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ABSTRACT

ZIAUL HAQ ADNAN. Bul | whi p effect in pricing in va
contracts wusing a g¢@nderthe trecoon ef Dn. E @.1 frame
OZELKAN)

Bullwhip effect in Pricing (BP) refers to the amplified variability of prices in a
supply chain. When the amplification takes
towards the dwnstream (i.e. retail side) of a supply chain, this is referred as the Reverse
Bullwhip effect in Pricing (RBP). On the other hand, if an absorption in price variability
takes place from the upstream towards the downstream of a supply chain, we refer this
phenomenon as the Forward Bullwhip effect in Pricing (FBP).

In this research, we analyze the occurrence of BP in the case of different game
structures and supply chain contracts. We consider three game scenarios (e.g.
simultaneous, wholesaleading, and retaileading) and two supply chain contracts (e.g.
buybackand revenusharing). We analyze the occurrence of BP for some common
demand functions (e.g. legpncave, linear, isoelastic, negative exponential, logarithmic,
logit etc.). We consider some common pricing practices such as adisded and fixed
percenage markup pricing and the optimal pricing game.

We discuss the conditions for the occurrence of BP based on the concavity
coefficient and the cogiassthrough. We analyze the price variation analytically and then
illustrate the results through numericgimulations. We extend the cgsssthrough
analysis for a Nstage supply chain and conjecture the BP ratios fostabe supply chain.

We compute cogpassthrough under both a buyback and a reveshering contract. We

compared the BP ratios betweenesenuesharing contract and a fuontract cases. We



include both the deterministic and stochastic demand functions with an additive and a
multiplicative uncertainty.

The results indicate that the occurrence of BP depends on the concavity coefficient
of the demand functions. For example: RBP occurs for an isoelastic demand, FBP occurs
for a linear demand, No BP occurs for a negative exponential demand etc. This study also
shows that, FBP and RBP occur in varying magnitude for different types of games and
supply chain contracts. The comparison between the stochastic model and dleasrisk
model shows that the additive or multiplicative uncertainty changes the price fluctuation.
The comparison between contract anecoatract cases shows that the contracimmizes

FBP or RBP in some cases.
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CHAPTER1: INTRODUCTION

1.1 Introduction

Pricing decision is critical as it is responsible for significant share (e.g. up to 90%)
of the final product cogfDavenport & Kalagnanam, 20Q1Pricing is directly related to
sales, reveneand profis. In order to improvehe customer service or to attract more
customers, many companies apply dynamic pricing strategy. Many a times, companies
fluctuate price to adjust with the supply or to cope up with the competition in the market.
Thus it benefits boththe seller andthe buyer (Dugar, Jain, Rajawat, & Bhattacharya,
2015) However, fluctuation of prices can lead to market speculation and increased
uncertainty. It creates information distortion in order quantity and inventory (also known
asthe6 Bul | whip Effectd) which adversely affe
inventories, backorders, inefficient use of resourceg¢lete Padmanabhan, and Whang,
2009). Therefore, it is necessary to study the fluctuation of price in the supply chain.

Price variation may occur due to internal or external factors such as managerial
decisiors, cost changg scarcity of resources, supplier quantity discounts, promotional
sales, or future market speculations. In this study, we consider external costscashge
then analyze the impact of the cost change on the supply chain optimal pricing.

Interestingly, price variation does not remain constant always across the various
stages of supply chain. It may propagate in an increased or decreased fashion towards

downstream (i.e. customer side) supply chain depending on the demand function, supply



chain structure etc. We name the amplified or absorbed variability of pricdse as
6Bu whi p ef fect I n Pricing (BP) 0. | f vari
downstream supply chain, then researchers I
(RBR¥& el kan & ¢ ak.a0myhé btliee radmf, variablit9y Of )price is
absorbed towards the downstream supply cha
in Pricing (FBP)OG. The 9refervoetmedieedtionaohtde 6 f or
classical Bullwhip effect in order quantity and inventory decision. In cladsigivhip
effect, the variability of order information towards upstream is higher. Hence, if the
variability of price towards downstream i s
on the other hand, if the variability of price towards downstresaless, then the direction
is referred as o6forwar do.

Using real market datdigure 1.1 and 1.2 shows the empirical evidenaean
amplified andreduced variation in priceespectively Figure 11 shows amplified
variability in the case of U.S. beef anket and potato prices in Chicago, IL. This is an
example of RBPFigure 1.2 shows decreased variability in oil retail prices. This is an
example of FBP. Empirical research in U.S. coffee market shows, a 10% incrélase in
cost resultinga 3% increase inheretail price(Leibtag, Nakamura, Nakamura, & Zerom,
2007) German coffee market also shows reduced variability in retail BEoanet,
Dubois, Villas Boas, & Klapper, 201.3We can say, FBP occurs ihe case of coffee

market.
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Figure 11: Amplified variability* in beef and potato prices towards downstream supply
chain

L In this figure, we compare the standard deviatignsf the reabeefprice data from USD/And potato
price data from FREDSimilar conclusion can be drawn by comparing the price idd¢éa(e.g. CPI, PPI
etc) from Bureau of Labor Statistic databg€zelkan and Lim, 2008).
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Figure 12: Decreased fluctuation of retail oil price. [Image adapted BBonmenstein and
Cameron (1992and further edited]

Existing research is centered on the occurrence of RBP. Therefore, one research

guestion may be asked, Afcan bull whip effe
direction?o. This same question afectinbe r enp
PricngFBP) occur ?0. I n order t o tlfiebcguwreneeofo ut t h

RBP, existing literature considered game theoretic modelnotilti-stage linear supply
chain,wherealeadéro|l | ower type O0Stackel ber géergame v
or an upstream supply chain player actredeader. However, previous research did not

consider the reverse direction of game where powerful retailers (or downstream supply



chain players) may act as leaders too. A simultaneous game structure wassmred
either. The occurrence of BP the case of advanced supply chain contraetas also
unansweredBased on previous studies, research questions that we are trying to answer can
be summarized as follows:
1. Can bullwhip effect in pricing propagatethe forward direction? Alternately, does
FBP occur?
2. Does bullwhip effect in pricing exist if retailers or downstream supply chain players
act as | eaders in 6Stackel bergd game?
3. How does BP occur in the case of simultaneous supply phaing games?
4. What is the effect of Buyback contracts on BP?

5. What is the effect oRevenuesharing contracten BP?

The objective of this research is to analyze the price variability across the supply
chain stages considering variogame structuresand supply chain ctdracts In next
chapter, we review the literatwelrhen in Chapter 3ywe analyze the conditions for the
occurrence of BP and conclude the occurrence of BP for some common demand functions
and pricing practices. In Chapter 4, amalyze the occurrence BP for optimal pricing in
three gamesettings. After that,to analyze the occurrence of BPtirecase of supply chain
contract$, we considebuyback (Chapter 5) arrdvenuesharing contractéChapter 6 and

7)in our model In the case of buyback contridhe demand is stochastic and the problem

2 Supply chain contracts enables earning more prGfitP. Cachon (2003) evi ewed vari ous
performance in coordinating the supply chain.

3 Some popular supply chaincontractsare revenuesharing, buyback/return/markdowngostplus, sales

rebate, quantity discoynprice-discount/biltback, quantity flexibility etc(G. P. Cachon, 2003)

4In the caséuyback contract, there is no deterministic demand case. Because, for deterministic demand,
there is no need oéturnpolicy/buyback.



is modeled as a newsvendor case (Chapter 5). In the case of retanng contract we
consider both deterministic and stochastic demand. In the deterministic demand case
(Chapter 6), the problem is modeled aarkappricing games (similar to Chapter 4). In

the stochastic demand case (Chapter 7), the problem is modeled as a newsvendor case
(similar to Chapter 5). In stochastic demand cases (Chapter 5 and 7), we consider both
additive and multiplicative type dem@wincertainties. \Wconductanalyticalanalysisand

illustrate the results withumerical simulatios in each of the chapters (4,5,6, andThen

finally, in ChapteiB, we summarizéhe majoresearchgiscusghe limitations and suggest

futuredirections



CHAPTER 2: LITERATURE REVIEW

2.1Introduction

In this chapter, we revieseveral streams diferatures related to the research such
asthe effect of price variation on bullwhip effect, bullwlgfect in pricing, price variation,
pricing databasegame theory applicatienn supply chains, newsvendor modalyback

contracts, andevenuesharing contrast

2.1Effect of Price Variation on Bullwhip effect

The term 6Bul | whi p roduted byd. L.deewadmanalbbhang i n a |
and Whang (1997)5ince then, it has been a buzzword in the supply chain analysis. There
are numerous analyticdl. Chen & Lee, 2009; Ma, Wang, Che, Huang, & Xu, 204rg)
empirical analysis to quantify and reduce the bullwhip effect in various supply chain
structure. For a recent comprehensive review about bullwhip effect, the reader may check
the review paper bX. Wang and Disney (2015F. Chen, Drezner, Ryan, anih&hi-
Levi (2000) quantified the Bullwhip effect in supply chain considering simple supply
chain. They also illustrated the existence of bullwhip effect even considering centralized
demandH. L. Lee, Padmanabhan, and Whang (200dtified four sourcesfdullwhip
effect (e.g. demand signal processing, rationing game, order batching, and price variations).
Later, other researchers found many other sources of bullwhip éHpattacharya &

Bandyopadhyay, 2011Among various causeBaik and Bagchi (200@onsidered price



variations as one of three most significant causes of bullwhip effect in order quantity and
inventory. Therefore, reducing price variation may reduce bullwhip efiegtj, Leukel,

and Kirn (2007 gnlso suggested that pricing strategg.(eeverse pricing) could reduce the
bullwhip effect in order quantity. They used agbased simulation in their analysis to

support their claim.

2.2 Bullwhip effect in pricing

Researchers identified amplified fluctuation in prices towards downstream supply
chain and referred it as 6 Rev ¢0zakan & ul | wh
takanyél dér ém, 2009;. ¥¥pkbkkhan a&d Litmk amy0&0l8c
considered leaddbllower game framework in the supply chain and related thepasst
through to cpture the ratio of priceariances. They derived the conditions on price
sensitive demand function for which priariation may be amplifieddzelkan and Lim
(2008)extended the previous analysi®nsidering stochastic demand function and added
some strager and weaker conditions tiredemand function. Both of these papers focused
on the reverse bullwhip effect in pricing but did not consider the plausibility of forward
direction of bullwhip effect in pricing. Literature related bullwhip effect in pgamvery
limited. To our best knowledge, no other paper discusses bullwhip effect in pricing,
however, there are numerous papers that discussed the concept from dynamic pricing and

costpassthrough perspectives which are reviewed in the next section.

SThepapero¥ zel kan and ¢ ak a origigalypwlisiEedoni{ne ¢h @7 thatweas cited
by Ozelkan and Lim (2008)



2.3Price Variation

Among the literatures of dynamic pricing, there are analytical models, as well as
empirical models.

