Berglind, Luke
Time Domain Approach to Stability in Machining Operations
1 online resource (202 pages) : PDF
2015
University of North Carolina at Charlotte
Machine tool chatter is a common occurrence in machining environments which can lead to undesirable part outcomes and can even cause damage to the machine. Chatter is a result of regenerative dynamic forces inherent in the machining process which can cause the system to be either stable or unstable depending on the parameters of the cutting operation and the dynamic characteristics of the machine tool. The study of chatter is a common research topic which aims to characterize the dynamic behavior of machining operations so that chatter can be avoided. In this dissertation, a method is developed to analyze the dynamic behavior of cutting processes in the time domain. This approach allows for the tool point behavior to be determined analytically over a finite number of cutting periods. The analytical expressions describing the tool motion are then incorporated into a matrix solution which is used to determine dynamic stability directly without requiring a full time domain solution. These methods are first developed for an orthogonal turning model, and then expanded for the analysis of low radial immersion milling, low radial immersion milling with variable pitch cutters, average angle approximation milling with non-constant number of teeth in the cut, and full milling with variable cutting force directions.
doctoral dissertations
Mechanical engineering
Ph.D.
ChatterMachining DynamicsStability
Mechanical Engineering
Ziegert, John
Smith, ScottSchmitz, TonyDavies, AngelaKelly, ScottWilliams, Wesley
Thesis (Ph.D.)--University of North Carolina at Charlotte, 2015.
This Item is protected by copyright and/or related rights. You are free to use this Item in any way that is permitted by the copyright and related rights legislation that applies to your use. For other uses you need to obtain permission from the rights-holder(s). For additional information, see http://rightsstatements.org/page/InC/1.0/.
Copyright is held by the author unless otherwise indicated.
Berglind_uncc_0694D_10913
http://hdl.handle.net/20.500.13093/etd:1037