.  The perlite filtration provided roughly 2 log improvement for removal of 

microspheres compared a high-rate sand filtration control.  The increased removal was 

attributed to the fine perlite grain size.  The effective diameter of the sand was more than 

28 times larger than that of the perlite.  Straining appears to be the predominant removal 

mechanism.  Figure 4.55 shows pressure variation for the perlite/sand filter.  The initial 

pressure loss was 21 kPa (3 psi) for sand only without perlite addition, while increased 

significantly as the amount of perlite increased.  The influent pressure increased because 

the perlite was captured at the surface of sand media.  A finer grain size media at the top 

of the bed led to less penetration of solids into the bed.  Figure 4.56 shows UV254 values 

for the perlite/sand filtration.  There were no significant reductions in UV254.   
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Figure 4.54 Microsphere Removals by Perlite/Sand Filter (1.8 #/mL Microspheres, 30 cm 
Sand, 37 m/h Filtration Rate) (number of experiments = 2, number of samples = 3) 
 
 
 
 
 
 

0

0.5

1

1.5

2

2.5

3

3.5

0.24 0.37 0.49 0.61

L
og

 R
em

ov
al

Amount of Precoat (kg·perlite/m2)



151 
 

 
 

 

 

Figure 4.55 Filter Influent and Effluent Pressure versus Amount of Perlite (1.8 #/mL 
Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
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Figure 4.56 Filter Influent and Effluent UV254 Transmittance Changing over Time for 
Perlite/Sand Filter (1.8 #/mL Microspheres, 30 cm Sand, 37 m/h Filtration Rate) 
 
 
4.3.4 Diatomaceous Earth (DE) Filtration  

An independent series of seeded runs were made through DE filtration.  

Microspheres were seeded 30 minutes after each bumping for 5 minutes.  Figure 4.57 

shows microsphere removals under 5 m/h filtration rate for DE filter with different 

amount of precoat.  Removals of Cryptosporidium-sized microspheres were observed 
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Figure 4.57 shows microspheres removals after bumping with a 5-minute stop at  

5 m/h.  Removals of Cryptosporidium-sized microspheres after bumping with a 5-minute 

stop were: 97%-98% (1.5-1.8 log) for 0.5 kg·DE /m2 (0.1 lbs·DE /ft2), 98%-99.6%  

(1.7-2.4 log) for 0.7 kg·DE /m2 (0.15 lbs·DE /ft2), and 97%-99.8% (1.6-2.8 log) for  

1.0 kg·DE /m2 (0.2 lbs·DE /ft2).  No significant differences were observed between the 

removals before and after bumping at filtration rate of 5 m/h (2 gpm/ft2) with a 5-minute 

stop of filter at different amounts of precoat.   

 
 
 

 

Figure 4.57 Cryptosporidium-sized Microsphere Removals by DE Filtration Before and 
After Filter Bumping under Different Amounts of Precoat, a 5-minute Filter Stop, 5 m/h 
(Red color box ─ removal before bumping; Yellow color box ─ removal after bumping) 
(number of experiments = 2, number of samples = 3) 
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Figure 4.58 shows removals before and after bumping with a 15-minute stop at 

different amounts of precoat and filtration rates.  Significant differences in removals were 

obtained before and after bumping with a 15-minute stop of filter at filtration rates of  

3.6 m/h, 5 m/h, and 6 m/h.  The removals were decreased at least 0.5 log after bumping 

under the three different filtration rates and amounts of precoat.   

 
 

 

Figure 4.58 Cryptosporidium-sized Microsphere Removals by DE Filtration Before and 
After Filter Bumping under Different Amount of Precoat and Different Filtration Rate of 
6 m/h, 5 m/h, and 3.6 m/h, a 15-minute Filter Stop (Red color box ─ removal before 
bumping; Yellow color box ─ removal after bumping) (number of experiments = 2, 
number of samples = 3) 
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2.3 log for both before and after filter bumping with a 5-minute stop.  Results indicated 

removal was decreased after bumping with a 15-minute stop or above.  Results indicated 

the longer filter stopping time led to lower removals for the same filtration rate and 

amount of precoat. 

 

 
Figure 4.59 Cryptosporidium-sized Microsphere Removals by DE Filtration Before and 
After Filter Bumping with a 5-minute, 15-minute, and 30-minute Filter Stops (number of 
microsphere seeding cycles = 3), 0.7 kg·DE/m2, Filtration Rate of 3.6 m/h (number of 
experiments = 2, number of samples = 3) 
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coagulation did not improve the DE filtration.  Previous study reported coagulants were 

rarely required for DE filtration (Fulton, 2000).  Pressure loss of the DE filter was 

observed, and was between 2.1-5.6 kPa (0.3-0.8 psi) during the experiments.   

 

 

 

Figure 4.60 Removals of Cryptosporidium-sized Microsphere by DE Filtration With or 
Without 1.56 mg/L Coagulant A at 5 m/h (number of experiments = 2, number of 
samples = 3) 
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Figure 4.61 Removals of Cryptosporidium-sized Microsphere by DE Filtration With or 
Without Coagulant D at 5 m/h (number of experiments = 2, number of samples = 3) 
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made in the research on the interaction between Cryptosporidium and coagulants 

(Bustamante, et al., 2001). 

4.4.2 Chitosan Coagulant  

Coagulant C (chitosan) could only remove <80% of Cryptosporidium-sized 

microspheres.  This can be related back to surface titration results that chitosan could not 

achieve the minimum zeta potential, -10 mV, at recommended dosage of 1.56 mg/L as 

product under the experimental condition.  The microsphere removals by coagulant C 

(chitosan) were contradictory to the research conducted by in-line filtration with chitosan 

in pH between 7.3 and 7.4, which showed the approximate 99% of Cryptosporidium and 

microspheres removal with 1.5 mg/L chitosan (Brown and Emelko, 2009).  The possible 

reasons were the differences between chitosan concentrations, filtration rates, filter media, 

and raw water turbidity.  Filtration rate was 10 m/h compared with 37 m/h in this study.  

High filtration rates resulted in somewhat deceased filtrate quality (Letterman and 

Yiacoumi, 2010).  In addition, dual media, anthracite and sand were used, while single 

sand media was used in this study.  Moreover, the turbidity was 2.5-5.0 NTU compared 

with the approximately turbidity of 0.2 NTU in this study.  The long chains coagulant 

was demonstrated more effective for raw waters of higher turbidity (Lee, et al., 2001). 

Chitosan is a polymer with low charge density (Parsons, et al., 2007).  In acidic 

solutions, chitosan becomes extended chain and charged, while in neutral solutions, 

chitosan is more coiled structure and only slightly charged (Huang, et al., 2000; Pan, et 

al., 1999).  The pH was 7.5 in this study, and pH was proved to impact chitosan 

performance.  When pH values shift from 4 to 7, the positively charge on the chitosan 

surface significantly decreases, and the contribution of the charge neutralization of 
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chitosan to destabilize particles is less significant in neutral pH condition (Huang and Yin, 

1996; Parsons, et al., 2007).  It was reported optimum dose for chitosan coagulation is 

smaller in acidic solutions (pH < 7), since the increased number of protonated amine 

groups on chitosan at lower pH, and hence destabilization of particles was enhanced by 

the increased charged groups (Huang, et al., 2000; Pan, et al., 1999).  A non-charge 

coagulation mechanism has been proposed for chitosan. The basic chitosan appear to 

function by a non-charge mechanism involving hydrogen bonding of the –OH·····NH2– 

type (Parsons, et al., 2007). 

4.4.3 Aluminum Based Coagulant 

 Aluminum based coagulant performed better than other coagulants according to 

the removals.  Alum was reported to perform better than the polyDADMAC and chitosan 

on NOM removal (Bolto, 2001) also, but filter pressure loss increased significantly 

compared with other coagulants. 

4.4.4 Perlite/Sand Filtration 

The removal of Cryptosporidium-sized microsphere in a precoat media filter 

occurs by straining through the pores in the filter bed, or by sedimentation of particles in 

the media pores (Letterman and Yiacoumi, 2010).  The predominant removal 

mechanisms of single sand media filter was deposit within the pore spaces of a filter.  

According to DLVO theory, the electrostatic repulsion force dominants between the two 

Cryptosporidium-sized microspheres, also between microspheres and sand grains 

(Haaland, 2008; Hunter, 2001).  Thus, microspheres removals by sand filter were only  

20% - 63%.  Perlite added on the top-layer of sand filter achieved significantly higher 

removals, because perlite was finer and had larger surface area than sand,  
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which enhanced the filtration processes.  The similar results were reported previously that  

98% to 99.9% of 5 µm microspheres were removed by precoat/sand filter with  

1.2 kg·perlite/m2 were from 757 L (200 gal) swimming pool (Amburgey, et al., 2009; 

Amburgey, 2011).   

4.4.5 DE Filtration 

Previous study indicated precoat filter with 4-5 μm2 diatomaceous earth (DE) 

media (DE filtration) could remove 2.3 log to 4.4 log (99.5%-99.996%) Cryptosporidium 

from swimming pool water at filtration rate of 6.1 m/h (swimming pool volume was less 

than 1,000 L) (Amburgey, et al., 2009; Amburgey, et al., 2012).  On the basis of the work 

reported here and previously (Amburgey, et al., 2009), the increase in amount of precoat 

led to greater removals as well as indicating the finer DE grains resulted in greater 

removal.  Although DE has reportedly been effective to remove Cryptosporidium, the 

practice does not appear to be widespread.   

DE filtration used in drinking water treatment can remove up to 6 log 

Cryptosporidium with approximate 1-1.2 μm2 DE grades (Ongerth and Hutton, 1997; 

Ongerth and Hutton, 2001; Schuler, et al., 1988; Schuler and Ghosh, 1990).  The lower 

removal obtained from swimming pool water treatment is due to the typical DE used in 

drinking water industry is approximate 1 μm2, which is finer grade than that used in 

swimming pool water treatment, around 4-5 μm2 (Amburgey, et al., 2009; Hendricks, 

2006).  Surface blockage is one of the mechanism for precoat filtration, and when an 

appropriate grade of DE is selected, the pore structure of the filter cake physically blocks 

the passage of particles into filtered water (Letterman and Yiacoumi, 2010).    
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Potential distributions of precoat media and microspheres before and after 

bumping are shown in Figure 4.62.  The precoat is shown as evenly distributed on filter 

septum before bumping and was recoated after bumping.  Potential mechanisms 

impacting DE filter performance were potentially caused by all these distributions.   

(1) Microspheres are removed by surface blockage as shown in Figure 4.62 (a).  Thus the 

removals are related to the distribution of precoat, pore size of precoat, and amount of 

precoat, etc.  (2) Precoat and microsphere mixtures led to microspheres passing through 

the filter septum easily as shown in Figure 4.62 (b).  (3) Uneven coating of precoat can 

occur after bumping as shown in Figure 4.62 (c), which allows microsphere pass through 

DE filters from the location with less or no precoat on filter septum.  (4) Precoat and 

microsphere mixture as well as uneven coating combined to reduce filter performance as 

shown in Figure 4.62 (d).  (5) Number of microsphere seeded (prior to a bumping) 

impacted DE filter performance by higher microsphere concentrations in the filter 

relative to the amount of precoat (as shown in Figure 4.62 (e)).  
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Figure 4.62 Conceptual Model of Distribution of Precoat and Microsphere Before and 
After DE filter Bumping ((a) before bumping, (b) after bumping ─ mixture of precoat 
and microsphere, (c) after bumping ─ uneven coating, (d) after bumping ─ combination 
of (b) and (c), (e) after bumping ─ three microsphere seeding cycles) 
 
 
4.5 Conclusions 
 

Cryptosporidium-sized microsphere removals from a pilot-scale swimming pool 

via high-rate sand filtration with coagulants, sand/perlite filtration, and DE filtration were 

studied separately.  Microspheres removals, streaming current of influent, filter influent 

and effluent particle counts, turbidity, and UV254 transmittance were recorded during 

each experiment.  The following conclusions were drawn: 

(1) High-rate sand filtration with coagulants 

Cryptosporidium-sized microsphere removals were between 20% - 63%  

(0.1 - 0.4 log) by high-rate sand filtration without coagulation (control).  Up to 99%  
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(2 log) of Cryptosporidium-sized microsphere was removed through high-rate sand 

filtration with coagulants A, B, D, and F at 37 m/h.  Decreasing filtration rate to 30 m/h, 

microsphere removals were increased to above 90% by coagulant E.  Continuously 

feeding coagulant (coagulants A, B, and F) led to coagulant accumulation in the system 

and further resulted in the average removal decreasing to 83% to 87% range for 

coagulants A, B, and F.   