In the analytical analysis of price change, quaststhrough is a great economic
tool (Weyl, 2008) Costpassthrough is the marginal ratd price-changes in cost. The
costpasst hr ough reflects the retailerdés opti ma
change.Tyagi (1999)shows the conditions on customer demand to conclude about the
costpassthrough. Based othe costpassthrough, Weyl (2008) extracted conclusions
about profits and markup in simultaneous and wholesale leading game. However, he did
not consider the retail leading game. He also differentiated between cost amplifying and
absorbing, increasing and decreasing-pasisthrough.Weyl (2008)considered canonical
simple supply chain structure with two stages (retailer and manufacturer). Unlike that,
Gaudin (2016}alculated pasthrough in vertical contracts considering bargaining power.
While Fabinger and Weyl (2018)jscussd the cospassthrough;Cowan (2004¥liscussed
demand curvatur&Spengler (1950alked about profit margin in double marginalization;
Bresnahan and Reiss (198&)mpared the margins between retailer and wholesaler;
Adachi and Ebina (2014pnnected the ark of WeytFabinger and Cowan with the work
of Spengler and Bresnah&eiss.Adachi and Ebina (2014glated the cogpassthrough
with profit margins in double marginalization.

Villas-Boas (2007)empirically analyzedgrice-variatiors in yogurt market. They
use the data from IRI set and considered vertical relations, various supply chain structures,
linear and nodinear pricing. E. Nakamura and Zerom (2018halyzed the incomplete

costpassthrough empirically in coffee industryBonnet et al. (2013)did empirical



analysis of cospassthrough in German coffee market. Some researchers usegtaige
dataset to analyze price dynamics at grocery lé¢elO. Nakamura, Nakamura, &

Nakamura, 2011)

2.4Pricing Database

In order to study empcal examples of price variation, we look for dataset of retalil
prices, wholesale prices, commodity prices etc. ERS division of USDA compared the farm
price, wholesale price and retail price by commodity types (e.g. beef, orange, broccoli etc.).
FederalReserve Economic Data (FRED) by Bank of St. Louis provides economic data in
various categories including commodity prices at various frequency level (e.g. weekly,
monthly, annual etc.). The US Bureau of Labor Statistics (BLS) provides price indexes
(e.g. @nsumer Price Index (CPI) and Producer Price Index (PPI)) for various categories
of products.

A good database for academicians is IR| datattetontains store data (e.g. sales,
pricing, promotion etc.) at UPC level for 11 years in 47 marketsl(&300 grocery stores;
7,500 drug storesAdvertising data is also available for some early ye@nsnnenberg,
Kruger, and Mela (2008)iscussed about this dataset in details.

Kilt Center for Marketing from The University of Chicago Booth School of
Busines maintains and promotes both public and subscriitased databases for
academic researchérs For academic purpose, public da

Bayesm etc.) are good resolsce The Domini ckos 2ifFpopuarfor Foods

8 IRI academic datasetttps://www.iriworldwide.com/efJS/solutions/Academi©ata Set;

Processing antiandling charge$100Q Data: 350+ gigabyte; Medi&lSB drive

Key measureand applicatiorof IRI datasethttp://www.whartonwrds.com/datasets/iri/

" Marketing Databasesttps://research.chicagobooth.edu/kilts/marketiatpbases

8 Dominick'sdatasethttps://research.chicagobooth.edu/kilts/marketiatabases/dominicks/genefiés
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academic reearch. This database contain data from a single retail BaMakamura,
2008)

Various research reports (e.g. eMarketer, Statista, ThomsonONE etc.) use Nielson
(formerly known as AC Nielsen) data. It is a rich (in terms of size, scope, breadth,
longitudinal timeframe etc.) commercial dataset that provides scanner panel data of retail

prices at UPC (Universal Product Code) level. The academic version of this dataset is

referred as ONielsen Dat as%whghiaapartndrep Ki | t
bet ween O0The University of Chicago Booth
Companyo6. The Kilts Center has been | icens

(around the world) with access to several Nielsen datasets. This dataset containgiconsum

panel data (consisting of 40 to 60 thousand US households) since 2004 and retail scanner

data (e.g. prices, point of sales information etc. of 90 retail chains) since 2006. Nielson
mostly contains data from the large retail chains (exceptMéat), but not from the
independent supermarkets, which is a major share of U.S. métkéiskamura, 2008)
Moreover, household buys less amount of a particular UPC and often shifts among UPCs
(of the same types of product); therefore, the data represents vdrygismasection of
identical items(E. Nakamura, 2008Broda and Weinstein (2018jscussed about Nielsen
datasets in details.

Unlike retail price data, wholesale prices are not readily available. Wholesale trade
deals are more complex and confident&holesale/manufacturer prices of some grocery

chains (from 50+ markets) are available from PromoData and commodity prices can be

9 Nielsen Datasets at the Kilt Center for Marketihtips://research.chicagobooth.edu/nielsen/

11
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available from New York Board of Trade or New York Physicals market(tlathtag et

al., 2007; E. Nakamura & Zerom, 2010)

2.5Games Theory Applications in Supply Chains

Game theoretical framework is commonly used in supply chain analysis. The game
rule can be applied among players within the same echelon of supply chain (e.qg. retailer vs
retailer, supplier vs supplier etcgeeexamples ibowrick (1986); GalOr (1985); Y. Li
(2014)etc.) or different echelon of supply chain (e.g. wholesaler vs retatss)examples
in Cai, Zhang, and Zhang (2009); E. Lee and Staelin (1997); Moorthy and Fader (1989)
etc.). The former type is callechorizontal game and the latter is caldeeertical game. A
combination othe horizontal and vertical game is also seen in the supply chain literature
(Yu & Huang, 2010) The game players can decide on their strateggresltaneously or
one player can decide after the other pldngcommitted on its strategy (i.e. sequential
move). Simultaneous game is often referred as Nash game and sequentidblkader
type game is referred as Stackelberg game. Stackelbergoganhe wholesale leading or
retail leading depending on who is committing first on its strategy. The leadership role can
be endogenous or exogenous (i.e. defined by the market type). The game could be quantity
setting or price setting or a combinatiortluése two (e.g. wholesaler decides on wholesale
price and retailer decides on order quaniilyjene & Parry, 1998; Yang & Zhou, 2006)

The cost information can be unknownaorommon knowledgéAlbaek, 1992)

Gerard P. Cachon and Netessine (2@dyideda comprehensive review of game
theory application in supply chain managemé&mtgan and Tapiero (2008)scussed the

application of supply chain games from an operation management and risk valuation
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perspective.He, Prasad, Sethi, and Gutierrez (200&yiewed the applications of

Stackelberg differential game in supply and marketing channel.

Followings are some of the examples of game application in supply chain analysis
from the literatureslngene and Parry (1998)pplied game theory to decide on optima
wholesale price policy considering competing retailéesng and Zhou (200&onsidered
wholesaleraaSt ackel berg | eader and then among t hi
three types of competing behaviors (€2gurnot, Collusion and Stackelbgr@ai et al.

(2009) analyzeda dual channel competition from three gatheoretical perspectives
supplierstackelberg, retailestackelberg and nash game. They compared between two
situations wher¢he supplier enterén adirect channel othe supplieroperates through

retail channelTsao et al. (20143pplied a RetaileBtackelberg game in the supply chain

of category products where manufacturers offer trade allowargegi-Naseri and
Khojasteh (20155howed the application of the Stackelberg game between two supply
chain and also between two players of the same supply chain. They considered both the
manufactureteading and retailleading gamelLantz (2009)appliedthe game theory to
solve the double margihzation problem of transfer pricing and recommendédo-part

tariff. Leng and Parlar (201@pplieda cooperative an@ non-cooperative game ian
assembly supply chaitX. Y. Zhang and Huang (201@pplied Nash bargaing model
between one platforrproduct manufacturer and multiple cooperative suppliers. They
developed an iterative algorithm to find the subgame perfect equilibiurand Huang
(2010) applied dual simultaneous naooperative game framework in vendgoanaged
inventory. They developed ¢hmodel as a dual Nash game model (two-garesi

retailerretailer, and manufactureretailers). They applied Genetic Algorithm to find out

13



the Nash equilibrium SeyedEsfahani et al. (201Bpplied Nash and Stackelberg
(wholesale and retail lead) games drvertically cooperative pring and advertising
decision.Nie (2012)showed the application of Stadberg game with leadership-iarn
under open loop and close loop information sys¥idodo, Pujawan, Santosa, Takahashi,
and Morikawa (2013xpplied adjustedtackelberg game in their analysis of dual channel
supply chain.Y. Li (2014) applieda simultaneous and sequential game in vertically
differentiated market (i.e. products with heghand lower quality)Konur and Geunes
(2016) applied Stackelberg game betwettre supplier and retail chain considering

horizontal centralization and joint procurement.

A relevant question may occur in the re
disadvantage in leadership of the Stackelberg game. Researchers commented on this issue.
Dowrick (1986)argued that inhe case of horizontal pricing game, if the reaction function
is downward sloping, both firms prefer to be leader in order to get more @ofihe other
hand, inthe case of upward sloping reaction function, both firms prefer to be follower. In
such case, if the firms are allowed to choose their leadership role, they cannot agree.
Similarly, if the leadership is assigned exogenously, taek8tberg leader gegireater(or
lesg profits than the follower if the reaction functions of the players are down(@ard
upward sloping respectivelyGalOr, 1985) Cyrenne (1997¢onsidered horizontal game
(between manufactur@nanufacture and retarleetailer) with vertical relations
(manufactureretailer) and showed thtteprice leadership is not always advantageous in
thecase of vertical relationship. the case of vertical pricing game, if the decisiorthod
wholesaler and retailer are strategic substitutes (i.e. if one raises margin, then other finds it

optimal to reduce), thetheleader getadvantage. On the other hand, if one finds it optimal
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to increase its margin more whehe other had increasd the magin (i.e. strategic
complements); then the follower gets advan{&gé.ee & Staelin, 1997; Moorthy & Fader,
1989) Albaek (1992)analyzed the emergence of endogenous leadershie icase of
unknown cost information and argued that the assumption ofowrkiest may create
incentives forthe leadership role; however, there will be situation when the supply chain
players cannot agree on the leadership #d&ur and Geunes (2016)so commented on
the advantage or disadvantage of leadership in the seppip of one wholesaler and

coordinated retail chain.