 (2) Perlite/sand filtration 

Adding a layer of perlite on the top of a sand filter increased the Cryptosporidium 

oocysts-sized microsphere removals compared with sand filter control.  The average 

removals were 79% (0.66 log), 99.4% (2.3 log), 99.7% (2.4 log), and 99.8% (2.5 log) for 

0.24 kg·perlite/m2 (0.05 lbs·perlite /ft2), 0.37 kg·perlite /m2 (0.075 lbs·perlite /ft2), 0.49 

kg·perlite /m2 (0.1 lbs·perlite /ft2), and 0.61 kg·perlite /m2 (0.125 lbs·perlite /ft2), 

respectively.  The filter influent pressure increased since perlite and most particles were 

captured at the surface of sand media.   

(3) DE filtration 

The amount of precoat appeared to make some differences in the 

Cryptosporidium-sized microsphere removals.  Bumping did not impair the microsphere 

removals when the filter was stopped for 5 minutes before restart, but bumping with a  

15-minute stop of the filter decreased approximate 1 log microsphere removals at 5 m/h 

and 6 m/h.  Bumping with a 30-minute stop decreased approximate 1 log microsphere 

removals at 3.6 m/h.  Coagulation did not improve the microsphere removals for DE 

filtration under the studied condition. 



 

 

CHAPTER 5: FULL-SCALE STUDY ON INCREASING CRYPTOSPORIDIUM 
PARVUM OOCYST AND CRYPTOSPORIDIUM-SIZED MICROSPHERE 

REMOVALS FROM RECREATIONAL WATER THROUGH FILTRATION 
 
 
5.1 Introduction 

5.1.1 Swimming Pool Water Treatment of Cryptosporidium Oocysts  

Control of Cryptosporidium requires an integrated multiple barrier approach 

(Edzwald and Kelley, 1998).  The drinking water industry has made significant progress 

in the removal of Cryptosporidium (Edzwald and Kelley, 1998; Edzwald, et al., 2000).  

The United State Environmental Protection Agency (EPA) (1998) promulgated the 

“Interim Enhanced Surface Water Treatment Rule” (IESWTR) in 1998 and established  

2 log (99%) Cryptosporidium removal requirement for filtration (EPA, 1998).   

EPA published the long-term 1 Interim Enhanced Surface Water Treatment Rule (LT 1) 

in 2000 to strengthen filter performance requirements to ensure 2 log Cryptosporidium 

removal specifically the protozoan Cryptosporidium (EPA, 2002). Long-term 2 Interim 

Enhanced Surface Water Treatment Rule (LT 2) was finalized in 2005.  Systems 

classified in higher treatment bins must provide 90% to 99.7% (1.0 to 2.5 log) additional 

treatment for Cryptosporidium.  Systems will select from a wide range of treatment and 

management strategies in the "microbial toolbox" to meet their additional treatment 

requirements.  All unfiltered water systems must provide at least 99% or 99.9%  

(2 log or 3 log) inactivation of Cryptosporidium, depending on the results of their 

monitoring (EPA, 2005).  
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However, swimming pool water treatment is different from drinking water 

treatment.  Coagulation and flocculation are conducted prior to filtration in drinking 

water treatment, thus the surface charge of particles is neutralized and the size of particles 

is increased.  Coagulation is not typically conducted in U.S. swimming pools (Perkins, 

2000).  In addition, drinking water treatment plants typically operate filters at four to five 

times lower surface loading rates than swimming pool facilities, 4.9 to 10 m/h  

(2 to 4 gpm/ft2) rather than 37 to 49 m/h (15 to 20 gpm/ft2) for swimming pools (Howe, 

et al., 2012; NSPF, 2009; Perkins, 2000).  This reduction in filtration rate lowers the 

velocity of particles in the filter and provides a higher probability of particles colliding 

and adhering to the filter media.   

The increasing demands for recreational water activities combined with 

Cryptosporidium outbreaks have pushed the research on Cryptosporidium removal from 

swimming pools to the fore front.  Little full-scale information is available on swimming 

pool water treatment for the removal of Cryptosporidium.   

5.1.1.1 Pressure Sand Filters 

The removal of particles by a filter can occur by straining through the pores in the 

filter bed for large particles, or by interception, sedimentation, or diffusion of particles in 

the media pores as shown in Figure 5.1 (Letterman and Yiacoumi, 2010).  Approximately 

20% to 60% of Cryptosporidium–sized microspheres were removed by sand filter 

without coagulation (Amburgey, et al., 2007; Amburgey, et al., 2008; Amburgey, et al., 

2009; Amburgey, et al., 2009; Croll, et al., 2007).  
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Figure 5.1 Basic Transport Mechanisms in Water Filtration (Tobiason, et al., 2010) 

 
 

Pressure sand filters use graded sand as the filter medium in circular tanks for 

swimming pools.  Vertical downward flow and horizontal are the two types of pressure 

filter used for swimming pools.  There should be at least two filters for all the public 

pools for redundancy (Perkins, 2000).  Filters are normally rated on the basis of flow rate 

per unit surface area (e.g., m3/m2/hour), and the rate is classified as low, medium and 

high.  For club, hotel and private pools, high-rate filters are usually installed, for public 

pools and school pools medium-rate filters are usually selected (Perkins, 2000).   
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High-rate filters operate in the range 30 – 50 m3/m2/hour and medium-rate filters in the 

range 20 – 30 m3/m2/hour (Perkins, 2000).  Pressure sand filters have to be back-washed 

when the filter influent pressure increases 1.5 kPa (10 psi) or higher (or as required 

depending on the efficiency of the filter in removing suspended and colloidal matter).   

As the deposits in the filter increase, there is a loss of pressure (or head) through the filter, 

which is typically measured by two pressure gauges on the two main connections to the 

filter (one near the top of the filter and the other near the bottom).   

5.1.1.2 Filtration with Coagulation 

A swimming pool water treatment plant should consist of strainer, coagulant 

dosing equipment, and pressure filter in order to maintain the desired small particles and 

organisms removals.  The process of swimming pool water treatment is shown in  

Figure 5.2 (Perkins, 2000).  The swimming pool filters must ensure a high degree of 

clarity water by reducing the matter in suspension and assisting the disinfection of the 

water by reducing the microorganisms. 

 

 

 

 

 

Figure 5.2 Diagram of Recommended Layout of Water Treatment Plan for Swimming 
Pools  

 

Coagulants need to be added for efficient filtration.  Aluminium sulphate (alum) 

and polyaluminum chloride (PACl) are generally used in European pools for this purpose.  

Filter

Strainer Circulation Pump Coagulant Addition pH Regulation 

Heater DisinfectionPool 
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The addition of alum has been shown to significantly improve removals of 

Cryptosporidium-sized microspheres to greater than 1 log in a single pass with 

continuous doses of 0.1 mg/L as Al and filter loading rates of 25 m/h and 30 cm of sand 

media (Goodman, 2011).  The addition PACl at a continuous dosage of 0.1 mg/L as Al 

was able to remove greater than 2 log (99%) Cryptosporidium-sized microspheres in a 

single pass with a 25 m/h filter loading rate and 30 cm of sand media (Goodman, 2011). 

Another study found that removals of 1.6 log (97%) could be achieved using alum at 

dosages of 0.1 mg/L as Al, at 25 m/h filtration rate with sand bed depth of 60 cm (Croll, 

et al., 2007).  However, the Pool Water Treatment Advisory Group (PWTAG) minimum 

recommended dosage is 0.005 mg/L as Al, and the Pool Air and Water Standard (PAWS) 

recommended dosage is in the range of 0.02 mg/L to 0.05 mg/L as Al. 

An acidic solution is formed when alum dissolved in water.  Alum used as a 

coagulant before the water enters the filters, the pH might be lowered slightly, which 

could contribute to erosion of the pools’ circulation system.  To raise the pH to the 

required level, alkali is added (usually in the form of sodium carbonate).  This pH control 

can be manual or automatic.  The pH should be maintained in the range of 7.2 to 7.8 

(Perkins, 2000).   

5.1.2 Swimming Pool Disinfection 

The most common disinfecting agent used in swimming pools is chlorine.  

Chlorine residual is not elemental chlorine but consists of compounds containing 

available chlorine, expressed as ‘free residual’ chlorine (EPA, 2012; Perkins, 2000; 

Shields, et al., 2008).  Sodium hypochlorite is normally supplied as a solution, while 

calcium hypochlorite is supplied as a dry chemical.  Both compounds are strongly 
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alkaline, and acidic solutions may have to be added to correct the pH and maintain it in 

the range of 7.2 to 7.8.  A concentrated solution of sodium hypochlorite will attack 

cement-based concrete, so the concrete floor of the storage area should be protected 

(NSPF, 2009).  Table 5.1 presents the oxidizing potential for each oxidizing reagent 

(WEP, 2012).  Cryptosporidium is highly chlorine-resistant with 3 log inactivation 

requiring Ct values of 15,300 mg/L·min (CDC, 2011; Shields, et al., 2008).   

 
 
Table 5.1 Oxidizing Potentials of Various Oxidizers  
Oxidizer Oxidizing Potential (V)
Fluorine 3.06 
Hydroxyl free radicals 2.80 
Atomic oxygen 2.42 
Ozone 2.07 
Permanganate 1.67 
Hypobromous acid  1.59 
Chlorine dioxide  1.50 
Hypochlorous acid  1.49 
Chlorine   1.36 
Oxygen  1.23 
Bromine  1.09 
Hypochlorite  0.94 
 
 

5.2 Materials and Methods 

5.2.1 Research Objectives 

 The objective of this study was to examine the removal of Cryptosporidium 

parvum oocysts and Cryptosporidium sized-microspheres by various treatments  

(i.e., high-rate sand filtration with four different coagulants, perlite/sand filtration, and 

DE filtration) in full-scale swimming pools to verify field-relevant performance.  Four 

types of coagulants were independently added to separate full-scale swimming pools,  



170 
 

 
 

and particle removals were determined after one and multiple passes through the filter 

system.  Precoat and perlite/sand filters were also similarly evaluated in full-scale 

experiments.  

5.2.2 Experimental Materials 

Experiments were conducted in simulated swimming pool water type-1  

(as described in Appendix E).  Coagulant B, D, E, and F were applied (characteristics of 

coagulants are shown in Appendix C).  All these coagulants were proven to be effective 

in pilot-scale swimming pool study.  Cryptosporidium parvum and  

Cryptosporidium-sized polystyrene microspheres were mixed and fed into the swimming 

pool.   

5.2.3 Experimental Approach 

 Five full-scale swimming pools with volume of 37.9 m3 (10,000 gal) in Conley, 

GA, USA, were studied.  Figure 5.3 shows the swimming pool set-up.  Figure 5.4 shows 

the plan view of the five swimming pools and pool parameters.  Four coagulants were 

independently added into the pools.  Four coagulant dosages were tested, which included 

a control (zero) dosage, a remediation dosage, a maintenance dosage, and an excessive 

dosage.  Control experiments were conducted without coagulant for all pools.  

Remediation dosage is defined as the amount of coagulant required on the first use to 

achieve excellent particle removal; the maintenance dosage is defined as the coagulant 

dose required to seed continuously into the pool and to keep excellent particle removals.  

Approximate 2.54 #/mL (108 for total) Cryptosporidium parvum oocysts and 2.54 #/mL 

(108 for total) Cryptosporidium-sized microspheres were seeded into the four separate 

swimming pools, and four coagulants at remediation dosage were fed.  Coagulants were 
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also fed as one maintenance dosage per turnover time to the pool for one month, in order 

to evaluate the Cryptosporidium parvum and Cryptosporidium-sized microspheres 

removal under maintenance condition.  Approximate 2.54 #/mL (107 for total) 

Cryptosporidium parvum oocysts and 2.54 #/mL (107 for total) Cryptosporidium-sized 

microspheres were seeded under maintenance coagulant dose. 

A thin layer of fine perlite (0.5 kg·perlite/m2 or 0.1 lb·perlite/ft2) was added on  

an uncoagulated sand filter to test the performance of perlite on removals of 

Cryptosporidium parvum and Cryptosporidium-sized microsphere.  DE was added to the 

precoat filter surface with 0.7 kg·DE/m2 (0.15 lb·DE/ft2).  DE filtration was conducted for 

2 weeks to test the removals of Cryptosporidium parvum oocyst and  

Cryptosporidium-sized microsphere under swimming pool condition.   

Duplicate experiments were conducted.  Triplicate samples were taken for each.  

Five separate swimming pools were used (as shown in Table 5.2).  A coagulant charge 

analyzer (CCA) was used to measure the streaming current of the samples (Chemtrac, 

Norcross, Georgia).  CCA measured streaming current from -10 to 10, rather than -1,000 

to 1,000 as measured by a streaming current meter.   