2.6 Newsvendor Model

In our researchywe considera price-setting newsvendor modéd model the
contracts with stochastic demand (Chapter 5 andé&Wsvendor model is primarily used
for inventorymanagement of perishable produdthis model can also be applied to other
seasonal products having shlifiecycle suc as fashion gooddetruzzi & Dada, 1999;
Stalk Jr & Hout, 1990)The original idea came from the concepaaNe w s b%cgsé,
where aseller buys certain amount of newspaper at tlggnipéng of the day and heells
those newspapers within that day, otherwise the newspaper become obsolete. Therefore,
the seller neesito forecast the demand of the day accurately. If he outof order(i.e.
understocking) then he loses potential salgmt may impact his goodwill (e.g. losing

customer). The loss of goodwill can be consideredpenaltycost. Oh the other hand, in

10 Historically, Edgeworth (1888) was the first to discuss thesvewdor problem in a bank industry to

satisfy the demand of cash fl ows. He suggested wusi |
of the demand. Later Morse and Kimball (1951) intr
problemwa al so known as OChristmas Tree Problemb6é and
O6Newsvendord (suggested by Matthew Sobel) is common
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the case of overstocking, hmay incur a completss ormay receivea salvage forthe
leftovers.There are many versions tbie newsvendor model. The basic version compares
the cost of overstocking and the cost of understocking. Thus, it calculates the optimal
service level that generates maximum payoff for the company. Nedsw model usually
considerasingle productor asingle period.

Many researches have been done in the field of newsvendor rabdel(2012)
Qin, Wang, Vakharia, Chen, and Seref (201dnd Khouja (1999)provided extensive
reviews of newsvendor model. lime case of newsvendor modéiedemand can be either
price-independent or priesensitive(Jammernegg & Kischka, 2013} is to be noteda
suboptimal decision may generatéhé price-sensitivity of demand is not consider@te
& Sun, 2016) In the price-setting newsvendor modehe demand is price sensitive. In
such modelthenewsvendor decid®noptimal order quantity & price. Examples of earlier
works inthe price setting newsvendor avéhitin (1955) Zabel (1970) Thowsen (1975)
Mills (1959), Karlin and Carr (1962)Young (1978)etc. Petruzzi and Dada (1999)
reviewed pricesetting newsvendor, and consideredth additive and multiplicative
uncertaintytypes In Petruzzi and Dada (1999 mjmidt delcision of stockinguantity
and selling price were considered. The demand or supply can be uncettampiite
setting newsvendor modéll. Xu, Chen, and Xu (201@nalyzed the effects of uncertain
demand, and/. Xu and Lu (2013)nalyzed the effects of uncertain suppiya price
setting newsvendor moddHsieh, Chang, and Wu (2014Jso considered the demand
uncertainty in their pricsetting newsvendor model along with competing manufacturers
and a retailerYao, Chen, and Yan (200&onsideredan additive uncertainty irthe

demandJammernegg and Kischka (2018nhdX. Xu, Cai, and Chen (201tpnsidered
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multiplicative uncertaintyn the demandAbad (2014)and Kocabiyikoglu and Popescu
(2011) considered both tygeof additive and multiplicativeuncertainty. It is to be
mentioned the additive uncertainty has constant variancethiecase of multiplicative
uncertainty, the variance is pridependent buthe coefficient of variation is constant
(Abad, 2014 Petruzzi and Dada,19R9Additive typemodel is easier to analyze and
explore(Abad, 2014)

X. Xu et al. (2011 providedasolution framework fotheprice setting newsvendor
problem considering general demand settingammernegg and Kischka (20E3sumed
guastconcavity ofthe objective function to narrow the range of enumeration. They
calculatedheoptimal stocking factor and provided conditionstfugexistence of solution
for both priceindependent and priesensitive demarsd Many researchers derived
necessary and sufficient conditis for unimodality of the objective function time price-
setting newsvendor mod@{ocabiyikoglu & Popescu, 2011; Lu & Siméhevi, 2013)

In newsvendor modelingheservice level approach is preferable thfamshortage
cost approach, becautee shortage cost is difficult to forecast and it is proekpcific
(Abad, 2014)Both ofLu and Simchd_evi (2013)andKocabiyikoglu and Popescu (2011)
did not use shortage cost in their mod&cabiyikoglu and Popescu (201ihtroduced
lost-sale elasticit in their model.Abad (2014)focused on service level approach to
determine optimal policy for priegetting newsvendor probledammernegg and Kischka
(2013) consideredhe service level and probability of negative profit as constraints in
solving forthe optimal price and order quantity.

Typically, newsvendor model considers single proflucsingle season. However,

there are models that consider multiple complementary and substitute pr@dettani
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& Shmatov, 2011)Hsieh, Chang, and Wu (2014lsoconsidered differentiated products
from multiple manufacturers$n the case of single product, price sensitive demand is only
sensitive to its own price but the case of availability of complementary and substitute
products, the cross prisensitivity $iould also be considere&achani and Shmatov
(2011)considered sensitivést o own price, to competitoros
price.

Ye and Sun (2016@hcorporated strategic behavior of consumers in pagsitive
newsvendor model. The strate@nd forward thinking consumer tend to delay their order
until the products are available at salvage or discounted jecand Sun (201&nalyzed
the effect of additive and multiplicative type prsensitivity of demand, and determined
optimal sellirg price and stock quantity that maximize the profit. The results indicated that,
the strategic behavior of cons u(Me& Sun, mpact s
2016) Like the strategic consumers, strategic retailers can also postpone théfrgovder
pricing decisions Strategic retailers may set the price immediately after experiencing the
demand uncertaintgsranot and Yin (200&8nalyzed the effect of price postponement and
order postponement in decentralized newsvendor model. The demand waepsitive
andtheuncertainty was of multiplicative type.

In order to boost up sales or profits, supply chain experts often promote various
contracts that may eventually increase the overall supply chain prafibus popular
contracts include but not limited touyback revenuesharing, cosplus, sales rebate,
guantity discount, franchissontracts etcWe are consideringuyback andevenue share
contract in our analysidJnder any contract, a supply chainsaid to be coordinated if

individual 6s best action i mproves the over
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participation among decentralized firms, such that they behave like a centralized coherent
system(Giannoccaro & Pontrandolfo, 2004Moreover, the supply chain players would

be interested to participate in any contract if their individual profit increases under contract
situation compared to Aoontract situationGérard P. Cachon (20083viewed various
contractso6 per fnewsvardarenedel ¢botimfxguridesand pricgsetting

types). He also discussed the scenarios when simpler contracts @optisodl actions)

with less administrative cost is preferred over a perfect coordin&iérard P. Cachon
(2003)also analyzedhe joint consideration of price and quantity decision in newsvendor
model and concluded that coordination with contract is difficult in such cases, because of
conflicting incentivesln next sections, we discuss two popular contraattyback and

revenue saring.

2.7Buyback contract

Buyback contract is suitable for products with limited life expectancy (H6hn,
2010). This contract is very popular in markets like books, pharmaceuticals, apparels,
computers, newspapers etc. (Padmanabhan & Png, 1993%%8®f he new hardcover
books are returned to the publisher (Cachon & Terwiesch, 2012; Chopra & Meindl, 2015).
Other markets and companies that practice the buyback contract includes but not limited
to toys company such as DoodleTop (Leccese, 1993), computeas@mgguch as HP and
IBM (Anonymous, 2001), Intel (Roos, 2003; Spiegel, 2002), apparel industry (Choi, 2013;
Xiao & Jin, 2011) etc.

In the case of buyback practice, the geographical location plays an important

because of the associated shipping cost. éldoncal suppliers may offer this contract as
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an added service in a competitive supplier market (e.g. Choi (2013).). For distant suppliers,

a modified version of the buyback can be implemented where the retailer need not to return

the good physically, bk al vages at the retailerdés | ocat
amount back for the |l eftovers (Cachon, 200
known as Omarkdown money6 that is offered

examples, manatturers like Tommy Hilfiger, Liz Claiborne, Ralph Lauren, Jones
Apparel Group etc. offer markdown money to retailers like Federated (also known as
Macyo6s), Dill ard's, Saks, Kohl ' s, J. C. Pe
Wrzaczek, & Jonak, 2@) Wang & Webster, 2007).

Researchers applied the buyback contract in various supply chain structures such
as a single supply chain (Wang & Webster, 2007); a supply chain with two production
modes (Donohue, 2000); a supply chain with effort dependent de(@athon, 2003;
Taylor, 2002); a supply chain with leaserse retailer (Wang & Webster, 2007); agyp
chain of massustomizatioretc.

Two of the main objectives of applying supply chain contracts is to coortlinate
the supply chain and to increase tirofitability of the supply chain. In the case of a fixed
price model, the buyback contract coordinates the supply chain (Pasternack, 1985), hence
eliminates the double marginalization problem. In the case of agetiag newsvendor

model, the buybackontract cannot coordinate the systéifKandel, 1996). However, the

A supply chain is referred as coordinated if each
chain. That means, each membersé profit function st
function (Cachon, 2003).

2 A modified versiorof buyback (e.g. pricéliscount contract) may coordinate the préegting newsvendor

model where the wholesaler dictates the retail price (e.g. retail price maintenance) (Kandel (1996); Cachon
(2003)). Moreover, it is to be mentioned, according to Maamel Peck (1995) and Bernstein and Federgruen

(2005), buyback can coordinate the supply chain if the supplier earns zero profit (Hohn, 2010). Giri, Bardhan,

and Maiti (2016) claimed that their composite contract (a combination of the buyback contiastrelssde,
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contract still incurs greater profits for the retailer and wholesaler. Emmons and Gilbert
(1998) analyzed the application of buyback contract in a single supply chain with
multiplicative demand uncertainty and showed that the buyback contract can increase the
whol esal erds profit. Padmanabhan (2004) ar
manufacturer and multiple competing retailers with demand uncertainty and showed that
buyback(ale r ef erred as a return policy) i mprov
Lu (2010) also applied return policy in the context of manufaciBtackelberg game and
competing riskaverse retailers. Wu (2013) showed that buyback is profitable in ls#h ca
of single supply chain or a competing supply chain. He assumed a vertical integration and
a Stackelberg game. In both cases, the buyback turned out to be profitable. There are
examples of modified versions of buyback contracts as well (Cachon, 200&t @i.,
2016). Cachon (2003) discussed the price discount contract as a modified version of the
buyback contract. Giri et al. (2016) combined the buyback contract with a sales rebate and
a penalty contracts.

In this research, we are considering a gmgipply chain with stochastic demand
(e.g. newsvendor model) where the wholesaler offers the buyback contract. Since, the
buyback contract is widely practiced in the supply chain market; we are interested to

analyze the price variation in this case.