 
 
Table 5.2 Swimming Pools versus Tested Coagulants   
Pool Number Coagulant 
#1 Coagulant B 
#2 Coagulant D 
#3 Coagulant F 
#4 Coagulant E 
#5 Perlite/Sand & DE 
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5.3 Results and Discussions 

5.3.1 Performance of High-Rate Sand Filtration 

5.3.1.1 Filtration with Coagulants of Control Dosage  

Cryptosporidium parvum and Cryptosporidium-sized microsphere removals 

without coagulant with control dosage (zero dosage), were evaluated.  Figure 5.5 shows 

the Cryptosporidium parvum and Cryptosporidium-sized microsphere removals with 

control dosage (zero) in pool #1to pool # 4.  The missed data point in Figure 5.5 was 

because of sample was lost.  Control trials illustrated 38% to 70% of Cryptosporidium 

parvum and Cryptosporidium-sized microsphere were removed, which were slightly 

higher than that in pilot-scale experiments (20% to 63%).  Pool #4 was initially cloudy, 

which corresponded with the removal of 70% of Cryptosporidium and microspheres, 

which was the highest obtained by a control experiment without coagulation.  Turbidity 

of pool #4 was 4.1 NTU (stardard deviation = 3 NTU), compared with 2.2 NTU (stardard 

deviation = 2.4 NTU) for pool #1, 2.4 NTU(stardard deviation = 2 NTU) for pool #2, and 

1.8 NTU (stardard deviation = 1.8 NTU) for pool #3. Appendix N shows turbidity, pH, 

conductivity, temperature, and pressure for full-scale experiments.  Full-scale 

experiments raw data are shown in Appendix O. 
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Figure 5.5 Removals without Coagulant, SLR 34m/h (13.4 gpm/ft2), Pool #1 to Pool #4, 
Cryptosporidium parvum and Cryptosporidium-sized Microspheres concentration both 
were 2.54 #/mL (n=1) 
 
 
5.3.1.2 Filtration with Coagulants of Remediation Dosage  

Approximate 2.54 #/mL Cryptosporidium parvum oocysts and 2.54 #/mL 

Cryptosporidium-sized microspheres were seeded into the four separate swimming pools 

to simulate the Cryptosporidium parvum contamination in swimming pool.  Removals of 

Cryptosporidium parvum and Cryptosporidium-sized microsphere are shown in  

Figure 5.6.  High-rate sand filtration with the remediation dosage of coagulant B or F 

(1.56 mg/L as product), and coagulant D (305 g/m2 or 1 oz/ft2) achieved approximately 

90% removals (1 log) for both Cryptosporidium parvum and microsphere.  Filtration with 

coagulant E (0.1 mg/L as Al) removed 97% (1.5 log) of microsphere and 82% (0.7 log) 

of Cryptosporidium parvum.  
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Figure 5.6 Cryptosporidium parvum and Cryptosporidium-sized Microsphere Removals 
with 1.56 mg/L coagulant B, 305 g/m2 coagulant D, 1 mg/L coagulant E (0.1 mg/L as Al), 
1.56 mg/L coagulant F (dosed before sample collection), SLR 34m/h (13.4 gpm/ft2), 
under Remediation Condition, Cryptosporidium parvum and Cryptosporidium-sized 
Microspheres Concentration were 2.54 #/mL (n=1) 
  
 

Figure 5.7 shows the filter effluent particle counts for coagulant B with the 

remediation dosage.  Microspheres were fed at 0-hour, and control samples without 

coagulant feeding were taken at 0-hour.  Samples with remediation dosage of coagulant 

were collected followed by backwash at 5-hour.  Particle counts were high at first.  

Particles in 2-4 µm dominated followed by 4-6 µm for coagulant B.  Figure 5.8 shows 

effluent particle count for coagulant D.  Particle counts decreased over time.  Larger 

particles (8-10 µm and 10-20 µm) were observed in filter effluent for coagulant D 

compared with coagulant B.  Effluent particle counts for coagulant E is shown in  

Figure 5.9.  Lower particle counts were observed for coagulant E compared with 

coagulant B and D, and microsphere removals were higher than coagulant B and D,  
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but Cryptosporidium removals were not higher.  Effluent particle counts for coagulant F 

were similar with coagulant B as shown in Figure 5.10.  The peaks between 1 hr to 3 hr 

for coagulant B, E, and F were caused by filter backwash. 

 
 
 

Figure 5.7 Filter Effluent Particle Count with 1.56 mg/L coagulant B, SLR 34 m/h  
(13.4 gpm/ft2), under Control (0-1 hr) and Remediation (5-6 hr) Condition  
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Figure 5.8 Filter Effluent Particle Count with 305 g/m2 coagulant D, SLR 34 m/h  
(13.4 gpm/ft2), under Control (0-1 hr) and Remediation (5-6 hr) Condition  
  
 
 

 
Figure 5.9 Filter Effluent Particle Count with 0.1 mg/L (as Al) coagulant E, SLR 34 m/h 
(13.4 gpm/ft2), under Control (0-1 hr) and Remediation (5-6 hr) Condition 
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Figure 5.10 Filter Effluent Particle Count with 1.56 mg/L coagulant F, SLR 34 m/h  
(13.4 gpm/ft2), under Control (0-1 hr) and Remediation (5-6 hr) Condition 
 
 
5.3.1.3 Filtration with Coagulants of Maintenance Dosage and Overdose 
 

Cryptosporidium and Cryptosporidium-sized microsphere were fed over 1 hr at a 

concentration of 2.54 #/mL prior to sample collections.  Coagulation is a primary 

processing step used to hasten the agglomeration of fine particles in turbidity (Edzwald 

and Tobiason, 1999).  Four coagulants that had been proven effective for 

Cryptosporidium–sized microsphere removals in pilot-scale trials were added into 

separate pools as the sole coagulant and followed by high-rate sand filtration.  Up to 93% 

(1.2 log) of Cryptosporidium and 77% (0.6 log) of microspheres were removed by 

coagulant B as shown in Figure 5.11.  As high as 99% (2 log) of Cryptosporidium and 98% 

(1.7 log) of microsphere were removed with coagulant D as shown in Figure 5.12.  Up to 

98% (1.8 log) of Cryptosporidium and 93% (1.2 log) of microspheres removals were 
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obtained with coagulant E as shown in Figure 5.13.  Up to 86% (0.85 log) of 

Cryptosporidium and 82% (0.73 log) of microspheres were removed with coagulant F as 

shown in Figure 5.14.  Coagulant D and E removed up to 99% of microspheres, which 

were similar to pilot-scale results (i.e., up to 99% for coagulant D and E).  

Cryptosporidium and microsphere removals were higher after filter backwash for 

coagulant D.  Based on pilot-scale study results, removals of microspheres decreased to 

less than 90% when coagulant B and F was dosed at 4.68 mg/L as product, and streaming 

current was saturated indicated the overdose of coagulant B and F.  Data were obtained 

under condition of overdosing coagulant B or F in this full-scale study.  Cryptosporidium 

and microsphere removals in full-scale experiments were similar to pilot-scale removals 

for coagulant B or F, which showed Cryptosporidium and microspheres removals with 

continuous feeding coagulant decreased because of overdosing of coagulant B or F.  

Approximate 74% of (26 out of 35) Cryptosporidium removals were higher than 

microsphere removals (as shown in Figure 5.5 to Figure 5.14).  Twenty six percent of  

(9 out of 35) Cryptosporidium removals were lower than microsphere removals. 

Microspheres are a conservative surrogate in most cases (74%).     

 Streaming current increased with coagulant accumulation in the pools.  CCA 

values for coagulant B are shown in Figure 5.11.  CCA values increased at the end 

because the coagulant was dosed at 5 times faster than the normal rate (0.78 mg/L per 

turnover versus 0.156 mg/L per turnover).  A significant increase of CCA values for 

coagulants D, E, and F was also obtained at the end of each experiment as shown in 

Figure 5.12, 5.13, and 5.14.  However, CCA values did not appear to be a good indicator 

of the coagulants performance under these experimental conditions.   
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Figure 5.15 shows the filter effluent particle counts and removals for coagulant B 

with maintenance dosage and overdose.  Absolute particle numbers could not represent 

real removals, but the trend of particle counts in one experiment could interpret the filter 

performance in terms of microspheres removal.  Low microsphere removals correlated 

with high particle counts.  High particle counts at the end (432 hr and 528 hr) were 

caused by over dosing of coagulant and corresponded decreased removals.  Effluent 

particle counts for coagulant D is shown in Figure 5.16.  Differences in particle counts 

were observed between pilot-scale and full-scale experiments, with higher particle 

concentration in full-scale experiments, since full-scale pools were outdoor pools while 

pilot-scale pools were indoor pools.  Effluent particle counts and removals for coagulant 

E are shown in Figure 5.17.  Overdoing coagulant led to particle counts increased 

significantly at the end. While removal increased after filter backwash for coagulant E 

(the first removal data points for microsphere and Cryptosporidium in Figure 5.17).  

Figure 5.18 shows particle counts and removals for coagulant F.  Overdosing of 

coagulant at the end was indicated by particle counts breakup (i.e., at 432-hour for 

coagulant B and F).  Particle counts in 2-4 μm dominated for all the four coagulants, 

followed by 4-6 μm. 

 
 



186 
 

 
 

 
Figure 5.15 Effluent Particle Count with 0.16 mg/L coagulant B per turnover, SLR  
34 m/h (13.4 gpm/ft2), under Maintenance and Overdose Condition over 22 Days 
 
 
 

 
Figure 5.16 Effluent Particle Count with 305 g/m2 coagulant D for turnover (dosed very 
week), SLR 34 m/h (13.4 gpm/ft2), under Maintenance and Overdose Condition over  
22 Days 
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Figure 5.17 Effluent Particle Count with 1 mg/L coagulant E (0.1 mg/L as Al) per 
turnover, SLR 34 m/h (13.4 gpm/ft2), under Maintenance and Overdose Condition over 
22 Days 
 
 

 
Figure 5.18 Effluent Particle Count with 0.16 mg/L coagulant F per turnover, SLR  
34 m/h (13.4 gpm/ft2), under Maintenance Condition and Overdose over 22 Days 
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5.3.2 Perlite/Sand Filtration  

 Removals of particle in suspension occurs by straining through the pores in the 

granular filter bed, and by sedimentation of particles while in the media pores 

(Betancourt and Rose, 2004).  Cryptosporidium and Cryptosporidium-sized microsphere 

removals by a combination of fine perlite overlying sand in a filter are shown in Figure 

5.19.  Two samples were lost due to an unplanned backwash.  Eighty eight percent  

(0.9 log) of Cryptosporidium was removed, which was lower than microsphere removals 

and might have resulted from influent sample variability.  The measured 

Cryptosporidium concentration (of 0.08 #/mL) was more than an order of magnitude less 

than the average influent concentration (of 2.54 #/mL) for all of the full-scale 

experiments (raw data is shown in Appendix O).  Effluent Cryptosporidium and 

microspheres concentrations were both < 0.001 #/mL.  Microspheres removal was 99.8% 

(2.7 log), compared with 99.7% (2.4 log) in pilot-scale trials at 0.5 kg·perlite/m2  

(0.1 lbs·perlite/ft2).   
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Figure 5.19 Cryptosporidium Parvum and Microsphere (2.54 #/mL) Removals through 
(0.5 kg·perlite/m2, 0.1 lb/ft2) Perlite/Sand Filtration at 34 m/h (13.4 gpm/ft2) (n=1) 
 
 
5.3.3 Diatomaceous Earth (DE) Filtration  

Figure 5.20 displays the Cryptosporidium parvum and microsphere removals by 

DE filtration (0.7 kg·DE/m2, and filtration rate of 3.6 m/h).  Microsphere removal was 

more than 99.8% (2.7 log), and Cryptosporidium parvum removal was also above 99.8% 

(2.7 log), which were similar to pilot-scale removals (99.5% to 99.7% for the same 

amount of precoat and filtration rate, 3.6 m/h).   

The filter was restarted after a 15-minute stop without flow (or a 30-minute stop 

without flow) to evaluate “bumping” impact on performance.  The removals after 

bumping were not significant decreased by bumping with a 15-minute stop of DE filter 

with filtration rate of 3.6 m/h (1.5 gpm/ft2).  Removals both of Cryptosporidium and 

microsphere were decreased approximate less than 99.7% (2.5 log) after bumping with a 

30-minute stop.  Pilot-scale results showed the removals decreased from more than 99.5% 
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to 97% after bumping with a 30-minute stop of filter and filter was operated at 3.6 m/h.  