2.8 Revenuesharing contract
Revenuesharing contract is very popular in video rental induskgrard P Cachon

and Lariviere (2005)liscussed the application, strengths, and limitatiorthesfevenue

and a penalty contracts) coordinates the decentralized|dyeesupply chain with stochastic demand and
random yield.
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sharing contract considering newsvendor model. They showddat revenuesharing
contract is equivalent to btlyack (or pricediscount) contract ithecase of fixeeprice (or
price-setting) newsvendor modd?bfeiffer (2016)compared the reventgharing contract
with conventional wholesalprice contract and cogllus contract and concluded that in
the case of greater cosihcertainty, revenusharing contract outperforms the wholesale
price contract. Many researchers showleel application of revenugharing contract in
coordinating the supply chai(Gérard P Cachon & Lariviere, 2005; Giannoccaro &
Pontrandolfo, 2004; Hu, Meng, Xu, & Son, 2016; Kebing, Chengxiu, & Yan, 2007; S. Li,
Zhu, & Huang, 2009; WG. Zhang, Fu, Li, & Xi, 2012)

In the case of revenusharing contracts, retailers share their private information
(e.g. sales) with the wholesaler; therefore, there is risk of potential cheating (e.g.
underreporting sales). Ho we v dheretailerulpusd | er 0 s
revenuesharing contract requires administrative investsenterefore, this contract is
popular in video rental and book industry, where tracking of retail sales is cheap
administrativelyHe e s e and -Kyf28l6)analgzed ragnuesharing contract
with asymmetric information and dishonest retailer.

Revenuesharing contract is more applicable to the type of industries where sales
are | ess dependent on retailerdés effort (i
etc.). In such industries, sales are mostly influencedh@national brand effect. Thus,
availability of goods in the retail shops is important to satisfy the customer demand.
Revenuesharing contract inspires retailers to order more; hence, market availability
product increases. Under revenue share contract, wholesaler sells the products at a cheaper

rate and get a share frahesales revenue. The share percentage is mutually agreed upon,
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and ofterinfluenced by the bargaining power of the supply clpéayers. However, ithe
case of fixed retail price model, the optimized share percentage that maximizes the overall
profit, can also be calculated and agreed y&iannoccaro & Pontrandolfo, 2009; S. Li
et al., 2009; Pfeiffer, 2016 Revenuesharing cotract reduces prices and inspires the
retailer to order more. Thus, market availability and salescreasd undertherevenue
sharing contract. In the literature of reversinaring contract, twechelon supply chain is
commonly considered; howevergthnalysis can be extended for thséggg Giannoccaro
& Pontrandolfo, 2004; Hu et al., 201&) n-stage supply chaifFeng, Moon, & Ryu, 2014)
as well.

Researchers have introduced several variations of rexdraugng contrast
recently.Feng et al. (204) analyzed Revenugharingcontract considering the reliability
of the firms (RCR) and concluded that in some cases, their modified approach gives more
profit than the classical revengbaring contract. In that approach, the arbitrary profit
sharing albcation is adjusted based on the comparative reliability of the firms, hence it
inspires the firms to improve their reliabilityafa Arani, Rabbani, and Rafiei (2016)
mergedheoption contract with revenugharing contract and claimed that the profithef
supply chain is increased and the double marginalization effect is reduced. They considered
various leadership role (e.g. wholesbkdading, retadleading etc.) inhegame analysis for
different types of marketu et al. (2016g@pplied revenusharing contract, compared the
coordination of the supply chain between two scenaldss averse vs loss neutral retailer,
and concluded that losgeutral retailer gains greater profits and a greater utility compared
to lossaverse scenari&. Li et al. (200) considered revenugharing contract along with

consignment contract (which is popular in online markets). In their Nash bargaining model,
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the retailer decides aie share percentage and the manufacturer decides on retail price
and order quantity.

Even if the revenusharing contract coordinates (i.e. maximizes the total profit)
the supply chain, but the supply chain players may not be agreed on the parameters of the
contracts (e.g. profit allocation etc.). Considering such €&isenoccaro and Paandolfo
(2009) applied agent based simulation to figure out the scenarios (i.e. parameters of
revenuesharing contract) that inspire the firms to participate under revamreng
contract. Chauhan and Proth (2005uggested supply chain partnership Ipplging
revenuesharing contract where the profit allocation is based on the associated risk of the

firms.

2.9 Conclusions and Contribution of this research
In this chapter, we reviewed the literatsian bullwhip effects, price variation,
game theory applatiors in supply chainand various supply chaicontracs. Existing
researches of bullwhip effectin priciig¥ z el kan & ¢akanyél déréem,
2008)consideredh Stackelberg wholesale leading gam@iholesaleprice contractand a
linear supply chain. In our best knowledge, no researcher consideredeadaiy or
simultaneous gamdyuyback andrevenuesharing contract in the analysis of bullwhip
effect in pricing.This research aims at contributing in these isshseover, gisting
research of cogtassthrough is mostly limited in wholesale leadingtage supply chain;
this research also aims at extending the anafgsiga n-stage supply chain along with

consideringheretail leading and simultaneous type game relations.

Primarily, we follow¥ z el kan and ¢a&asanmétdedemo¢g 000D

costpassthrough to conjecture the price variation ratio. We extend the analysis by
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considering different types (retail leading and simultaneous) of gaime/back
newsvendor mael, andrevenuesharing contract. In order to consider simultaneous and

retail leading game, we model markup pricing gdi€. Wang, Lau, & Lau, 2013)

For the cospassthrough calculations, we are following the methodologyyHgi
(1999)andWeyl (2008). We extend their analysis the case of rstage supply chain and

relate that with the bullwhip effect in pricing.

In the case of buyback contract, we consajaice-setting newsvendor model. We
adaptPetruzzDada és (1999) mo deeitles ambathroser gulargity aneé t a i |
price for a given wholesale price and a buyback price. After deciding on optimal actions,

we analyze the optimal price variation for the changing wholesale price.

In the case of revenusharing contracwith determimstic demangdwe follow a
supply chain structure similar ®audin (2016)but the game rulegredifferent. Gaudin
(2016) only considered wholesale leading game igstage supply chain. Wanalyz
retail leading and simultaneous games as \wdiér tha, we benchmark the results with

no-contract situation.

In the case o& revenuesharing contract with stochastic demand, we model the
supply chain as a priesetting newsvendor model, and analyze the price variation for

different values of the reversbare percentage.

Hence, we contribute the literature in several directions by analyzing bullwhip
effect in pricing considering three game structures, two contracts, various demand

functions, and two types of demand uncertainty.
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CHAPTERS3: CONDITIONS FOR THE OCCURRENCE OF BP

3.1lIntroduction:

In this chapter, we identify the conditions for the occurrence of Bullwhip effect in
Pricing (BP) and relate it with the concavity coefficient and the-gassthrough. After
that, we discuss the occurrence of BP for some common demand functions. \Bfeoalso

numerical illustrations of BP in the case of two markup pricing strategies.

3.2 Conditions for the occurrence of BP:
We relate the conditions with both cgetssthrough of prices and concavity

coefficient of the demand functions. The discussiasifllows

3.2.1Costpassthrough and The Occurrence of BP:

In order to quantify the Bullwhip effect in Price (BP), we check the ratios of

standard deviations of prices between two stages)( referred as BP ratio®zelkan and

¢cakanyél dé&aatedithe( r&ids0obthe standard deviations with the-pasd
through (i.e. rate of change of prices with respect to cost).

The relation between the cgstissthrough and the BP ratio can be explained using
a simple example casket assumefj] o ®andd O @ 6, wherer| denotes the

retail price,0 is thewholesale pricegis thecost, and ¢ftddhd areconstars. Hence,

— h— ohvon & odwmdd 6 wdw. Therefore,— & and



— 0. Then, algebraically, we can show, -. Thus, we can conjecture the BP ratio

from the cospassthrough. For a formal and detail proof of the relation, please check the

proposition 8 of ¥zel kan and,th¢yaaksamegyadd dér é m

0 as random variables and relatedjas "QU . They concluded, ¥ is greater or equal

to a constant (for atb 1), then— is also greater or equal to that constant (Ozelkan and

takanyéldérem, 2009) .

Accordingly, f the costpassthrough is greater than one, then the BP ratio is also
greaterthanone hence O6Rever se BURBP ochursOzetkkdndneé ct i n
Lim2008¥ zel kan & ¢ ak)aSimilaly, dthercéspassthdlgh & BP ratio
is less han one, then we concludieat FBP occurs. If the BP ratio equals to one, we

concludethatno BP occurs.

3.21 Concavity Coefficient and The Occurrence of BP:
Tyagi (1999) defined the concavity coefficient;as ——, wherefy andr) are

the first order and second order derivative of the demand funafoim price
respectively’. Cowan (2004) referred this term e 6 r el ati ve curvatur e
order condition on the profit function (i.e. profit function to be concave tepensures

that the concavity coefficient, is less than twé? However, based on the structure of the

demand function, the concavity coefficigtan be greater/less/equal to one. Tyagi (1999)

. Updj
BTyagi (1999)¢6s ;bF{L%inal notation was
Gb

et retail price,06 wholesale price, antl retal profit. The demand is a decreasing function in
price, thereforefy  TL The retail profit,” N U n. The first order condition follows:— 7Tt

n o — . Then, the second order condition follows- 1t — (.
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related be costpassthrough as— ¢ B . Hence, if is between 1 and 2-is
greater than onevhichresultsinRBP ¥ z el kan & ¢ a k.Hareyigddditieror, é m, 2

we recognize thaf iz  p is less than onehen,the costpassthrough,— andthe BP

ratio,— are also less than arthus,FBP occus. Similarly, if §  p, then,the costpass

through,— andthe BP ratio— are equals to onghich resultsno BP.

Propostion 1:Fora linear supply chain with one retailer and one wholesaler in a wholesale

leading game framework,

a. Ifg — p,then— pand— p;thus,FBP occurs.

b. Ifg — p,then— pand— p;thus, no BP occur.

Here,) andr are the first and second order derivatiséthe demand functioni in the

retail price,n.