Removals obtained from full-scale were slightly higher than pilot-scale.  Streaming 

current values (or CCA) for samples collected from perlite/sand and DE filtration 

experiments are shown in Figure 5.21.  The streaming currents were in the range of  

-2.6 SCU to -1.5 SCU since no coagulant was fed.  

 

 

 

 
 
Figure 5.20 Cryptosporidium Parvum and Microsphere (2.56 #/mL) Removals through 
DE Filtration during 5 Days, 0.7 kg·DE/m2 (0.15 lb/ft2), SLR 3.6 m/h (1.5 gpm/ft2) (Red 
color box removals by DE before bumping; Yellow color box ─ removals after bumping 
with a 15-minute filter stop; Blue color box ─ removals after bumping with a 30-minute 
filter stop) (number of experiments = 1, number of samples = 3) 
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Figure 5.21 Streaming Current of Samples for Perlite/Sand and DE Filtration   
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Cryptosporidium and 93% (1.1 log) of microspheres were removed by coagulant E at  

27 m/h.  Eighty five percent of Cryptosporidium (0.84 log) and 82% (0.73 log) of 

microspheres were removed by coagulant F with maintenance dosage.  Overdose 

conditions for coagulant B and F led to lower removals for Cryptosporidium and 

microsphere than in pilot-scale studies. 

(3) Perlite/sand filtration and DE filtration 

Full-Scale Cryptosporidium parvum removals by perlite/sand filter was 88%.  

Microsphere removals were 99.8%, compared with 99.7% in pilot-scale trials at  

0.5 kg·perlite/m2 (0.1 lbs·perlite /ft2).  Above 99.8% of Cryptosporidium parvum oocysts 

and microspheres were removed by DE filtration with 0.7 kg·DE/m2 at 3.6 m/h. 

 Results indicated above 99% of Cryptosporidium parvum oocyst and/or 

microsphere removals were achieved by perlite/sand and DE filtration.  Above 90% 

removals were obtained by high-rate sand filtration with coagulant D and E.  Coagulants 

B and F had a tendency to overdose and did not consistently achieve removals greater 

than 90%.  



 

 

CHAPTER 6: FULL-SCALE EVALUATION OF CRYPTOSPORIDIUM-SIZED 
MICROSPHERE REMOVALS FROM HOT SPA USING CARTRIDGE FILTER 

WITH AND WITHOUT COAGULATION 
 
 
6.1 Introduction 

 Cartridge filters can be effective for removal of particles and natural organic 

matter (Wang, et al., 2008), or as pretreatment for membrane filtration (Vial and Doussau, 

2002).  Some unique features include: (1) compact, lightweight, easy to install, and no 

backwashing required; (2) more effective filtration area in a very compact system; and  

(3) less maintenance (Perkins, 2000).  The National Sanitation Foundation (NSF) 

Standard for commercial pools specifies a maximum flow rate of 1.42 L/min  

(0.375 gallons per minute) for all cartridge filter types.  Flow rates greater than  

1.42 L/min (0.375 gallons per minute) through a cartridge filter reduces the filter cycle 

and therefore reduces filtration effectiveness (NSPF, 2009).  In terms of particle size 

filtered out, pore size of cartridge installed in swimming spa is somewhere between sand 

and DE, and is usually larger than 5 µm to prevent severe clogging of the element 

(Perkins, 2000).  Cartridges filter fabric material is used to make up the cartridge filter 

cells and specifically designed to trap dirt down to around 20-35 μm (from Roy Vore, 

NSPF®I, CPO®, 2012).   
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6.2 Materials and Methods 

6.2.1 Research Objectives 

The objectives of this chapter included evaluation of Cryptosporidium-sized 

microsphere removals from a full-scale hot spa with a cartridge filter to verify  

field-relevant performance with and without coagulant addition, as well the cartridge 

filter performance with DE. 

First use of cartridge filter required adding 37 g/m2 diatomaceous earth (DE) to 

enhance the filtration (PentairPools, 2008), but the actually DE added was 49 g/m2 in this 

experiment.  The performance with DE on removal of Cryptosporidium-sized 

microspheres was tested.   

6.2.2 Experimental Setup 

 A 5,500 L swimming pool was built with filtration system and chemical control 

system.  Pool water can be pumped through the cartridge filter as shown in Figure 6.1.  

Detailed information about the materials used in this research is listed in Appendix G.  

All chemicals and microspheres were fed using peristaltic or metering pumps.  These 

sensors were connected to a controller (CAT 5000, Poolcomm, Rockville, MD, USA) for 

monitoring and chemical feed control.  Coagulants and microspheres were fed into the 

pipe ahead of the pump and pre-filtration for a rapid coagulant mixing.  Streaming 

current meter (Micrometrix, Suwanee, Georgia, USA) was installed in sample influent 

line to measure the surface charge of the water.  Turbidimeters (HF scientific, Fort Myers, 

Florida, USA), particle counters (Chemtrac, Norcross, Georgia), UV transmission 

monitor (HF scientific, Fort Myers, Florida, USA, and Real Tech INC, Canada) were 

installed both on filter influent and effluent line.  On-line data can be record and 
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download from a computer.  Particle counters collect the particle size in the following 

range, 2 µm - 3 µm, 3 µm - 6 µm, 6 µm - 10 µm, 10 µm - 20 µm, 20 µm - 50 µm,  

50 µm - 100 µm, and the total particles from 2 µm to 100 µm.     
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Figure 6.1 Experiment Set-up  
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6.2.3 Synthetic Pool Water 

The synthetic pool water was generated based on previous swimming pool water 

quality investigation.  Approximate of 5,500 L of Charlotte, NC tap water with total 

organic carbon (TOC) of 1 mg/L was supplemented with NaHSO4 to pH 7.5, CaCl2 to 

hardness 200 mg/L, NaHCO3 to alkalinity 100 mg/L, Ca(OCl)2 to chlorine 2 mg/L, to 

adjust pool water chemical characteristic (pH Minus, Calcium Plus, Alkalinity Plus, and 

TurboShock Treatment, Lonza POOLIFE®, Norwalk, Connecticut, USA). 

6.2.4 Cryptosporidium-sized Polystyrene Microspheres  

The use of polystyrene microspheres as an oocyst surrogate has been done by 

multiple researchers, and it was used in this study (Amburgey, 2002; Amburgey, et al., 

2004; Amburgey, et al., 2005; Brown and Emelko, 2009; Dai and Hozalski, 2003; 

Emelko and Huck, 2003; Emelko, et al., 2005; Li, et al., 1997).  Microspheres with 

diameter of 4.5 µm were used as the surrogate (Fluorsebrite™ Carboxylate YG  

4.5 micron microspheres, Cat. #16592, Polysciences, Inc., Warrington, Pennsylvania, 

USA).  The concentration of stock was 4.37×1011 #/L.  The diluted solution with 

microspheres concentration of 4.37×108 #/L was prepared by 1 to 1,000 dilutions of stock 

solution. Approximately 1.0 × 107 Cryptosporidium-sized microspheres were used for 

each sample period during experiments.  Microsphere samples were mixed by vortexing 

and hand shaking for at least two minutes each before analyzing.  Samples were assay for 

microsphere by passing through 3.0 µm pore size polycarbonate filters  

(Product # K30CP02500, GE Osmonics, Minnetonka, Minnesota, USA).  Each 

polycarbonate filter was mounted on a glass microscope slide (Gold Seal® Product  

# 3058, Erie Scientific Corp., Portsmouth, New Hampshire, USA) with a polyvinyl 
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alcohol-DABCO solution, covered with a glass cover slip (25-mm square, No. 1.5, 

Corning, Inc., Corning, New York, USA) and counter under an epifluorescence 

microscope (Zeiss Standard 25 microscope, Carl Zeiss MicroImaging, LLC, Thornwood, 

New York, USA) (Freer, 1984).  For ease of counting and to obtain statistically valid data, 

microscope slides needed to contain between 10 and 150 microspheres.  Removal 

efficiency was calculated by comparing the concentrations between influent and effluent 

samples.     

6.2.5 General Experimental Approach 

 Simulated spa water was heated and maintained at 38 °C, with aeration by turning 

on all of the jets of the swimming spa.  Cartridge filter filtration rate was 0.17 L/s/m2 

(0.25 gpm/ft2).  A control experiment without DE or coagulant was conducted.  Cartridge 

filtration with DE was performed by adding 49 g/m2 (0.01 lbs/ft2) DE.  Coagulant B was 

fed at 1.56 mg/L every turnover time for total 6 turnover times (1 turnover time was  

25 min).  Amount of 107 (1.82 #/mL) microspheres were fed.  Filter influent and effluent 

samples were taken for removal calculation.  Microspheres were seeding 5 minutes 

before each sample collection, and the hydraulic detention time was 11 second.   

6.2.6 Quality Assurance and Quality Control 

Duplicate experiments were conducted.  Triplicate samples were taken for each.  

The swim spa was rinsed, filled, and drained with tap water at least three times between 

experiments to limit the amount of cross-contamination between experiments.   
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6.3 Results and Discussions 

6.3.1 Cartridge Filtration with and without DE 

 Figure 6.2 shows the microsphere removals with and without DE addition on the 

surface of the cartridge filter.  Cryptosporidium-sized microsphere removal was 22% by a 

cartridge filter and 98% by a cartridge filter with DE.  (Raw data for microsphere 

removals from full-scale spa are shown in Appendix P.) 
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Figure 6.2 Cryptosporidium-sized Microsphere (1.8 #/mL) Removals by Cartridge Filter 
with and without 49 g/m2 (0.01 lbs/ft2) DE Addition, 0.63 m/h (0.25 gpm/ft2) (number of 
experiments = 2, number of samples = 3) 
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6.3.2 Cartridge Filtration with Coagulation 

 Figure 6.3 illustrates the removals at each turnover with coagulation.   

The Cryptosporidium-sized microsphere removals were up to 88% by coagulation 

compared to 22% with no coagulation prior cartridge filtration.  The same coagulant 

applied in high-rate sand filtration achieved 99% Cryptosporidium-sized microspheres 

removal at room temperature (25 °C).  

 

Figure 6.3 Cryptosporidium-sized Microsphere (1.8 #/mL) Removals by Cartridge Filter 
with 1.56 mg/L Coagulant B, 0.63 m/h (0.25 gpm/ft2) (number of experiments = 2, 
number of samples = 3) 
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3-6 μm are shown in Figure 6 and Figure 7.  Effluent particle counts were only lower 

than influent particle counts both in the first 25 min by comparing the influent and 

effluent particle counts in 2-100 μm and 3-6 μm ranges. The particle counts data was 

helpful to interpret the low removals obtained. 

Figure 6.8 shows the turbidity data for cartrideg filter.  Turbidity was in the range 

of 0.04 NTU to 0.06 NTU.  The peaks for particle counts were microsphere seeding 

events.  Microspheres were seeding 5 mins for each sample trial, and hydraulic detention 

time was 11 second.  Turnover time of the pool was 25 mins treated by cartridge filter at 

147 m/h (13.6 m3/h or 60 gallon per minute).  

 
 
 

 

Figure 6.4 Filter Influent Particle Counts Variation over Time, 1.8 #/mL 
Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h (0.25 gpm/ft2) 
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Figure 6.5 Filter Effluent Particle Counts Variation over Time, 1.8 #/mL 
Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h (0.25 gpm/ft2) 

 
Figure 6.6 Total Filter Influent and Effluent Particle Counts (2-100 μm) Variation over 
Time, 1.8 #/mL Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h 
(0.25 gpm/ft2) 
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Figure 6.7 Filter Influent and Effluent Particle Counts (3-6 μm) Variation over Time,  
1.8 #/mL Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h  
(0.25 gpm/ft2) 

 

Figure 6.8 Turbidity of Filter Influent and Effluent Variation over Time, 1.8 #/mL 
Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/hr 0.25 gpm/ft2  
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Streaming current increased over time with coagulant feeding (Figure 6.9), which 

was similar to the pilot-scale experiments.  The raw water streaming current was adjusted 

to -200 streaming current unit (SCU), and it increased to 380 SCU, suggesting the 

coagulant accumulated in the spa.  Influent and effluent UV254 transmission are shown in 

Figure 6.10.  The raw water UV254 transmission was in the range of 96% to 97%.  There 

was no significant removal of UV254 in this system by comparing the influent and effluent 

UV254 transmission value.   