3.3 Occurrence of BP for some common demand functions:

Concavity coefficients, cogiassthroughs and occurrence of BP for some
commonly used demand functions are shown in Tallelt is to be mentioned, some of
the results are adapted fromz el kan and ¢ akaadAgaehi ahé Ebsnan ( 200
(2014)°. Ozelkan and Cakayindirim (2009) discussed that for isoelastic demand, RBP
always occur; for logarithmic demand, RBP occuisC n o0Q ;forlinear and

logit demands, RBP do notoccur However, they didndt focus

15 Adachi and Ebia (2014)iscussedheamplifying and absorbing cepaissthroughsat retail and wholesale
stages
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no BP which are included in the following table along with some additional demand

functions.
Table 3.1: BP in some common demand functions
Concavity .
Demand Coefficients, Cgst_passthrough, Occurrence
Functions AA - of BP
A
Log-concavg, o
& ont p U p = P FBP
T G P v
Linear,d0 @1 Tt p¥c FBP
18_ogit,
in p Age® n »p P P FBP
p.Q p Ag® 1
mnm odn o
Type | extreme value
distribution”’, Q o
. | | | [ FBP
P Q Q Q0 0 ¢ PR A Q@ Q
Mo n m
Isoelastic, = 5
W A
@ p 2P P = RBP
T dp & w w p
Logarithmic, ) LF
) o1} o 1§
© 1% P P No B
e m o w No BP
Negative Exponential,
oA @ Bd_r)] p p No BP

Proposition 2: Occurrence of BP for some common demamtttions are as follows
a. Foralog-concave, linear, logit, and Type | extreme value diatron typedemand
functions, FBP occurs.

b. Foranisoelastic demand function, RBP occurs

16 Alternate representatiod———— (logistic demand)See example iAdachi and Ebia (2014)

17 Seeexample inCowan (2012)and Adachi and Ebina (2014p Q Nomip D R T Type |
extreme value distribution is also known as Gumbel distribution.
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c. For a logarithmic demand functiorRBP occurs ifo'Q n° 6Q ; FBP
occurs ifo'Q n°; and no BP occurs iff 6Q

d. Foranegative exponential demand function, no BP accur

3.4 Occurrence of BP in the common ma#geing practices

Letdbs consider a common pricing strateg
markup pricing: dollaamarkup and percentagearkup(J-C. Wang, Lau, & au, 2013)
Dollar-markup is common for high cost products such as jewkbkwison & Delozier,
1989) while percentagenarkup is common in retailinglower, Graves, & Sexton, 1988)
It is to be mentioned that a fixed markup (dollar or percentage) strategyoptsoial(Lee
& Staelin, 1997) While fixed dollar and percentage markup pricing is discussed in the
following subsections, optimal markup pricing strategies in a game theoretical framework

will be investigated in the next chapter.

3.4.1 BP in Fixed DollaMarkup Pricing
Let 6 s a s tharewadler antthe wholesaler add a fixed markupd) with

their perunit cost. Thus, the per unit wholesale price would be & 6 and the per unit

retail pricewouldbg 0 6 @ 6. Theefore, the cospassthrough is 1 (i.e—

— — p). Furthermoreijt is relatively easy to verify thahe standard deviation of

S S

w Cc c

Hence, the price variability is constant. Therefore, we conclude no BP occur in the case of

fixed dollarmarkup pricing.
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No BP RBP
(fixed-dollar markup, $3) (fixed-percentage markup, 30%)
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14 14

2 10 810
© =
-
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6 6
4 € w—p 4 c—w—p
2 2
0 0
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AN OOOOTANTOMNMNOOOO NI LN ONML OO N ™~ 0
AA A A AN NNNNN ﬁmq@'\mHHﬁHHHﬁNNaNNN
Simulation Simulation

Figure 3.1: Constant or amplified variability of retail prices in the case of-tioder
(left) and fixedpercentage (rightharkup pricing. |p = retail price,w = wholesale price;
= cost ($8~$10), uniform distribution, 300 simulation run].

3.4.2 BP in Fixed Percenta@éarkup Pricing

Letds assume, both the retail enarkumnd wh

(100u%) with ther cost. Thus, the per unit wholesale price wouldvibe c(1+u)and the

per unit retail price would bep=\/v(1+ u):c(1+ u)z. Therefore, the cogtassthrough is

greater than one.

@:d_W:1+u>1; %:(1+u)2>1
dw dc dc
Which indicates,
S S
—L="w>1:5 >5 >5
s, S, P e

Figure 3.1 presents simulation results which stiat/the standard deviationtbie
retail price is more than that d¢iie wholesale price and the standard deviatiorthef

wholesale pricesi more than that of the cost [Figure 3.HEnce,the price variation is
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amplifying towards downstream supply chain. We conclude, RBP occurs in the case of

fixed percentage markup pricing.

3.5 Conclusion:

In this chapter, we discussed the conditions ther occurrence of BP. If the
concavity coefficient is less than one, then the-pastthrough is also less than one that
eventually creates FBP. If the concavity coefficient equals to one, then thpasest
through also equals one that results no BRe discussed occurrence of BP in some
common demand functionsuch as isoelastic demand gives RBP;dogcave (or linear
as a special case) and logit demand gives FBP, negative exponential demand gives no BP,
logarithmic demand gives RBFBP, or no BPbased on the range of the optimal price.
We also discussed the occurrence of BP is abgptimal markuppricing model. In the case
of fixed dollarmarkup pricing, no BP occur; in the case of fixed percentaadup
pricing, RBP occurs. It is to be mentiahen this chapter, the concavity coefficient and
the costpassthrough rates are calculated assuming a single supply chain with deterministic
demand following a wholesale leaditpckelberg game model. Other game structures

(e.g. simultaneous and rethihding) are considered in the next chapter.
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CHAPTERA4: BP IN DIFFERENT GAME STRICTURES

4.1 Introduction

In this chapter, we consider a simple linear supply chain with centralized demand
(Chen, Drezner, Ryan, & Simehevi, 2000) We consider thggame theory model to
identify the optimal markup pricinglf the associated manufacturing/procuremedt
changes due to external reasons (e.g. tax increment, change of exchange rate, scarcity of
resources etc.), thehe optimal prices will also changeccordingly. Thus, both the retalil
and wholesale prices will fluctuabecause of the cost changé#e analyze the fluctuation
of prices and conclude whether RBP or FBP oatudifferent game structures.

We are interested ira pricesetting game, where pply chain firms (e.qg.
wholesaler, retailer etc.) decide on their prices to maximize their piditonsider three
types of gamessimultaneous, wholesale leading, and retail leading game. The leadership
role (i.e. Who is committing first?) is exogenogusletermined by the market. In our

analysis, we consider three comnfotypes of demand functionssoelastic §=ap'),

negative exponentiak(= aexp(- p/b)), and dog-concavetype'® (q=(a- bp)"*).

8 Linear, isoelastic, and negative exponential demand functions are very commonly used among researchers
because thtee demand formare tradable and give constanpassthroughs(Bulow & Pfleiderer, 1983;
Fabinger & Weyl, 2012)Empirical examples can be found in the literature for linear demand in the
autanobile marketBresnahan & Reiss, 1985nd for isoelastic demand in beer mari@tnstein, 1980;

Phelps, 1988; Weimer & Vining, 2015)

¥ Log-concave type demarfd = (a— bp)” ') takes the form of linear (i =1), concave (ifv>1) and convex
(if v<1) demandSee example iBeyedEfahani, Biazaran, & Gharakha2i011).



In the next sectionwe discuss the game theoretic modehen we conduct
analytical aalysis for 2stage (section 4.3) and-$fage (section 4.4) supply chakfter
that, we show somenumericalexamples for illustration purposésection 4.5) After
discussing the results and illustrations, we derive conclusions.

4.2 Mark-Up Pricing Gaméescription

We are consideing a pricesettinggamewhere the wolesaler andhe retaier
decide on their pennit markup w6 a Pidespeatively. Thus, pamit wholesale price
6 wigithe sum othemanufacturing cosi caddthewholesale markup w@ Similarly, per
unit retail priced pisdthe sum of wholesale price waidthe retail markupd @ Demand
0 gsbta decreasing function in retail prim'an(ic‘e.g—g <0). As, p=w+u, andw=c+u,, we
canwritet he demandbé f@soc gu,@ )y or §(c,u,,u,)interchangeably.
Manufacturing cost cisknown to both parties (i.e. wholesaler and retailer). Both the
retailer and wholesalernt end t o max i mbwan &dnespectivelywn pr of
charging higher markups. On the other hand, higher markup results to higher price that
adversely affects the demand quantity and eventually affects the earned profit. Moreover,
each of their decision affects both of their profitherefore, botlthe wholesaler andhe
retailer need to consider the reaction function of their decision.

We consider three types of game scenarios (e.g. simultaneous, wholesale leading
and retail leading) betwedhe wholesaler andhe retailer. Ina simultaneous game, we
solve forthe Nash equilibrium where both wholesaler and retailer decide on their optimal
mar kup considering ot herasggleatiglgamé,sve soleerfok up a
the Stackelberg equilibriumconsidering one player (i.evholesaler or retailer) athe

leader andanotherasthe follower in decisioamaking. Inthe caseof awholesale leading
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game,thewholesaler declares its markup first thtee retailer decids on its markup. In
the case ofa retail leading gamethe retaier announces its markup first, and thée
wholesaler seatits markup Detail game descriptions are available in Appendix 1.
Analytical results othe costpassthroughs andP ratiosfor 2-stage and Pétage
are discussed in the following sections
4.3 Two-stagesupplychain
We consider a twestage supply chain (i.e. One retailer and one wholesaler) and
solve for specific demand functions (e.gogconcave Isoelastic and Negative

exponential) considering three different game scenafiaisle 4.1shows he cost pass

through£° (e.g. %Vand%) and Table 4.2 shows the BP ratio.

For the logconcavetype demand functich [e.g.q=(a- bp)llv], the costpass

throughsat wholesale and retail prisare less than one, and theiterelation can be
expressed a%%<%v<1. In the case of thevholesaleleading andheretailleading gamg

for linear demand, the cepassthroughat retail price is 0.25for convex demand, it is
between @5 and 1and for concave demand, it is less than 0.25. That means,dbafidge
in cost, the retail price will behangd by $0.25 for linear demand (or less than $0.25 for

concave demand). ltihe case ofthe simultaneous game, the cgmissthroughat retail

20 Costpassthroughs reflect the changes in prices for a unit change in cost. We%&éas the cospass
c

through at wholesale price anj& as the cospassthrough at retail price.
c

2! For logconcave demand function, the concavity coefficieﬁﬁFﬂ) is less than one. For linear

(ai)

demandyfi is zero.
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price is 1/3 for linear demand. For convex demand, it is between 1/3 and 1; for concave
demand, it is less than 1/3. Other values of-pastthroughs are interpreted in similar
fashion. Table 4.}

Table 4.1 Costpassthrough (2stage)

Simultaneous Wholesale Retail RBP
) game leading game leading game ) or
Demand function - dp - dp - dp Relation EBP?
dc | dc | dc | dc dc dc
o~ Linear 2 1 1 1 3 1
g5l =1 3 | 3 | 2 4 4 4 .
= Convex 2 1 1 1 3 1 dp dw (<1)
0.3 (v<1) >— > = >= > >— > —<—<1 FBP
Z 3 3 2 4 4 4 dc dc
9 Concave | _2 | _1 | _1 1L .3 4
= (v>1) 3 3 2 4 4 a
e, -1 | | | jal g ra+la) g | W dp éfal%
- (o]
q:ap',(|>2) -2 1-2|1-1 8?9_12 (-2 | ¢f-1= dc dc
Negative _dw_dp | (1)
Exponential, 1 1= de  de No
AN RBP
a= an%b—p§ IFBP

Table 42: BP ratio between the retail price and the wholesale price

Simultaneoug Wholesale Retail
Demand game leading gamg leading game RBP
function Sp Spe Spe or FBP?
SW sW SW
Linear, 1 1 1
q=a- bp = > 3 (<1) FBP
Iso-elastic, | | 2
. — — >1) RBP
g=ap’, (1 >2) -1 -1 12- (-1 1)
Negative Exponential =1)
q:aexp%‘e'b—p8 1 No RBP/FBP
g =
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For isoelastic demand functi&i the cospassthroughsat wholesale and retail

prices are greater than one, and the irg&tioncan be expressed as%u;—i. Inthecase

of thewholesale leading arttieretail leading game, for isoelastic demand, the-pass

throughat retail price is&.’ 182 that is greater than one but the value varies based on the
cl-1+

elasticity,| . That means, if =3, then for $1 change in cost, the retail price will be changed

0 2
a3g
&0

by $2.25 0 ¢

. In the case ofthe simultaneous game, the cgmtssthroughat retalil

8

Ll
-O: OOt

price is -—. If 1=3, then for $1 increase/decrease in cost, the retail price will be

increased/decreased by $3. Other valuesostpassthroughs are interpreted in similar
fashion. Table 4.)