 

 

 

Figure 6.9 Streaming Current Variation over Time, 1.8 #/mL Cryptosporidium-sized 
Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h (0.25 gpm/ft2) 
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Figure 6.10 Filter Influent and Effluent UV254 Transmission Variation over Time,  
1.8 #/mL Cryptosporidium-sized Microspheres, 1.56 mg/L Coagulant B, 0.63 m/h 
(0.25 gpm/ft2) 
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APPENDIX A: ABSTRACT FOR EACH CHAPTER 
 
 
Chapter 1 

Swimming pool water samples were collected and analyzed for chemical 

constituents, organic matter, and particle size distributions from thirty-five swimming 

pools geographically distributed around the US, over the course of the spring and summer 

of 2010 (including both indoor and outdoor pools).  Water quality varied seasonally with 

lower contaminant concentrations in spring compared with summer.  The mean values for 

water chemistry parameters were, pH of 7.5, free chlorine of 1.5 mg/L, alkalinity of  

94 mg/L, and hardness of 238 mg/L. The average turbidity would be 0.33 NTU, and the 

DOC concentration would be 5 mg/L.  Based on the preceding data, three representative 

swimming pool waters were developed using cluster analysis, to span the range these 

chemical parameter commonly encountered in US swimming pools.   

Chapter 2 

Zeta potential titrations were conducted to evaluate six cationic coagulants for 

coagulation of Cryptosporidium-sized microsphere surrogates in three synthetic 

swimming pool waters.  Coagulant A and B were comprised polydiallyl dimethyl 

ammonium chloride (polyDADMAC), coagulant C was chitosan, coagulant D was 

aluminum based coagulant, and coagulant E was polyaluminum chloride.  Formulation of 

coagulant F is proprietary.  Coagulants were individually titrated into three representative 

simulated pool water samples to develop a dose-response relationship.  Results showed 

the zeta potential increased in the positive direction as the coagulant dose increased.   

No significant differences were observed for coagulant performance in different water 

types.  Overdosing of coagulants A, B, and F were possible.  Coagulant C did not behave 
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similarly in the recommended dose range.  Coagulant A, B, and F dosages between  

0.5 mg/L to 3 mg/L, coagulant D dosages between 6 mg/L and 12 mg/L, and coagulant E 

dosages between 1 mg/L and 20 mg/L as product resulted in microsphere zeta potentials 

of -10 mV to 10 mV.  Dissolved organic carbon (DOC) concentration did not appear to 

impact the zeta potential of coagulant A destabilized microspheres. 

Chapter 3 

Cryptosporidium outbreaks in swimming pool threaten public health.  A novel 

evaluation procedure was developed that would produce reliable results applicable in 

field-relevant swimming pools.  Experiments were conducted in a 5,500 L swimming 

pool with 30 cm dry sand.  Filtration rate was 37 m/h for all the experiments.  Results 

indicated that the maximum Cryptosporidium-sized microsphere removals were achieved 

by continuously feeding coagulant.  However, extended/excessive feeding coagulant A 

(the only coagulant used in this part of the study) led to coagulant A build up in the 

system and reduced removal efficiency.  Microspheres concentration impacted the system 

performance as higher coagulants dosages were required for higher microsphere 

concentrations.  No significant differences in microsphere removals were observed 

between large sand filter and small sand filter.   

Chapter 4 

Cryptosporidium species are the most common cause of gastrointestinal illness in 

treated recreational water venues in the US.  Numerous waterborne outbreaks of 

cryptosporidiosis have been linked to recreational waters (such as swimming pools) 

worldwide for several decades.  Cryptosporidium-sized microsphere removals from a 

pilot-scale swimming pool through high-rate sand filtrations with six coagulants, 
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perlite/sand filtration, and diatomaceous earth (DE) filtration were evaluated.  Filter 

influent and effluent particle counts, turbidity, UV254 transmittance, pressure, and filter 

influent streaming current were monitored during each experiment.  High-rate sand 

filtration results showed that up to 99% (2 log) of Cryptosporidium-sized microspheres 

were removed by filtration with coagulant A, B, D, E, and F.  Continuously feeding 

coagulant (coagulant A, B, and F) led to coagulant accumulation in the system and 

further resulted in the average removal decreasing to 83% to 87% range for coagulant A, 

B, and F.  At least 0.37 kg·perlite/m2 for perlite/sand filtration or 0.7 kg·DE /m2 for DE 

filtration were required to achieve 99% (2 log) of microsphere removals.   

Chapter 5 

Removals of Cryptosporidium parvum and Cryptosporidium-sized microspheres 

were evaluated in full-scale swimming pools through high-rate sand filtration, 

perlite/sand filtration, and diatomaceous earth (DE) filtration.  Results showed that 90% 

of Cryptosporidium parvum and microsphere were removed by filtration with 

remediation dosage of coagulant B, D or F from swimming pool.  Filtration with 

remediation dosage of coagulant E (0.1 mg·Al/L) achieved 82% of Cryptosporidium and 

97% of microsphere removals.  Coagulants B and F had a tendency to overdose and did 

not consistently achieve removals greater than 90%.  Overdose conditions for coagulant 

B and F led to lower removals for Cryptosporidium and microsphere than in pilot-scale 

studies.  As high as 99% of Cryptosporidium and 98% of microspheres were removed 

with maintenance dosage of coagulant D.  Up to 98% (1.7 log) Cryptosporidium and 93% 

(1.1 log) of microspheres were removed by maintenance dosage of coagulant E at 27 m/h.  

Performance of coagulant D and E tended to decrease with increased filter pressure, 
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which could warrant additional research.  Eighty eight percent of Cryptosporidium 

parvum was removed, and 99.8% of microspheres were removed by perlite/sand filtration 

at 0.5 kg·perlite/m2.  Above 99.8% of Cryptosporidium parvum and microspheres were 

removed by DE filtration.   

Chapter 6 

Cryptosporidium-sized microsphere removals by a cartridge filter from a  

full-scale hot spa (38 °C) was evaluated.  Results showed that 22% of  

Cryptosporidium-sized microspheres were removed by cartridge filter without coagulant.  

Ninety eight percent of microspheres were removed by cartridge filter with 49 g·DE/m2.  

Cartridge filter with coagulation B at 1.56 mg/L per turnover achieved up to 88% 

removals in the first turnover (turnover time was 25 minutes) then decreased.   
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APPENDIX B: POOL SURVERY QUESTIONS AND RESPONSES 
(Not every pool responsed) 
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APPENDIX C: COAGULANT CHARACTERISTIC 
 
 

Coagulant Product Component 
Molecular 
Formula 

Coagulant 
A  

Robarb Super Blue 
Polydiallyl Dimethyl 
Ammonium Chloride 

(polyDADMAC) 
(C8H16NCl)n

Coagulant 
B  

Polysheen Blue polyDADMAC (C8H16NCl)n

Coagulant 
C  

PRS-I Chitosan (C6H11O4N)n

Coagulant 
D  

Poly-A 
Sulfatodialuminum Disulfate 

Tetradecahydrate  
(aluminum-based) 

N/A 

Coagulant 
E 

Kemira’s PAX-18 Polyaluminum Chloride (PACl) N/A 

Coagulant 
F 

Cryptosporidium 
Removal System 

N/A N/A 
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APPENDIX D: BODY FLUID ANALOGUE SOLUTION RECIPE 
 
 

 

*Calculated TOC concentration, 4 mg/L TOC was obtained by 1:2250 dilutions. 
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APPENDIX E: CHEMICAL CHARACTERISTIC OF EXPERIMENT  
WATER SAMPLES 

 
 

Water 
Type 

pH 
Alkalinity Hardness Free 

Chlorine 
(mg/L) 

Saturated 
Index (mg/L as 

CaCO3) 
(mg/L as 
CaCO3) 

1 7.5 100 200 2 -0.20 
2 7.9 200 120 3 0.30 
3 7.2 60 350 1 -0.45 
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APPENDIX F: RECIPE OF THE THREE EXPERIMENTAL WATER  
(FOR 1,000 L WATER) 

 
 

Water Type 31.45% muriatic acid (mL) NaHCO3 (g)
CaCl2 

(g) 
6% bleach 

(mL) 
1 24 18 189 16 
2 22 193 100 32 
3 27 0 355 8 
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APPENDIX G: EQUIPMENT DETAILS 	
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APPENDIX H: COAGULANT DEMAND CALCULATION  
 
 
Assuming density of 4.5 μm microsphere is 1.06 SG, COOH at 800 μeq/g, the 

molecular weight of polyDADMAC ((C8H16NCl-)n) is 100,000 g/mole with a charge 

concentration of 1 eq/mole of DADMAC (C8H16NCl-), and coagulant is 4% 

polyDADMAC.  Coagulant demand to neutralize one microsphere is determined to be 

1.63×10-7 mg as shown below.  105 microspheres will need 1.63×10-2 mg coagulant;  

107 microspheres will need 1.63 mg coagulant; 108 microspheres will need 16.3 mg 

coagulant.

 

mgmgemicrospherfordemandCoagulant

mgmoleeqeqmolegdemandpolyDADMAC

polyDADMACformoleeq

n

eqggeqq

gmcmgVM

m
mR

V

cmgcmgSGSG

eMicrospher

eMicrosphereMicrosphereMicrospher

eMicrospher

OHeMicrospher

79

98

811

1133

3
33

33

1063.1%4/10*54.6:1

10*54.6)/619/1005.4(/000,100:

/619

619)5.351416812/(000,100

1005.41006.5/800

1006.57.47/06.1

7.47
3

)2/5.4(14.34

3

4

/06.1/106.1
2





































 

where, ρ Microsphere is the density of microspheres; 
           VMicrosphere is the volume of microspheres; 
           M Microsphere is the mass for one microsphere; 
           ∆q Microsphere is the charge of the microsphere; 
           n is the numbers of DADMAC in one mole polyDADMAC.  
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APPENDIX I: FILTER MEDIA PROPERTIES AND CALCULATION OF VOLUME 
OF THE POOL TO SAND SURFACE AREA RATIO 

 
 

Mystic White Pool Filter Sand Ratios 

Density (g/cm3) 2.65 
Porosity 0.5 
Effective Size (mm) 0.49 
Grain Surface Area 
(mm2) 3.14 
Effective Weight 
(g/100grains) 0.09 

  
Pilot Scale Swim 
Spa Small Filter 

Pilot Scale Swim 
spa Big Filter 

Full Scale UNCC 
Campus Pool  

Pool Volume (gal) 1,450 1,450 322,000 

Sand Volume (in3) 339     

Sand Volume (cm3) 5,560   2,627,803 
Porous Volume 2,780   1,313,902 

Actual Sand Vol (cm3) 2,780   1,313,902 
 Mass Sand (g) 1,049 79,379 495,812 

# of Grains 11,787 891,895 5,570,921 
Total Grain Surface Area 

(mm2) 37,030 2,801,971 17,501,564 
Total Grain Surface Area 

(ft2) 0.4 30 188 
Volume/Grain Surface 

Area  Ratio (gal/ft2) 3,638 48 1,709 
Volume/Grain Surface 

Area  Ratio (L/m2) 148,209 1,959 69,638 
 

3322 55603.339''12)''3(14.3 cminLRVT    
33 2780)5.01()5560()1( cmcmVV Tsand    

gcmgcmVM sandsandsand 1.1049)/65.2/()2780(/ 33    

2

22

399.0

37030)14.3()100/089.0/()1.1049()/(

ft

mmmmgrainsggAWMAnA grainesandgrainsand





222 /209,148/3638)399.0/()1450(/ mLftgalftgalAV sandpool 
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where, VT is the bulk volume of the media, including the sand and void components; R 

and L are bulk radius (3 in.) and depth (12 in.); Vsand, Msand and Asand are the sand volume, 

mass and surface area; ρsand is the sand density; n is the total count of the sand in this 

specific volume; Vpool is swimming pool volume.  
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APPENDIX J: PERLITE SIZE DISTRIBUTION BY MICROTRAC 
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APPENDIX K: EP MINERALS CERTIFICATE OF ANALYSIS FOR 
DIATOMACEOUS EARTH 
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APPENDIX L: PILOT-SCALE SWIMMING POOL WATER CHARACTERISTICS 
 
 

Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

A 0 780 1.8 7.5 1450 83 
A 0.5 780 1.8 7.5 1450 83 
A 1 780 1.8 7.5 1450 83 
A 1.5 780 1.8 7.5 1450 83 
A 2 780 1.8 7.5 1450 83 
A 2.5 780 1.8 7.5 1450 83 
A 3 780 1.8 7.5 1450 83 
A 3.5 780 1.8 7.5 1450 83 
A 4 780 1.8 7.5 1450 83 
A 4.5 780 1.8 7.5 1450 83 
A 5 780 1.8 7.5 1450 83 
A 5.5 780 1.8 7.5 1450 83 
A 6 780 1.8 7.5 1450 83 
A 6.5 780 1.8 7.5 1450 83 
A 7 780 1.8 7.5 1450 83 
A 7.5 780 1.8 7.5 1450 83 
A 8 780 1.8 7.5 1450 83 
A 8.5 780 1.8 7.5 1450 83 
A 9 780 1.8 7.5 1450 83 
A 9.5 780 1.8 7.5 1450 83 
A 10 780 1.8 7.5 1450 83 
A 10.5 780 1.8 7.5 1450 83 
A 11 795 0.8 7.4 1457 83 
A 11.5 795 0.8 7.4 1457 83 
A 12 795 0.8 7.4 1457 83 
A 12.5 795 0.8 7.4 1457 83 
A 13 795 0.8 7.4 1457 83 
A 13.5 795 0.8 7.4 1457 83 
A 14 795 0.8 7.4 1457 83 
A 14.5 795 0.8 7.4 1457 83 
A 15 795 0.8 7.4 1457 83 
A 15.5 795 0.8 7.4 1457 83 
A 16 795 0.8 7.4 1457 83 
A 16.5 795 0.8 7.4 1457 83 
A 17 795 0.8 7.4 1457 83 
A 18 790 0.8 7.4 1457 83 
A 19 790 0.7 7.4 1457 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

A 19.5 790 0.7 7.4 1457 83 
A 20 790 0.7 7.4 1457 83 
A 20.5 790 0.7 7.4 1457 83 
A 21 790 0.7 7.4 1457 83 
A 21.5 790 0.7 7.4 1457 83 
A 22 790 0.7 7.4 1457 83 
A 22.5 790 0.7 7.4 1457 83 
A 23 790 0.7 7.4 1457 83 
A 23.5 790 0.7 7.4 1457 83 
A 24 790 0.7 7.4 1457 83 
A 24.5 790 1.5 7.4 1500 83 
A 25 790 1.5 7.4 1500 83 
A 25.5 790 1.5 7.4 1500 83 
A 26 790 1.5 7.4 1500 83 
A 26.5 790 1.5 7.4 1500 83 
A 27 790 1.5 7.4 1500 83 
A 27.5 790 1.5 7.4 1500 83 
A 28 790 1.5 7.4 1500 83 
A 28.5 790 1.5 7.4 1500 83 
A 29 790 1.5 7.4 1500 83 
A 29.5 790 1.5 7.4 1500 83 
A 30 790 1.5 7.4 1500 83 
A 30.5 790 1.5 7.4 1500 83 
A 31 790 1.5 7.4 1500 83 
A 31.5 790 1.5 7.4 1500 83 
A 32 790 1.5 7.4 1500 83 
A 32.5 790 1.5 7.4 1500 83 
A 33 790 1.5 7.4 1500 83 
A 33.5 800 1.5 7.4 1500 83 
A 34 800 1.5 7.4 1500 83 
A 34.5 800 1.5 7.4 1500 83 
A 35 800 1.5 7.4 1500 83 
A 35.5 800 1.5 7.4 1500 83 
A 36 800 1.5 7.4 1500 83 
A 36.5 800 1.5 7.4 1500 83 
A 37 800 1.5 7.4 1500 83 
A 37.5 800 1.5 7.4 1500 83 
A 38 800 1.5 7.4 1500 83 
A 38.5 800 1.5 7.4 1500 83 



240 
 

 
 

Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

A 39 800 1.5 7.4 1500 83 
A 39.5 800 1.5 7.4 1500 83 
A 40 800 1.5 7.4 1500 83 
A 40.5 800 1.5 7.4 1500 83 
A 41 800 1.5 7.4 1500 83 
A 41.5 800 1.5 7.4 1500 83 
A 42 800 1.5 7.4 1500 83 
A 42.5 800 1.5 7.4 1500 83 
A 43 800 1.5 7.4 1500 83 
A 43.5 800 1.5 7.4 1500 83 
A 44 800 1.5 7.4 1500 83 
A 44.5 795 1.6 7.4 1555 83 
A 45 795 1.6 7.4 1555 83 
A 45.5 795 1.6 7.4 1555 83 
A 46 795 1.6 7.4 1555 83 
A 46.5 795 1.6 7.4 1555 83 
A 47 795 1.6 7.4 1555 83 
A 47.5 795 1.6 7.4 1555 83 
A 48 795 1.6 7.4 1555 83 
A 48.5 795 1.6 7.4 1555 83 
B 0 815 0.5 7.4 1450 83 
B 0.5 815 0.5 7.4 1450 83 
B 1 815 0.5 7.4 1450 83 
B 1.5 815 0.5 7.4 1450 83 
B 2 815 0.5 7.4 1450 83 
B 2.5 815 0.5 7.4 1450 83 
B 3 815 0.5 7.4 1450 83 
B 3.5 815 0.5 7.4 1450 83 
B 4 815 0.5 7.4 1450 83 
B 4.5 815 0.5 7.4 1450 83 
B 5 815 0.5 7.4 1450 83 
B 5.5 815 0.5 7.4 1455 83 
B 6 815 0.5 7.4 1457 83 
B 6.5 815 0.5 7.4 1455 83 
B 7 815 0.5 7.4 1455 83 
B 7.5 815 0.5 7.4 1450 83 
B 8 825 0.8 7.4 1457 83 
B 8.5 825 0.8 7.4 1457 83 
B 9 825 0.8 7.4 1457 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

B 9.5 825 0.8 7.4 1457 83 
B 10 825 0.8 7.4 1457 83 
B 10.5 825 0.8 7.4 1457 83 
B 11 825 0.8 7.4 1457 83 
B 11.5 825 0.8 7.4 1457 83 
B 12 825 0.8 7.4 1457 83 
B 12.5 825 0.8 7.4 1457 83 
B 13 825 0.8 7.4 1457 83 
B 13.5 825 0.8 7.4 1457 83 
B 14 825 0.8 7.4 1457 83 
B 14.5 825 0.8 7.4 1457 83 
B 15 825 0.8 7.4 1457 83 
B 15.5 825 0.8 7.4 1457 83 
B 16 825 0.7 7.4 1457 83 
B 16.5 800 1.5 7.4 1500 83 
B 17 800 1.5 7.4 1500 83 
B 17.5 800 1.5 7.4 1500 83 
B 18 800 1.5 7.4 1500 83 
B 18.5 800 1.5 7.4 1500 83 
B 19 800 1.5 7.4 1500 83 
B 19.5 800 1.5 7.4 1500 83 
B 20 800 1.5 7.4 1500 83 
B 20.5 800 1.5 7.4 1500 83 
B 21 800 1.5 7.4 1500 83 
B 21.5 800 1.5 7.4 1500 83 
B 22 800 1.5 7.4 1500 83 
B 22.5 800 1.6 7.4 1550 83 
B 23 800 1.6 7.4 1550 83 
B 23.5 800 1.6 7.4 1550 83 
B 24 800 1.6 7.4 1550 83 
B 24.5 800 1.6 7.4 1550 83 
B 25 800 1.6 7.4 1550 83 
B 25.5 800 1.6 7.4 1550 83 
B 26 800 1.6 7.4 1550 83 
B 26.5 800 1.6 7.4 1550 83 
B 27 800 1.6 7.4 1550 83 
B 27.5 800 1.6 7.4 1550 83 
B 28 800 1.6 7.4 1550 83 
B 28.5 795 1.5 7.4 1555 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