For negative exponential demand function (&g aexp(- p/b)), the costpass

throughs atvholesalepriceand retail price are equal to one in all game scerfariesr $1

change ircost, the wholesale and retaiices will be changed by $1.

L w d _
From the quantitative values (%—C and d—2 (Table 3.}, we canconjecture the

valuesof W and =P . Then, algebraically, we can calculate the value’&f (Table
Sc Sc Sw

22 For isoelastic demand function, the concavity coefficient is greater than one

23 For negative exponential demand, the concavity coefficient equals to one. Moreowais demand
function, the optimal markup for both partiédhe wholesaler and retaildg) constant (i.e$b) (Fabinger &
Weyl, 2012) Thus, for this demand function, optimal markup pricing is equivalent to the fixed ddilar ($
markup pricing (similar to the example providedSaction4.1). Hence, no RBP or FBP occur.

240ur results confornyagi (19999 s ¢ o n Eyhgi($9DQconsidered wholesaleading game, derived
conditions on demand function, and concluded that for linear and concave demand functions;paiescost
through is less than one but for a subset of convex demand (e.g. isoelastic demand}ptssttosugh is
greater than one
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4.2). TheBP ratios (e.g. 2w, 2P 5P etc.) ardess greateror equal to one for linear
Sc Sc Sw

isoelasti¢ or negative expoential demand functi@respectively.
For linear demandhe retail price fluctuates less thaéime wholesale pricéTable
4.2). In the case ofthe simultaneous and wholesale leading game BReatiobetween
retail and wholesale price is ¥2. We intetpgitas result aghe retail price fluctuates less
(i.e. 50%) compared tihe wholesale price. Ithe caseof theretail leading game, thBP
ratio betweerthe retailand wholesale price is 1/3; that meahsr et ai | priceos
is one third of the fluctuatioof thewholesale price.
For isoelastic demantheretail price fluctuates more thaéine wholesale price. In

the case of the simultaneous amidolesale leading game, tB& ratio betweertheretail
o . - .
and wholesale price I5— wherel is the elasticity of the demand function.the case

|2

For negative exponential demairtke retail price fluctuates at the same rate with

of theretail leading game, th&P ratio is , Whichis alsogreater than one.

respect tahewholesale price (i.eZF =1).
Sw

4.4 N-stagesupply chain
In this section, we extend the results of secfi@dfor N-stage supply chain (Table
4.3 and4.4). N is the total numbers of stages in the supply chaimamefers to any stage

in the supply chaim=1 refers to the bottom stage amN refers to the top stage.
Forqg= (a- bp)% type demand function (or linear demand as a special case), the cost

pass through at any stage (i%&) Is less than one and decreasing towards downward. In
C

thecase of the wholesale leading and the retail leading game, thgass#itrough at retail
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( 1)N (or iNfor linear demand). Ithe case of simultaneous game, the
v+1

e dpyy
rice(i.e. =) is
price(i.e. —>)

1
1+ Nv

(or 1 forlinear demand).

I . dpyy -
costpassthroughat retail price (i.e.—=x) is
P 9 P ( dc ) 1+N

For isoelastic demand function, time case of wholesalkeading and retaileading

° ~N
game, the cogpassthrough at retail price iéTLlS . Inthecase of simultaneous game, it
¢l-1+

is ﬁ Let assume, elasticity,= sand the total number of stages in the supply chain,

° A
9 =244, inthecase of the

N = 4. Then, the cogpassthrough at retail price would i
g 0

wholesaleleading and retaileading game. Ithe case of the simultaneous game, it would

be % =5. That means, $1 increase in cost will result $2.44 increase in the retail price in

the case of wholesalkeading and retaileading game. Ithe caseof simultaneous game,
the retail price will be increased by $5 for $1 increase in cost.
Table4.3. Cost pasthrough (Nstage)

(Total stageN, any stage, top stagen=N, bottom stage=1)
[Detail version of this table is available in Appen@g§

dﬁ RBP
Ejirgﬁgg S T ollc Relation or
Imuitaneous olesale . . FBP?
game leading Retail leading
1+(n- v 1 .V
q=(a- bp)k e | oae - a :
1 iz +1
. 1+ Nv (V ) i=n..N (V ) d_p1<m< de <1 FBP
Linear, n 1 1- § 1 dc dc
f=a- o 1+N 2N = 2
| I-(n-1) . 3l 6N-n+1 1 81 6|
Isoelastic, _ ’ 1+ 5 — d d
o - N 12 A TN 10 1< <P Rep
g=ap" (1>2) | >N 1=n... dc dc
1 >1 1 >1
Negative
exponential, d
g Po ! e i
q= aexpa-:-b—o dc dc
(!‘ =
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Table4.4: BP ratio between two consecutive stagestdge)
(Total stageN, any stage, top stagen=N, bottom stage=1)
[Detail version of this table is available in Appen@ix, 24

s
. RBP
fDemgnd S Relation or
unction P
Simultaneous Wholesale Retail leading FBP?
game leading
Sh .
Linear, n 1 142N - pN-n+t S a1 <L EBP
q=a-bp n+1 2 1+2N - oN-n Increasing
inn
Isoelastic, N N e L Sn_oq-
o |- n+1 | R s e (i A '
a=ap 1.1 N N-n'n n‘ n . RBP
I-n = IN-(1-12) (I -(-12) ) Increasing
(1>2) :
inn
Negative
exponential, 1 Sno_q No
% Shu BP
g=ae

Based on the value of the cgmissthrough (‘Lﬁ), the BP ratio between two
C

consecutive stages>-) is calculated (Tablé.4). For both linear and isoelastic demand

n+l
functions, the ratio is less than onethe case of wholesalleading game, the BP ratios

are constant. For the linear demand function, it is ¥2 and for the isoelastic demand function,
itis Il_l In the case of simultaneous and retail leading game, the ratio is decreasing in

In the case of simultarmus game, the BP ratio does not depend on the number of total
stages. That means, the case of simultaneous game, irrespective of the total numbers

(e.q. 2, 3..or N), the BP ratio between the retail and the wholesale price (i.e. between the

bottom two snges,ﬁors_P) will be same. Figurd.1 illustrates the BP ratios for a 4

S2  Sw

stage supply chain.
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Figure 41: BP ratios (4stage) [1 is the bottom stage; 4 is the top supplier stage]

4.5 Simulation Results

In this section, we run simulatierio illustrate the analytical resultsf previous
sections We consider awo-stage supply chain (retailer and wholesaler). We randomly
fluctuate the cost, calculate the optimal wholesale and retail price for each random cost.
The parameters (e.g. distriimn function, demand function parameters, upper or lower
limit of cost, number of stages etc.) for the simulation are chosen randomly (but within the

limit of the constraints) for illustration purpose. Similar results can be obtained for other

41



parametersis well In this simulation, the cost is uniformly distributed between $8~$10.
The demand functions arg=20- p (linear), q=ap*(isoelastic) andq = aexp(- p/8)
(negative exponential)Ve run the simulation for 300nties. Thenfinally compare the
standard deviation of the costisewholesale prices arttieretail prices.

Here, we considerine scenariogtireedemand functionandthreegame structuis.
The results othis simulation are summarized Trable4.5and illustrated ifFigure4.2 and
4.3

Table 4.5 Results of simulation (Markup pricing game)

Simultaneous Wholesale Retail
leading leading
Sc Sw Sp Sw Sp Sw Sp
Linear, g=20- p 0.605| 0.403| > | 0.202| 0.302| > | 0.151| 0.454| > | 0.151
o -25 1.814| < | 3.024| 1.008| < | 1.680| 1.277| < | 1.680
Isoelastic, = ap
Negative Exponential, 0.605
q = aexp(- p/8)

For linear demand, the@andard deviationf theretail price is less thanetstandard
deviationof thewholesale price anthe cost.Hence, price variation absorbdd.the case

of simultaneous, wholesaleading, and retaleading game, the ratios of standard

deviation of retail price to wholesale price a|9é2£2=0.501, O'L51=0.5, ando'LSl=0.33
0.403 0.302 0.454

respectively. These ratios match very closely whi BP ratio mentioned in Table 48
expected.

For isoelastic demand, thetandard deviatiorof retail price is greater thandh
standard deviatioof thewholesale price anthe cost.Hence, price variation is amplified.

In the case of simultaneous, wholes#ading, and retaleading game,he ratios of

standard deviation of retail price to wholesale price ai’ﬁgei—jﬂ.%?, ll'Ti)88=1.667, and
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—11'26787:1.316 respectively. Analytical resultsof BP ratios from Table 4.2 are

2 2
-1 2?351:1'667 and 12 I = (25) =1.316. The results ofrable 4.5match

25-1 (-1 (25P- (25-2)
the results offable 4.2 as expected

From figure4.2, it is clearly visible that, for linegpor isoelasticdemandthe price
variability is decrease@or amplified) towards downstream supply chalfor negative

exponential demand, the varibity of the cost, wholesale priceand retail priceemain

constant (Figure 4.3).
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Simultaneous, Wholesale or Retail leading game;
Negative Exponential Demand, q = a*exp(-p/8)
T T T I I

26

24 .

22 cost wholesale price retail price

Prices

16

14 - 1

12 1 7

8 | | |
0 50 100 150 200 250 300

Simulation

Figure 4.3 Pricevariation (Markup pricing game; Negative Exponential Demand)

4.6 Price variation, markups, game structure:

If we compare the price variation among various game structures, from figure 4.2
and 4.3, and table 4.5 it is seen that for linear (or isoelastic) demand, the retail price
variability is same in the case of wholesale leading and retail leading game leugomor
less) in the case of simultaneous game. The reason behind is that for linear (or isoelastic)
demand, the optimal retail price is less (or more) in the case of simultaneous game

compared to the case of wholesale leading and retail leading game. Bloreow also
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visible, that for linear (or isoelastic) demand, the more the markups the less (or more) the
variability of prices. In other words, the closer the price to the cost, it captures more of the
variability of the cost. For linear (or isoelastd®mand, the far the price from the cost, the
variability is absorbed (amplified) more. This phenomenon contributes to the different

values of cospassthrough and BP ratios for different game structures.