B 29 795 1.5 7.4 1555 83 
B 29.5 795 1.5 7.4 1555 83 
B 30 795 1.5 7.4 1555 83 
B 30.5 795 1.5 7.4 1555 83 
B 31 795 1.5 7.4 1555 83 
B 31.5 795 1.5 7.4 1555 83 
B 32 795 1.5 7.4 1555 83 
B 32.5 795 1.5 7.4 1555 83 
B 33 795 1.5 7.4 1555 83 
B 33.5 795 1.5 7.4 1555 83 
B 34 795 1.5 7.4 1555 83 
B 34.5 795 1.5 7.4 1555 83 
B 35 795 1.5 7.4 1555 83 
B 35.5 795 1.5 7.4 1555 83 
B 36 795 1.5 7.4 1555 83 
B 36.5 795 1.5 7.4 1555 83 
B 37 795 1.5 7.4 1555 83 
B 37.5 795 1.5 7.4 1555 83 
B 38 795 1.5 7.4 1555 83 
B 38.5 795 1.5 7.4 1555 83 
B 39 815 1.4 7.4 1550 83 
B 39.5 815 1.4 7.4 1550 83 
B 40 815 1.4 7.4 1550 83 
B 40.5 815 1.4 7.4 1550 83 
B 41 815 1.4 7.4 1555 83 
B 41.5 815 1.4 7.4 1555 83 
B 42 815 1.4 7.4 1555 83 
B 42.5 815 1.4 7.4 1555 83 
B 43 815 1.4 7.4 1555 83 
B 43.5 815 1.4 7.4 1555 83 
B 44 815 1.4 7.4 1555 83 
B 44.5 815 1.4 7.4 1555 83 
B 45 815 1.4 7.4 1555 83 
B 45.5 815 1.4 7.4 1555 83 
B 46 815 1.4 7.4 1555 83 
B 46.5 815 1.4 7.4 1555 83 
C 0 800 1.5 7.4 1500 83 
C 0.5 800 1.5 7.4 1500 83 
C 1 800 1.5 7.4 1500 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 1.5 800 1.5 7.4 1500 83 
C 2 800 1.5 7.4 1500 83 
C 2.5 800 1.5 7.4 1500 83 
C 3 800 1.5 7.4 1500 83 
C 3.5 800 1.5 7.4 1500 83 
C 4 800 1.5 7.4 1500 83 
C 4.5 800 1.5 7.4 1500 83 
C 5 800 1.5 7.4 1500 83 
C 5.5 800 1.5 7.4 1500 83 
C 6 800 1.5 7.4 1500 83 
C 6.5 800 1.5 7.4 1500 83 
C 7 800 1.5 7.4 1500 83 
C 7.5 800 1.5 7.4 1500 83 
C 8 800 1.5 7.4 1500 83 
C 8.5 800 1.5 7.4 1500 83 
C 9 800 1.5 7.4 1500 83 
C 9.5 830 1.8 7.5 1550 83 
C 10 830 1.8 7.5 1550 83 
C 10.5 830 1.8 7.5 1550 83 
C 11 830 1.8 7.5 1550 83 
C 11.5 830 1.8 7.5 1560 83 
C 12 830 1.8 7.5 1560 83 
C 12.5 830 1.8 7.5 1560 83 
C 13 830 1.8 7.5 1560 83 
C 13.5 830 1.8 7.5 1560 83 
C 14 830 1.8 7.5 1560 83 
C 14.5 830 1.8 7.5 1560 83 
C 15 830 1.8 7.5 1560 83 
C 15.5 830 1.8 7.5 1560 83 
C 16 830 1.8 7.5 1560 83 
C 16.5 830 1.8 7.5 1560 83 
C 17 830 1.8 7.5 1560 83 
C 17.5 830 1.8 7.5 1560 83 
C 18 805 0.8 7.4 1560 83 
C 18.5 805 0.8 7.4 1560 83 
C 19 805 0.8 7.4 1560 83 
C 19.5 805 0.8 7.4 1560 83 
C 20 805 0.8 7.4 1560 83 
C 20.5 805 0.8 7.4 1560 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 21 805 0.8 7.4 1565 83 
C 21.5 805 0.8 7.4 1565 83 
C 22 805 0.8 7.4 1565 83 
C 22.5 805 0.8 7.4 1565 83 
C 23 805 0.8 7.4 1565 83 
C 23.5 805 0.8 7.4 1565 83 
C 24 805 0.8 7.4 1565 83 
C 24.5 805 0.8 7.4 1565 83 
C 25 805 0.8 7.4 1565 83 
C 25.5 805 0.8 7.4 1565 83 
C 26 805 0.8 7.4 1565 83 
C 26.5 805 0.8 7.4 1565 83 
C 27 805 0.8 7.4 1565 83 
C 27.5 805 0.8 7.4 1565 83 
C 28 805 0.8 7.4 1565 83 
C 28.5 805 0.8 7.4 1565 83 
C 29 805 0.8 7.4 1565 83 
C 29.5 805 0.8 7.4 1565 83 
C 30 805 0.8 7.4 1565 83 
C 30.5 805 0.8 7.4 1565 83 
C 31 805 0.8 7.4 1565 83 
C 31.5 805 0.8 7.4 1565 83 
C 32 805 0.8 7.4 1565 83 
C 32.5 805 0.8 7.4 1565 83 
C 33 805 0.8 7.4 1565 83 
C 33.5 805 0.8 7.4 1565 83 
C 34 805 0.8 7.4 1565 83 
C 34.5 805 0.8 7.4 1565 83 
C 35 805 0.8 7.4 1565 83 
C 35.5 805 0.8 7.4 1565 83 
C 36 805 0.8 7.4 1565 83 
C 36.5 805 0.8 7.4 1565 83 
C 37 805 0.8 7.4 1565 83 
C 37.5 805 0.8 7.4 1565 83 
C 38 805 0.8 7.4 1565 83 
C 38.5 805 0.8 7.4 1565 83 
C 39 805 0.8 7.4 1565 83 
C 39.5 805 0.8 7.4 1565 83 
C 40 805 0.8 7.4 1565 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 40.5 805 0.8 7.4 1565 83 
C 41 805 0.8 7.4 1565 83 
C 41.5 805 0.8 7.4 1565 83 
C 42 805 0.7 7.4 1565 83 
C 42.5 805 0.7 7.4 1565 83 
C 43 805 0.7 7.4 1565 83 
C 43.5 805 0.7 7.4 1565 83 
C 44 805 0.7 7.4 1565 83 
C 44.5 805 0.7 7.4 1565 83 
C 45 805 0.7 7.4 1565 83 
C 45.5 805 0.7 7.4 1565 83 
C 46 805 0.7 7.4 1565 83 
C 46.5 805 0.7 7.4 1565 83 
C 47 805 0.7 7.4 1565 83 
C 47.5 805 0.7 7.4 1565 83 
C 48 815 1.5 7.4 1565 83 
C 48.5 815 1.5 7.4 1565 83 
C 49 815 1.5 7.4 1565 83 
C 49.5 815 1.5 7.4 1565 83 
C 50 815 1.5 7.4 1565 83 
C 50.5 815 1.5 7.4 1565 83 
C 51 815 1.5 7.4 1565 83 
C 51.5 815 1.5 7.4 1565 83 
C 52 815 1.5 7.4 1565 83 
C 52.5 815 1.5 7.4 1565 83 
C 53 815 1.5 7.4 1565 83 
C 53.5 815 1.5 7.4 1565 83 
C 54 815 1.5 7.4 1565 83 
C 54.5 815 1.5 7.4 1565 83 
C 55 815 1.5 7.4 1565 83 
C 55.5 815 1.5 7.4 1565 83 
C 56 815 1.5 7.4 1565 83 
C 56.5 815 1.5 7.4 1565 83 
C 57 815 1.5 7.4 1565 83 
C 57.5 815 1.5 7.4 1565 83 
C 58 815 1.5 7.4 1565 83 
C 58.5 815 1.5 7.4 1565 83 
C 59 815 1.5 7.4 1565 83 
C 59.5 815 1.5 7.4 1565 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 60 815 1.5 7.4 1565 83 
C 60.5 815 1.5 7.4 1565 83 
C 61 815 1.5 7.4 1565 83 
C 61.5 815 1.5 7.4 1565 83 
C 62 815 1.5 7.4 1565 83 
C 62.5 815 1.5 7.4 1565 83 
C 63 815 1.5 7.4 1565 83 
C 63.5 815 1.5 7.4 1565 83 
C 64 815 1.5 7.4 1565 83 
C 64.5 815 1.5 7.4 1565 83 
C 65 815 1.5 7.4 1565 83 
C 65.5 815 1.5 7.4 1565 83 
C 66 815 1.5 7.4 1565 83 
C 66.5 815 1.5 7.4 1565 83 
C 67 815 1.5 7.4 1565 83 
C 67.5 815 1.5 7.4 1565 83 
C 68 815 1.5 7.4 1565 83 
C 68.5 815 1.5 7.4 1565 83 
C 69 815 1.5 7.4 1565 83 
C 69.5 815 1.5 7.4 1565 83 
C 70 815 1.5 7.4 1565 83 
C 70.5 815 1.5 7.4 1565 83 
C 71 815 1.5 7.4 1565 83 
C 71.5 815 1.5 7.4 1565 83 
C 72 815 1.5 7.4 1565 83 
C 72.5 815 1.5 7.4 1565 83 
C 73 815 1.5 7.4 1565 83 
C 73.5 815 1.5 7.4 1565 83 
C 74 815 1.5 7.4 1565 83 
C 74.5 815 1.5 7.4 1565 83 
C 75 815 1.5 7.4 1565 83 
C 75.5 815 1.5 7.4 1565 83 
C 76 815 1.5 7.4 1565 83 
C 76.5 815 1.5 7.4 1565 83 
C 77 815 1.5 7.4 1565 83 
C 77.5 815 1.5 7.4 1565 83 
C 78 815 1.5 7.4 1565 83 
C 78.5 815 1.5 7.4 1565 83 
C 79 815 1.5 7.4 1565 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 79.5 815 1.5 7.4 1565 83 
C 80 815 1.5 7.4 1565 83 
C 80.5 815 1.5 7.4 1565 83 
C 81 815 1.5 7.4 1565 83 
C 81.5 815 1.5 7.4 1565 83 
C 82 815 1.5 7.4 1565 83 
C 82.5 815 1.5 7.4 1565 83 
C 83 815 1.5 7.4 1565 83 
C 83.5 815 1.5 7.4 1565 83 
C 84 815 1.5 7.4 1565 83 
C 84.5 815 1.5 7.4 1565 83 
C 85 815 1.5 7.4 1565 83 
C 85.5 815 1.5 7.4 1565 83 
C 86 815 1.5 7.4 1565 83 
C 86.5 815 1.5 7.4 1565 83 
C 87 815 1.5 7.4 1565 83 
C 87.5 815 1.5 7.4 1565 83 
C 88 815 1.5 7.4 1565 83 
C 88.5 815 1.5 7.4 1565 83 
C 89 815 1.5 7.4 1565 83 
C 89.5 815 1.5 7.4 1565 83 
C 90 815 1.5 7.4 1565 83 
C 90.5 815 1.5 7.4 1565 83 
C 91 815 1.5 7.4 1565 83 
C 91.5 815 1.5 7.4 1565 83 
C 92 815 1.5 7.4 1565 83 
C 92.5 815 1.5 7.4 1565 83 
C 93 815 1.5 7.4 1565 83 
C 93.5 815 1.5 7.4 1565 83 
C 94 815 1.5 7.4 1565 83 
C 94.5 815 1.5 7.4 1565 83 
C 95 815 1.5 7.4 1565 83 
C 95.5 815 1.5 7.4 1565 83 
C 96 815 1.5 7.4 1565 83 
C 96.5 815 1.5 7.4 1565 83 
C 97 815 1.5 7.4 1565 83 
C 97.5 815 1.5 7.4 1565 83 
C 98 815 1.5 7.4 1565 83 
C 98.5 815 1.5 7.4 1565 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 99 815 1.5 7.4 1565 83 
C 99.5 815 1.5 7.4 1565 83 
C 100 815 1.5 7.4 1565 83 
C 100.5 815 1.5 7.4 1565 83 
C 101 815 1.5 7.4 1565 83 
C 101.5 815 1.5 7.4 1565 83 
C 102 815 1.5 7.4 1565 83 
C 102.5 815 1.5 7.4 1565 83 
C 103 815 1.5 7.4 1565 83 
C 103.5 815 1.5 7.4 1565 83 
C 104 815 1.5 7.4 1565 83 
C 104.5 815 1.5 7.4 1565 83 
C 105 815 1.5 7.4 1565 83 
C 105.5 815 1.5 7.4 1565 83 
C 106 815 1.5 7.4 1565 83 
C 106.5 815 1.5 7.4 1565 83 
C 107 815 1.5 7.4 1565 83 
C 107.5 815 1.5 7.4 1565 83 
C 108 815 1.5 7.4 1565 83 
C 108.5 815 1.5 7.4 1565 83 
C 109 815 1.5 7.4 1565 83 
C 109.5 815 1.5 7.4 1565 83 
C 110 815 1.5 7.4 1565 83 
C 110.5 815 1.5 7.4 1565 83 
C 111 815 1.5 7.4 1565 83 
C 111.5 815 1.5 7.4 1565 83 
C 112 815 1.5 7.4 1565 83 
C 112.5 815 1.5 7.4 1565 83 
C 113 815 1.5 7.4 1565 83 
C 113.5 815 1.5 7.4 1565 83 
C 114 815 1.5 7.4 1565 83 
C 114.5 815 1.5 7.4 1565 83 
C 115 815 1.5 7.4 1565 83 
C 115.5 815 1.5 7.4 1565 83 
C 116 815 1.5 7.4 1565 83 
C 116.5 815 1.5 7.4 1565 83 
C 117 815 1.5 7.4 1565 83 
C 117.5 815 1.5 7.4 1565 83 
C 118 815 1.5 7.4 1565 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

C 118.5 815 1.5 7.4 1565 83 
C 119 815 1.5 7.4 1565 83 
C 119.5 815 1.5 7.4 1565 83 
C 120 815 1.5 7.4 1565 83 
D 0 780 1.8 7.5 1450 83 
D 1 780 1.8 7.5 1450 83 
D 2 780 1.8 7.5 1450 83 
D 3 780 1.8 7.5 1450 83 
D 4 780 1.8 7.5 1450 83 
D 5 780 1.8 7.5 1450 83 
D 6 780 1.8 7.5 1450 83 
D 7 780 1.8 7.5 1450 83 
D 8 780 1.8 7.5 1450 83 
D 9 780 1.8 7.5 1450 83 
D 10 780 1.8 7.5 1450 83 
D 11 780 1.8 7.5 1450 83 
D 12 780 1.8 7.5 1450 83 
D 13 780 1.8 7.5 1450 83 
D 14 780 1.8 7.5 1450 83 
D 15 780 1.8 7.5 1450 83 
D 16 780 1.8 7.5 1450 83 
D 17 780 1.8 7.5 1450 83 
D 18 780 1.8 7.5 1450 83 
D 19 780 1.8 7.5 1450 83 
D 20 780 1.8 7.5 1450 83 
D 21 780 1.8 7.5 1450 83 
D 22 780 1.8 7.5 1450 83 
D 23 780 1.8 7.5 1450 83 
D 24 780 1.8 7.5 1450 83 
D 25 780 1.8 7.5 1450 83 
D 26 780 1.8 7.5 1450 83 
D 27 780 1.8 7.5 1450 83 
D 28 780 1.8 7.5 1450 83 
D 29 780 1.8 7.5 1450 83 
D 30 780 1.8 7.5 1450 83 
D 31 780 1.8 7.5 1450 83 
D 32 780 1.8 7.5 1450 83 
D 33 780 1.8 7.5 1450 83 
D 34 780 1.8 7.5 1450 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

D 35 780 1.8 7.5 1450 83 
D 36 795 0.8 7.4 1457 83 
D 37 795 0.8 7.4 1457 83 
D 38 795 0.8 7.4 1457 83 
D 39 795 0.8 7.4 1457 83 
D 40 795 0.8 7.4 1457 83 
D 41 795 0.8 7.4 1457 83 
D 42 795 0.8 7.4 1457 83 
D 43 795 0.8 7.4 1457 83 
D 44 795 0.8 7.4 1457 83 
D 45 795 0.8 7.4 1457 83 
D 46 795 0.8 7.4 1457 83 
D 47 795 0.8 7.4 1457 83 
D 48 795 0.8 7.4 1457 83 
D 49 795 0.8 7.4 1457 83 
D 50 795 0.8 7.4 1457 83 
D 51 795 0.8 7.4 1457 83 
D 52 795 0.8 7.4 1457 83 
D 53 795 0.8 7.4 1457 83 
D 54 795 0.8 7.4 1457 83 
D 55 795 0.8 7.4 1457 83 
D 56 795 0.8 7.4 1457 83 
D 57 795 0.8 7.4 1457 83 
D 58 795 0.8 7.4 1457 83 
D 59 795 0.8 7.4 1457 83 
D 60 795 0.8 7.4 1457 83 
D 61 795 0.8 7.4 1457 83 
D 62 795 0.8 7.4 1457 83 
D 63 795 0.8 7.4 1457 83 
D 64 795 0.8 7.4 1457 83 
D 65 795 0.8 7.4 1457 83 
D 66 795 0.8 7.4 1457 83 
D 67 795 0.8 7.4 1457 83 
D 68 795 0.8 7.4 1457 83 
D 69 795 0.8 7.4 1457 83 
D 70 795 0.8 7.4 1457 83 
D 71 795 0.8 7.4 1457 83 
D 72 795 0.8 7.4 1457 83 
D 73 795 0.8 7.4 1457 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