4.7 Summary an@onclusion:

In this research, wenalyzed the price variation analytically and then simulated the
results. We considered markppcing model, three game rules (e.g. simultaneous,
wholesale leading, and retail leading) and three types of demand functions (e.g. log
concavetype (linear as aspecial case), isoelastic, and negative exponential). We extend
the costpassthrough analysis to #$tage supply chain and conjecture the BP ratios for N
stage supply chain. We compared the BP ratios among various game scenarios. The results
can be summaed as follows

1 The costpassthroughs are less than one tp£ (a- bpf'¥ type demand function. For
Isoelastic demand function, the cgstssthroughs are greater than one. For

negative exponential demand function, the -gaststhroughs equal one. Cest

passthroughat retail price (i.eg—s or (:%) is same irthecase of wholesalkeading

° ~N
and retaileading game. It isziNand 2?'_18 for linear and isoelastic demand
(; i

respectively. The cogiassthroughs are also absorbing amplifying towards

downstream supply chain foq=(a- bp)% type denand or isoelastic demand

function respectively.
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f BP ratio at retail and wholesale price between two consecutive gtages>r)
SW s‘ﬁ'l

is constant inthe case of wholesalkeading game for linear and isoelastic demand
function. Inthecase of simultaneous and retail leading game, it is decreasing in
1 The gandard deviation of the retail (i.e. most bottom stage) price remains same for
the wholesaldeading and retalleading games but differs for the simultaneous
game. The dandard deation of pricesis absorbed or amplified towards
downstream supply chain for linear or isoelastic demand respectively.
The analytical and simulation results help us to understand the nature of price variation for

various supply chain structures.
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CHAPTERS: BPUNDER ABUYBACK CONTRACT

5.1Introduction:

I n this chapter, we model the retailero
where a newsvendor model dictates the inventory replenishment decisions. In a
newsvendomodel, a retailer commits the order quantity before the start of the selling
season based on the demand forecast which is stochastic. Hence, if the realized demand is
less than the order quantity, then the retailer salvages the leftover at a lower ptiice. O
other hand, if the realized demand is more than the order, then the retailer incurs a cost due
to shortage or loss of goodwill. Therefore, the retailer makes a tradeoff between the overage
and underage cost; and thus, decides on the order quarttisyisTwhat is called the
traditional 6 N% (Edgewerth,d1888; MBrse& tKimbath 4951; Porteus,
1990, 2008). Typically, in such a problem, the retail price is considered as exogenous. A
variation of the newsvendor model is the pisetting rwsvendor model where the retailer
decides both the order quantity and the retail price (Mills, 1959, 1962; Whitin, 1955). In
such case, the stochastic demand is p@sitive. Another variation of the prisetting

newsvendor model is the consideratadrsupply chain contracts (Cachon, 2003).

%0t her names for the 6NewsvNewsbayr(MoRBa & Kilbaln®951ar e as
Newsperson, Christmas Tree problem etc. (Porteus 2008)



Buyback contract is quite popular in industffesuch as the book industry and
textiles with branegashion items (H6hn, 2010). In a buyback contract, the wholesaler buys
the leftover goods back at a price gredéten the salvage price. This contract is also called
a return policy (Cachon, 2003). Following such contract, the wholesaler incites the retailer
to order more because the return practice
the leftover. Tl increased order size increases the expected profit of both the wholesaler
and retailer. Brand reputation also motiva:
want their product to be placed in the salvage shelf of the store (Padmanabhan & Png,
1995). Stock rebalancing can be another motivation for applying a buyback contract (Hohn,
2010).

Let 6s consi der fraumbeect gnads$, pays the Wholesal@rmee r
unit and sells it at the price @f) per unit. The demand can be expresae® w |
(additive) ofO  wf(multiplicative) whereawis the deterministic part apds the uncertain
part of the deman®. We are considering both additive (Mills, 1959) and multiplicative
(Emmons & Gilbert, 1998) uncertainties here. We alsorasg is distributed on the
interval 69 ,* is the expected value pfand, is the variance df.

The wholesaler buys the leftover goods back at aprite] . It is necessary to
assume that the buyback pricas less than the wholesaleiqa w, otherwise the retailer
would order infinite number of goods and return it back to the wholesaler while earning a
positive amount of profit for each unsold item. However, another variation of the buyback

contract can be such aghe retailer need ndo return the goods physically, but salvages

26 The application of buyback contract in various industries (e.g. books, apparels etc.) are discussed
elaboraely in Chapter 2.7
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it at his own location at a priag then the wholesaler credits an amdunper unit back
for the leftover/salvaged items. Thus, the retailer earns the amount T for each

unsold product. Ithe caseof physical return of the goods, the wholesaler paysuv

[ to the retailer and salvages the | eftover

retailerds payoff f or e acth Ow madel tagturgs bathd u c t

types of byback contracts.

We adapt the priesetting newsvendor model of Petruzzi and Dada (1999) and

modify the model to include the buyback policy. We determine the optimal actions; then,

we compare the retail price variation with respect to the wholesale @icgion by
analyzing the cogpassthrougtt’. Following the analytical modeling, we also conduct

numerical analysis for illustration purpose.

5.2Model:
In thecase of pricesetting newsvendormodéh e r et ai |l er 6s prof it
as following,
. nouvntrn O IO N )
nnon YO 74 MO N

Since,0O « T (additive case) 00 7 (multiplicative case), by assumifig
@ 1 o(additive case) o&t ATw (multiplicative case)t he r et aft IREr 6 s
can be expressed ‘as i) . The corresponding optimal policy is the order quantity,
®wn® & (additive case) o & wn° (multiplicative case)Here & is called the

stocking factor and can be expressedas® , z OA AEOANOT O

27 Costpassthrough refers to the change in price for marginal change in cost. If the retail pyiaedsthe
wholesale price i8 , then the retail cogiassthrough is—.

28 Such assumption provides mathematical convenience. We adapt this solution method from Petruzzi and

Dada (1999)
50
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The retail er 6s nuzejteeaxgeited erofii0$ dffjo whera x i
“ 4 is the retaileroés profit Qaandf).Thssaopt i m:
joint optimization problem im andd. Therefore, we take partial derivatives of the expected

profit in i and ¢, and check if the second order conditions are fulfille@ 1f is concave
in & for a givenn (i.e. — O“ a9 mM and concave im for a givena (i.e.

— 0" N« 1), then we can solve the joint optimization problem fellny either

the stocking decision approach or the pricing decision approach as follows

Stocking decision approach:By replacingn® a, the expected profit equation
would be transformed into a single variable problem(nZ a b e | 1970) . Fol |l o
(1970) method, Petruzzi and Dada (1999) derived conditions for the existence of unique

optimal actions in the case of newsvendor model. They showedOthatdh)” &
reaches its maximum at the unique valuéiof ¢ that stisfies,—0* amM* & U

The conditions are fulfilled by exponential, uniform (Zabel, 1970), normal (Nevins, 1966),
lognor ma l (Young 1978) distributions etc. P
slightly more general. Their theorem is analog in our buyback setting. We refer this

method as the stocking decision approach.

Pricing decision approach: Another method of solving the joint optimization
problem is to replacé& 1 into the expected profit equation; then the expected profit
equaton would be transformed into a single variable problem {dvhitin 1955, Porteus
1990). We refer this method as the pricing decision approach. Emmons and Gilbert (1998)
followed pricing decision method in buybankwsvendor setting assuming multiplivati

uncertainty, uniform distribution and linear demand form with no shortage cost.
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Both stocking decision approach and pricing decision approach give the same
optimal results. Stocking decision approach is mathematically convenient and pricing
decision aproach has managerial application. For price variation comparison, the pricing
decision approach is convenient sometimes.

Table5.1: Description of Parameters

Notation Description
“ Retailerbés profit
n Retail price
0 Wholesale price
O Demand
For additive casé) |
For multiplicative caseQ  wf
W Deterministic part of the demand
T Random part of the demand
N Order quantity
f Buyback price
Y Shortage cost
o} Stocking factor
For additivecase&y 1
For multiplicative casey AW
@ Elasticity of the demand function
‘ Expected value of the random varigble
g ok wes
0 a™Qo0 Qo
For additive case, E[shortage]g &
For multiplicative case, E[shortage]Uy &
va & 670606
For additive case, E[leftover] ¥ &
For multiplicative case, E[leftover] Ur &
*0a a v Expected sales
Q Oa'QQo ¢ L QI
‘g Oi 0o Qi
"Oq Cumulative Distribution Function
"Qa Probability Density Function
, Qa Hazard rate
i a —
" p Oaq
QQ , Q0 e
Qd Od n@ PO | berivatives ofoand'Oin o
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We conduct the analytical and numerical analysis considdvimg types of
(additive and multiplicative demanduncertainty. We assume a lineand isoelastic
demand form with additivandmultiplicative uncertainty following a uniform distribution.

The detail problem formulations and solutions are discussed in Appendix 1A (Additive
case) and Appendix 2A (Multiplicative case). The parameters are introduced in Table 5.1
and lemmas and progtiens are mentioned in the following subsections.

5.2.1Additive Demand Uncertainty Case:

Lemma 1la: Following the pricing decision approach for the single period buyback

newsvendor model witldditive demanduncertainty, the optimal stocking factaf is

determinedas & 5 O —— and the optimali® is the f that satisfies
— O0“ nhr A Tt Hence:

1. For linear demand)” 0 n n : Tt

2. For isoelastic demand, 0 n n 0 : L1

Proof: Appendix1-B-i.
Lemma 1b: Following the stocking decision approach for the single period buyback

newsvendor model considering lin€ademand with additive uncertainty, the optimal

pricen)” is determined 88n° & ——— ——andtheoptimald is the uniquetin the

~

ho that satisfies—h T Hence,

©n

region O

2% Following the stocking decision approach, it is difficult to obtain a efosa solution o)’ & in the case

of an isoelastic demand witm additive uncertainty. However, we can solve the problem following the
pricing decision approach which is mentioned in Lemma la.

30 The optimal price ithe case of additive certainty is less than the-tésis priceThis result was shown by
Mills (1959) and Petruzzi and Dada (1999)
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o L O o0t gd .
0 & 0 f o T YT p 04 m

Proof: Appendix 1B-ii.
Proposition 1: In the case ofa buybacknewsvendor model with additivdemand

uncertainty, the retail cogtassthrough isas follows

z

1. For alinear demando & @, -p _

z R

2. For anisoelastic demand> @y ,—

Here,"O8 is the cumulative distribution functiofQ8 is the probability density function,
i 8 —88is the hazard rate.