D 74 795 0.8 7.4 1457 83 
D 75 795 0.8 7.4 1457 83 
D 76 795 0.8 7.4 1457 83 
D 77 795 0.8 7.4 1457 83 
D 78 795 0.8 7.4 1457 83 
D 79 795 0.8 7.4 1457 83 
D 80 795 0.8 7.4 1457 83 
D 81 795 0.8 7.4 1457 83 
D 82 795 0.8 7.4 1457 83 
D 83 790 0.8 7.4 1457 83 
D 84 790 0.7 7.4 1457 83 
D 85 790 0.7 7.4 1457 83 
D 86 790 0.7 7.4 1457 83 
D 87 790 0.7 7.4 1457 83 
D 88 790 0.7 7.4 1457 83 
D 89 790 0.7 7.4 1457 83 
D 90 790 0.7 7.4 1457 83 
D 91 790 0.7 7.4 1457 83 
D 92 790 0.7 7.4 1457 83 
D 93 790 0.7 7.4 1457 83 
D 94 790 0.7 7.4 1457 83 
D 95 790 0.7 7.4 1457 83 
D 96 790 1.5 7.4 1500 83 
D 97 790 1.5 7.4 1500 83 
D 98 790 1.5 7.4 1500 83 
D 99 790 1.5 7.4 1500 83 
D 100 790 1.5 7.4 1500 83 
D 101 790 1.5 7.4 1500 83 
D 102 790 1.5 7.4 1500 83 
D 103 790 1.5 7.4 1500 83 
D 104 790 1.5 7.4 1500 83 
D 105 790 1.5 7.4 1500 83 
D 106 790 1.5 7.4 1500 83 
D 107 790 1.5 7.4 1500 83 
D 108 790 1.5 7.4 1500 83 
D 109 790 1.5 7.4 1500 83 
D 110 790 1.5 7.4 1500 83 
D 111 790 1.5 7.4 1500 83 
D 112 790 1.5 7.4 1500 83 
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Coagulant Time 
(hr) 

OPR Sanitizer 
(mg/L) 

pH Conductivity 
(µs) 

Temperature 
(F) 

D 113 790 1.5 7.4 1500 83 
D 114 800 1.5 7.4 1500 83 
D 115 800 1.5 7.4 1500 83 
D 116 800 1.5 7.4 1500 83 
D 117 800 1.5 7.4 1500 83 
D 118 800 1.5 7.4 1500 83 
D 119 800 1.5 7.4 1500 83 
D 120 800 1.5 7.4 1500 83 
D 121 800 1.5 7.4 1500 83 
D 122 800 1.5 7.4 1500 83 
D 123 800 1.5 7.4 1500 83 
D 124 800 1.5 7.4 1500 83 
D 125 800 1.5 7.4 1500 83 
D 126 800 1.5 7.4 1500 83 
D 127 800 1.5 7.4 1500 83 
D 128 800 1.5 7.4 1500 83 
D 129 800 1.5 7.4 1500 83 
D 130 800 1.5 7.4 1500 83 
D 131 800 1.5 7.4 1500 83 
D 132 800 1.5 7.4 1500 83 
D 133 800 1.5 7.4 1500 83 
D 134 800 1.5 7.4 1500 83 
D 135 800 1.5 7.4 1500 83 
D 136 795 1.6 7.4 1555 83 
D 137 795 1.6 7.4 1555 83 
D 138 795 1.6 7.4 1555 83 
D 139 795 1.6 7.4 1555 83 
D 140 795 1.6 7.4 1555 83 
D 141 795 1.6 7.4 1555 83 
D 142 795 1.6 7.4 1555 83 
D 143 795 1.6 7.4 1555 83 
D 144 795 1.6 7.4 1555 83 
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APPENDIX M: RAW DATA OF PILOT-SCALE SWIMMING POOL EXPERIMENTS 
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APPENDIX N: FULL-SCALE SWIMMING POOL WATER CHARACTERISTICS 
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APPENDIX O: RAW DATA OF FULL-SCALE SWIMMING POOL EXPERIMENTS 
MEASURED BY CDC 

 
 

INFLUENT 
  

C. parvum Microspheres 

Sample 
Vol analyzed 

(ml) 
Slide 
count 

Conc 
(oocysts/100 ml)

Slide 
count Conc (#/100 ml)

B1 inf 
1 5 0 <20 4 80 

B1 inf 
2 5 0 <20 0 <20 

B1 inf 
3 100 5 5 27 27 

B2 inf 
1 5 0 <20 1 20 

B2 inf 
2 5 0 <20 1 20 

B2 inf 
3 100 9 9 14 14 

B3 inf 
2 100 8 8 10 10 

B6 inf 
2 100 55 55 122 122 

B7 inf 
2 100 68 68 139 139 

B8 inf 
2 100 88 88 115 115 

B9 inf 
1 450 347 77 439 98 

B10 inf 
1 450 506 112 630 140 

B11 inf 
1 450 121 27 133 30 

B12 inf 
1 100 8 8 17 17 

B12 inf 
2 300 179 60 327 109 

B13 inf 
1 100 118 118 167 167 
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D1 inf 1 5 0 <20 6 120 
D1 inf 2 5 0 <20 2 40 
D1 inf 3 100 2 2 20 20 
D3 inf 

2,3 100 12 12 43 43 
D6 inf 2 100 116 116 104 104 
D7 inf 2 100 112 112 203 203 
D8 inf 

2,3 100 28 28 56 56 
D9 inf 1 450 429 95 81 18 

D10 inf 1 450 1050 233 1864 414 
D11 inf 1 450 582 129 858 191 
D12 inf 1 100 132 132 230 230 
D13 inf 1 100 190 190 275 275 
F1 inf 1 5 1 20 0 <20 
F1 inf 2 5 0 <20 5 100 
F1 inf 3 100 16 16 26 26 
F2 inf 1 5 0 <20 0 <20 
F2 inf 2 5 0 <20 1 20 
F2 inf 3 100 11 11 34 34 
F3 inf 2 100 9 9 44 44 
F6 inf 1, 

2 100 119 119 227 227 
F7 inf 1,2 100 88 88 174 174 
F8 inf 1,2 100 60 60 108 108 
F9 inf 1 450 560 124 846 188 

F10 inf 1 450 258 57 500 111 
F11 inf 1 450 293 65 664 148 
F12 inf 1 100 139 139 179 179 
F13 inf 1 100 194 194 297 297 
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E1 inf 1 5 1 20 0 <20 
E1 inf 2 5 0 <20 3 60 
E1 inf 
1,2,3 127.5 22 17 44 35 

E2 inf 1 5 1 20 2 40 
E2 inf 2 5 0 <20 0 <20 
E2 inf 
1,2,3 140 5 4 40 29 

E3 inf 1,2 100 12 12 38 38 
E6 inf 1,2 100 43 43 209 209 
E7 inf 1,2 100 37 37 150 150 
E8 inf 1 100 159 159 316 316 
E9 inf 1 100 22 22 45 45 
E10 inf 1 100 49 49 67 67 
Perlite inf 

1,2 100 8 8 29 29 
DE 1 inf 

1 450 239 53 296 66 
DE 2 inf 

1 450 216 48 207 46 
DE 3 inf 100 65 65 67 67 
DE 4 inf 100 87 87 95 95 
DE 5 inf 100 55 55 75 75 
DE 6 inf 100 39 39 84 84 
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EFFLUENT 

C. parvum Microspheres 
Estimated 

Removal (%) 

Sam
ple 

Vol 
analyzed 

(ml) 
Slide 
count 

Conc 
(oocysts/100 

ml) 
Slide 
count

Conc 
(#/100 ml) 

C. 
parvum 

Micro-
spheres

B1 
eff 1 1000 24 2 35 4 61 88 
B1 

eff 2 1000 15 2 28 3     
B2 

eff 1 1000 9 1 13 1 88 89 
B2 

eff 2 1000 12 1 18 2     
B3 

eff 1 1000 0 <0.1 5 1 94 
B3 

eff 2 1000 2 <0.1 7 1     
B6 

eff 1 1000 147 15 580 58 73 52 
B7 

eff 1 1000 189 19 441 44 72 68 
B8 

eff 1 1000 63 6 113 11 93 90 
B9 

eff 1 1000 139 14 471 47 82 52 
B8 

eff 1 1000 63 6 113 11 93 90 
B9 

eff 1 1000 139 14 471 47 82 52 
B10 
eff 1 1000 335 34 977 98 70 30 
B11 
eff 1 1000 97 10 382 38 64 
B12 
eff 1 1000 149 15 602 60 75 45 
B13 
eff 1  1000 842 84 1832 183 24 
B13 
eff 3 250 239 96 604 242     
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D1 eff 1 1000 12 1 83 8 50 38 
D1 eff 2 1000 8 1 165 17     
D3 eff 1 1000 0 <0.1 14 1 >92 96 
D3 eff 2 1000 0 <0.1 23 2     
D6 eff 1 1000 30 3 656 66 96 
D6 eff 2 1000 71 7 1607 161     
D7 eff 1 1000 15 2 26 3 99 99 
D8 eff 1 1000 14 1 387 39 89 25 
D8 eff 2 1000 46 5 455 46     
D9 eff 1 1000 63 6 195 20 96 27 
D9 eff 2 1000 17 2 69 7     
D10 eff 1 1000 23 2 43 4 99 99 
D11 eff 1 1000 52 5 156 16 96 92 
D12 eff 1 1000 21 2 28 3 98 99 
D13 eff 1  1000 125 13 248 25 93 91 
F1 eff 1 1000 96 10 107 11 58 48 
F1 eff 2 1000 40 4 164 16     
F2 eff 1 1000 5 1 17 2 91 92 
F2 eff 2 1000 14 1 36 4     
F3 eff 1 1000 7 1 38 4 92 91 
F6 eff 1 1000 228 23 1488 149 83 41 
F6 eff 3 250 44 18 293 117     
F7 eff 1 1000 448 45 1686 169 65 29 
F7 eff 3 250 44 18 192 77     
F8 eff 1 1000 211 21 670 67 65 38 
F9 eff 1 1000 444 44 1622 162 79 49 
F9 eff 3 250 17 7 74 30     

F10 eff 1 1000 410 41 1714 171 43 
F10 eff 3 250 60 24 196 78     
F11 eff 1 1000 312 31 1237 124 62 34 
F11 eff 3 250 47 19 175 70     
F12 eff 1 1000 201 20 442 44 86 75 
F13 eff 1 1000 984 98 2664 266 53 12 
F13 eff 3 250 210 84 642 257     
E1 eff 1 1000 77 8 181 18 70 71 
E1 eff 2 1000 27 3 20 2     
E2 eff 1 1000 3 <0.1 12 1 >72 97 
E2 eff 2 1000 2 <0.1 8 1     
E3 eff 1 1000 1 <0.1 4 <0.1 >92 >97 
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E3 eff 2 1000 2 <0.1 7 1     
E6 eff 1 1000 16 2 795 80 96 62 
E7 eff 1 1000 99 10 816 82 73 46 
E8 eff 1 1000 28 3 1127 113 98 64 
E9 eff 1 1000 112 11 783 78 43 
E9 eff 2 1000 140 14 719 72     

E10 eff 1 1000 384 38 674 67 48 
E10 eff 3 1000 121 12 821 82     

Perlite eff 1 1000 4 <0.1 4 <0.1 >88 >97 
DE 1 eff 1 1000 0 <0.1 2 <0.1 >99.8 >99.8
DE 2 eff 1 1000 0 <0.1 3 <0.1 >99.8 >99.8
DE 3 eff 1 1000 11 1 13 1 98 98 
DE 4 eff 1 1000 0 <0.1 0 <0.1 >99.9 >99.9
DE 5 eff 1000 0 <0.1 1 <0.1 >99.8 >99.9
DE 6 eff 1000 1 <0.1 1 <0.1 >99.7 >99.9
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APPENDIX P: RAW DATA OF FULL-SCALE SWIMMING SPA EXPERIMENTS 
 
 
Cartridge Filter with Coagulant 
  
  
Does 
(mg/L) 

1.56 3.12 4.68 6.24 7.8 9.36

Removal 86.73% 73.20% 69.80% 67.61% 22.54% 38.79% 
  79.59% 62.89% 41.41% 56.19% 27.10% 10.19% 
  80.91% 78.16% 69.71% 41.58% 24.44% 36.54% 
  73.74% 67.35% 49.02% 43.81% 17.12% 8.33%

  80.00% 78.22% 78.35% 45.26% 7.89% 22.08% 
  80.00% 60.61% 51.96% 50.94% 19.09% 11.71% 

 

Control with DE 
36.79% 99.00% 
18.56% 99.19% 
11.76% 99.11% 

  92.86% 
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APPENDIX Q: MATERIAL SAFETY DATA SHEETS 
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