Proof: Appendix 1D.

Corollary 1a: For con® Y I —— p, FBP occurs in the case of buyback

newsvendor model under linear demavith additive uncertainty.

z

Proof: Forcory Y f —— p, — - p; hence, FBP occur

Corollary 1b: Ocaurrence of FBP or RBP in the case of buybaelksvendor model under
isoelastic demand with additive uncertainty, depends on the paravadtes.
5.2.2Multiplicative DemandJncertaintyCase:

Lemma 2a: Following the pricing decision approach for the single period buyback

newsvendor model with multiplicativdemanduncertainty, the optimal stocking facir

is determinedas & 5 'O —— and the optimalf® is the | that satisfies
— 0“ fhY 1 Tt Hence:
1. Foralinear demand)’ 0 n N — -Z2O4d N Tt
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2. Foranisoelastic demandy® 0 n n —0 —zZoa N 11

z z

Here,® -

Proof: Appendix 2B-i
Lemma 2b: Following thestockng decision approach for the single period buyback

newsvendor model with multiplicative uncertainty, the optiriak determined as:
1. Forlineardemandy a —— -&a
2. Forisoelasticdemand, a —U0 —®a

And theoptimal & is thed is that satisfies———— 1

“o  ao 0 1 n"a YT p "Od T
Here,0 &’ for isoelastic demand and & axy° for linear demand.

Proof: Appendix2-B-ii

z z

Lemma3:Let 0 s &d ef—4—hne— andw

Then it follows
1. If°Y mthen— 1t
2. If°Y T then
a. — mif v T @ — —  f—m
b. — mif 0 ¥ — —  Y“—0
3. w follows the sign of—.
Here,—— Tis given

Proof: Appendix 2C
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Remark: In further discussion, we will be using these two variablesndw .
Proposition 2: The expected profil@ /i is concave imorO oM’ &
is concave it for the given conditions
1. Foro & -0 p
2. Foro &) ,0 p, —w p
where,w is defined in Lemma.3
Proof: Appendix 2D-i (pricing decision approach) and AppendixDZi (stocking
decision approach)
Proposition 3: In the case of buybaakewsvendor model with multiplicative uncertainty,

the retail cospassthrough is as follows

z R - —

1. Forlinear deman@.e.'O & &1f), -p

2. Forisoelastic demand¢i.O & 1),

Where,w is defined inLemma 3 and Proposition 208 is the cumulative distribution
function

Proof: Appendix 2E-i (pricing decision approach) and AppendiEai (stocking decision
approach

Corollary 2: Compaisons of the retail cogtassthroughs between the case of buyback
newsvendor modebith multiplicative demanduncertaintyandtherisk-less model are as

follows in table 5.2.
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Table 5.2: Comparisoof the costpassthroughbetween the optimal price and the risk

less price.
Retail Costpassthrough Condition
,mz T[ (b
Q0 p C P
2 o p & © ,p 0
an QL ¢ C g p O
D L \Z l/ ”n
5 mop L
£ Q0 ¢ g p O g
-
o p & _© ,» 0
Q0 ¢ C g p O
vmz (’;) '(A) d) Q p “O
s T w p ¢ g - _e
o QU w p @) %
@
g — ?) 0 s
a) (o1 W P 'w
2 96 & b 9 08 O
oy
2 ~ - 8 5 o
l) ﬁ (L) 'w d‘) ‘ p
00 & b & p 9 0 8

Proof: Appendix ZE-iii.

5.2.3. Discussion on the Propositions and the Corollary:
We are interested to analyze the changejofin 0 which is mentioned in
Proposition 1 and 3 in term of cgsassthrough for additive and multiplicative case

respectively. From Chapt& we know thathe costpassthrough is related witthe BP

z

ratio. If

p, then retail price fluctuates less than the wholesale price (i.e. FBP occur)
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and if p, then the retail price fluctuates more than the wholesale price (i.e. RBP

occur).
For alinear demand, the cepassthrough in the cse of risklessmodel (i.e. no
newsvendor) i€ .3 Lemma 1 tells that the optimal price is less than theleisgprice;

hence, the cogiassthrough is less than %2 which is conformed by Proposition 1. Since, in

the case of buybaekewsvendor model forriear demand with additive uncertain%yi,

- P, hence, FBP occur in this setting.

z

In the case o& multiplicative demanduncertainty,

can be less or greater than

-. However,the value of— cannot exceed 1 for linear demandtif « . [Corollary?2].

Hence FBP occus in the case ofalinear demand with multiplicative uncertainty.

For isoelastic demand, in the caseaaisk-less model, the cogtassthrough is

z

clearly greater than one (i-e- — p). Considering the risassociated term— can

be less or greater than—. In order to conclude for any valid condition that would make

z R —_—

less than one for isoelastic demand, the argument - is

needed to be verified where —— p,—® p,® ¢, andm O p are given.

z

[Appendix 2E-iii]. Otherwise— is greater than one for isoelastic demand. HeR&&

OCCUus.

31n the case of riskess modelfor linear demany ny
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5.3Numerical analysis:
The price fluctuation, cogtassthrough ra¢s and the occurrence of FBP can be
illustrated through numerical analysis. The parameters are chosen randomly for illustration

purposgTable 5.3)

Table 5.3: Parameters used in the numerical simulation

Deterministic parte | Uncertainty type| Distribution,f Shortage| Buyback| Price
cost,”Y | price} Range

Linear Additive Uniform ulv , 10 15,70 | N/A

(@ p mTR) Uniform p 1p 1

Isoelastic Additive Uniform vl 10 15 Smaller and

(W pm ) larger price

Linear Multiplicative Uniform phv 2 1 N/A

(@ vmn)

Isoelastic Multiplicative | Uniform ph 2 1 N/A

(@ a )

5.3.1Additive Uncertainty Case [Detailarein Appendix 1E]:

L e t $ssme,ahe deterministic part of the demand fdlelinear form,w

p T TN, the additive uncertainty is uniformly distributed on the intervablv or
p tp 17 buyback pricef p & ix mshortage costy p mWe consider two uniform
distributions and two buyback prices for comparison purpose.

Optimal retail prices and aptal base prices for varying wholesale prices are
illustrated in Figure 5.1 fof p WX mand the corresponding cegsassthrough is
illustrated in Figure 5.20ptimal prices are calculated for two uniform distributions (e.g.

vlv and p p 1. The base price corresponds to the optimal price in the case of a risk
less modelFigure5.1and5.2shows that the optimagtail price is less than tHeaseprice

(Mills 1959, Petruzzi & Dada 199@nd the cospassthrough of the optimal price is kes

than ¥2In Figure5.3, for randomized values of stocking factor, we plot the corresponding
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wholesale prices and the optimal retail prices and base prisbews that the retail price

fluctuates less than the wholesale priceideeFBP occurs in thig#ing.

Price Comparison under 5=15

110 .

p° (dp%dw=1/2)
p* for uniform[-5,5] (dp*/dw<1/2)
p* for uniform[-10,10] (dp*/dw<1/2) <

%

—
o
o
T
1

90

*

Optimal Retail Price (p ) and Base Price (p

70

50 1 1 1 1 1
0 20 40 60 80 100 120

Wholesale Price (w)

Price Comparison under 3=70

p” (dp’/dw=1/2)
p* for uniform([-5,5] (dp*/dw<1/2)
p* for uniform[-10,10] (dp*/dw<1/2)

105

100

90 r

Optimal Retail Price (p*) and Base Price (po)

85 a 1 1 1 1 1 1 1 1
70 75 80 85 90 95 100 105 110 115

Wholesale Price (w)

Figure5.1 Price comparison in Buyback Newsvendor Model @mgemand, additive
uncertainty
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0.5 Cost-pass-through under =15

uniform[-5,5]
uniform[-10,10]

e

~

oo
T

o

N

\‘
T

0.46

Cost-pass-through (dp/dw)

0.45

0.44

043 1 1 1 Il 1
0 20 40 60 80 100 120

Wholesale Price (w)

0.5 Cost-pass-through under =70

uniform[-5,5]
uniform[-10,10] | A

0.48

0.46 4

0.44 7

0.42

04r n

0.38 4

Cost-pass-through (dp/dw)

0.36 - .

0.34 N

0-32 1 1 1 1 1 1 1 1
70 75 80 85 90 95 100 105 110 115

Wholesale Price (w)

Figure5.2 Costpassthroughin Buyback Newsvendor Model (linear demand, additive
uncertainty)
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Price Fluctuation,
Linear Demand, Additive Uncertainty, Buyback
T T T T T T T

©
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1 1 | | | | 1 1 |

20 40 60 80 100 120 140 160 180 200
Simulation

Figure5.3 Occurrence of FBP (Linear demaiadlditive uncertainty)

w
a
o

We also consider an isoelastic form (exg. —) for the deterministic part of the

demand. Figure 5.4 shows the price comparison that reflects the optimal price is less than
the riskless price and Figure 5.5 shows the corredpancostpassthrough. From figure

5.5, we see that the cgsassthrough changing from greater to less than one. Hence, based
on the value of the wholesale price, both RBP and FBP can occur in the case of isoelastic
demand with additive uncertainty. Figu5.6 also shows similar conclusion in terms of
standard deviations. Figure 5.6 shows, occurrence of RBP and FBP for two different range
of the wholesale price. In the case of the selected parameters, when the wholesale price is

close to $25, then RBP aats; when the wholesale price is close to $45, then FBP occurs.
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Price Comparison
80 T T T T T

— = p0 (dp%dw=3/2)
p* (dp*/dw<3/2)
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N
o

10 1 1 1 1 1 1 1
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Wholesale Price (w)

Figure 5.4:Price comparison in Buyback Newsvendor Modisbé¢lastic demand,
additive uncertainty
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Figure 5.5:Costpassthroughin Buyback Newsvendor Modelspelasticdemand,
additiveuncertainty)
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Figure 5.6:0ccurrence of FBPgoelasticdemand, additive uncertainty)

5.3.2Multiplicative Uncertainty Case [Detailarein Appendix 2F]:

L e t gsugne,dahe multiplicative uncertainty is uniformly distributed on the interval
plv 2, shatage price]Y ¢, buyback pricd,  p. The minimum value of the wholesale
price is the buyback price and the maximum wholesale Biig¢hat price for which the
corresponding demand is zer@d/e consider two forms (linear« p T and
isoelastic w p 1 m 7 ) for the deterministic part of the demand. The optimal results

arediscussed in the following subsections.

32The multiplicative case (with constant elasticity) reqdire Tin order to avoid the occurrence of negative
demand (Petruzzi and Dada 199R)is to be mentionedEmmons and Gilbert (1998) assumaniform
distribution on the interval [0,2] with mean=1 for simplificatidinat worked there, because yressumed a
linear form of demand.

33 For isoelastic demand, the maximum wholesale psiceb and the corresponding dema®drt
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